WO2021035622A1 - 指纹识别装置和电子设备 - Google Patents

指纹识别装置和电子设备 Download PDF

Info

Publication number
WO2021035622A1
WO2021035622A1 PCT/CN2019/103321 CN2019103321W WO2021035622A1 WO 2021035622 A1 WO2021035622 A1 WO 2021035622A1 CN 2019103321 W CN2019103321 W CN 2019103321W WO 2021035622 A1 WO2021035622 A1 WO 2021035622A1
Authority
WO
WIPO (PCT)
Prior art keywords
fingerprint
filter
optical
light
identification device
Prior art date
Application number
PCT/CN2019/103321
Other languages
English (en)
French (fr)
Inventor
蒋万里
吴宝全
高攀
刘辰锦
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN201980004113.XA priority Critical patent/CN111164608B/zh
Priority to PCT/CN2019/103321 priority patent/WO2021035622A1/zh
Priority to PCT/CN2019/113088 priority patent/WO2020206983A1/zh
Priority to CN201921806158.2U priority patent/CN210605743U/zh
Priority to CN201980004118.2A priority patent/CN111052143B/zh
Publication of WO2021035622A1 publication Critical patent/WO2021035622A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1324Sensors therefor by using geometrical optics, e.g. using prisms

Definitions

  • the embodiments of the present application relate to the field of fingerprint identification, and more specifically, to a fingerprint identification device and electronic equipment.
  • the under-screen optical fingerprint recognition technology can use the light emitted by the screen as the light source.
  • the light emitted by the screen will carry the fingerprint information of the finger after it shines on the finger above the screen.
  • the light signal carrying fingerprint information will be received by the fingerprint sensor for fingerprint identification.
  • the embodiments of the present application provide a fingerprint identification device and electronic equipment, which can filter out the red light and infrared light signals in the sunlight, so as to avoid the impact of sunlight on fingerprint recognition.
  • a fingerprint identification device which is suitable for electronic equipment with a display screen.
  • the fingerprint identification device is configured to be arranged below the display screen.
  • the fingerprint identification device includes a filter, an absorbing layer, Optical path guide structure and fingerprint sensor;
  • the fingerprint sensor includes a sensing array with a plurality of optical sensing units, the sensing array is used to receive the return of the finger above the display screen, and pass the filter, the absorption Layer and the return light signal of the optical path guide structure, and generate a fingerprint image of the finger according to the return light signal;
  • the filter is used to filter out the light signal in the infrared band in the return light signal;
  • the absorption The layer is used to absorb the light signal in the red light band in the return light signal;
  • the optical path guiding structure is used to guide the return light signal to the fingerprint sensor.
  • the optical filter can be used to filter out the optical signal in the infrared band in the optical signal returned by the finger
  • the absorption layer can be used to absorb the optical signal in the red wavelength band in the optical signal returned by the finger, thereby
  • the red light signal and infrared signal reach the fingerprint sensor, and will not affect the fingerprint recognition performance of the fingerprint sensor.
  • the red light signal is absorbed by the absorption layer, so the red light signal will not enter the human eye, which can make the display beautiful.
  • the absorption layer is coated on the upper surface and/or the lower surface of the filter.
  • the absorption layer is coated on any surface of the light path guiding structure.
  • the absorption layer is coated on the upper surface of the sensing array of the fingerprint sensor.
  • the optical filter is used to reflect the optical signal in the infrared waveband.
  • the filter in the case that the absorption layer is disposed below the filter, the filter is used to reflect the light signal in the infrared wavelength band and transmit the light in the red wavelength band. signal.
  • the filter not only needs to be able to reflect infrared light, but also needs to be able to transmit red light, so as to prevent red light from entering the human eye to affect the aesthetics of the display screen.
  • the return light signal includes the light signal reflected or scattered by the finger emitted by the display screen.
  • the absorption rate of the absorbing layer to the optical signal in the red wavelength band is greater than 85%.
  • the transmittance of the absorption layer and the optical filter to the light signal in the blue wavelength band and the green wavelength band are both greater than 80%.
  • Both the absorption layer and the filter can transmit blue and green light to ensure the intensity of the optical signal used for fingerprint recognition.
  • the thickness of the absorption layer is less than 2 ⁇ m.
  • the filter includes a single-layer film or a multi-layer film coated on a substrate.
  • the optical filter includes a single-layer film or a multi-layer film coated on any one of the light path guiding structure and/or the upper surface of the fingerprint sensor.
  • the material used for the absorption layer is a polymer film material or a polymer film material.
  • the absorption layer is coated on the upper surface of the optical filter, the optical path guiding structure and/or the fingerprint sensor by dry film bonding or spin coating baking. Any surface.
  • an electronic device including: a display screen, and the fingerprint identification device in the first aspect and any one of its possible implementation manners.
  • Fig. 1 is a schematic structural diagram of an electronic device used in an embodiment of the present application.
  • Fig. 2 is a schematic diagram of another structure of an electronic device used in an embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of a fingerprint identification device provided by an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of another fingerprint identification device provided by an embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of another fingerprint identification device provided by an embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of another fingerprint identification device provided by an embodiment of the present application.
  • Fig. 7 is a schematic block diagram of an electronic device provided by an embodiment of the present application.
  • the photosensitive devices in electronic products such as fingerprint recognition and front camera will also be placed under the screen.
  • the most widely used under-screen fingerprint identification technology is under-screen optical fingerprint identification technology. Due to the particularity of the under-screen optical fingerprint device, it is required that the light with fingerprint signal can be transmitted through the screen to the fingerprint sensor below to obtain the fingerprint signal.
  • embodiments of this application can be applied to optical fingerprint systems, including but not limited to optical fingerprint recognition systems and medical diagnostic products based on optical fingerprint imaging.
  • the embodiments of the application constitute any limitation, and the embodiments of the application are also applicable to other systems using optical imaging technology.
  • the optical fingerprint system provided in the embodiments of this application can be applied to portable or mobile computing devices such as smart phones, tablet computers, and gaming devices, as well as electronic databases, automobiles, and automated teller machines (ATMs) in banks. ) And other electronic equipment, but the embodiments of this application are not limited to this.
  • the embodiments of this application can be applied to other mobile terminals or other electronic equipment with a display screen; more specifically, in the above electronic equipment, the fingerprint identification device can be Specifically, it is an optical fingerprint device, which can be arranged in a partial area or all of the area under the display screen to form an under-display optical fingerprint system. Alternatively, the fingerprint identification device can also be partially or fully integrated into the display screen of the electronic device to form an in-display optical fingerprint system.
  • Fig. 1 and Fig. 2 are two schematic diagrams showing the structure of an electronic device to which the embodiment of the application can be applied.
  • Fig. 1 is a top view
  • Fig. 2 is a partial cross-sectional structure of the electronic device shown in Fig. 1 along A-A' Schematic.
  • the electronic device 10 includes a display screen 120 and an optical fingerprint device 130, wherein the optical fingerprint device 130 is arranged in a partial area below the display screen 120.
  • the optical fingerprint device 130 includes an optical fingerprint sensor, and the optical fingerprint sensor includes a sensing array 133 having a plurality of optical sensing units 131, and the area where the sensing array is located or its sensing area is the fingerprint detection area 103 corresponding to the optical fingerprint device 130. As shown in FIG.
  • the fingerprint detection area 103 is located in the display area of the display screen 120.
  • the optical fingerprint device 130 can also be arranged in other positions, such as the side of the display screen 120 or the non-transmissive area at the edge of the electronic device 10, and the light path design of the display screen 120 At least part of the optical signal of the display area is guided to the optical fingerprint device 130, so that the fingerprint detection area 103 is actually located in the display area of the display screen 120.
  • the area of the fingerprint detection area 103 may be different from the area of the sensing array of the optical fingerprint device 130.
  • the reflective folding optical path design, or other optical path design such as light convergence or reflection, it can make
  • the area of the fingerprint detection area 103 corresponding to the optical fingerprint device 130 is larger than the area of the sensing array of the optical fingerprint device 130.
  • the fingerprint detection area 103 corresponding to the optical fingerprint device 130 may also be designed to be substantially the same as the area of the sensing array of the optical fingerprint device 130.
  • the electronic device 10 adopting the above structure does not need to reserve space on the front side to set the fingerprint button (such as the Home button), so that a full-screen solution can be adopted, that is, the display area of the display screen 120 can be It basically extends to the front of the entire electronic device 10.
  • the optical fingerprint device 130 includes a light detecting portion 134 and an optical component 132, the light detecting portion 134 includes a sensing array and a reading circuit electrically connected to the sensing array And other auxiliary circuits, which can be fabricated on a chip (Die) by semiconductor technology, such as an optical imaging chip or an optical fingerprint sensor.
  • the sensing array is specifically a photodetector array, which includes a plurality of arrays distributed in an array.
  • the photodetector can be used as the above-mentioned optical sensing unit; the optical component 132 can be arranged above the sensing array of the light detecting part 134, and it can specifically include a filter layer, a light guide layer or The optical path guiding structure and other optical elements, the filter layer can be used to filter out the ambient light penetrating the finger, and the light guiding layer or the optical path guiding structure is mainly used to guide the light returned from the finger to the sensing array.
  • Optical inspection can be used as the above-mentioned optical sensing unit; the optical component 132 can be arranged above the sensing array of the light detecting part 134, and it can specifically include a filter layer, a light guide layer or The optical path guiding structure and other optical elements, the filter layer can be used to filter out the ambient light penetrating the finger, and the light guiding layer or the optical path guiding structure is mainly used to guide the light returned from the finger to the sensing array.
  • Optical inspection can be used as
  • the optical assembly 132 and the light detecting part 134 may be packaged in the same optical fingerprint component.
  • the optical component 132 and the optical detection part 134 can be packaged in the same optical fingerprint chip, or the optical component 132 can be arranged outside the chip where the optical detection part 134 is located, for example, the optical component 132 can be attached to the Above the chip, or part of the components of the optical assembly 132 are integrated into the above-mentioned chip.
  • the light guide layer or light path guiding structure of the optical component 132 has multiple implementation schemes.
  • the light guide layer of the optical component 132 may specifically be a collimator layer made on a semiconductor silicon wafer. It has a plurality of collimating units or micro-hole arrays.
  • the collimating unit can be specifically a small hole.
  • the reflected light reflected from the finger the light that is perpendicularly incident on the collimating unit can pass through and be sensed by the optics below it.
  • the unit receives, and the light whose incident angle is too large is attenuated by multiple reflections inside the collimator unit. Therefore, each optical sensor unit can basically only receive the reflected light reflected by the fingerprint pattern directly above it.
  • the array can detect the fingerprint image of the finger.
  • the light guide layer or the light path guide structure may also be an optical lens (Lens) layer, which has one or more lens units, such as a lens group composed of one or more aspheric lenses.
  • the component 132 may include a lens for condensing the reflected light reflected from the finger to the sensing array of the light detecting portion 134 below it, so that the sensing array can perform imaging based on the reflected light, thereby obtaining the fingerprint of the finger image.
  • the optical lens layer may further have a pinhole formed in the optical path of the lens unit, and the pinhole may cooperate with the optical lens layer to expand the field of view of the optical fingerprint device, so as to improve the fingerprint imaging of the optical fingerprint device 130 effect.
  • the light guide layer or the light path guide structure may also specifically adopt a micro-lens (Micro-Lens) layer.
  • the micro-lens layer has a micro-lens array formed by a plurality of micro-lens, which may be obtained through a semiconductor growth process or Other processes are formed above the sensing array of the light detection part 134, and each microlens may correspond to one of the sensing units of the sensing array.
  • other optical film layers may be formed between the microlens layer and the sensing unit, such as a dielectric layer or a passivation layer. More specifically, a barrier with microholes may also be formed between the microlens layer and the sensing unit.
  • the light blocking layer can block the optical interference between the adjacent microlens and the sensing unit, and allow the light corresponding to the sensing unit to pass through the
  • the micro lens is converged into the micro hole and is transmitted to the sensing unit through the micro hole to perform optical fingerprint imaging.
  • a microlens layer can be further provided under the collimator layer or the optical lens layer.
  • the collimator layer or the optical lens layer is used in combination with the microlens layer, the specific laminated structure or optical path may need to be adjusted according to actual needs.
  • the optical fingerprint device 130 may include only one optical fingerprint sensor.
  • the fingerprint detection area 103 of the optical fingerprint device 130 has a small area and a fixed position. Therefore, when the user performs fingerprint input It is necessary to press the finger to a specific position of the fingerprint detection area 103, otherwise the optical fingerprint device 130 may not be able to collect fingerprint images, resulting in poor user experience.
  • the optical fingerprint device 130 may specifically include a plurality of optical fingerprint sensors; the plurality of optical fingerprint sensors may be arranged side by side under the display screen 120 in a splicing manner, and the sensing of the plurality of optical fingerprint sensors The areas collectively constitute the fingerprint detection area 103 corresponding to the optical fingerprint device 130.
  • the fingerprint detection area 103 corresponding to the optical fingerprint device 130 may include multiple sub-areas, and each sub-area corresponds to the sensing area of one of the optical fingerprint sensors, so that the fingerprint collection area 103 of the optical fingerprint module 130 It can be extended to the main area of the lower half of the display screen, that is, to the area where the finger is habitually pressed, so as to realize the blind fingerprint input operation.
  • the fingerprint detection area 130 can also be extended to half of the display area or even the entire display area, thereby realizing half-screen or full-screen fingerprint detection.
  • the electronic device 10 further includes a transparent cover 110, or referred to as a transparent protective cover 110, the cover 110 may be a glass cover or a sapphire cover, which is located on the display screen 120 And cover the front of the electronic device 10. Because, in the embodiment of the present application, the so-called finger pressing on the display screen 120 actually refers to pressing the cover 110 above the display 120 or covering the surface of the protective layer of the cover 110.
  • the display screen 120 in the embodiment of the present application may adopt a display screen with a self-luminous display unit, such as an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display screen or a micro-LED (Micro-LED) display screen .
  • the optical fingerprint device 130 can use the display unit (ie, OLED light source) of the OLED display screen 120 located in the fingerprint detection area 103 as an excitation light source for optical fingerprint detection.
  • the display screen 120 emits a beam of light 111 to the target finger 140 above the fingerprint detection area 103.
  • the light 111 is reflected on the surface of the finger 140 to form reflected light or passes through the finger 140. Scattered internally to form scattered light.
  • the above-mentioned reflected light and scattered light are collectively referred to as reflected light. Since the ridge 141 and valley 142 of the fingerprint have different light reflection capabilities, the reflected light 151 from the fingerprint ridge 141 and the reflected light 152 from the fingerprint ridge 142 have different light intensities, and the reflected light passes through the optics. After the component 132, it is received by the sensing array 134 in the optical fingerprint device 130 and converted into a corresponding electrical signal, that is, a fingerprint detection signal; based on the fingerprint detection signal, fingerprint image data can be obtained, and fingerprint matching verification can be further performed, thereby The electronic device 10 realizes an optical fingerprint recognition function.
  • the under-screen optical fingerprint recognition technology generally uses the light emitted by the screen as the light source.
  • the light signal emitted by the screen reaches the finger above the screen, and the light signal after the reflection or scattering of the finger carries the fingerprint information of the finger.
  • the light signal carrying the fingerprint information can be Received by the fingerprint sensor at the bottom of the screen for fingerprint identification.
  • the optical signal in the infrared band may refer to, for example, an optical signal with a wavelength between 770 nm and 1 mm
  • the optical signal in the red wavelength band may refer to, for example, an optical signal with a wavelength between 622 nm and 770 nm.
  • the method for filtering red light and infrared light in the embodiments of the present application may be as shown in FIG. 3.
  • the fingerprint identification device shown in FIG. 3 includes a filter 300, an optical path guide structure 102, and a fingerprint sensor 100.
  • the fingerprint sensor may include A sensing array 101 having a plurality of optical sensing units, the fingerprint sensor may be disposed on the substrate 200.
  • the light path guiding structure 102 may be any light path guiding structure described above.
  • the light signal emitted by the screen 400 reaches the finger 500, and after being reflected by the finger 500, it carries the fingerprint information of the finger 500.
  • the light signal carrying the fingerprint information passes through the screen 400, the filter 300 and the optical path guide structure 102 and then is captured by the fingerprint sensor 100.
  • the fingerprint sensor 100 can perform fingerprint recognition according to the received light signal.
  • the infrared light 501 and red light 601 in the sun can pass through the finger 500 and the display screen 400 to reach the filter 300, because the filter 300 can filter out the red light and infrared light. Therefore, after the infrared light 501 and the red light 601 reach the filter 300, they are reflected by the filter 300 to form the reflected infrared light 502 and the reflected red light 602. The reflected infrared light 502 and the reflected red light 602 The red light 602 cannot reach the fingerprint sensor 100, thereby avoiding the influence of red light and infrared light on fingerprint recognition.
  • the infrared light 602 reflected by the filter 300 is easily observed by human eyes after passing through the display screen.
  • the human eye can see the outline or shadow of the device under the screen when observing from the top of the screen, which will affect the beauty and consistency of the screen.
  • the embodiments of this application have developed a solution to the appearance of fingerprint devices under the screen on the basis of a large number of engineering practices. It can not only ensure that red light and infrared light do not enter the fingerprint sensor and affect fingerprint recognition, but also solve the problem of red light reflection. The appearance problems caused to ensure the integrity and beauty of the appearance of electronic products.
  • the under-screen fingerprint identification device may include a filter 301, an absorption layer 302, an optical path guiding structure 102, and a fingerprint sensor 100.
  • the fingerprint identification device can be arranged under the display screen 400 to realize fingerprint identification under the screen.
  • the fingerprint sensor 100 may include a sensing array 101 with a plurality of optical sensing units, the sensing array 101 is used to receive the return of the finger 500 above the display screen 400, and through the filter 301, the absorption layer 302 and the optical path guide structure 102 The optical signal is returned, and a fingerprint image of the finger 500 is generated according to the returned optical signal.
  • the filter 301 can be used to filter out the infrared light signal in the return optical signal
  • the absorption layer 302 is used to absorb the red light signal in the return optical signal
  • the optical path guiding structure 102 can be used to guide the return optical signal to the fingerprint.
  • Sensor 100 may include a sensing array 101 with a plurality of optical sensing units, the sensing array 101 is used to receive the return of the finger 500 above the display screen 400, and through the filter 301, the absorption layer 302 and the optical path guide structure 102 The optical signal is returned, and a fingerprint image of the finger 500 is generated according to the returned optical signal.
  • the filter 301 can be
  • the embodiment of the application introduces an absorption layer 302, which can be arranged above the fingerprint sensor 100 to absorb the red light signal in the light signal returned by the finger. On the one hand, it can prevent the red light signal from entering the fingerprint sensor 100. Fingerprint recognition, on the other hand, can prevent the red light signal from being reflected and entering the human eye and affecting the appearance of the mobile phone.
  • the embodiment of the present application does not specifically limit the location of the absorption layer 302.
  • the absorption layer 302 can be coated on the upper surface of the filter 301, can also be coated on the lower surface of the filter 301, or can be coated on the upper surface and the lower surface of the filter 301 at the same time.
  • the absorption layer 302 uses the filter 301 as a base to realize the function of absorbing light.
  • the absorption layer 302 may be coated on any surface of the light path guiding structure 102.
  • the light path guiding structure 102 may include a multilayer structure, and the absorption layer 302 may be coated on the surface of any one or more layers of the multilayer structure.
  • the light path guiding structure 102 may include an optical collimator, and the absorption layer 302 may be coated on the upper surface and/or the lower surface of the optical collimator.
  • the light path guiding structure 102 may include a microlens layer, and the absorption layer 302 may be coated on the upper surface and/or the lower surface of the microlens layer.
  • the absorption layer 302 may be coated on the upper surface of the fingerprint sensor 100, specifically, the absorption layer 302 may be coated on the upper surface of the sensing array 101 of the fingerprint sensor 100.
  • multiple absorption layers 302 may be provided in the embodiment of the present application to absorb more light signals in the red wavelength band.
  • the absorption layer 302 may be coated on both the upper surface and the lower surface of the filter 301.
  • the surface of the filter 301 and the surface of the light path guiding structure 102 can also be coated with an absorbing layer.
  • the material used for the absorption layer 302 may be a polymer film material or a polymer film material, which is not specifically limited in the embodiment of the present application.
  • the embodiment of the present application does not specifically limit the coating method of the absorption layer 302.
  • the absorption layer 302 may be coated on any surface of the filter 301, the light path guiding structure 102, and/or the upper surface of the fingerprint sensor 100 by dry film bonding.
  • the absorption layer 302 may be coated on any surface of the filter 301, the light path guiding structure 102, and/or the upper surface of the fingerprint sensor 100 by spin-coating and baking.
  • the embodiment of the present application does not specifically limit the location of the filter 301.
  • the filter 301 can be placed above the light path guiding structure 102 or below the light path guiding structure 102, as long as the filter 301 is placed Just above the fingerprint sensor 100.
  • the embodiment of the present application also does not specifically limit the arrangement of the filter 301.
  • the filter 301 can be attached to the screen 400 and attached to the bottom surface of the screen 400.
  • the filter 301 may be suspended in the fingerprint identification device.
  • the filter 301 can be attached to the light path guiding layer 102.
  • the filter 301 only needs to be able to reflect light signals in the infrared wavelength range. Since the absorption layer 302 has absorbed the red light in the return light signal, as long as the filter can filter out the light signal in the infrared band in the return light signal, the detection performance of the fingerprint sensor will not be affected.
  • the filter 301 can reflect the light signal in the red light band, so that there is no need to specially design the receiving and/or material of the filter, and the traditional filter that can reflect red light and infrared light signals can be used. It can save manufacturing cost.
  • the filter 301 is used to reflect the light signal in the infrared waveband and transmit the light signal in the red light waveband. Since the absorbing layer 302 is located below the filter 301, the filter 301 needs to transmit light signals in the red wavelength band, and the return light signal filtered by the filter 301 reaches the absorbing layer 302, and the absorbing layer 302 can absorb the return light.
  • the optical signal in the red wavelength band in the signal prevents the optical signal in the red wavelength band from being reflected by the filter 301 and entering the human eye, which affects the appearance of the screen.
  • the absorption rate of the absorption layer 302 for the red light waveband optical signal is greater than 85%, so as to be able to absorb most of the red light waveband optical signal of the returned optical signal.
  • the absorption layer 302 and the filter 301 need to be able to transmit the blue and green wavelengths.
  • the materials used in the absorption layer 302 and the filter 301 have both blue and green light transmittances greater than 80%.
  • the fingerprint recognition in the embodiment of the present application uses the light emitted by the display screen 400 as the light source, and the light signals emitted by the display screen 400 are mainly red light, blue light and green light.
  • the absorption layer 302 filters the red light, so that the remaining light signals that can be used for fingerprint recognition are mainly blue and green light. Therefore, the absorption layer 302 and the filter 301 need to be able to transmit blue and green light to ensure fingerprint recognition Reliability.
  • the thickness of the absorbing layer can be controlled within 2 ⁇ m.
  • the filter film included in the filter 301 in the embodiment of the present application may be a single-layer film or a multilayer film.
  • the filter 301 may include a single-layer film or a multi-layer film coated on a substrate.
  • the substrate may be a substrate dedicated to filters.
  • the substrate can use materials such as white glass, blue glass or blue crystal, which are not specifically limited in the embodiments of the present application.
  • the filter 301 can use the light path guiding structure 102 and/or the fingerprint sensor 100 as a substrate to achieve a light filtering function.
  • the filter 301 may include a single-layer film or a multi-layer film coated on any surface of the light path guiding structure 102 and/or the fingerprint sensor 100.
  • the filter in the embodiment of the present application mainly filters infrared light by reflecting infrared light.
  • the filter can also filter infrared light by absorbing infrared light.
  • the fingerprint identification device of the embodiment of the present application will be described in detail below with reference to FIG. 6.
  • the fingerprint identification device shown in FIG. 6 may include a microlens array 210, light blocking layers 310 and 320, and a fingerprint sensor 100.
  • the fingerprint sensor 100 may include a plurality of sensing arrays 101, and the plurality of sensing arrays may include a plurality of pixel units 1011.
  • the light blocking layers 310 and 320 may be formed above the sensing array 101, wherein a plurality of light-passing holes 311 and 321 may be provided on the light blocking layers 310 and 320.
  • the microlens array 210 may be disposed above the light blocking layer 310, and the microlens array 210 may include a plurality of microlenses 211.
  • the microlens array 210 can be used to converge the light signal returned by the finger to the multiple light-passing holes 311 on the light-blocking layer 310, and then the multiple light-passing holes 311 can guide the light signals to the multiple light-blocking layers 320.
  • the light signal passing through the light-passing hole 321 can be received by the pixel unit 1011 under the light blocking layer 320, and the pixel unit 1011 can perform fingerprint recognition according to the received light signal.
  • the aperture of the light-passing hole 311 on the light-blocking layer 310 may be larger than the aperture of the light-passing hole 321 on the light-blocking layer 320.
  • each microlens in the microlens array 210 may include a corresponding aperture and a pixel unit, and the center of each microlens and the center of the corresponding aperture and the center of the pixel unit may be Located on a straight line, it can ensure that the light signal after being focused by the microlens can be received by the pixel unit.
  • the straight line may be perpendicular to the plane where the fingerprint sensor 100 is located, and the angle between the line and the plane where the fingerprint sensor 100 is located is less than 90 degrees.
  • a dielectric layer 621 may be arranged between the light blocking layer 310 and the light blocking layer 320, a dielectric layer 622 may be arranged between the light blocking layer 310 and the microlens layer 210, and a dielectric layer 620 may be arranged between the light blocking layer 320 and the sensing array 101 .
  • the dielectric layer 620, the dielectric layer 621, and the dielectric layer 622 may be sequentially grown through a growth process.
  • a buffer layer 510 may be provided above the microlens array 210.
  • the buffer layer 510 is a transparent medium buffer layer, and its optical refractive index is lower than that of the lens array 210.
  • the absorption layer in the embodiment of the application itself can be arranged on the surface of any structural layer above the sensing array 101.
  • the absorbing layer may be provided on the upper surface of the microlens array 210 or on the lower surface of the microlens array 210.
  • the absorption layer may be disposed on the upper surface of the buffer layer 510, or the absorption layer may be disposed on the lens surface in the microlens array.
  • the absorption layer may be disposed on any surface of the light blocking layer 310, 320.
  • the absorbing layer may be provided on the upper surface of the light blocking layer 310, or may be provided on the lower surface of the light blocking layer 310.
  • the absorption layer may be disposed on any surface of the dielectric layer 622, 621, 620.
  • the absorption layer may be provided on the upper surface of the dielectric layer 622, or may be provided on the lower surface of the dielectric layer 622.
  • the absorption layer may also be provided on the upper surface of the sensing array 101.
  • the filter can also be arranged on the surface of any structure layer above the sensing array 101, and the arrangement position of the filter is similar to that of the absorption layer, and the specific arrangement position can be referred to the above description, which will not be repeated here.
  • the fingerprint identification device shown in FIG. 6 includes two light blocking layers, which is only an example.
  • the fingerprint identification device may include only one light blocking layer, or may include more than two light blocking layers.
  • the microlens 211 shown in FIG. 6 may be a circular lens, or the microlens 211 may be a polygonal lens, such as a square lens or a hexagonal lens.
  • the microlens array 210 can be used to guide vertical light and can also be used to guide oblique light, which is not specifically limited in the embodiment of the present application.
  • the optical path guiding structure of the embodiment of the present application may include the microlens array, the dielectric layer, the light blocking layer, the light passing hole, etc., as shown in FIG. 6.
  • the optical path guiding structure may also include other structures, for example, the optical path guiding structure also An array of collimating holes may be included.
  • Fig. 7 is a schematic block diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device 700 includes a display screen 710 and a fingerprint identification device 720.
  • the fingerprint identification device 720 can be arranged below the display screen 710 to perform fingerprint identification on the finger above the display screen 710.
  • the display screen 710 may be any display screen described above, and the display screen 710 may be, for example, a self-luminous display screen, such as an OLED screen.
  • the fingerprint identification device 720 may be any of the fingerprint identification devices described above, and to simplify the description, it will not be repeated here.
  • optical fingerprint sensor in the embodiments of the present application may represent an optical fingerprint sensor chip.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art or the part of the technical solutions can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.
  • the division of units or modules or components in the device embodiments described above is only a logical function division, and there may be other divisions in actual implementation.
  • multiple units or modules or components can be combined or integrated.
  • To another system, or some units or modules or components can be ignored or not executed.
  • the aforementioned units/modules/components described as separate/display components may or may not be physically separated, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units/modules/components may be selected according to actual needs to achieve the objectives of the embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种指纹识别装置(720)和电子设备(700),能够滤除手指返回光信号中的红光波段和红外波段的光信号,以避免对指纹传感器的指纹识别造成影响。该指纹识别装置(720)适用于具有显示屏(120,400,710)的电子设备(700),指纹识别装置(720)用于设置在显示屏(710)的下方,指纹识别装置(720)包括滤光片(300,301)、吸收层(302)、光路引导结构(102)和指纹传感器(100);指纹传感器(100)包括具有多个光学感应单元的感应阵列(101),感应阵列(101)用于接收显示屏(120,400,710)上方的手指返回的,并经过滤光片(300,301)、吸收层(302)、光路引导结构(102)的返回光信号,并根据返回光信号生成手指的指纹图像;滤光片(300,301)用于滤除返回光信号中的红外波段的光信号;吸收层(302)用于吸收返回光信号中的红光波段的光信号;光路引导结构(102)用于将返回光信号引导至指纹传感器(100)。

Description

指纹识别装置和电子设备 技术领域
本申请实施例涉及指纹识别领域,并且更具体地,涉及一种指纹识别装置和电子设备。
背景技术
随着手机行业的高速发展,指纹识别技术越来越受到人们重视,屏下指纹识别技术的实用化已成为大众所需。屏下指纹识别技术中应用最多的是屏下光学指纹识别技术,屏下光学指纹识别技术可以采用屏幕发出的光作为光源,屏幕发出的光照射到屏幕上方的手指后会携带手指的指纹信息,携带指纹信息的光信号会被指纹传感器接收到,以进行指纹识别。
但是,如果在室外阳光下进行指纹识别时,太阳光中的红光和红外波段的光可以直接透过手指到达指纹传感器,使带有指纹信息的光信号湮没在红光和红外光的背景噪声中,导致指纹传感器失效。因此,如何滤除指纹识别过程中的红光和红外光波段的光信号成为亟需解决的问题。
发明内容
本申请实施例提供了一种指纹识别装置和电子设备,能够滤除太阳光中的红光和红外波段的光信号,以避免太阳光对指纹识别造成影响。
第一方面,提供了一种指纹识别装置,适用于具有显示屏的电子设备,所述指纹识别装置用于设置在所述显示屏的下方,所述指纹识别装置包括滤光片、吸收层、光路引导结构和指纹传感器;所述指纹传感器包括具有多个光学感应单元的感应阵列,所述感应阵列用于接收所述显示屏上方的手指返回的,并经过所述滤光片、所述吸收层和所述光路引导结构的返回光信号,并根据所述返回光信号生成手指的指纹图像;所述滤光片用于滤除所述返回光信号中的红外波段的光信号;所述吸收层用于吸收所述返回光信号中的红光波段的光信号;所述光路引导结构用于将所述返回光信号引导至所述指纹传感器。
本申请实施例提供的技术方案中,滤光片可用于滤除手指返回的光信号中的红外波段的光信号,吸收层可用于吸收手指返回的光信号中的红光波段 的光信号,从而红光信号和红外信号到达指纹传感器,不会影响指纹传感器的指纹识别性能。另外,红光信号是被吸收层吸收掉,因此,红光信号也不会进入到人眼,能够显示屏的美观。
在一些可能的实现方式中,所述吸收层涂覆在所述滤光片的上表面和/或下表面。
在一些可能的实现方式中,所述吸收层涂覆在所述光路引导结构中的任一表面。
在一些可能的实现方式中,所述吸收层涂覆在所述指纹传感器的感应阵列的上表面。
在一些可能的实现方式中,在所述吸收层设置在所述滤光片的上方的情况下,所述滤光片用于反射所述红外波段的光信号。
在一些可能的实现方式中,在所述吸收层设置在所述滤光片的下方的情况下,所述滤光片用于反射所述红外波段的光信号并透射所述红光波段的光信号。
在吸收层设置在滤光片的下方时,滤光片不仅需要能够反射红外光,还需要能够透射红光,以避免红光进入人眼以影响显示屏的美观。
在一些可能的实现方式中,所述返回光信号包括所述显示屏发出的经过所述手指反射或散射的光信号。
在一些可能的实现方式中,所述吸收层对所述红光波段的光信号的吸收率大于85%。
在一些可能的实现方式中,所述吸收层和所述滤光片对蓝光波段和绿光波段的光信号的透过率均大于80%。
吸收层和滤光片均可透射蓝光和绿光,以保证用于指纹识别的光信号的强度。
在一些可能的实现方式中,所述吸收层的厚度小于2μm。
在一些可能的实现方式中,所述滤光片包括涂覆在基底上的单层膜或多层膜。
在一些可能的实现方式中,所述滤光片包括涂覆在所述光路引导结构和/或所述指纹传感器的上表面中的任一表面上的单层膜或多层膜。
在一些可能的实现方式中,所述吸收层所使用的材料为高分子薄膜材料或高分子胶膜材料。
在一些可能的实现方式中,所述吸收层通过干膜贴合或旋涂烘烤的方式涂覆在所述滤光片、所述光路引导结构和/或所述指纹传感器的上表面中的任一表面。
第二方面,提供一种电子设备,包括:显示屏,以及第一方面及其任一种可能的实现方式中的指纹识别装置。
附图说明
图1是本申请实施例所使用的电子设备的一种结构示意图。
图2是本申请实施例所使用的电子设备的另一种结构示意图。
图3是本申请实施例提供的一种指纹识别装置的结构示意图。
图4是本申请实施例提供的另一种指纹识别装置的结构示意图。
图5是本申请实施例提供的另一种指纹识别装置的结构示意图。
图6是本申请实施例提供的另一种指纹识别装置的结构示意图。
图7是本申请实施例提供的一种电子设备的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
伴随时代的发展和科技的进步,电子产品屏幕的屏占比越来越高,全面屏已经成为众多电子产品的发展趋势。为适应这种全面屏的发展趋势,电子产品中的感光器件例如指纹识别、前置摄像头等也将被放置在屏幕之下。屏下指纹识别技术应用最多的是屏下光学指纹识别技术,由于屏下光学指纹器件的特殊性,要求带有指纹信号的光能够透过屏幕传递到下方的指纹传感器,进而得到指纹信号。
以屏下光学指纹识别为例,对指纹识别过程进行详细描述。
应理解,本申请实施例可以应用于光学指纹系统,包括但不限于光学指纹识别系统和基于光学指纹成像的医疗诊断产品,本申请实施例仅以光学指纹系统为例进行说明,但不应对本申请实施例构成任何限定,本申请实施例同样适用于其他采用光学成像技术的系统等。
作为一种常见的应用场景,本申请实施例提供的光学指纹系统可以应用在智能手机、平板电脑、游戏设备等便携式或移动计算设备,以及电子数据库、汽车、银行自动柜员机(automated teller machine,ATM)等其他电子设 备,但本申请实施例对此并不限定,本申请实施例可以应用在其他具有显示屏的移动终端或者其他电子设备;更具体地,在上述电子设备中,指纹识别装置可以具体为光学指纹装置,其可以设置在显示屏下方的局部区域或者全部区域,从而形成屏下(Under-display)光学指纹系统。或者,所述指纹识别装置也可以部分或者全部集成至所述电子设备的显示屏内部,从而形成屏内(In-display)光学指纹系统。
如图1和图2所示为本申请实施例可以适用的电子设备的两个结构示意图,其中,图1为俯视图,图2为图1所示的电子设备沿A-A’的部分剖面结构示意图。该电子设备10包括显示屏120和光学指纹装置130,其中,该光学指纹装置130设置在该显示屏120下方的局部区域。该光学指纹装置130包括光学指纹传感器,该光学指纹传感器包括具有多个光学感应单元131的感应阵列133,该感应阵列所在区域或者其感应区域为该光学指纹装置130对应的指纹检测区域103。如图1所示,该指纹检测区域103位于该显示屏120的显示区域之中。在一种替代实施例中,该光学指纹装置130还可以设置在其他位置,比如该显示屏120的侧面或者该电子设备10的边缘非透光区域,并通过光路设计来将该显示屏120的至少部分显示区域的光信号导引到该光学指纹装置130,从而使得该指纹检测区域103实际上位于该显示屏120的显示区域。
应当理解,该指纹检测区域103的面积可以与该光学指纹装置130的感应阵列的面积不同,例如通过例如透镜成像的光路设计、反射式折叠光路设计或者其他光线汇聚或者反射等光路设计,可以使得该光学指纹装置130对应的指纹检测区域103的面积大于该光学指纹装置130感应阵列的面积。在其他替代实现方式中,如果采用例如光线准直方式进行光路引导,该光学指纹装置130对应的指纹检测区域103也可以设计成与该光学指纹装置130的感应阵列的面积基本一致。
因此,使用者在需要对该电子设备进行解锁或者其他指纹验证的时候,只需要将手指按压在位于该显示屏120的指纹检测区域103,便可以实现指纹输入。由于指纹检测可以在屏内实现,因此采用上述结构的电子设备10无需其正面专门预留空间来设置指纹按键(比如Home键),从而可以采用全面屏方案,即该显示屏120的显示区域可以基本扩展到整个电子设备10的正面。
作为一种可选的实现方式,如图2所示,该光学指纹装置130包括光检测部分134和光学组件132,该光检测部分134包括感应阵列以及与该感应阵列电性连接的读取电路及其他辅助电路,其可以在通过半导体工艺制作在一个芯片(Die),比如光学成像芯片或者光学指纹传感器,该感应阵列具体为光探测器(Photo detector)阵列,其包括多个呈阵列式分布的光探测器,该光探测器可以作为上述的光学感应单元;该光学组件132可以设置在该光检测部分134的感应阵列的上方,其可以具体包括滤光层(Filter)、导光层或光路引导结构以及其他光学元件,该滤光层可以用于滤除穿透手指的环境光,而该导光层或光路引导结构主要用于将从手指处返回的光导引至该感应阵列进行光学检测。
在具体实现上,该光学组件132可以与该光检测部分134封装在同一个光学指纹部件。比如,该光学组件132可以与该光学检测部分134封装在同一个光学指纹芯片,也可以将该光学组件132设置在该光检测部分134所在的芯片外部,比如将该光学组件132贴合在该芯片上方,或者将该光学组件132的部分元件集成在上述芯片之中。
其中,该光学组件132的导光层或者光路引导结构有多种实现方案,比如,该光学组件132的该导光层可以具体为在半导体硅片制作而成的准直器(Collimator)层,其具有多个准直单元或者微孔阵列,该准直单元可以具体为小孔,从手指反射回来的反射光中,垂直入射到该准直单元的光线可以穿过并被其下方的光学感应单元接收,而入射角度过大的光线在该准直单元内部经过多次反射被衰减掉,因此每一个光学感应单元基本只能接收到其正上方的指纹纹路反射回来的反射光,从而该感应阵列便可以检测出手指的指纹图像。
在另一种实施例中,该导光层或者光路引导结构也可以为光学透镜(Lens)层,其具有一个或多个透镜单元,比如一个或多个非球面透镜组成的透镜组,该光学组件132可以包括一个透镜,其用于将从手指反射回来的反射光汇聚到其下方的光检测部分134的感应阵列,以使得该感应阵列可以基于该反射光进行成像,从而得到该手指的指纹图像。可选地,该光学透镜层在该透镜单元的光路中还可以形成有针孔,该针孔可以配合该光学透镜层扩大该光学指纹装置的视场,以提高该光学指纹装置130的指纹成像效果。
在其他实施例中,该导光层或者光路引导结构也可以具体采用微透镜 (Micro-Lens)层,该微透镜层具有由多个微透镜形成的微透镜阵列,其可以通过半导体生长工艺或者其他工艺形成在该光检测部分134的感应阵列上方,并且每一个微透镜可以分别对应于该感应阵列的其中一个感应单元。并且,该微透镜层和该感应单元之间还可以形成其他光学膜层,比如介质层或者钝化层,更具体地,该微透镜层和该感应单元之间还可以包括具有微孔的挡光层,其中该微孔形成在其对应的微透镜和感应单元之间,该挡光层可以阻挡相邻微透镜和感应单元之间的光学干扰,并使得该感应单元所对应的光线通过该微透镜汇聚到该微孔内部并经由该微孔传输到该感应单元以进行光学指纹成像。应当理解,上述光路引导结构的几种实现方案可以单独使用也可以结合使用,比如,可以在该准直器层或者该光学透镜层下方进一步设置微透镜层。当然,在该准直器层或者该光学透镜层与该微透镜层结合使用时,其具体叠层结构或者光路可能需要按照实际需要进行调整。
可选的,在某些实施例中,该光学指纹装置130可以仅包括一个光学指纹传感器,此时光学指纹装置130的指纹检测区域103的面积较小且位置固定,因此用户在进行指纹输入时需要将手指按压到该指纹检测区域103的特定位置,否则光学指纹装置130可能无法采集到指纹图像而造成用户体验不佳。
在其他替代实施例中,该光学指纹装置130可以具体包括多个光学指纹传感器;该多个光学指纹传感器可以通过拼接方式并排设置在该显示屏120的下方,且该多个光学指纹传感器的感应区域共同构成该光学指纹装置130对应的指纹检测区域103。也即是说,该光学指纹装置130对应的指纹检测区域103可以包括多个子区域,每个子区域分别对应于其中一个光学指纹传感器的感应区域,从而将该光学指纹模组130的指纹采集区域103可以扩展到该显示屏的下半部分的主要区域,即扩展到手指惯常按压区域,从而实现盲按式指纹输入操作。可替代地,当该光学指纹传感器数量足够时,该指纹检测区域130还可以扩展到半个显示区域甚至整个显示区域,从而实现半屏或者全屏指纹检测。
应当理解的是,在具体实现上,该电子设备10还包括透明盖板110,或者称为透明保护盖板110,该盖板110可以为玻璃盖板或者蓝宝石盖板,其位于该显示屏120的上方并覆盖该电子设备10的正面。因为,本申请实施例中,所谓的手指按压在该显示屏120实际上是指按压在该显示屏120上方 的盖板110或者覆盖该盖板110的保护层表面。
应理解,本申请实施例中的该显示屏120可以采用具有自发光显示单元的显示屏,比如有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏或者微型发光二极管(Micro-LED)显示屏。以采用OLED显示屏为例,该光学指纹装置130可以利用该OLED显示屏120位于该指纹检测区域103的显示单元(即OLED光源)来作为光学指纹检测的激励光源。当手指140按压在该指纹检测区域103时,显示屏120向该指纹检测区域103上方的目标手指140发出一束光111,该光111在手指140的表面发生反射形成反射光或者经过该手指140内部散射而形成散射光。
应理解,为便于描述,上述反射光和散射光统称为反射光。由于指纹的嵴(ridge)141与峪(valley)142对于光的反射能力不同,因此,来自指纹嵴141的反射光151和来自指纹峪142的反射光152具有不同的光强,反射光经过光学组件132后,被光学指纹装置130中的感应阵列134所接收并转换为相应的电信号,即指纹检测信号;基于该指纹检测信号便可以获得指纹图像数据,并且可以进一步进行指纹匹配验证,从而在该电子设备10实现光学指纹识别功能。
屏下光学指纹识别技术一般采用屏幕发出的光作为光源,屏幕发出的光信号到达屏幕上方的手指,并经过手指的反射或散射后的光信号携带手指的指纹信息,携带指纹信息的光信号可以被屏幕下方的指纹传感器接收到,以进行指纹识别。
但是,如果用户在室外阳光下进行指纹识别时,太阳光中的红光波段和红外波段的光可以直接透过手指到达指纹传感器,并且由于太阳光中的红光和红外光的光强比较大,会使得带有指纹信息的光信号湮没在红光和红外光的背景噪声中,导致指纹传感器失效。因此,如何滤除指纹识别过程中的红光波段和红外光波段的光信号成为亟需解决的问题。
由于手指对红光和红外光的透射能力比较强,也就是说,太阳光穿过手指后剩余的光信号中红光和红外光的信号最强,对指纹识别的影响最大,因此本申请主要考虑如何过滤红光波段和红外波段的光信号。
红外波段的光信号例如可以指波长在770nm~1mm之间的光信号,红光波段的光信号例如可以指波长在622nm~770nm之间的光信号。
本申请实施例中的滤除红光和红外光的方法可以如图3所示,图3所示 的指纹识别装置包括滤光片300、光路引导结构102和指纹传感器100,该指纹传感器可以包括具有多个光学感应单元的感应阵列101,该指纹传感器可以设置在基板200上。
该光路引导结构102可以是上文描述的任一种光路引导结构。
屏幕400发出的光信号到达手指500,并经过手指500的反射后携带手指500的指纹信息,携带指纹信息的光信号穿过屏幕400、滤光片300以及光路引导结构102后被指纹传感器100的感应阵列101接收到,指纹传感器100可以根据接收到的光信号进行指纹识别。
如果用户在阳光下进行指纹识别,太阳中的红外光501和红光601可以穿过手指500、显示屏400到达滤光片300,由于滤光片300能够滤除红光波段和红外波段的光信号,因此,红外光501和红光601到达滤光片300后,被滤光片300反射后形成反射后的红外光502和反射后的红光602,由于反射后的红外光502和反射后的红光602不能到达指纹传感器100,从而避免了红光和红外光对指纹识别的影响。
但是,由于红光为可见光,被滤光片300反射后的红外光602穿过显示屏后,很容易被人眼观察到。人眼从屏幕上方观察就可以看到屏幕下方的器件的轮廓或阴影,这会影响屏幕的美观和一致性。
本申请实施例在大量工程实践的基础上开发出一种解决屏下指纹器件外观的问题,既可以保证红光和红外光不进入指纹传感器而影响指纹识别,又能够解决由于红光的反射而导致的外观问题,保证电子产品外观的整体性和美观。
如图4和图5所示,屏下指纹识别装置可以包括滤光片301、吸收层302、光路引导结构102和指纹传感器100。该指纹识别装置可设置在显示屏400的下方,以实现屏下指纹识别。
该指纹传感器100可以包括具有多个光学感应单元的感应阵列101,该感应阵列101用于接收显示屏400上方的手指500返回的,并经过滤光片301、吸收层302和光路引导结构102的返回光信号,并根据该返回光信号生成手指500的指纹图像。滤光片301可用于滤除返回光信号中的红外波段的光信号,吸收层302用于吸收返回光信号中的红光波段的光信号,光路引导结构102可用于将返回光信号引导至指纹传感器100。
本申请实施例通过引入吸收层302,该吸收层302可以设置在指纹传感 器100的上方,以吸收手指返回的光信号中的红光信号,一方面可以避免红光的光信号进入指纹传感器100影响指纹识别,另一方面能够避免红光信号被反射后进入人眼而影响手机的美观。
本申请实施例对吸收层302的设置位置不做具体限定。
作为一个示例,该吸收层302可以涂覆在滤光片301的上表面,也可以涂覆在滤光片301的下表面,或者可以同时涂覆在滤光片301的上表面和下表面。在该情况下,吸收层302是将滤光片301作为基底以实现吸收光的功能。
作为又一示例,该吸收层302可以涂覆在光路引导结构102的任一表面。参见上文的描述,光路引导结构102可以包括多层结构,吸收层302可以涂覆在该多层结构中的任意一层或多层的表面。例如,该光路引导结构102可以包括光学准直器,则吸收层302可以涂覆在光学准直器的上表面和/或下表面。又例如,该光路引导结构102可以包括微透镜层,则吸收层302可以涂覆在微透镜层的上表面和/或下表面。
作为又一示例,该吸收层302可以涂覆在指纹传感器100的上表面,具体地,该吸收层302可以涂覆在指纹传感器100的感应阵列101的上表面。
为了达到更好的吸收效果,本申请实施例可以通过设置多个吸收层302,以吸收更多的红光波段的光信号。例如,可以在滤光片301的上表面和下表面上均涂吸收层302。又例如,也可以在滤光片301的表面和光路引导结构102的表面均涂覆吸收层。
吸收层302所使用的材料可以为高分子薄膜材料,也可以为高分子胶膜材料,本申请实施例对此不作具体限定。
另外,本申请实施例对吸收层302的涂覆方式也不作具体限定。例如,吸收层302可以通过干膜贴合的方式涂覆在滤光片301、光路引导结构102和/或指纹传感器100的上表面中的任一表面上。又例如,吸收层302可以通过旋涂烘烤的方式涂覆在滤光片301、光路引导结构102和/或指纹传感器100的上表面中的任一表面上。
本申请实施例对滤光片301的设置位置不做具体限定,该滤光片301可以设置在光路引导结构102的上方,也可以设置在光路引导结构102的下方,只要该滤光片301设置在指纹传感器100的上方即可。
本申请实施例对滤光片301的设置方式也不做具体限定。例如,该滤光 片301可以与屏幕400贴合,贴合在屏幕400的下表面。又例如,该滤光片301可以悬空在指纹识别装置中。又例如,该滤光片301可以与光路引导层102贴合。
在吸收层302设置在滤光片301的上方的情况下,该滤光片301只要能够反射红外波段的光信号即可。由于吸收层302已经将返回光信号中的红光进行了吸收,因此,只要滤光片能够滤除返回光信号中的红外波段的光信号,就不会影响指纹传感器的检测性能。
在该情况下,滤光片301可以反射红光波段的光信号,这样可以无需对滤光片的接收和/或材料进行专门设计,可以沿用传统的能够反射红光和红外光信号的滤光片,能够节约制造成本。
在吸收层302设置在滤光片301的下方的情况下,该滤光片301用于反射红外波段的光信号并透射红光波段的光信号。由于吸收层302位于滤光片301的下方,因此,滤光片301需要透射红光波段的光信号,经过滤光片301过滤后的返回光信号到达吸收层302,吸收层302可以吸收返回光信号中的红光波段的光信号,以避免红光波段的光信号被滤光片301反射后进入人眼,影响屏幕的美观。
本申请实施例中,吸收层302对红光波段的光信号的吸收率大于85%,以能够吸收返回光信号的大部分的红光波段的光信号。
另外,吸收层302和滤光片301需要能够透射蓝光波段和绿光波段,例如,吸收层302和滤光片301所使用的材料对蓝光波段和绿光波段的光信号的透过率均大于80%。
本申请实施例的指纹识别是以显示屏400发出的光作为光源,显示屏400发出的光信号以红光、蓝光和绿光为主,为了减少太阳光中的红光对指纹识别的干扰,吸收层302对红光进行了过滤,从而剩下的能够用于指纹识别的光信号主要为蓝光和绿光,因此吸收层302和滤光片301需要能够透射蓝光和绿光,才能保证指纹识别的可靠性。
为了不影响指纹识别装置的厚度,可以将吸收层的厚度控制在2μm以内。
本申请实施例中的滤光片301包括的滤光膜可以为单层膜,也可以为多层膜。
例如,滤光片301可以包括涂覆在基底上的单层膜或多层膜。该基底可 以是专用于滤光片的基底。该基底可以使用白玻璃、蓝玻璃或蓝水晶等材料,本申请实施例对此不做具体限定。
又例如,与吸收层302类似,该滤光片301可以使用光路引导结构102和/或指纹传感器100作为基底,以实现滤光功能。该滤光片301可以包括涂覆在光路引导结构102和/或指纹传感器100的任一表面上的单层膜或多层膜。
本申请实施例中的滤光片主要是通过反射红外光的方式对红外光进行过滤,当然,该滤光片也可以采用吸收红外光的方式对红外光进行滤除。
下面结合图6,对本申请实施例的指纹识别装置进行详细描述。
图6所示的指纹识别装置可以包括微透镜阵列210,阻光层310、320,指纹传感器100。
指纹传感器100可以包括多个感应阵列101,多个感应阵列可以包括多个像素单元1011。阻光层310、320可以形成于感应阵列101的上方,其中,阻光层310、320上可以设置有多个通光小孔311、321。微透镜阵列210可以设置在阻光层310的上方,微透镜阵列210可以包括多个微透镜211。
微透镜阵列210可用于将手指返回的光信号汇聚至阻光层310上的多个通光小孔311,然后多个通光小孔311可以将光信号引导至阻光层320上的多个通光小孔321中,经过通光小孔321的光信号可以被阻光层320下方的像素单元1011接收到,像素单元1011可以根据接收到的光信号进行指纹识别。
阻光层310上的通光小孔311的孔径可以大于阻光层320上的通光小孔321的孔径。
本申请实施例中,微透镜阵列210中的每个微透镜都可以包含对应的通光小孔和像素单元,每个微透镜的中心与其对应的通光小孔的中心、像素单元的中心可以位于一条直线上,这样能够保证经过微透镜聚焦后的光信号能够被像素单元接收到。可选地,所述直线可以垂直于所述指纹传感器100所在的平面,还可以与所述指纹传感器100所在的平面之间的夹角小于90度。不难理解,当所述直线与所述指纹传感器100所在的平面之间的夹角小于90度时,每个微透镜以及其对应的通光小孔、像素单元的中心,在水平方向上均有一定的间隔距离,所述间隔距离依据实际情况而定,只要能保证经过微透镜聚焦后的光信号能够被其对应的像素单元接收到即可。
阻光层310和阻光层320之间可以设置有介质层621,阻光层310和微透镜层210之间设置有介质层622,阻光层320和感应阵列101之间设置有介质层620。介质层620、介质层621和介质层622可通过生长工艺依次进行生长。
微透镜阵列210的上方可以设置缓冲层510,缓冲层510为透明介质缓冲层,其光学折射率低于透镜阵列210。
本身申请实施例中的吸收层可以设置在感应阵列101上方的任意结构层的表面。
作为一个示例,吸收层可以设置在微透镜阵列210的上表面,也可以位于微透镜阵列210的下表面。具体地,吸收层可以设置在缓冲层510的上表面,或者吸收层可以设置在微透镜阵列中的透镜表面上。
作为又一示例,吸收层可以设置在阻光层310、320的任意表面上。例如,吸收层可以设置在阻光层310的上表面,也可以设置在阻光层310的下表面。
作为又一示例,吸收层可以设置在介质层622、621、620的任意表面上。例如,吸收层可以设置在介质层622的上表面,也可以设置在介质层622的下表面上。
作为再一示例,吸收层也可以设置在感应阵列101的上表面。
滤光片也可以设置在感应阵列101上方的任意结构层的表面,滤光片的设置位置与吸收层类似,具体的设置位置可以参考上文的描述,此处不再赘述。
图6示出的指纹识别装置包括两个阻光层,这仅是一种示例,指纹识别装置可以仅包括一个阻光层,也可以包括两个以上的阻光层。
图6所示的微透镜211可以为圆形透镜,或者微透镜211可以为多边形透镜,例如正方形透镜或六边形透镜。
微透镜阵列210可用于引导垂直光,也可用于引导倾斜光,本申请实施例对此不作具体限定。
本申请实施例的光路引导结构可以包括图6所示的微透镜阵列、介质层、阻光层、通光小孔等,当然,光路引导结构还可以包括其他的结构,例如,光路引导结构还可以包括准直孔阵列。
图7是本申请实施例提供的一种电子设备的示意性框图。该电子设备 700包括显示屏710以及指纹识别装置720。该指纹识别装置720可以设置在显示屏710的下方,以对显示屏710上方的手指进行指纹识别。
该显示屏710可以是上文描述的任一种显示屏,该显示屏710例如可以为自发光显示屏,如OLED屏。
该指纹识别装置720可以为上文描述的任一种指纹识别装置,为简化描述,此处不再赘述。
需要说明的是,本申请实施例中的光学指纹传感器可以表示光学指纹传感器芯片。
需要说明的是,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。
例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
所属领域的技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的设备、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请提供的几个实施例中,应该理解到,所揭露的电子设备、装置和方法,可以通过其它的方式实现。
例如,以上所描述的装置实施例中单元或模块或组件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或模块或组件可以结合或者可以集成到另一个系统,或一些单元或模块或组件可以忽略,或不执行。
又例如,上述作为分离/显示部件说明的单元/模块/组件可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元/模块/组件来实现本申请实施例的目的。
最后,需要说明的是,上文中显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上内容,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (15)

  1. 一种指纹识别装置,适用于具有显示屏的电子设备,其特征在于,所述指纹识别装置用于设置在所述显示屏的下方,所述指纹识别装置包括滤光片、吸收层、光路引导结构和指纹传感器;
    所述指纹传感器包括具有多个光学感应单元的感应阵列,所述感应阵列用于接收所述显示屏上方的手指返回的,并经过所述滤光片、所述吸收层和所述光路引导结构的返回光信号,并根据所述返回光信号生成所述手指的指纹图像;
    所述滤光片用于滤除所述返回光信号中的红外波段的光信号;
    所述吸收层用于吸收所述返回光信号中的红光波段的光信号;
    所述光路引导结构用于将所述返回光信号引导至所述指纹传感器。
  2. 根据权利要求1所述的指纹识别装置,其特征在于,所述吸收层涂覆在所述滤光片的上表面和/或下表面。
  3. 根据权利要求1或2所述的指纹识别装置,其特征在于,所述吸收层涂覆在所述光路引导结构中的任一表面。
  4. 根据权利要求1-3中任一项所述的指纹识别装置,其特征在于,所述吸收层涂覆在所述指纹传感器的感应阵列的上表面。
  5. 根据权利要求1-4中任一项所述的指纹识别装置,其特征在于,在所述吸收层设置在所述滤光片的上方的情况下,所述滤光片用于反射所述红外波段的光信号。
  6. 根据权利要求1-4中任一项所述的指纹识别装置,其特征在于,在所述吸收层设置在所述滤光片的下方的情况下,所述滤光片用于反射所述红外波段的光信号并透射所述红光波段的光信号。
  7. 根据权利要求1-6中任一项所述的指纹识别装置,其特征在于,所述返回光信号包括所述显示屏发出的经过所述手指反射或散射的光信号。
  8. 根据权利要求1-7中任一项所述的指纹识别装置,其特征在于,所述吸收层对所述红光波段的光信号的吸收率大于85%。
  9. 根据权利要求1-8中任一项所述的指纹识别装置,其特征在于,所述吸收层和所述滤光片对蓝光波段和绿光波段的光信号的透过率均大于80%。
  10. 根据权利要求1-9中任一项所述的指纹识别装置,其特征在于,所述吸收层的厚度小于2μm。
  11. 根据权利要求1-10中任一项所述的指纹识别装置,其特征在于,所述滤光片包括涂覆在基底上的单层膜或多层膜。
  12. 根据权利要求1-10中任一项所述的指纹识别装置,其特征在于,所述滤光片包括涂覆在所述光路引导结构和/或所述指纹传感器的上表面中的任一表面上的单层膜或多层膜。
  13. 根据权利要求1-12中任一项所述的指纹识别装置,其特征在于,所述吸收层所使用的材料为高分子薄膜材料或高分子胶膜材料。
  14. 根据权利要求1-13中任一项所述的指纹识别装置,其特征在于,所述吸收层通过干膜贴合或旋涂烘烤的方式涂覆在所述滤光片、所述光路引导结构和/或所述指纹传感器的上表面中的任一表面。
  15. 一种电子设备,其特征在于,包括:
    显示屏;
    以及如权利要求1-14中任一项所述的指纹识别装置,所述指纹识别装置设置在所述显示屏的下方。
PCT/CN2019/103321 2019-04-10 2019-08-29 指纹识别装置和电子设备 WO2021035622A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980004113.XA CN111164608B (zh) 2019-08-29 2019-08-29 指纹识别装置和电子设备
PCT/CN2019/103321 WO2021035622A1 (zh) 2019-08-29 2019-08-29 指纹识别装置和电子设备
PCT/CN2019/113088 WO2020206983A1 (zh) 2019-04-10 2019-10-24 光学指纹装置和电子设备
CN201921806158.2U CN210605743U (zh) 2019-08-29 2019-10-24 光学指纹装置和电子设备
CN201980004118.2A CN111052143B (zh) 2019-04-10 2019-10-24 光学指纹装置和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/103321 WO2021035622A1 (zh) 2019-08-29 2019-08-29 指纹识别装置和电子设备

Publications (1)

Publication Number Publication Date
WO2021035622A1 true WO2021035622A1 (zh) 2021-03-04

Family

ID=70562386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103321 WO2021035622A1 (zh) 2019-04-10 2019-08-29 指纹识别装置和电子设备

Country Status (2)

Country Link
CN (2) CN111164608B (zh)
WO (1) WO2021035622A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111052143B (zh) * 2019-04-10 2023-09-08 深圳市汇顶科技股份有限公司 光学指纹装置和电子设备
CN112069869A (zh) * 2020-07-13 2020-12-11 欧菲微电子技术有限公司 指纹模组及其制造方法、显示屏组件、电子设备
CN111708202B (zh) * 2020-07-17 2023-12-01 京东方科技集团股份有限公司 一种显示面板和显示装置
KR20220021046A (ko) * 2020-08-12 2022-02-22 삼성디스플레이 주식회사 표시 장치와 그의 구동 방법
EP3964864A1 (en) * 2020-09-07 2022-03-09 Infineon Technologies AG Electronic device and method for electronic device
CN112232306A (zh) * 2020-11-20 2021-01-15 厦门天马微电子有限公司 一种显示面板及显示装置
CN113253374B (zh) * 2021-05-27 2023-06-02 武汉华星光电技术有限公司 指纹识别显示装置
CN113449685A (zh) * 2021-07-16 2021-09-28 维沃移动通信有限公司 光学指纹识别装置、光学指纹识别方法以及电子设备
CN113504666A (zh) * 2021-07-20 2021-10-15 武汉华星光电技术有限公司 显示装置
TWI811854B (zh) * 2021-07-23 2023-08-11 友達光電股份有限公司 光學感測裝置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105046239A (zh) * 2015-08-19 2015-11-11 南昌欧菲生物识别技术有限公司 指纹识别装置及其终端设备
CN106991366A (zh) * 2016-01-21 2017-07-28 上海箩箕技术有限公司 光学式指纹传感器
CN109033926A (zh) * 2017-06-08 2018-12-18 上海箩箕技术有限公司 指纹成像模组和电子设备
US20190026527A1 (en) * 2017-07-18 2019-01-24 Shenzhen GOODIX Technology Co., Ltd. Anti-spoofing sensing for rejecting fake fingerprint patterns in under-screen optical sensor module for on-screen fingerprint sensing

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105608445A (zh) * 2016-01-29 2016-05-25 上海箩箕技术有限公司 光学指纹传感器及其制作方法和指纹采集方法
CN109154869B (zh) * 2016-06-07 2021-02-05 深圳市汇顶科技股份有限公司 用于屏上指纹感应的屏下光学传感器模块的光学准直器
CN109271831B (zh) * 2017-07-17 2020-12-18 金佶科技股份有限公司 取像装置
WO2019127579A1 (zh) * 2017-12-30 2019-07-04 深圳信炜科技有限公司 感光装置、感光模组、显示模组及电子设备
WO2020082369A1 (zh) * 2018-10-26 2020-04-30 深圳市汇顶科技股份有限公司 屏下生物特征识别装置和电子设备
CN109241953B (zh) * 2018-10-30 2024-01-09 Oppo广东移动通信有限公司 电子设备、指纹图像处理方法
CN109983471B (zh) * 2019-02-02 2020-09-18 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105046239A (zh) * 2015-08-19 2015-11-11 南昌欧菲生物识别技术有限公司 指纹识别装置及其终端设备
CN106991366A (zh) * 2016-01-21 2017-07-28 上海箩箕技术有限公司 光学式指纹传感器
CN109033926A (zh) * 2017-06-08 2018-12-18 上海箩箕技术有限公司 指纹成像模组和电子设备
US20190026527A1 (en) * 2017-07-18 2019-01-24 Shenzhen GOODIX Technology Co., Ltd. Anti-spoofing sensing for rejecting fake fingerprint patterns in under-screen optical sensor module for on-screen fingerprint sensing

Also Published As

Publication number Publication date
CN111164608A (zh) 2020-05-15
CN210605743U (zh) 2020-05-22
CN111164608B (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
WO2021035622A1 (zh) 指纹识别装置和电子设备
WO2020151159A1 (zh) 指纹识别的装置和电子设备
CN110088768B (zh) 屏下指纹识别装置和电子设备
WO2020151158A1 (zh) 生物特征识别的装置
WO2020220305A1 (zh) 屏下指纹识别装置和电子设备
WO2021072753A1 (zh) 指纹检测装置和电子设备
CN111133444B (zh) 指纹识别装置和电子设备
WO2021184269A1 (zh) 指纹识别装置和电子设备
CN110720106B (zh) 指纹识别的装置和电子设备
CN210295125U (zh) 指纹检测装置和电子设备
CN210109828U (zh) 指纹识别的装置和电子设备
CN111095279B (zh) 指纹检测装置和电子设备
WO2021189478A1 (zh) 指纹检测的装置和电子设备
CN111108509B (zh) 指纹检测装置和电子设备
CN209496385U (zh) 屏下指纹识别装置和电子设备
CN210181627U (zh) 指纹识别的装置和电子设备
WO2021051737A1 (zh) 指纹识别装置、背光模组、液晶显示屏和电子设备
CN111133442B (zh) 指纹检测的装置和电子设备
WO2022016547A1 (zh) 指纹识别装置和电子设备
WO2021077406A1 (zh) 指纹识别装置和电子设备
CN210181631U (zh) 指纹识别装置和电子设备
CN210295124U (zh) 指纹检测的装置和电子设备
WO2021042396A1 (zh) 指纹识别装置和电子设备
CN211742126U (zh) 指纹检测的装置和电子设备
CN210864753U (zh) 指纹识别装置和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943099

Country of ref document: EP

Kind code of ref document: A1