WO2020206983A1 - 光学指纹装置和电子设备 - Google Patents

光学指纹装置和电子设备 Download PDF

Info

Publication number
WO2020206983A1
WO2020206983A1 PCT/CN2019/113088 CN2019113088W WO2020206983A1 WO 2020206983 A1 WO2020206983 A1 WO 2020206983A1 CN 2019113088 W CN2019113088 W CN 2019113088W WO 2020206983 A1 WO2020206983 A1 WO 2020206983A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical fingerprint
light
layer
filter layer
Prior art date
Application number
PCT/CN2019/113088
Other languages
English (en)
French (fr)
Inventor
陈宋郊
高攀
吴宝全
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201920483758.3U external-priority patent/CN209765526U/zh
Priority claimed from PCT/CN2019/103321 external-priority patent/WO2021035622A1/zh
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN201980004118.2A priority Critical patent/CN111052143B/zh
Publication of WO2020206983A1 publication Critical patent/WO2020206983A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition

Definitions

  • the optical fingerprint module is placed under the display, but the space under the display is limited, which affects the size of the optical fingerprint module. , Space thickness has put forward higher requirements.
  • the main components of the current mainstream optical fingerprint module are lenses, filters and optical fingerprint chips.
  • directly preparing the filter on the optical fingerprint chip can effectively reduce the thickness of the optical fingerprint module, but at the same time it also has There is a certain problem. Due to the large difference in thermal expansion coefficient between the optical fingerprint chip and the filter, when the chip is thin, it will cause the optical fingerprint chip to warp and affect the fingerprint recognition performance. Therefore, how to balance the space requirements and performance of optical fingerprint recognition is an urgent problem to be solved.
  • This application provides an optical fingerprint device and electronic equipment, which is beneficial to take into account the space requirements and performance of optical fingerprint recognition.
  • an optical fingerprint device which is applied to an electronic device with a display screen.
  • the optical fingerprint device is used to be arranged under the display screen.
  • the optical fingerprint device includes an optical fingerprint chip and a filter layer. , A light absorption layer and an optical component, wherein the filter layer is sputtered or evaporated on the upper surface of the optical fingerprint chip, and the light absorption layer is coated on the upper surface of the filter layer; or, the light The absorption layer is coated on the upper surface of the optical fingerprint chip, and the filter layer is sputtered or evaporated on the upper surface of the light absorption layer;
  • the optical component is used for guiding the optical signal returned from the finger above the display screen to the optical fingerprint chip after being transmitted through the filter layer and the light absorption layer;
  • the optical fingerprint chip includes a sensing array having a plurality of optical sensing units, the sensing array is used to receive a finger returning from the display screen and passing through the optical component, the filter layer and the light absorption layer The transmitted fingerprint light signal, which is used to obtain the fingerprint image of the finger.
  • the filter layer at least covers an area where the sensing array is located on the optical fingerprint chip.
  • the filter layer partially covers the non-sensing array area on the optical fingerprint chip.
  • the non-sensing array area of the optical filter layer on the optical fingerprint chip is distributed in a strip shape or a square shape.
  • the light absorbing layer is used to absorb light signals in a specific red wavelength band.
  • the specific red light band is a wavelength band of 600 nanometers to 1 millimeter.
  • the wavelength of the half-wave of the absorption spectrum of the optical signal of the specific red light band in the filter layer is between 540 nanometers and 700 nanometers.
  • the light filter layer has a light transmittance of 80% to 90% for light signals with a wavelength of 450 nm to 600 nm.
  • the thickness of the light absorption layer is between 3 microns and 15 microns.
  • the thickness of the optical fingerprint chip is between 50 microns and 200 microns.
  • the light absorbing layer uses at least one of the following materials: ink, polyethyleneimine, epoxy, oxide, and acrylic.
  • the optical component includes at least one light blocking layer and a micro lens array, the at least one light blocking layer is disposed under the micro lens array, and each of the at least one light blocking layer An opening is provided in the light blocking layer;
  • the microlens array is used to receive the optical signal returned from the finger, and transmit the received optical signal to the optical fingerprint chip through the opening in the at least one light blocking layer.
  • the optical component includes a collimator and includes a plurality of collimation holes, wherein the collimator is used to receive the optical signal returned from the finger, and the received optical signal It is transmitted to the optical fingerprint chip through the plurality of collimating holes.
  • the optical assembly includes: a lens assembly, including a lens and a lens barrel, the lens is fixed in the lens barrel, and the lens is used to return light signals from a finger above the display screen Converging to the optical fingerprint chip, so that the optical signal performs optical fingerprint imaging on the optical fingerprint chip.
  • an electronic device and a display screen are provided;
  • the optical fingerprint device is disposed under the display screen.
  • the display screen is an organic light emitting diode OLED display screen, and the display screen includes a plurality of OLED light sources, wherein the optical fingerprint device uses at least part of the OLED light sources as excitation light sources for optical fingerprint detection.
  • a large-thick glass substrate can be omitted, thereby reducing the overall thickness of the optical fingerprint device.
  • the red light signal and infrared light signal that affect fingerprint imaging can be filtered through the filter layer, and the red light signal that affects the appearance of the product can be absorbed by the light absorption layer, so that fingerprint recognition performance and product appearance can be considered.
  • a light absorbing layer above the filter layer or disposing a light absorbing layer between the filter layer and the optical fingerprint chip, it is beneficial to reduce the warpage caused by the large difference in thermal expansion coefficient between the optical fingerprint chip and the filter layer.
  • Figure 1 is a schematic plan view of an electronic device to which this application can be applied.
  • Fig. 2 is a schematic partial cross-sectional view of the electronic device shown in Fig. 1 along A'-A'.
  • FIG. 4 is a schematic structural diagram of an optical fingerprint device according to another embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of an optical fingerprint device according to a specific embodiment of the present application.
  • Fig. 6 is a top view of the optical fingerprint device shown in Fig. 5.
  • FIG. 7 is a schematic structural diagram of an optical fingerprint device according to another specific embodiment of the present application.
  • Fig. 8 is a top view of the optical fingerprint device shown in Fig. 7.
  • FIG. 9 is a schematic structural diagram of an optical fingerprint device according to still another specific embodiment of the present application.
  • Fig. 10 is a top view of the optical fingerprint device shown in Fig. 9.
  • FIG. 11 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • the fingerprint identification device provided in the embodiments of this application can be applied to smart phones, tablet computers, and other mobile terminals with display screens or other terminal equipment; more specifically, in the above-mentioned terminal equipment, fingerprint identification
  • the device may specifically be an optical fingerprint device, which may be arranged in a partial area or an entire area under the display screen, thereby forming an under-display optical fingerprint system.
  • Figures 1 and 2 show schematic diagrams of electronic devices to which the embodiments of the present application can be applied, wherein Figure 1 is a schematic diagram of the orientation of the electronic device 10, and Figure 2 is a schematic diagram of the electronic device 10 shown in Figure 1 along A'-A' Partial sectional structure diagram.
  • the electronic device 10 includes a display screen 120 and an optical fingerprint device 130, wherein the optical fingerprint device 130 is disposed in a partial area below the display screen 120, for example, the middle area of the display screen.
  • the optical fingerprint device 130 includes an optical fingerprint sensor, and the optical fingerprint sensor includes a sensing array with a plurality of optical sensing units, and the area where the sensing array is located or the sensing area thereof is the fingerprint detection area 103 of the optical fingerprint device 130. As shown in FIG. 1, the fingerprint detection area 103 is located in the display area of the display screen 120.
  • the area of the fingerprint detection area 103 may be different from the area of the sensing array of the optical fingerprint device 130, for example, through a light path design such as lens imaging, a reflective folding light path design, or other light path design such as light convergence or reflection,
  • the area of the fingerprint detection area 103 of the optical fingerprint device 130 can be made larger than the area of the sensing array of the optical fingerprint device 130.
  • the fingerprint detection area 103 of the optical fingerprint device 130 may also be designed to be substantially the same as the area of the sensing array of the optical fingerprint device 130.
  • the electronic device 10 adopting the above structure does not need to reserve space on the front side for setting fingerprint buttons (such as the Home button), so that a full screen solution can be adopted, that is, the display area of the display screen 120 It can be basically extended to the front of the entire electronic device 10.
  • the optical fingerprint device 130 includes a light detecting part 134 and an optical component 132.
  • the light detecting part 134 includes the sensor array and is electrically connected to the sensor array.
  • the connected reading circuit and other auxiliary circuits can be fabricated on a chip (Die) by a semiconductor process, such as an optical imaging chip or an optical fingerprint sensor.
  • the sensing array is specifically a photodetector array, which includes multiple A photodetector distributed in an array, the photodetector may be used as the optical sensing unit as described above; the optical component 132 may be arranged above the sensing array of the light detecting part 134, which may specifically include a filter A light layer (Filter), a light guide layer or a light path guide structure and other optical elements, the filter layer can be used to filter out ambient light penetrating the finger, for example, infrared light that interferes with imaging, and the light guide layer or
  • the optical path guiding structure is mainly used to guide the reflected light reflected from the surface of the finger to the sensing array for optical detection.
  • the optical assembly 132 and the light detecting part 134 may be packaged in the same optical fingerprint component.
  • the optical component 132 and the optical detection part 134 can be packaged in the same optical fingerprint chip, or the optical component 132 can be arranged outside the chip where the optical detection part 134 is located, for example, the optical component 132 is attached above the chip, or some components of the optical assembly 132 are integrated into the chip.
  • the light guide layer or light path guiding structure of the optical component 132 has multiple implementation schemes.
  • the light guide layer may specifically be a collimator layer made on a semiconductor silicon wafer, which has multiple A collimating unit or a micro-hole array.
  • the collimating unit can be specifically a small hole.
  • the reflected light reflected from the finger the light that is perpendicularly incident on the collimating unit can pass through and be passed by the optical sensing unit below it.
  • the light with an excessively large incident angle is attenuated by multiple reflections inside the collimating unit. Therefore, each optical sensing unit can basically only receive the reflected light reflected by the fingerprint pattern directly above it.
  • the sensor array can detect the fingerprint image of the finger.
  • the light guide layer or the light path guide structure may also be an optical lens (Lens) layer, which has one or more lens units, such as a lens group composed of one or more aspheric lenses, which The sensing array used to condense the reflected light reflected from the finger to the light detection part 134 below it, so that the sensing array can perform imaging based on the reflected light, thereby obtaining a fingerprint image of the finger.
  • the optical lens layer may further have a pinhole formed in the optical path of the lens unit, and the pinhole may cooperate with the optical lens layer to expand the field of view of the optical fingerprint device to improve the optical The fingerprint imaging effect of the fingerprint device 130.
  • the light guide layer or the light path guide structure may also specifically adopt a micro-lens (Micro-Lens) layer.
  • the micro-lens layer has a micro-lens array formed by a plurality of micro-lenses, which can be grown by semiconductors.
  • a process or other processes are formed above the sensing array of the light detecting part 134, and each microlens may correspond to one of the sensing units of the sensing array.
  • other optical film layers may be formed between the microlens layer and the sensing unit, such as a dielectric layer or a passivation layer.
  • the microlens layer and the sensing unit may also include The light-blocking layer of the micro-hole, wherein the micro-hole is formed between the corresponding micro-lens and the sensing unit, the light-blocking layer can block the optical interference between the adjacent micro-lens and the sensing unit, and make the sensing
  • the light corresponding to the unit is condensed into the microhole through the microlens and is transmitted to the sensing unit through the microhole for optical fingerprint imaging.
  • a microlens layer can be further provided under the collimator layer or the optical lens layer.
  • the collimator layer or the optical lens layer is used in combination with the micro lens layer, its specific laminated structure or optical path may need to be adjusted according to actual needs.
  • the display screen 120 may be a display screen with a self-luminous display unit, such as an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display or a micro-LED (Micro-LED) display Screen.
  • OLED Organic Light-Emitting Diode
  • the optical fingerprint device 130 may use the display unit (ie, an OLED light source) of the OLED display screen 120 located in the fingerprint detection area 103 as an excitation light source for optical fingerprint detection.
  • the display screen 120 emits a beam of light to the target finger above the fingerprint detection area 103. The light is reflected on the surface of the finger to form reflected light or is scattered inside the finger.
  • the above-mentioned reflected light and scattered light are collectively referred to as reflected light. Because the ridge and valley of the fingerprint have different light reflection capabilities, the reflected light from the fingerprint ridge and the emitted light from the fingerprint ridge have different light intensities. After the reflected light passes through the optical components, it is optically fingerprinted.
  • the sensing array in the device 130 receives and converts into a corresponding electrical signal, that is, a fingerprint detection signal; based on the fingerprint detection signal, fingerprint image data can be obtained, and fingerprint matching verification can be further performed, thereby implementing the electronic device 10 Optical fingerprint recognition function.
  • the optical fingerprint device 130 may also use a built-in light source or an external light source to provide an optical signal for fingerprint detection.
  • the optical fingerprint device 130 may also use a built-in light source or an external light source to provide an optical signal for fingerprint detection.
  • the optical fingerprint device 130 may be suitable for non-self-luminous display screens, such as liquid crystal display screens or other passively-luminous display screens.
  • the optical fingerprint system of the terminal device 10 may also include an excitation light source for optical fingerprint detection.
  • the excitation light source may specifically be an infrared light source or a light source of invisible light of a specific wavelength, which may be arranged under the backlight module of the liquid crystal display or arranged in the edge area under the protective cover of the terminal device 10, and the The optical fingerprint device 130 can be arranged under the edge area of the liquid crystal panel or the protective cover and guided by the light path so that the fingerprint detection light can reach the optical fingerprint device 130; or, the optical fingerprint device 130 can also be arranged in the backlight module. Under the group, and the backlight module is designed to allow the fingerprint detection light to pass through the liquid crystal panel and the backlight module and reach the optical fingerprint device 130 through openings or other optical designs on the film layers such as diffuser, brightness enhancement film, and reflective film. .
  • the display screen 120 may also be a non-self-luminous display screen, such as a backlit liquid crystal display screen; in this case, the optical detection device 130 cannot use the display screen 120.
  • the display unit is used as an excitation light source, so it is necessary to integrate an excitation light source inside the optical detection device 130 or set an excitation light source outside it to achieve optical fingerprint detection.
  • a built-in light source or an external light source is used to provide
  • the detection principle is the same as that described above.
  • the electronic device 10 further includes a transparent protective cover, which is located above the display screen 120 and covers the front surface of the electronic device 10. Because, in the embodiment of the present application, the so-called finger pressing on the display screen 120 actually refers to pressing on the cover plate above the display screen 120 or covering the surface of the protective layer of the cover plate.
  • the optical fingerprint device 130 may include only one optical fingerprint sensor.
  • the fingerprint detection area 103 of the optical fingerprint device 130 has a small area and a fixed position, so the user is performing fingerprint input At this time, it is necessary to press the finger to a specific position of the fingerprint detection area 103, otherwise the optical fingerprint device 130 may not be able to collect fingerprint images, resulting in poor user experience.
  • the optical fingerprint device 130 may specifically include multiple optical fingerprint sensors; the multiple optical fingerprint sensors may be arranged side by side in the middle area of the display screen 120 by splicing, and the multiple The sensing area of the optical fingerprint sensor together constitutes the fingerprint detection area 103 of the optical fingerprint device 130.
  • the fingerprint detection area 103 of the optical fingerprint device 130 may include multiple sub-areas, and each sub-area corresponds to the sensing area of one of the optical fingerprint sensors, so that the fingerprint collection area 103 of the optical fingerprint device 130 can be It extends to the main area of the middle part of the display screen, that is, extends to the area where the finger is habitually pressed, so as to realize the blind fingerprint input operation.
  • the fingerprint detection area 130 can also be extended to half of the display area or even the entire display area, thereby realizing half-screen or full-screen fingerprint detection.
  • the optical fingerprint device 130 may further include a circuit board for transmitting signals (such as the fingerprint detection signal).
  • the circuit board may be a flexible printed circuit board (Flexible Printed Circuit Board). Circuit, FPC).
  • the optical fingerprint sensor can be connected to the FPC, and through the FPC, electrical interconnection and signal transmission with other peripheral circuits or other elements in the electronic device are realized.
  • the optical fingerprint sensor may receive the control signal of the processing unit of the electronic device through the FPC, and may also output a fingerprint detection signal (for example, a fingerprint image) to the processing unit of the electronic device through the FPC or Control unit, etc.
  • FIGS. 3 and 4 are schematic structural diagrams of an optical fingerprint device according to an embodiment of the present application.
  • the optical fingerprint device 20 includes an optical fingerprint chip 240, a filter layer 230 and a light absorption layer 220,
  • the optical fingerprint chip 240 includes a sensing array 241 having a plurality of optical sensing units, and the sensing array 241 is used to receive the return from the finger above the display screen and pass through the filter layer 230 and the light absorption
  • the fingerprint optical signal transmitted by the layer 220 is used to obtain the fingerprint image of the finger.
  • the filter layer 230 is sputtered or evaporated on the upper surface of the optical fingerprint chip 240, and the light absorption layer 220 is coated on the filter layer 230 surface.
  • the filter layer 230 can be prepared on the upper surface of the optical fingerprint chip 240 first, and the light absorption layer 220 can be further prepared on the surface of the filter layer 230.
  • the light absorption layer 220 is coated on the upper surface of the optical fingerprint chip 240, and the filter layer 230 is sputtered or evaporated on the light absorption layer 220.
  • Upper surface In other words, the light absorption layer 220 may be prepared on the upper surface of the optical fingerprint chip 240 first, and the filter layer 230 may be further prepared on the surface of the light absorption layer 220.
  • optical fingerprint chip 240 and the filter layer 230 may respectively correspond to the light detection part 134 and the filter layer (Filter) in the embodiment shown in FIG. 2.
  • filter layer Filter
  • the optical fingerprint device 20 further includes:
  • the optical component 210 is used for guiding the optical signal returned from the finger above the display screen to the optical fingerprint chip 240 after being transmitted through the filter layer 230 and the light absorption layer 220.
  • the optical assembly includes at least one light-blocking layer and a microlens array, the at least one light-blocking layer is disposed under the microlens array, and each light-blocking layer in the at least one light-blocking layer Is provided with an opening; wherein the microlens array is used to receive the optical signal returned from the finger, and pass the received optical signal through the opening in the at least one light blocking layer, and the filter The optical layer and the light absorbing layer are then transmitted to the optical fingerprint chip.
  • the microlens array and the light-blocking layer may respectively correspond to the microlens layer and the light-blocking layer in the embodiment shown in FIG. 2. For the sake of brevity, details are not repeated here.
  • the optical assembly includes a collimator, including a plurality of collimation holes, wherein the collimator is used to receive the optical signal returned from the finger and pass the received optical signal through the The plurality of collimating holes, the filter layer and the light absorption layer are transmitted to the optical fingerprint chip.
  • the collimator corresponds to the collimator layer in the embodiment shown in FIG. 2. For the sake of brevity, it will not be repeated here.
  • the optical assembly includes: a lens assembly, including a lens and a lens barrel, the lens is fixed in the lens barrel, and the lens is used to convert the light signal returned from the finger above the display screen.
  • the filter layer and the light absorption layer are then converged to the optical fingerprint chip, so that the optical signal performs optical fingerprint imaging on the optical fingerprint chip.
  • the lens assembly corresponds to the optical lens layer in the embodiment shown in FIG. 2, for the sake of brevity, it will not be repeated here.
  • the red light and infrared light in the sun can directly pass through the finger to reach the optical fingerprint chip, and due to the red light and infrared light in the sun If the light intensity is relatively large, the light signal with fingerprint information will be annihilated in the background noise of red light and infrared light, which will affect the fingerprint recognition performance.
  • the filter layer may be used to filter out light signals that affect fingerprint imaging, for example, light signals in the red wavelength band and the infrared wavelength band.
  • the principle of the filter layer to filter the optical signal is to reflect the optical signal in the red and infrared wavelength bands outward to reduce the component of the optical signal incident on the optical fingerprint chip, thereby reducing the interference of the optical signal in the wavelength band on fingerprint recognition.
  • the outwardly reflected red light signal causes the optical fingerprint device to show erythema below the display screen, which affects the product appearance and user experience.
  • a light absorption layer is provided above the filter layer or a light absorption layer is provided between the filter layer and the optical fingerprint chip, so that the red light signal in the light signal returned from the finger can be absorbed. It can prevent the red light signal from entering the optical fingerprint chip to affect fingerprint recognition. On the other hand, it can prevent the red light signal from being reflected and entering the human eye and affecting the appearance of the product.
  • the thermal expansion coefficients of the light absorbing layer and the optical fingerprint chip are similar, by arranging the light absorbing layer above the filter layer or setting the light absorbing layer between the filter layer and the optical fingerprint chip, on the one hand, the filter layer and the optical fingerprint chip can be reduced. The chip warpage caused by the large thermal expansion coefficient difference between the optical fingerprint chips. On the other hand, since the optical fingerprint chip and the filter layer themselves have a certain degree of warpage, and the warpage direction is opposite, the light absorption layer can also be reduced The degree of warpage of both.
  • the light absorption layer may be used to absorb light signals in the red wavelength band.
  • the infrared wave band may be, for example, a wave band of 600 nanometers (nm) to 1 millimeter (mm).
  • the light transmittance of the filter layer to light signals with a wavelength of 450 nm to 600 nm is 80%-90%.
  • the wavelength of the half wave of the absorption spectrum of the filter layer 230 of the optical signal in the red light band is between 540 nm and 700 nm.
  • the light absorbing layer 220 may be a single layer, which is arranged on the upper surface of the optical fingerprint chip or on the upper surface of the filter layer; or the light absorbing layer It may also be a multilayer, for example, a first light absorbing layer may be provided on the upper surface of the filter layer 230, and a second light absorbing layer may be provided on the lower surface of the filter layer 230, or, in other embodiments In this case, the light absorption layer can also be provided on any layer of the optical component.
  • the light absorption layer 220 can be provided on the upper surface and/or the lower surface of the collimator, and
  • a light absorption layer 220 may be provided on the upper surface and/or the lower surface of the micro lens layer.
  • the thickness of the light absorption layer 220 is between 3 ⁇ m and 15 ⁇ m.
  • the thickness of the light-absorbing layer 220 may be the thickness of the single-layer light-absorbing layer, or if the light-absorbing layer 220 is a multilayer, the light-absorbing layer The thickness of 220 may be the entire thickness of the multilayer light absorption layer.
  • the light absorbing layer 220 adopts a material that effectively absorbs the above-mentioned red light and infrared light signals.
  • a material that effectively absorbs the above-mentioned red light and infrared light signals As an example and not a limitation, ink, polyethyleneimine, epoxy, Oxide, acrylic, etc.
  • the embodiment of the present application does not specifically limit the coating method of the light absorbing layer 220.
  • the light absorbing layer 220 may be provided on the upper surface of the filter 230 and/or the upper surface of the optical fingerprint chip 240 by means of dry film bonding.
  • the light absorption layer 220 may be disposed on the upper surface of the filter 230 and/or the upper surface of the optical fingerprint chip 240 by spin coating.
  • the filter layer 230 may include multiple stacked layers, and the embodiment of the present application does not specifically limit the number of layers of the stacked structure of the filter layer.
  • the multiple stacks are between 10 and 200 layers.
  • the plurality of stacks includes an oxide layer of silicon and an oxide layer of titanium.
  • the embodiment of the present application does not specifically limit the preparation method of the filter layer 230.
  • the filter layer 230 may be disposed on the upper surface of the light absorption layer 220 and/or the upper surface of the optical fingerprint chip 240 by sputtering.
  • the filter layer 230 may be deposited on the upper surface of the light absorption layer 220 and/or the upper surface of the optical fingerprint chip 240 by evaporation deposition (or evaporation).
  • the glass substrate carrying the filter layer can be omitted, and the filter layer uses the optical fingerprint chip as a supporting structure. It can ensure the mechanical reliability of the optical fingerprint device.
  • the filter layer 230 at least covers the area where the sensing array 241 on the optical fingerprint chip 240 is located.
  • the filter layer 230 only covers the area where the sensing array 241 on the optical fingerprint chip 240 is located.
  • FIG. 6 is a top view of the structure shown in FIG. .
  • the filter layer may also cover the non-sensing array area on the optical fingerprint chip 240, that is, the area on the optical fingerprint chip where no sensing array is provided.
  • the filter layer may partially cover the non-sensing array area of the optical fingerprint chip 240, which can reduce the contact area between the filter layer 230 and the optical fingerprint chip 240, thereby reducing the filter layer.
  • the difference in the thermal expansion coefficient between the optical layer 230 and the optical fingerprint chip 240 causes chip warpage.
  • the filter layer is distributed in a strip shape in the non-sensing array area of the optical fingerprint chip, as shown in FIGS. 7 and 8, where FIG. 8 is a top view of the structure shown in FIG. 7.
  • the filter layer is distributed in a square shape in the non-sensing array area of the optical fingerprint chip, as shown in FIG. 9 and FIG. 10, wherein FIG. 10 is a top view of the structure shown in FIG. 9.
  • the thickness of the optical fingerprint chip is between 50 micrometers and 200 micrometers, which is beneficial to meet the requirements of electronic devices with high space requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本申请提供了一种光学指纹装置和电子设备,该光学指纹装置应用于具有显示屏的电子设备,所述光学指纹装置用于设置在所述显示屏的下方,所述光学指纹装置包括光学指纹芯片,滤光层,光吸收层和光学组件,其中,所述滤光层溅射或蒸镀在所述光学指纹芯片上表面,所述光吸收层涂覆在所述滤光层上表面;或者,所述光吸收层涂覆在所述光学指纹芯片上表面,所述滤光层溅射或蒸镀在所述光吸收层上表面;其中,所述光学指纹芯片包括具有多个光学感应单元的感应阵列,所述感应阵列用于接收从所述显示屏上方的手指返回并经过所述滤光层和所述光吸收层传输的指纹光信号,所述指纹光信号用于获取所述手指的指纹图像。

Description

光学指纹装置和电子设备
本申请要求于2019年4月10日提交中国专利局、申请号为201920483758.3、申请名称为“光学指纹装置和电子设备”的中国专利申请的优先权,以及2019年8月29日提交中国专利局、申请号为PCT/CN2019/103321、申请名称为“指纹识别装置和电子设备”的PCT专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及指纹识别技术领域,并且更具体地,涉及光学指纹装置和电子设备。
背景技术
随着手机全面屏技术的发展,屏下指纹检测的应用越来越广泛,具体是将光学指纹模组设置在显示屏下方,但显示屏下方的空间有限,这就对光学指纹模组的尺寸、空间厚度都提出了更高的要求。
当前主流的光学指纹模组主要构成部件有透镜,滤光片和光学指纹芯片,其中,将滤光片直接制备到光学指纹芯片上能够有效降低光学指纹模组的厚度,但是与此同时也带来了一定的问题,由于光学指纹芯片和滤光片的热膨胀系数差异较大,在芯片较薄的情况下,会导致光学指纹芯片较大的翘曲,影响指纹识别性能。因此,如何兼顾光学指纹识别的空间需求和性能是一项亟需解决的问题。
发明内容
本申请提供了一种光学指纹装置和电子设备,有利于兼顾光学指纹识别的空间需求和性能。
第一方面,提供了一种光学指纹装置,应用于具有显示屏的电子设备,所述光学指纹装置用于设置在所述显示屏的下方,所述光学指纹装置包括光学指纹芯片,滤光层,光吸收层和光学组件,其中,所述滤光层溅射或蒸镀在所述光学指纹芯片上表面,所述光吸收层涂覆在所述滤光层上表面;或者,所述光吸收层涂覆在所述光学指纹芯片上表面,所述滤光层溅射或蒸镀在所述光吸收层上表面;
其中,所述光学组件用于将从所述显示屏上方的手指返回的光信号经所述滤光层和所述光吸收层传输后引导至所述光学指纹芯片;
所述光学指纹芯片包括具有多个光学感应单元的感应阵列,所述感应阵列用于接收从所述显示屏上方的手指返回并经过所述光学组件,所述滤光层和所述光吸收层传输的指纹光信号,所述指纹光信号用于获取所述手指的指纹图像。
在一些可能的实现方式中,所述滤光层至少覆盖所述光学指纹芯片上所述感应阵列所在的区域。
在一些可能的实现方式中,所述滤光层部分覆盖所述光学指纹芯片上的非感应阵列区域。
在一些可能的实现方式中,所述光学滤光层在所述光学指纹芯片上的所述非感应阵列区域呈长条形或方块形分布。
在一些可能的实现方式中,所述光吸收层用于吸收特定红光波段的光信号。
在一些可能的实现方式中,所述特定红光波段为波长为600纳米到1毫米波段。
在一些可能的实现方式中,所述特定红光波段的光信号在所述滤光层的吸收光谱半波的波长在540纳米到700纳米之间。
在一些可能的实现方式中,所述滤光层对波长为450纳米至600纳米的光信号的透光率为80%-90%。
在一些可能的实现方式中,所述光吸收层的厚度在3微米至15微米之间。
在一些可能的实现方式中,所述光学指纹芯片的厚度在50微米至200微米之间。
在一些可能的实现方式中,所述光吸收层采用以下材料中的至少一种:油墨,聚乙烯亚胺,环氧树脂,氧化物,亚克力。
在一些可能的实现方式中,所述光学组件包括至少一挡光层和微透镜阵列,所述至少一挡光层设置在所述微透镜阵列下方,所述至少一挡光层中的每个挡光层中设置有开孔;
其中,所述微透镜阵列用于接收从所述手指返回的光信号,并将接收的所述光信号通过所述至少一挡光层中的开孔传输至所述光学指纹芯片。
在一些可能的实现方式中,所述光学组件包括准直器,包括多个准直孔,其中,所述准直器用于接收从所述手指返回的光信号,并将接收的所述光信号通过所述多个准直孔传输至所述光学指纹芯片。
在一些可能的实现方式中,所述光学组件包括:镜头组件,包括镜头和镜筒,所述镜头固定在镜筒内,所述镜头用于将从所述显示屏上方的手指返回的光信号会聚至所述光学指纹芯片,以使所述光信号在所述光学指纹芯片进行光学指纹成像。
第二方面,提供了一种电子设备,显示屏;
以及第一方面或第一方面任一可能的实现方式中所述的光学指纹装置,所述光学指纹装置设置在所述显示屏的下方。
在一些可能的实现方式中,所述显示屏为有机发光二极管OLED显示屏,所述显示屏包括多个OLED光源,其中所述光学指纹装置采用至少部分OLED光源作为光学指纹检测的激励光源。
基于上述技术方案,通过将滤光层和光吸收层直接制备在光学指纹芯片上,可以省去厚度较大的玻璃基底,从而能够降低光学指纹装置的整体厚度。进一步地,通过滤光层能够滤除影响指纹成像的红光信号和红外光信号,以及通过光吸收层能够吸收影响产品外观的红光信号,从而能够兼顾指纹识别性能和产品的外观。更进一步地,通过在滤光层上方设置光吸收层或者在滤光层和光学指纹芯片之间设置光吸收层,有利于降低光学指纹芯片和滤光层之间的热膨胀系数差异大导致的翘曲问题。
附图说明
图1是本申请可以适用的电子设备的平面示意图。
图2是图1所示的电子设备沿A’-A’的部分剖面示意图。
图3是本申请实施例的光学指纹装置的示意性结构图。
图4是本申请另一实施例的光学指纹装置的示意性结构图。
图5是本申请一具体实施例的光学指纹装置的示意性结构图。
图6是图5所示的光学指纹装置的俯视图。
图7是本申请另一具体实施例的光学指纹装置的示意性结构图。
图8是图7所示的光学指纹装置的俯视图。
图9是本申请再一具体实施例的光学指纹装置的示意性结构图。
图10是图9所示的光学指纹装置的俯视图。
图11是本申请实施例的电子设备的示意性结构图。
具体实施方式
下面将结合附图,对本发明实施例中的技术方案进行描述。
作为一种常见的应用场景,本申请实施例提供的指纹识别装置可以应用在智能手机、平板电脑以及其他具有显示屏的移动终端或者其他终端设备;更具体地,在上述终端设备中,指纹识别装置可以具体为光学指纹装置,其可以设置在显示屏下方的局部区域或者全部区域,从而形成屏下(Under-display)光学指纹系统。
图1和图2示出了本申请实施例可以适用的电子设备的示意图,其中,图1为电子设备10的定向示意图,图2为图1所示的电子设备10沿A’-A’的部分剖面结构示意图。
如图1至图2所示,所述电子设备10包括显示屏120和光学指纹装置130,其中,所述光学指纹装置130设置在所述显示屏120下方的局部区域,例如,显示屏中间区域的下方。所述光学指纹装置130包括光学指纹传感器,所述光学指纹传感器包括具有多个光学感应单元的感应阵列,所述感应阵列所在区域或者其感应区域为所述光学指纹装置130的指纹检测区域103。如图1所示,所述指纹检测区域103位于所述显示屏120的显示区域之中。
应当理解,所述指纹检测区域103的面积可以与所述光学指纹装置130的感应阵列的面积不同,例如通过例如透镜成像的光路设计、反射式折叠光路设计或者其他光线会聚或者反射等光路设计,可以使得所述光学指纹装置130的指纹检测区域103的面积大于所述光学指纹装置130感应阵列的面积。在其他替代实现方式中,如果采用例如光线准直方式进行光路引导,所述光学指纹装置130的指纹检测区域103也可以设计成与所述光学指纹装置130的感应阵列的面积基本一致。
因此,使用者在需要对所述终端设备进行解锁或者其他指纹验证的时候,只需要将手指按压在位于所述显示屏120的指纹检测区域103,便可以实现指纹输入。由于指纹检测可以在屏内实现,因此采用上述结构的电子设备10无需其正面专门预留空间来设置指纹按键(比如Home键),从而可以采用全面屏方案,即所述显示屏120的显示区域可以基本扩展到整个电子设 备10的正面。
作为一种可选的实现方式,如图2所示,所述光学指纹装置130包括光检测部分134和光学组件132,所述光检测部分134包括所述感应阵列以及与所述感应阵列电性连接的读取电路及其他辅助电路,其可以在通过半导体工艺制作在芯片(Die),比如光学成像芯片或者光学指纹传感器,所述感应阵列具体为光探测器(Photo detector)阵列,其包括多个呈阵列式分布的光探测器,所述光探测器可以作为如上所述的光学感应单元;所述光学组件132可以设置在所述光检测部分134的感应阵列的上方,其可以具体包括滤光层(Filter)、导光层或光路引导结构以及其他光学元件,所述滤光层可以用于滤除穿透手指的环境光,例如,干扰成像的红外光,而所述导光层或光路引导结构主要用于从手指表面反射回来的反射光引导至所述感应阵列进行光学检测。
在具体实现上,所述光学组件132可以与所述光检测部分134封装在同一个光学指纹部件。比如,所述光学组件132可以与所述光学检测部分134封装在同一个光学指纹芯片,也可以将所述光学组件132设置在所述光检测部分134所在的芯片外部,比如将所述光学组件132贴合在所述芯片上方,或者将所述光学组件132的部分元件集成在上述芯片之中。
其中,所述光学组件132的导光层或者光路引导结构有多种实现方案,比如,所述导光层可以具体为在半导体硅片制作而成的准直器(Collimator)层,其具有多个准直单元或者微孔阵列,所述准直单元可以具体为小孔,从手指反射回来的反射光中,垂直入射到所述准直单元的光线可以穿过并被其下方的光学感应单元接收,而入射角度过大的光线在所述准直单元内部经过多次反射被衰减掉,因此每一个光学感应单元基本只能接收到其正上方的指纹纹路反射回来的反射光,从而所述感应阵列便可以检测出手指的指纹图像。
在另一种实施例中,所述导光层或者光路引导结构也可以为光学透镜(Lens)层,其具有一个或多个透镜单元,比如一个或多个非球面透镜组成的透镜组,其用于将从手指反射回来的反射光会聚到其下方的光检测部分134的感应阵列,以使得所述感应阵列可以基于所述反射光进行成像,从而得到所述手指的指纹图像。可选地,所述光学透镜层在所述透镜单元的光路中还可以形成有针孔,所述针孔可以配合所述光学透镜层扩大所述光学指纹 装置的视场,以提高所述光学指纹装置130的指纹成像效果。
在其他实施例中,所述导光层或者光路引导结构也可以具体采用微透镜(Micro-Lens)层,所述微透镜层具有由多个微透镜形成的微透镜阵列,其可以通过半导体生长工艺或者其他工艺形成在所述光检测部分134的感应阵列上方,并且每一个微透镜可以分别对应于所述感应阵列的其中一个感应单元。并且,所述微透镜层和所述感应单元之间还可以形成其他光学膜层,比如介质层或者钝化层,更具体地,所述微透镜层和所述感应单元之间还可以包括具有微孔的挡光层,其中所述微孔形成在其对应的微透镜和感应单元之间,所述挡光层可以阻挡相邻微透镜和感应单元之间的光学干扰,并使得所述感应单元所对应的光线通过所述微透镜会聚到所述微孔内部并经由所述微孔传输到所述感应单元以进行光学指纹成像。
应当理解,上述光路引导结构的几种实现方案可以单独使用也可以结合使用,比如,可以在所述准直器层或者所述光学透镜层下方进一步设置微透镜层。当然,在所述准直器层或者所述光学透镜层与所述微透镜层结合使用时,其具体叠层结构或者光路可能需要按照实际需要进行调整。
作为一种可选的实施例,所述显示屏120可以采用具有自发光显示单元的显示屏,比如有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏或者微型发光二极管(Micro-LED)显示屏。以采用OLED显示屏为例,所述光学指纹装置130可以利用所述OLED显示屏120位于所述指纹检测区域103的显示单元(即OLED光源)来作为光学指纹检测的激励光源。当手指按压在所述指纹检测区域103时,显示屏120向所述指纹检测区域103上方的目标手指发出一束光,该光在手指的表面发生反射形成反射光或者经过所述手指内部散射而形成散射光,在相关专利申请中,为便于描述,上述反射光和散射光统称为反射光。由于指纹的嵴(ridge)与峪(valley)对于光的反射能力不同,因此,来自指纹嵴的反射光和来自指纹峪的发射光具有不同的光强,反射光经过光学组件后,被光学指纹装置130中的感应阵列所接收并转换为相应的电信号,即指纹检测信号;基于所述指纹检测信号便可以获得指纹图像数据,并且可以进一步进行指纹匹配验证,从而在所述电子设备10实现光学指纹识别功能。在其他实施例中,所述光学指纹装置130也可以采用内置光源或者外置光源来提供用于进行指纹检测的光信号。
在其他实施例中,所述光学指纹装置130也可以采用内置光源或者外置 光源来提供用于进行指纹检测的光信号。在这种情况下,所述光学指纹装置130可以适用于非自发光显示屏,比如液晶显示屏或者其他的被动发光显示屏。以应用在具有背光模组和液晶面板的液晶显示屏为例,为支持液晶显示屏的屏下指纹检测,所述终端设备10的光学指纹系统还可以包括用于光学指纹检测的激励光源,所述激励光源可以具体为红外光源或者特定波长非可见光的光源,其可以设置在所述液晶显示屏的背光模组下方或者设置在所述终端设备10的保护盖板下方的边缘区域,而所述光学指纹装置130可以设置液晶面板或者保护盖板的边缘区域下方并通过光路引导以使得指纹检测光可以到达所述光学指纹装置130;或者,所述光学指纹装置130也可以设置在所述背光模组下方,且所述背光模组通过对扩散片、增亮片、反射片等膜层进行开孔或者其他光学设计以允许指纹检测光穿过液晶面板和背光模组并到达所述光学指纹装置130。在其他替代实现方式中,所述显示屏120也可以采用非自发光的显示屏,比如采用背光的液晶显示屏;在这种情况下,所述光学检测装置130便无法采用所述显示屏120的显示单元作为激励光源,因此需要在所述光学检测装置130内部集成激励光源或者在其外部设置激励光源来实现光学指纹检测,当采用所述光学指纹装置130采用内置光源或者外置光源来提供用于进行指纹检测的光信号时,其检测原理与上面描述内容是一致的。
应当理解的是,在具体实现上,所述电子设备10还包括透明保护盖板,其位于所述显示屏120的上方并覆盖所述电子设备10的正面。因为,本申请实施例中,所谓的手指按压在所述显示屏120实际上是指按压在所述显示屏120上方的盖板或者覆盖所述盖板的保护层表面。
另一方面,在某些实施例中,所述光学指纹装置130可以仅包括一个光学指纹传感器,此时光学指纹装置130的指纹检测区域103的面积较小且位置固定,因此用户在进行指纹输入时需要将手指按压到所述指纹检测区域103的特定位置,否则光学指纹装置130可能无法采集到指纹图像而造成用户体验不佳。在其他替代实施例中,所述光学指纹装置130可以具体包括多个光学指纹传感器;所述多个光学指纹传感器可以通过拼接方式并排设置在所述显示屏120的中间区域,且所述多个光学指纹传感器的感应区域共同构成所述光学指纹装置130的指纹检测区域103。也就是说,所述光学指纹装置130的指纹检测区域103可以包括多个子区域,每个子区域分别对应于其 中一个光学指纹传感器的感应区域,从而将所述光学指纹装置130的指纹采集区域103可以扩展到所述显示屏的中间部分的主要区域,即扩展到手指惯常按压区域,从而实现盲按式指纹输入操作。可替代地,当所述光学指纹传感器数量足够时,所述指纹检测区域130还可以扩展到半个显示区域甚至整个显示区域,从而实现半屏或者全屏指纹检测。
可选地,在本申请一些实施例中,该光学指纹装置130还可以包括用于传输信号(例如所述指纹检测信号)的电路板,例如,所述电路板可以为柔性电路板(Flexible Printed Circuit,FPC)。光学指纹传感器可以连接到FPC,并通过所述FPC实现与其他外围电路或者电子设备中的其他元件的电性互连和信号传输。比如,所述光学指纹传感器可以通过所述FPC接收所述电子设备的处理单元的控制信号,并且还可以通过所述FPC将指纹检测信号(例如指纹图像)输出给所述电子设备的处理单元或者控制单元等。
需要说明的是,为便于理解,在以下示出的实施例中,对于不同实施例中示出的结构中,相同的结构采用相同的附图标记,并且为了简洁,省略对相同结构的详细说明。
图3和图4是根据本申请实施例的光学指纹装置的示意性结构图,如图3和图4所示,该光学指纹装置20包括光学指纹芯片240,滤光层230和光吸收层220,其中,所述光学指纹芯片240包括具有多个光学感应单元的感应阵列241,所述感应阵列241用于接收所述显示屏上方的手指返回的并经过所述滤光层230和所述光吸收层220传输的指纹光信号,所述指纹光信号用于获取所述手指的指纹图像。
在一种实现方式中,如图3所示,所述滤光层230溅射或蒸镀在所述光学指纹芯片240上表面,所述光吸收层220涂覆在所述滤光层230上表面。也就是说,可以先在光学指纹芯片240的上表面制备滤光层230,进一步在滤光层230的表面制备光吸收层220。
在另一种实现方式中,如图4所示,所述光吸收层220涂覆在所述光学指纹芯片240上表面,所述滤光层230溅射或蒸镀在所述光吸收层220上表面。也就是说,可以先在光学指纹芯片240的上表面制备光吸收层220,进一步在光吸收层220的表面制备滤光层230。
应理解,所述光学指纹芯片240和所述滤光层230可以分别对应于图2所示实施例中的光检测部分134和滤光层(Filter),具体实现可以参考图2 所示实施例的相关描述,为了简洁,这里不再赘述。
可选地,在本申请一些实施例中,所述光学指纹装置20还包括:
光学组件210,用于将从所述显示屏上方的手指返回的光信号经所述滤光层230和所述光吸收层220传输后引导至所述光学指纹芯片240。
作为一个实施例,所述光学组件包括至少一挡光层和微透镜阵列,所述至少一挡光层设置在所述微透镜阵列下方,所述至少一挡光层中的每个挡光层中设置有开孔;其中,所述微透镜阵列用于接收从所述手指返回的光信号,并将接收的所述光信号通过所述至少一挡光层中的开孔,以及所述滤光层和所述光吸收层后传输至所述光学指纹芯片。其中,所述微透镜阵列和所述挡光层可以分别对应于图2所示实施例中的微透镜层和挡光层,为了简洁,这里不再赘述。
作为另一个实施例,所述光学组件包括准直器,包括多个准直孔,其中,所述准直器用于接收从所述手指返回的光信号,并将接收的所述光信号通过所述多个准直孔,以及所述滤光层和所述光吸收层后传输至所述光学指纹芯片。其中,所述准直器对应于图2所示实施例中的准直器层,为了简洁,这里不再赘述。
作为又一实施例,所述光学组件包括:镜头组件,包括镜头和镜筒,所述镜头固定在镜筒内,所述镜头用于将从所述显示屏上方的手指返回的光信号将所述滤光层和所述光吸收层后会聚至所述光学指纹芯片,以使所述光信号在所述光学指纹芯片进行光学指纹成像。其中,所述镜头组件对应于图2所示实施例中的光学透镜层,为了简洁,这里不再赘述。
在一些情况中,如果用户在室外阳光下进行指纹识别时,太阳光中的红光波段和红外波段的光可以直接透过手指到达光学指纹芯片,并且由于太阳光中的红光和红外光的光强比较大,会使得带有指纹信息的光信号湮没在红光和红外光的背景噪声中,影响指纹识别性能。
在本申请实施例中,所述滤光层可以用于滤除影响指纹成像的光信号,例如,红光波段和红外波段的光信号。滤光层滤除光信号的原理是将红光波段和红外波段的光信号向外反射以减小该光信号入射至光学指纹芯片的分量,进而降低该波段的光信号对指纹识别的干扰。
但是,向外反射的红光信号使得该光学指纹装置在显示屏下方呈现红斑,影响产品外观和用户体验。在本申请实施例中,在滤光层上方设置光吸 收层或者在滤光层和光学指纹芯片之间设置光吸收层,从而可以吸收从手指返回的光信号中的红光信号,一方面可以避免红光信号进入光学指纹芯片影响指纹识别,另一方面能够避免红光信号被反射后进入人眼而影响产品的美观。
并且,由于光吸收层和光学指纹芯片的热膨胀系数相近,通过在在滤光层上方设置光吸收层或者在滤光层和光学指纹芯片之间设置光吸收层,一方面可以降低滤光层和光学指纹芯片之间的热膨胀系数差异大导致的芯片翘曲,另一方面,由于光学指纹芯片和滤光层本身都有一定的翘曲,并且翘曲方向相反,通过设置光吸收层也可以降低二者的翘曲程度。
在本申请实施例中,所述光吸收层可以用于吸收红光波段的光信号。所述红外波段例如可以为600纳米(nm)到1毫米(mm)波段。
在本申请实施例中,所述的滤光层对波长为450纳米至600纳米的光信号的透光率为80%-90%。
在一些实施例中,所述红光波段的光信号在所述滤光层230的吸收光谱半波的波长在540nm到700nm之间。
可选地,在本申请实施例中,所述光吸收层220可以为单层,设置在所述光学指纹芯片的上表面或设置在所述滤光层的上表面;或者所述光吸收层也可以为多层,例如,可以在所述滤光层230的上表面设置第一光吸收层,以及在所述滤光层230的下表面设置第二光吸收层,或者,在其他实施例中,也可以在光学组件中的任一层设置光吸收层,例如,若所述光学组件包括准直器,则可以在准直器的上表面和/或下表面设置光吸收层220,又例如,若所述光学组件包括微透镜层,则可以在微透镜层的上表面和/或下表面设置光吸收层220。
可选地,在本申请一些实施例中,所述光吸收层220的厚度在3微米至15微米之间。其中,若所述光吸收层220为单层,所述光吸收层220的厚度可以为该单层光吸收层的厚度,或者,若所述光吸收层220为多层,所述光吸收层220的厚度可以为该多层光吸收层的整体厚度。
可选地,在一些实施例中,所述光吸收层220采用对上述红光和红外波段的光信号进行有效吸收的材料,作为示例而非限定,油墨,聚乙烯亚胺,环氧树脂,氧化物,亚克力等。
应理解,本申请实施例对光吸收层220的涂覆方式不作具体限定。例如, 所述光吸收层220可以通过干膜贴合的方式设置在滤光片230上表面和/或光学指纹芯片240的上表面。又例如,所述光吸收层220可以通过旋涂的方式设置在滤光片230上表面和/或光学指纹芯片240的上表面。
可选地,在本申请一些实施例中,所述滤光层230可以包括多个叠层,本申请实施例对于滤光层的叠层结构的层数不作具体限定。
在一些实施例中,所述多个叠层在10层到200层之间。
在一些实施例中,所述多个叠层包括硅的氧化层和钛的氧化层。
应理解,本申请实施例对滤光层230的制备方式不作具体限定。例如,所述滤光层230可以通过溅射的方式设置在光吸收层220的上表面和/或光学指纹芯片240的上表面。又例如,所述滤光层230可以通过蒸发沉积(或者说,蒸镀)的方式设置在光吸收层220的上表面和/或光学指纹芯片240的上表面。
通过采用蒸镀工艺或溅射工艺等制备工艺将所述滤光层集成到所述光学指纹芯片上,能够省掉承载滤光层的玻璃基底,同时滤光层通过光学指纹芯片作为支撑结构,能够保证光学指纹装置的机械可靠性。
在本申请实施例中,所述滤光层230至少覆盖所述光学指纹芯片240上感应阵列241所在区域。
在一些实施例中,如图5和图6所示,所述滤光层230只覆盖所述光学指纹芯片240上感应阵列241所在区域,其中,图6所示为图5所示结构的俯视图。
在另一些实施例中,所述滤光层也可以覆盖所述光学指纹芯片240上的非感应阵列区域,即光学指纹芯片上未设置感应阵列的区域。在一些具体实施例中,所述滤光层可以部分覆盖所述光学指纹芯片240的非感应阵列区域,能够降低所述滤光层230和所述光学指纹芯片240的接触面积,从而可以降低滤光层230和光学指纹芯片240之间的热膨胀系数差异导致的芯片翘曲。
作为一个示例,所述滤光层在所述光学指纹芯片的非感应阵列区域呈长条形分布,如图7和图8所示,其中,图8为图7所示结构的俯视图。
作为另一示例,所述滤光层在所述光学指纹芯片的非感应阵列区域呈方块形分布,如图9和图10所示,其中,图10为图9所示结构的俯视图。
或者,在其他实施例中,所述滤光层在所述光学指纹芯片的非感应阵列区域可以呈其他规则,例如圆形,或不规则形状排布,本申请实施例对此不 作限定。
可选地,在一些实施例中,所述光学指纹芯片的厚度在50微米至200微米之间,有利于满足对空间要求较高的电子设备的需求。
图11是本申请实施例提供的一种电子设备的示意性框图。该电子设备700包括显示屏710以及光学指纹装置720,其中,所述光学指纹装置720可以设置在所述显示屏710的下方以实现光学指纹检测。
在一些实施例中,所述显示屏710可以是前文描述的任一种显示屏。
作为一个实施例,所述显示屏710可以具体为自发光显示屏(比如OLED显示屏),且其包括多个自发光显示单元(比如OLED像素或者OLED光源)。所述显示屏中的部分自发光显示单元可以作为所述光学指纹装置进行光学指纹检测的激励光源,用于向显示屏上的指纹检测区域发射光信号,以用于光学指纹检测。
在一些实施例中,光学指纹装置720可以为前文图3至图10中光学指纹装置20,具体实现可以参考前文的相关描述,这里不再赘述。
需要说明的是,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。
例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
所属领域的技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘 等各种可以存储程序代码的介质。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的设备、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请提供的几个实施例中,应该理解到,所揭露的电子设备、装置和方法,可以通过其它的方式实现。
例如,以上所描述的装置实施例中单元或模块或组件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或模块或组件可以结合或者可以集成到另一个系统,或一些单元或模块或组件可以忽略,或不执行。
又例如,上述作为分离/显示部件说明的单元/模块/组件可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元/模块/组件来实现本申请实施例的目的。
最后,需要说明的是,上文中显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上内容,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (15)

  1. 一种光学指纹装置,应用于具有显示屏的电子设备,其特征在于,所述光学指纹装置用于设置在所述显示屏的下方,所述光学指纹装置包括光学指纹芯片,滤光层,光吸收层和光学组件,其中,所述滤光层溅射或蒸镀在所述光学指纹芯片上表面,所述光吸收层涂覆在所述滤光层上表面;或者,所述光吸收层涂覆在所述光学指纹芯片上表面,所述滤光层溅射或蒸镀在所述光吸收层上表面;
    其中,所述光学组件用于将从所述显示屏上方的手指返回的光信号经所述滤光层和所述光吸收层传输后引导至所述光学指纹芯片;
    所述光学指纹芯片包括具有多个光学感应单元的感应阵列,所述感应阵列用于接收从所述显示屏上方的手指返回并经过所述光学组件,所述滤光层和所述光吸收层传输的指纹光信号,所述指纹光信号用于获取所述手指的指纹图像。
  2. 根据权利要求1所述的光学指纹装置,其特征在于,所述滤光层至少覆盖所述光学指纹芯片上所述感应阵列所在的区域。
  3. 根据权利要求2所述的光学指纹装置,其特征在于,所述滤光层部分覆盖所述光学指纹芯片上的非感应阵列区域。
  4. 根据权利要求3所述的光学指纹装置,其特征在于,所述光学滤光层在所述光学指纹芯片上的所述非感应阵列区域呈长条形或方块形分布。
  5. 根据权利要求1至4中任一项所述的光学指纹装置,其特征在于,所述光吸收层用于吸收波长为600纳米到1毫米的红光波段的光信号。
  6. 根据权利要求5所述的光学指纹装置,其特征在于,所述红光波段的光信号在所述滤光层的吸收光谱半波的波长在540纳米到700纳米之间。
  7. 根据权利要求1所述的光学指纹装置,其特征在于,所述滤光层对波长为450纳米至600纳米的光信号的透光率为80%-90%。
  8. 根据权利要求1至4中任一项所述的光学指纹装置,其特征在于,所述光吸收层的厚度在3微米至15微米之间。
  9. 根据权利要求1至4中任一项所述的光学指纹装置,其特征在于,所述光学指纹芯片的厚度在50微米至200微米之间。
  10. 根据权利要求1至4中任一项所述的光学指纹装置,其特征在于,所述光吸收层采用以下材料中的至少一种:油墨,聚乙烯亚胺,环氧树脂, 氧化物,亚克力。
  11. 根据权利要求1所述的光学指纹装置,其特征在于,所述光学组件包括至少一挡光层和微透镜阵列,所述至少一挡光层设置在所述微透镜阵列下方,所述至少一挡光层中的每个挡光层中设置有开孔;
    其中,所述微透镜阵列用于接收从所述手指返回的光信号,并将接收的所述光信号通过所述至少一挡光层中的开孔传输至所述光学指纹芯片。
  12. 根据权利要求1所述的光学指纹装置,其特征在于,所述光学组件包括准直器,包括多个准直孔,其中,所述准直器用于接收从所述手指返回的光信号,并将接收的所述光信号通过所述多个准直孔传输至所述光学指纹芯片。
  13. 根据权利要求1所述的光学指纹装置,其特征在于,所述光学组件包括:
    镜头组件,包括镜头和镜筒,所述镜头固定在镜筒内,所述镜头用于将从所述显示屏上方的手指返回的光信号会聚至所述光学指纹芯片,以使所述光信号在所述光学指纹芯片进行光学指纹成像。
  14. 一种电子设备,其特征在于,包括:
    显示屏;
    以及如权利要求1至13中任一项所述的光学指纹装置,所述光学指纹装置设置在所述显示屏的下方。
  15. 根据权利要求14所述的电子设备,其特征在于,所述显示屏为有机发光二极管OLED显示屏,所述显示屏包括多个OLED光源,其中所述光学指纹装置采用至少部分OLED光源作为光学指纹检测的激励光源。
PCT/CN2019/113088 2019-04-10 2019-10-24 光学指纹装置和电子设备 WO2020206983A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980004118.2A CN111052143B (zh) 2019-04-10 2019-10-24 光学指纹装置和电子设备

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201920483758.3 2019-04-10
CN201920483758.3U CN209765526U (zh) 2019-04-10 2019-04-10 光学指纹装置和电子设备
CNPCT/CN2019/103321 2019-08-29
PCT/CN2019/103321 WO2021035622A1 (zh) 2019-08-29 2019-08-29 指纹识别装置和电子设备

Publications (1)

Publication Number Publication Date
WO2020206983A1 true WO2020206983A1 (zh) 2020-10-15

Family

ID=72752201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113088 WO2020206983A1 (zh) 2019-04-10 2019-10-24 光学指纹装置和电子设备

Country Status (1)

Country Link
WO (1) WO2020206983A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104933421A (zh) * 2015-07-06 2015-09-23 上海箩箕技术有限公司 光学式指纹成像系统
CN105512645A (zh) * 2016-01-19 2016-04-20 上海箩箕技术有限公司 光学指纹传感器模组
CN109416732A (zh) * 2016-06-28 2019-03-01 比杨德艾斯公司 能够检测指纹的显示器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104933421A (zh) * 2015-07-06 2015-09-23 上海箩箕技术有限公司 光学式指纹成像系统
CN105512645A (zh) * 2016-01-19 2016-04-20 上海箩箕技术有限公司 光学指纹传感器模组
CN109416732A (zh) * 2016-06-28 2019-03-01 比杨德艾斯公司 能够检测指纹的显示器

Similar Documents

Publication Publication Date Title
US11455823B2 (en) Under-screen fingerprint identification apparatus and electronic device
CN209962265U (zh) 指纹识别装置和电子设备
WO2020151159A1 (zh) 指纹识别的装置和电子设备
WO2019237872A1 (zh) 指纹识别装置和电子设备
WO2020151158A1 (zh) 生物特征识别的装置
CN210605743U (zh) 光学指纹装置和电子设备
WO2020220305A1 (zh) 屏下指纹识别装置和电子设备
CN110720106B (zh) 指纹识别的装置和电子设备
CN111095277B (zh) 光学指纹装置和电子设备
KR20200127220A (ko) 지문 식별 장치 및 전자 기기
CN111133444B (zh) 指纹识别装置和电子设备
CN210109828U (zh) 指纹识别的装置和电子设备
CN212135452U (zh) 指纹识别装置和电子设备
WO2021051737A1 (zh) 指纹识别装置、背光模组、液晶显示屏和电子设备
WO2020248286A1 (zh) 光学指纹装置和电子设备
CN210864756U (zh) 光学指纹装置和电子设备
CN111133442B (zh) 指纹检测的装置和电子设备
WO2020206966A1 (zh) 光学指纹装置和电子设备
CN210295124U (zh) 指纹检测的装置和电子设备
WO2021077368A1 (zh) 指纹识别装置和电子设备
CN210181631U (zh) 指纹识别装置和电子设备
WO2021056425A1 (zh) 滤光片、指纹检测的装置和电子设备
WO2020206983A1 (zh) 光学指纹装置和电子设备
CN111052143B (zh) 光学指纹装置和电子设备
CN112380983B (zh) 指纹识别装置和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924452

Country of ref document: EP

Kind code of ref document: A1