WO2022133833A1 - 指纹识别装置、显示屏和电子设备 - Google Patents

指纹识别装置、显示屏和电子设备 Download PDF

Info

Publication number
WO2022133833A1
WO2022133833A1 PCT/CN2020/138727 CN2020138727W WO2022133833A1 WO 2022133833 A1 WO2022133833 A1 WO 2022133833A1 CN 2020138727 W CN2020138727 W CN 2020138727W WO 2022133833 A1 WO2022133833 A1 WO 2022133833A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel unit
output signal
signal
pixel
fingerprint identification
Prior art date
Application number
PCT/CN2020/138727
Other languages
English (en)
French (fr)
Inventor
程雷刚
肖瑜
易福建
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2020/138727 priority Critical patent/WO2022133833A1/zh
Publication of WO2022133833A1 publication Critical patent/WO2022133833A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing

Definitions

  • the embodiments of the present application relate to the technical field of fingerprint identification, and more particularly, to a fingerprint identification device, a display screen, and an electronic device.
  • the fingerprint identification device can not only receive the fingerprint light signal with fingerprint information reflected by the surface of the finger, but also receive the light signal and ambient light signal reflected by the inside of the finger.
  • Optical signals may affect fingerprint recognition performance.
  • the embodiments of the present application provide a fingerprint identification device, a display screen and an electronic device, which can effectively improve the performance of fingerprint identification.
  • a fingerprint identification device which is applied to an electronic device including a display screen, the display screen does not include a polarizer, and the fingerprint identification device includes: a linear polarizer array, including multiple groups of linear polarizers. Each group of linear polarizers in the multiple groups of linear polarizers includes at least two adjacent linear polarizers, and the polarization directions of the linear polarizers in each group of linear polarizers are different from each other; the pixel unit array is arranged on the linear polarizers.
  • the pixel unit array includes multiple groups of pixel units, and each group of pixel units in the multiple groups of pixel units includes at least two pixel units and corresponds to a group of linear polarizers in the linear polarizer array, so Each pixel unit in each group of pixel units is used to receive an optical signal, and the optical signal includes the first optical signal returned by the linearly polarized optical signal emitted by the light source through the surface of the finger above the display screen, and the first optical signal emitted by the light source.
  • the linearly polarized light signal passes through the second light signal returned inside the finger above the display screen and the ambient light signal, and the pixel values of at least two pixel units in each group of pixel units are used to obtain a fingerprint image.
  • each group of linear polarizers includes 2 linear polarizers.
  • the polarization directions of the two linear polarizers are perpendicular to each other, and the polarization direction of the first optical signal is parallel to the polarization direction of one of the two linear polarizers.
  • the at least one group of pixel units includes a first pixel unit group, and the first pixel unit group includes a pixel unit U and a pixel unit V, wherein the output signal of the pixel unit U and the The absolute value of the difference between the output signals of the pixel units V is used to determine the output signal LI OP of the first pixel unit group to the first optical signal, and the output signal LI OP of the first optical signal is used to obtain the fingerprint image.
  • the output signal LI OP of the first optical signal is equal to the absolute value of the difference between the output signal of the pixel unit U and the output signal of the pixel unit V.
  • the second light signal and the ambient light signal are natural light signals
  • the output signal of the pixel unit U the output signal of the pixel unit V
  • the signal LI OP is used to determine the output signal LI ON of the first pixel unit group to the natural light signal.
  • the output signal LI ON of the natural light signal satisfies:
  • LI ON LI U +LI V -LI OP
  • LI U is the output signal of the pixel unit U
  • LI V is the output signal of the pixel unit V.
  • each group of linear polarizers includes 3 linear polarizers.
  • each group of linear polarizers includes 3 linear polarizers with a step of 60°.
  • the at least one group of pixel units includes a first pixel unit group, and the first pixel unit group includes a pixel unit X, a pixel unit Y, and a pixel unit Z, wherein the pixel units X, The absolute value of the difference between the output signals of at least two pixel units in the pixel unit Y and the pixel unit Z is used to determine the output signal LI OP of the first pixel unit group to the first optical signal, the The output signal LI OP of the first optical signal is used to acquire the fingerprint image.
  • the second light signal and the ambient light signal are natural light signals
  • the output signal LI OP of the first light signal is used to determine the output signal LI ON of the natural light signal by the first pixel unit group.
  • the output signal LI OP of the first optical signal is equal to the absolute value of the difference between the output signals of any two pixel units.
  • the output signal LI ON of the natural light signal satisfies:
  • LI X is the output signal of the pixel unit X
  • LI Y is the output signal of the pixel unit Y
  • LI Z is the output signal of the pixel unit Z.
  • the output signal LI OP of the first optical signal satisfies:
  • LI XY is the difference between the output signal of the pixel unit X and the output signal of the pixel unit Y
  • LI YZ is the difference between the output signal of the pixel unit Y and the output signal of the pixel unit Z
  • LI ZX is the difference between the output signal of the pixel unit Z and the output signal of the pixel unit X.
  • the output signal LI ON of the natural light signal satisfies:
  • LI X is the output signal of the pixel unit X
  • LI Y is the output signal of the pixel unit Y
  • LI Z is the output signal of the pixel unit Z.
  • the output signal LI OP of the first optical signal satisfies:
  • LI XY is the difference between the output signal of the pixel unit X and the output signal of the pixel unit Y
  • LI YZ is the difference between the output signal of the pixel unit Y and the output signal of the pixel unit Z
  • LI ZX is the difference between the output signal of the pixel unit Z and the output signal of the pixel unit X.
  • the output signal LI ON of the natural light signal satisfies:
  • LI X is the output signal of the pixel unit X
  • LI Y is the output signal of the pixel unit Y
  • LI Z is the output signal of the pixel unit Z.
  • each group of linear polarizers includes 4 linear polarizers.
  • each group of linear polarizers includes 4 linear polarizers with a step of 45°.
  • the at least one group of pixel units includes a first pixel unit group, and the first pixel unit group includes pixel unit A, pixel unit B, pixel unit C, and pixel unit D, wherein the The absolute value of the difference between the output signals of at least two pixel units in pixel unit A, pixel unit B, pixel unit C, and pixel unit D is used to determine the effect of the first pixel unit group on the first optical signal
  • the output signal LI OP of the first optical signal is used to obtain the fingerprint image.
  • the polarization direction of the polarizer corresponding to the pixel unit A is perpendicular to the polarization direction of the polarizer corresponding to the pixel unit C, and the polarization direction of the polarizer corresponding to the pixel unit B is the same as the polarization direction of the polarizer corresponding to the pixel unit B.
  • the polarization direction of the polarizer corresponding to the pixel unit D is vertical.
  • the second light signal and the ambient light signal are natural light signals
  • the output signal of the pixel unit A, the output signal of the pixel unit B, and the output signal of the pixel unit C , the output signal of the pixel unit D and the output signal LI OP of the first light signal are used to determine the output signal LI ON of the natural light signal by the first pixel unit group.
  • the pixel value LI OP is equal to the absolute value of the difference between the output signal of the pixel unit A and the output signal of the pixel unit C; or
  • the output signal LI OP of the first optical signal is equal to the absolute value of the difference between the output signal of the pixel unit B and the output signal of the pixel unit D.
  • the output signal LI OP of the first optical signal satisfies:
  • LI AC is the difference between the output signal of the pixel unit A and the output signal of the pixel unit C
  • LI BD is the difference between the output signal of the pixel unit B and the output signal of the pixel unit D difference value.
  • the output signal LI ON of the natural light signal satisfies:
  • LI ON LI A +LI B +LI C +LI D -LI OP
  • LIA is the output signal of the pixel unit A
  • LIB is the output signal of the pixel unit B
  • LIC is the output signal of the pixel unit C
  • LID is the output signal of the pixel unit D.
  • the output signal LI OP of the first optical signal satisfies:
  • LI AC is the difference between the output signal of the pixel unit A and the output signal of the pixel unit C
  • LI BD is the difference between the output signal of the pixel unit B and the output signal of the pixel unit D difference value.
  • the output signal LI ON of the natural light signal satisfies:
  • LIA is the output signal of the pixel unit A
  • LIB is the output signal of the pixel unit B
  • LIC is the output signal of the pixel unit C
  • LID is the output signal of the pixel unit D.
  • the fingerprint identification device is arranged under the display screen or in the display screen.
  • the display screen includes a display pixel layer, and when the fingerprint identification device is used to be disposed in the display screen, the fingerprint identification device and the display pixel layer are disposed on the same layer.
  • the light sources are at least part of display pixels of the display screen.
  • the display screen is a micro light-emitting diode Micro-LED display screen, or the display screen is a mini light-emitting diode Mini-LED display screen.
  • the light source is an external light source, and the external light source is disposed below the display screen.
  • a display screen in a second aspect, is provided, the display screen does not include a polarizer, and the display screen includes: a display pixel layer and the fingerprint identification device in the first aspect and any possible implementation manner thereof, wherein the The display pixel layer and the fingerprint identification device are arranged on the same layer.
  • an electronic device comprising: a display screen and the fingerprint identification device in the first aspect and any possible implementation manner thereof, wherein the fingerprint identification device is provided below the display screen or in the display screen.
  • the fingerprint identification device under the condition that the display screen has no polarizer, the fingerprint identification device includes a linear polarizer array, and the light source emits a linearly polarized light signal, so that the first optical signal returned through the surface of the finger is a linearly polarized light signal, and passes through the interior of the finger.
  • the returned second light signal is a natural light signal
  • the ambient light signal is also a natural light signal, so that the first light signal returned through the surface of the finger and (the second light signal returned through the inside of the finger + the ambient light signal can be compared through the polarization difference ) are distinguished, so that the situation in which the second optical signal cancels the first optical signal can be avoided, thereby effectively enhancing the fingerprint signal quantity.
  • the above technical solution can also reduce the influence of the second light signal and ambient light signal returned through the inside of the finger on the fingerprint recognition, thereby further improving the fingerprint recognition performance.
  • FIG. 1 and FIG. 2 are schematic diagrams of the principle of the under-screen optical fingerprint recognition technology.
  • FIG. 3 is a schematic structural diagram of a display screen including a polarizer.
  • FIG. 4 is a schematic diagram of a fingerprint identification device according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a fingerprint identification device according to an embodiment of the present application being arranged in a display screen.
  • FIG. 6 is a schematic diagram of a fingerprint identification device including an additional light source according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a group of linear polarizers including a pixel unit array corresponding to two linear polarizers according to an embodiment of the present application.
  • FIG. 8 is a flowchart corresponding to FIG. 7 for determining the output signal of the first light signal and the output signal of the natural light signal.
  • FIG. 9 is a schematic view of an angle of the first optical signal corresponding to FIG. 7 .
  • FIG. 10 is a schematic diagram of a group of linear polarizers according to an embodiment of the present application including a pixel unit array corresponding to three linear polarizers.
  • FIG. 11 is a flowchart corresponding to FIG. 10 for determining the output signal of the first light signal and the output signal of the natural light signal.
  • FIG. 12 is a schematic view of an angle of the first optical signal corresponding to FIG. 10 .
  • 13 and 14 are flowcharts of determining the output signal of the first light signal and the output signal of the natural light signal corresponding to FIG. 10 .
  • FIG. 15 is a schematic diagram of a group of linear polarizers according to an embodiment of the present application including a pixel unit array corresponding to four linear polarizers.
  • FIG. 16 is a flowchart corresponding to FIG. 15 for determining the output signal of the first light signal and the output signal of the natural light signal.
  • FIG. 17 is a schematic view of the angle of the first optical signal corresponding to FIG. 15 .
  • FIG. 18 and 19 are flowcharts of determining the output signal of the first optical signal and the output signal of the natural light signal corresponding to FIG. 15 .
  • FIG. 20 is a schematic block diagram of an electronic device according to an embodiment of the present application.
  • FIG. 21 is a schematic block diagram of a display screen according to an embodiment of the present application.
  • fingerprint recognition technology is used in more and more electronic devices.
  • the under-display optical fingerprint recognition technology is the most widely used.
  • the light source can emit a light signal to the finger 110 above the fingerprint recognition area.
  • a part of the optical signal will propagate downward, which is called screen light leakage, and the other part of the optical signal will form a screen outgoing light signal upward, and the finger 110 will reflect the screen outgoing light signal to form a finger reflected light signal.
  • the finger reflected light signal can mainly be It is divided into two parts: the reflected light signal on the finger surface as shown in Figure 1 (for the convenience of description, called the reflected light signal) and the internal reflected light signal of the finger as shown in Figure 2 (for the convenience of description, called the transmitted light signal) .
  • the fingerprint ridge is closely attached to the display screen 120 and has a similar refractive index
  • the reflectivity of the optical signal on the optical path 2 is low, because there is air between the fingerprint valley and the display screen 120 , and The refractive index of the display screen 120 is greater than that of air, so the reflectivity of the optical signal on the optical path 1 is relatively high.
  • the reflectivity of the fingerprint ridge point a is The reflectivity of point b in the fingerprint valley
  • the reflectivity of point c in the fingerprint valley is 0.12%
  • the transmittance of the optical signal at the fingerprint ridges in FIG. 2 is high, while the transmittance of the optical signal at the fingerprint valleys is low.
  • the refractive index of the display screen 120 is 1.5
  • the refractive index of air is 1
  • the refractive index of the finger 110 is 1.4
  • the transmittance of the fingerprint ridge point a in FIG. 2 The transmittance of point b in the fingerprint valley
  • the transmittance of point c in the fingerprint valley Then the total transmittance of fingerprint ridges is 99.88%, and the total transmittance of fingerprint valleys is 93.33%. Therefore, the transmitted light signals of fingerprint ridges are more, so that bright lines can be formed, and the reflected light signals of fingerprint valleys are less, so that dark lines can be formed.
  • the reflected light signal of FIG. 1 or the transmitted light signal of FIG. 2 passes through the optical layer in the fingerprint identification device 130, it is received by the optical fingerprint sensor (also called optical fingerprint chip, sensor, sensor chip, chip, etc.) and converted into corresponding The electrical signal is the fingerprint identification signal. Based on the fingerprint identification signal, fingerprint image data can be obtained, and further fingerprint matching verification is performed, thereby realizing the optical fingerprint identification function in the electronic device.
  • the optical fingerprint sensor also called optical fingerprint chip, sensor, sensor chip, chip, etc.
  • Optical layers may include, but are not limited to, lenses, diaphragms, filters, and the like.
  • the lens can be used for converging light, for example, the reflected light signal reflected from the finger 110 shown in FIG. 1 can be condensed to the fingerprint sensor below it.
  • the diaphragm can be used to select light, and the filter can be used to filter out the light signal in the non-target band and pass the light signal in the target band.
  • the fingerprint identification device 130 may also be partially or fully integrated into the display screen 120 of the electronic device, thereby forming an in-display optical fingerprint system.
  • the light source mentioned above can be the display screen 120, that is, the display screen 120 is a display screen with a self-luminous display unit, such as an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display screen, a micro light-emitting diode (Micro-LED) Display or Mini Light Emitting Diode (Mini-LED) display.
  • the light source may also be an additional light source, that is, the optical fingerprint device 130 may use a built-in light source or an external light source to provide an optical signal for fingerprint identification.
  • the display screen 120 may be a non-self-luminous display screen, such as a liquid crystal display (Liquid Crystal Display, LCD) or other passive light-emitting display screens.
  • the display screen 120 may include a cover plate 1201, a linear polarizer (PL) 1202, a quarter-wave plate (Quarter-Wave Plate) 1203, a sealing substrate 1204, a display pixel layer 1205, a backplane 1206 and other structures, as shown in FIG. 3 shown.
  • the cover plate may be a glass cover plate or a sapphire cover plate, which is disposed on the uppermost part of the display screen 120 and covers the front surface of the electronic device. Therefore, in the embodiment of the present application, the so-called pressing of the finger 110 on the display screen 120 actually means that the finger 110 is pressed against the cover plate above the display screen 120 .
  • the display pixel layer can be used to emit light signals, the sealing substrate and the back plate are used to protect and support the display pixel layer, respectively, the linear polarizer and the 1/4 wave plate can be used to form a circular polarizer, and the circular polarizer is used to suppress the display screen. 120 reflections of ambient light.
  • Linear polarizers can convert ambient light or circularly polarized light into linearly polarized light, which allows optical signals whose vibration direction is parallel to their polarization direction to pass, while absorbing optical signals whose vibration direction is perpendicular to the polarization direction.
  • polarized light refers to the light wave whose vibration direction of the light vector does not change or has a certain regular change
  • linearly polarized light can refer to the light wave whose light vector only vibrates in one fixed direction
  • circularly polarized light refers to the two directions of the electric field vibration direction of the light wave. Polarized light with the same amplitude and 90° phase difference between the quadrature components.
  • the linear polarizer can be any optical device used to generate linearly polarized light.
  • the linear polarizer may be a thin layer formed of a material having a linear polarization function.
  • the linear polarizer can be composed of two sheets of optical glass sandwiching a tiny polarizing crystal (such as mica) with orientation effect.
  • the linear polarizer can also be replaced by a wire grid polarizer, which can consist of many parallel metal wires, placed in one plane.
  • a metal aluminum film is coated on a transparent grating with about 2160 bars per millimeter to form a transparent and reflective wire grid (ie, a wire grid polarizer).
  • the function of the wire grid polarizer is similar to that of the polarizer.
  • the wire grid polarizer can be a crystalline material with a fence-like structure, such as a polyethylene film or polyvinyl cyanide, which is sandwiched between two pieces of optical glass. The same light passes through the slit.
  • the ambient light may include light in various polarization directions, that is, the light signal entering the display screen 120 includes light signals in various polarization directions.
  • OLED displays also have shortcomings such as low brightness, short lifespan, low efficiency, slow response speed, and low density.
  • New displays such as Micro-LED display or Mini-LED display can solve the above shortcomings of OLED display, or will become the development direction of future display.
  • Micro-LED displays or Mini-LED displays do not have polarizers and laminates such as sealing plates, which can meet the terminal requirements of thinness and lightness.
  • the ambient light signal will affect the performance of fingerprint recognition.
  • the light intensity of the ambient light signal will also change, thereby affecting the effect of fingerprint recognition.
  • the reflected light signal at the fingerprint valley is stronger, so that the fingerprint image at the fingerprint valley is a white line, and the reflected light signal at the fingerprint ridge is weaker, thus The fingerprint image at the fingerprint ridge is a black line.
  • the transmitted light signal at the fingerprint valley is weak so that the fingerprint image at the fingerprint valley is a black line, and the transmitted light signal at the fingerprint ridge is strong, so the fingerprint image at the fingerprint ridge is a white line. Therefore, the reflected light signal and the transmitted light signal will partially cancel each other, that is, the transmitted light signal will affect the reflected light signal, thereby further affecting the fingerprint recognition performance.
  • an embodiment of the present application proposes a fingerprint identification device, which can distinguish the reflected light signal and the transmitted light signal + the ambient light signal through the polarization difference, which can effectively reduce the influence of the ambient light signal and the transmitted light signal on fingerprint identification, Thereby, the fingerprint recognition performance can be improved.
  • the fingerprint identification device in the embodiments of the present application may also be referred to as an optical fingerprint identification module, an optical fingerprint device, a fingerprint identification module, a fingerprint module, a fingerprint collection device, etc., and the above terms can be interchanged with each other.
  • FIG. 4 is a schematic structural diagram of a fingerprint identification device 200 according to an embodiment of the present application.
  • the fingerprint identification device 200 can be applied to an electronic device including a display screen, and the display screen does not include a polarizer. As shown in FIG. 4 , the fingerprint identification device 200 may include:
  • Linear polarizer array 210 includes multiple groups of linear polarizers, each group of linear polarizers in the multiple groups of linear polarizers includes at least two adjacent linear polarizers, and the polarization directions of the linear polarizers in each group of linear polarizers are different from each other;
  • the pixel unit array 220 is arranged below the linear polarizer array 210.
  • the pixel unit array 220 includes multiple groups of pixel units, and each group of pixel units in the multiple groups of pixel units includes at least two pixel units and is connected with one group in the linear polarizer array.
  • each pixel unit in each group of pixel units is used to receive an optical signal, and the optical signal may include the linearly polarized optical signal emitted by the light source and the first optical signal 2201 returned by the surface of the finger above the display screen.
  • the linearly polarized light signal passes through the second light signal 2202 and the ambient light signal 2203 returned by the inside of the finger above the display screen, and the pixel values of at least two pixel units in each group of pixel units are used to obtain a fingerprint image.
  • the first optical signal 2201 is a linearly polarized optical signal
  • the second optical signal 2202 and the ambient light signal 2203 are natural light signals (for convenience of description later, the second optical signal and the ambient light signal are collectively referred to as natural light signals).
  • the polarization directions of two adjacent linear polarizers in the linear polarizer array 210 may be different.
  • the linear polarizer described in the foregoing content may be an independent linear polarizer structure, or may be a linear polarizer film or other structures with a linear polarization function.
  • the pixel unit may use a photodiode (Photo Diode, PD), a metal oxide semiconductor field effect transistor (Metal Oxide Semiconductor Field Effect Transistor, MOSFET) and other devices.
  • PD Photo Diode
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the fingerprint identification device under the condition that the display screen does not have a polarizer, the fingerprint identification device includes a linear polarizer array, and the light source emits a linearly polarized light signal, so that the first optical signal returned through the surface of the finger is a linearly polarized light signal.
  • the second light signal returned inside the finger is a natural light signal
  • the ambient light signal is also a natural light signal, so that the first light signal returned through the surface of the finger can be distinguished from the natural light signal through the polarization difference, so that the second light signal can be avoided.
  • the first optical signal is canceled, so that the fingerprint signal amount can be effectively enhanced.
  • the embodiments of the present application can also reduce the influence of natural light signals on fingerprint recognition, thereby further improving fingerprint recognition performance.
  • the display screen 120 includes a cover plate 1201 , a surface optical layer 1207 , a display pixel layer 1205 , a back plate 1206 and other structures from top to bottom, without a linear polarizer and a quarter wave plate.
  • the surface optical layer 1207 can be used to protect the display pixel layer 1205, and can be used for anti-glare
  • the display pixel layer 1205 includes a display pixel array formed by a plurality of display pixels, and the display pixels can provide light sources for displaying images.
  • the fingerprint identification device 200 in FIG. 4 is disposed below the display screen 120 .
  • the fingerprint identification device 200 may also be disposed in the display screen 120 .
  • the fingerprint identification device 200 is arranged in the display screen 120 .
  • the display screen 120 may include structures such as a cover plate 1201 , a surface optical layer 1207 , a display pixel layer 1205 and a back plate 1206 , etc. , may also include a photosensitive layer 1208, and the photosensitive layer 1208 may include structures such as the fingerprint identification device 200, an optical layer, and a driving circuit.
  • the photosensitive layer 1208 can be disposed above the display pixel layer 1205, and this disposition can reduce the interference of other optical signals (eg, light leakage).
  • other optical signals eg, light leakage
  • the photosensitive layer 1208 can be disposed on the same layer as the display pixel layer 1205 , so that the driving circuit of the display screen 120 and the driving circuit of the fingerprint identification device 200 can be fabricated together, thereby reducing the manufacturing complexity of the display screen 120 Spend.
  • a light blocking layer may be arranged around the pixel unit array 220 or other structures to block the interference of other optical signals.
  • the photosensitive layer 1208 may also be disposed below the display pixel layer 1205 .
  • the light source of the fingerprint identification device 200 shown in FIGS. 4 and 5 is at least part of the display pixels of the display screen 120, that is, the display screen 120 is a display screen with self-illuminating display pixels (display units), and the display screen 120 can emit linearly polarized light Signal.
  • the display screen 120 may be a Micro-LED display screen or a Mini-LED display screen.
  • the light source may also be an external light source 230, and the external light source 230 may emit a linearly polarized light signal.
  • the external light source 230 may be, but is not limited to, an infrared LED light.
  • the external light source 230 may be disposed below the display screen 120 and may be disposed separately from the fingerprint identification device 200 .
  • the embodiments of the present application do not specifically limit the implementation manner of the light source to emit the linearly polarized light signal, and any implementation manner that enables the light source to emit the linearly polarized light signal can be included within the scope of the embodiments of the present application.
  • the angle of the linearly polarized light signal may be preset.
  • the linear polarizer array 210 may be disposed at any position in the optical path between the display screen 120 and the pixel unit array 220 .
  • the linear polarizer array 210 may be disposed on the lower surface of the display screen 120 .
  • the linear polarizer array 210 may be disposed between the display screen 120 and the pixel unit array 220 by a fixing device, and the fixing device may include but not limited to a bracket, an adhesive layer, and the like.
  • the linear polarizer array 210 can also be integrated in the chip of the optical fingerprint sensor together with the pixel unit array 220 .
  • the linear polarizer array 210 may be formed by coating on the pixel unit array 220 by an evaporation process.
  • the polarizing film was prepared above.
  • a complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS) process can also be used to prepare a plurality of metal wire grid micropolarizers on the pixel unit array 220 as polarization units, and the structure of the metal wire grid micropolarizers is periodic A wire grid array, wherein the width and spacing of the wire grids are tens to hundreds of nanometers.
  • CMOS complementary metal oxide semiconductor
  • the linear polarizer array 210 includes a first linear polarizer group 211
  • the pixel unit array 220 includes a first pixel unit group 221
  • the linear polarizer group 211 corresponds to the pixel unit group 221
  • the linear polarizer group 211 includes Two linear polarizers, the polarization directions of the two linear polarizers are different
  • the pixel unit group 221 includes two pixel units.
  • each group of linear polarizers may also include 3 linear polarizers, and the polarization directions of the three linear polarizers are different, and each group of pixel units may also include 3 pixel units; or, each group of linear polarizers may also include It includes 4 linear polarizers and each group of pixel units may also include 4 pixel units, etc.
  • the number of linear polarizers included in different groups of linear polarizers in the linear polarizer array 210 may be the same or different.
  • the number of linear polarizers included in each group of linear polarizers may be two.
  • the linear polarizer group 211 includes 2 linear polarizers, and the other linear polarizer groups include 3 or 4 linear polarizers.
  • the number of pixel units included in different groups of pixel units in the pixel unit array 220 may be the same or different.
  • the absolute value of the difference between the output signals of at least two pixel units in each group of pixel units may be used to determine the output signal of the group of pixel units for the first optical signal, wherein , the output signal of the first optical signal is used to acquire the fingerprint image.
  • the output signals of the pixel units in each group of pixel units and the output signals of the pixel units of the group to the first light signal may also be used to determine the output signal of the natural light signal.
  • the output signal of the pixel unit has a linear relationship with the illuminance of the pixel unit. Specifically, the output signal of the pixel unit is proportional to the illuminance of the pixel unit.
  • Embodiment 1 Each group of linear polarizers includes 2 linear polarizers
  • the polarization directions of the two linear polarizers may be at any angle, and optionally, the polarization directions of the two linear polarizers may be perpendicular to each other.
  • FIG. 7 shows a top view of the pixel unit array 220. It can be seen from FIG. 7 that one of the linear polarizers in a group of linear polarizers corresponding to a group of pixel units has a polarization direction of 0°, and the other linear polarizer has a polarization direction of 0°.
  • the polarization direction of the sheet is 90°.
  • the absolute value of the difference between the output signals of two pixel units in a group of pixel units can be used to determine the output signal of the group of pixel units for the first optical signal, and the The output signals of the two pixel units and the output signal of the first light signal may be used to determine the output signal of the group of pixel units for the natural light signal.
  • the pixel unit group 221 includes a pixel unit U and a pixel unit V, and the light signals received by the pixel unit U and the pixel unit V include a first light signal and a natural light signal.
  • the respective output signals LI U and LI V of the adjacent pixel units U and V can be obtained first, and then, the output signals LI U of the pixel unit U and the output signals LI V of the pixel unit V can be obtained.
  • difference, the difference value or the absolute value of the difference value may be the output signal LI OP of the first optical signal.
  • the output signal LI ON of the natural light signal can also be determined according to the output signal LI U of the pixel unit U, the output signal LI V of the pixel unit V, and the output signal LI OP of the first light signal.
  • LION LI U +LI V -LI OP .
  • the noise signal of the first optical signal and the noise signal of the natural optical signal are also calculated in this embodiment of the present application.
  • the angle of the first optical signal is ⁇ , ⁇ [0, ⁇ ]
  • the output signal is LI P
  • the photon noise is NP
  • the output signal of the natural optical signal is LI N
  • the photon noise is NN .
  • the output signal LI U and the photon noise NU of the pixel unit U are respectively:
  • the output signal LI V and the photon noise NV of the pixel unit V are respectively:
  • the output signal LI U+V of the pixel unit group 211 and the noise signal N U+V of the pixel unit group 211 can be obtained:
  • the difference between the pixel value of the pixel unit U and the pixel value of the pixel unit V can eliminate the natural light signal and leave the first light signal.
  • the output signal LI OP and the noise signal N OP of the first optical signal may be respectively:
  • the output signal LI OP of the first optical signal may also be the value of the output signal LI V of the pixel unit V minus the output signal LI U of the pixel unit U.
  • the output signal LI ON and the noise signal N ON of the natural light signal can be respectively:
  • each group of linear polarizers includes 3 linear polarizers
  • FIG. 10 shows a top view of the pixel unit array 220. It can be seen from FIG. 10 that a group of linear polarizations corresponding to a group of pixel units
  • the plate may comprise a linear polarizer with a 60° step.
  • a set of linear polarizers may include 3 linear polarizers with polarization directions of 0°, 60° and 120°, respectively.
  • the absolute value of the difference between the output signals of at least two pixel units in a group of pixel units may be used to determine the output signal of the group of pixel units for the first optical signal.
  • the output signal of each pixel unit in a group of pixel units and the output signal of the group of pixel units to the first light signal may be used to determine the output signal of the natural light signal.
  • the pixel unit group 221 includes a pixel unit X, a pixel unit Y, and a pixel unit Z.
  • the absolute value of the difference between the output signals of any two pixel units in the pixel unit group 221 may be used as the output signal LI OP of the first optical signal.
  • the output signal LI X of the pixel unit X, the output signal LI Y of the pixel unit Y, the output signal LI Z of the pixel unit Z and the output signal LI OP of the first light signal can also be used to determine the output signal LI ON of the natural light signal .
  • the output signal LI X of the adjacent pixel unit X, the output signal LI Y of the pixel unit Y, and the output signal LI Z of the pixel unit Z may be obtained first, and then the output signal of the pixel unit X may be obtained.
  • a difference is made between the signal LI X and the output signal LI Y of the pixel unit Y, and the absolute value of the difference is taken, and the absolute value of the difference may be the output signal LI OP of the first optical signal.
  • the output signal LI of the natural light signal can also be determined according to the output signal LI X of the pixel unit X, the output signal LI Y of the pixel unit Y, the output signal LI Z of the pixel unit Z and the output signal LI OP of the first light signal. ON . in,
  • the angle of the first optical signal is ⁇ , ⁇ [0, ⁇ ]
  • the output signal is LI P
  • the photon noise is NP
  • the output signal of the natural optical signal is LI N
  • the photon noise is N N .
  • the output signal LI X and the photon noise N X of the pixel unit X are respectively:
  • the output signal LI Y and the photon noise NY of the pixel unit Y are respectively:
  • the output signal LI Z and the photon noise N Z of the pixel unit Z are respectively:
  • the pixel value of the pixel unit X, the pixel value of the pixel unit Y and the pixel value of the pixel unit Z are summed and divided by 3/2, the output signal LI X+Y+Z and the noise signal N X+ of the pixel unit group 211 can be obtained.
  • Y+Z :
  • the difference LI XY between the output signal LI X of the pixel unit X and the output signal LI Y of the pixel unit Y is taken as the output signal LI OP of the first optical signal, and the optical quantum noise N X of the pixel unit X and the pixel unit Y
  • the difference N XY between the optical quantum noise N Y is taken as the noise signal N OP of the first optical signal, namely:
  • the output signal LI ON and the noise signal N ON of the natural light signal can be respectively:
  • the difference LI YZ between the output signal LI Y of the pixel unit Y and the output signal LI Z of the pixel unit Z can also be used as the output signal LI OP of the first optical signal, the optical quantum noise NY of the pixel unit Y and the pixel unit
  • the difference NYZ between the optical quantum noise NZ of Z is also used as the noise signal N OP of the first optical signal; or, the difference LI between the output signal LI Z of the pixel unit Z and the output signal LI X of the pixel unit X ZX can also be used as the output signal LI OP of the first optical signal, and the difference N ZX between the optical quantum noise N Z of the pixel unit Z and the optical quantum noise N X of the pixel unit X is also used as the noise signal N OP of the first optical signal.
  • the difference between the output signals of three pairs of pixel units in the pixel unit group 221 may be used to determine the output signal LI OP of the first optical signal.
  • the squares of LI XY , LI YZ and LI ZX can be added and then squared, so that the output signal LI OP of the first optical signal can be obtained:
  • N XY , N YZ and N ZX can be added and then squared to obtain the noise signal N OP of the first optical signal:
  • the output signal LI ON and the noise signal N ON of the natural light signal can be respectively:
  • the absolute values of LI XY , LI YZ and LI ZX may be respectively taken and then added together to obtain the output signal LI OP of the first optical signal:
  • N XY , N YZ and N ZX can be added and then squared to obtain the noise signal N OP of the first optical signal:
  • the output signal LI ON and the noise signal N ON of the natural light signal can be respectively:
  • Embodiment 3 Each group of linear polarizers includes 4 linear polarizers
  • FIG. 15 shows a top view of the pixel unit array 220. It can be seen from FIG. 15 that a group of linear polarizations corresponding to a group of pixel units Plates may include linear polarizers with a 45° step. Exemplarily, a set of linear polarizers may include 4 linear polarizers with polarization directions of 0°, 45°, 90°, and 135°, respectively.
  • the absolute value of the difference between the output signals of at least two pixel units in a group of pixel units may be used to determine the output signal of the group of pixel units for the processed first optical signal.
  • the output signal of each pixel unit in a group of pixel units and the output signal of the group of pixel units to the first light signal may be used to determine the output signal of the natural light signal.
  • the pixel unit group 221 includes a pixel unit A, a pixel unit B, a pixel unit C, and a pixel unit D.
  • the polarization direction of the linear polarizer corresponding to the pixel unit A is perpendicular to the polarization direction of the linear polarizer corresponding to the pixel unit C
  • the polarization direction of the linear polarizer corresponding to the pixel unit B is the polarization direction of the linear polarizer corresponding to the pixel unit D. vertical.
  • the polarization direction of the polarizer corresponding to pixel unit A is 0°
  • the polarization direction of the polarizer corresponding to pixel unit B is 45°
  • the polarization direction of the polarizer corresponding to pixel unit C is 90°
  • the polarization direction corresponding to pixel unit D The polarization direction of the sheet is 135°.
  • the polarization directions of the respective linear polarizers corresponding to the pixel unit A, the pixel unit B, the pixel unit C, and the pixel unit D are not limited to this example.
  • the arrangement of the pixel units shown in FIG. 15 is only an example, and should not constitute a limitation to the embodiments of the present application.
  • the pixel unit A and the pixel unit C may also be arranged adjacently, and the pixel unit C may be arranged at the position of the pixel unit D or the position of the pixel unit B shown in FIG. 15 .
  • the absolute value of the difference between the output signals of any two pixel units in the pixel unit group 221 may be used as the output signal LI OP of the first optical signal.
  • the output signal LI A of the adjacent pixel unit A, the output signal LI B of the pixel unit B , the output signal LI C of the pixel unit C, and the output signal LI of the pixel unit D may be obtained first.
  • D make a difference between the output signal LI A of the pixel unit A and the output signal LI B of the pixel unit B, and take the absolute value of the difference, then the absolute value of the difference can be the output signal LI OP of the first optical signal.
  • the output signal LI A of the pixel unit A the output signal LI B of the pixel unit B, the output signal LI C of the pixel unit C, the output signal LI D of the pixel unit D and the output signal LI of the first optical signal OP , which determines the output signal LI ON of the natural light signal.
  • LI ON LI A +LI B +LI C +LI D -LI OP .
  • the absolute value of the difference may be LI OP .
  • the output signal LI A and the photon noise NA of the pixel unit A are respectively:
  • the output signal LI B and the photon noise NB of the pixel unit B are respectively:
  • the output signal L D and the photon noise N D of the pixel unit D are respectively:
  • the pixel value of the pixel unit A and the pixel value of the pixel unit C are respectively made difference, and the output signal LI AC and the noise signal N AC can be obtained:
  • the difference between the pixel value of the pixel unit B and the pixel value of the pixel unit D, respectively, can obtain the output signal LI BD and the noise signal N BD :
  • the pixel value of the pixel unit A, the pixel value of the pixel unit B, the pixel value of the pixel unit C and the pixel value of the pixel unit D are summed and divided by 2, the output signal LI A+B+C+ of the pixel unit group 211 can be obtained.
  • D and noise signal N A+B+C+D are noise signal N A+B+C+D :
  • the difference LI AC between the output signal LI A of the pixel unit A and the output signal LI C of the pixel unit C is taken as the output signal LI OP of the first optical signal, and the photon quantum noise NA of the pixel unit A and the pixel unit C
  • the difference N AC between the optical quantum noise N C is taken as the noise signal N OP of the first optical signal, namely:
  • the output signal LI ON and the noise signal N ON of the natural light signal can be respectively:
  • the output signal LI ON and the noise signal N ON of the natural light signal can be respectively:
  • the output signal LI ON and the noise signal N ON of the natural light signal can be respectively:
  • the difference LI BD between the output signal LI B of the pixel unit B and the output signal LI D of the pixel unit D can also be used as the output signal LI OP of the first optical signal, the optical quantum noise NB of the pixel unit B and the pixel unit
  • the difference N BD between the optical quantum noise ND of D also serves as the noise signal N OP of the first optical signal.
  • the difference between the output signals of any two pairs of pixel units may be used to determine the output signal LI OP of the first optical signal.
  • the difference LI AC between the output signal LI A of pixel unit A and the output signal LI C of pixel unit C, and the difference between the output signal LI B of pixel unit B and the output signal LI D of pixel unit D LI BD may be used to determine the output signal LI OP of the first optical signal.
  • the square sum of LI AC and LI BD can be squared to obtain the output signal LI OP of the first optical signal:
  • the noise signal N OP of the first optical signal can be obtained by taking the square root of the sum of the squares of N AC and N BD :
  • the output signal LI ON and the noise signal N ON of the natural light signal can be respectively:
  • the absolute values of LI AC and LI BD can be respectively taken and then added together to obtain the output signal LI OP of the first optical signal:
  • N AC and N BD can be squared to obtain the noise signal N OP of the first optical signal:
  • the output signal LI ON and the noise signal N ON of the natural light signal can be respectively:
  • each group of linear polarizers includes 2 linear polarizers, 3 linear polarizers and 4 linear polarizers, the output signal LI OP of the first optical signal and the noise signal of the first optical signal are obtained.
  • the application of different polarizers described in the above content will be compared with a period of 12 pixel units.
  • the output signal of each pixel unit is (LI P +LI N ), and the output noise signal is Taking the average of the pixel values of the 12 pixel units, it can be seen that the average output signal of each pixel unit remains unchanged, and the average output noise is
  • the fingerprint identification device 200 does not include the linear polarizer array 210, the first optical signal and the natural optical signal cannot be distinguished.
  • the 12 pixel units can be divided into 6 groups.
  • the output signal LI OP LI P *cos(2 ⁇ ) of each group of pixel units to the processed first optical signal, the noise signal After the output signals of the first optical signals of 6 groups of adjacent pixel unit groups are averaged, the average output signal LI OP ' and the average noise signal N OP ' of the first optical signal are respectively:
  • the output signal LI ON LI N of each group of pixel units to the processed natural light signal, the noise signal After the output signals of the natural light signals of 6 groups of adjacent pixel unit groups are averaged, the average output signal LI ON ' and the average noise signal N ON ' of the natural light signal are respectively:
  • each group of linear polarizers includes 3 linear polarizers whose polarization directions are perpendicular to each other, the 12 pixel units can be divided into 4 groups.
  • the 12 pixel units can be divided into three groups.
  • Table 1 shows the parameter comparison of the first optical signal under different linear polarizer applications
  • Table 2 shows the parameter comparison of the natural light signal under different linear polarizer applications.
  • the bidirectional linear polarizers in Table 1 and Table 2 indicate that a group of linear polarizers includes 2 linear polarizers, the three-directional linear polarizers include a group of linear polarizers including 3 linear polarizers, and the four-directional linear polarizers include 3 linear polarizers.
  • Including a set of linear polarizers includes 4 linear polarizers.
  • insensitive in the polarization direction sensitive in Table 1 means that the output signal of the first optical signal has nothing to do with ⁇ .
  • the output signal of the first optical signal It can be seen that the output signal LI OP of the first optical signal is independent of ⁇ .
  • the "strong sensitivity" in the polarization direction sensitivity in Table 1 indicates that the output signal of the first optical signal is related to ⁇ , and the signal-to-noise ratio may drop to 0.
  • the output signal of the first optical signal LI OP LI P *cos(2 ⁇ )
  • LI OP 0, and the signal-to-noise ratio is 0.
  • the "weak sensitivity" in the polarization direction sensitivity in Table 1 indicates that the output signal of the first optical signal is related to ⁇ , and the signal-to-noise ratio will not drop too much, that is, the signal-to-noise ratio will not drop to 0.
  • the arrangement of the linear polarizer array 210 in the fingerprint identification device 200 can eliminate the influence of natural light signals on the fingerprint identification performance.
  • the fingerprint identification device 200 may further include a processing unit 240, and the processing unit 240 may be configured to determine the output signal LI OP of the first optical signal and the noise signal of the first optical signal. N OP , the output signal LI ON of the natural light signal, and the noise signal N ON of the natural light signal.
  • the processing unit 240 may be a central processing unit (Central Processing Unit, CPU), and the processing unit 240 may also be other general-purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), off-the-shelf programmable gate arrays ( FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the fingerprint identification device 200 may further include: an optical component disposed between the display screen 120 and the pixel unit array 220 , used for when the object to be identified presses the fingerprint identification area of the display screen 120 The optical signals are directed or focused to the pixel cell array 220 .
  • the optical assembly may include at least one stop layer and a microlens array.
  • At least one aperture layer is provided with a plurality of light-passing holes
  • the microlens array is disposed above the at least one aperture layer, and is used to transmit the first optical signal, the second optical signal and the
  • the ambient light signal is collected to a plurality of light-passing holes in at least one diaphragm layer, and the first light signal, the second light signal, and the ambient light signal are transmitted to the pixel unit array 220 through the plurality of light-passing holes in the at least one diaphragm layer.
  • the at least one diaphragm layer can be grown over the pixel unit array 220 by semiconductor process growth or other processes, for example, prepared over the pixel unit array 220 by atomic layer deposition, sputtering coating, electron beam evaporation coating, ion beam coating, etc.
  • a layer of non-light-transmitting material film is then subjected to photolithography and etching of the pinhole pattern to form a plurality of light-transmitting pinholes.
  • the at least one diaphragm layer can block optical interference between adjacent microlenses, so that the optical signals corresponding to the pixel units are collected into the light-passing holes through the microlenses and transmitted to the pixels through the light-passing holes unit for optical fingerprint imaging.
  • the microlens array is formed of a plurality of microlenses, which may be formed over at least one aperture layer by a semiconductor growth process or other processes, and each microlens may correspond to one of the pixel units of the pixel unit array 220 , respectively.
  • optical component may be disposed at any position in the optical path between the display screen 120 and the pixel unit array 220 , for example, between the pixel unit array 220 and the linear polarizer array 210 .
  • the embodiment of the present application further provides an electronic device.
  • the electronic device 300 may include a display screen 310 and a fingerprint identification device 320 .
  • the fingerprint identification device 320 may be the fingerprint identification device in the foregoing embodiments, and is disposed below the display screen 310 or in the display screen 310 .
  • the display screen 310 may be a non-folding display screen or a foldable display screen, that is, a flexible display screen.
  • the electronic device in the embodiments of the present application may be a portable or mobile computing device such as a terminal device, a mobile phone, a tablet computer, a notebook computer, a desktop computer, a game device, a vehicle-mounted electronic device, or a wearable smart device, and Electronic databases, automobiles, bank ATMs (Automated Teller Machine, ATM) and other electronic devices.
  • the wearable smart device includes full functions, large size, and can realize complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones. Use, such as various types of smart bracelets, smart jewelry and other equipment for physical monitoring.
  • the electronic device 300 may further include a circuit board, and the circuit board is disposed below the fingerprint identification device 320 .
  • the fingerprint identification device 320 can be adhered to the circuit board through adhesive, and can be electrically connected to the circuit board through soldering pads and metal wires.
  • the fingerprint identification device 320 can realize electrical interconnection and signal transmission with other peripheral circuits or other elements of the electronic device 300 through the circuit board.
  • the fingerprint identification device 320 can receive the control signal of the processing unit of the electronic device 300 through the circuit board, and can also output the fingerprint detection signal from the fingerprint identification device 320 to the processing unit or the control unit of the terminal device through the circuit board.
  • the display screen 400 may include a display pixel layer 410 and a fingerprint identification device 420 , and the fingerprint identification device 420 may be the fingerprint identification device in the foregoing embodiments.
  • the display pixel layer 410 may include a display pixel array formed of a plurality of display pixels.
  • the display screen 400 can emit linearly polarized light, that is, the display pixels can emit linearly polarized light, and at least part of the display pixels of the display screen 400 can be used as the light source of the fingerprint identification device 420 for fingerprint identification.
  • the fingerprint identification device 420 may be disposed above or below the display pixel layer 410 , or the fingerprint identification device 420 and the display pixel layer 410 may be disposed in the same layer.
  • the display screen 400 may further include a cover plate, a surface optical layer and a back plate.
  • a cover plate for the specific arrangement of the cover plate, the surface optical layer and the back plate in the display screen 400, reference may be made to FIG. 5, which is not repeated here for brevity of the content.
  • the disclosed systems and apparatuses may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solutions of the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solutions of the present application are essentially or part of contributions to the prior art, or all or part of the technical solutions can be embodied in the form of software products, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种指纹识别装置(200)、显示屏(400)和电子设备(300),可以有效提高指纹识别的功能。该一种指纹识别装置(200),应用于包括显示屏的电子设备,所述显示屏不包括偏振片,所述指纹识别装置包括:线偏振片阵列(210),包括多组线偏振片(211),所述多组线偏振片(211)中的每组线偏振片(211)包括至少两个相邻的线偏振片,所述每组线偏振片中线偏振片的偏振方向彼此不同;像素单元阵列(220),设置于所述线偏振片下方,所述像素单元阵列(220)包括多组像素单元(221),所述多组像素单元中的每组像素单元(221)包括至少两个像素单元且与所述线偏振片阵列中的一组线偏振片(211)对应,所述每组像素单元(221)中的每个像素单元用于接收光信号,所述光信号包括光源发出的线偏振光信号经过所述显示屏上方的手指表面返回的第一光信号(2201)、所述光源发出的线偏振光信号经过所述显示屏上方的手指内部返回的第二光信号(2202)以及环境光信号(2203),所述每组像素单元(221)中至少两个像素单元的像素值用于获取指纹图像。

Description

指纹识别装置、显示屏和电子设备 技术领域
本申请实施例涉及指纹识别技术领域,并且更具体地,涉及一种指纹识别装置、显示屏和电子设备。
背景技术
随着全面屏手机时代的到来,设置在屏下或屏内的指纹识别装置在手机等终端设备中的应用也得到广泛发展。在指纹识别过程中,指纹识别装置除了可以接收经过手指表面反射的带有指纹信息的指纹光信号以外,还会接收经过手指内部反射的光信号和环境光信号,指内部反射的光信号和环境光信号可能会影响指纹识别性能。
因此,如何避免指内部反射的光信号和环境光信号对指纹识别的影响,以提高指纹识别性能,是一项亟待解决的问题。
发明内容
本申请实施例提供一种指纹识别装置、显示屏和电子设备,可以有效提高指纹识别的性能。
第一方面,提供了一种指纹识别装置,应用于包括显示屏的电子设备,所述显示屏不包括偏振片,所述指纹识别装置包括:线偏振片阵列,包括多组线偏振片,所述多组线偏振片中的每组线偏振片包括至少两个相邻的线偏振片,所述每组线偏振片中线偏振片的偏振方向彼此不同;像素单元阵列,设置于所述线偏振片下方,所述像素单元阵列包括多组像素单元,所述多组像素单元中的每组像素单元包括至少两个像素单元且与所述线偏振片阵列中的一组线偏振片对应,所述每组像素单元中的每个像素单元用于接收光信号,所述光信号包括光源发出的线偏振光信号经过所述显示屏上方的手指表面返回的第一光信号、所述光源发出的线偏振光信号经过所述显示屏上方的手指内部返回的第二光信号以及环境光信号,所述每组像素单元中至少两个像素单元的像素值用于获取指纹图像。
在一些可能的实施例中,所述每组线偏振片包括2个线偏振片。
在一些可能的实施例中,所述2个线偏振片的偏振方向互相垂直,且所 述第一光信号的偏振方向与所述2个线偏振片中的一个线偏振片的偏振方向平行。
在一些可能的实施例中,所述至少一组像素单元包括第一像素单元组,所述第一像素单元组包括像素单元U和像素单元V,其中,所述像素单元U的输出信号和所述像素单元V的输出信号之间的差值的绝对值用于确定所述第一像素单元组对所述第一光信号的输出信号LI OP,所述第一光信号的输出信号LI OP用于获取所述指纹图像。
在一些可能的实施例中,所述第一光信号的输出信号LI OP等于所述像素单元U的输出信号和所述像素单元V的输出信号之间的差值的绝对值。
在一些可能的实施例中,所述第二光信号和所述环境光信号为自然光信号,所述像素单元U的输出信号、所述像素单元V的输出信号以及所述第一光信号的输出信号LI OP用于确定所述第一像素单元组对所述自然光信号的输出信号LI ON
在一些可能的实施例中,所述自然光信号的输出信号LI ON满足:
LI ON=LI U+LI V-LI OP
其中,LI U为所述像素单元U的输出信号,LI V为所述像素单元V的输出信号。
在一些可能的实施例中,所述每组线偏振片包括3个线偏振片。
在一些可能的实施例中,所述每组线偏振片包括3个步进为60°的线偏振片。
在一些可能的实施例中,所述至少一组像素单元包括第一像素单元组,所述第一像素单元组包括像素单元X、像素单元Y和像素单元Z,其中,所述像素单元X、像素单元Y和像素单元Z中的至少两个像素单元的输出信号之间的差值的绝对值用于确定所述第一像素单元组对所述第一光信号的输出信号LI OP,所述第一光信号的输出信号LI OP用于获取所述指纹图像。
在一些可能的实施例中,所述第二光信号和所述环境光信号为自然光信号,所述像素单元X的输出信号、所述像素单元Y的输出信号、所述像素单元Z的输出信号以及所述第一光信号的输出信号LI OP用于确定所述第一像素单元组对所述自然光信号的输出信号LI ON
在一些可能的实施例中,所述第一光信号的输出信号LI OP等于任意两个像素单元的输出信号之间的差值的绝对值。
在一些可能的实施例中,所述自然光信号的输出信号LI ON满足:
Figure PCTCN2020138727-appb-000001
其中,LI X为所述像素单元X的输出信号,LI Y为所述像素单元Y的输出信号,LI Z为所述像素单元Z的输出信号。
在一些可能的实施例中,所述第一光信号的输出信号LI OP满足:
Figure PCTCN2020138727-appb-000002
其中,LI X-Y为所述像素单元X的输出信号和所述像素单元Y的输出信号之间的差值,LI Y-Z为所述像素单元Y的输出信号和所述像素单元Z的输出信号之间的差值,LI Z-X为所述像素单元Z的输出信号和所述像素单元X的输出信号之间的差值。
在一些可能的实施例中,所述自然光信号的输出信号LI ON满足:
Figure PCTCN2020138727-appb-000003
其中,LI X为所述像素单元X的输出信号,LI Y为所述像素单元Y的输出信号,LI Z为所述像素单元Z的输出信号。
在一些可能的实施例中,所述第一光信号的输出信号LI OP满足:
LI OP=|LI X-Y|+|LI Y-Z|+|LI Z-X|
其中,LI X-Y为所述像素单元X的输出信号和所述像素单元Y的输出信号之间的差值,LI Y-Z为所述像素单元Y的输出信号和所述像素单元Z的输出信号之间的差值,LI Z-X为所述像素单元Z的输出信号和所述像素单元X的输出信号之间的差值。
在一些可能的实施例中,所述自然光信号的输出信号LI ON满足:
Figure PCTCN2020138727-appb-000004
其中,LI X为所述像素单元X的输出信号,LI Y为所述像素单元Y的输出信号,LI Z为所述像素单元Z的输出信号。
在一些可能的实施例中,所述每组线偏振片包括4个线偏振片。
在一些可能的实施例中,所述每组线偏振片包括4个步进为45°的线偏振片。
在一些可能的实施例中,所述至少一组像素单元包括第一像素单元组,所述第一像素单元组包括像素单元A、像素单元B、像素单元C和像素单元 D,其中,所述像素单元A、像素单元B、像素单元C和像素单元D中的至少两个像素单元的输出信号之间的差值的绝对值用于确定所述第一像素单元组对所述第一光信号的输出信号LI OP,所述第一光信号的输出信号LI OP用于获取所述指纹图像。
在一些可能的实施例中,所述像素单元A对应的偏振片的偏振方向与所述像素单元C对应的偏振片的偏振方向垂直,所述像素单元B对应的偏振片的偏振方向与所述像素单元D对应的偏振片的偏振方向垂直。
在一些可能的实施例中,所述第二光信号和所述环境光信号为自然光信号,所述像素单元A的输出信号、所述像素单元B的输出信号、所述像素单元C的输出信号、所述像素单元D的输出信号以及所述第一光信号的输出信号LI OP用于确定所述第一像素单元组对所述自然光信号的输出信号LI ON
在一些可能的实施例中,所述像素值LI OP等于所述像素单元A的输出信号和所述像素单元C的输出信号之间的差值的绝对值;或者
所述第一光信号的输出信号LI OP等于所述像素单元B的输出信号和所述像素单元D的输出信号之间的差值的绝对值。
在一些可能的实施例中,所述第一光信号的输出信号LI OP满足:
Figure PCTCN2020138727-appb-000005
其中,LI A-C为所述像素单元A的输出信号和所述像素单元C的输出信号之间的差值,LI B-D为所述像素单元B的输出信号和所述像素单元D的输出信号之间的差值。
在一些可能的实施例中,所述自然光信号的输出信号LI ON满足:
LI ON=LI A+LI B+LI C+LI D-LI OP
其中,LI A为所述像素单元A的输出信号,LI B为所述像素单元B的输出信号,LI C为所述像素单元C的输出信号,LI D为所述像素单元D的输出信号。
在一些可能的实施例中,所述第一光信号的输出信号LI OP满足:
LI OP=|LI A-C|+|LI B-D|
其中,LI A-C为所述像素单元A的输出信号和所述像素单元C的输出信号之间的差值,LI B-D为所述像素单元B的输出信号和所述像素单元D的输出信号之间的差值。
在一些可能的实施例中,所述自然光信号的输出信号LI ON满足:
Figure PCTCN2020138727-appb-000006
其中,LI A为所述像素单元A的输出信号,LI B为所述像素单元B的输出信号,LI C为所述像素单元C的输出信号,LI D为所述像素单元D的输出信号。
在一些可能的实施例中,所述指纹识别装置设置在所述显示屏下方或所述显示屏内。
在一些可能的实施例中,所述显示屏包括显示像素层,当所述指纹识别装置用于设置在所述显示屏内时,所述指纹识别装置与所述显示像素层设置在同一层。
在一些可能的实施例中,所述光源为所述显示屏的至少部分显示像素。
在一些可能的实施例中,所述显示屏为微型发光二极管Micro-LED显示屏,或者,所述显示屏为迷你发光二极管Mini-LED显示屏。
在一些可能的实施例中,所述光源为外置光源,所述外置光源设置于所述显示屏下方。
第二方面,提供一种显示屏,所述显示屏不包括偏振片,所述显示屏包括:显示像素层和第一方面及其任一种可能的实现方式中的指纹识别装置,其中,所述显示像素层与所述指纹识别装置设置在同一层。
第三方面,提供一种电子设备,包括:显示屏和第一方面及其任一种可能的实现方式中的指纹识别装置,其中,所述指纹识别装置设置在显示屏下方或显示屏内。
上述技术方案,在显示屏没有偏振片的条件下,指纹识别装置包括线偏振片阵列,且光源发出线偏振光信号,这样经过手指表面返回的第一光信号为线偏振光信号,经过手指内部返回的第二光信号为自然光信号,并且环境光信号也为自然光信号,这样就可以通过偏振差异将经过手指表面返回的第一光信号与(经过手指内部返回的第二光信号+环境光信号)区分开,这样可以避免第二光信号抵消第一光信号的情况,从而有效增强指纹信号量。此外,上述技术方案还可以减小经过手指内部返回的第二光信号和环境光信号对指纹识别的影响,从而进一步提高指纹识别性能。
附图说明
图1和图2是屏下光学指纹识别技术的原理示意性图。
图3是包括偏振片的显示屏的结构示意性图。
图4是本申请实施例的指纹识别装置的示意性图。
图5是本申请实施例的指纹识别装置设置在显示屏内的示意性图。
图6是本申请实施例的包括额外光源的指纹识别装置的示意性图。
图7是本申请实施例的一组线偏振片包括2个线偏振片对应的像素单元阵列的示意性图。
图8是图7对应的确定第一光信号的输出信号和自然光信号的输出信号的流程图。
图9是图7对应的第一光信号的角度示意性图。
图10是本申请实施例的一组线偏振片包括3个线偏振片对应的像素单元阵列的示意性图。
图11是图10对应的确定第一光信号的输出信号和自然光信号的输出信号的流程图。
图12是图10对应的第一光信号的角度示意性图。
图13和图14是图10对应的确定第一光信号的输出信号和自然光信号的输出信号的流程图。
图15是本申请实施例的一组线偏振片包括4个线偏振片对应的像素单元阵列的示意性图。
图16是图15对应的确定第一光信号的输出信号和自然光信号的输出信号的流程图。
图17是图15对应的第一光信号的角度示意性图。
图18和图19是图15对应的确定第一光信号的输出信号和自然光信号的输出信号的流程图。
图20是本申请实施例的电子设备的示意性框图。
图21是本申请实施例的显示屏的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
随着科学技术的不断发展,指纹识别技术应用在越来越多的电子设备中。 其中,屏下(Under-display)光学指纹识别技术的应用最为广泛。
下面结合图1和图2简单介绍一下屏下光学指纹识别技术的原理。当手指110按压在显示屏120上的指纹识别区域时,光源可以向指纹识别区域上方的手指110发出光信号。其中,光信号的一部分会向下传播,称为屏幕漏光,光信号的另一部分会向上形成屏幕出射光信号,手指110会反射该屏幕出射光信号形成手指反射光信号,手指反射光信号主要可以分为两部分:如图1所示的手指表面反射光信号(为了便于描述,称为反射光信号)以及如图2所示的手指内部反射光信号(为了便于描述,称为透射光信号)。
继续参考图1,由于指纹脊(ridge)与显示屏120紧密贴合且折射率相近,光路2上的光信号的反射率较低,由于指纹谷(valley)与显示屏120中间有空气,且显示屏120的折射率大于空气的折射率,因此光路1上的光信号的反射率较高。具体而言,假设显示屏120的折射率为1.5,空气折射率为1,手指110的折射率为1.4,则指纹脊a点的反射率
Figure PCTCN2020138727-appb-000007
指纹谷b点的反射率
Figure PCTCN2020138727-appb-000008
指纹谷c点的反射率
Figure PCTCN2020138727-appb-000009
则指纹脊的总反射率为0.12%,指纹谷的总反射率为η bc=6.78%。因此,指纹脊的反射光信号较少从而可以形成暗纹,指纹谷的反射光信号较多从而可以形成亮纹。
与图1相反,图2中指纹脊的光信号的透射率较高,而指纹谷处的光信号的透射率较低。同样假设显示屏120的折射率为1.5,空气折射率为1,手指110的折射率为1.4,则图2中指纹脊a点的透射率
Figure PCTCN2020138727-appb-000010
指纹谷b点的透射率
Figure PCTCN2020138727-appb-000011
指纹谷c点的透射率
Figure PCTCN2020138727-appb-000012
则指纹脊的总透射率为99.88%,指纹谷的总透射率为93.33%。因此,指纹脊的透射光信号较多从而可以形成亮纹,指纹谷的反射光信号较少从而可以形成暗纹。
图1的反射光信号或图2的透射光信号经过指纹识别装置130中的光学层后,被光学指纹传感器(也称为光学指纹芯片、传感器、传感器芯片、芯片等)所接收并转换为相应的电信号,即指纹识别信号。基于指纹识别信号便可以获得指纹图像数据,并进一步进行指纹匹配验证,从而在电子设备中实现光学指纹识别功能。
光学层可以包括但不限于透镜、光阑和滤光片等。其中,透镜可以用于汇聚光线,例如,可以将图1所示的从手指110反射回来的反射光信号汇聚 到其下方的指纹传感器。光阑可以用于选择光线,滤光片可以用于滤掉非目标波段的光信号,透过目标波段的光信号。
当然,指纹识别装置130也可以部分或者全部集成至电子设备的显示屏120内部,从而形成屏内(In-display)光学指纹系统。
上文提到的光源可以是显示屏120,即显示屏120为具有自发光显示单元的显示屏,比如有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏、微型发光二极管(Micro-LED)显示屏或者迷你发光二极管(Mini-LED)显示屏。或者,光源也可以是额外光源,即光学指纹装置130可以采用内置光源或外置光源来提供用于进行指纹识别的光信号。在这种情况下,显示屏120可以为非自发光显示屏,比如液晶显示屏(Liquid Crystal Display,LCD)或者其他的被动发光显示屏。
显示屏120可以包括盖板1201、线偏振片(Polarizer,PL)1202、1/4波片(Quarter-Wave Plate)1203、密封基板1204、显示像素层1205、背板1206等结构,如图3所示。具体地,盖板可以为玻璃盖板或者蓝宝石盖板,其设置于显示屏120的最上方并覆盖电子设备的正面。因此,本申请实施例中,所谓的手指110按压在显示屏120实际上是指手指110按压在显示屏120上方的盖板。显示像素层可以用于发射光信号,密封基板和背板分别用于保护和承载显示像素层,线偏振片和1/4波片可以用于形成圆偏振片,圆偏振片用于抑制显示屏120对环境光的反射。
线偏振片可以将环境光或圆偏振光转换为线偏振光,其允许振动方向平行于其偏振化方向的光信号通过,同时吸收振动方向垂直于该偏振方向的光信号。其中,偏振光指光矢量的振动方向不变或具有某种规则的变化的光波,线偏振光可以指光矢量只沿一个固定的方向振动的光波,圆偏振光指光波的电场振动方向的两个正交分量相位相差90°而振幅相同的偏振光。
线偏振片可以是任何用来产生线偏振光的光学器件。例如线偏振片可以是由具有线偏振功能的材料形成的薄层。例如,线偏振片可以由两片光学玻璃夹着一片有定向作用的微小偏光性质晶体(如云母)组成。在其他可替代实施例中,线偏振片也可以替换为线栅起偏器,其可以由许多平行的金属线组成,放置在一个平面内。例如,在每毫米约2160条的透明光栅上镀涂金属铝膜,形成透明及反射的线栅(即线栅起偏器)。线栅起偏器的作用与偏振片类似,当环境光通过线栅后,和铝线条平行的偏振光被吸收而通过与铝 线条垂直的偏振光。例如,线栅起偏器可以由两片光学玻璃之间的夹层涂有聚乙烯膜或聚乙烯氰等的具有栅栏状结构的结晶物,所述结晶物只允许振动方向与栅栏状的结构的缝隙相同的光通过。
需要说明的是,环境光可以包括各种偏振方向的光,即射入显示屏120的光信号包括各个偏振方向上的光信号。
由于后续屏幕显示技术更倾向于自发光路线,非自发光显示屏可能会逐步淘汰,然而OLED显示屏也存在亮度低、寿命短、效率低、响应速度慢、密度低等缺点。Micro-LED显示屏或Mini-LED显示屏等新型显示屏可以解决OLED显示屏存在的上述缺点,或将成为未来显示屏的发展方向。此外,相对于OLED显示屏,Micro-LED显示屏或Mini-LED显示屏没有偏振片以及密封板等叠层,可以实现轻薄化的终端需求。
此外,在指纹识别的过程中,环境光信号会影响指纹识别的性能。比如,随着外部环境的变化,环境光信号的光强也会随之发生变化,从而影响指纹识别的效果。此外,从前述光信号的反射率和透射率的分析中可以看出,指纹谷处的反射光信号较强从而指纹谷处的指纹图像为白线,指纹脊处的反射光信号较弱为从而指纹脊处的指纹图像为黑线。与之相反,指纹谷处的透射光信号较弱从而指纹谷处的指纹图像为黑线,指纹脊处的透射光信号较强从而指纹脊处的指纹图像为白线。因此,反射光信号和透射光信号会相互抵消一部分,即透射光信号会影响反射光信号,从而进一步影响指纹识别性能。
因此,在显示屏没有偏振片的情况下,如何减小环境光信号和透射光信号对指纹识别的影响,以提高指纹识别性能,是一项亟待解决的问题。
鉴于此,本申请实施例提出了一种指纹识别装置,通过偏振差异可以区分出反射光信号与透射光信号+环境光信号,可以有效减小环境光信号和透射光信号对指纹识别的影响,从而可以提高指纹识别性能。
需要说明的是,本申请实施例中的指纹识别装置也可以称为光学指纹识别模组、光学指纹装置、指纹识别模组、指纹模组、指纹采集装置等,上述术语可相互替换。
以下,结合图4至图19,详细介绍本申请实施例的指纹识别装置。需要说明的是,为便于理解,在以下示出的实施例中,相同的结构采用相同的附图标记,并且为了简洁,省略对相同结构的详细说明。
图4是本申请实施例的指纹识别装置200的示意性结构图。该指纹识别 装置200可以应用于包括显示屏的电子设备,该显示屏不包括偏振片。如图4所示,该指纹识别装置200可以包括:
线偏振片阵列210,包括多组线偏振片,多组线偏振片中的每组线偏振片包括至少两个相邻的线偏振片,每组线偏振片中线偏振片的偏振方向彼此不同;
像素单元阵列220,设置于线偏振片阵列210下方,像素单元阵列220包括多组像素单元,多组像素单元中的每组像素单元包括至少两个像素单元且与线偏振片阵列中的一组线偏振片对应,每组像素单元中的每个像素单元用于接收光信号,该光信号可以包括光源发出的线偏振光信号经过显示屏上方的手指表面返回的第一光信号2201、光源发出的线偏振光信号经过显示屏上方的手指内部返回的第二光信号2202以及环境光信号2203,每组像素单元中至少两个像素单元的像素值用于获取指纹图像。
其中,第一光信号2201为线偏振光信号,第二光信号2202和环境光信号2203为自然光信号(为了后文描述方便,将第二光信号和环境光信号统称为自然光信号)。
可选地,线偏振片阵列210中相邻的两个线偏振片的偏振方向可以不同。线偏振片的特性可以参考前述内容描述的线偏振片,其可以为独立的线偏振片结构,也可以为线偏振膜或者其他具有线偏振功能的结构。像素单元可以采用光电二极管(Photo Diode,PD)、金属氧化物半导体场效应管(Metal Oxide Semiconductor Field Effect Transistor,MOSFET)等器件。
本申请实施例中,在显示屏没有偏振片的条件下,指纹识别装置包括线偏振片阵列,且光源发出线偏振光信号,这样经过手指表面返回的第一光信号为线偏振光信号,经过手指内部返回的第二光信号为自然光信号,并且环境光信号也为自然光信号,这样就可以通过偏振差异将经过手指表面返回的第一光信号与自然光信号区分开,这样可以避免第二光信号抵消第一光信号的情况,从而可以有效增强指纹信号量。此外,本申请实施例还可以减小自然光信号对指纹识别的影响,从而进一步提高指纹识别性能。
从图4中可以看到,显示屏120从上到下包括盖板1201、表面光学层1207、显示像素层1205、背板1206等结构,没有线偏振片和1/4波片。其中,表面光学层1207可以用于保护显示像素层1205,并且可以用于防眩光,显示像素层1205包括由多个显示像素形成的显示像素阵列,显示像素可以 提供光源用于显示画面。
图4中的指纹识别装置200设置在显示屏120的下方,在本申请实施例中,指纹识别装置200也可以设置在显示屏120内。如图5所示,指纹识别装置200设置在显示屏120内,在这种情况下,显示屏120除了可以包括盖板1201、表面光学层1207、显示像素层1205以及背板1206等结构之外,还可以包括感光层1208,感光层1208可以包括指纹识别装置200、光学层和驱动电路等结构。
可选地,感光层1208可以设置在显示像素层1205的上方,该设置方式可以减少其他光信号(如漏光)的干扰。
或者,感光层1208可以如图5所示的那样与显示像素层1205设置在同一层,如此可以一起制作显示屏120的驱动电路和指纹识别装置200的驱动电路,从而降低显示屏120的制造复杂度。为了减少其他光信号对第一光信号的干扰,可以像素单元阵列220或其他结构周围设置挡光层,以阻挡其他光信号的干扰。
当然,感光层1208也可以设置在显示像素层1205的下方。
图4和图5所示的指纹识别装置200的光源为显示屏120的至少部分显示像素,即显示屏120为具有自发光显示像素(显示单元)的显示屏,显示屏120可以发出线偏振光信号。可选地,显示屏120可以为Micro-LED显示屏或Mini-LED显示屏。
在其他实现方式中,如图6所示,光源也可以为外置光源230,外置光源230可以发出线偏振光信号。其中,外置光源230可以为但不限于红外LED灯,该外置光源230可以设置在显示屏120下方,可与指纹识别装置200分离设置。
需要说明的是,本申请实施例对光源发出线偏振光信号的实现方式不作具体限定,任何可以使得光源发出线偏振光信号的实现方式都可以包括在本申请实施例的范围内。
可选地,在本申请实施例中,线偏振光信号的角度可以是预先设置好的。
可选地,在本申请实施例中,线偏振片阵列210可以设置于显示屏120至像素单元阵列220之间的光路中的任意位置。例如,线偏振片阵列210可以设置于显示屏120的下表面。再例如,线偏振片阵列210可以通过固定装置设置在显示屏120与像素单元阵列220之间,该固定装置可以包括但不限 于支架、胶层等。再例如,线偏振片阵列210还可以与像素单元阵列220一起集成在光学指纹传感器的芯片中。具体地,可以采用蒸镀工艺在像素单元阵列220上进行镀膜形成线偏振片阵列210,例如,可以通过原子层沉积、溅射镀膜、电子束蒸发镀膜、离子束镀膜等方法在像素单元阵列220上方制备偏振薄膜。或者,也可以采用互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)工艺在像素单元阵列220上制备多个金属线栅微偏振器作为偏振单元,该金属线栅微偏振器结构为周期性的金属线栅阵列,其中金属线栅的宽度与间距为几十至几百纳米。
本申请实施例对每组线偏振片包括的线偏振片的数量以及每组像素单元包括的像素单元的数量不作具体限定。例如,如图4所示,线偏振片阵列210包括第一线偏振片组211,像素单元阵列220包括第一像素单元组221,线偏振组211与像素单元组221对应,线偏振组211包括2个线偏振片,该2个线偏振片的偏振方向不同,且像素单元组221包括2个像素单元。当然,每组线偏振片也可以包括3个线偏振片,该3个线偏振片的偏振方向都不同,且每组像素单元也可以包括3个像素单元;或者,每组线偏振片也可以包括4个线偏振片且每组像素单元也可以包括4个像素单元等。
线偏振片阵列210中不同组线偏振片包括的线偏振片的数量可以相同也可以不同。比如,每组线偏振片包括的线偏振片的数量都可以为2。再比如,线偏振片组211包括2个线偏振片,其他线偏振片组包括3个或4个线偏振片。
与线偏振片阵列210类似,像素单元阵列220中不同组像素单元包括的像素单元的数量可以相同也可以不同。
可选地,在本申请实施例中,每组像素单元中至少两个像素单元的输出信号之间的差值的绝对值可以用于确定该组像素单元对第一光信号的输出信号,其中,第一光信号的输出信号用于获取指纹图像。进一步地,每组像素单元中的像素单元的输出信号和该组像素单元对第一光信号的输出信号也可以用于确定自然光信号的输出信号。
其中,像素单元的输出信号与像素单元的光照度成线性关系。具体地,像素单元的输出信号与像素单元的光照度成正比关系。
为了更加清楚地描述本申请实施例的方案,下面以每组线偏振片包括2个线偏振片、3个线偏振片或4个线偏振片为例描述本申请实施例,但应理 解,本申请并不限于此。
实施例1:每组线偏振片包括2个线偏振片
该2个线偏振片的偏振方向之间可以呈任何角度,可选地,该2个线偏振片的偏振方向可以互相垂直。比如,图7示出了像素单元阵列220的俯视图,从图7可以看出,一组像素单元对应的一组线偏振片中的其中一个线偏振片的偏振方向为0°,另一个线偏振片的偏振方向为90°。
在这种情况下,一组像素单元中的两个像素单元的输出信号之间的差值的绝对值可以用于确定该组像素单元对第一光信号的输出信号,一组像素单元中的两个像素单元的输出信号以及第一光信号的输出信号可以用于确定该组像素单元对自然光信号的输出信号。
以像素单元组221为例进行说明,像素单元组221包括像素单元U和像素单元V,像素单元U和像素单元V接收的光信号包括第一光信号和自然光信号。如图8所示,可以先获取相邻的像素单元U和像素单元V各自的输出信号LI U和LI V,然后,对像素单元U的输出信号LI U和像素单元V的输出信号LI V做差,则差值或差值的绝对值可以为第一光信号的输出信号LI OP。进一步地,还可以根据像素单元U的输出信号LI U、像素单元V的输出信号LI V和第一光信号的输出信号LI OP,确定自然光信号的输出信号LI ON。其中,LI ON=LI U+LI V-LI OP
结合图9举例说明,需要说明的是,为了对比不同线偏振片应用下不同数据处理方式的信噪比,本申请实施例将第一光信号的噪声信号和自然光信号的噪声信号也进行了计算。假定第一光信号的角度为α,α∈[0,π],输出信号为LI P,光量子噪声为N P,自然光信号的输出信号为LI N,光量子噪声为N N
像素单元U的输出信号LI U和光量子噪声N U分别为:
Figure PCTCN2020138727-appb-000013
Figure PCTCN2020138727-appb-000014
像素单元V的输出信号LI V和光量子噪声N V分别为:
Figure PCTCN2020138727-appb-000015
Figure PCTCN2020138727-appb-000016
将像素单元U的像素值和像素单元V的像素值求和,可以得到像素单元组211的输出信号LI U+V和像素单元组211的噪声信号N U+V
LI U+V=LI U+LI V=LI P+LI N
Figure PCTCN2020138727-appb-000017
将像素单元U的像素值和像素单元V的像素值做差,即可消除自然光信号,剩余第一光信号。其中,第一光信号的输出信号LI OP和噪声信号N OP分别可以为:
LI OP=LI U-V=LI U-LI V=LI P*cos(2α)
Figure PCTCN2020138727-appb-000018
当然,第一光信号的输出信号LI OP也可以为像素单元V的输出信号LI V减去像素单元U的输出信号LI U的值。
由上述公式可以看出,当α=0或α=π/2,即第一光信号的偏振方向与像素单元U和像素单元V对应的线偏振片中的其中一个线偏振片的偏振方向平行时,第一光信号的输出信号LI OP最大,(LI OP) max=LI P
此时,自然光信号的输出信号LI ON和噪声信号N ON分别可以为:
LI ON=LI U+V-LI OP=LI N
Figure PCTCN2020138727-appb-000019
具体而言,当α=0时,自然光信号的输出信号LI ON和噪声信号N ON分别为:
LI ON=2*LI V=LI N
Figure PCTCN2020138727-appb-000020
当α=π/2时,自然光信号的输出信号LI ON和噪声信号N ON分别为:
LI ON=2*LI V=LI N
Figure PCTCN2020138727-appb-000021
实施例2:每组线偏振片包括3个线偏振片
该3个线偏振片的偏振方向之间可以呈任何角度,可选地,图10示出了像素单元阵列220的俯视图,从图10中可以看出,一组像素单元对应的一组线偏振片可以包括步进为60°的线偏振片。示例性地,一组线偏振片可以包括偏振方向分别为0°、60°和120°的3个线偏振片。
在这种情况下,一组像素单元中的至少两个像素单元的输出信号之间的差值的绝对值可以用于确定该组像素单元对第一光信号的输出信号。此外,一组像素单元中的每个像素单元的输出信号以及该组像素单元对第一光信号的输出信号可以用于确定自然光信号的输出信号。
以像素单元组221为例进行说明,像素单元组221包括像素单元X、像素单元Y和像素单元Z。在一种实现方式中,像素单元组221中任意两个像 素单元的输出信号之间的差值的绝对值可以作为第一光信号的输出信号LI OP。此外,像素单元X的输出信号LI X、像素单元Y的输出信号LI Y和像素单元Z的输出信号LI Z以及第一光信号的输出信号LI OP也可以用于确定自然光信号的输出信号LI ON
示例性地,如图11所示,可以先获取相邻的像素单元X的输出信号LI X、像素单元Y的输出信号LI Y和像素单元Z的输出信号LI Z,然后对像素单元X的输出信号LI X和像素单元Y的输出信号LI Y做差,并对差值取绝对值,则差值的绝对值可以为第一光信号的输出信号LI OP。进一步地,还可以根据像素单元X的输出信号LI X、像素单元Y的输出信号LI Y和像素单元Z的输出信号LI Z和第一光信号的输出信号LI OP,确定自然光信号的输出信号LI ON。其中,
Figure PCTCN2020138727-appb-000022
结合图12举例说明,假定第一光信号的角度为α,α∈[0,π],输出信号为LI P,光量子噪声为N P,自然光信号的输出信号为LI N,光量子噪声为N N
像素单元X的输出信号LI X和光量子噪声N X分别为:
Figure PCTCN2020138727-appb-000023
Figure PCTCN2020138727-appb-000024
像素单元Y的输出信号LI Y和光量子噪声N Y分别为:
Figure PCTCN2020138727-appb-000025
Figure PCTCN2020138727-appb-000026
像素单元Z的输出信号LI Z和光量子噪声N Z分别为:
Figure PCTCN2020138727-appb-000027
Figure PCTCN2020138727-appb-000028
将像素单元X的像素值、像素单元Y的像素值和像素单元Z的像素值求和再除3/2,可以得到像素单元组211的输出信号LI X+Y+Z和噪声信号N X+Y+Z
Figure PCTCN2020138727-appb-000029
Figure PCTCN2020138727-appb-000030
将像素单元X的输出信号LI X和像素单元Y的输出信号LI Y之间的差值LI X-Y作为第一光信号的输出信号LI OP,并将像素单元X的光量子噪声N X和像素单元Y的光量子噪声N Y之间的差值N X-Y作为第一光信号的噪声信号N OP, 即:
Figure PCTCN2020138727-appb-000031
Figure PCTCN2020138727-appb-000032
可以看出,当α=5π/12或α=11π/12时,第一光信号的输出信号LI OP最大,
Figure PCTCN2020138727-appb-000033
此时,自然光信号的输出信号LI ON和噪声信号N ON分别可以为:
Figure PCTCN2020138727-appb-000034
Figure PCTCN2020138727-appb-000035
当然,像素单元Y的输出信号LI Y与像素单元Z的输出信号LI Z之间的差值LI Y-Z也可以作为第一光信号的输出信号LI OP,像素单元Y的光量子噪声N Y和像素单元Z的光量子噪声N Z之间的差值N Y-Z也作为第一光信号的噪声信号N OP;或者,像素单元Z的输出信号LI Z与像素单元X的输出信号LI X之间的差值LI Z-X也可以作为第一光信号的输出信号LI OP,像素单元Z的光量子噪声N Z和像素单元X的光量子噪声N X之间的差值N Z-X也作为第一光信号的噪声信号N OP
在另一种实现方式中,像素单元组221中三个两两像素单元的输出信号之间的差值可以用于确定第一光信号的输出信号LI OP
作为一种示例,如图13所示,可以将LI X-Y、LI Y-Z和LI Z-X的平方相加后再开方,从而可以得到第一光信号的输出信号LI OP
Figure PCTCN2020138727-appb-000036
并且,可以将N X-Y、N Y-Z和N Z-X的平方相加后再开方,得到第一光信号的噪声信号N OP
Figure PCTCN2020138727-appb-000037
此时,继续参考图13,自然光信号的输出信号LI ON和噪声信号N ON分别可以为:
Figure PCTCN2020138727-appb-000038
Figure PCTCN2020138727-appb-000039
作为另一种示例,如图14所示,可以将LI X-Y、LI Y-Z和LI Z-X分别取绝对值后再相加,以得到第一光信号的输出信号LI OP
Figure PCTCN2020138727-appb-000040
同时,可以将N X-Y、N Y-Z和N Z-X的平方相加后再开方,以得到第一光信号的噪声信号N OP
Figure PCTCN2020138727-appb-000041
可以看出,当α=π/12或α=3π/12或α=5π/12或α=7π/12或α=9π/12或α=11π/12时,第一光信号的输出信号LI OP最大,
Figure PCTCN2020138727-appb-000042
在该示例中,继续参考图14,自然光信号的输出信号LI ON和噪声信号N ON分别可以为:
Figure PCTCN2020138727-appb-000043
Figure PCTCN2020138727-appb-000044
实施例3:每组线偏振片包括4个线偏振片
该4个线偏振片的偏振方向之间可以呈任何角度,可选地,图15示出了像素单元阵列220的俯视图,从图15中可以看出,一组像素单元对应的一组线偏振片可以包括步进为45°的线偏振片。示例性地,一组线偏振片可以包括偏振方向分别为0°、45°、90°和135°的4个线偏振片。
在这种情况下,一组像素单元中的至少两个像素单元的输出信号之间的差值的绝对值可以用于确定该组像素单元对处理后的第一光信号的输出信号。此外,一组像素单元中的每个像素单元的输出信号以及该组像素单元对第一光信号的输出信号可以用于确定自然光信号的输出信号。
以像素单元组221为例进行说明,像素单元组221包括像素单元A、像素单元B、像素单元C和像素单元D。其中,像素单元A对应的线偏振片的偏振方向与像素单元C对应的线偏振片的偏振方向垂直,像素单元B对应的线偏振片的偏振方向与像素单元D对应的线偏振片的偏振方向垂直。例如,像素单元A对应的偏振片的偏振方向为0°,像素单元B对应的偏振片的偏振方向为45°,像素单元C对应的偏振片的偏振方向为90°,像素单元D 对应的偏振片的偏振方向为135°。但应理解,像素单元A、像素单元B、像素单元C以及像素单元D各自对应的线偏振片的偏振方向并不限于该举例。
需要说明的是,图15所示的像素单元的设置方式仅是示例,不应构成对本申请实施例的限定。比如,像素单元A和像素单元C也可以相邻设置,像素单元C可以设置在图15所示的像素单元D的位置或像素单元B的位置。
在一种实现方式中,像素单元组221中任意两个像素单元的输出信号之间的差值的绝对值可以作为第一光信号的输出信号LI OP
示例性地,如图16所示,可以先获取相邻的像素单元A的输出信号LI A、像素单元B的输出信号LI B、像素单元C的输出信号LI C和像素单元D的输出信号LI D,然后对像素单元A的输出信号LI A和像素单元B的输出信号LI B做差,并对差值取绝对值,则差值的绝对值可以为第一光信号的输出信号LI OP。进一步地,还可以根据像素单元A的输出信号LI A、像素单元B的输出信号LI B、像素单元C的输出信号LI C、像素单元D的输出信号LI D和第一光信号的输出信号LI OP,确定自然光信号的输出信号LI ON。其中,LI ON=LI A+LI B+LI C+LI D-LI OP
当然,也可以对像素单元B的输出信号LI B和像素单元D的输出信号LI D做差,并对差值取绝对值,则差值的绝对值可以为LI OP
由于像素单元A对应的线偏振片的方向与像素单元C对应的线偏振片的偏振方向垂直,像素单元B对应的线偏振片的方向与像素单元D对应的线偏振片的偏振方向垂直,因此将像素单元A的输出信号和像素单元C的输出信号之间的差值的绝对值作为LI OP,或者,将像素单元B的输出信号和像素单元D的输出信号之间的差值的绝对值作为LI OP的计算量最小,使得可以降低指纹识别过程的耗时,从而提高指纹识别的效率。
结合图17举例说明,假定第一光信号的角度为α,α∈[0,π],输出信号为LI P,光量子噪声为N P,自然光信号的输出信号为LI N,光量子噪声为N N
像素单元A的输出信号LI A和光量子噪声N A分别为:
Figure PCTCN2020138727-appb-000045
Figure PCTCN2020138727-appb-000046
像素单元B的输出信号LI B和光量子噪声N B分别为:
Figure PCTCN2020138727-appb-000047
Figure PCTCN2020138727-appb-000048
像素单元C的输出信号LI C和光量子噪声N C分别为:
Figure PCTCN2020138727-appb-000049
Figure PCTCN2020138727-appb-000050
像素单元D的输出信号LI D和光量子噪声N D分别为:
Figure PCTCN2020138727-appb-000051
Figure PCTCN2020138727-appb-000052
将像素单元A的像素值和像素单元C的像素值分别做差,可以得到输出信号LI A-C和噪声信号N A-C
LI A-C=LI A-LI C=LI P*cos(2α)
Figure PCTCN2020138727-appb-000053
将像素单元B的像素值和像素单元D的像素值分别做差,可以得到输出信号LI B-D和噪声信号N B-D
LI B-D=LI B-LI D=LI P*sin(2α)
Figure PCTCN2020138727-appb-000054
将像素单元A的像素值、像素单元B的像素值、像素单元C的像素值和像素单元D的像素值求和再除2,可以得到像素单元组211的输出信号LI A+B+C+D和噪声信号N A+B+C+D
Figure PCTCN2020138727-appb-000055
Figure PCTCN2020138727-appb-000056
将像素单元A的输出信号LI A和像素单元C的输出信号LI C之间的差值LI A-C作为第一光信号的输出信号LI OP,并将像素单元A的光量子噪声N A和像素单元C的光量子噪声N C之间的差值N A-C作为第一光信号的噪声信号N OP,即:
LI OP=LI A-C=LI P*cos(2α)
Figure PCTCN2020138727-appb-000057
可以看出,当α=0或α=π/2时,第一光信号的输出信号LI OP最大,(LI OP) max=LI P
此时,自然光信号的输出信号LI ON和噪声信号N ON分别可以为:
LI ON=LI A+B+C+D-LI OP=LI N
Figure PCTCN2020138727-appb-000058
具体而言,当α=0时,自然光信号的输出信号LI ON和噪声信号N ON分别可以为:
LI ON=2*LI C=LI N
Figure PCTCN2020138727-appb-000059
当α=π/2时,自然光信号的输出信号LI ON和噪声信号N ON分别可以为:
LI ON=2*LI A=LI N
Figure PCTCN2020138727-appb-000060
当然,像素单元B的输出信号LI B与像素单元D的输出信号LI D之间的差值LI B-D也可以作为第一光信号的输出信号LI OP,像素单元B的光量子噪声N B和像素单元D的光量子噪声N D之间的差值N B-D也作为第一光信号的噪声信号N OP
在另一种实现方式中,两对任意两个像素单元的输出信号之间的差值可以用于确定第一光信号的输出信号LI OP。例如,像素单元A的输出信号LI A和像素单元C的输出信号LI C之间的差值LI A-C,以及像素单元B的输出信号LI B与像素单元D的输出信号LI D之间的差值LI B-D可以用于确定第一光信号的输出信号LI OP
作为一种示例,如图18所示,可以将LI A-C和LI B-D的平方和进行开方,以得到第一光信号的输出信号LI OP
Figure PCTCN2020138727-appb-000061
可以将N A-C和N B-D的平方和进行开方,即可得到第一光信号的噪声信号N OP
Figure PCTCN2020138727-appb-000062
此时,继续参考图18,自然光信号的输出信号LI ON和噪声信号N ON分别可以为:
LI ON=LI A+B+C+D-LI OP=LI N
Figure PCTCN2020138727-appb-000063
作为另一种示例,如图19所示,可以将LI A-C和LI B-D分别取绝对值后再相加,即可得到第一光信号的输出信号LI OP
Figure PCTCN2020138727-appb-000064
并且,可以将N A-C和N B-D的平方和进行开方,以得到第一光信号的噪声信号N OP
Figure PCTCN2020138727-appb-000065
可以看出,当α=π/8或α=3π/8或α=5π/8或α=7π/8时,第一光信号的输出信号LI OP最大,
Figure PCTCN2020138727-appb-000066
在该示例中,继续参考图19,自然光信号的输出信号LI ON和噪声信号N ON分别可以为:
Figure PCTCN2020138727-appb-000067
Figure PCTCN2020138727-appb-000068
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
上述内容描述了在每组线偏振片包括2个线偏振片、3个线偏振片以及4个线偏振片的条件下,得到第一光信号的输出信号LI OP、第一光信号的噪声信号N OP、自然光信号的输出信号LI ON以及自然光信号的噪声信号N ON的计算过程。下面将在同等条件下,以12个像素单元为周期对上述内容描述的不同偏振片的应用进行对比。
(1)在指纹识别装置200不包括线偏振片阵列210时,每个像素单元的输出信号为(LI P+LI N),输出噪声信号为
Figure PCTCN2020138727-appb-000069
将12个像素单元的像素值取平均,可以看出,每个像素单元的平均输出信号不变,平均输出噪声为
Figure PCTCN2020138727-appb-000070
并且,在指纹识别装置200不包括线偏振片阵列210时,第一光信号和自然光信号无法进行区分。
(2)在指纹识别装置200包括线偏振片阵列210,且每组线偏振片包括2个偏振方向互相垂直的线偏振片时,12个像素单元可以分为6组。
每组像素单元对处理后的第一光信号的输出信号LI OP=LI P*cos(2α),噪声 信号
Figure PCTCN2020138727-appb-000071
6组相邻的像素单元组的第一光信号的输出信号取平均后,第一光信号的平均输出信号LI OP'和平均噪声信号N OP'分别为:
Figure PCTCN2020138727-appb-000072
Figure PCTCN2020138727-appb-000073
每组像素单元对处理后的自然光信号的输出信号LI ON=LI N,噪声信号
Figure PCTCN2020138727-appb-000074
6组相邻的像素单元组的自然光信号的输出信号取平均后,自然光信号的平均输出信号LI ON'和平均噪声信号N ON'分别为:
Figure PCTCN2020138727-appb-000075
Figure PCTCN2020138727-appb-000076
当然,也可以按照特殊方式处理,即当α=0或α=π/2时,每组像素单元对处理后的自然光信号的输出信号LI ON=LI N,噪声信号
Figure PCTCN2020138727-appb-000077
6组相邻的像素单元组的自然光信号的输出信号取平均后,自然光信号的平均输出信号LI ON'=LI N,自然光信号的平均噪声信号
Figure PCTCN2020138727-appb-000078
(3)在指纹识别装置200包括线偏振片阵列210,且每组线偏振片包括3个偏振方向互相垂直的线偏振片时,12个像素单元可以分为4组。
a、每组像素单元对处理后的第一光信号的输出信号
Figure PCTCN2020138727-appb-000079
噪声信号
Figure PCTCN2020138727-appb-000080
4组相邻的像素单元组的第一光信号的输出信号取平均后,采用前述内容的计算方法,可以得出第一光信号的平均输出信号LI OP'=LI OP,第一光信号的平均噪声信号
Figure PCTCN2020138727-appb-000081
每组像素单元对处理后的自然光信号的输出信号LI ON=LI N,噪声信号
Figure PCTCN2020138727-appb-000082
4组相邻的像素单元组的自然光信号的输出信号取平均后,自然光信号的平均输出信号LI ON'=LI N,自然光信号的平均噪声信号
Figure PCTCN2020138727-appb-000083
b、每组像素单元对处理后的第一光信号的输出信号
Figure PCTCN2020138727-appb-000084
噪声信号
Figure PCTCN2020138727-appb-000085
4组相邻的像素单元组的第一光信号的输出信号取平均后,第一光信号的平均输出信号LI OP'=LI OP,第一光信号的平均噪声信号
Figure PCTCN2020138727-appb-000086
每组像素单元对处理后的自然光信号的输出信号LI ON=LI N,噪声信号
Figure PCTCN2020138727-appb-000087
4组相邻的像素单元组的自然光信号的输出信号取平 均后,自然光信号的平均输出信号LI ON'=LI N,自然光信号的平均噪声信号
Figure PCTCN2020138727-appb-000088
c、每组像素单元对处理后的第一光信号的最大输出信号
Figure PCTCN2020138727-appb-000089
最小输出信号(LI OP) min=1.5*LI P,噪声信号
Figure PCTCN2020138727-appb-000090
Figure PCTCN2020138727-appb-000091
4组相邻的像素单元组的第一光信号的输出信号取平均后,第一光信号的平均输出信号LI OP'=LI OP,第一光信号的平均噪声信号
Figure PCTCN2020138727-appb-000092
每组像素单元对处理后的自然光信号的输出信号LI ON=LI N,噪声信号
Figure PCTCN2020138727-appb-000093
4组相邻的像素单元组的自然光信号的输出信号取平均后,自然光信号的平均输出信号LI ON'=LI N,自然光信号的平均噪声信号
Figure PCTCN2020138727-appb-000094
(4)在指纹识别装置200包括线偏振片阵列210,且每组线偏振片包括4个偏振方向互相垂直的线偏振片时,12个像素单元可以分为3组。
a、每组像素单元对处理后的第一光信号的输出信号LI OP=LI P*cos(2α),噪声信号
Figure PCTCN2020138727-appb-000095
3组相邻的像素单元组的第一光信号的输出信号取平均后,第一光信号的平均输出信号LI OP'=LI OP,第一光信号的平均噪声信号
Figure PCTCN2020138727-appb-000096
每组像素单元对处理后的自然光信号的输出信号LI ON=LI N,噪声信号
Figure PCTCN2020138727-appb-000097
3组相邻的像素单元组的自然光信号的输出信号取平均后,自然光信号的平均输出信号LI ON'=LI N,自然光信号的平均噪声信号
Figure PCTCN2020138727-appb-000098
也可以按照特殊方式处理,即当α=0或α=π/2时,自然光信号的输出信号LI ON=LI N,噪声信号
Figure PCTCN2020138727-appb-000099
3组相邻的像素单元组的自然光信号的输出信号取平均后,自然光信号的平均输出信号LI ON'=LI N,自然光信号的平均噪声信号
Figure PCTCN2020138727-appb-000100
b、每组像素单元对处理后的第一光信号的输出信号LI OP=LI P,噪声信号
Figure PCTCN2020138727-appb-000101
3组相邻的像素单元组的第一光信号的输出信号取平均后,第一光信号的平均输出信号LI OP'=LI OP,第一光信号的平均噪声信号
Figure PCTCN2020138727-appb-000102
每组像素单元对处理后的自然光信号的输出信号LI ON=LI N,噪声信号
Figure PCTCN2020138727-appb-000103
3组相邻的像素单元组的自然光信号的输出信号取平均后,自然光信号的平均输出信号LI ON'=LI N,自然光信号的平均噪声信号
Figure PCTCN2020138727-appb-000104
c、每组像素单元对处理后的第一光信号的最大输出信号
Figure PCTCN2020138727-appb-000105
最小输出信号(LI OP) min=LI P,噪声信号
Figure PCTCN2020138727-appb-000106
3组相邻的像素单元组的第一光信号的输出信号取平均后,第一光信号的平均输出信号LI OP'=LI OP,第一光信号的平均噪声信号
Figure PCTCN2020138727-appb-000107
每组像素单元对处理后的自然光信号的输出信号LI ON=LI N,噪声信号
Figure PCTCN2020138727-appb-000108
3组相邻的像素单元组的自然光信号的输出信号取平均后,自然光信号的平均输出信号LI ON'=LI N,自然光信号的平均噪声信号
Figure PCTCN2020138727-appb-000109
进一步地,表1示出了不同线偏振片应用下第一光信号的参数对比,表2示出了不同线偏振片应用下自然光信号的参数对比。其中,表1和表2中的双方向线偏振片表示一组线偏振片包括2个线偏振片,三方向线偏振片包括一组线偏振片包括3个线偏振片,四方向线偏振片包括一组线偏振片包括4个线偏振片。
表1
Figure PCTCN2020138727-appb-000110
其中,表1中偏振方向敏感中的“不敏感”表示第一光信号的输出信号与α无关,比如三方向偏振片方式b的情况下,第一光信号的输出信号
Figure PCTCN2020138727-appb-000111
可以看出,第一光信号的输出信号LI OP与α无关。
表1中偏振方向敏感中的“强敏感”表示第一光信号的输出信号与α有关,且信噪比可能会降到0。如两方向偏振片的情况下,第一光信号的输出信号LI OP=LI P*cos(2α),可以看出,第一光信号的输出信号LI OP与α有关,且在α=π/4时,LI OP=0,信噪比为0。
表1中的偏振方向敏感中的“弱敏感”表示第一光信号的输出信号与α 有关,且信噪比不会下降的很厉害,即信噪比不会降到0。
表2
Figure PCTCN2020138727-appb-000112
可以看出,在指纹识别装置200中设置线偏振片阵列210可以消除自然光信号对指纹识别性能的影响。
可选地,在本申请实施例中,指纹识别装置200还可以包括处理单元240,该处理单元240可以用于确定上文中的第一光信号的输出信号LI OP、第一光信号的噪声信号N OP、自然光信号的输出信号LI ON以及自然光信号的噪声信号N ON
其中,处理单元240可以是中央处理单元(Central Processing Unit,CPU),处理单元240还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
可选地,在本申请实施例中,指纹识别装置200还可以包括:光学组件,设置在显示屏120和像素单元阵列220之间,用于在待识别物体按压显示屏120的指纹识别区域时将光信号引导或会聚到像素单元阵列220。
光学组件可以包括至少一个光阑层和微透镜阵列。至少一个光阑层设置 有多个通光小孔,微透镜阵列设置于至少一个光阑层上方,用于在待识别物体按压在显示屏120时,将第一光信号、第二光信号和环境光信号汇聚至至少一个光阑层的多个通光小孔,第一光信号、第二光信号和环境光信号通过至少一个光阑层的多个通光小孔传输至像素单元阵列220。
该至少一个光阑层可以通过半导体工艺生长或者其它工艺形成在像素单元阵列220上方,例如,通过原子层沉积、溅射镀膜、电子束蒸发镀膜、离子束镀膜等方法在像素单元阵列220上方制备一层非透光材料薄膜,再进行小孔图形光刻和刻蚀,形成多个通光小孔。该至少一个光阑层可以阻挡相邻微透镜之间的光学干扰,并使得像素单元所对应的光信号通过所述微透镜汇聚到所述通光小孔内部并经由通光小孔传输到像素单元以进行光学指纹成像。
该微透镜阵列由多个微透镜形成,其可以通过半导体生长工艺或者其他工艺形成在至少一个光阑层上方,并且每一个微透镜可以分别对应于像素单元阵列220的其中一个像素单元。
应理解,光学组件可以设置在显示屏120至像素单元阵列220之间光路中的任意位置,例如:设置在像素单元阵列220与线偏振片阵列210之间。
本申请实施例还提供了一种电子设备,如图20所示,该电子设备300可以包括显示屏310以及指纹识别装置320。该指纹识别装置320可以为前述实施例中的指纹识别装置,并设置在显示屏310下方或显示屏310内。
应理解,显示屏310可以为非折叠显示屏,也可以为可折叠显示屏,即柔性显示屏。
作为示例而非限定,本申请实施例中的电子设备可以为终端设备、手机、平板电脑、笔记本电脑、台式机电脑、游戏设备、车载电子设备或穿戴式智能设备等便携式或移动计算设备,以及电子数据库、汽车、银行自动柜员机(Automated Teller Machine,ATM)等其他电子设备。该穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等设备。
电子设备300还可以包括电路板,电路板设置在指纹识别装置320的下方。指纹识别装置320可以通过背胶粘接在电路板上,并通过焊盘及金属线焊接与电路板实现电性连接。指纹识别装置320可以通过电路板实现与其他 外围电路或者电子设备300的其他元件的电性互连和信号传输。例如,指纹识别装置320可以通过电路板接收电子设备300的处理单元的控制信号,并且还可以通过电路板将来自指纹识别装置320的指纹检测信号输出给终端设备的处理单元或者控制单元等。
本申请实施例还提供了一种显示屏,如图21所示,该显示屏400可以包括显示像素层410和指纹识别装置420,该指纹识别装置420可以为前述实施例中的指纹识别装置。显示像素层410可包括由多个显示像素形成的显示像素阵列。显示屏400可以发出线偏振光,即显示像素可以发出线偏振光,显示屏400的至少部分显示像素可以作为指纹识别装置420的光源,用于进行指纹识别。
其中,指纹识别装置420可以设置在显示像素层410的上方或者下方,或者指纹识别装置420与显示像素层410设置在同一层。
进一步地,显示屏400还可以包括盖板、表面光学层以及背板。盖板、表面光学层以及背板在显示屏400内的具体设置方式可以参考图5,为了内容的简洁,此处不再赘述。
需要说明的是,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
应理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的, 例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (34)

  1. 一种指纹识别装置,其特征在于,应用于包括显示屏的电子设备,所述显示屏不包括偏振片,所述指纹识别装置包括:
    线偏振片阵列,包括多组线偏振片,所述多组线偏振片中的每组线偏振片包括至少两个相邻的线偏振片,所述每组线偏振片中线偏振片的偏振方向彼此不同;
    像素单元阵列,设置于所述线偏振片阵列下方,所述像素单元阵列包括多组像素单元,所述多组像素单元中的每组像素单元包括至少两个像素单元且与所述线偏振片阵列中的一组线偏振片对应,所述每组像素单元中的每个像素单元用于接收光信号,所述光信号包括光源发出的线偏振光信号经过所述显示屏上方的手指表面返回的第一光信号、所述光源发出的线偏振光信号经过所述显示屏上方的手指内部返回的第二光信号以及环境光信号,所述每组像素单元中至少两个像素单元的像素值用于获取指纹图像。
  2. 根据权利要求1所述的指纹识别装置,其特征在于,所述每组线偏振片包括2个线偏振片。
  3. 根据权利要求2所述的指纹识别装置,其特征在于,所述2个线偏振片的偏振方向互相垂直,且所述第一光信号的偏振方向与所述2个线偏振片中的一个线偏振片的偏振方向平行。
  4. 根据权利要求2或3所述的指纹识别装置,其特征在于,所述至少一组像素单元包括第一像素单元组,所述第一像素单元组包括像素单元U和像素单元V,其中,所述像素单元U的输出信号和所述像素单元V的输出信号之间的差值的绝对值用于确定所述第一像素单元组对所述第一光信号的输出信号LI OP,所述第一光信号的输出信号LI OP用于获取所述指纹图像。
  5. 根据权利要求4所述的指纹识别装置,其特征在于,所述第一光信号的输出信号LI OP等于所述像素单元U的输出信号和所述像素单元V的输出信号之间的差值的绝对值。
  6. 根据权利要求4或5所述的指纹识别装置,其特征在于,所述第二光信号和所述环境光信号为自然光信号,所述像素单元U的输出信号、所述像素单元V的输出信号以及所述第一光信号的输出信号LI OP用于确定所述第一像素单元组对所述自然光信号的输出信号LI ON
  7. 根据权利要求6所述指纹识别装置,其特征在于,所述自然光信号的输出信号LI ON满足:
    LI ON=LI U+LI V-LI OP
    其中,LI U为所述像素单元U的输出信号,LI V为所述像素单元V的输出信号。
  8. 根据权利要求1所述的指纹识别装置,其特征在于,所述每组线偏振片包括3个线偏振片。
  9. 根据权利要求8所述的指纹识别装置,其特征在于,所述每组线偏振片包括3个步进为60°的线偏振片。
  10. 根据权利要求8或9所述的指纹识别装置,其特征在于,所述至少一组像素单元包括第一像素单元组,所述第一像素单元组包括像素单元X、像素单元Y和像素单元Z,其中,所述像素单元X、像素单元Y和像素单元Z中的至少两个像素单元的输出信号之间的差值的绝对值用于确定所述第一像素单元组对所述第一光信号的输出信号LI OP,所述第一光信号的输出信号LI OP用于获取所述指纹图像。
  11. 根据权利要求10所述的指纹识别装置,其特征在于,所述第二光信号和所述环境光信号为自然光信号,所述像素单元X的输出信号、所述像素单元Y的输出信号、所述像素单元Z的输出信号以及所述第一光信号的输出信号LI OP用于确定所述第一像素单元组对所述自然光信号的输出信号LI ON
  12. 根据权利要求11所述的指纹识别装置,其特征在于,所述第一光信号的输出信号LI OP等于任意两个像素单元的输出信号之间的差值的绝对值。
  13. 根据权利要求12所述的指纹识别装置,其特征在于,所述自然光信号的输出信号LI ON满足:
    Figure PCTCN2020138727-appb-100001
    其中,LI X为所述像素单元X的输出信号,LI Y为所述像素单元Y的输出信号,LI Z为所述像素单元Z的输出信号。
  14. 根据权利要求11所述的指纹识别装置,其特征在于,所述第一光信号的输出信号LI OP满足:
    Figure PCTCN2020138727-appb-100002
    其中,LI X-Y为所述像素单元X的输出信号和所述像素单元Y的输出信号之间的差值,LI Y-Z为所述像素单元Y的输出信号和所述像素单元Z的输出信号之间的差值,LI Z-X为所述像素单元Z的输出信号和所述像素单元X的输出信号之间的差值。
  15. 根据权利要求14所述的指纹识别装置,其特征在于,所述自然光信号的输出信号LI ON满足:
    Figure PCTCN2020138727-appb-100003
    其中,LI X为所述像素单元X的输出信号,LI Y为所述像素单元Y的输出信号,LI Z为所述像素单元Z的输出信号。
  16. 根据权利要求11所述的指纹识别装置,其特征在于,所述第一光信号的输出信号LI OP满足:
    LI OP=|LI X-Y|+|LI Y-Z|+|LI Z-X|
    其中,LI X-Y为所述像素单元X的输出信号和所述像素单元Y的输出信号之间的差值,LI Y-Z为所述像素单元Y的输出信号和所述像素单元Z的输出信号之间的差值,LI Z-X为所述像素单元Z的输出信号和所述像素单元X的输出信号之间的差值。
  17. 根据权利要求16所述的指纹识别装置,其特征在于,所述自然光信号的输出信号LI ON满足:
    Figure PCTCN2020138727-appb-100004
    其中,LI X为所述像素单元X的输出信号,LI Y为所述像素单元Y的输出信号,LI Z为所述像素单元Z的输出信号。
  18. 根据权利要求1所述的指纹识别装置,其特征在于,所述每组线偏振片包括4个线偏振片。
  19. 根据权利要求18所述的指纹识别装置,其特征在于,所述每组线偏振片包括4个步进为45°的线偏振片。
  20. 根据权利要求18或19所述的指纹识别装置,其特征在于,所述至少一组像素单元包括第一像素单元组,所述第一像素单元组包括像素单元A、像素单元B、像素单元C和像素单元D,其中,所述像素单元A、像素单元B、像素单元C和像素单元D中的至少两个像素单元的输出信号之间的差值 的绝对值用于确定所述第一像素单元组对所述第一光信号的输出信号LI OP,所述第一光信号的输出信号LI OP用于获取所述指纹图像。
  21. 根据权利要求20所述的指纹识别装置,其特征在于,所述像素单元A对应的偏振片的偏振方向与所述像素单元C对应的偏振片的偏振方向垂直,所述像素单元B对应的偏振片的偏振方向与所述像素单元D对应的偏振片的偏振方向垂直。
  22. 根据权利要求20或21所述的指纹识别装置,其特征在于,所述第二光信号和所述环境光信号为自然光信号,所述像素单元A的输出信号、所述像素单元B的输出信号、所述像素单元C的输出信号、所述像素单元D的输出信号以及所述第一光信号的输出信号LI OP用于确定所述第一像素单元组对所述自然光信号的输出信号LI ON
  23. 根据权利要求22所述的指纹识别装置,其特征在于,所述第一光信号的输出信号LI OP等于所述像素单元A的输出信号和所述像素单元C的输出信号之间的差值的绝对值;或者
    所述第一光信号的输出信号LI OP等于所述像素单元B的输出信号和所述像素单元D的输出信号之间的差值的绝对值。
  24. 根据权利要求22所述的指纹识别装置,其特征在于,所述第一光信号的输出信号LI OP满足:
    Figure PCTCN2020138727-appb-100005
    其中,LI A-C为所述像素单元A的输出信号和所述像素单元C的输出信号之间的差值,LI B-D为所述像素单元B的输出信号和所述像素单元D的输出信号之间的差值。
  25. 根据权利要求23或24所述的指纹识别装置,其特征在于,所述自然光信号的输出信号LI ON满足:
    LI ON=LI A+LI B+LI C+LI D-LI OP
    其中,LI A为所述像素单元A的输出信号,LI B为所述像素单元B的输出信号,LI C为所述像素单元C的输出信号,LI D为所述像素单元D的输出信号。
  26. 根据权利要求22所述的指纹识别装置,其特征在于,所述第一光信号的输出信号LI OP满足:
    LI OP=|LI A-C|+|LI B-D|
    其中,LI A-C为所述像素单元A的输出信号和所述像素单元C的输出信号之间的差值,LI B-D为所述像素单元B的输出信号和所述像素单元D的输出信号之间的差值。
  27. 根据权利要求26所述的指纹识别装置,其特征在于,所述自然光信号的输出信号LI ON满足:
    Figure PCTCN2020138727-appb-100006
    其中,LI A为所述像素单元A的输出信号,LI B为所述像素单元B的输出信号,LI C为所述像素单元C的输出信号,LI D为所述像素单元D的输出信号。
  28. 根据权利要求1至27中任一项所述的指纹识别装置,其特征在于,所述指纹识别装置用于设置在所述显示屏下方或所述显示屏内。
  29. 根据权利要求28所述的指纹识别装置,所述显示屏包括显示像素层,当所述指纹识别装置用于设置在所述显示屏内时,所述指纹识别装置与所述显示像素层设置在同一层。
  30. 根据权利要求1至29中任一项所述的指纹识别装置,其特征在于,所述光源为所述显示屏的至少部分显示像素。
  31. 根据权利要求30所述的指纹识别装置,其特征在于,所述显示屏为微型发光二极管Micro-LED显示屏,或者,所述显示屏为迷你发光二极管Mini-LED显示屏。
  32. 根据权利要求1至29中任一项所述的指纹识别装置,其特征在于,所述光源为外置光源,所述外置光源设置于所述显示屏下方。
  33. 一种显示屏,其特征在于,所述显示屏不包括偏振片,所述显示屏包括:
    显示像素层;
    如权利要求1至32所述的指纹识别装置;
    其中,所述显示像素层与所述指纹识别装置设置在同一层。
  34. 一种电子设备,其特征在于,包括:
    显示屏,所述显示屏不包括偏振片;
    以及如权利要求1至32中任一项所述的指纹识别装置,所述指纹识别装置设置在所述显示屏下方或所述显示屏内。
PCT/CN2020/138727 2020-12-23 2020-12-23 指纹识别装置、显示屏和电子设备 WO2022133833A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/138727 WO2022133833A1 (zh) 2020-12-23 2020-12-23 指纹识别装置、显示屏和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/138727 WO2022133833A1 (zh) 2020-12-23 2020-12-23 指纹识别装置、显示屏和电子设备

Publications (1)

Publication Number Publication Date
WO2022133833A1 true WO2022133833A1 (zh) 2022-06-30

Family

ID=82157086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138727 WO2022133833A1 (zh) 2020-12-23 2020-12-23 指纹识别装置、显示屏和电子设备

Country Status (1)

Country Link
WO (1) WO2022133833A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103679153A (zh) * 2013-12-16 2014-03-26 中国民航大学 手指多模态生物特征偏振成像系统
CN106339682A (zh) * 2016-08-26 2017-01-18 京东方科技集团股份有限公司 指纹识别的显示面板及指纹识别的显示装置
US20170372113A1 (en) * 2017-04-27 2017-12-28 Shanghai Tianma Micro-electronics Co., Ltd. Display panel and display device
CN108873480A (zh) * 2018-08-01 2018-11-23 京东方科技集团股份有限公司 一种led光源、背光源及显示装置
CN110770747A (zh) * 2019-05-14 2020-02-07 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103679153A (zh) * 2013-12-16 2014-03-26 中国民航大学 手指多模态生物特征偏振成像系统
CN106339682A (zh) * 2016-08-26 2017-01-18 京东方科技集团股份有限公司 指纹识别的显示面板及指纹识别的显示装置
US20170372113A1 (en) * 2017-04-27 2017-12-28 Shanghai Tianma Micro-electronics Co., Ltd. Display panel and display device
CN108873480A (zh) * 2018-08-01 2018-11-23 京东方科技集团股份有限公司 一种led光源、背光源及显示装置
CN110770747A (zh) * 2019-05-14 2020-02-07 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备

Similar Documents

Publication Publication Date Title
US11455823B2 (en) Under-screen fingerprint identification apparatus and electronic device
US11403869B2 (en) Optical fingerprint identification apparatus and electronic device
WO2020151159A1 (zh) 指纹识别的装置和电子设备
WO2020223882A1 (zh) 指纹识别装置和电子设备
US11917763B2 (en) Fingerprint identification apparatus and electronic device
CN111052140B (zh) 指纹识别装置和电子设备
CN209765529U (zh) 指纹识别装置和电子设备
WO2020220305A1 (zh) 屏下指纹识别装置和电子设备
WO2021072753A1 (zh) 指纹检测装置和电子设备
US11403870B2 (en) Fingerprint identification apparatus and electronic device
US11928885B2 (en) Fingerprint identification method, fingerprint identification apparatus and electronic device
WO2021108968A1 (zh) 屏下光学指纹识别装置及系统、液晶显示屏
WO2020220298A1 (zh) 指纹识别装置和电子设备
CN110770747B (zh) 指纹识别装置和电子设备
CN210295124U (zh) 指纹检测的装置和电子设备
CN210143028U (zh) 指纹识别装置和电子设备
WO2020243936A1 (zh) 屏下生物特征识别装置和电子设备
CN211180838U (zh) 指纹识别装置和电子设备
CN112036325B (zh) 指纹识别模组与显示装置
WO2022133833A1 (zh) 指纹识别装置、显示屏和电子设备
WO2021056318A1 (zh) 指纹识别的方法、装置和电子设备
US11783619B2 (en) Fingerprint identification apparatus and electronic device
CN210864753U (zh) 指纹识别装置和电子设备
CN112528942A (zh) 指纹识别装置、显示屏和电子设备
TWI738488B (zh) 指紋識別模組與顯示裝置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20966408

Country of ref document: EP

Kind code of ref document: A1