KR101736085B1 - 특정한 형태들을 가진 연마 입자들 및 이러한 입자들을 형성하는 방법들 - Google Patents

특정한 형태들을 가진 연마 입자들 및 이러한 입자들을 형성하는 방법들 Download PDF

Info

Publication number
KR101736085B1
KR101736085B1 KR1020157012244A KR20157012244A KR101736085B1 KR 101736085 B1 KR101736085 B1 KR 101736085B1 KR 1020157012244 A KR1020157012244 A KR 1020157012244A KR 20157012244 A KR20157012244 A KR 20157012244A KR 101736085 B1 KR101736085 B1 KR 101736085B1
Authority
KR
South Korea
Prior art keywords
abrasive particles
shaped abrasive
backing
group
predetermined
Prior art date
Application number
KR1020157012244A
Other languages
English (en)
Other versions
KR20150067357A (ko
Inventor
앤서니 씨. 게타
아누즈 세트
크리스토퍼 아코나
도룩 오. 예너
제니퍼 에이치. 체레핀스키
수자타 아옌가
프랭크 제이. 크실락
윌리엄 씨. 라이스
사트얄락쉬미 케이. 라메쉬
그레고리 쥐. 라폰드
시다스 에스. 위제수리야
아담 디. 리오
알란 제이. 브란데스
아닐 파마
폴 브라운
다렐 케이. 에버츠
Original Assignee
생-고뱅 어브레이시브즈, 인코포레이티드
생-고벵 아브라시프
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 생-고뱅 어브레이시브즈, 인코포레이티드, 생-고벵 아브라시프 filed Critical 생-고뱅 어브레이시브즈, 인코포레이티드
Publication of KR20150067357A publication Critical patent/KR20150067357A/ko
Application granted granted Critical
Publication of KR101736085B1 publication Critical patent/KR101736085B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/001Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as supporting member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • B24D11/04Zonally-graded surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • B24D11/001Manufacture of flexible abrasive materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • B24D18/0072Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for using adhesives for bonding abrasive particles or grinding elements to a support, e.g. by gluing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D7/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor
    • B24D7/02Wheels in one piece
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D2203/00Tool surfaces formed with a pattern
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24893Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including particulate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

백킹 위에 놓인 복수의 성형 연마 입자들을 포함한 제 1 그룹을 포함한 연마 물품, 상기 제 1 그룹의 복수의 성형 연마 입자들은 서로에 대해 제 1 비-섀도잉 분포를 정의한다.

Description

특정한 형태들을 가진 연마 입자들 및 이러한 입자들을 형성하는 방법들{ABRASIVE PARTICLES HAVING PARTICULAR SHAPES AND METHODS OF FORMING SUCH PARTICLES}
다음은 연마 물품들, 및 특히 연마 물품들을 형성하는 방법들에 관한 것이다.
연마 입자들 및 연마 입자들로 만든 연마 물품들은 연삭, 마감, 및 폴리싱을 포함한 다양한 재료 제거 동작들에 유용하다. 연마 재료의 유형에 의존하여, 이러한 연마 입자들은 제품들의 제조시 매우 다양한 재료들 및 표면들을 성형 또는 연삭할 때 유용할 수 있다. 특정한 유형들의 연마 입자들은 지금까지 삼각형 연마 입자들 및 이러한 오브젝트들을 통합한 연마 물품들과 같은, 특정한 기하학적 구조들을 가진 것으로 만들어졌다. 예를 들면, 미국 특허 번호들 제5,201,916호; 제5,366,523호; 및 제5,984,988호를 참조하자.
특정 형태를 가진 연마 입자들을 생성하기 위해 이용되어 온 몇몇 기본 기술들은 (1) 융합, (2) 소결, 및 (3) 화학적 세라믹이다. 융합 프로세스에서, 연마 입자들은 냉각 롤에 의해 성형될 수 있으며, 그 면은 음각될 수 있거나 또는 음각되지 않을 수 있으며, 용융 재료로 몰딩이 부어지거나 또는 열 싱크 재료가 용해된 산화 알루미늄에 침지된다. 예를 들면, 노(furnace)로부터 냉 회전 주조 실린더로 용융된 연마 재료를 흐르게 하고, 얇은 반고체 곡선 시트를 형성하기 위해 재료를 빠르게 고체화하고, 압력 롤을 갖고 준고체 재료를 고밀화하며, 그 후 빠르게 구동된 냉각 컨베이어를 갖고 그것을 실린더로부터 끌어당김으로써 그것의 곡률을 반전시킴으로써 반고체 재료의 스트립을 부분적으로 파괴하는 단계들을 포함한 프로세스를 개시한, 미국 특허 번호 제3,377,660호를 참조하자.
소결 프로세스에서, 연마 입자들은 지름이 45 마이크로미터들 이하의 입자 크기를 가진 내화물 분말들로부터 형성될 수 있다. 결합제들은 윤활유 및 적절한 용제, 예로서 물과 함께 분말들에 부가될 수 있다. 결과적인 혼합물들, 또는 슬러리들은 다양한 길이들 및 지름들의 작은 판들 또는 막대들로 성형될 수 있다. 예를 들면, (1) 재료를 미세한 분말로 감소시키는 단계, (2) 긍정 압력 하에 압축하며 상기 분말의 미세 입자들을 결정립 크기 집합체들로 형성하는 단계, 및 (3) 입자들의 제한된 재결정화를 유도하고, 그에 의해 연마립들이 직접 원하는 크기로 생성되도록 보크사이트의 융합 온도 미만의 온도에서 입자들의 집합체들을 소결하는 단계들을 포함한 하소된 보크사이트 재료로부터 연마 입자들을 만드는 방법을 개시하는, 미국 특허 번호 제3,079,242호를 참조하자.
화학적 세라믹 기술은 다른 금속 산화물 전구체들의 용액들을 갖고, 선택적으로 혼합물에서 콜로이드 분산 또는 히드로졸(때때로 졸로서 불리우는)을 겔 건조로 변환하는 것, 및 세라믹 재료를 획득하기 위해 소성시키는 것을 수반한다. 예를 들면, 미국 특허 번호들 제4,744,802호 및 제4,848,041호를 참조하자.
계속해서, 연마 입자들, 및 연마 입자들을 이용하는 연마 물품들의 성능, 수명, 및 효능을 개선하기 위한 산업에서의 요구가 여전히 있다.
제 1 양상에 따르면, 연마 물품은, 백킹(backing), 상기 백킹 위에 놓인 부착 층, 제 1 위치에서 상기 백킹에 결합된 제 1 성형 연마 입자, 제 2 위치에서 상기 백킹에 결합된 제 2 성형 연마 입자를 포함하며, 상기 제 1 성형 연마 입자 및 제 2 성형 연마 입자는 서로에 대하여 비-섀도잉 배열로 배열되고, 상기 비-섀도잉 배열은 미리 결정된 회전 배향, 미리 결정된 가로 배향, 및 미리 결정된 세로 배향 중 적어도 두 개를 포함한다.
또 다른 양상에서, 연마 물품은 백킹, 상기 백킹 위에 놓인 부착 층, 상기 백킹에 결합된 복수의 성형 연마 입자들을 포함한 제 1 그룹으로서, 상기 제 1 그룹의 상기 복수의 성형 연마 입자들의 각각은 미리 결정된 회전 배향, 미리 결정된 가로 배향, 및 미리 결정된 세로 배향 중 적어도 하나를 공유하는, 상기 제 1 그룹, 및 상기 제 1 그룹과 다르며 상기 백킹에 결합된 복수의 성형 연마 입자들을 포함한 제 2 그룹으로서, 상기 제 2 그룹의 상기 복수의 성형 연마 입자들의 각각은 미리 결정된 회전 배향, 미리 결정된 가로 배향, 및 미리 결정된 세로 배향 중 적어도 하나를 공유하는, 상기 제 2 그룹을 포함한다.
또 다른 양상에 대해, 연마 물품은 백킹, 및 비연속 층에서 상기 백킹에 결합된 복수의 성형 연마 입자들을 포함한 제 1 그룹을 포함하며, 상기 복수의 성형 연마 입자들은 서로에 대하여 비-섀도잉 배열로 배열되며 동일한 회전 배향, 동일한 가로 배향, 동일한 가로 배향 공간, 동일한 세로 배향, 및 동일한 세로 배향 공간을 정의한다.
일 양상에 따르면, 연마 물품은 백킹 위에 놓인 복수의 성형 연마 입자들을 포함한 제 1 그룹을 포함하며, 상기 제 1 그룹의 복수의 성형 연마 입자들은 서로에 대한 제 1 패턴을 정의한다.
또 다른 양상에 대해, 연마 물품은 백킹, 비연속 층에서 상기 백킹에 결합된 복수의 성형 연마 입자들을 가진 제 1 그룹을 포함하며, 상기 제 1 그룹의 상기 복수의 성형 연마 입자들은 동일한 미리 결정된 회전 배향, 동일한 미리 결정된 가로 배향, 동일한 미리 결정된 세로 배향, 동일한 미리 결정된 수직 높이, 및 동일한 미리 결정된 팁 높이 중 적어도 두 개의 조합에 의해 정의된다.
일 양상에 따르면, 연마 물품은 백킹 위에 놓인 제 1 그룹의 복수의 성형 연마 입자들을 포함하며, 상기 제 1 그룹의 상기 복수의 성형 연마 입자들은 서로에 대한 비-섀도잉 배열을 정의하고, 성형 연마 입자들의 총 함량의 적어도 약 80%가 백킹에 대하여 측 배향으로 배열된다.
특정한 양상에서, 연마 물품을 형성하는 방법은 백킹을 제공하는 단계, 미리 결정된 회전 배향, 미리 결정된 가로 배향, 및 미리 결정된 세로 배향 중 적어도 두 개에 의해 정의된 제 1 위치에서 상기 백킹 상에 제 1 성형 연마 입자를 위치시키는 단계, 및 미리 결정된 회전 배향, 미리 결정된 가로 배향, 및 미리 결정된 세로 배향 중 적어도 두 개에 의해 정의된 제 2 위치에서 상기 백킹 상에 제 2 성형 연마 입자를 위치시키는 단계를 포함한다.
본 개시는 첨부한 도면들을 참조함으로써 이 기술분야의 숙련자들에게 더 잘 이해될 수 있으며, 그것의 다수의 특징들 및 이점들이 더 명백해진다.
도 1a는 실시예에 따른 연마 물품의 일 부분의 상면도 예시를 포함한다.
도 1b는 실시예에 따른 연마 물품의 일 부분의 단면 예시를 포함한다.
도 1c는 실시예에 따른 연마 물품의 일 부분의 단면 예시를 포함한다.
도 1d는 실시예에 따른 연마 물품의 일 부분의 단면 예시를 포함한다.
도 2a는 실시예에 따른 성형 연마 입자들을 포함한 연마 물품의 일 부분의 상면도 예시를 포함한다.
도 2b는 실시예에 따른 연마 물품 상에서 성형 연마 입자의 투시도를 포함한다.
도 3a는 실시예에 따른 연마 물품의 일 부분의 상면도 예시를 포함한다.
도 3b는 실시예에 따른 연삭 방향에 대해 미리 결정된 배향 특성들을 가진 성형 연마 입자들을 포함한 연마 물품의 일 부분의 투시도 예시를 포함한다.
도 4는 실시예에 따른 연마 물품의 일 부분의 상면도 예시를 포함한다.
도 5는 실시예에 따른 연마 물품의 일 부분의 상면도를 포함한다.
도 6은 실시예에 따른 연마 물품의 일 부분의 상면도 예시를 포함한다.
도 7a는 실시예에 따른 연마 물품의 일 부분의 상면도 예시를 포함한다.
도 7b는 실시예에 따른 연마 물품의 일 부분의 투시도 예시를 포함한다.
도 7c는 실시예에 따라 제공된 연마 물품의 일 부분 상에 형성될 비-섀도잉 배열의 상면도 예시를 포함한다.
도 7d는 실시예에 따른 성형 연마 입자들의 비-섀도잉 배열을 가진 연마 물품의 일 부분의 이미지를 포함한다.
도 8a는 실시예에 따른 성형 연마 입자의 투시도 예시를 포함한다.
도 8b는 도 8a의 성형 연마 입자의 단면 예시를 포함한다.
도 8c는 실시예에 따른 성형 연마 입자의 측면도 예시를 포함한다.
도 9는 실시예에 따른 정렬 구조의 일 부분의 예시를 포함한다.
도 10은 실시예에 따른 정렬 구조의 일 부분의 예시를 포함한다.
도 11은 실시예에 따른 정렬 구조의 일 부분의 예시를 포함한다.
도 12는 실시예에 따른 정렬 구조의 일 부분의 예시를 포함한다.
도 13은 실시예에 따른 접착제를 포함한 이산 접촉 영역들을 포함한 정렬 구조의 일 부분의 예시를 포함한다.
도 14a 내지 도 14h는 여기에서의 실시예들에 따른 부착 재료의 이산 접촉 영역들을 포함한 다양한 패터닝된 정렬 구조들을 가진 연마 물품들을 형성하기 위한 툴들의 부분들의 하향식 뷰들을 포함한다.
도 15는 실시예에 따른 연마 물품을 형성하기 위한 시스템의 예시를 포함한다.
도 16은 실시예에 따른 연마 물품을 형성하기 위한 시스템의 예시를 포함한다.
도 17a 내지 도 17c는 실시예에 따른 연마 물품을 형성하기 위한 시스템들의 예시들을 포함한다.
도 18은 실시예에 따른 연마 물품을 형성하기 위한 시스템의 예시를 포함한다.
도 19는 실시예에 따른 연마 물품을 형성하기 위한 시스템의 예시를 포함한다.
도 20a는 실시예에 따른 연마 물품을 형성하기 위해 사용된 툴의 이미지를 포함한다.
도 20b는 실시예에 따른 연마 물품을 형성하기 위해 사용된 툴의 이미지를 포함한다.
도 20c는 실시예에 따른 연마 물품의 일 부분의 이미지를 포함한다.
도 21은 예 1의 연삭 테스트에 따라 샘플 A 및 샘플 B에 대한 수직 항력(N) 대 절단 수의 플롯을 포함한다.
도 22는 실시예에 따른 대표적인 샘플의 일 부분의 이미지를 포함한다.
도 23은 종래의 샘플의 일 부분의 이미지를 포함한다.
도 24는 두 개의 종래의 샘플들 및 실시예들을 대표하는 3개의 샘플에 대한 상향 결정립들/㎠ 및 결정립들/㎠의 총 수의 플롯을 포함한다.
도 25 내지 도 27은 실시예들에 따라 비-섀도잉 배열들을 형성하기 위해 백킹 상에서의 성형 연마 입자들의 위치들의 플롯들의 예시들을 포함한다.
도 28은 실시예에 따라 비-섀도잉 배열들을 형성하기 위해 백킹 상에서의 성형 연마 입자들의 위치들의 플롯의 예시를 포함한다.
도 29는 백킹 상에서의 성형 연마 입자들의 섀도잉 배열을 가진 종래의 샘플의 이미지를 포함한다.
도 30은 실시예를 나타내는 샘플을 사용한 워크피스 접지의 표면의 일 부분의 이미지를 포함한다.
도 31은 종래의 실시예를 나타내는 샘플을 사용한 워크피스 접지의 표면의 일 부분의 이미지를 포함한다.
다음은 성형 연마 입자들을 형성하는 방법들, 성형 연마 입자들의 특징들, 성형 연마 입자를 사용하여 연마 물품들을 형성하는 방법들, 및 연마 물품들의 특징들에 관한 것이다. 성형 연마 입자들은 예를 들면, 접합된 연마 물품들, 코팅된 연마 물품들 등을 포함한, 다양한 연마 물품들에서 사용될 수 있다. 특정한 인스턴스들에서, 여기에서의 실시예들의 연마 물품들은 연마립들의 단일 층, 및 보다 특히 성형 연마 입자들의 비연속적, 단일 층에 의해 정의된 코팅된 연마 물품들일 수 있으며, 이것은 백킹에 접합되거나 또는 그것에 결합되며, 워크피스들로부터 재료를 제거하기 위해 사용될 수 있다. 특히, 성형 연마 입자들은 성형 연마 입자들이 서로에 대하여 미리 결정된 분포를 정의하도록 제어된 방식으로 위치될 수 있다.
성형 연마 입자들을 형성하는 방법들
다양한 방법들이 성형 연마 입자들을 형성하기 위해 이용될 수 있다. 예를 들면, 성형 연마 입자들은 압출 성형, 몰딩, 스크린 인쇄, 롤링, 용해, 프레싱, 주조, 분할, 섹셔닝, 및 그것의 조합과 같은 기술들을 사용하여 형성될 수 있다. 특정한 인스턴스들에서, 성형 연마 입자들은, 세라믹 재료 및 액체를 포함할 수 있는, 혼합물로부터 형성될 수 있다. 특정한 인스턴스들에서, 혼합물은 세라믹 분말 재료 및 액체로 형성된 겔일 수 있으며, 여기에서 겔은 그린(즉, 소성되지 않은) 상태에서조차 주어진 형태를 상당히 유지하기 위한 능력을 가진 형태-안정 재료로서 특성화될 수 있다. 실시예에 따르면, 겔은 단립자들의 통합된 네트워크로서 세라믹 분말 재료로 형성될 수 있다.
혼합물은 그것이 성형 연마 입자들을 형성하기 위한 적절한 유동학적 특성들을 갖도록 특정한 함량의 고체 재료, 액체 재료, 및 첨가물들을 포함할 수 있다. 즉, 특정한 인스턴스들에서, 혼합물은 특정한 점성, 및 보다 특히 재료의 치수적으로 안정된 상의 형성을 용이하게 하는 적절한 유동학적 특성들을 가질 수 있다. 재료의 치수적으로 안정된 상은 특정한 형태를 가지며 실질적으로 형태가 최종-형성된 오브젝트에 존재하도록 하는 형태를 유지하기 위해 형성될 수 있는 재료이다.
특정한 실시예에 따르면, 혼합물은 세라믹 분말 재료와 같은, 특정한 함량의 고체 재료를 갖도록 형성될 수 있다. 예를 들면, 일 실시예에서, 혼합물은 혼합물의 총 중량에 대해 적어도 약 35 wt%, 또는 심지어 적어도 약 38 wt%와 같은, 적어도 약 25 wt%의 고체 함량을 가질 수 있다. 계속해서, 적어도 하나의 비-제한적인 실시예에서, 혼합물의 고체 함량은 약 70 wt% 이하, 약 65 wt% 이하, 약 55 wt% 이하, 약 45 wt% 이하, 또는 약 42 wt% 이하와 같은 약 75 wt% 이하일 수 있다. 혼합물에서 고체 재료들의 함량은 상기 주지된 최소 및 최대 퍼센티지들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다.
일 실시예에 따르면, 세라믹 분말 재료는 산화물, 질화물, 탄화물, 붕소화물, 옥시탄화물, 옥시질화물, 및 그것의 조합을 포함할 수 있다. 특정한 인스턴스들에서, 세라믹 재료는 알루미나를 포함할 수 있다. 보다 구체적으로, 세라믹 재료는 보헤마이트 재료를 포함할 수 있으며, 이것은 알파 알루미나의 전구체일 수 있다. 용어("보헤마이트")는 일반적으로, 통상적으로 Al2O3ㆍH2O이며 대략 15%의 물 함량을 가진 미네랄 보헤마이트, 뿐만 아니라 중량으로 20 내지 38%와 같은, 15%보다 높은 물 함량을 가진 의사보헤마이트를 포함한 알루미나 수화물들을 나타내기 위해 여기에서 사용된다. 보헤마이트(의사보헤마이트를 포함한)는 특정하며 식별 가능한 결정 구조, 및 그에 따라 고유한 X-선 회절 패턴을 가지며, 이와 같이 보헤마이트 입자상 물질들의 제조를 위해 여기에 사용된 ATH(알루미늄 트리하이드록사이드) 공통 전구체 재료와 같은 다른 수화 알루미나들을 포함한 다른 알루미나질 재료들로부터 구별된다는 것이 주의된다.
더욱이, 혼합물은 특정한 함량의 액체 재료를 갖도록 형성될 수 있다. 몇몇 적절한 액체들은 물을 포함할 수 있다. 일 실시예에 따르면, 혼합물은 혼합물의 고체 함량보다 적은 액체 함량을 갖도록 형성될 수 있다. 보다 특정한 인스턴스들에서, 혼합물은 혼합물의 총 중량에 대해 적어도 약 35 wt%, 적어도 약 45 wt%, 적어도 약 50 wt%, 또는 심지어 적어도 약 58 wt%와 같은, 적어도 약 25 wt%의 액체 함량을 가질 수 있다. 계속해서, 적어도 일 비-제한적인 실시예에서, 혼합물의 액체 함량은 약 70 wt% 이하, 약 65 wt% 이하, 약 62 wt% 이하, 또는 심지어 약 60 wt% 이하와 같은, 약 75 wt% 이하일 수 있다. 혼합물에서 액체의 함량은 상기 주지된 최소 및 최대 퍼센티지들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다.
더욱이, 특정한 프로세스들에 대해, 혼합물은 특정한 저장 탄성률을 가질 수 있다. 예를 들면, 혼합물은 적어도 약 4x104 Pa, 또는 심지어 적어도 약 5x104 Pa와 같은, 적어도 약 1x104 Pa의 저장 탄성률을 가질 수 있다. 그러나, 적어도 하나의 비-제한적인 실시예에서, 혼합물은 약 2x106 Pa 이하와 같은, 약 1x107 Pa 이하의 저장 탄성률을 가질 수 있다. 혼합물(101)의 저장 탄성률은 상기 주지된 최소 및 최대 값들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다.
저장 탄성률은 펠티에 판 온도 제어 시스템들(Peltier plate temperature control systems)을 갖고, ARES 또는 AR-G2 회전 유동계들을 사용하여 평행 판 시스템을 통해 측정될 수 있다. 테스팅을 위해, 혼합물은 서로로부터 대략 8 mm 떨어지도록 설정되는 두 개의 판들 사이에서의 갭 내에서 사출될 수 있다. 겔을 갭으로 사출시킨 후, 갭을 정의하는 두 개의 판들 사이에서의 거리는 혼합물이 판들 사이에서의 갭을 완전히 채울 때까지 2 mm로 감소된다. 과도한 혼합물을 제거한 후, 갭은 0.1 mm까지 감소되며 테스트가 개시된다. 테스트는 25-mm 평행 판을 사용하며 10년당 10 포인트들을 기록하여, 6.28 rad/s(1 Hz)에서, 01% 내지 100% 사이에서의 변형률 범위의 기구 설정들을 갖고 행해진 발진 변형률 스위프 테스트이다. 테스트가 완료된 후 1시간 내에, 0.1 mm 만큼 다시 갭을 낮추며 테스트를 반복한다. 테스트는 적어도 6회 반복될 수 있다. 제 1 테스트는 제 2 및 제 3 테스트들과 상이할 수 있다. 단지 각각의 표본에 대한 제 2 및 제 3 테스트들로부터의 결과들만이 보고되어야 한다.
더욱이, 여기에서의 실시예들에 따라 성형 연마 입자들을 프로세싱하고 형성하는 것을 용이하게 하기 위해, 혼합물은 특정한 점성을 가질 수 있다. 예를 들면, 혼합물은 적어도 약 4x103 Pa s, 적어도 약 5x103 Pa s, 적어도 약 6x103 Pa s, 적어도 약 8x103 Pa s, 적어도 약 10x103 Pa s, 적어도 약 20x103 Pa s, 적어도 약 30x103 Pa s, 적어도 약 40x103 Pa s, 적어도 약 50x103 Pa s, 적어도 약 60x103 Pa s, 적어도 약 65x103 Pa s의 점성을 가질 수 있다. 적어도 하나의 비-제한적인 실시예에서, 혼합물은 약 100x103 Pa s 이하, 약 95x103 Pa s 이하, 약 90x103 Pa s 이하, 또는 심지어 약 85x103 Pa s 이하의 점성을 가질 수 있다. 혼합물의 점성은 상기 주지된 최소 및 최대 값들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다. 점성은 상기 설명된 바와 같이 저장 탄성률과 동일한 방식으로 측정될 수 있다.
게다가, 혼합물은 여기에서의 실시예들에 따른 성형 연마 입자들의 프로세싱 및 형성을 용이하게 하기 위해, 예를 들면, 액체와 다를 수 있는 유기 첨가물들을 포함한, 특정한 함량의 유기 재료들을 갖도록 형성될 수 있다. 몇몇 적절한 유기 첨가물들은 안정제들, 과당, 자당, 젖당, 포도당, UV 경화 수지들 등과 같은 결합제들을 포함할 수 있다.
특히, 여기에서의 실시예들은 종래의 형성 동작들에 사용된 슬러리들과 다를 수 있는 혼합물을 이용할 수 있다. 예를 들면, 혼합물 내에서의 유기 재료들, 특히 상기 주지된 유기 첨가물들 중 임의의 것의 함량은 혼합물 내에서 다른 구성요소들에 비교하여 작은 양일 수 있다. 적어도 일 실시예에서, 혼합물은 혼합물의 총 중량에 대해 약 30 wt% 이하의 유기 재료를 갖도록 형성될 수 있다. 다른 인스턴스들에서, 유기 재료들의 양은 약 15 wt% 이하, 약 10 wt% 이하, 또는 심지어 약 5 wt% 이하와 같이, 보다 적을 수 있다. 계속해서, 적어도 일 비-제한적인 실시예에서, 혼합물 내에서의 유기 재료들의 양은 혼합물의 총 중량에 대해 적어도 약 0.5 wt%와 같은, 적어도 약 0.01 wt%일 수 있다. 혼합물에서 유기 재료들의 양은 상기 주지된 최소 및 최대 값들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다.
게다가, 혼합물은 여기에서의 실시예들에 따른 성형 연마 입자들의 프로세싱 및 형성을 용이하게 하기 위해, 액체와 다른 특정한 함량의 산 또는 염기를 갖도록 형성될 수 있다. 몇몇 적절한 산들 또는 염기들은 질산, 황산, 시트르산, 염소산, 타르타르산, 인산, 질산 암모늄, 시트르산 암모늄을 포함할 수 있다. 일 특정한 실시예에 따르면, 혼합물은 질산 첨가물을 사용하여, 약 5 미만 및 보다 특히, 약 2 및 약 4 사이에서의 범위 내에 있는 pH를 가질 수 있다.
형성의 일 특정한 방법에 따르면, 혼합물은 스크린 인쇄 프로세스를 통해 성형 연마 입자들을 형성하기 위해 사용될 수 있다. 일반적으로, 스크린 인쇄 프로세스는 도포 구역에서 다이로부터 스크린의 개구들로 혼합물의 사출을 포함할 수 있다. 개구들을 가진 스크린 및 스크린 밑에 있는 벨트를 포함한 기판 조합은 다이 하에서 이송될 수 있으며 혼합물은 스크린의 개구들로 전달될 수 있다. 개구들에 포함된 혼합물은 스크린의 개구들로부터 나중 사출되며 벨트 상에 포함될 수 있다. 혼합물의 결과적인 성형 부분들은 전구체 성형 연마 입자들일 수 있다.
실시예에 따르면, 스크린은 미리 결정된 2-차원 형태를 가진 하나 이상의 개구들을 가질 수 있으며, 이것은 실질적으로 동일한 2-차원 형태를 가진 성형 연마 입자들의 형성을 용이하게 할 수 있다. 개구의 형태로부터 복제되지 않을 수 있는 성형 연마 입자들의 특징들이 있을 수 있다는 것이 이해될 것이다. 일 실시예에 따르면, 개구는 다양한 형태들, 예를 들면, 다각형, 타원체, 숫자, 그리스 알파벳 문자, 라틴 알파벳 문자, 러시아 알파벳 글자, 간지(Kanji) 글자, 다각형 형태들의 조합을 포함한 복합 형태, 및 그것의 조합을 가질 수 있다. 특정한 인스턴스들에서, 개구들은 삼각형, 직사각형, 4각형, 5각형, 6각형, 7각형, 8각형, 9각형, 10각형, 및 그것의 조합을 가질 수 있다.
특히, 혼합물은 급속 방식으로 스크린을 밀고 들어가질 수 있으며, 따라서 개구들 내에서의 혼합물의 평균 체류 시간은 약 2분 미만, 약 1분 미만, 약 40초 미만, 또는 심지어 약 20초 미만일 수 있다. 특정한 비-제한적인 실시예들에서, 혼합물은 그것이 스크린 개구들을 통해 이동함에 따라 인쇄 동안 실질적으로 변경되지 않을 수 있으며, 따라서 원래 혼합물로부터 구성요소들의 양에서 어떤 변화도 경험하지 않으며, 스크린의 개구들에서 어떤 주목할 만한 건조도 경험하지 않을 수 있다.
벨트 및/또는 스크린은 프로세싱을 용이하게 하기 위해 특정한 레이트로 이송될 수 있다. 예를 들면, 벨트 및/또는 스크린은 적어도 약 3 cm/s의 레이트로 이송될 수 있다. 다른 실시예에서, 벨트 및/또는 스크린의 이송의 레이트는 적어도 약 4 cm/s, 적어도 약 6 cm/s, 적어도 약 8 cm/s, 또는 심지어 적어도 약 10 cm/s와 같이, 더 클 수 있다. 여기에서의 실시예들에 따른 특정한 프로세스들에 대해, 혼합물의 사출의 레이트와 비교하여 벨트의 이송의 레이트는 적절한 프로세싱을 용이하게 하기 위해 제어될 수 있다.
특정한 프로세싱 파라미터들이 전구체 성형 연마 입자들(즉, 성형 프로세스에 기인한 입자들) 및 여기에 설명된 최종-형성된 성형 연마 입자들의 특징들을 가능하게 하기 위해 제어될 수 있다. 몇몇 대표적인 프로세스 파라미터들은 도포 구역 내에서의 포인트에 대한 스크린 및 벨트 사이에서의 분리의 포인트를 정의한 방출 거리, 혼합물의 점성, 혼합물의 저장 탄성률, 도포 구역 내에서의 구성요소들의 기계적 속성들, 스크린의 두께, 스크린의 강성률, 혼합물의 고체 함량, 혼합물의 캐리어 함량, 벨트 및 스크린 사이에서의 방출 각도, 이송 속도, 온도, 벨트 상에서 또는 스크린의 개구들의 표면들 상에서 이형제의 함량, 사출을 용이하게 하기 위해 혼합물 상에 가해진 압력, 벨트의 속도, 및 그것의 조합을 포함할 수 있다.
성형 프로세스를 완료한 후, 결과적인 전구체 성형 연마 입자들은 일련의 구역들을 통해 이송될 수 있으며, 여기에서 부가적인 처리들이 발생할 수 있다. 몇몇 적절한 대표적인 부가적인 처리들은 건조, 가열, 경화, 반응, 방사, 혼합, 스터링, 교반, 평탄화, 하소, 소결, 세분, 체가름, 도핑, 및 그것의 조합을 포함할 수 있다. 일 실시예에 따르면, 선구 성형 연마 입자들은 선택적 성형 구역을 통해 이송될 수 있으며, 여기에서 입자들의 적어도 하나의 외부 표면은 추가로 성형될 수 있다. 부가적으로 또는 대안적으로, 전구체 성형 연마 입자들은 도펀트 재료가 전구체 성형 연마 입자들의 적어도 하나의 외부 표면에 도포될 수 있는 도포 구역을 통해 이송될 수 있다. 도펀트 재료는 예를 들면, 분무, 디핑, 증착, 함침, 전사, 펀칭, 절단, 프레싱, 파쇄, 및 그것의 임의의 조합을 포함한 다양한 방법들을 이용하여 도포될 수 있다. 특정한 인스턴스들에서, 도포 구역은 도펀트 재료를 전구체 성형 연마 입자들로 분무하기 위해 분무 노즐, 또는 분무 노즐들의 조합을 이용할 수 있다.
실시예에 따르면, 도펀트 재료를 도포하는 것은 전구체와 같은, 특정한 재료의 도포를 포함할 수 있다. 몇몇 대표적인 전구체 재료들은 최종-형성된 성형 연마 입자들로 통합될 도펀트 재료를 포함할 수 있다. 예를 들면, 금속염은 도펀트 재료(예로서, 금속 원소)에 대한 전구체인 원소 또는 화합물을 포함할 수 있다. 염은 염 및 액체 캐리어를 포함한 혼합물 또는 용액에서와 같이, 액체 형태에 있을 수 있다는 것이 이해될 것이다. 염은 질소를 포함할 수 있으며, 보다 특히 질산염을 포함할 수 있다. 다른 실시예들에서, 염은 염화물, 황산염, 인산염, 및 그것의 조합일 수 있다. 일 실시예에서, 염은 금속 질산염을 포함할 수 있으며, 보다 특히, 근본적으로 금속 질산염으로 이루어진다.
일 실시예에서, 도펀트 재료는 알칼리 원소, 알칼리성 토류 원소, 희토류 원소, 하프늄, 지르코늄, 니오븀, 탄탈륨, 몰리브덴, 바나듐, 또는 그것의 조합과 같은 원소 또는 화합물을 포함할 수 있다. 일 특정한 실시예에서, 도펀트 재료는 리튬, 나트륨, 칼륨, 마그네슘, 칼슘, 스트론튬, 바륨, 스칸듐, 이트륨, 란타늄, 세슘, 프라세오디뮴, 니오븀, 하프늄, 지르코늄, 탄탈륨, 몰리브덴, 바나듐, 크롬, 코발트, 철, 게르마늄, 망간, 니켈, 티타늄, 아연, 및 그것의 조합을 포함한 원소 또는 화합물을 포함한다.
특정한 인스턴스들에서, 도펀트 재료를 도포하는 프로세스는 전구체 성형 연마 입자의 외부 표면상에서 도펀트 재료의 배치를 선택하는 것을 포함할 수 있다. 예를 들면, 도펀트 재료를 도포하는 프로세스는 전구체 성형 연마 입자들의 상부 표면 또는 하부 표면에 도펀트 재료의 도포를 포함할 수 있다. 또 다른 실시예에서, 전구체 성형 연마 입자들의 하나 이상의 측 표면들은 도펀트 재료가 그것에 도포되도록 처리될 수 있다. 다양한 방법들이 전구체 성형 연마 입자들의 다양한 외부 표면들로 도펀트 재료를 도포하기 위해 사용될 수 있다는 것이 이해될 것이다. 예를 들면, 분무 프로세스는 전구체 성형 연마 입자들의 상부 표면 또는 측 표면에 도펀트 재료를 도포하기 위해 사용될 수 있다. 계속해서, 대안적인 실시예에서, 도펀트 재료는 디핑, 증착, 함침, 또는 그것의 조합과 같은 프로세스를 통해 전구체 성형 연마 입자들의 하부 표면에 도포될 수 있다. 벨트의 표면은 전구체 성형 연마 입자들의 하부 표면으로의 도펀트 재료의 이송을 용이하게 하기 위해 도펀트 재료를 갖고 처리될 수 있다는 것이 이해될 것이다.
뿐만 아니라, 전구체 성형 연마 입자들은 형성-후 구역을 통해 벨트 상에서 이송될 수 있으며, 여기에서 예를 들면, 건조를 포함한 다양한 프로세스들이 여기에서의 실시예들에서 설명된 바와 같이 전구체 성형 연마 입자들 상에서 행해질 수 있다. 다양한 프로세스들은 전구체 성형 연마 입자들의 처리를 포함하여, 형성-후 구역에서 행해질 수 있다. 일 실시예에서, 형성-후 구역은 가열 프로세스를 포함할 수 있으며, 여기에서 전구체 성형 연마 입자들이 건조될 수 있다. 건조는 물과 같은, 휘발성분을 포함하여, 특정한 함량의 재료의 제거를 포함할 수 있다. 실시예에 따르면, 건조 프로세스는 약 280℃ 이하, 또는 심지어 약 250℃ 이하와 같은, 약 300 ℃ 이하의 건조 온도에서 행해질 수 있다. 계속해서, 비-제한적인 일 실시예에서, 건조 프로세스는 적어도 약 50℃의 건조 온도에서 행해질 수 있다. 건조 온도는 상기 주지된 최소 및 최대 온도들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다. 더욱이, 전구체 성형 연마 입자들은 적어도 약 0.2 feet/min(0.06 m/min) 및 약 8 피트/분(2.4 m/min) 이하와 같은, 특정한 레이트에서 형성-후 구역을 통해 이송될 수 있다.
실시예에 따르면, 성형 연마 입자들을 형성하는 프로세스는 소결 프로세스를 더 포함할 수 있다. 여기에서의 실시예들의 특정한 프로세스들에 대해, 소결은 벨트로부터 전구체 성형 연마 입자들을 수집한 후 행해질 수 있다. 대안적으로, 소결은 전구체 성형 연마 입자들이 벨트 상에 있는 동안 행해지는 프로세스일 수 있다. 전구체 성형 연마 입자들의 소결은 입자들을 고밀화하기 위해 이용될 수 있으며, 이것은 일반적으로 그린 상태에 있다. 특정한 인스턴스에서, 소결 프로세스는 특정한 재료의 고온 상의 형성을 용이하게 할 수 있다. 예를 들면, 일 실시예에서, 전구체 성형 연마 입자들은 알파 알루미나와 같은 고온 상의 알루미나가 형성되도록 소결될 수 있다. 일 인스턴스에서, 성형 연마 입자는 입자의 총 중량에 대해 적어도 약 90 wt% 알파 알루미나를 포함할 수 있다. 다른 인스턴스들에서, 알파 알루미나의 함량은 더 클 수 있으며, 따라서 성형 연마 입자는 근본적으로 알파 알루미나로 이루어질 수 있다.
성형 연마 입자들
성형 연마 입자들은 다양한 형태들을 갖도록 형성될 수 있다. 일반적으로, 성형 연마 입자들은 형성 프로세스에서 사용된 형태 근사 성형 구성요소들을 갖도록 형성될 수 있다. 예를 들면, 성형 연마 입자는 3 차원 형태 중 임의의 2개의 치수들에서, 및 특히 입자의 길이 및 폭에 의해 정의된 치수에서 보여지는 바와 같이, 미리 결정된 2-차원 형태를 가질 수 있다. 몇몇 대표적인 2-차원 형태들은 다각형, 타원체, 숫자, 그리스 알파벳 문자, 라틴 알파벳 문자, 러시아 알파벳 글자, 간지 글자, 다각형 형태들의 조합을 포함한 복합 형태, 및 그것의 조합을 포함할 수 있다. 특정한 인스턴스들에서, 성형 연마 입자는 삼각형, 직사각형, 4각형, 5각형, 6각형, 7각형, 8각형, 9각형, 10각형, 및 그것의 조합과 같은 2-차원 다각형 형태를 가질 수 있다.
일 특정한 양상에서, 성형 연마 입자들은 도 8a에 예시된 바와 같은 형태를 갖도록 형성될 수 있다. 도 8a는 실시예에 따른 성형 연마 입자의 투시도 예시를 포함한다. 부가적으로, 도 8b는 도 8a의 성형 연마 입자의 단면 예시를 포함한다. 몸체(801)는 상부 표면(803) 및 상부 표면(803)의 반대편에 있는 하부 표면(804)을 포함한다. 상부 표면(803) 및 하부 표면(804)은 측 표면들(805, 806, 및 807)에 의해 서로로부터 분리될 수 있다. 예시된 바와 같이, 성형 연마 입자(800)의 몸체(801)는 일반적으로 상부 표면(803)에 의해 정의된 평면에서 보여지는 바와 같이 삼각형 형태를 가질 수 있다. 특히, 몸체(801)는 몸체(801)의 하부 표면(804)에서 측정될 수 있으며 몸체(801)의 중간점(881)을 통해 최상부 표면에서의 코너(813)에 대응하는 하부 표면에서의 코너로부터 몸체의 상부 표면에서의 에지(814)에 대응하는 몸체의 반대 에지에서의 중간점까지 연장되는, 도 8b에 도시된 바와 같은 길이(Lmiddle)를 가질 수 있다. 대안적으로, 몸체는 제 2 길이 또는 프로파일 길이(Lp)에 의해 정의될 수 있으며, 이것은 제 1 코너(813)로부터 인접한 코너(812)로 상부 표면(803)에서의 측면도로부터의 몸체의 치수의 측정치이다. 특히, Lmiddle의 치수는 코너에서의 높이(hc) 및 코너의 반대편에 있는 중간점 에지에서의 높이(hm) 사이에서의 거리를 정의한 길이일 수 있다. 치수(Lp)는 h1 및 h2(여기에 설명된 바와 같이) 사이에서의 거리를 정의한 입자의 측면을 따르는 프로파일 길이일 수 있다. 여기에서의 길이에 대한 참조는 Lmiddle 또는 Lp 중 어느 하나에 대한 참조일 수 있다.
몸체(801)는 몸체의 가장 긴 치수이며 측면을 따라 연장되는 폭(w)을 더 포함할 수 있다. 성형 연마 입자는 높이(h)를 더 포함할 수 있으며, 이것은 몸체(801)의 측 표면에 의해 정의된 방향으로 길이 및 폭에 수직인 방향으로 연장된 성형 연마 입자의 치수일 수 있다. 특히, 여기에서 보다 상세히 설명될 바와 같이, 몸체(801)는 몸체상에서의 위치에 의존하여 다양한 높이들에 의해 정의될 수 있다. 특정 인스턴스들에서, 폭은 길이보다 크거나 또는 같을 수 있고, 길이는 높이보다 크거나 또는 같을 수 있으며, 폭은 높이보다 크거나 또는 같을 수 있다.
게다가, 임의의 치수 특성(예로서, h1, h2, hi, w, Lmiddle, Lp 등)에 대한 참조는 배치(batch)의 단일 입자의 치수에 대한 참조일 수 있다. 대안적으로, 치수 특성들 중 임의의 것에 대한 임의의 참조는 배치로부터의 입자들의 적절한 샘플링의 분석으로부터 도출된 중앙 값 또는 평균 값을 나타낼 수 있다. 명확하게 서술되지 않는다면, 치수 특성에 대한 여기에서의 참조는 배치의 적절한 수의 입자들의 샘플 크기로부터 도출된 통계적으로 중요한 값에 기초하는 중앙 값에 대한 참조로서 고려될 수 있다. 특히, 여기에서의 특정한 실시예들에 대해, 샘플 크기는 입자들의 배치로부터 적어도 40개의 랜덤하게 선택된 입자들을 포함할 수 있다. 입자들의 배치는 단일 프로세스 런으로부터 수집되는 입자들의 그룹일 수 있으며, 입자들의, 적어도 약 20 lbs와 같은, 상용 등급 연마 제품을 생성하기에 적합한 성형 연마 입자들의 양을 포함할 수 있다.
실시예에 따르면, 성형 연마 입자의 몸체(801)는 코너(813)에 의해 정의된 몸체의 제 1 영역에서의 제 1 코너 높이(hc)를 가질 수 있다. 특히, 코너(813)는 몸체(801) 상에서의 가장 큰 높이의 포인트를 나타낼 수 있지만, 코너(813)에서의 높이는 몸체(801) 상에서의 가장 큰 높이의 포인트를 반드시 나타내는 것은 아니다. 코너(813)는 상부 표면(803), 및 두 개의 측 표면들(805 및 807)의 이음에 의해 정의된 몸체(301) 상에서의 포인트 또는 영역으로서 정의될 수 있다. 몸체(801)는 예를 들면, 코너(811) 및 코너(812)를 포함하여, 서로부터 이격된, 다른 코너들을 더 포함할 수 있다. 추가로 예시되는 바와 같이, 몸체(801)는 코너들(811, 812, 및 813)에 의해 서로로부터 분리될 수 있는 에지들(814, 815, 및 816)을 포함할 수 있다. 에지(814)는 측 표면(806)과 상부 표면(803)의 교차에 의해 정의될 수 있다. 에지(815)는 코너들(811 및 813) 사이에서의 상부 표면(803) 및 측 표면(805)의 교차에 의해 정의될 수 있다. 에지(816)는 코너들(812 및 813) 사이에서 상부 표면(803) 및 측 표면(807)의 교차에 의해 정의될 수 있다.
추가로 예시되는 바와 같이, 몸체(801)는 코너(813)에 의해 정의된 제 1 단부의 반대편에 있을 수 있는, 에지(814)의 중간점에서의 영역에 의해 정의될 수 있는, 몸체(801)의 제 2 단부에서의 제 2 중간점 높이(hm)를 포함할 수 있다. 축(850)은 몸체(801)의 두 개의 단부들 사이에서 연장될 수 있다. 도 8b는 축(850)을 따르는 몸체(801)의 단면 예시이며, 이것은 코너(813) 및 에지(814)의 중간점 사이에서의 길이의 치수(Lmiddle)를 따라 몸체(801)의 중간점(811)을 통해 연장될 수 있다.
실시예에 따르면, 예를 들면, 도 8a 및 도 8b의 입자를 포함한, 여기에서의 실시예들의 성형 연마 입자들은 높이에서의 평균 차를 가질 수 있으며, 이것은 hc 및 hm 사이에서의 차이의 측정치이다. 여기에서의 관례에 대해, 높이에서의 평균 차는 일반적으로 hc-hm으로서 식별될 것이지만, 그것은 차이의 절대 값을 정의하며 그것은 높이에서의 평균 차가 , 에지(814)의 중간점에서의 몸체(801)의 높이가 코너(813)에서의 높이보다 클 때 hm-hc로서 산출될 수 있다는 것이 이해될 것이다. 보다 특히, 높이에서의 평균 차는 여기에 정의된 바와 같이 배치로부터 적어도 40개의 입자들과 같은, 적절한 샘플 크기로부터 복수의 성형 연마 입자들에 기초하여 산출될 수 있다. 입자들의 높이들(hc 및 hm)은 STIL(Sciences et Techniques Industrielles de la Lumiere - 프랑스) 마이크로 측정 3D 표면 조면계(백색 광 (LED) 색 수차 기술)을 사용하여 측정될 수 있으며 높이에서의 평균 차는 샘플로부터 hc 및 hm의 평균 값들에 기초하여 산출될 수 있다.
도 8b에 예시된 바와 같이, 일 특정한 실시예에서, 성형 연마 입자의 몸체(801)는 몸체에서의 상이한 위치들에서 높이에서의 평균 차를 가질 수 있다. 몸체는 높이에서의 평균 차를 가질 수 있으며, 이것은 적어도 약 20 마이크론인 제 1 코너 높이(hc) 및 제 2 중간점 높이(hm) 사이에서의 [hc-hm]의 절대 값일 수 있다. 높이에서의 평균 차는 에지의 중간점에서의 몸체(801)의 높이가 반대 코너에서의 높이보다 클 때 hm-hc로서 산출될 수 있다는 것이 이해될 것이다. 다른 인스턴스들에서, 높이에서의 평균 차([hc-hm])는 적어도 약 65 마이크론, 적어도 약 70 마이크론, 적어도 약 75 마이크론, 적어도 약 80 마이크론, 적어도 약 90 마이크론, 또는 심지어 적어도 약 100 마이크론과 같은, 적어도 약 25 마이크론, 적어도 약 30 마이크론, 적어도 약 36 마이크론, 적어도 약 40 마이크론, 적어도 약 60 마이크론일 수 있다. 비-제한적인 일 실시예에서, 높이에서의 평균 차는 약 250 마이크론 이하, 약 220 마이크론 이하, 또는 심지어 약 180 마이크론 이하와 같은, 약 300 마이크론 이하일 수 있다. 높이에서의 평균 차는 상기 주지된 최소 및 최대 값들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다.
게다가, 높이에서의 평균 차는 hc의 평균 값에 기초할 수 있다는 것이 이해될 것이다. 예를 들면, 코너들(Ahc)에서의 몸체의 평균 높이는 모든 코너들에서 몸체의 높이를 측정하며 값들을 평균함으로써 산출될 수 있으며, 하나의 코너(hc)에서의 높이의 단일 값과 다를 수 있다. 따라서, 높이에서의 평균 차는 등식의 절대 값([Ahc-hi])에 의해 제공될 수 있으며, 여기에서 hi는 몸체상에서의 반대 중간점 에지 및 임의의 코너 사이에서의 치수를 따라 측정되는 바와 같이 몸체의 높이의 가장 작은 치수일 수 있는 내부 높이이다. 더욱이, 높이에서의 평균 차는 성형 연마 입자들의 배치의 적절한 샘플 크기로부터 산출된 중앙 내부 높이(Mhi) 및 샘플 크기에서의 모든 입자들에 대한 코너들에서 평균 높이를 사용하여 산출될 수 있다는 것이 이해될 것이다. 따라서, 높이에서의 평균 차는 등식의 절대 값([Ahc-Mhi])에 의해 제공될 수 있다.
특정한 인스턴스들에서, 몸체(801)는 적어도 1:1의 값을 가진, 폭:길이로서 표현된 비인, 1차 종횡비를 갖도록 형성될 수 있으며, 여기에서 길이는 Lmiddle일 수 있다. 다른 인스턴스들에서, 몸체는 1차 종횡비(w:l)가 적어도 약 2:1, 적어도 약 4:1, 또는 심지어 적어도 약 5:1과 같은, 적어도 약 1.5:1이도록 형성될 수 있다. 계속해서, 다른 인스턴스들에서, 연마 입자는 몸체가 9:1 이하, 약 8:1 이하, 또는 심지어 약 5:1 이하와 같은, 약 10:1 이하인 1차 종횡비를 갖도록 형성될 수 있다. 몸체(801)는 상기 주지된 비들 중 임의의 것 사이에서의 범위 내에서의 1차 종횡비를 가질 수 있다는 것이 이해될 것이다. 더욱이, 높이에 대한 여기에서의 참조는 연마 입자의 측정 가능한 최대 높이임이 이해될 것이다. 연마 입자는 몸체(801) 내에서의 상이한 위치들에서 상이한 높이들을 가질 수 있다는 것이 나중에 설명될 것이다.
1차 종횡비 외에, 연마 입자는 몸체(801)가, 길이:높이의 비로서 정의될 수 있는, 2차 종횡비를 포함하도록 형성될 수 있으며, 여기에서 길이는 Lmiddle일 수 있으며 높이는 내부 높이(hi)이다. 특정한 인스턴스들에서, 2차 종횡비는 약 4:1 및 약 1:2 사이, 또는 심지어 약 3:1 및 약 1:2 사이와 같은, 약 5:1 및 약 1:3 사이에서의 범위 내에 있을 수 있다. 동일한 비가 입자들의 배치에 대해 중앙 값들(예로서, 중앙 길이 및 내부 중앙 높이)을 사용하여 측정될 수 있다는 것이 이해될 것이다.
또 다른 실시예에 따르면, 연마 입자는 몸체(801)가 비(폭:높이)에 의해 정의된, 3차 종횡비를 포함하도록 형성될 수 있으며, 여기에서 높이는 내부 높이(hi)이다. 몸체(801)의 3차 종횡비는 8:1 및 약 1.5:1 사이와 같은, 약 6:1 및 약 1.5:1 사이, 또는 심지어 약 4:1 및 약 1.5:1과 같은, 약 10:1 및 약 1.5:1 사이에서의 범위 내에 있을 수 있다. 동일한 비가 입자들의 배치에 대해 중앙 값들(예로서, 중앙 길이, 중앙 중간 길이, 및/또는 내부 중앙 높이)을 사용하여 측정될 수 있다는 것이 이해될 것이다.
일 실시예에 따르면, 성형 연마 입자의 몸체(801)는 특정한 치수들을 가질 수 있으며, 이것은 개선된 성능을 가능하게 할 수 있다. 예를 들면, 일 인스턴스에서, 몸체는 내부 높이(hi)를 가질 수 있으며, 이것은 몸체상에서의 반대 중간점 에지 및 임의의 코너 사이에서의 치수를 따라 측정된 바와 같이 몸체의 높이의 최소 치수일 수 있다. 몸체가 일반적으로 삼각형 2-차원 형태인, 특정한 인스턴스들에서, 내부 높이(hi)는 3개의 코너들의 각각 및 반대 중간점 에지들 사이에서 취해진 3개의 측정치들을 위해 몸체의 높이의 최소 치수(즉, 하부 표면(804) 및 상부 표면(805) 사이에서의 측정치)일 수 있다. 성형 연마 입자의 몸체의 내부 높이(hi)는 도 8b에 예시된다. 일 실시예에 따르면, 내부 높이(hi)는 폭(w)의 적어도 약 28%일 수 있다. 임의의 입자의 높이(hi)는 성형 연마 입자를 절개하거나 또는 장착하며 연삭하고 몸체(801)의 내부 내에서 최소 높이(hi)를 결정하기 위해 충분한 방식으로(예로서, 광학 현미경 또는 SEM) 봄으로써 측정될 수 있다. 일 특정한 실시예에서, 높이(hi)는 몸체의 폭의 적어도 약 30%, 또는 심지어 적어도 약 33%와 같은, 폭의 적어도 약 29%일 수 있다. 비-제한적인 일 실시예에 대해, 몸체의 높이(hi)는 약 76% 이하, 약 73% 이하, 약 70% 이하, 폭의 약 68% 이하, 폭의 약 56% 이하, 폭의 약 48% 이하, 또는 심지어 폭의 약 40% 이하와 같은, 폭의 약 80% 이하일 수 있다. 몸체의 높이(hi)는 상기 주지된 최소 및 최대 퍼센티지들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다.
성형 연마 입자들의 배치가 제조될 수 있으며, 여기에서 중앙 내부 높이 값(Mhi)이 제어될 수 있고, 이것은 개선된 성능을 가능하게 한다. 특히, 매치의 중앙 내부 높이(hi)는 상기 설명된 것과 동일한 방식으로 배치의 성형 연마 입자들의 중앙 폭에 관련될 수 있다. 특히, 중앙 내부 높이(Mhi)는 배치의 성형 연마 입자들의 중앙 폭의 적어도 약 29%, 적어도 약 30%, 또는 심지어 적어도 약 33%와 같은, 적어도 약 28%일 수 있다. 비-제한적인 일 실시예에 대해, 몸체의 중앙 내부 높이(Mhi)는 약 76% 이하, 약 73% 이하, 약 70% 이하, 폭의 약 68% 이하, 폭의 약 56% 이하, 폭의 약 48% 이하, 또는 심지어 중앙 폭의 약 40% 이하와 같은, 약 80% 이하일 수 있다. 몸체의 중앙 내부 높이(Mhi)는 상기 주지된 최소 및 최대 퍼센티지들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다.
더욱이, 성형 연마 입자들의 배치는 적절한 샘플 크기로부터 치수 특성의 표준 편차에 의해 측정된 바와 같이 개선된 치수 균일성을 보일 수 있다. 일 실시예에 따르면, 성형 연마 입자들은 내부 높이 변화(Vhi)를 가질 수 있으며, 이것은 배치로부터 입자들의 적절한 샘플 크기에 대한 내부 높이(hi)의 표준 편차로서 산출될 수 있다. 일 실시예에 따르면, 내부 높이 변화는 약 58 마이크론 이하, 약 56 마이크론 이하, 또는 심지어 약 54 마이크론 이하와 같은, 약 60 마이크론 이하일 수 있다. 비-제한적인 일 실시예에서, 내부 높이 변화(Vhi)는 적어도 약 2 마이크론일 수 있다. 몸체의 내부 높이 변화는 상기 주지된 최소 및 최대 값들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다.
또 다른 실시예에 대해, 성형 연마 입자의 몸체는 적어도 약 400 마이크론의 내부 높이(hi)를 가질 수 있다. 보다 특히, 높이는 적어도 약 475 마이크론, 또는 심지어 적어도 약 500 마이크론과 같은, 적어도 약 450 마이크론일 수 있다. 비-제한적인 일 실시예에서, 몸체의 높이는 약 2 mm 이하, 약 1.5 mm 이하, 약 1 mm 이하, 약 800 마이크론 이하와 같은, 약 3 mm 이하일 수 있다. 몸체의 높이는 상기 주지된 최소 및 최대 값들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다. 게다가, 상기 범위의 값들은 성형 연마 입자들의 배치에 대한 중앙 내부 높이(Mhi)를 나타낼 수 있다는 것이 이해될 것이다.
여기에서의 특정한 실시예들에 대해, 성형 연마 입자의 몸체는 예를 들면, 폭≥길이, 길이≥높이, 및 폭≥높이를 포함한, 특정한 치수들을 가질 수 있다. 보다 특히, 성형 연마 입자의 몸체(801)는 적어도 약 700 마이크론, 적어도 약 800 마이크론, 또는 심지어 적어도 약 900 마이크론과 같은, 적어도 약 600 마이크론의 폭(w)을 가질 수 있다. 비-제한적인 일 인스턴스에서, 몸체는 약 3 mm 이하, 약 2.5 mm 이하, 또는 심지어 약 2 mm 이하와 같은, 약 4 mm 이하의 폭을 가질 수 있다. 몸체의 폭은 상기 주지된 최소 및 최대 값들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다. 게다가, 상기 범위의 값들은 성형 연마 입자들에 대한 중앙 폭(Mw)을 나타낼 수 있다는 것이 이해될 것이다.
성형 연마 입자의 몸체(801)는 예를 들면, 적어도 약 0.6 mm, 적어도 약 0.8 mm, 또는 심지어 적어도 약 0.9 mm와 같은, 적어도 약 0.4 mm의 길이(Lmiddle 또는 Lp)를 포함한, 특정한 치수들을 가질 수 있다. 계속해서, 적어도 하나의 비-제한적인 실시예에 대해, 몸체(801)는 약 3 mm 이하, 약 2.5 mm 이하, 또는 심지어 약 2 mm 이하와 같은, 약 4 mm 이하의 길이를 가질 수 있다. 몸체(801)의 길이는 상기 주지된 최소 및 최대 값들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다. 게다가, 상기 범위의 값들은 보다 특히, 성형 연마 입자들의 중앙 중간 길이(MLmiddle) 또는 중앙 프로파일 길이(MLp)일 수 있는, 중앙 길이(Ml)를 나타낼 수 있다는 것이 이해될 것이다.
성형 연마 입자는 특정한 양의 디싱(dishing)을 가진 몸체(801)를 가질 수 있으며, 여기에서 디싱 값(d)은 내부에서의 몸체의 높이의 최소 치수(hi)와 비교하여 코너들에서의 몸체(801)의 평균 높이(Ahc) 사이에서의 비로서 정의될 수 있다. 코너들에서의 몸체(801)의 평균 높이(Ahc)는 모든 코너들에서 몸체의 높이를 측정하며 값들을 평균함으로써 산출될 수 있으며, 하나의 코너에서의 높이의 단일 값(hc)과 다를 수 있다. 코너들에서 또는 내부에서 몸체(801)의 평균 높이는 STIL( Sciences et Techniques Industrielles de la Lumiere - 프랑스) 마이크로 측정 3D 표면 조면계(백색 광 (LED) 색 수차 기술)을 사용하여 측정될 수 있다. 대안적으로, 디싱은 배치로부터의 입자들의 적절한 샘플링으로부터 산출된 코너에서의 입자들의 중앙 높이(Mhc)에 기초할 수 있다. 마찬가지로, 내부 높이(hi)는 배치로부터 성형 연마 입자들의 적절한 샘플링으로부터 도출된 중앙 내부 높이(Mhi)일 수 있다. 일 실시예에 따르면, 디싱 값(d)은 약 1.9 이하, 약 1.8 이하, 약 1.7 이하, 약 1.6 이하, 또는 심지어 약 1.5 이하와 같은, 약 2 이하일 수 있다. 계속해서, 적어도 하나의 비-제한적인 실시예에서, 디싱 값(d)은 적어도 약 1.0과 같은, 적어도 약 0.9일 수 있다. 디싱 비는 상기 주지된 최소 및 최대 값들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다. 게다가, 상기 디싱 값들은 성형 연마 입자들의 배치에 대한 중앙 디싱 값(Md)을 나타낼 수 있다는 것이 이해될 것이다.
예를 들면, 도 8a의 입자의 몸체(801)를 포함한, 여기에서의 실시예들의 성형 연마 입자들은 하부 면적(Ab)을 정의한 하부 표면(804)을 가질 수 있다. 특정한 인스턴스들에서, 하부 표면(304)은 몸체(801)의 최대 표면일 수 있다. 하부 표면은 상부 표면(803)의 표면적보다 큰 하부 면적(Ab)으로서 정의된 표면적을 가질 수 있다. 부가적으로, 몸체(801)는 최하부 면적에 수직인 평면의 면적을 정의하며 입자의 중간점(881)(최상부 및 최하부 표면들 사이에서)을 통해 연장된 단면 중간점 면적(Am)을 가질 수 있다. 특정한 인스턴스들에서, 몸체(801)는 약 6 이하의 최하부 면적 대 중간점 면적(Ab/Am)의 면적 비를 가질 수 있다. 보다 특정한 인스턴스들에서, 면적 비는 약 5 이하, 약 4.5 이하, 약 4 이하, 약 3.5 이하, 또는 심지어 약 3 이하와 같은, 약 5.5 이하일 수 있다. 계속해서, 비-제한적인 일 실시예에서, 면적 비는 적어도 약 1.3, 또는 심지어 적어도 약 1.8과 같은, 적어도 약 1.1일 수 있다. 면적 비는 상기 주지된 최소 및 최대 값들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다. 게다가, 상기 면적 비들은 성형 연마 입자들의 배치에 대한 중앙 면적 비를 나타낼 수 있다는 것이 이해될 것이다.
더욱이, 예를 들면, 도 8b의 입자를 포함한, 여기에서의 실시예들의 성형 연마 입자들은 적어도 약 0.3의 정규화된 높이 차를 가질 수 있다. 정규화된 높이 차는 등식의 절대 값([(hc-hm)/(hi)])에 의해 정의될 수 있다. 다른 실시예들에서, 정규화된 높이 차는 약 0.22 이하, 또는 심지어 약 0.19 이하와 같은, 약 0.26 이하일 수 있다. 계속해서, 일 특정한 실시예에서, 정규화된 높이 차는 적어도 약 0.05, 적어도 약 0.06과 같은, 적어도 약 0.04일 수 있다. 정규화된 높이 차는 상기 주지된 최소 및 최대 값들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다. 게다가, 상기 정규화된 높이 값들은 성형 연마 입자들의 배치에 대한 중앙 정규화된 높이 차를 나타낼 수 있다는 것이 이해될 것이다.
또 다른 인스턴스에서, 몸체(801)는 적어도 약 0.04의 프로파일 비를 가질 수 있으며, 여기에서 프로파일 비는 [(hc-hm)/(Lmiddle)]의 절대 값으로서 정의된, 성형 연마 입자의 높이에서의 평균 차([hc-hm]) 대 길이(Lmiddle)의 비로서 정의된다. 몸체의 길이(Lmiddle)는 도 8b에 예시된 바와 같이 몸체(801)에 걸친 거리일 수 있다는 것이 이해될 것이다. 게다가, 길이는 여기에 정의된 바와 같이 성형 연마 입자들의 배치로부터의 입자들의 적절한 샘플링으로부터 산출된 평균 또는 중앙 길이일 수 있다. 특정한 실시예에 따르면, 프로파일 비는 적어도 약 0.05, 적어도 약 0.06, 적어도 약 0.07, 적어도 약 0.08, 또는 심지어 적어도 약 0.09일 수 있다. 계속해서, 비-제한적인 일 실시예에서, 프로파일 비는 약 0.2 이하, 약 0.18 이하, 약 0.16 이하, 또는 심지어 약 0.14 이하와 같은, 약 0.3 이하일 수 있다. 프로파일 비는 상기 주지된 최소 및 최대 값들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다. 게다가, 상기 프로파일 비는 성형 연마 입자들의 배치에 대한 중앙 프로파일 비를 나타낼 수 있다는 것이 이해될 것이다.
또 다른 실시예에 따르면, 몸체(801)는 특정한 경사각을 가질 수 있으며, 이것은 몸체의 하부 표면(804) 및 측 표면(805, 806 또는 807) 사이에서의 각도로서 정의될 수 있다. 예를 들면, 경사각은 약 1°및 약 80°사이에서의 범위 내에 있을 수 있다. 여기에서의 다른 입자들에 대해, 경사각은 약 10°및 약 50°사이, 약 15°및 50°사이, 또는 심지어 약 20°및 50°사이와 같은, 약 5°및 55°사이에서의 범위 내에 있을 수 있다. 이러한 경사각을 가진 연마 입자의 형성은 연마 입자의 연마 능력들을 개선할 수 있다. 특히, 경사각은 상기 주지된 임의의 두 개의 경사각들 사이에서의 범위 내에 있을 수 있다.
또 다른 실시예에 따르면, 예를 들면, 도 8a 및 도 8b의 입자들을 포함한, 여기에서의 성형 연마 입자들은 몸체(801)의 상부 표면(803)에서 타원체 영역(817)을 가질 수 있다. 타원체 영역(817)은 상부 표면(803) 주위에서 연장되며 타원체 영역(817)을 정의할 수 있는 트렌치 영역(818)에 의해 정의될 수 있다. 타원체 영역(817)은 중간점(881)을 포함할 수 있다. 게다가, 상부 표면에 정의된 타원체 영역(817)은 형성 프로세스의 아티팩트일 수 있으며, 여기에 설명된 방법들에 따라 성형 연마 입자들의 형성 동안 혼합물 상에 부여된 응력들의 결과로서 형성될 수 있는 것으로 생각되어 진다.
성형 연마 입자는 몸체가 결정질 재료, 및 보다 특히 다결정질 재료를 포함하도록 형성될 수 있다. 특히, 다결정질 재료는 연마립들을 포함할 수 있다. 일 실시예에서, 몸체는 근본적으로, 예를 들면, 결합제를 포함한 유기 재료가 없을 수 있다. 보다 특히, 몸체는 근본적으로 다결정질 재료로 이루어질 수 있다.
일 양상에서, 성형 연마 입자의 몸체는 연마 입자(800)의 몸체(801)를 형성하기 위해 서로에 접합된 복수의 연마 입자들, 그릿, 및/또는 결정립들을 포함한 덩어리일 수 있다. 적절한 연마립들은 질화물들, 산화물들, 탄화물들, 붕소화물들, 옥시질화물들, 옥시붕소화물들, 다이아몬드, 초연마재들(예로서, cBN) 및 그것의 조합을 포함할 수 있다. 특정한 인스턴스들에서, 연마립들은 산화 알루미늄, 산화 지르코늄, 산화 티타늄, 산화 이트륨, 산화 크롬, 산화 스트론튬, 산화 규소, 및 그것의 조합과 같은, 산화물 화합물 또는 집합체를 포함할 수 있다. 일 특정한 인스턴스에서, 연마 입자(800)는 몸체(800)를 형성한 연마립들이 알루미나를 포함하며, 보다 특히, 근본적으로 알루미나로 이루어질 수 있도록 형성된다. 대안적인 실시예에서, 성형 연마 입자들은 예를 들면, 결합제 상을 포함한 연마제 또는 초연마제 재료들의 다결정질 압축들을 포함한, 지리군들(geosets)을 포함할 수 있으며, 이것은 금속, 금속 합금, 초합금, 서멧, 및 그것의 조합을 포함할 수 있다. 몇몇 대표적인 결합제 재료들은 코발트, 텅스텐, 및 그것의 조합을 포함할 수 있다.
몸체 내에 포함된 연마립들(즉, 결정자들)은 일반적으로 약 100 마이크론 이하인 평균 결정립 크기를 가질 수 있다. 다른 실시예들에서, 평균 결정립 크기는, 약 80 마이크론 이하, 약 50 마이크론 이하, 약 30 마이크론 이하, 약 20 마이크론 이하, 약 10 마이크론 이하, 또는 심지어 약 1 마이크론 이하와 같이, 더 작을 수 있다. 계속해서, 몸체 내에 포함된 연마립들의 평균 결정립 크기는 적어도 약 0.08 마이크론, 적어도 약 0.1 마이크론, 또는 심지어 적어도 약 1 마이크론과 같은, 적어도 약 0.05 마이크론과 같은, 적어도 약 0.01 마이크론일 수 있다. 연마립들은 상기 주지된 최소 및 최대 값들 중 임의의 것 사이에서의 범위 내에 있는 평균 결정립 크기를 가질 수 있다는 것이 이해될 것이다.
특정한 실시예들에 따르면, 연마 입자는 몸체 내에 적어도 두 개의 상이한 유형들의 연마립들을 포함한 복합 물품일 수 있다. 상이한 유형들의 연마립들은 서로에 대하여 상이한 조성들을 가진 연마립들임이 이해될 것이다. 예를 들면, 몸체는 그것이 적어도 두 개의 상이한 유형들의 연마립들을 포함하도록 형성될 수 있으며, 여기에서 두 개의 상이한 유형들의 연마립들은 질화물들, 산화물들, 탄화물들, 붕소화물들, 옥시질화물들, 옥시붕소화물들, 다이아몬드, 및 그것의 조합일 수 있다.
실시예에 따르면, 연마 입자(800)는 적어도 약 100 마이크론의, 몸체(801) 상에서 측정 가능한 최대 치수에 의해 측정된 바와 같이, 평균 입자 크기를 가질 수 있다. 사실상, 연마 입자(800)는 적어도 약 200 마이크론, 적어도 약 300 마이크론, 적어도 약 400 마이크론, 적어도 약 500 마이크론, 적어도 약 600 마이크론, 적어도 약 700 마이크론, 적어도 약 800 마이크론, 또는 심지어 적어도 약 900 마이크론과 같은, 적어도 약 150 마이크론의 평균 입자 크기를 가질 수 있다. 계속해서, 연마 입자(800)는 약 3 mm 이하, 약 2 mm 이하, 또는 심지어 약 1.5 mm 이하와 같은, 약 5 mm 이하인 평균 입자 크기를 가질 수 있다. 연마 입자(100)는 상기 주지된 최소 및 최대 값들 중 임의의 것 사이에서의 범위 내에서의 평균 입자 크기를 가질 수 있다는 것이 이해될 것이다.
여기에서의 실시예들의 성형 연마 입자들은 개선된 성능을 가능하게 할 수 있는 퍼센트 플래싱을 가질 수 있다. 특히, 플래싱은 도 8c에 예시된 바와 같이, 을 측면을 따라 보여지는 바와 같이 입자의 면적을 정의하며, 여기에서 플래싱은 박스들(888 및 889) 내에서의 몸체의 측 표면으로부터 연장된다. 플래싱은 몸체의 상부 표면 및 하부 표면에 근접한 테이퍼드 영역들을 나타낼 수 있다. 플래싱은 측 표면의 가장 안쪽 포인트(예로서, 891) 및 몸체의 측 표면상에서의 가장 바깥쪽 포인트(예로서, 892) 사이에서 연장된 박스 내에 포함된 측 표면을 따라 몸체의 면적의 퍼센티지로서 측정될 수 있다. 일 특정한 인스턴스에서, 몸체는 박스들(888, 889, 및 890) 내에 포함된 몸체의 총 면적에 비교하여 박스들(888 및 889) 내에 포함된 몸체의 면적의 퍼센티지일 수 있는, 특정한 함량의 플래싱을 가질 수 있다. 일 실시예에 따르면, 몸체의 퍼센트 플래싱(f)은 적어도 약 10%일 수 있다. 또 다른 실시예에서, 퍼센트 플래싱은, 적어도 약 14%, 적어도 약 16%, 적어도 약 18%, 또는 심지어 적어도 약 20%와 같은, 적어도 약 12%와 같이, 더 클 수 있다. 계속해서, 비-제한적인 실시예에서, 몸체의 퍼센트 플래싱은 제어될 수 있으며, 약 40% 이하, 또는 심지어 약 36% 이하와 같은, 약 45% 이하일 수 있다. 몸체의 퍼센트 플래싱은 상기 최소 및 최대 퍼센티지들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다. 게다가, 상기 플래싱 퍼센티지들은 성형 연마 입자들의 배치에 대한 평균 플래싱 퍼센티지 또는 중앙 플래싱 퍼센티지를 나타낼 수 있다는 것이 이해될 것이다.
퍼센트 플래싱은 도 8c에 예시된 바와 같이, 그것의 측면 상에 성형 연마 입자를 장착하며 흑색 및 백색 이미지를 발생시키기 위해 측면에서 몸체를 봄으로써 측정될 수 있다. 플래싱의 산출을 포함한 이미지들을 생성 및 분석하기 위한 적절한 프로그램은 ImageJ 소프트웨어일 수 있다. 퍼센티지 플래싱은 중심(890)에서 및 박스들(888 및 889) 내에서의 면적을 포함한, 측면에서 보여지는 바와 같이 몸체의 총 면적(총 음영 면적)에 비교하여 박스들(888 및 889)에서 몸체(801)의 면적을 결정함으로써 산출될 수 있다. 이러한 절차는 평균, 중앙값, 및/또는 표준 편차 값들을 발생시키기 위해 입자들의 적절한 샘플링을 위해 완료될 수 있다.
여기에서의 실시예들에 따른 성형 연마 입자들의 배치는 적절한 샘플 크기로부터의 치수 특성의 표준 편차에 의해 측정된 바와 같이 개선된 치수 균일성을 보일 수 있다. 일 실시예에 다르면, 성형 연마 입자들은 플래싱 변화(Vf)를 가질 수 있으며, 이것은 배치로부터의 입자들의 적절한 샘플 크기에 대한 플래싱 퍼센티지(f)의 표준 편차로서 산출될 수 있다. 일 실시예에 따르면, 플래싱 변화는 약 5.3% 이하, 약 5% 이하, 또는 약 4.8% 이하, 약 4.6% 이하, 또는 심지어 약 4.4% 이하와 같은, 약 5.5% 이하일 수 있다. 비-제한적인 일 실시예에서, 플래싱 변화(Vf)는 적어도 약 0.1%일 수 있다. 플래싱 변화는 상기 주지된 최소 및 최대 퍼센티지들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다.
여기에서의 실시예들의 성형 연마 입자들은 적어도 4000의 높이(hi) 및 플래싱 승수 값(hiF)을 가질 수 있으며, 여기에서 hiF = (hi)(f), "hi"는 상기 설명된 바와 같이 몸체의 최소 내부 높이를 나타내며 "f"는 퍼센트 플래싱을 나타낸다. 일 특정한 인스턴스에서, 몸체의 높이 및 플래싱 승수 값(hiF)은 적어도 약 4500 마이크론%, 적어도 약 5000 마이크론%, 적어도 약 6000 마이크론%, 적어도 약 7000 마이크론%, 또는 심지어 적어도 약 8000 마이크론%와 같이, 더 클 수 있다. 계속해서, 비-제한적인 일 실시예에서, 높이 및 플래싱 승수 값은 약 30000 마이크론 % 이하, 약 25000 마이크론% 이하, 약 20000 마이크론% 이하, 또는 심지어 약 18000 마이크론% 이하와 같은, 약 45000 마이크론% 이하일 수 있다. 몸체의 높이 및 플래싱 승수 값은 상기 최소 및 최대 값들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다. 게다가, 상기 승수 값은 성형 연마 입자들의 배치에 대한 중앙 승수 값(MhiF)을 나타낼 수 있다는 것이 이해될 것이다.
여기에서의 실시예들의 성형 연마 입자들은 등식(dF=(d)(F))에 의해 산출된 바와 같이 디싱(d) 및 플래싱(F) 승수 값(dF)을 가질 수 있으며, 여기에서 dF는 약 90% 이하이고 "d"는 디싱 값을 나타내며, "f"는 몸체의 퍼센티지 플래싱을 나타낸다. 일 특정한 인스턴스에서, 몸체의 디싱(d) 및 플래싱(F) 승수 값(dF)은 약 60% 이하, 약 55% 이하, 약 48% 이하, 약 46% 이하와 같은, 약 70% 이하일 수 있다. 계속해서, 비-제한적인 일 실시예에서, 디싱(d) 및 플래싱(F) 승수 값(dF)은 적어도 약 15%, 적어도 약 20%, 적어도 약 22%, 적어도 약 24%, 또는 심지어 적어도 약 26%와 같은, 적어도 약 10%일 수 있다. 몸체의 디싱(d) 및 플래싱(F) 승수 값(dF)은 상기 최소 및 최대 값들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다. 게다가, 상기 승수 값은 성형 연마 입자들의 배치에 대한 중앙 승수 값(MdF)을 나타낼 수 있다는 것이 이해될 것이다.
여기에서의 실시예들의 성형 연마 입자들은 등식(hi/d=(hi)/(d))에 의해 산출된 바와 같이 높이 및 디싱 비(hi/d)를 가질 수 있으며, 여기에서 hi/d는 약 1000 이하이고, "hi"는 상기 설명된 바와 같이 최소 내부 높이를 나타내며, "d"는 몸체의 디싱을 나타낸다. 일 특정한 인스턴스에서, 몸체의 비(hi/d)는 약 900 마이크론 이하, 약 800 마이크론 이하, 약 700 마이크론 이하, 또는 심지어 약 650 마이크론 이하일 수 있다. 계속해서, 비-제한적인 일 실시예에서, 비(hi/d)는 적어도 약 50 마이크론, 적어도 약 100 마이크론, 적어도 약 150 마이크론, 적어도 약 200 마이크론, 적어도 약 250 마이크론, 또는 심지어 적어도 약 275 마이크론과 같은, 적어도 약 10 마이크론일 수 있다. 몸체의 비(hi/d)는 상기 최소 및 최대 값들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다. 게다가, 상기 높이 및 디싱 비는 성형 연마 입자들의 배치에 대한 중앙 높이 및 디싱 비(Mhi/d)를 나타낼 수 있다는 것이 이해될 것이다.
연마 물품들
도 1a는 실시예에 따른 연마 물품의 일 부분의 상면도 예시를 포함한다. 예시된 바와 같이, 연마 물품(100)은 백킹(101)을 포함할 수 있다. 백킹(101)은 유기 재료, 무기 재료, 및 그것의 조합을 포함할 수 있다. 특정한 인스턴스들에서, 백킹(101)은 직조 재료를 포함할 수 있다. 그러나, 백킹(101)은 부직 재료로 만들어질 수 있다. 특히 적절한 백킹 재료들은 폴리머들, 및 특히 폴리에스테르, 폴리우레탄, 폴리프로필렌, DuPont으로부터의 KAPTON과 같은 폴리이미드들, 및 종이를 포함한, 유기 재료들을 포함할 수 있다. 몇몇 적절한 무기 재료들은 금속들, 금속 합금들, 및 특히 구리, 알루미늄, 스틸, 및 그것의 조합의 포일들을 포함할 수 있다. 연마 물품(100)은, 여기에서 보다 상세히 논의될, 예를 들면, 부착 층들(예로서, 메이크 코트(make coat), 사이즈 코트(size coat), 프론트 필(front fill) 등)을 포함한, 다른 구성요소들을 포함할 수 있다는 것이 이해될 것이다.
추가로 예시되는 바와 같이, 연마 물품(100)은 백킹(101) 위에 놓이며, 보다 특히, 백킹(101)에 결합된 성형 연마 입자(102)를 포함할 수 있다. 특히, 성형 연마 입자(102)는 백킹(101) 상에서 제 1, 미리 결정된 위치(112)에 위치될 수 있다. 추가로 예시되는 바와 같이, 연마 물품(100)은 백킹(101) 위에 놓이며, 보다 특히 제 2, 미리 결정된 위치(113)에서 백킹(101)에 결합될 수 있는 성형 연마 입자(103)를 더 포함할 수 있다. 연마 물품(100)은 백킹(101) 위에 놓이며, 보다 특히 제 3, 미리 결정된 위치(114)에서 백킹(101)에 결합된 성형 연마 입자(104)를 더 포함할 수 있다. 도 1a에 추가로 예시되는 바와 같이, 연마 물품(100)은 백킹(101) 위에 놓이며, 보다 특히, 제 4 미리 결정된 위치(115)에서 백킹(101)에 결합된 성형 연마 입자(105)를 더 포함할 수 있다. 추가로 예시되는 바와 같이, 연마 물품(100)은 백킹(101) 위에 놓이며, 보다 특히 제 5, 미리 결정된 위치(116)에서 백킹(101)에 결합된 성형 연마 입자를 포함할 수 있다. 여기에 설명된 성형 연마 입자들 중 임의의 것이 여기에 설명된 바와 같이 하나 이상의 부착 층들을 통해 백킹(101)에 결합될 수 있다는 것이 이해될 것이다.
실시예에 따르면, 성형 연마 입자(102)는 제 1 조성을 가질 수 있다. 예를 들면, 제 1 조성은 결정질 재료를 포함할 수 있다. 일 특정한 실시예에서, 제 1 조성은 산화물, 탄화물, 질화물, 붕소화물, 옥시질화물, 옥시탄화물, 및 그것의 조합과 같은, 세라믹 재료를 포함할 수 있다. 보다 특히, 제 1 조성은 근본적으로 세라믹으로 이루어질 수 있으며, 따라서 그것은 근본적으로 산화물, 탄화물, 질화물, 붕소화물, 옥시질화물, 옥시탄화물, 및 그것의 조합으로 이루어질 수 있다. 계속해서, 대안적인 실시예에서, 제 1 조성은 초연마재 재료를 포함할 수 있다. 계속해서 다른 실시예들에서, 제 1 조성은 단일 상 재료를 포함할 수 있으며, 보다 특히 근본적으로 단일 상 재료로 이루어질 수 있다. 특히, 제 1 조성물은 단일 상 다결정질 재료일 수 있다. 특정한 인스턴스들에서, 제 1 조성물은 제한된 결합제 함량을 가질 수 있으며, 따라서 제 1 조성은 약 1% 이하 결합제 재료를 가질 수 있다. 몇몇 적절한 대표적인 결합제 재료들은 유기 재료들, 및 보다 특히, 폴리머 함유 화합물들을 포함할 수 있다. 보다 특히, 제 1 조성은 근본적으로 결합제 재료가 없을 수 있으며 근본적으로 유기 재료가 없을 수 있다. 일 실시예에 따르면, 제 1 조성은 알루미나를 포함할 수 있으며, 보다 특히 근본적으로 알파 알루미나와 같은 알루미나로 이루어질 수 있다.
계속해서, 또 다른 양상에서, 성형 연마 입자(102)는 몸체 내에 적어도 두 개의 상이한 유형들의 연마립들을 포함한 합성물일 수 있는 제 1 조성을 가질 수 있다. 상이한 유형들의 연마립들은 서로에 대하여 상이한 조성물들을 가진 연마립들임이 이해될 것이다. 예를 들면, 몸체는 적어도 두 개의 상이한 유형들의 연마립들을 포함하도록 형성될 수 있으며, 여기에서 두 개의 상이한 유형들의 연마립들은 질화물들, 산화물들, 탄화물들, 붕소화물들, 옥시질화물들, 옥시붕소화물들, 다이아몬드, 및 그것의 조합일 수 있다.
일 실시예에서, 제 1 조성은 도펀트 재료를 포함할 수 있으며, 여기에서 도펀트 재료는 작은 양으로 존재한다. 몇몇 적절한 대표적인 도펀트 재료들은 알칼리 원소, 알칼리성 토류 원소, 희토류 원소, 하프늄, 지르코늄, 니오븀, 탄탈, 몰리브덴, 바나듐, 또는 그것의 조합과 같은 원소 또는 화합물을 포함할 수 있다. 일 특정한 실시예에서, 도펀트 재료는 리튬, 나트륨, 칼륨, 마그네슘, 칼슘, 스트론튬, 바륨, 스칸듐, 이트륨, 란타늄, 세슘, 프라세오디뮴, 니오븀, 하프늄, 지르코늄, 탄탈, 몰리브덴, 바나듐, 크롬, 코발트, 철, 게르마늄, 망간, 니켈, 티타늄, 아연, 및 그것의 조합과 같은 원소를 포함한 원소 또는 화합물을 포함한다.
제 2 성형 연마 입자(103)는 제 2 조성을 가질 수 있다. 특정한 인스턴스들에서, 제 2 성형 연마 입자(103)의 제 2 조성은 제 1 성형 연마 입자(102)의 제 1 조성과 실질적으로 동일할 수 있다. 보다 특히, 제 2 조성은 근본적으로 제 1 조성과 동일할 수 있다. 계속해서, 대안적인 실시예에서, 제 2 성형 연마 입자(103)의 제 2 조성은 제 1 성형 연마 입자(102)의 제 1 조성과 상당히 상이할 수 있다. 제 2 조성은 제 1 조성에 따라 설명된 재료들, 원소들, 및 화합물들 중 임의의 것을 포함할 수 있다는 것이 이해될 것이다.
실시예에 따르면, 도 1a에 추가로 예시된 바와 같이, 제 1 성형 연마 입자(102) 및 제 2 성형 연마 입자(103)는 서로에 대하여 미리-결정된 분포로 배열될 수 있다.
미리 결정된 분포는 의도적으로 선택되는 백킹 상에서의 미리 결정된 위치들의 조합에 의해 정의될 수 있다. 미리 결정된 분포는 패턴을 포함할 수 있으며, 따라서 미리 결정된 위치들은 2-차원 어레이를 정의할 수 있다. 어레이는 성형 연마 입자들의 단위에 의해 정의된 단거리 순서를 가질 수 있다. 어레이는 또한, 함께 연결된 규칙적 및 반복적 단위들을 포함한, 장거리 순서를 가진 패턴일 수 있으며, 따라서 배열은 대칭이고 및/또는 예측 가능할 수 있다. 어레이는 수학적 공식에 의해 예측될 수 있는 순서를 가질 수 있다. 2-차원 어레이들은 다각형들, 생략 부호, 장식용 표시들, 제품 표시들, 또는 다른 설계들의 형태로 형성될 수 있다는 것이 이해될 것이다.
미리 결정된 분포는 또한 비-섀도잉 배열을 포함할 수 있다. 비-섀도잉 배열은 제어된, 비-균일 분포, 제어된 균일 분포, 및 그것의 조합을 포함할 수 있다. 특정한 인스턴스들에서, 비-섀도잉 배열은 방사상 패턴, 나선형 패턴, 잎차례 패턴, 비대칭 패턴, 자기-회피 랜덤 분포, 자기-회피 랜덤 분포 및 그것의 조합을 포함할 수 있다. 비-섀도잉 배열은 서로에 대하여 연마 입자들(즉, 성형 연마 입자들 및/또는 희석제 입자들)의 특정한 배열을 포함하며, 여기에서 재료 제거 동작의 초기 단계 동안 연마 입자들의 중첩의 정도는 약 20% 이하, 약 15% 이하, 약 10% 이하, 또는 심지어 약 5% 이하와 같은, 약 25% 이하이다. 특정한 인스턴스들에서, 비-섀도잉 배열은 연마 입자들의 분포를 포함할 수 있으며, 재료 제거 동작의 초기 단계 동안 워크피스와의 맞물림 시, 연마 입자들의 일 부분(예로서, 백킹 상에서의 소수의 모든 성형 연마 입자들, 백킹 상에서의 대다수의 모든 성형 연마 입자들, 또는 심지어 근본적으로 모두)은 워크피스의 표면의 상이한 영역과 맞물린다. 비-섀도잉 배열은 서로에 대하여 및 여기에서의 실시예들에 설명된 바와 같이 연삭 방향에 대하여 성형 연마 입자들의 특정한 분포를 이용할 수 있다. 연마 입자들의 비-섀도잉 배열을 이용한 연마 물품의 이용은 종래의 패터닝된 배열들(즉, 섀도잉된 배열)을 사용하여 다른 연마 물품들에 비해 개선된 연삭 성능을 가능하게 할 수 있으며 동작 동안 연마 물품의 조향과 같은, 다른 바람직하지 않은 효과들을 제한할 수 있다.
미리 결정된 분포는 부분적으로, 대체로, 또는 완전히 비대칭일 수 있다. 미리 결정된 분포는 전체 연마 물품 위에 놓일 수 있고, 실질적으로 전체 연마 물품(즉, 50% 이상이지만 100% 미만)을 커버할 수 있고, 연마 물품의 다수의 부분들 위에 놓이거나 또는 연마 물품의 부분(즉, 물품의 표면적의 50% 미만) 위에 놓일 수 있다. 여기에 사용된 바와 같이, "잎차례 패턴(phyllotactic pattern)"은 잎차례에 관련된 패턴을 의미한다. 잎차례는 많은 종류들의 식물들에서 잎들, 꽃들, 스케일들, 꽃 부분들, 및 씨앗들과 같은 횡 기관들의 배열이다. 많은 잎차례 패턴들은 원호들, 나선형들, 및 와상문들을 가진 뚜렷한 패턴들의 자연스럽게 발생한 현상에 의해 표시된다. 해바라기의 머리에서의 씨앗들의 패턴이 이 현상의 예이다.
더욱이, 일 실시예에 따르면, 비-섀도잉 배열은 마이크로단위를 포함할 수 있으며, 이것은 서로에 대하여 성형 연마 입자들의 최소 배열로서 정의될 수 있다. 마이크로단위는 연마 물품의 표면의 적어도 일 부분에 걸쳐 복수 회 반복할 수 있다. 비-섀도잉 배열은 매크로단위를 더 포함할 수 있으며, 이것은 복수의 마이크로단위들을 포함할 수 있다. 특정한 인스턴스들에서, 매크로단위는 서로에 대하여 미리 결정된 분포로 배열되며 비-섀도잉 배열을 갖고 복수 회 반복하는 복수의 마이크로단위들을 가질 수 있다. 여기에서의 실시예들의 연마 물품들은 하나 이상의 마이크로단위들을 포함할 수 있다. 더욱이, 여기에서의 실시예들의 연마 물품들은 하나 이상의 매크로단위들을 포함할 수 있다는 것이 이해될 것이다. 특정한 실시예들에서, 매크로단위들은 예측 가능한 순서를 가진 균일한 분포로 배열될 수 있다. 계속해서, 다른 인스턴스들에서, 매크로단위들은 예측 가능한 장거리 또는 단거리 순서를 갖지 않는, 랜덤한 분포를 포함할 수 있는, 비-균일한 분포로 배열될 수 있다.
간단히 도 25 내지 도 27을 참조하면, 상이한 비-섀도잉 배열들이 예시된다. 특히, 도 25는 비-섀도잉 배열의 예시를 포함하며, 여기에서 위치들(2501)은 하나 이상의 성형 연마 입자들, 희석제 입자들, 및 그것의 조합에 의해 점유될 미리 결정된 위치들을 나타낸다. 위치들(2501)은 예시된 바와 같이 X 및 Y 축들 상에서의 위치들로서 정의될 수 있다. 게다가, 위치들(2506 및 2507)은 마이크로단위(2520)를 정의할 수 있다. 더욱이, 2506 및 2509는 마이크로단위(2521)를 정의할 수 있다. 추가로 예시되는 바와 같이, 마이크로단위들은 물품의 적어도 일 부분의 표면에 걸쳐 반복될 수 있으며 매크로단위(2530)를 정의할 수 있다. 일 특정한 인스턴스에서, 성형 연마 입자들의 위치들을 나타낸 위치들(2501)은 Y-축에 평행인 연삭 방향에 대해 비-섀도잉 배열로 배열된다.
도 26은 비-섀도잉 배열의 예시를 포함하며, 여기에서 위치들(X 및 Y 축들 상에서의 점들로서 도시된)은 하나 이상의 성형 연마 입자들, 희석제 입자들, 및 그것의 조합에 의해 점유될 미리 결정된 위치들을 나타낸다. 일 실시예에서, 위치들(2601 및 2602)은 마이크로단위(2620)를 정의할 수 있다. 더욱이, 위치들(2603, 2604, 및 2605)은 마이크로단위(2621)를 정의할 수 있다. 추가로 예시되는 바와 같이, 마이크로단위들은 물품의 적어도 일 부분의 표면에 걸쳐 반복될 수 있으며 적어도 하나의 매크로단위(2630)를 정의할 수 있다. 예시되는 바와 같이, 다른 매크로단위들이 존재할 수 있다는 것이 이해될 것이다. 일 특정한 인스턴스에서, 성형 연마 입자들의 위치들을 나타낸 위치들(2601)은 Y-축 또는 X-축에 평행하는 연삭 방향에 대해 비-섀도잉 배열로 배열된다.
도 27은 비-섀도잉 배열의 예시를 포함하며, 여기에서 위치들(X 및 Y 축들 상에서 점들로서 도시된)은 하나 이상의 성형 연마 입자들, 희석제 입자들, 및 그것의 조합에 의해 점유될 미리 결정된 위치들을 나타낸다. 일 실시예에서, 위치들(2701 및 2702)은 마이크로단위(2720)를 정의할 수 있다. 더욱이, 위치들(2701 및 2703)은 마이크로단위(2721)를 정의할 수 있다. 추가로 예시되는 바와 같이, 마이크로단위들은 물품의 적어도 일 부분의 표면에 걸쳐 반복될 수 있으며 적어도 하나의 매크로단위(2730)를 정의할 수 있다. 일 특정한 인스턴스에서, 성형 연마 입자들의 위치들을 나타내는 위치들의 모두는 Y-축 또는 X-축에 평행한 연삭 방향에 대해 비-섀도잉 배열로 배열된다.
성형 연마 입자들 사이에서의 미리 결정된 분포는 또한 성형 연마 입자들의 각각의 미리 결정된 배향 특성 중 적어도 하나에 의해 정의될 수 있다. 대표적인 미리 결정된 배향 특성들은 미리 결정된 회전 배향, 미리 결정된 가로 배향, 미리 결정된 세로 배향, 미리 결정된 수직 배향, 미리 결정된 팁 높이, 및 그것의 조합을 포함할 수 있다. 백킹(101)은 백킹(101)의 길이를 따라 연장되며 그것을 정의하는 세로 축(180) 및 백킹(101)의 폭을 따라 연장되며 그것을 정의하는 가로 축(181)에 의해 정의될 수 있다.
실시예에 따르면, 성형 연마 입자(102)는 백킹(101)의 181의 가로 축에 대해 특정한 제 1 가로 위치에 의해 정의된 제 1, 미리 결정된 위치(112)에 위치될 수 있다. 더욱이, 성형 연마 입자(103)는 백킹(101)의 가로 축(181)에 대해 제 2 세로 위치에 의해 정의된 제 2, 미리 결정된 위치를 가질 수 있다. 특히, 성형 연마 입자들(102 및 103)은 백킹(101)의 가로 축(181)에 평행한 가로 평면(184)을 따라 측정된 바와 같이 두 개의 인접한 성형 연마 입자들(102 및 103) 사이에서의 최소 거리로서 정의된, 가로 공간(121)에 의해 서로로부터 이격될 수 있다. 실시예에 따르면, 가로 공간(121)은 0보다 클 수 있으며, 따라서 몇몇 거리가 성형 연마 입자들(102 및 103) 사이에 존재한다. 그러나, 예시되지 않을지라도, 가로 공간(121)은 0일 수 있어서, 인접한 성형 연마 입자의 부분들 사이에서의 접촉 및 심지어 중첩을 허용할 수 있다는 것이 이해될 것이다.
다른 실시예들에서, 가로 공간(121)은 약 0.1(w)일 수 있으며, 여기에서 w는 성형 연마 입자(102)의 폭을 나타낸다. 실시예에 따르면, 성형 연마 입자의 폭은 측면을 따라 연장된 몸체의 가장 긴 치수이다. 또 다른 실시예에서, 가로 공간(121)은 적어도 약 0.5(w), 적어도 약 1(w), 적어도 약 2(w), 또는 그 이상과 같은, 적어도 약 0.2(w)일 수 있다. 계속해서, 적어도 하나의 비-제한적인 실시예에서, 가로 공간(121)은 약 100(w) 이하, 약 50(w) 이하, 또는 심지어 약 20(w) 이하일 수 있다. 가로 공간(121)은 상기 주지된 최소 및 최대 값들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다. 인접한 성형 연마 입자들 사이에서의 가로 공간의 제어는 연마 물품의 개선된 연삭 성능을 가능하게 할 수 있다.
실시예에 따르면, 성형 연마 입자(102)는 백킹(101)의 세로 축(180)에 대해 제 1 세로 위치에 의해 정의된 제 1, 미리 결정된 위치(112)에 있을 수 있다. 더욱이, 성형 연마 입자(104)는 백킹(101)의 세로 축(180)에 대해 제 2 세로 위치에 의해 정의된 제 3, 미리 결정된 위치(114)에 위치될 수 있다. 뿐만 아니라, 예시된 바와 같이, 세로 공간(123)은 성형 연마 입자들(102 및 104) 사이에 존재할 수 있으며, 이것은 세로 축(180)에 평행한 방향으로 측정된 바와 같이 두 개의 인접한 성형 연마 입자들(102 및 104) 사이에서의 최소 거리로서 정의될 수 있다. 실시예에 따르면, 세로 공간(123)은 0보다 클 수 있다. 계속해서, 예시되지 않지만, 세로 공간(123)은 0일 수 있으며, 따라서 인접한 성형 연마 입자들이 서로 닿거나, 또는 심지어 중첩한다는 것이 이해될 것이다.
다른 인스턴스들에서, 세로 공간(123)은 적어도 약 0.1(w)일 수 있으며, 여기에서 w는 여기에 설명된 바와 같이 성형 연마 입자의 폭이다. 다른 보다 특정한 인스턴스들에서, 세로 공간은 적어도 약 0.2(w), 적어도 약 0.5(w), 적어도 약 1(w), 또는 심지어 적어도 약 2(w)일 수 있다. 계속해서, 세로 공간(123)은 약 50(w) 이하, 또는 심지어 약 20(w) 이하와 같은, 약 100(w) 이하일 수 있다. 세로 공간(123)은 상기 최소 및 최대 값들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다. 인접한 성형 연마 입자들 사이에서의 세로 공간의 제어는 연마 물품의 개선된 연삭 성능을 가능하게 할 수 있다.
실시예에 따르면, 성형 연마 입자들은 미리 결정된 분포에 위치될 수 있으며, 여기에서 특정한 관계가 가로 공간(121) 및 세로 공간(123) 사이에 존재한다. 예를 들면, 일 실시예에서, 가로 공간(121)은 세로 공간(123)보다 클 수 있다. 계속해서, 또 다른 비-제한적인 실시예에서, 세로 공간(123)은 가로 공간(121)보다 클 수 있다. 계속해서, 또 다른 실시예에서, 성형 연마 입자들은 가로 공간(121) 및 세로 공간(123)이 근본적으로 서로에 대해 동일하도록 백킹 상에 위치될 수 있다. 세로 공간 및 가로 공간 사이에서의 상대적인 관계의 제어는 개선된 연삭 성능을 가능하게 할 수 있다.
추가로 예시되는 바와 같이, 세로 공간(124)은 성형 연마 입자들(104 및 105) 사이에 존재할 수 있다. 게다가, 미리 결정된 분포는 특정한 관계가 세로 공간(123) 및 세로 공간(124) 사이에 존재할 수 있도록 형성될 수 있다. 예를 들면, 세로 공간(123)은 세로 공간(124)과 상이할 수 있다. 대안적으로, 세로 공간(123)은 근본적으로 세로 공간(124)과 동일할 수 있다. 상이한 연마 입자들의 세로 공간들 사이에서의 상대적인 차이의 제어는 연마 물품의 개선된 연삭 성능을 가능하게 할 수 있다.
더욱이, 연마 물품(100) 상에서의 성형 연마 입자들의 미리 결정된 분포는 가로 공간(121)이 가로 공간(122)에 대해 특정한 관계를 가질 수 있도록 하기 위한 것일 수 있다. 예를 들면, 일 실시예에서, 가로 공간(121)은 근본적으로 가로 공간(122)과 동일할 수 있다. 대안적으로, 연마 물품(100) 상에서의 성형 연마 입자들의 미리 결정된 분포는 가로 공간(121)이 가로 공간(122)과 상이하도록 제어될 수 있다. 상이한 연마 입자들의 가로 공간들 사이에서의 상대적인 차이의 제어는 연마 물품의 개선된 연삭 성능을 가능하게 할 수 있다.
도 1b는 실시예에 따른 연마 물품의 일 부분의 측면도 예시를 포함한다. 예시된 바와 같이, 연마 물품(100)은 백킹(101) 위에 놓인 성형 연마 입자(102) 및 백킹(101) 위에 놓인 성형 연마 입자(102)로부터 이격된 성형 연마 입자(104)를 포함할 수 있다. 실시예에 따르면, 성형 연마 입자(102)는 부착 층(151)을 통해 백킹(101)에 결합될 수 있다. 더욱이 또는 대안적으로, 성형 연마 입자(102)는 부착 층(152)을 통해 백킹(101)에 결합될 수 있다. 여기에 설명된 성형 연마 입자들 중 임의의 것은 여기에 설명된 바와 같이 하나 이상의 부착 층들을 통해 백킹(101)에 결합될 수 있다는 것이 이해될 것이다.
실시예에 따르면, 연마 물품(100)은 백킹 위에 놓인 부착 층(151)을 포함할 수 있다. 일 실시예에 따르면, 부착 층(151)은 메이크 코트(make coat)를 포함할 수 있다. 메이크 코트는 백킹(101)의 표면 위에 놓이며 성형 연마 입자들(102 및 104)의 적어도 일 부분을 둘러쌀 수 있다. 여기에서의 실시예들의 연마 물품들은 부착 층(151) 및 백킹(101) 위에 놓이며 성형 연마 입자들(102 및 104)의 적어도 일 부분을 둘러싸는 부착 층(152)을 더 포함할 수 있다. 부착 층(152)은 특정한 인스턴스들에서 사이즈 코트(size coat)일 수 있다.
고분자 형성은 연마 물품의 다양한 부착 층들(151 또는 152) 중 임의의 것을 형성하기 위해 사용될 수 있으며, 이것은 이에 제한되지 않지만 프론트필, 예비-사이즈 코트, 메이크 코트, 사이즈 코트, 및/또는 슈퍼사이즈 코트를 포함할 수 있다. 프론트필을 형성하기 위해 사용될 때, 고분자 형성은 일반적으로 고분자 수지, 세동성 섬유들(바람직하게는 펄프의 형태로), 충전제 재료, 및 다른 선택적 첨가물들을 포함한다. 몇몇 프론트필 실시예들을 위한 적절한 형성들은 페놀 수지, 규회석 충전제, 소포제, 계면활성제, 세동성 섬유, 및 물의 균형과 같은, 재료를 포함할 수 있다. 적절한 고분자 수지 재료들은 페놀 수지들, 요소/포름알데히드 수지들, 페놀/라텍스 수지들, 뿐만 아니라 이러한 수지들의 조합을 포함한 열 경화 수지들로부터 선택된 경화 수지들을 포함한다. 다른 적절한 고분자 수지 재료들은 또한 에폭시 수지들, 아크릴 에폭시 수지들의 아크릴 올리고머들, 폴리에스테르 수지들, 아크릴 우레탄들 및 폴리에스테르 아크릴들 및 모노아크릴산염, 다아크릴산염 단위체들을 포함한 아크릴 단위체들과 같은, 전자 빔, UV 복사, 또는 가시광을 사용한 경화 가능한 이들 수지들과 같은, 방사선 경화 수지들을 포함할 수 있다. 형성은 또한 침식성을 강화함으로써 증착된 연마 합성물들의 자기-첨예화 특성들을 강화할 수 있는 비반응성 열가소성 수지 결합제를 포함할 수 있다. 이러한 열가소성 수지의 예들은 폴리프로필렌 글리콜, 폴리에틸렌 글리콜, 및 폴리옥시프로필렌-폴리옥시에텐 블록 공중합체 등을 포함한다. 백킹 상에서의 프론트필의 사용은 메이크 코트의 적절한 도포 및 미리 결정된 배향으로 성형 연마 입자들의 개선된 도포 및 배향을 위해, 표면의 균일성을 개선할 수 있다.
부착 층들(151 및 152) 중 어느 하나는 단일 프로세스에서 백킹(101)의 표면에 도포될 수 있거나, 또는 대안적으로, 성형 연마 입자들(102 및 104)은 부착 층들(151 또는 152) 중 하나의 재료와 조합될 수 있으며 백킹(101)의 표면에 혼합물로서 도포될 수 있다. 메이크 코트로서 사용을 위한 부착 층(151)의 적절한 재료들은 예를 들면, 폴리에스테르들, 에폭시 수지들, 폴리우레탄들, 폴리아미드들, 폴리아크릴레이트들, 폴리메타아크릴레이트들, 폴리 염화 비닐들, 폴리에틸렌, 폴리실록산, 실리콘들, 아세트산 셀룰로오스들, 니트로셀룰로오스, 천연 고무, 녹말, 셸락, 및 그것의 혼합물들을 포함한, 유기 재료들, 특히 고분자 재료들을 포함할 수 있다. 일 실시예에서, 부착 층(151)은 폴리에스테르 수지를 포함할 수 있다. 코팅된 백킹(101)은 그 후 기판으로 수지 및 연마 입자상 물질을 경화시키기 위해 가열될 수 있다. 일반적으로, 코팅된 백킹(101)은 경화 프로세스 동안 약 100℃ 내지 약 250℃ 미만 사이의 온도로 가열될 수 있다.
부착 층(152)은 연마 입자상에 형성될 수 있으며, 이것은 사이즈 코트의 형태에 있을 수 있다. 특정한 실시예에 따르면, 부착 층(152)은 백킹(101)에 대하여 제자리에 있는 성형 연마 입자들(102 및 104) 위에 놓이며 그것을 접합시키기 위해 형성된 사이즈 코트일 수 있다. 부착 층(152)은 유기 재료를 포함할 수 있고, 근본적으로 고분자 재료로 이루어질 수 있으며, 특히 폴리에스테르들, 에폭시 수지들, 폴리우레탄들, 폴리아미드들, 폴리아크릴레이트들, 폴리메타아크릴레이트들, 폴리 염화 비닐들, 폴리에틸렌, 폴리실록산, 실리콘들, 아세트산 셀룰로오스, 니트로셀룰로오스, 천연 고무, 녹말, 셸락, 및 그것의 혼합물들을 사용할 수 있다.
예시되지 않지만, 연마 물품은 성형 연마 입자들(104 및 105)과 상이한 희석제 연마 입자들을 포함할 수 있다는 것이 이해될 것이다. 예를 들면, 희석제 입자들은 조성, 2--차원 형태, 3-차원 형태, 크기, 및 그것의 조합에서 성형 연마 입자들(102 및 104)과 상이할 수 있다. 예를 들면, 연마 입자들(507)은 랜덤 형태들을 가진 종래의, 파쇄된 연마 그릿을 나타낼 수 있다. 연마 입자들(507)은 성형 연마 입자들(505)의 중앙 입자 크기보다 작은 중앙 입자 크기를 가질 수 있다.
추가로 예시되는 바와 같이, 성형 연마 입자(102)는 백킹(101)에 대해 측 배향으로 배향될 수 있으며, 성형 연마 입자(102)의 측 표면(171)은 백킹(101) 또는 적어도 백킹(101)의 상부 표면에 가장 가까운 성형 연마 입자(102)의 표면과 직접 접촉할 수 있다. 실시예에 따르면, 성형 연마 입자(102)는 성형 연마 입자(102)의 주 표면(172) 및 백킹(101)의 주 표면(161) 사이에서의 경사각(AT1)(136)에 의해 정의된 수직 배향을 가질 수 있다. 경사각(136)은 성형 연마 입자(102)의 표면(172) 및 백킹(101)의 상부 표면(161) 사이에서의 최소 각 또는 예각으로서 정의될 수 있다. 실시예에 따르면, 성형 연마 입자(102)는 미리 결정된 수직 배향을 가진 위치에 위치될 수 있다. 실시예에 따르면, 경사각(136)은 적어도 약 5°, 적어도 약 10°, 적어도 약 15°, 적어도 약 20°, 적어도 약 25°, 적어도 약 30°, 적어도 약 35°, 적어도 약 40°, 적어도 약 45°, 적어도 약 50°, 적어도 약 55°, 적어도 약 60°, 적어도 약 70°, 적어도 약 80°, 또는 심지어 적어도 약 85°와 같은 적어도 약 2°일 수 있다. 계속해서, 경사각(136)은 약 85°이하, 약 80°이하, 약 75°이하, 약 70°이하, 약 65°이하, 약 60°이하와 같은, 약 55°이하, 약 50°이하, 약 45°이하, 약 40°이하, 약 35°이하, 약 30°이하, 약 25°이하, 약 20°이하와 같은, 약 15°이하, 약 10°이하, 또는 심지어 약 5°이하와 같은, 약 90°이하일 수 있다. 경사각(136)은 상기 최소 및 최대 정도들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다.
추가로 예시되는 바와 같이, 연마 물품(100)은 측 배향으로 성형 연마 입자(104)를 포함할 수 있으며, 여기에서 성형 연마 입자(104)의 측 표면(171)은 백킹(101)의 상부 표면(161)과 직접 접촉하거나 또는 그것에 가장 가깝다. 실시예에 따르면, 성형 연마 입자(104)는 성형 연마 입자(104)의 주 표면(172) 및 백킹(101)의 상부 표면(161) 사이에서의 각도를 정의하는 제 2 경사각(AT2)(137)에 의해 정의된 미리 결정된 수직 배향을 가진 위치에 있을 수 있다. 경사각(137)은 성형 연마 입자(104)의 주 표면(172) 및 백킹(101)의 상부 표면(161) 사이에서의 최소 각으로서 정의될 수 있다. 게다가, 경사각(137)은 적어도 약 5°, 적어도 약 10°, 적어도 약 15°, 적어도 약 20°, 적어도 약 25°, 적어도 약 30°, 적어도 약 35°, 적어도 약 40°, 적어도 약 45°, 적어도 약 50°, 적어도 약 55°, 적어도 약 60°, 적어도 약 70°, 적어도 약 80°, 또는 심지어 적어도 약 85°와 같은, 적어도 약 2°의 값을 가질 수 있다. 계속해서, 경사각(136)은 약 85°이하, 약 80°이하, 약 75°이하, 약 70°이하, 약 65°이하, 약 60°이하와 같은, 약 55°이하, 약 50°이하, 약 45°이하, 약 40°이하, 약 35°이하, 약 30°이하, 약 25°이하, 약 20°이하와 같은, 약 15°이하, 약 10°이하, 또는 심지어 약 5°이하와 같은, 약 90°이하일 수 있다. 경사각(136)은 상기 최소 및 최대 정도들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다.
실시예에 따르면, 성형 연마 입자(102)는 성형 연마 입자(104)의 미리 결정된 수직 배향과 동일한 미리 결정된 수직 배향을 가질 수 있다. 대안적으로, 연마 물품(100)은 성형 연마 입자(102)의 미리 결정된 수직 배향이 성형 연마 입자(104)의 미리 결정된 수직 배향과 상이할 수 있도록 형성될 수 있다.
실시예에 따르면, 성형 연마 입자들(102 및 104)은 그것들이 수직 배향 차에 의해 정의된 상이한 미리 결정된 수직 배향들을 갖도록 백킹 상에 위치될 수 있다. 수직 배향 차는 경사각(136) 및 경사각(137) 사이에서의 차이의 절대 값일 수 있다. 실시예에 따르면, 수직 배향 차는 적어도 약 5°, 적어도 약 10°, 적어도 약 15°, 적어도 약 20°, 적어도 약 25°, 적어도 약 30°, 적어도 약 35°, 적어도 약 40°, 적어도 약 45°, 적어도 약 50°, 적어도 약 55°, 적어도 약 60°, 적어도 약 70°, 적어도 약 80°, 또는 심지어 적어도 약 85°와 같은, 적어도 약 2°일 수 있다. 계속해서, 수직 배향 차는 약 85°이하, 약 80°이하, 약 75°이하, 약 70°이하, 약 65°이하, 약 60°이하와 같은, 약 55°이하, 약 50°이하, 약 45°이하, 약 40°이하, 약 35°이하, 약 30°이하, 약 25°이하, 약 20°이하와 같은, 약 15°이하, 약 10°이하, 또는 심지어 약 5°이하와 같은, 약 90°이하일 수 있다. 수직 배향 차는 상기 최소 및 최대 정도들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해되 것이다. 연마 물품(100)의 성형 연마 입자들 사이에서의 수직 배향 차의 제어는 개선된 연삭 성능을 가능하게 할 수 있다.
추가로 예시되는 바와 같이, 성형 연마 입자들은 미리 결정된 팁 높이를 갖기 위해 백킹 상에 위치될 수 있다. 예를 들면, 성형 연마 입자(102)의 미리 결정된 팁 높이(hT1)(138)는 백킹(161)의 상부 표면 및 성형 연마 입자(102)의 최상위 표면(143) 사이에서의 최대 거리일 수 있다. 특히, 성형 연마 입자(102)의 미리 결정된 팁 높이(138)는 성형 연마 입자(102)가 연장되는 백킹(161)의 상부 표면 위에서의 최대 거리를 정의할 수 있다. 추가로 예시되는 바와 같이, 성형 연마 입자(104)는 백킹(101)의 상부 표면(161) 및 성형 연마 입자(104)의 최상위 표면(144) 사이에서의 거리로서 정의된 미리 결정된 팁 높이(hT2)를 가질 수 있다. 측정들은 X-선, 공초점 현미경 CT, 마이크로메저, 백색광 간섭계, 및 그것의 조합을 통해 평가될 수 있다.
실시예에 따르면, 성형 연마 입자(102)는 성형 연마 입자(104)의 미리 결정된 팁 높이(139)와 상이할 수 있는 미리 결정된 팁 높이(138)를 갖기 위해 백킹(101) 상에 위치되 수 있다. 특히, 미리 결정된 팁 높이(△hT)에서의 차이는 평균 팁 높이(138) 및 평균 팁 높이(139) 사이에서의 차이로서 정의될 수 있다. 실시예에 따르면, 미리 결정된 팁 높이에서의 차이는 적어도 약 0.01(w)일 수 있으며, 여기에서 (w)는 여기에 설명된 바와 같이 성형 연마 입자의 폭이다. 다른 인스턴스들에서, 팁 높이 차는 적어도 약 0.05(w), 적어도 약 0.1(w), 적어도 약 0.2(w), 적어도 약 0.4(w), 적어도 약 0.5(w), 적어도 약 0.6(w), 적어도 약 0.7(w), 또는 심지어 저어도 약 0.8(w)일 수 있다. 계속해서, 비-제한적인 일 실시예에서, 팁 높이 차는 약 2(w) 이하일 수 있다. 팁 높이에서의 차이는 상기 주지된 최소 및 최대 값들 중 임의의 것 사이에서의 범위에 있을 수 있다는 것이 이해될 것이다. 연마 물품(100)의 성형 연마 입자들 사이에서의, 평균 팁 높이 및 보다 특히 평균 팁 높이에서의 차이의 제어는 개선된 연삭 성능을 가능하게 할 수 있다.
여기에서의 참조가 평균 팁 높이에서의 차이를 가진 성형 연마 입자들에 대해 이루어지지만, 연마 물품들의 성형 연마 입자들은 근본적으로 성형 연마 입자들 사이에서의 평균 팁 높이 사이에서의 차이가 없도록 동일한 평균 팁 높이를 가질 수 있다는 것이 이해될 것이다. 예를 들면, 여기에 설명된 바와 같이, 그룹의 성형 연마 입자들은 그룹의 성형 연마 입자들의 각각의 수직 팁 높이가 실질적으로 동일하도록 연마 물품 상에 위치될 수 있다.
도 1c는 실시예에 따른 연마 물품의 일 부분의 단면 예시를 포함한다. 예시된 바와 같이, 성형 연마 입자들(102 및 104)은 백킹(101)에 대하여 편평한 플랫 배향으로 배향될 수 있으며, 여기에서 주 표면(174), 및 특히 성형 연마 입자들(102 및 104)의 최대 표면적을 가진 특정한 주 표면(즉, 상부 주 표면(172)의 반대편에 있는 하부 표면(174))의 적어도 일 부분은 백킹(101)과 직접 접촉할 수 있다. 대안적으로, 플랫 배향에서, 주 표면(174)의 일 부분은 백킹(101)과 직접 접촉할 수 없지만, 백킹(101)의 상부 표면(161)에 가장 가까운 성형 연마 입자의 표면일 수 있다.
도 1d는 실시예에 따른 연마 물품의 일 부분의 단면 예시를 포함한다. 예시된 바와 같이, 성형 연마 입자들(102 및 104)은 백킹(101)에 대하여 반전된 배향으로 배향될 수 있으며, 여기에서 성형 연마 입자들(102 및 104)의 주 표면(172)(즉, 상부 주 표면(172))의 적어도 일 부분은 백킹(101)과 직접 접촉할 수 있다. 대안적으로, 반전 배향으로, 주 표면(172)의 일 부분은 백킹(101)과 직접 접촉하지 않을 수 있지만, 백킹(101)의 상부 표면(161)에 가장 가까운 성형 연마 입자의 표면일 수 있다.
도 2a는 실시예에 따른 성형 연마 입자들을 포함한 연마 물품의 일 부분의 상면도 예시를 포함한다. 예시된 바와 같이, 연마 물품은 백킹(101)의 폭을 정의하며 세로 축(181)에 수직인 가로 축(181)에 대하여 제 1 회전 배향을 가진 제 1 위치에서 백킹(101) 위에 놓인 성형 연마 입자(102)를 포함할 수 있다. 특히, 성형 연마 입자(102)는 가로 축(181)에 평행한 가로 평면(184) 및 성형 연마 입자(102)의 치수 사이에서의 제 1 회전 각에 의해 정의된 미리 결정된 회전 배향을 가질 수 있다. 특히, 치수에 대한 여기에서의 참조는 백킹(101)에 연결된(직접 또는 간접적으로) 표면(예로서, 측면 또는 에지)을 따라 성형 연마 입자(102)의 중심 점(221)을 통해 연장된 성형 연마 입자의 등분 축(231)에 대한 참조일 수 있다. 따라서, 측 배향에 위치된 성형 연마 입자의 맥락에서, (도 1b 참조), 등분 축(231)은 중심 점(221)을 통해 및 백킹(101)의 표면(181)에 가장 가까운 측면(171)의 폭(w)의 방향으로 연장된다. 게다가, 미리 결정된 회전 배향은 중심 점(221)을 통해 연장된 가로 평면(184)을 가진 최소 각(201)으로서 정의될 수 있다. 도 2a에 예시된 바와 같이, 성형 연마 입자(102)는 등분 축(231) 및 가로 평면(184) 사이에서의 최소 각으로서 정의된 미리 결정된 회전 각을 가질 수 있다. 실시예에 따르면, 회전 각(201)은 0°일 수 있다. 다른 실시예들에서, 회전 각은, 적어도 약 2°, 적어도 약 5°, 적어도 약 10°, 적어도 약 15°, 적어도 약 20°, 적어도 약 25°, 적어도 약 30°, 적어도 약 35°, 적어도 약 40°, 적어도 약 45°, 적어도 약 50°, 적어도 약 55°, 적어도 약 60°, 적어도 약 70°, 적어도 약 80°, 또는 심지어 적어도 약 85°와 같이, 더 클 수 있다. 계속해서, 회전각(201)에 의해 정의된 바와 같이 미리 결정된 회전 배향은 약 85°이하, 약 80°이하, 약 75°이하, 약 70°이하, 약 65°이하, 약 60°이하와 같은, 약 55°이하, 약 50°이하, 약 45°이하, 약 40°이하, 약 35°이하, 약 30°이하, 약 25°이하, 약 20°이하와 같은, 약 15°이하, 약 10°이하, 또는 심지어 약 5°이하와 같은, 약 90°이하일 수 있다. 미리 결정된 회전 배향은 상기 최소 및 최대 정도들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다.
도 2a에 추가로 예시되는 바와 같이, 성형 연마 입자(103)는 백킹(101) 위에 놓이며 미리 결정된 회전 배향을 가진 위치(113)에 있을 수 있다. 특히, 성형 연마 입자(103)의 미리 결정된 회전 배향은 가로 축(181)에 평행한 가로 평면(184) 및 백킹(101)의 표면(181)에 가장 가까운 측면의 폭(w)의 방향으로 성형 연마 입자(102)의 중심 점(222)을 통해 연장된 성형 연마 입자(103)의 등분 축(232)에 의해 정의된 치수 사이에서의 최소 각으로서 특성화될 수 있다. 실시예에 따르면, 회전 각(208)은 0°일 수 있다. 다른 실시예들에서, 회전 각(208)은 적어도 약 2°, 적어도 약 5°, 적어도 약 10°, 적어도 약 15°, 적어도 약 20°, 적어도 약 25°, 적어도 약 30°, 적어도 약 35°, 적어도 약 40°, 적어도 약 45°, 적어도 약 50°, 적어도 약 55°, 적어도 약 60°, 적어도 약 70°, 적어도 약 80°, 또는 심지어 적어도 약 85°와 같이 더 클 수 있다. 계속해서, 회전 각(208)에 의해 정의된 바와 같이 미리 결정된 회전 배향은 약 85°이하, 약 80°이하, 약 75°이하, 약 70°이하, 약 65°이하, 약 60°이하와 같은, 약 55°이하, 약 50°이하, 약 45°이하, 약 40°이하, 약 35°이하, 약 30°이하, 약 25°이하, 약 20°이하와 같은, 약 15°이하, 약 10°이하, 또는 심지어 약 5°이하와 같은, 약 90°이하일 수 있다. 미리 결정된 회전 배향은 상기 최소 및 최대 정도들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다.
실시예에 따르면, 성형 연마 입자(102)는 회전각(208)에 의해 정의된 바와 같이 성형 연마 입자(103)의 미리 결정된 회전 배향과 상이한 회전 각(201)에 의해 정의된 바와 같이 미리 결정된 회전 배향을 가질 수 있다. 특히, 성형 연마 입자들(102 및 103) 사이에서의 회전 각(201) 및 회전 각(208) 사이에서의 차는 미리 결정된 회전 배향 차를 정의할 수 있다. 특정한 인스턴스들에서, 미리 결정된 회전 배향 차는 0°일 수 있다. 다른 인스턴스들에서, 임의의 두 개의 성형 연마 입자들 사이에서의 미리 결정된 회전 배향 차는, 적어도 약 1°, 적어도 약 3°, 적어도 약 5°, 적어도 약 10°, 적어도 약 15°, 적어도 약 20°, 적어도 약 25°, 적어도 약 30°, 적어도 약 35°, 적어도 약 40°, 적어도 약 45°, 적어도 약 50°, 적어도 약 55°, 적어도 약 60°, 적어도 약 70°, 적어도 약 80°, 또는 심지어 적어도 약 85°와 같이, 더 클 수 있다. 계속해서, 임의의 두 개의 성형 연마 입자들 사이에서의 미리 결정된 회전 배향 차는 약 85°이하, 약 80°이하, 약 75°이하, 약 70°이하, 약 65°이하, 약 60°이하, 약 55°이하와 같은, 약 55°이하, 약 50°이하, 약 45°이하, 약 40°이하, 약 35°이하, 약 30°이하, 약 25°이하, 약 20°이하와 같은, 약 15°이하, 약 10°이하, 또는 심지어 약 5°이하와 같은, 약 90°이하일 수 있다. 미리 결정된 회전 배향 차는 상기 최소 및 최대 값들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다.
도 2b는 실시예에 따른 성형 연마 입자를 포함한 연마 물품의 일 부분의 투시도 예시를 포함한다. 예시된 바와 같이, 연마 물품은 백킹(101)의 폭을 정의한 가로 축(181)에 대해 제 1 회전 배향을 가진 제 1 위치(112)에서 백킹(101) 위에 놓인 성형 연마 입자(102)를 포함할 수 있다. 성형 연마 입자들 미리 결정된 배향 특성들의 특정한 양상들은 예시된 바와 같이 x, y, z 3-차원 축에 대한 관계에 의해 설명될 수 있다. 예를 들면, 성형 연마 입자(102)의 미리 결정된 세로 배향은 백킹(101)의 세로 축(180)에 평행하여 연장되는, y-축 상에서의 성형 연마 입자의 위치에 의해 정의될 수 있다. 게다가, 성형 연마 입자(102)의 미리 결정된 가로 배향은 백킹(101)의 가로 축(181)에 평행하여 연장되는, x-축 상에서의 성형 연마 입자의 위치에 의해 정의될 수 있다. 더욱이, 성형 연마 입자(102)의 미리 결정된 회전 배향은 x-축들 사이에서의 회전 각(102)으로서 정의될 수 있으며, 이것은 백킹(101)에 연결된(직접이든 간접이든) 측면(171) 성형 연마 입자(102)의 중심 점(221)을 통해 연장된 성형 연마 입자(102)의 등분 축(231) 및 가로 축(181)에 평행한 축 또는 평면에 대응한다. 일반적으로 예시되는 바와 같이, 성형 연마 입자(102)는 또한 여기에 설명된 바와 같이 미리 결정된 수직 배향 및 미리 결정된 팁 높이를 가질 수 있다. 특히, 여기에 설명된 미리 결정된 배향 특성들의 제어를 용이하게 하는 복수의 성형 연마 입자들의 제어된 배치는 고도로 수반된 프로세스이며, 이것은 산업에서 이전에 고려되거나 또는 효율적으로 사용되지 않았다.
설명의 간략함을 위해, 여기에서의 실시예들은 X, Y, 및 Z 방향들에 의해 정의된 평면에 대해 특정한 특징들을 언급한다. 그러나, 연마 물품들은 다른 형태들(예로서, 타원체 또는 루핑된 기하학적 구조를 정의된 코팅된 연마 벨트들 또는 심지어 고리-형 백킹을 가진 코팅된 연마 샌딩 디스크들)을 가질 수 있다. 여기에서의 특징들의 설명은 연마 물품들의 평면 구성들에 제한되지 않으며 여기에 설명된 특징들은 임의의 기하학적 구조의 연마 물품들에 적용 가능하다. 백킹이 원형 기하학적 구조를 가진 이러한 인스턴스들에서, 세로 축 및 가로 축은 백킹의 중심 점을 통해 연장되며 서로에 대해 직교 관계를 가진 두 개의 지름들이 수 있다.
도 3a는 실시예에 따른 연마 물품(300)의 일 부분의 상면도 예시를 포함한다. 예시된 바와 같이, 연마 물품(300)은 성형 연마 입자들(311, 312, 313, 및 314)(311 내지 314)을 포함한, 성형 연마 입자들의 제 1 그룹(301)을 포함할 수 있다. 여기에 사용된 바와 같이, 그룹은 성형 연마 입자들의 각각에 대해 동일한 적어도 하나의 미리 결정된 배향 특성(또는 그것의 조합)을 가진 복수의 성형 연마 입자들을 나타낼 수 있다. 대표적인 미리 결정된 배향 특성들은 미리 결정된 회전 배향, 미리 결정된 가로 배향, 미리 결정된 세로 배향, 미리 결정된 수직 배향, 및 미리 결정된 팁 높이를 포함할 수 있다. 예를 들면, 성형 연마 입자들의 제 1 그룹(301)은 서로에 대하여 실질적으로 동일한 미리 결정된 회전 배향을 가진 복수의 성형 연마 입자들을 포함한다. 추가로 예시되는 바와 같이, 연마 물품(300)은 예를 들면, 성형 연마 입자들(321, 322, 323, 및 324)(321 내지 324)을 포함한, 복수의 성형 연마 입자들을 포함한 또 다른 그룹(303)을 포함할 수 있다. 예시된 바와 같이, 그룹(303)은 동일한 미리 결정된 회전 배향을 가진 복수의 성형 연마 입자들을 포함할 수 있다. 더욱이, 그룹(303)의 성형 연마 입자들의 적어도 일 부분은 서로(예로서, 성형 연마 입자들(321 및 322) 및 성형 연마 입자들(323 및 324))에 대하여 동일한 미리 결정된 가로 배향을 가질 수 있다. 게다가, 그룹(303)의 성형 연마 입자들의 적어도 일 부분은 서로(예로서, 성형 연마 입자들(321 및 324) 및 성형 연마 입자들(322 및 323))에 대하여 동일한 미리 결정된 세로 배향을 가질 수 있다.
추가로 예시된 바와 같이, 연마 물품은 그룹(305)을 포함할 수 있다. 그룹(305)은 적어도 하나의 공통의 미리 결정된 배향 특성을 가진 성형 연마 입자들(331, 332, 및 333)(331 내지 333)을 포함한, 복수의 성형 연마 입자들을 포함할 수 있다. 도 3a의 실시예에 예시된 바와 같이, 그룹(305) 내에서의 복수의 성형 연마 입자들은 서로에 대하여 동일한 미리 결정된 회전 배향을 가질 수 있다. 더욱이, 그룹(305)의 복수의 성형 연마 입자들의 적어도 일 부분은 서로(예로서, 성형 연마 입자들(332 및 333))에 대하여 동일한 미리 결정된 가로 배향을 가질 수 있다. 또한, 그룹(305)의 복수의 성형 연마 입자들의 적어도 일 부분은 서로에 대하여 동일한 미리 결정된 세로 배향을 가질 수 있다. 성형 연마 입자들의 그룹들, 및 특히 여기에 설명된 특징들을 가진 성형 연마 입자들의 그룹들의 조합의 이용은 연마 물품의 개선된 성능을 가능하게 할 수 있다.
추가로 예시된 바와 같이, 연마 물품(300)은 그룹들(301, 303, 및 305)을 포함할 수 있으며, 이것은 그룹들(301, 303, 305) 사이에서 연장된 채널 영역들(307 및 308)에 의해 분리될 수 있다. 특정한 인스턴스들에서, 채널 영역들은 실질적으로 성형 연마 입자들이 없을 수 있는 연마 물품 상에서의 영역들일 수 있다. 게다가, 채널 영역들(307 및 308)은 그룹들(301, 303, 및 305) 사이에서 액체를 이동시키도록 구성될 수 있으며, 이것은 연마 물품의 스와프 제거 및 연삭 성능을 개선할 수 있다. 채널 영역들(307 및 308)은 성형 연마 입자의 표면상에서의 미리 결정된 영역들일 수 있다. 채널 영역들(307 및 308)은 그룹들(301, 303, 및 305)에서의 인접항 성형 연마 입자들 사이에서의 세로 공간 또는 가로 공간과 상이하며, 보다 특히 그보다 폭 및/또는 길이가 더 큰 그룹들(301, 303, 및 305) 사이에서의 전용 영역들을 정의할 수 있다.
채널 영역들(307 및 308)은 세로 축(180)에 평행하거나 또는 수직이거나 또는 백킹(101)의 가로 축(181)에 평행하거나 또는 수직인 방향을 따라 연장될 수 있다. 특정한 인스턴스들에서, 채널 영역들(307 및 308)은 각각 축들(351 및 352)을 가질 수 있으며, 채널 영역들(307 및 308)의 중심을 따라 및 채널 영역들(307 및 308)의 세로 치수를 따라 연장하는 것은 백킹(101)의 세로 축(380)에 대해 미리 결정된 각을 가질 수 있다. 게다가, 채널 영역들(307 및 308)의 축들(351 및 352)은 백킹(101)의 가로 축(181)에 대해 미리 결정된 각도를 형성할 수 있다. 채널 영역들의 제어된 배향은 연마 물품의 개선된 성능을 가능하게 할 수 있다.
더욱이, 채널 영역들(307 및 308)은 그것들이 연삭(350)의 방향에 대해 미리 결정된 배향을 갖도록 형성될 수 있다. 예를 들면, 채널 영역들(307 및 308)은 연삭(350)의 방향에 평행하거나 또는 수직인 방향을 따라 연장될 수 있다. 특정한 인스턴스들에서, 채널 영역들(307 및 308)은 각각 축들(351 및 352)을 가질 수 있으며, 채널 영역들(307 및 308)의 중심을 따라 및 채널 영역들(307 및 308)의 세로 치수를 따라 연장하는 것은 연삭(350)의 방향에 대해 미리 결정된 각도를 가질 수 있다. 채널 영역들의 제어된 배향은 연마 물품의 개선된 성능을 가능하게 할 수 있다.
적어도 일 실시예에 대해, 예시된 바와 같이 그룹(301)은 복수의 성형 연마 입자들을 포함할 수 있으며, 여기에서 그룹(301)에서의 복수의 성형 연마 입자들의 적어도 일 부분은 패턴(315)을 정의할 수 있다. 예시된 바와 같이, 복수의 성형 연마 입자들(311 내지 314)은 하향식으로 보여지는 바와 같이, 사각형의 형태에서와 같은, 2-차원 어레이를 추가로 정의하는 미리 결정된 분포에서 서로에 대하여 배열될 수 있다. 어레이는 성형 연마 입자들의 단위 배열에 의해 정의된 단거리 순서를 가지며 함께 연결된 규칙적 및 반복적 유닛들을 포함한 장거리 순서를 추가로 갖는 패턴이다. 다른 다각형 형태들, 생략 부호, 장식용 표시들, 제품 표시들 또는 다른 설계들을 포함한, 다른 2-차원 어레이들이 형성될 수 있다는 것이 이해될 것이다. 추가로 예시되는 바와 같이, 그룹(303)은 사각형 2-차원 어레이를 정의한 패턴(325)에서 또한 배열될 수 있는 복수의 성형 연마 입자들(321 내지 324)을 포함할 수 있다. 더욱이, 그룹(305)은 삼각형 패턴(335)의 형태로 미리 결정된 분포를 정의하기 위해 서로에 대하여 배열될 수 있는 복수의 성형 연마 입자들(331 내지 334)을 포함할 수 있다.
실시예에 따르면, 그룹(301)의 복수의 성형 연마 입자들은 또 다른 그룹(예로서, 그룹(303) 또는 그룹(305))의 성형 연마 입자들과 상이한 패턴을 정의할 수 있다. 예를 들면, 그룹(301)의 성형 연마 입자들은 백킹(101) 상에서의 배향에 대하여 그룹(305)의 패턴(335)과 상이한 패턴(315)을 정의할 수 있다. 게다가, 그룹(301)의 성형 연마 입자들은 연삭(350)의 방향에 대하여 제 2 그룹(예로서, 303 또는 305)의 패턴의 배향에 비교하여 연삭(350)의 방향에 대하여 제 1 배향을 갖는 패턴(315)을 정의할 수 있다.
특히, 성형 연마 입자들의 그룹들(301, 303, 또는 305) 중 임의의 하나는 연삭의 방향에 대해 특정한 배향을 가질 수 있는 하나 이상의 벡터들(예로서, 그룹(305)의 361 또는 362)을 정의한 패턴을 가질 수 있다. 특히, 그룹의 성형 연마 입자들은 그룹의 패턴을 정의하는 미리 결정된 배향 특성을 가질 수 있으며, 이것은 패턴의 하나 이상의 벡터들을 추가로 정의할 수 있다. 대표적인 실시예에서, 패턴(335)의 벡터들(361 및 362)은 연삭 방향(350)에 대해 미리 결정된 각도를 형성하도록 제어될 수 있다. 벡터들(361 및 362)은 예를 들면, 연삭 방향(350)에 대해 평행 배향, 수직 배향, 또는 심지어 비-직교 또는 비-평행 배향(즉, 예각 또는 둔각을 정의하기 위해 각이 있는)을 포함한 다양한 배향들을 가질 수 있다.
실시예에 따르면, 제 1 그룹(301)의 복수의 성형 연마 입자들은 또 다른 그룹(예로서, 303 또는 305)에서의 복수의 성형 연마 입자들과 상이한 적어도 하나의 미리 결정된 배향 특성을 가질 수 있다. 예를 들면, 그룹(301)의 성형 연마 입자들의 적어도 일 부분은 그룹(303)의 성형 연마 입자들의 적어도 일 부분의 미리 결정된 회전 배향과 상이한 미리 결정된 회전 배향을 가질 수 있다. 계속해서, 일 특정한 양상에서, 그룹(301)의 성형 연마 입자들의 모두는 그룹(303)의 성형 연마 입자들의 모두의 미리 결정된 회전 배향과 상이한 미리 결정된 회전 배향을 가질 수 있다.
또 다른 실시예에 따르면, 그룹(301)의 성형 연마 입자들의 적어도 일 부분은 그룹(303)의 성형 연마 입자들의 적어도 일 부분의 미리 결정된 가로 배향과 상이한 미리 결정된 가로 배향을 가질 수 있다. 또 다른 실시예에 대해, 그룹(301)의 성형 연마 입자들의 모두는 그룹(303)의 성형 연마 입자들의 모두의 미리 결정된 가로 배향과 상이한 미리 결정된 가로 배향을 가질 수 있다.
게다가, 또 다른 실시예에서, 그룹(301)의 성형 연마 입자들의 적어도 일 부분은 그룹(303)의 성형 연마 입자들의 적어도 일 부분의 미리 결정된 세로 배향과 상이할 수 있는 미리 결정된 세로 배향을 가질 수 있다. 또 다른 실시예에 대해, 그룹(301)의 성형 연마 입자들의 모두는 그룹(303)의 성형 연마 입자들의 모두의 미리 결정된 세로 배향과 상이할 수 있는 미리 결정된 세로 배향을 가질 수 있다.
더욱이, 그룹(301)의 성형 연마 입자들의 적어도 일 부분은 그룹(303)의 성형 연마 입자들의 적어도 일 부분의 미리 결정된 수직 배향과 상이한 미리 결정된 수직 배향을 가질 수 있다. 계속해서, 일 양상에 대해, 그룹(301)의 성형 연마 입자들의 모두는 그룹(303)의 성형 연마 입자들의 모두의 미리 결정된 수직 배향과 상이한 미리 결정된 수직 배향을 가질 수 있다.
게다가, 일 실시예에서, 그룹(301)의 성형 연마 입자들의 적어도 일 부분은 그룹(303)의 성형 연마 입자들의 적어도 일 부분의 미리 결정된 팁 높이와 상이한 미리 결정된 팁 높이를 가질 수 있다. 또 다른 특정한 실시예에서, 그룹(301)의 성형 연마 입자들의 모두는 그룹(303)의 성형 연마 입자들의 모두의 미리 결정된 팁 높이와 상이한 미리 결정된 팁 높이를 가질 수 있다.
임의의 수의 그룹들이 미리 결정된 비행 특성들을 가진 연마 물품 상에서 다양한 영역들을 생성하는 연마 물품에 포함될 수 있다는 것이 이해될 것이다. 게다가, 그룹들의 각각은 그룹들(301 및 303)에 대해 앞서 말한 것에 설명된 바와 같이 서로와 상이할 수 있다.
여기에서의 하나 이상의 실시예들에 설명된 바와 같이, 성형 연마 입자들은 백킹 상에서 미리 결정된 위치들에 의해 정의된 미리 결정된 분포들로 배열될 수 있다. 보다 특히, 미리 결정된 분포는 둘 이상의 성형 연마 입자들 사이에서의 비-섀도잉 배열을 정의할 수 있다. 예를 들면, 일 특정한 실시예에서, 연마 물품은 제 1 미리 결정된 위치에서의 제 1 성형 연마 입자 및 제 2 미리 결정된 위치에서의 제 2 성형 연마 입자를 포함할 수 있으며, 따라서 제 1 및 제 2 성형 연마 입자는 서로에 대하여 비-섀도잉 배열을 정의한다. 비-섀도잉 배열은 그것들이 워크피스 상에서의 별개의 위치들에서 워크피스와 초기 접촉하며 워크피스 상에서의 초기 재료 제거의 위치에서 초기 중첩을 제한하거나 또는 회피하도록 구성되도록 하는 성형 연마 입자들의 배열에 의해 정의될 수 있다. 비-섀도잉 배열은 개선된 연삭 성능을 가능하게 할 수 있다. 특정한 일 실시예에서, 제 1 성형 연마 입자는 복수의 성형 연마 입자들에 의해 정의된 그룹의 부분일 수 있으며, 제 2 성형 연마 입자는 복수의 성형 연마 입자들에 의해 정의된 제 2 그룹의 부분일 수 있다. 제 1 그룹은 백킹 상에서의 제 1 로우를 정의할 수 있으며 제 2 그룹은 백킹 상에서의 제 2 로우를 정의할 수 있고, 제 2 그룹의 성형 연마 입자들의 각각은 제 1 그룹의 성형 연마 입자들의 각각에 대하여 서로 엇갈리게 배치될 수 있으며, 따라서 특정한 비-섀도잉 배열을 정의한다.
도 3b는 실시예에 따른 연삭 방향에 대해 미리 결정된 배향 특성들을 가진 성형 연마 입자들을 포함한 연마 물품의 일 부분의 투시도 예시를 포함한다. 일 실시예에서, 연마 물품은 또 다른 성형 연마 입자(103)에 대해 및/또는 연삭 방향(385)에 대해 미리 결정된 배향을 가진 성형 연마 입자(102)를 포함할 수 있다. 연삭 방향(385)에 대해 미리 결정된 배향 특성들 중 하나 또는 조합의 제어는 연마 물품의 개선된 연삭 성능을 가능하게 할 수 있다. 연삭 방향(385)은 재료 제거 동작에서 워크피스에 대하여 연마 물품의 움직임의 의도된 방향일 수 있다. 특정한 인스턴스들에서, 연삭 방향(385)은 백킹(101)의 치수들에 관련될 수 있다. 예를 들면, 일 실시예에서, 연삭 방향(385)은 백킹의 가로 축(181)에 실질적으로 수직이며 백킹(101)의 세로 축(180)에 대하여 실질적으로 평행할 수 있다. 성형 연마 입자(102)의 미리 결정된 배향 특성들은 워크피스와의 성형 연마 입자(102)의 초기 접촉 표면을 정의할 수 있다. 예를 들면, 성형 연마 입자(102)는 주 표면들(363 및 364), 및 주 표면들(363 및 364) 사이에 연장된 측 표면들(365 및 366)을 가질 수 있다. 성형 연마 입자(102)의 미리 결정된 배향 특성들은 주 표면(363)이 성형 연마 입자(102)의 다른 표면들 전에 워크피스와 초기 접촉을 이루도록 구성되도록 입자를 배치할 수 있다. 이러한 배향은 연삭 방향(385)에 대하여 정면 배향인 것으로 고려될 수 있다. 보다 특히, 성형 연마 입자(102)는 연삭 방향에 대하여 특정한 배향을 가진 등분 축(231)을 가질 수 있다. 예를 들면, 예시된 바와 같이, 연삭 방향(385) 및 등분 축(231)의 벡터는 서로에 실질적으로 수직이다. 임의의 범위의 미리 결정된 회전 배향들이 성형 연마 입자에 대해 고려되는 것처럼, 연삭 방향(385)에 대한 임의의 범위의 성형 연마 입자들의 배향들이 고려되며 이용될 수 있다는 것이 이해될 것이다.
성형 연마 입자(103)는 성형 연마 입자(102) 및 연삭 방향(385)에 대해 상이한 미리 결정된 배향 특성들을 가질 수 있다. 예시된 바와 같이, 성형 연마 입자(103)는 주 표면들(391 및 392)을 포함할 수 있으며, 이것은 측 표면들(371 및 372)에 의해 접합될 수 있다. 게다가, 예시된 바와 같이, 성형 연마 입자(103)는 연삭 방향(385)의 벡터에 대하여 특정한 각도를 형성하는 등분 축(373)을 가질 수 있다. 예시된 바와 같이, 성형 연마 입자(103)의 등분 축(373)은 등분 축(373) 및 연삭 방향(385) 사이에서의 각도가 근본적으로 0도이도록 연삭 방향(385)과 실질적으로 평행 배향을 가질 수 있다. 따라서, 성형 연마 입자의 미리 결정된 배향 특성들은 성형 연마 입자의 다른 표면들 중 임의의 것 전에 워크피스와의 측 표면(372)의 초기 접촉을 용이하게 한다. 성형 연마 입자(103)의 이러한 배향은 연삭 방향(385)에 대해 옆 배향인 것으로 고려될 수 있다.
연마 물품은 서로에 대해 미리 결정된 분포로 배열될 수 있는 성형 연마 입자들의 하나 이상의 그룹들을 포함할 수 있으며, 보다 특히 성형 연마 입자들의 그룹들을 정의하는 별개의 미리 결정된 배향 특성들을 가질 수 있다는 것이 이해될 것이다. 여기에 설명된 바와 같이, 성형 연마 입자들의 그룹들은 연삭 방향에 대해 미리 결정된 배향을 가질 수 있다. 게다가, 여기에서 연마 물품들은 성형 연마 입자들의 하나 이상의 그룹들을 가질 수 있으며, 그룹들의 각각은 연삭 방향에 대해 상이한 미리 결정된 배향을 가진다. 연삭 방향에 대해 상이한 미리 결정된 배향들을 가진 성형 연마 입자들의 그룹들의 이용은 연마 물품의 개선된 성능을 가능하게 할 수 있다.
도 4는 실시예에 따른 연마 물품의 일 부분의 상면도 예시를 포함한다. 특히, 연마 물품(400)은 복수의 성형 연마 입자들을 포함한 제 1 그룹(401)을 포함할 수 있다. 예시된 바와 같이, 성형 연마 입자들은 미리 결정된 분포를 정의하기 위해 서로에 대해 배열될 수 있다. 보다 특히, 미리 결정된 분포는 하향식으로 보여지는 바와 같이 패턴(423)의 형태에 있을 수 있으며, 보다 특히 삼각형 형태 2-차원 어레이를 정의한다. 추가로 예시된 바와 같이, 그룹(401)은 백킹(101) 위에 놓인 미리 결정된 마이크로단위(431)를 정의하는 연마 물품(400) 상에 배열될 수 있다. 실시예에 따르면, 마이크로단위(431)는 하항식으로 보여지는 바와 같이 특정한 2-차원 형태를 가질 수 있다. 몇몇 대표적인 2-차원 형태들은 다각형들, 타원체들, 숫자들, 그리스 알파벳 문자들, 라틴 알파벳 문자들, 러시아 알파벳 문자들, 아랍어 알파벳 문자들, 간지 문자들, 복합 형태들, 설계들, 그것의 임의의 조합을 포함할 수 있다. 특정한 인스턴스들에서, 특정한 마이크로단위를 가진 그룹의 형성은 연마 물품의 개선된 성능을 가능하게 할 수 있다.
추가로 예시된 바와 같이, 연마 물품(400)은 미리 결정된 분포를 정의하기 위해 백킹(101)의 표면상에 배열될 수 있는 복수의 성형 연마 입자들을 포함한 그룹(404)을 포함할 수 있다. 특히, 미리 결정된 분포는 패턴, 및 보다 특히, 일반적으로 사각형 패턴(424)을 정의하는 복수의 성형 연마 입자들의 배열을 포함할 수 있다. 예시된 바와 같이, 그룹(404)은 연마 물품(400)의 표면상에서의 마이크로단위(434)를 정의할 수 있다. 일 실시예에서, 그룹(404)의 마이크로단위(434)는 예를 들면, 다각형 형태, 및 보다 특히, 연마 물품(400)의 표면상에서 하향식으로 보여지는 바와 같이 일반적으로 사각형(다이아몬드)을 포함하여, 하향식으로 보여지는 바와 같이 2-차원 형태를 가질 수 있다. 도 4의 예시된 실시예에서, 그룹(401)은 실질적으로 그룹(404)의 마이크로단위(434)와 동일한 마이크로단위(431)를 가질 수 있다. 그러나, 다른 실시예들에서, 다양한 상이한 그룹들은 연마 물품의 표면상에서 사용될 수 있으며, 보다 특히 상이한 그룹들의 각각은 상이한 마이크로단위를 가진다.
추가로 예시되는 바와 같이, 연마 물품은 그룹들(401 내지 404) 사이에서 연장된 채널 영역들(422 및 421)에 의해 분리될 수 있는 그룹들(401, 402, 403, 및 404)을 포함할 수 있다. 특정한 인스턴스들에서, 채널 영역은 실질적으로 성형 연마 입자들이 없을 수 있다. 게다가, 채널 영역들(421 및 422)은 그룹들(401 내지 404) 사이에서 액체를 이동시키며 연마 물품의 스와프 개선 및 연삭 성능을 추가로 개선하도록 구성될 수 있다. 더욱이, 특정한 실시예에서, 연마 물품(400)은 그룹들(401 내지 404) 사이에서 연장된 채널 영역들(421 및 422)을 포함할 수 있으며, 채널 영역들(421 및 422)은 연마 물품(400)의 표면상에서 패터닝될 수 있다. 특정한 인스턴스들에서, 채널 영역들(421 및 422)은 연마 물품의 표면을 따라 연장된 특징들의 규칙적 및 반복하는 어레이를 나타낼 수 있다.
도 5는 실시예에 따른 연마 물품의 일 부분의 상면도를 포함한다. 특히, 연마 물품(500)은 백킹(101) 위에 놓이며, 보다 특히 그것에 결합된 성형 연마 입자들(501)을 포함할 수 있다. 적어도 일 실시예에서, 여기에서의 실시예들의 연마 물품들은 성형 연마 입자들의 로우(511)를 포함할 수 있다. 로우(511)는 성형 연마 입자들(501)의 그룹을 포함할 수 있으며, 여기에서 로우(511) 내에서의 성형 연마 입자들(501)의 각각은 서로에 대해 동일한 미리 결정된 가로 배향을 가질 수 있다. 특히, 예시된 바와 같이, 로우(511)의 성형 연마 입자들(501)의 각각은 가로 축(551)에 대하여 동일한 미리 결정된 가로 배향을 가질 수 있다. 게다가, 제 1 로우(511)의 성형 연마 입자들(501)의 각각은 그룹의 부분일 수 있으며 그에 따라 서로에 대하여 동일한 적어도 하나의 다른 미리 결정된 배향을 가질 수 있다. 예를 들면, 로우(511)의 성형 연마 입자들(501)의 각각은 동일한 미리 결정된 수직 배향을 가진 그룹의 부분일 수 있으며, 수직 컴퍼니(company)를 정의할 수 있다. 적어도 또 다른 실시예에서, 로우(511)의 성형 연마 입자들(501)의 각각은 동일한 미리 결정된 회전 배향을 가진 그룹의 부분일 수 있으며 회전 컴퍼니를 정의할 수 있다. 게다가, 로우(511)의 성형 연마 입자들(501)의 각각은 서로에 대하여 동일한 미리 결정된 팁 높이를 가진 그룹의 부분일 수 있으며, 팁 높이 컴퍼니를 정의할 수 있다. 게다가, 예시된 바와 같이, 연마 물품(500)은 세로 축(180)을 따라 서로로부터 이격될 수 있으며, 보다 특히 예를 들면, 로우들(521, 531, 및 541)을 포함한, 다른 개재 로우들에 의해 서로로부터 분리될 수 있는, 로우(511)의 배향에서 복수의 그룹들을 포함할 수 있다.
도 5에 추가로 예시되는 바와 같이, 연마 물품(500)은 로우(521)를 정의하기 위해 서로에 대하여 배열될 수 있는 성형 연마 입자들(502)을 포함할 수 있다. 성형 연마 입자들(502)의 로우(521)는 로우(511)에 따라 설명된 특징들 중 임의의 것을 포함할 수 있다. 특히, 로우(521)의 성형 연마 입자들(502)은 서로에 대하여 동일한 미리 결정된 가로 배향을 가질 수 있다. 더욱이, 로우(521)의 성형 연마 입자들(502)은 로우(511)의 임의의 하나의 성형 연마 입자들(501)의 미리 결정된 배향 특성과 상이한 적어도 하나의 미리 결정된 배향 특성을 가질 수 있다. 예를 들면, 예시된 바와 같이, 로우(521)의 성형 연마 입자들(502)의 각각은 로우(511)의 성형 연마 입자들(501)의 각각의 미리 결정된 회전 배향과 상이한 동일한 미리 결정된 회전 배향을 가질 수 있다.
또 다른 실시예에 따르면, 연마 물품(500)은 서로에 대하여 배열되며 로우(531)를 정의한 성형 연마 입자들(503)을 포함할 수 있다. 로우(531)는 다른 실시예들에 따라, 특히 로우(511) 또는 로우(521)에 대하여 설명된 바와 같은 특성들 중 임의의 것을 가질 수 있다. 더욱이, 예시된 바와 같이, 로우(531) 내에서의 성형 연마 입자들(503)의 각각은 서로에 대하여 동일한 적어도 하나의 미리 결정된 배향 특성을 가질 수 있다. 게다가, 로우(531) 내에서의 성형 연마 입자들(503)의 각각은 로우(511)의 성형 연마 입자들(501) 또는 로우(521)의 성형 연마 입자들(502) 중 임의의 하나에 대하여 미리 결정된 배향 특성과 상이한 적어도 하나의 미리 결정된 배향 특성을 가질 수 있다. 특히, 예시된 바와 같이, 로우(531)의 성형 연마 입자들(503)의 각각은 성형 연마 입자들(501) 및 로우(511)의 미리 결정된 회전 배향 및 성형 연마 입자들(502) 및 로우(521)의 미리 결정된 회전 배향에 대하여 상이한 동일한 미리 결정된 회전 배향을 가질 수 있다.
추가로 예시된 바와 같이, 연마 물품(500)은 서로에 대하여 배열되며 연마 물품(500)의 표면상에서 로우(541)를 정의하는 성형 연마 입자들(504)을 포함할 수 있다. 예시된 바와 같이, 성형 연마 입자들(504) 및 로우(541)의 각각은 동일한 미리 결정된 배향 특성 중 적어도 하나를 가질 수 있다. 더욱이, 실시예에 따르면, 성형 연마 입자들(504)의 각각은 로우(511)의 성형 연마 입자들(501), 로우(521)의 성형 연마 입자들(502), 및 로우(531)의 성형 연마 입자들(503) 중 임의의 것의 미리 결정된 회전 배향과 상이한 미리 결정된 회전 배향과 같은, 동일한 미리 결정된 배향 특성 중 적어도 하나를 가질 수 있다.
추가로 예시된 바와 같이, 연마 물품(500)은 로우들(511, 521, 531, 및 541)의 각각으로부터 적어도 하나의 성형 연마 입자를 포함한 성형 연마 입자들의 컬럼(561)을 포함할 수 있다. 특히, 컬럼(561) 내에서의 성형 연마 입자들의 각각은 적어도 하나의 미리 결정된 배향 특성, 및 보다 특히 적어도 서로에 대하여 미리 결정된 세로 배향을 공유할 수 있다. 이와 같이, 컬럼(561) 내에서의 성형 연마 입자들의 각각은 서로 및 세로 평면(562)에 대하여 미리 결정된 세로 배향을 가질 수 있다. 특정한 인스턴스들에서, 로우들, 컬럼들, 수직 컴퍼니들, 회전 컴퍼니들, 및 팁 높이 컴퍼니들에서 성형 연마 입자들의 배열을 포함할 수 있는, 그룹들에서의 성형 연마 입자들의 배열은 연마 물품의 개선된 성능을 가능하게 할 수 있다.
도 6은 실시예에 따른 연마 물품의 일 부분의 상면도 예시를 포함한다. 특히, 연마 물품(600)은 세로 평면(651)을 따라 연장되며 서로에 대하여 동일한 미리 결정된 배향 특성들 중 적어도 하나를 가진 컬럼(621)을 정의하기 위해 서로에 대하여 배열될 수 있는 성형 연마 입자들(601)을 포함할 수 있다. 예를 들면, 컴퍼니(621)의 성형 연마 입자들(601)의 각각은 서로 및 세로 축(651)에 대하여 동일한 미리 결정된 세로 배향을 가질 수 있다. 컬럼(621)의 성형 연마 입자들(601)은 예를 들면, 서로에 대하여 동일한 미리 결정된 회전 배향을 포함한, 적어도 하나의 다른 미리 결정된 배향 특성을 공유할 수 있다는 것이 이해될 것이다.
추가로 예시되는 바와 같이, 연마 물품(600)은 백킹(101) 상에서 서로에 대하여 배열되고 세로 평면(652)을 따라 서로에 대해 컬럼(622)을 정의하는 성형 연마 입자들(602)을 포함할 수 있다. 컬럼(622)의 성형 연마 입자들(602)은 예를 들면, 서로에 대하여 동일한 미리 결정된 회전 배향을 포함한, 적어도 하나의 다른 미리 결정된 배향 특성을 공유할 수 있다는 것이 이해될 것이다. 계속해서, 컬럼(622)의 성형 연마 입자들(602)의 각각은 컬럼(621)의 성형 연마 입자들(621) 중 적어도 하나의 적어도 하나의 미리 결정된 배향 특성과 상이한 적어도 하나의 미리 결정된 배향 특성을 가진 그룹을 정의할 수 있다. 보다 특히, 컬럼(622)의 성형 연마 입자들(602)의 각각은 컬럼(621)의 성형 연마 입자들(601)의 미리 결정된 배향 특성들의 조합과 상이한 미리 결정된 배향 특성들의 조합을 가진 그룹을 정의할 수 있다.
더욱이, 예시된 바와 같이, 연마 물품(600)은 백킹(101) 상에서 세로 평면(653)을 따라 서로에 대하여 동일한 미리 결정된 세로 배향을 가지며 컬럼(623)을 정의하는 성형 연마 입자들(603)을 포함할 수 있다. 계속해서, 컬럼(623)의 성형 연마 입자들(603)의 각각은 컬럼(621)의 성형 연마 입자들(621) 및 컬럼(622)의 성형 연마 입자들(602) 중 적어도 하나의 적어도 하나의 미리 결정된 배향 특성과 상이한 적어도 하나의 미리 결정된 배향 특성을 가진 그룹을 정의할 수 있다. 보다 특히, 컬럼(623)의 성형 연마 입자들(603)의 각각은 컬럼(621)의 성형 연마 입자들(601) 및 컬럼(622)의 성형 연마 입자들(602)의 미리 결정된 배향 특성들의 조합과 상이한 미리 결정된 배향 특성들의 조합을 가진 그룹을 정의할 수 있다.
도 7a는 실시예에 따른 연마 물품의 일 부분의 하향식 뷰를 포함한다. 특정한 인스턴스들에서, 연마 물품들은 미리 결정된 배향들에서 성형 연마 입자들의 배치를 용이하게 하는 배향 영역들을 더 포함할 수 있다. 배향 영역들은 연마 물품의 백킹(101)에 결합될 수 있다. 대안적으로, 배향 영역들은 예를 들면, 메이크 코트 또는 사이즈 코트를 포함한, 부착 층의 부분일 수 있다. 또 다른 실시예에서, 배향 영역들은 백킹(101) 위에 놓이거나 또는 보다 특히 백킹(101)과 통합될 수 있다.
도 7a에 예시된 바와 같이, 연마 물품(700)은 성형 연마 입자들(701, 702, 703)(701 내지 703)을 포함할 수 있으며, 성형 연마 입자들(701 내지 703)의 각각은 각각의 배향 영역(721, 722, 및 723)(721 내지 723)과 결합될 수 있다. 실시예에 따르면, 배향 영역(721)은 성형 연마 입자(701)의 적어도 하나의 미리 결정된 배향 특성(또는 그것의 조합)을 정의하도록 구성될 수 있다. 예를 들면, 배향 영역(721)은 성형 연마 입자(701)에 대하여 미리 결정된 회전 배향, 미리 결정된 가로 배향, 미리 결정된 세로 배향, 미리 결정된 수직 배향, 미리 결정된 팁 높이, 및 그것의 조합을 정의하도록 구성될 수 있다. 더욱이, 특정한 실시예에서, 배향 영역들(721, 722, 및 723)은 복수의 성형 연마 입자들(701 내지 703)과 연관될 수 있으며 그룹(791)을 정의할 수 있다.
일 실시예에 따르면, 배향 영역들(721 내지 723)은 정렬 구조, 및 보다 특히 여기에 보다 상세히 설명되는 바와 같은 정렬 구조의 부분(예로서, 이산 접촉 영역들)과 연관될 수 있다. 배향 영역들(721 내지 723)은 예를 들면, 백킹(101) 또는 부착 층들을 포함한, 연마 물품의 구성요소들 중 임의의 것 내에서 통합될 수 있으며, 따라서 여기에 보다 상세히 설명된 바와 같이 접촉 영역들로 고려될 수 있다. 대안적으로, 배향 영역들(721 내지 723)은 연마 물품을 형성할 때 정렬 구조 사용과 연관될 수 있으며, 이것은 백킹으로부터 분리된 구성요소이며 연마 물품 내에 통합될 수 있고, 이것은 반드시 연마 물품과 연관된 접촉 영역을 형성하는 것은 아닐 수 있다.
추가로 예시된 바와 같이, 연마 물품(700)은 성형 연마 입자들(704, 705, 706)(704 내지 706)을 더 포함할 수 있으며, 여기에서 성형 연마 입자들(704 내지 706)의 각각은 각각, 배향 영역(724, 725, 726)과 연관될 수 있다. 배향 영역들(724 내지 726)은 성형 연마 입자들(704 내지 706)의 적어도 하나의 미리 결정된 배향 특성을 제어하도록 구성될 수 있다. 게다가, 배향 영역들(724 내지 726)은 성형 연마 입자(704 내지 706)의 그룹(792)을 정의하도록 구성될 수 있다. 실시예에 따르면, 배향 영역들(724 내지 726)은 배향 영역들(721 내지 723)로부터 이격될 수 있다. 보다 특히, 배향 영역들(724 내지 726)은 그룹(791)의 성형 연마 입자들(701 내지 703)의 미리 결정된 배향 특성과 상이한 적어도 하나의 미리 결정된 배향 특성을 가진 그룹(792)을 정의하도록 구성될 수 있다.
도 7b는 실시예에 따른 연마 물품의 일 부분의 예시를 포함한다. 특히, 도 7b는 정렬 구조 및 접촉 영역들과 연관된 하나 이상의 성형 연마 입자들의 적어도 하나의 미리 결정된 배향 특성을 용이하게 하기 위해 이용되고 구성될 수 있는 정렬 구조들 및 접촉 영역들의 특정한 실시예들의 예시를 포함한다.
도 7b는 백킹(101), 백킹(101) 위에 놓인 성형 연마 입자들(701 및 702)의 제 1 그룹(791), 백킹(101) 위에 놓인 성형 연마 입자들(704 및 705)의 제 2 그룹(792), 백킹(101) 위에 놓인 성형 연마 입자들(744 및 745)의 제 3 그룹(793), 및 백킹(101) 위에 놓인 성형 연마 입자들(746 및 747)의 제 4 그룹(794)을 포함한 연마 물품의 일 부분을 포함한다. 다양하며 다수의 상이한 그룹들(791, 792, 793, 및 794)이 예시되지만, 예시는 결코 제한적이지 않으며 여기에서의 실시예들의 연마 물품들은 임의의 수 및 배열의 그룹들을 포함할 수 있다는 것이 이해될 것이다.
도 7b의 연마 물품은 제 1 접촉 영역(721) 및 제 2 접촉 영역(722)을 가진 정렬 구조(761)를 더 포함한다. 정렬 구조(761)는 백킹 상에서의 원하는 배향들로 및 서로에 대한 성형 연마 입자들(701 및 702)의 배치를 용이하게 하기 위해 사용될 수 있다. 여기에서의 실시예들의 정렬 구조(761)는 연마 물품의 영구적 부분일 수 있다. 예를 들면, 정렬 구조(761)는 백킹(101) 위에 놓일 수 있는, 접촉 영역들(721 및 722)을 포함할 수 있으며, 몇몇 인스턴스들에서, 백킹(101)과 직접 접촉할 수 있다. 특정한 인스턴스들에서, 정렬 구조(761)는 연마 물품과 일체형일 수 있으며, 백킹 위에 놓이고, 백킹 위에 놓인 부착 층 밑에 있거나 또는 심지어 백킹 위에 놓인 하나 이상의 부착 층들의 통합 부분일 수 있다.
일 실시예에 따르면, 정렬 구조(761)는 성형 연마 입자(701)를 전달하고 특정한 인스턴스들에서, 이를 제 1 위치(711)에 임시로 또는 영구적으로 유지하도록 구성될 수 있다. 특정한 인스턴스들에서, 도 7b에 예시된 바와 같이, 정렬 구조(761)는 하향식으로 보여지며 접촉 영역의 폭(wcr) 및 접촉 영역의 길이(lcr)에 의해 정의된 바와 같이 특정한 2-차원 형태를 가질 수 있는, 접촉 영역(721)을 포함할 수 있으며, 여기에서 길이는 접촉 영역(721)의 가장 긴 치수이다. 적어도 일 실시예에 따르면, 접촉 영역은 형태(예로서, 2-차원 형태)를 갖도록 형성될 수 있으며, 이것은 성형 연마 입자(701)의 제어된 배향을 용이하게 할 수 있다. 보다 특히, 접촉 영역(721)은 예를 들면, 미리 결정된 회전 배향, 미리 결정된 가로 배향, 및 미리 결정된 세로 배향을 포함한, 하나 이상의(예로서, 적어도 둘) 특정한 미리 결정된 배향 특성을 제어하도록 구성된 2-차원 형태를 가질 수 있다.
특정한 인스턴스들에서, 접촉 영역들(721 및 722)은 대응하는 성형 연마 입자들(701 및 702)의 미리 결정된 회전 배향을 용이하게 할 수 있는 제어된 2-차원 형태를 갖도록 형성될 수 있다. 예를 들면, 접촉 영역(721)은 성형 연마 입자(701)의 미리 결정된 회전 배향을 결정하도록 구성된 제어된 및 미리 결정된 2-차원 형태를 가질 수 있다. 게다가, 접촉 영역(722)은 성형 연마 입자(702)의 미리 결정된 회전 배향을 결정하도록 구성된 제어된 및 미리 결정된 2-차원 형태를 가질 수 있다.
예시된 바와 같이, 정렬 구조는 복수의 이산 접촉 영역들(721 및 722)을 포함할 수 있으며, 여기에서 접촉 영역들(721 및 722)의 각각은 하나 이상의 성형 연마 입자들을 전달하며, 임시로 또는 영구적으로 유지하도록 구성될 수 있다. 몇몇 인스턴스들에서, 정렬 구조는 웹, 섬유로 된 재료, 메시, 개구들을 가진 고체 구조, 벨트, 롤러, 패터닝된 재료, 재료의 비연속 층, 패터닝된 부착 재료, 및 그것의 조합을 포함할 수 있다.
복수의 접촉 영역들(721 및 722)은 성형 연마 입자의 미리 결정된 회전 배향, 적어도 두 개의 성형 연마 입자들 사이에서의 미리 결정된 회전 배향 차, 성형 연마 입자의 미리 결정된 세로 배향, 두 개의 성형 연마 입자들 사이에서의 세로 공간, 미리 결정된 가로 배향, 두 개의 성형 연마 입자들 사이에서의 가로 공간, 미리 결정된 수직 배향, 두 개의 성형 연마 입자들 사이에서의 미리 결정된 수직 배향 차, 미리 결정된 팁 높이, 두 개의 성형 연마 입자들 사이에서의 미리 결정된 팁 높이 차 중 적어도 하나를 정의할 수 있다. 특정한 인스턴스들에서, 도 7b에 예시된 바와 같이, 복수의 이산 접촉 영역들은 제 1 접촉 영역(721) 및 제 1 접촉 영역(721)과 다른 제 2 접촉 영역(722)을 포함할 수 있다. 접촉 영역들(721 및 722)은 서로에 대하여 동일한 일반적인 형태를 갖는 것으로 예시되지만, 여기에 설명된 추가 실시예들에 기초하여 명백해질 바와 같이, 제 1 접촉 영역(721) 및 제 2 접촉 영역(722)은 상이한 2-차원 형태들을 갖도록 형성될 수 있다. 더욱이, 예시되지 않지만, 여기에서의 실시예들의 정렬 구조들은 서로에 대하여 상이한 미리 결정된 회전 배향들에서 성형 연마 입자들을 전달 및 포함하도록 구성된 제 1 및 제 2 접촉 영역들을 포함할 수 있다는 것이 이해될 것이다.
일 특정한 실시예에서, 접촉 영역들(721 및 722)은 다각형들, 타원체들, 숫자들, 십자들, 다중-암 다각형들, 그리스 알파벳 문자들, 라틴 알파벳 문자들, 러시아 알파벳 문자들, 아랍 알파벳 문자들, 직사각형, 4각형, 5각형, 6각형, 7각형, 8각형, 9각형, 10각형, 및 그것의 조합으로 이루어진 그룹으로부터 선택된 2-차원 형태를 가질 수 있다. 게다가, 접촉 영역들(721 및 722)은 실질적으로 동일한 2-차원 형태를 갖는 것으로 예시되지만, 대안적인 실시예들에서, 접촉 영역들(721 및 722)은 상이한 2-차원 형태를 가질 수 있다는 것이 이해될 것이다. 2-차원 형태들은 백킹의 상부 표면에 의해 정의된 동일한 평면일 수 있는, 접촉 영역들의 길이 및 폭의 평면에서 보여지는 바와 같이 접촉 영역들(721 및 722)의 형태들이다.
게다가, 정렬 구조(761)는 연마 물품의 임시 부분일 수 있다는 것이 이해될 것이다. 예를 들면, 정렬 구조(761)는 접촉 영역들에서 성형 연마 입자들을 임시로 고정시키는 템플릿 또는 다른 오브젝트를 나타낼 수 있으며, 하나 이상의 미리 결정된 배향 특성들을 가진 원하는 위치에서 성형 연마 입자들의 배치를 용이하게 한다. 성형 연마 입자들의 배치 후, 정렬 구조가 제거되어 미리 결정된 위치들에서 백킹 상에 성형 연마 입자를 남긴다.
특정한 일 실시예에 따르면, 정렬 구조(761)는 부착 재료로 만들어질 수 있는 복수의 접촉 영역들(721 및 722)을 포함한 재료의 비연속 층일 수 있다. 보다 특정한 인스턴스들에서, 접촉 영역(721)은 적어도 하나의 성형 연마 입자를 부착하도록 구성될 수 있다. 다른 실시예들에서, 접촉 영역(721)은 하나 이상의 성형 연마 입자를 부착하기 위해 형성될 수 있다. 적어도 일 실시예에 따르면, 부착 재료는 유기 재료, 및 보다 특히, 적어도 하나의 수지 재료를 포함할 수 있다는 것이 이해될 것이다.
더욱이, 복수의 접촉 영역들(721 및 722)은 접촉 영역들의 미리 결정된 분포를 정의하기 위해 백킹(101)의 표면상에 배열될 수 있다. 접촉 영역들의 미리 결정된 분포는 여기에 설명된 미리 결정된 분포들의 임의의 특성을 가질 수 있다. 특히, 접촉 영역들의 미리 결정된 분포는 제어된, 비-섀도우 배열을 정의할 수 있다. 접촉 영역들의 미리 결정된 분포는 백킹 상에 성형 연마 입자들의 동일한 미리 결정된 분포를 정의하며 실질적으로 이에 대응할 수 있고, 여기에서 각각의 접촉 영역은 성형 연마 입자의 위치를 정의할 수 있다.
예시된 바와 같이, 특정한 인스턴스들에서, 접촉 영역들(721 및 722)은 서로로부터 이격될 수 있다. 적어도 일 실시예에서, 접촉 영역들(721 및 722)은 거리(731)만큼 서로로부터 이격될 수 있다. 접촉 영역들(721 및 722) 사이에서의 거리(731)는 일반적으로 가로 축(181) 또는 세로 축(180)에 평행한 방향으로 인접한 접촉 영역들(721 및 722) 사이에서의 최소 거리이다.
일 실시예에 따르면, 복수의 이산 접촉 영역들의 이산 접촉 영역들은 인접한 이산 접촉 영역들 사이에서 임의의 방향으로 및 비-접촉 영역을 통해 연장된 갭 거리만큼 서로로부터 이격될 수 있으며, 여기에서 근본적으로 어떤 부착 재료도 백킹(101) 상에 제공되지 않는다. 예를 들면, 갭 거리는 가로 축(181)에 평행한 방향으로 이산 접촉 영역들(721 및 722) 사이에서의 거리(731)일 수 있다. 대안적으로, 또 다른 실시예에서, 갭 거리는 세로 축(180)에 평행한 방향으로 연장된 거리(732)일 수 있다. 앞서 말한 예들은 비-제한적이며 갭 거리는 비-접촉 영역을 통해 연장되는 동안, 제 1 이산 접촉 영역 및 제 2 접촉 영역 사이에서의 최단 거리에 의존하여 임의의 다양한 방향들로 연장될 수 있다. 일 실시예에서, 갭 거리는 적어도 약 0.5(w)일 수 있으며, 여기에서 (w)는 성형 연마 입자의 몸체의 폭에 대응한다. 다른 인스턴스들에서, 갭 거리는 적어도 약 0.7(w), 적어도 약 0.9(w), 적어도 약 1(w), 적어도 약 1.1(w), 적어도 약 1.3(w)일 수 있다. 계속해서, 비-제한적인 실시예에서, 갭 거리는 약 100(w) 이하, 약 50(w) 이하일 수 있다. 특정한 치수들의 이산 접촉 영역들의 형성은 재료의 연속적 코팅을 사용하여 다른 방법들에 비해 프로세싱을 개선할 수 있다. 예를 들면, 특정한 인스턴스들에서, 이산 접촉 영역들을 포함한 비연속 코팅의 사용은 재료의 연속 코팅을 사용하여 프로세싱 시간을 감소시키며 연마 물품과 연관된 블리스터링을 감소시킬 수 있다. 게다가, 및 예상 외로, 성형 연마제는 연속적 코팅과 대조적으로 비연속 코팅을 사용하여 개선된 앵커링을 경험할 수 있다.
또 다른 실시예에 대해, 갭 거리는 적어도 약 0.5 mm, 적어도 약 1 mm, 적어도 약 2 mm, 또는 심지어 적어도 약 2.5 mm와 같은, 적어도 약 0.1 mm일 수 있다. 그렇지만, 또 다른 비-제한적인 실시예에서, 갭 거리는 약 40 mm 이하 또는 약 20 mm 이하와 같은, 약 50 mm 이하일 수 있다.
특정한 인스턴스들에서, 이산 접촉 영역들(721 및 722)은 여기에서의 실시예들의 특징들을 가능하게 할 수 있는, 성형 연마 입자의 몸체의 치수에 대한 특정한 폭(wcr)을 가질 수 있다. 예를 들면, 이산 봉쇄 영역(721)은 적어도 약 0.5(h)일 수 있는 이산 봉쇄 영역의 최소 치수를 정의한 폭(wcr)을 가질 수 있으며, 여기에서 (h)는 여기에서의 실시예들에서 설명된 바와 같이 성형 연마 입자의 몸체의 높이다. 다른 인스턴스에서, 이산 접촉 영역(721)의 폭은 적어도 약 0.9(h), 적어도 약 1(h), 적어도 약 1.1(h), 적어도 약 1.3(h)와 같은, 적어도 약 0.7(h)일 수 있다. 계속해서, 비-제한적인 실시예에서, 이산 접촉 영역(721)의 폭은 약 50(h) 이하와 같은, 약 100(h) 이하일 수 있다. 이산 접촉 영역(721)의 폭은 상기 주지된 최소 및 최대 값들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다. 더욱이, 이산 접촉 영역(721)의 폭은 여기에서의 실시예들의 임의의 다른 이산 접촉 영역들에 기인될 수 있다는 것이 이해될 것이며, 폭은 원형 형태를 가진 이산 접촉 영역(예로서, 이산 접촉 영역(763))의 콘텍스트에서 지름에 상관시킬 수 있다는 것이 추가로 이해될 것이다.
또 다른 실시예에 대해, 이산 접촉 영역(721)의 폭은 약 4 mm 이하, 약 3 mm 이하, 약 2 mm 이하, 약 1 mm 이하, 또는 심지어 약 0.8 mm 이하와 같은, 약 5 mm 이하일 수 있다. 계속해서, 또 다른 비-제한적인 실시예에서, 이산 접촉 영역(721)의 폭은 적어도 약 0.05 mm, 또는 심지어 적어도 약 0.1 mm와 같은, 적어도 약 0.01 mm일 수 있다. 이산 접촉 영역(721)의 폭은 상기 주지된 최소 및 최대 값들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다. 더욱이, 이산 접촉 영역(721)의 폭은 여기에서의 실시예들의 임의의 다른 이산 접촉 영역들에 기인할 수 있다는 것이 이해될 것이며, 폭이 원형 형태를 가진 이산 접촉 영역(예로서, 이산 접촉 영역(763))의 콘텍스트에서 지름에 상관시킬 수 있다는 것이 추가로 이해될 것이다.
이산 접촉 영역들의 크기 및 형태의 제어는 복수의 이산 접촉 영역들의 이산 접촉 영역들의 각각을 형성하기 위해 사용된 부착 재료의 유동학을 제어함으로써 달성될 수 있다. 그러나, 다른 이러한 프로세스 제어들이 이용될 수 있다는 것이 이해될 것이다.
대안적인 실시예에서, 복수의 이산 접촉 영역들(721 및 722)은 기판과 같은, 구조에서의 개구들일 수 있다. 예를 들면, 접촉 영역들(721 및 722)의 각각은 백킹(101) 상에서의 특정한 위치들에 성형 연마 입자들을 임시로 배치하기 위해 사용되는 템플릿에서의 개구들일 수 있다. 복수의 개구들은 정렬 구조의 두께를 통해 부분적으로 또는 전체적으로 연장될 수 있다. 대안적으로, 접촉 영역들(7821 및 722)은 영구적으로 백킹 및 최종 연마 물품의 부분인 기판 또는 층과 같은, 구조에서의 개구들일 수 있다. 개구들은 미리 결정된 위치들에서 및 하나 이상의 미리 결정된 배향 특성들을 가진 성형 연마 입자의 배치를 용이하게 하기 위해 성형 연마 입자들의 단면 형태에 상호 보완적일 수 있는 특정한 단면 형태들을 가질 수 있다.
게다가, 실시예에 따르면, 정렬 구조는 비-접촉 영역들에 의해 분리된 복수의 이산 접촉 영역들을 포함할 수 있으며, 여기에서 비-접촉 영역들은 이산 접촉 영역들과 다른 영역들이며 실질적으로 성형 연마 입자들이 없을 수 있다. 일 실시예에서, 비-접촉 영역들은 근본적으로 부착 재료가 없도록 구성되며 수축 영역들(721 및 722)을 분리하는 영역들을 정의할 수 있다. 일 특정한 실시예에서, 비-접촉 영역은 근본적으로 성형 연마 입자들이 없도록 구성된 영역들을 정의할 수 있다.
이에 제한되지 않지만, 코팅, 분무, 증착, 인쇄, 에칭, 마스킹, 제거, 몰딩, 주조, 스탬핑, 가열, 경화, 태킹, 피닝, 고정, 프레싱, 롤링, 스티칭, 부착, 조사, 및 그것의 조합과 같은 프로세스를 포함한, 다양한 방법들이 정렬 구조 및 이산 접촉 영역들을 형성하기 위해 이용될 수 있다. 정렬 구조가, 비-접촉 영역들에 의해 서로로부터 이격된 부착 재료를 포함한 복수의 이산 접촉 영역들을 포함할 수 있는, 부착 재료의 비연속 층의 형태로 있는, 특정한 인스턴스들에서, 형성 프로세스는 부착 재료의 선택적 증착을 포함할 수 있다.
상기 예시되고 주지된 바와 같이, 도 7b는 백킹(101) 위에 놓인 성형 연마 입자들(704 및 705)의 제 2 그룹(792)을 더 포함한다. 제 2 그룹(792)은 제 1 접촉 영역(724) 및 제 2 접촉 영역(725)을 포함할 수 있는, 정렬 구조(762)와 연관될 수 있다. 정렬 구조(762)는 백킹(101) 상에 및 서로에 대해 원하는 배향들로 성형 연마 입자들(704 및 705)의 배치를 용이하게 하기 위해 사용될 수 있다. 여기에 주지된 바와 같이, 정렬 구조(762)는 여기에 설명된 정렬 구조들의 특성들 중 임의의 것을 가질 수 있다. 정렬 구조(762)는 최종 연마 물품의 영구적 또는 임시 부분일 수 있다는 것이 이해될 것이다. 정렬 구조(762)는 연마 물품과 일체형일 수 있으며, 백킹(101) 위에 놓이고, 백킹(101) 위에 놓인 부착 층 밑에 놓이거나, 또는 심지어 백킹(101) 위에 놓인 하나 이상의 부착 층들의 통합 부분일 수 있다.
일 실시예에 따르면, 정렬 구조(762)는 성형 연마 입자(704)를 전달하며, 특정한 인스턴스들에서, 이를 제 1 위치(773)에 임시로 또는 영구적으로 유지하도록 구성될 수 있다. 도 7b에 예시된 바와 같이, 특정한 인스턴스들에서, 정렬 구조(762)는 접촉 영역(724)을 포함할 수 있으며, 이것은 하향식으로 보여지며 접촉 영역의 폭(wcr) 및 접촉 영역의 길이(lcr)에 의해 정의되는 바와 같이 특정한 2-차원 형태를 가질 수 있으며, 여기에서 길이는 접촉 영역(724)의 가장 긴 치수이다.
적어도 일 실시예에 따르면, 접촉 영역(724)은 형태(예로서, 2-차원 형태)를 갖도록 형성될 수 있으며, 이것은 성형 연마 입자(704)의 제어된 배향을 용이하게 할 수 있다. 보다 특히, 접촉 영역(724)은 예를 들면, 미리 결정된 회전 배향, 미리 결정된 가로 배향, 및 미리 결정된 세로 배향을 포함한, 하나 이상의(예로서, 적어도 둘) 특정한 미리 결정된 배향 특성을 제어하도록 구성된 2-차원 형태를 가질 수 있다. 적어도 일 실시예에서, 접촉 영역(724)은 2-차원 형태를 갖도록 형성될 수 있으며, 여기에서 접촉 영역(724)의 치수들(예로서, 길이 및/또는 폭)은 실질적으로 성형 연마 입자(704)의 치수들에 대응하며 그것과 실질적으로 동일하고, 그에 의해 위치(772)에서 성형 연마 입자의 배치를 용이하게 하며 성형 연마 입자(704)의 미리 결정된 배향 특성들 중 하나 또는 그것의 조합을 용이하게 한다. 더욱이, 실시예에 따르면, 정렬 구조(762)는 연관된 성형 연마 입자들의 하나 이상의 미리 결정된 배향 특성들을 용이하게 하며 이를 제어하도록 구성된 제어된 2-차원 형태들을 가진 복수의 접촉 영역들을 포함할 수 있다.
추가로 예시된 바와 같이, 및 실시예에 따르면, 정렬 구조(762)는 성형 연마 입자(705)를 전달하며 특정한 인스턴스들에서, 이를 제 2 위치(774)에 임시로 또는 영구적으로 유지하도록 구성될 수 있다. 도 7b에 예시된 바와 같이, 특정한 인스턴스들에서, 정렬 구조(762)는 접촉 영역(725)을 포함할 수 있고, 이것은 하향식으로 보여지며 접촉 영역의 폭(wcr) 및 접촉 영역의 길이(lcr)에 의해 정의된 바와 같이 특정한 2-차원 형태를 가질 수 있으며, 여기에서 길이는 접촉 영역(725)의 가장 긴 치수이다. 특히, 정렬 구조의 접촉 영역들(724 및 725)은 그룹(791)의 성형 연마 입자들(701 및 702) 및 그룹(792)의 성형 연마 입자들(704 및 705) 사이에서의 상이한 미리 결정된 배향 특성들을 가능하게 하기 위해 정렬 구조(761)의 접촉 영역들(721 및 722)에 대해 상이한 배향을 가질 수 있다.
상기 예시되고 주지된 바와 같이, 도 7b는 백킹(101) 위에 놓인 성형 연마 입자들(744 및 745)의 제 3 그룹(793)을 더 포함한다. 제 3 그룹(793)은 제 1 접촉 영역(754) 및 제 2 접촉 영역(755)을 포함할 수 있는, 정렬 구조(763)와 연관될 수 있다. 정렬 구조(763)는 백킹(101) 상에 및 서로에 대해 원하는 배향들로 성형 연마 입자들(744 및 745)의 배치를 용이하게 하기 위해 사용될 수 있다. 여기에 주지된 바와 같이, 정렬 구조(763)는 여기에 설명된 정렬 구조들의 특성들 중 임의의 것을 가질 수 있다. 정렬 구조(763)는 최종 연마 물품의 영구적 또는 임시 부분일 수 있다는 것이 이해될 것이다. 정렬 구조(763)는 연마 물품과 일체형일 수 있으며, 백킹(101) 위에 놓이고, 백킹(101) 위에 놓인 부착 층의 밑에 있거나, 또는 심지어 백킹(101) 위에 놓인 하나 이상의 부착 층들의 통합 부분일 수 있다.
일 실시예에 따르면, 정렬 구조(763)는 성형 연마 입자(744)를 전달하며, 특정한 인스턴스들에서, 이를 제 1 위치(775)에 임시로 또는 영구적으로 유지하도록 구성될 수 있다. 마찬가지로, 예시된 바와 같이, 정렬 구조(763)는 성형 연마 입자(745)를 전달하며, 특정한 인스턴스들에서 이를 제 2 위치(776)에 임시로 또는 영구적으로 유지하도록 구성될 수 있다.
도 7b에 예시된 바와 같이, 특정한 인스턴스들에서, 정렬 구조(763)는 하향식으로 보여지는 바와 같이 특정한 2-차원 형태를 가질 수 있는, 접촉 영역(754)을 포함할 수 있다. 예시된 바와 같이, 접촉 영역(754)은 원형 2-차원 형태를 가질 수 있으며, 이것은 지름(dcr)에 의해 부분적으로 정의될 수 있다.
적어도 일 실시예에 따르면, 접촉 영역(754)은 성형 연마 입자(744)의 제어된 배향을 용이하게 할 수 있는, 형태(예로서, 2-차원 형태)를 갖도록 형성될 수 있다. 보다 특히, 접촉 영역(754)은 예를 들면, 미리 결정된 회전 배향, 미리 결정된 가로 배향, 및 미리 결정된 길이 배향을 포함한, 하나 이상의(예로서, 적어도 둘) 특정한 미리 결정된 배향 특성을 제어하도록 구성된 2-차원 형태를 가질 수 있다. 예시된 바와 같이 적어도 일 대안적인 실시예에서, 접촉 영역(754)은 미리 결정된 회전 배향의 몇몇 자유를 용이하게 할 수 있는, 원형 형태를 가질 수 있다. 예를 들면, 그 각각이 각각 접촉 영역들(754 및 755)과 연관되며, 추가로 접촉 영역들(754 및 755)의 각각이 원형 2-차원 형태를 갖는, 성형 연마 입자들(744 및 745)의 비교에서, 성형 연마 입자들(744 및 745)은 서로에 대하여 상이한 미리 결정된 회전 배향들을 가진다. 접촉 영역들(754 및 755)의 원형 2-차원 형태는 성형 연마 입자들(744 및 745)의 우선적인 측 배향을 가능하게 할 수 있는 반면, 또한 서로에 대하여 적어도 하나의 미리 결정된 배향 특성(즉, 미리 결정된 회전 배향)에서의 자유도를 허용한다.
적어도 일 실시예에서, 접촉 영역(754)(예로서, 지름)의 치수들은 실질적으로 위치(775)에서의 성형 연마 입자(744)의 위치 결정 및 성형 연마 입자(744)의 미리 결정된 배향 특성들 중 하나 또는 조합을 용이하게 하는 것을 가능하게 할 수 있는 성형 연마 입자(744)의 치수(예로서, 측 표면의 폭)에 대응할 수 있으며 그것과 실질적으로 동일할 수 있다는 것이 이해될 것이다. 더욱이, 실시예에 따르면, 정렬 구조(763)는 연관된 성형 연마 입자들의 하나 이상의 미리 결정된 배향 특성들을 가능하게 하며 이를 제어하도록 구성된 제어된 2-차원 형태들을 가진 복수의 접촉 영역들을 포함할 수 있다. 앞서 말한 정렬 구조(763)는 실질적으로 유사한 형태들을 가진 접촉 영역들(754 및 755)을 포함하지만, 정렬 구조(763)는 복수의 상이한 2-차원 형태들을 가진 복수의 접촉 영역들을 포함할 수 있다는 것이 이해될 것이다.
상기 예시되고 주지된 바와 같이, 도 7b는 백킹(101) 위에 놓인 성형 연마 입자들(746 및 747)의 제 4 그룹(794)을 더 포함한다. 제 4 그룹(794)은 정렬 구조(764)와 연관될 수 있으며, 이것은 제 1 접촉 영역(756) 및 제 2 접촉 영역(757)을 포함할 수 있다. 정렬 구조(764)는 백킹(101) 상에 및 서로에 대하여 원하는 배향들로 성형 연마 입자들(746 및 747)의 배치를 용이하게 하기 위해 사용될 수 있다. 여기에 주지된 바와 같이, 정렬 구조(764)는 여기에 설명된 정렬 구조들의 특성들 중 임의의 것을 가질 수 있다. 정렬 구조(764)는 최종 연마 물품의 영구적 또는 임시 부분일 수 있다는 것이 이해될 것이다. 정렬 구조(764)는 연마 물품과 일체형일 수 있으며, 백킹(101) 위에 놓이고, 백킹(101) 위에 놓인 부착 층의 밑에 놓이거나 또는 심지어 백킹(101) 위에 놓인 하나 이상의 부착 층들의 통합 부분일 수 있다.
일 실시예에 따르면, 정렬 구조(764)는 성형 연마 입자(746)를 전달하며, 특정한 인스턴스들에서, 이를 제 1 위치(777)에 임시로 또는 영구적으로 유지하도록 구성될 수 있다. 마찬가지로, 예시된 바와 같이, 정렬 구조(764)는 성형 연마 입자(747)를 전달하며, 특정한 인스턴스들에서, 이를 제 2 위치(778)에 임시로 또는 영구적으로 유지하도록 구성될 수 있다.
도 7b에 예시된 바와 같은, 특정한 인스턴스들에서, 정렬 구조(763)는 하향식으로 보여지는 바와 같이 특정한 2-차원 형태를 가질 수 있는, 접촉 영역(756)을 포함할 수 있다. 예시된 바와 같이, 접촉 영역(756)은 십자형 2-차원 형태를 가질 수 있으며, 이것은 길이(lcr)에 의해 부분적으로 정의될 수 있다.
적어도 일 실시예에 따르면, 접촉 영역(756)은 형태(예로서, 2-차원 형태)를 갖도록 형성될 수 있으며, 이것은 성형 연마 입자(746)의 제어된 배향을 가능하게 할 수 있다. 보다 특히, 접촉 영역(756)은 예를 들면, 미리 결정된 회전 배향, 미리 결정된 가로 배향, 및 미리 결정된 세로 배향을 포함한, 하나 이상의(예로서, 적어도 둘) 특정한 미리 결정된 배향 특성을 제어하도록 구성된 2-차원 형태를 가질 수 있다. 예시되는 바와 같이 적어도 일 대안적인 실시예에서, 접촉 영역(756)은 십자-형 2-차원 형태를 가질 수 있으며, 이것은 성형 연마 입자(746)의 미리 결정된 회전 배향의 몇몇 자유를 가능하게 할 수 있다.
예를 들면, 그 각각이 각각 접촉 영역들(756 및 757)과 연관되며, 및 추가로 접촉 영역들(756 및 757)의 각각이 십자-형 2-차원 형태들을 갖는, 성형 연마 입자들(746 및 747)의 비교에서, 성형 연마 입자들(746 및 747)은 서로에 대하여 상이한 미리 결정된 회전 배향들을 가질 수 있다. 접촉 영역들(756 및 757)의 십자-형 2-차원 형태들은 성형 연마 입자들(746 및 747)의 우선적인 측 배향을 가능하게 할 수 있는 반면, 또한 서로에 대하여 적어도 하나의 미리 결정된 배향 특성(즉, 미리 결정된 회전 배향)에서의 자유도를 허용한다. 예시되는 바와 같이, 성형 연마 입자들(746 및 747)은 서로에 실질적으로 수직으로 배향된다. 접촉 영역들(756 및 757)의 십자-형 2-차원 형태는, 그 각각이 십자-형 접촉 영역들(756 및 757)의 암들의 방향과 연관되는 성형 연마 입자들의 일반적으로 두 개의 선호된 미리 결정된 회전 배향들을 가능하게 하며, 두 개의 배향들의 각각은 성형 연마 입자들(746 및 747)에 의해 예시된다.
적어도 일 실시예에서, 접촉 영역(756)의 치수들(예로서, 길이)은 성형 연마 입자(746)의 치수(예로서, 측 표면의 길이)에 실질적으로 대응할 수 있으며, 그것과 실질적으로 동일할 수 있고, 이것은 위치(777)에서 성형 연마 입자(746)의 위치 결정 및 성형 연마 입자(746)의 미리 결정된 배향 특성들 중 하나 또는 조합을 용이하게 하는 것을 가능하게 할 수 있다. 더욱이, 실시예에 따르면, 정렬 구조(764)는 연관된 성형 연마 입자들의 하나 이상의 미리 결정된 배향 특성들을 가능하게 하며 이를 제어하도록 구성된 제어된 2-차원 형태들을 갖는 복수의 접촉 영역들을 포함할 수 있다. 앞서 말한 정렬 구조(764)는 실질적으로 유사한 형태들을 가진 접촉 영역들(756 및 757)을 포함하지만, 정렬 구조(764)는 복수의 상이한 2-차원 형태들을 가진 복수의 접촉 영역들을 포함할 수 있다는 것이 이해될 것이다.
간단히 도 7c로 가면, 연마 물품의 일 부분 상에 형성될 비-섀도잉 배열의 상면도 예시가 실시예들에 따라 제공된다. 예시된 바와 같이, 연마 물품의 부분은 백킹(101), 백킹(101) 위에서 연장된 제 1 그룹의 이산 접촉 영역들(781), 백킹(101) 위에 연장된 제 2 그룹의 이산 접촉 영역들(782), 및 백킹(101) 위에 연장된 제 3 그룹의 이산 접촉 영역들(783)을 포함할 수 있다. 이산 접촉 영역들(781, 782, 및 783)의 그룹의 각각은 백킹의 표면 위에서 선형적으로 연장된 복수의 이산 접촉 영역들을 가질 수 있다. 게다가, 그룹 내에서의 이산 접촉 영역들의 각각은 실질적으로 동일한 방향으로 연장될 수 있으며, 따라서 그룹 내에서의 이산 접촉 영역들의 각각은 서로 실질적으로 평행할 수 있다. 그렇지만, 상이한 그룹들로부터의 이산 접촉 영역들은 서로 교차할 수 있다. 예를 들면, 제 1 그룹의 이산 접촉 영역들(781)의 이산 접촉 영역들의 각각은 제 2 그룹의 이산 접촉 영역들(782) 및 제 3 그룹의 이산 접촉 영역들(783) 중 적어도 하나로부터 적어도 하나의 다른 이산 접촉 영역을 교차할 수 있다.
실시예에 따르면, 이산 접촉 영역들의 각각, 및 특히 이산 접촉 영역들(781, 782, 및 783)의 그룹 내에서의 이산 접촉 영역들의 각각은 백킹(101)의 폭의 적어도 일 부분에 대해 연장될 수 있다. 특정한 인스턴스들에서, 이산 접촉 영역들(781, 782, 및 783)의 그룹들의 각각은 적어도 백킹(101)의 대다수의 폭에 대해 연장될 수 있으며, 이것은 가로 축(181)의 방향으로 백킹(101)을 따르는 거리로서 정의될 수 있다.
또 다른 실시예에서, 이산 접촉 영역들의 각각, 및 특히 이산 접촉 영역들(781, 782, 및 783)의 그룹들의 각각은 백킹(101)의 길이의 적어도 일 부분에 대해 연장될 수 있다. 특정한 인스턴스들에서, 이산 접촉 영역들(781, 782, 및 783)의 그룹들의 각각은 적어도 백킹(101)의 대다수의 길이에 대해 연장될 수 있으며, 이것은 세로 축(180)의 방향으로 백킹(101)을 따르는 거리로서 정의될 수 있다. 계속해서, 또 다른 비-제한적인 실시예에서, 이산 접촉 영역들(783)의 그룹과 같은, 이산 접촉 영역들의 그룹 중 단지 하나가 백킹(101)의 대다수의 길이에 대해 연장될 수 있는 반면, 이산 접촉 영역들(781 및 782)의 그룹들의 이산 접촉 영역들의 각각은 백킹(101)의 총 길이보다 작은 거리에 대해 연장된다.
도 7c는 이산 접촉 영역들(781, 782, 및 783)의 그룹들의 각각 상에 위치된 성형 연마 입자들의 예시를 더 포함한다. 즉, 연마 물품은 제 1 그룹의 이산 접촉 영역들(781)과 연관된 제 1 그룹의 성형 연마 입자들(784)을 가질 수 있고, 제 2 그룹의 성형 연마 입자들(785)은 제 2 그룹의 이산 봉쇄 영역들(782)과 연관될 수 있으며, 제 3 그룹의 성형 연마 입자들(792)은 제 3 그룹의 이산 봉쇄 영역들(789)과 연관될 수 있다.
도 7d는 이산 접촉 영역과 연관된 성형 연마 입자들의 그룹의 일 부분의 이미지를 포함한다. 특히, 제 1 그룹의 성형 연마 입자들(787)은 제 1 위치(795)에서 백킹(101)에 결합된 제 1 성형 연마 입자(788) 및 제 2 위치(796)에서 백킹(101)에 결합된 제 2 성형 연마 입자(789)를 포함할 수 있다. 특정한 실시예들에 따르면, 제 1 성형 연마 입자(788) 및 제 2 성형 연마 입자(789)는 제어된, 비-섀도잉 배열로 배열될 수 있다. 제어된, 비-섀도잉 배열에서, 제 1 성형 연마 입자(788) 및 제 2 성형 연마 입자(789)는 미리 결정된 회전 배향, 미리 결정된 가로 배향, 및 미리 결정된 세로 배향, 및 그것의 조합 중 적어도 두 개를 가질 수 있다. 보다 특히, 제 1 성형 연마 입자(788)의 적어도 일 부분은 제 2 성형 연마 입자(789)의 일 부분에 닿을 수 있다. 여기에서의 몇몇 다른 실시예들과 달리, 특정한 인스턴스들에서, 그룹 내에서의 성형 연마 입자들은 서로에 인접해 있을 수 있다. 예를 들면, 적어도 일 실시예에서, 제 1 성형 연마 입자(788)의 코너는 제 2 성형 연마 입자(789)의 코너에 인접해 있을 수 있다. 특히, 인접한 입자들 사이에서의 중첩의 정도는 입자들의 폭 미만, 및 보다 특히 입자들의 폭의 절반 미만일 수 있다.
도 7d의 예시된 실시예에서, 제 1 성형 연마 입자(788) 및 제 2 성형 연마 입자(789)를 포함한, 제 1 그룹의 성형 연마 입자들(787)의 성형 연마 입자들의 각각의, 소수 또는 대다수와 같은, 적어도 일 부분은 서로에 대하여 한 줄로 배열될 수 있다. 게다가, 성형 연마 입자들(787)의 그룹에서의 성형 연마 입자들의 적어도 일 부분은 적어도 하나의 다른, 바로 인접한, 성형 연마 입자에 닿을 수 있다. 특정한 이론에 관련되길 원하지 않고, 연마 입자들 사이에서의 몇몇 접촉은 성형 연마 입자들의 그룹을 지지하고 결정립 보유 및 연삭 성능을 개선하기에 적합할 수 있다고 생각되어 진다. 게다가, 성형 연마 입자들의 그룹에서의 하나 이상의 성형 연마 입자들은 특정한 애플리케이션들에서 보다 높은 결정립 중량들 및 개선된 연삭 성능을 가능하게 하기 위해 바로 인접한 결정립들과 직접 접촉할 수 있다.
연마 물품들을 형성하기 위한 방법들 및 시스템들
앞서 말한 것은 성형 연마 입자들의 미리 결정된 분포들을 가진 실시예들의 연마 물품들을 설명하였다. 다음은 여기에서의 실시예들의 이러한 연마 물품들을 형성하기 위해 사용된 다양한 방법들을 설명한다. 여기에 설명된 방법들 및 시스템들 중 임의의 것은 실시예에 따른 연마 물품의 형성을 가능하게 하기 위해 조합하여 사용될 수 있다는 것이 이해될 것이다.
실시예에 따르면, 연마 물품을 형성하는 방법은 하나 이상의 미리 결정된 배향 특성들에 의해 정의된 제 1 위치에서의 백킹 상에 성형 연마 입자를 위치시키는 것을 포함한다. 특히, 성형 연마 입자를 위치시키는 방법은 템플레이팅 프로세스를 포함할 수 있다. 템플레이팅 프로세스는 정렬 구조를 이용할 수 있으며, 이것은 미리 결정된 배향으로 하나 이상의 성형 연마 입자들을 (임시로 또는 영구적으로) 유지하며 하나 이상의 미리 결정된 배향 특성들을 갖고 정의된 미리 결정된 위치에서 연마 물품으로 하나 이상의 성형 연마 입자들을 전달하도록 구성될 수 있다.
일 실시예에 따르면, 정렬 구조는, 이에 제한되지 않지만, 웹, 섬유로 된 재료, 메시, 개구들을 가진 고체 구조, 벨트, 롤러, 패터닝된 재료, 재료의 비연속 층, 패터닝된 부착 재료, 및 그것의 조합을 포함한, 다양한 구조들일 수 있다. 일 특정한 실시예에서, 정렬 구조는 성형 연마 입자를 유지하도록 구성된 이산 접촉 영역을 포함할 수 있다. 특정한 다른 인스턴스들에서, 정렬 구조는 서로로부터 이격되며 복수의 성형 연마 입자들을 유지하도록 구성된 복수의 이산 접촉 영역들을 포함할 수 있다. 여기에서의 특정한 실시예들에 대해, 이산 접촉 영역은 성형 연마 입자를 임시로 유지하며 연마 물품 상에서의 미리 결정된 위치에 제 1 성형 연마 입자를 위치시키도록 구성될 수 있다. 대안적으로, 또 다른 실시예에서, 이산 접촉 영역은 제 1 성형 연마 입자를 영구적으로 유지하며 제 1 위치에 제 1 성형 연마 입자를 위치시키도록 구성될 수 있다. 특히, 이산 접촉 영역 및 성형 연마 입자 사이에서의 영구적인 유지를 이용하는 실시예들에 대해, 정렬 구조는 마감된 연마 물품 내에 통합될 수 있다.
여기에서의 실시예들에 따른 몇몇 대표적인 정렬 구조들은 도 9 내지 도 11에 예시된다. 도 9는 실시예에 따른 정렬 구조의 일 부분의 예시를 포함한다. 특히, 정렬 구조(900)는 서로 중첩하는 섬유들(901 및 902)을 포함한 웹 또는 메시의 형태에 있을 수 있다. 특히, 정렬 구조(900)는 이산 접촉 영역들(904, 905, 및 906)을 포함할 수 있으며, 이것은 정렬 구조의 오브젝트들의 복수의 교차점들에 의해 정의될 수 있다. 특정한 예시된 실시예에서, 이산 접촉 영역들(904 내지 906)은 섬유들(901 및 902)의 교차점, 및 보다 특히, 성형 연마 입자들(911, 912, 및 913)을 유지하도록 구성된, 두 개의 섬유들(901 및 902) 사이에서의 접합에 의해 정의될 수 있다. 특정한 실시예들에 따르면, 정렬 구조는 성형 연마 입자들(911 내지 913)의 배치 및 유지를 용이하게 하기 위해 부착 재료를 포함할 수 있는 이산 접촉 영역들(904 내지 906)을 더 포함할 수 있다.
이해될 바와 같이, 섬유들(901 및 902)의 구성 및 배열은 이산 접촉 영역들(904 내지 906)의 제어를 용이하게 할 수 있으며 추가로 연마 물품 상에서의 성형 연마 입자들의 하나 이상의 미리 결정된 배향 특성들의 제어를 용이하게 할 수 있다. 예를 들면, 이산 접촉 영역들(904 내지 906)은 성형 연마 입자의 미리 결정된 회전 배향, 적어도 두 개의 성형 연마 입자들 사이에서의 미리 결정된 회전 배향 차, 성형 연마 입자의 미리 결정된 세로 배향, 두 개의 성형 연마 입자들 사이에서의 세로 공간, 미리 결정된 가로 배향, 두 개의 성형 연마 입자들 사이에서의 가로 공간, 성형 연마 입자의 미리 결정된 수직 배향, 두 개의 성형 연마 입자들 사이에서의 미리 결정된 수직 배향 차, 성형 연마 입자의 미리 결정된 팁 높이 배향, 두 개의 성형 연마 입자들 사이에서의 미리 결정된 팁 높이 차, 및 그것의 조합 중 적어도 하나를 정의하도록 구성될 수 있다.
도 10은 실시예에 따른 정렬 구조의 일 부분의 예시를 포함한다. 특히, 정렬 구조(1000)는 성형 연마 입자들(1011 및 1012)을 맞물리며 유지하도록 구성된 이산 접촉 영역들(1002 및 1003)을 가진 벨트(1001)의 형태에 있을 수 있다. 실시예에 따르면, 정렬 구조(1000)는 정렬 구조에서의 개구들의 형태로 이산 접촉 영역들(1002 및 1003)을 포함할 수 있다. 개구들의 각각은 하나 이상의 성형 연마 입자들을 유지하도록 구성된 형태일 수 있다. 특히, 개구들의 각각은 하나 이상의 미리 결정된 배향 특성들을 갖고 미리 결정된 위치에서의 백킹 상에 하나 이상의 성형 연마 입자들의 배치를 용이하게 하기 위해 미리 결정된 위치에 하나 이상의 성형 연마 입자들을 유지하도록 구성된 형태를 가질 수 있다. 적어도 일 실시예에서, 이산 접촉 영역들(1002 및 1003)을 정의한 개구들은 성형 연마 입자들의 단면 형태에 상호 보완적인 단면 형태를 가질 수 있다. 게다가, 특정한 인스턴스들에서, 이산 접촉 영역들을 정의한 개구들은 정렬 구조(즉, 벨트(1001))의 전체 두께를 통해 연장될 수 있다.
또 다른 실시예에서, 정렬 구조는 개구들에 의해 정의된 이산 접촉 영역들을 포함할 수 있으며, 여기에서 개구들은 정렬 구조의 전체 두께를 통해 부분적으로 연장된다. 예를 들면, 도 11은 실시예에 따른 정렬 구조의 일 부분의 예시를 포함한다. 특히, 정렬 구조(1100)는 성형 연마 입자들(1111 및 1112)을 유지하도록 구성된 이산 접촉 영역들(1102 및 1103)을 정의한 개구들이 기판(1101)의 전체 두께를 통해 연장되지 않는 더 두꺼운 구조의 형태에 있을 수 있다.
도 12는 실시예에 따른 정렬 구조의 일 부분의 예시를 포함한다. 특히, 정렬 구조(1200)는 외부 표면에서의 개구들(1203)을 가지며 이산 접촉 영역들을 정의한 롤러(1201)의 형태에 있을 수 있다. 이산 접촉 영역들(1203)은 성형 연마 입자들의 일 부분이 연마 물품(1201)에 접촉될 때까지 롤러(1201)에서의 성형 연마 입자들(1204)의 유지를 용이하게 하도록 구성된 특정한 치수들을 가질 수 있다. 연마 물품(1201)과의 접촉 시, 성형 연마 입자들(1204)은 롤러(1201)로부터 방출되며 하나 이상의 미리 결정된 배향 특성들에 의해 정의된 특정한 위치에서의 연마 물품(1201)으로 전달될 수 있다. 따라서, 롤러(1201) 상에서의 개구들(1203)의 형태 및 배향, 연마 물품(1201)에 대한 롤러(1201)의 위치, 연마 물품(1201)에 대한 롤러(1201)의 이송 레이트는 미리 결정된 분포에서 성형 연마 입자들(1204)의 위치 결정을 용이하게 하기 위해 제어될 수 있다.
다양한 프로세싱 단계들이 정렬 구조상에서 성형 연마 입자들의 배치를 용이하게 하기 위해 이용될 수 있다. 적절한 프로세스들은, 이에 제한되지 않지만, 진동, 부착, 전자기 인력, 패터닝, 인쇄, 압력 차, 롤 코트, 중력 낙하, 및 그것의 조합을 포함할 수 있다. 게다가, 특정한 디바이스들은 예를 들면, 캠들, 음향들, 및 그것의 조합을 포함한, 정렬 구조상에서의 성형 연마 입자들의 배향을 용이하게 하기 위해 사용될 수 있다.
또 다른 실시예에서, 정렬 구조는 부착 재료의 층의 형태에 있을 수 있다. 특히, 정렬 구조는 부착 부분들의 비연속 층의 형태에 있을 수 있으며, 여기에서 부착 부분들은 하나 이상의 성형 연마 입자들을 유지(임시로 또는 영구적으로)하도록 구성된 이산 접촉 영역들을 정의한다. 일 실시예에 따르면, 이산 접촉 영역들은 접착제를 포함할 수 있으며, 보다 특히 이산 접촉 영역들은 부착의 층에 의해 정의되며, 보다 더 특히, 이산 접촉 영역들의 각각은 이산 부착 영역에 의해 정의된다. 특정한 인스턴스들에서, 접착제는 수지를 포함할 수 있으며, 보다 특히, 여기에서의 실시예들에 설명된 바와 같이 메이크 코트로서 사용하기 위한 재료를 포함할 수 있다. 게다가, 이산 접촉 영역들은 서로에 대해 미리 결정된 분포를 정의할 수 있으며, 연마 물품 상에서의 성형 연마 입자들의 위치들을 추가로 정의할 수 있다. 더욱이, 접착제를 포함한 이산 접촉 영역들은 미리 결정된 분포로 배열될 수 있으며, 이것은 백킹 위에 놓인 성형 연마 입자들의 미리 결정된 분포와 실질적으로 동일하다. 일 특정한 인스턴스에서, 접착제를 포함한 이산 접촉 영역들은 미리 결정된 분포로 배열될 수 있고, 성형 연마 입자를 유지하도록 구성될 수 있으며, 각각의 성형 연마 입자에 대한 미리 결정된 배향 특성 중 적어도 하나를 추가로 정의할 수 있다.
도 13은 실시예에 따른 접착제를 포함한 이산 접촉 영역들을 포함한 정렬 구조의 일 부분의 예시를 포함한다. 예시된 바와 같이, 정렬 구조(1300)는 접착제의 이산 영역을 포함하며 성형 연마 입자를 결합하도록 구성된 제 1 이산 접촉 영역(1301)을 포함할 수 있다. 정렬 구조(1300)는 또한 제 2 이산 접촉 영역(1302) 및 제 3 이산 접촉 영역(1303)을 포함할 수 있다. 일 실시예에 따르면, 적어도 제 1 이산 접촉 영역(1301)은 성형 연마 입자의 적어도 하나의 치수와 관련된 폭(w)(1304)을 가질 수 있으며, 이것은 백킹에 대한 특정한 배향에서 성형 연마 입자의 위치 결정을 용이하게 할 수 있다. 예를 들면, 백킹에 대한 특정한 적절한 배향들은 측 배향, 플랫 배향, 및 반전 배향을 포함할 수 있다. 특정한 실시예에 따르면, 제 1 이산 접촉 영역(1301)은 성형 연마 입자의 측 배향을 가능하게 하기 위해 성형 연마 입자의 높이(h)와 관련된 폭(w)(1304)을 가질 수 있다. 높이에 대한 여기에서의 참조는 성형 연마 입자들의 배치의 적절한 샘플 크기의 평균 높이 또는 중앙 높이에 대한 참조일 수 있다는 것이 이해될 것이다. 예를 들면, 제 1 이산 접촉 영역(1301)의 폭(1304)은 성형 연마 입자의 높이보다 크지 않을 수 있다. 다른 인스턴스들에서, 제 1 이산 접촉 영역(1301)의 폭(1304)은 약 0.95(h) 이하, 약 0.9(h) 이하, 약 0.85(h) 이하, 약 0.8(h) 이하, 약 0.75(h) 이하, 또는 심지어 약 0.5(h) 이하와 같은, 약 0.99(h) 이하일 수 있다. 계속해서, 비-제한적인 일 실시예에서, 제 1 이산 접촉 영역(1301)의 폭(1304)은 적어도 약 0.1(h), 적어도 약 0.3(h), 또는 심지어 적어도 약 0.5(h)일 수 있다. 제 1 이산 접촉 영역(1301)의 폭(1304)은 상기 주지된 최소 및 최대 값들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다.
특정한 실시예에 따르면, 제 1 이산 접촉 영역(1301)은 세로 갭(1305)을 통해 제 2 이산 접촉 영역(1302)으로부터 이격될 수 있으며, 이것은 백킹(101)의 세로 축(180)에 평행한 방향으로 바로 인접한 이산 접촉 영역들(1301 및 1302) 사이에서의 최단 거리의 측정치이다. 특히, 세로 갭(1305)의 제어는 연마 물품의 표면 상에서의 성형 연마 입자들의 미리 결정된 분포의 제어를 용이하게 할 수 있으며, 이것은 개선된 성능을 가능하게 할 수 있다. 일 실시예에 따르면, 세로 갭(1305)은 성형 연마 입자 중 하나 또는 샘플링의 치수에 관련될 수 있다. 예를 들면, 세로 갭(1305)은 적어도 성형 연마 입자의 폭(w)과 동일할 수 있으며, 여기에서 폭은 여기에 설명된 바와 같이 입자의 가장 긴 측면의 측정치이다. 성형 연마 입자의 폭(w)에 대한 여기에서의 참조는 성형 연마 입자들의 배치의 적절한 샘플 크기의 평균 폭 또는 중앙 폭에 대한 참조일 수 있다는 것이 이해될 것이다. 특정한 인스턴스에서, 세로 갭(1305)은 적어도 약 1.1(w), 적어도 약 1.2(w), 적어도 약 1.5(w), 적어도 약 2(w), 적어도 약 2.5(w), 적어도 약 3(w), 또는 심지어 적어도 약 4(w)와 같은, 폭보다 클 수 있다. 계속해서, 비-제한적인 일 실시예에서, 세로 갭(1305)은 약 10(w) 이하, 약 9(w) 이하, 약 8(w) 이하, 또는 심지어 약 5(w) 이하일 수 있다. 세로 갭(1305)은 상기 주지된 최소 및 최대 값들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다.
특정한 실시예에 따르면, 제 2 이산 접촉 영역(1302)은 가로 갭(1306)을 통해 제 3 이산 접촉 영역(1303)으로부터 이격될 수 있으며, 이것은 백킹(101)의 가로 축(181)에 평행한 방향으로 바로 인접한 이산 접촉 영역들(1302 및 1303) 사이에서의 최단 거리의 측정치이다. 특히, 가로 갭(1306)의 제어는 연마 물품의 표면 상에서의 성형 연마 입자들의 미리 결정된 분포의 제어를 용이하게 할 수 있으며, 이것은 개선된 성능을 가능하게 할 수 있다. 일 실시예에 따르면, 가로 갭(1306)은 성형 연마 입자 중 하나 또는 샘플링의 치수에 관련될 수 있다. 예를 들면, 가로 갭(1306)은 적어도 성형 연마 입자의 폭(w)과 동일할 수 있으며, 여기에서 폭은 여기에 설명된 바와 같이 입자의 가장 긴 측면의 측정치이다. 성형 연마 입자의 폭(w)에 대한 여기에서의 참조는 성형 연마 입자들의 배치의 적절한 샘플 크기의 평균 폭 또는 중앙 폭에 대한 참조일 수 있다는 것이 이해될 것이다. 특정한 인스턴스에서, 가로 갭(1306)은 성형 연마 입자의 폭보다 작을 수 있다. 계속해서, 다른 인스턴스들에서, 가로 갭(1306)은 성형 연마 입자의 폭보다 클 수 있다. 일 양상에 따르면, 가로 갭(1306)은 0일 수 있다. 또 다른 양상에서, 가로 갭(1306)은 적어도 약 0.1(w), 적어도 약 0.5(w), 적어도 약 0.8(w), 적어도 약 1(w), 적어도 약 2(w), 적어도 약 3(w) 또는 심지어 적어도 약 4(w)일 수 있다. 계속해서, 비-제한적인 일 실시예에서, 가로 갭(1306)은 약 100(w) 이하, 약 50(w) 이하, 약 20(w) 이하, 또는 심지어 약 10(w) 이하일 수 있다. 가로 갭(1306)은 상기 주지된 최소 및 최대 값들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다.
제 1 이산 접촉 영역(1301)은 예를 들면, 인쇄, 패터닝, 그라비어 롤링, 에칭, 제거, 코팅, 증착, 및 그것의 조합을 포함한, 다양한 방법들을 사용하여 백킹의 상부 주 표면상에 형성될 수 있다. 도 14a 내지 도 14h는 여기에서의 실시예들에 따른 부착 재료의 이산 접촉 영역들을 포함한 다양한 패터닝된 정렬 구조들을 가진 연마 물품들을 형성하기 위한 툴들의 부분들의 하향식 뷰들을 포함한다. 특정한 인스턴스들에서, 툴들은 백킹에 접촉되며 백킹에 패터닝된 정렬 구조를 전사할 수 있는 템플레이팅 구조를 포함할 수 있다. 일 특정한 실시예에서, 툴은 백킹에 패터닝된 정렬 구조를 전사하기 위해 백킹 위에 롤링될 수 있는 부착 재료의 이산 접촉 영역들을 포함한 패터닝된 정렬 구조를 가진 그라비어 롤러일 수 있다. 그 후, 성형 연마 입자들은 이산 접촉 영역들에 대응하는 영역들에서 백킹 상에 위치될 수 있다.
적어도 일 특정한 양상에서, 실시예의 연마 물품은 백킹의 적어도 일 부분 상에 접착제를 포함한 패터닝된 구조를 형성하는 것을 포함할 수 있다. 특히, 일 인스턴스에서, 패터닝된 구조는 패터닝된 메이크 코트의 형태에 있을 수 있다. 패터닝된 메이크 코트는 백킹 위에 놓인 적어도 하나의 부착 영역, 제 1 부착 영역으로부터 분리된 백킹 위에 놓인 제 2 부착 영역, 및 제 1 및 제 2 부착 영역들 사이에서의 적어도 하나의 노출 영역을 포함한 비연속 층일 수 있다. 상기 적어도 하나의 노출 영역은 근본적으로 부착 재료가 없을 수 있으며 메이크 코트에서의 갭을 나타낸다. 일 실시예에서, 패터닝된 메이크 코트는 미리 결정된 분포에서 서로에 대하여 조정된 부착 영역들의 어레이의 형태에 있을 수 있다. 백킹 상에서의 부착 영역들의 미리 결정된 분포를 가진 패터닝된 메이크 코트의 형성은 미리 결정된 분포에서의 성형 연마립들의 배치를 용이하게 할 수 있으며, 특히, 패터닝된 메이크 코트의 부착 영역들의 미리 결정된 분포는 성형 연마 입자들의 위치들에 대응할 수 있고, 여기에서 성형 연마 입자들의 각각은 부착 영역들에서 백킹에 부착될 수 있으며, 따라서 백킹 상에서의 성형 연마 입자들의 미리 결정된 분포에 대응한다. 게다가, 적어도 일 실시예에서, 근본적으로 복수의 성형 연마 입자들의 어떤 성형 연마 입자들도 노출 영역들 위에 놓이지 않는다. 더욱이, 단일 부착 영역은 단일 성형 연마 입자를 수용하기 위해 성형되고 사이징될 수 있다는 것이 이해될 것이다. 그러나, 대안적인 실시예에서, 부착 영역은 복수의 성형 연마 입자들을 수용하기 위해 성형되고 사이징될 수 있다.
다양한 프로세스들은 예를 들면, 패터닝된 메이크 코트를 포함하여, 패터닝된 구조의 형성에 이용될 수 있다. 일 실시예에서, 프로세스는 메이크 코트를 선택적으로 증착시키는 것을 포함할 수 있다. 또 다른 실시예에서, 프로세스는 메이크 코트의 적어도 일 부분을 선택적으로 제거하는 것을 포함할 수 있다. 몇몇 대표적인 프로세스들은 코팅, 분무, 롤링, 인쇄, 마스킹, 조사, 에칭, 및 그것의 조합을 포함할 수 있다. 특정한 실시예에 따르면, 패터닝된 메이크 코트를 형성하는 것은 제 1 구조상에 패터닝된 메이크 코트를 제공하는 것 및 백킹의 적어도 일 부분에 패터닝된 메이크 코트를 전사하는 것을 포함할 수 있다. 예를 들면, 그라비어 롤러는 패터닝된 메이크 코트 층을 제공받을 수 있으며, 롤러는 백킹의 적어도 일 부분 위에 이송되며 패터닝된 메이크 코트를 롤러 표면으로부터 백킹의 표면으로 전사할 수 있다.
앞서 말한 것은 연마 물품들을 형성할 때 사용하기에 적합한 특정한 연마 물품들 및 구조들(예로서, 정렬 구조들)을 설명하였다. 다음의 실시예들은, 실시예들에 따라 연마 물품들의 형성을 용이하게 하는, 여기에서의 실시예들과 함께 또는 별도로 사용될 수 있는 특정한 방법들을 설명한다.
일 실시예에 따르면, 연마 물품으로 성형 연마 입자들을 전달하는 프로세스는 정렬 구조 내에서의 개구로부터 제 1 성형 연마 입자를 축출하는 것을 포함할 수 있다. 축출하기 위한 몇몇 적절한 대표적인 방법들은 성형 연마 입자상에 힘을 인가하는 것 및 그것을 정렬 구조로부터 제거하는 것을 포함할 수 있다. 예를 들면, 특정한 인스턴스들에서, 성형 연마 입자는 정렬 구조에 포함되며 중력, 정전기적 인력, 표면 장력, 압력 차, 기계력, 자기력, 교반, 진동, 및 그것의 조합을 사용하여 정렬 구조로부터 축출될 수 있다. 적어도 일 실시예에서, 성형 연마 입자들은 성형 연마 입자들의 표면이, 부착 재료를 포함할 수 있는, 백킹의 표면에 접촉될 때까지 정렬 구조에 포함될 수 있으며, 성형 연마 입자들은 정렬 구조로부터 제거되고 백킹 상에서의 미리 결정된 위치로 전달된다.
또 다른 양상에 따르면, 성형 연마 입자들은 경로를 따라 성형 연마 입자들을 미끄러뜨림으로써 제어된 방식으로 연마 물품의 표면에 전달될 수 있다. 예를 들면, 일 실시예에서, 성형 연마 입자들은 경로 아래로 및 중력을 통해 개구를 경유하여 연마 입자들을 미끄러뜨림으로써 백킹 상에서의 미리 결정된 위치로 전달될 수 있다. 도 15는 실시예에 따른 시스템의 예시를 포함한다. 특히, 시스템(1500)은 성형 연마 입자들(1503)의 함량을 포함하며 호퍼(1502) 아래로 이송될 수 있는 성형 연마 입자들(1503)을 백킹(1501)의 표면으로 전달하도록 구성된 호퍼(1502)를 포함할 수 있다. 예시된 바와 같이, 성형 연마 입자들(1503)은 서로에 대해 미리 결정된 분포로 배열된 성형 연마 입자들을 포함한 코팅된 연마 물품을 형성하기 위해 제어된 방식으로 호퍼(1502)에 부착되며 백킹(1501)의 표면에 전달된 경로(1504) 아래로 전달될 수 있다. 특정한 인스턴스들에서, 경로(1504)는 성형 연마 입자들의 미리 결정된 분포의 형성을 용이하게 하기 위해 특정한 레이트로 특정한 수의 성형 연마 입자들을 전달하기 위해 사이징되며 성형될 수 있다. 더욱이, 호퍼(1502) 및 경로(1504)는 성형 연마 입자들의 선택된 미리 결정된 분포들의 형성을 용이하게 하기 위해 백킹(1501)에 대해 이동 가능할 수 있다.
게다가, 백킹(1501)은 성형 연마 입자들의 개선된 배향을 용이하게 하기 위해 백킹(1501) 및 백킹(1501) 상에 포함된 성형 연마 입자들을 교반시키거나 또는 진동시킬 수 있는 진동 테이블(1506) 위에 추가로 이송될 수 있다.
또 다른 실시예에서, 성형 연마 입자들은 스로잉 프로세스를 통해 백킹으로 개개의 성형 연마 입자들을 추출함으로써 미리 결정된 위치로 전달될 수 있다. 스로잉 프로세스에서, 성형 연마 입자들은 백킹 상에서의 미리 결정된 위치에 연마 입자들을 유지하기에 충분한 레이트로 가속화되고 컨테이너로부터 축출될 수 있다. 예를 들면, 도 16은 스로잉 프로세스를 사용하여 시스템의 예시를 포함하며, 여기에서 성형 연마 입자들(1602)은 힘(예로서, 압력 차)을 통해 성형 연마 입자들을 가속화시키며 스로잉 유닛(1603)으로부터 경로(1605) 아래로 성형 연마 입자들(1602)을 전달할 수 있는 스로잉 유닛(1603)으로부터 축출될 수 있으며, 이것은 스로잉 유닛(1603)으로 및 미리 결정된 위치에서의 백킹(1601)으로 부착될 수 있다. 백킹(1601)은 스로잉 유닛(1603) 하에 이송될 수 있으며, 따라서 초기 배치 후, 성형 연마 입자들(1602)은 백킹(1601)의 표면상에서 부착 재료를 경화시키며 그것들의 미리 결정된 위치들에서 성형 연마 입자들(1602)을 유지할 수 있는 경화 프로세스를 겪을 수 있다.
도 17a는 실시예에 따른 대안적인 스로잉 프로세스의 예시를 포함한다. 특히, 스로잉 프로세스는 미리 결정된 위치에서의 백킹 상에서의 성형 연마 입자(1702)의 배치를 용이하게 하기 위해 갭(1708)을 통해 스로잉 유닛(1703)으로부터 성형 연마 입자(1702)를 축출하는 것을 포함할 수 있다. 축출의 힘, 축출될 때 성형 연마 입자(1702)의 배향, 백킹(1701)에 대한 스로잉 유닛(1703)의 배향, 및 갭(1708)은 성형 연마 입자(1702)의 미리 결정된 위치 및 서로에 대한 백킹(1701) 상에서의 성형 연마 입자들(1702)의 미리 결정된 분포를 조정하기 위해 제어되고 조정될 수 있다는 것이 이해될 것이다. 연마 물품(1701)은 성형 연마 입자들(1702) 및 연마 물품(1701) 사이에서의 부착을 용이하게 하기 위해 표면의 일 부분 상에 부착 재료(1712)를 포함할 수 있다는 것이 이해될 것이다.
특정한 인스턴스들에서, 성형 연마 입자들(1702)은 코팅을 갖도록 형성될 수 있다. 코팅은 성형 연마 입자들(1702)의 외부 표면의 적어도 일 부분 위에 놓일 수 있다. 일 특정한 실시예에서, 코팅은 유기 재료, 및 보다 특히 고분자, 및 보다 더 특히 부착 재료를 포함할 수 있다. 부착 재료를 포함한 코팅은 백킹(1701)으로의 성형 연마 입자들(1702)의 부착을 용이하게 할 수 있다.
도 17b는 실시예에 따른 대안적인 스로잉 프로세스의 예시를 포함한다. 특히, 도 17b의 실시예는 연마 물품(1701)의 성형 연마 입자들(1702)을 향하게 하도록 구성된 특정한 스로잉 유닛(1721)을 상세히 설명한다. 실시예에 따르면, 스로잉 유닛(1721)은 복수의 성형 연마 입자들(1702)을 포함하도록 구성된 호퍼(1723)를 포함할 수 있다. 더욱이, 호퍼(1723)는 가속화 구역(1725)에 대한 제어된 방식으로 하나 이상의 성형 연마 입자들(1702)을 전달하도록 구성될 수 있으며, 여기에서 성형 연마 입자들(1702)은 가속화되며 연마 물품(1701)으로 향해진다. 일 특정한 실시예에서, 스로잉 유닛(1721)은 가속화 구역(1725)에서 성형 연마 입자들(1702)의 가속화를 용이하게 하기 위해, 제어 가스 스트림 또는 에어 나이프 유닛과 같은, 가압 유체를 이용한 시스템(1722)을 포함할 수 있다. 추가로 예시되는 바와 같이, 스로잉 유닛(1721)은 일반적으로 성형 연마 입자들(1702)을 연마 물품(1701)으로 향하게 하도록 구성된 슬라이드(1726)를 이용할 수 있다. 일 실시예에서, 스로잉 유닛(1731) 및/또는 슬라이드(1726)는 복수의 위치들 사이에서 이동 가능할 수 있으며 연마 물품 상에서의 특정한 위치들로의 개개의 성형 연마 입자들의 전달을 용이하게 하도록 구성될 수 있고, 그에 따라 성형 연마 입자들의 미리 결정된 분포의 형성을 용이하게 할 수 있다.
도 17a는 실시예에 따른 대안적인 스로잉 프로세스의 예시를 포함한다. 도 17c의 예시된 실시예에서, 연마 물품(1701)에서 성형 연마 입자들(1702)을 향하게 하도록 구성된 대안적인 스로잉 유닛(1731)을 상세히 설명한다. 실시예에 따르면, 스로잉 유닛(1731)은 가속화 구역(1735)에 대해 제어된 방식으로 복수의 성형 연마 입자들(1702)을 포함하며 하나 이상의 성형 연마 입자들(1702)을 전달하도록 구성된 호퍼(1734)를 포함할 수 있으며, 여기에서 성형 연마 입자들(1702)은 가속화되고 연마 물품(1701)으로 향해진다. 일 특정한 실시예에서, 스로잉 유닛(1731)은 축 주위에서 회전되며 특정한 레이트의 회전들에서 스테이지(1733)를 회전시키도록 구성될 수 있는 스핀들(1732)을 포함할 수 있다. 성형 연마 입자들(1702)은 호퍼(1734)로부터 스테이지(1733)로 전달될 수 있으며 스테이지(1733)로부터 연마 물품(1701)을 향해 특히 가속화될 수 있다. 이해될 바와 같이, 스핀들(1732)의 회전의 레이트는 연마 물품(1701) 상에서의 성형 연마 입자들(1702)의 미리 결정된 분포를 제어하도록 제어될 수 있다. 더욱이, 스로잉 유닛(1731)은 복수의 위치들 사이에서 이동 가능할 수 있고 연마 물품 상에서의 특정한 위치들로의 개개의 성형 연마 입자들의 전달을 용이하게 하도록 구성될 수 있으며, 그에 따라 성형 연마 입자들의 미리 결정된 분포의 형성을 용이하게 할 수 있다.
또 다른 실시예에 따르면, 연마 물품 상에서의 미리 결정된 위치에서 성형 연마 입자들을 전달하며 서로에 대하여 미리 결정된 분포에 복수의 성형 연마 입자들을 가진 연마 물품을 형성하는 프로세스는 자기력의 인가를 포함할 수 있다. 도 18은 실시예에 따른 시스템의 예시를 포함한다. 시스템(1800)은 복수의 성형 연마 입자들(1802)을 포함하며 성형 연마 입자들(1802)을 제 1 이송 벨트(1803)로 전달하도록 구성된 호퍼(1801)를 포함할 수 있다.
예시된 바와 같이, 성형 연마 입자들(1802)은 이산 접촉 영역에서 성형 연마 입자들의 각각을 포함하도록 구성된 정렬 구조(1805)로 벨트(1803)를 따라 이송될 수 있다. 일 실시예에 따르면, 성형 연마 입자들(1802)은 전사 롤러(1804)를 통해 벨트(1803)로부터 정렬 구조(1805)로 전사될 수 있다. 특정한 인스턴스들에서, 전사 롤러(1804)는 벨트(1803)로부터 정렬 구조(1805)로의 성형 연마 입자들(1802)의 제어된 제거를 용이하게 하기 위해 자석을 이용할 수 있다. 자기 재료를 포함한 코팅의 제공은 자기 능력들을 가진 전사 롤러(1804)의 사용을 용이하게 할 수 있다.
성형 연마 입자들(1802)은 정렬 구조(1805)로부터 백킹(1807) 상에서의 미리 결정된 위치로 전달될 수 있다. 예시된 바와 같이, 백킹(1807)은 정렬 구조(1805)로부터 백킹(1807)으로의 성형 연마 입자들(1802)의 전사를 용이하게 하기 위해 분리된 벨트 상에서 및 정렬 구조(1805)로부터 이동되고 정렬 구조를 접촉할 수 있다.
또 다른 실시예에서, 연마 물품 상에서의 미리 결정된 위치에서 성형 연마 입자들을 전달하며 서로에 대하여 미리 결정된 분포에서 복수의 성형 연마 입자들을 가진 연마 물품을 형성하는 프로세스는 자석들의 어레이의 사용을 포함할 수 있다. 도 19는 실시예에 따른 연마 물품을 형성하기 위한 시스템의 예시를 포함한다. 특히, 시스템(1900)은 정렬 구조(1901) 내에 포함된 성형 연마 입자들(1902)을 포함할 수 있다. 예시된 바와 같이, 시스템(1900)은 자석들(1905)의 어레이를 포함할 수 있으며, 이것은 백킹(1906)에 대하여 미리 결정된 분포로 배열된 복수의 자석들을 포함할 수 있다. 실시예에 따르면, 자석들(1905)의 어레이는 백킹 상에서의 성형 연마 입자들의 미리 결정된 분포와 실질적으로 동일할 수 있는 미리 결정된 분포로 배열될 수 있다.
게다가, 자석들(1905)의 어레이의 자석들의 각각은 제 1 위치 및 제 2 위치 사이에서 이동 가능할 수 있으며, 이것은 자석들(1905)의 어레이의 형태의 제어를 용이하게 하며 자석들의 미리 결정된 분포 및 백킹 상에서의 성형 연마 입자들(1902)의 미리 결정된 분포의 제어를 추가로 용이하게 할 수 있다. 일 실시예에 따르면, 자석들(1905)의 어레이는 연마 물품에서의 성형 연마 입자들(1902)의 하나 이상의 미리 결정된 배향 특성들의 제어를 용이하게 하기 위해 변경될 수 있다.
더욱이, 자석들(1905)의 어레이의 자석들의 각각은 제 1 상태 및 제 2 상태 사이에서 동작 가능할 수 있으며, 여기에서 제 1 상태는 제 1 자기 세기(예로서, 온 상태)와 연관될 수 있으며 제 2 상태는 제 2 자기 세기(예로서, 오프 상태)와 연관될 수 있다. 자석들의 각각의 상태의 제어는 백킹(1906)의 특정한 영역들로의 성형 연마 입자들의 선택적 전달을 용이하게 하며 미리 결정된 분포의 제어를 추가로 용이하게 할 수 있다. 일 실시예에 따르면, 자석들(1905)의 어레이의 자석들의 상태는 연마 물품 상에서의 성형 연마 입자들(1902)의 하나 이상의 미리 결정된 배향 특성들의 제어를 용이하게 하기 위해 변경될 수 있다.
도 20a는 실시예에 따른 연마 물품을 형성하기 위해 사용된 툴의 이미지를 포함한다. 특히, 툴(2051)은 기판을 포함할 수 있으며, 이것은 성형 연마 입자들을 포함하며 최종-형성된 연마 물품 상에서의 성형 연마 입자들의 전사 및 배치를 보조하도록 구성된 이산 접촉 영역들을 정의한 개구들(2052)을 가진 정렬 구조일 수 있다. 예시된 바와 같이, 개구들(2052)은 정렬 구조상에서 서로에 대해 미리 결정된 분포로 배열될 수 있다. 특히, 개구들(2052)은 서로에 대하여 미리 결정된 분포를 가진 하나 이상의 그룹들(2053)에 배열될 수 있으며, 이것은 하나 이상의 미리 결정된 배향 특성들에 의해 정의된 미리 결정된 분포에서의 연마 물품 상에서의 성형 연마 입자들의 배치를 용이하게 할 수 있다. 특히, 툴(2051)은 개구들(2052)의 로우에 의해 정의된 그룹(2053)을 포함할 수 있다. 대안적으로, 툴(2051)은, 개구들의 각각이 기판에 대하여 실질적으로 동일한 미리 결정된 회전 배향을 갖기 때문에, 예시된 개구들(2052)의 모두에 의해 정의된 그룹(2055)을 가질 수 있다.
도 20b는 실시예에 따른 연마 물품을 형성하기 위해 사용된 툴의 이미지를 포함한다. 특히, 도 20b에 예시된 바와 같이, 성형 연마 입자들(2001)은 도 20a의 툴(2051)에 포함되며, 보다 특히, 툴(2051)은 정렬 구조일 수 있고, 여기에서 개구들(2052)의 각각은 단일 성형 연마 입자(2001)를 포함한다. 특히, 성형 연마 입자들(2001)은 하향식으로 보여지는 바와 같이, 삼각형 2-차원 형태를 가질 수 있다. 게다가, 성형 연마 입자들(2001)은 성형 연마 입자의 팁이 툴(2051)의 반대 측면으로 개구들(2052)로 및 그것을 통해 연장되도록 개구들(2052)로 위치될 수 있다. 개구들(2052)은 그것들이 성형 연마 입자들(2001)의 적어도 일 부분(전체가 아니지만)의 윤관을 실질적으로 보완하며 툴(2051)에서의 하나 이상의 미리 결정된 배향 특성들에 의해 정의된 위치에 그것들을 유지하도록 사이징되고 성형될 수 있으며, 이것은 미리 결정된 배향 특성들을 유지하면서 툴(2051)로부터 백킹으로 성형 연마 입자들(2001)의 전사를 용이하게 할 것이다. 예시된 바와 같이, 성형 연마 입자들(2001)은 성형 연마 입자들(2001)의 표면들의 적어도 일 부분이 툴(2051)의 표면 위에 연장되도록 개구들(2052) 내에 포함될 수 있으며, 이것은 개구들(2052)로부터 백킹으로 성형 연마 입자들(2001)의 전사를 용이하게 할 수 있다.
예시된 바와 같이, 성형 연마 입자들(2001)은 그룹(2002)을 정의할 수 있다. 그룹(2002)은 성형 연마 입자들(2001)의 미리 결정된 분포를 가질 수 있으며, 여기에서 성형 연마 입자들의 각각은 실질적으로 동일한 미리 결정된 회전 배향을 가진다. 게다가, 성형 연마 입자들(2001)의 각각은 실질적으로 동일한 미리 결정된 수직 배향 및 미리 결정된 팁 높이 배향을 가진다. 더욱이, 그룹(2002)은 툴(2051)의 가로 축(2081)에 평행한 평면에서 배향된 다수의 로우들(예로서, 2005, 2006, 및 2007)을 포함한다. 게다가, 그룹(2002) 내에서, 성형 연마 입자들(2001)의 보다 작은 그룹들(예로서, 2012, 2013, 및 2014)이 존재할 수 있으며, 여기에서 성형 연마 입자들(2001)은 서로에 대하여 미리 결정된 가로 배향 및 미리 결정된 세로 배향의 조합에서의 동일한 차이를 공유한다. 특히, 그룹들(2012, 2013, 및 2014)의 성형 연마 입자(2001)는 경사진 컬럼들로 배향될 수 있으며, 여기에서 그룹은 툴(2051)의 세로 축(2080)에 비스듬히 연장되지만, 성형 연마 입자들(2001)은 서로에 대하여 미리 결정된 세로 배향 및 미리 결정된 가로 배향에서 실질적으로 동일한 차이를 가질 수 있다. 또한 예시된 바와 같이, 성형 연마 입자들(2001)의 미리 결정된 분포는 패턴을 정의할 수 있으며, 이것은 삼각형 패턴(2011)으로 고려될 수 있다. 게다가, 그룹(2002)은 그룹의 경계가 사각형의 2-차원 마이크로단위를 정의하도록 배열될 수 있다(점선 참조).
도 20c는 실시예에 따른 연마 물품의 일 부분의 이미지를 포함한다. 특히, 연마 물품(2060)은 백킹(2061) 및 복수의 성형 연마 입자들(2001)을 포함하며, 이것은 툴(2051)의 개구들(2052)로부터 백킹(2061)으로 전사되었다. 예시된 바와 같이, 툴의 개구들(2052)의 미리 결정된 분포는 백킹(2061) 상에 포함된 그룹(2062)의 성형 연마 입자들(2001)의 미리 결정된 분포에 대응할 수 있다. 성형 연마 입자들(2001)의 미리 결정된 분포는 하나 이상의 미리 결정된 배향 특성들에 의해 정의될 수 있다. 게다가, 도 20c로부터 입증된 바와 같이, 성형 연마 입자들(2001)은, 성형 연마 입자들(2001)이 툴(2051)에 포함될 때, 도 20b의 성형 연마 입자들의 그룹들에 실질적으로 대응하는 그룹들에 배열될 수 있다.
여기에서의 특정한 연마 물품들에 대해, 연마 물품 상에서 복수의 성형 연마 입자들의 적어도 약 75%는 예를 들면, 여기에서의 실시예들에 설명된 바와 같이 측 배향을 포함하여, 백킹에 대하여 미리 결정된 배향을 가질 수 있다. 계속해서, 퍼센티지는 적어도 약 77%, 적어도 약 80%, 적어도 약 81%, 또는 심지어 적어도 약 82%와 같이, 더 클 수 있다. 비-제한적인 일 실시예에 대해, 연마 물품은 여기에서의 성형 연마 입자들을 사용하여 형성될 수 있으며, 여기에서 성형 연마 입자들의 총 함량의 약 99% 이하가 미리 결정된 측 배향을 가진다. 미리 결정된 배향에서의 성형 연마 입자들의 퍼센티지들에 대한 여기에서의 참조는 성형 연마 입자들의 통계적으로 적절한 수 및 성형 연마 입자들의 총 함량의 랜덤 샘플링에 기초한다는 것이 이해될 것이다.
미리 결정된 배향에서 입자들의 퍼센티지를 결정하기 위해, 연마 물품의 2D 미소초점 x-선 이미지가 이하의 표 1의 조건들에서 실행된 CT 스캔 기계를 사용하여 획득된다. X-선 2D 이미징은 품질 보증 소프트웨어를 사용하여 행해졌다. 표본 장착 기구는 4"x4" 윈도우 및 Ø0.5" 고체 금속 막대를 가진 플라스틱 프레임을 이용하며, 그것의 최상부 부분은 프레임을 고정시키기 위해 두 개의 나사들을 갖고 반 평평화된다. 이미징 이전에, 표본은 나사 머리들이 X-선들의 입사 방향과 접하게 되는 프레임의 일 측면을 통해 고정되었다. 그 후 4"x4" 윈도우 면적 내에서의 5개의 영역들이 120kV/80μA에서 이미징하기 위해 선택된다. 각각의 2D 투사는 X-선 오프-셋/이득 보정들을 갖고 및 배율에서 기록되었다.
전압
(kV)
전류
(μA)
배율 이미지당 시야
(mm x mm)
노출 시간
120 80 15X 16.2x13.0 500 ms/2.0 fps
이미지는 그 후 ImageJ 프로그램을 사용하여 불러들이고 분석되며, 여기에서 상이한 배향들은 이하의 표 2에 따라 값들을 할당받는다. 도 32는 실시예에 따른 코팅된 연마제의 부분들을 나타내며 백킹 상에서 성형 연마 입자들의 배향을 분석하기 위해 사용된 이미지지들을 포함한다.
셀 마커 유형 코멘트들
1 부분적으로 노출된, 이미지의 둘레에서의 결정립들 - 측 배향으로 선(예로서, 그것들의 측 표면 상에 서있는 입자들)
2 부분적으로 노출된, 이미지의 둘레에서의 결정립들 - 배향 아래로(즉, 플랫 배향 또는 반전된 배향에서의 입자들)
3 완전히 노출된, 이미지상에서의 결정립들 - 측 배향으로 선
4 완전히 노출된, 이미지상에서의 결정립들 - 아래로
5 완전히 노출된, 이미지상에서의 결정립들 - 비스듬히 서 있는(45도 각도에서 아래로 및 수직으로 서있는 것 사이)
3개의 산출들이 그 후 표 3에서 아래에 제공된 바와 같이 수행된다. 산출들을 행한 후, 제곱 센티미터당 측 배향에서의 성형 연마 입자들의 퍼센티지가 도출될 수 있다. 특히, 측 배향을 가진 입자는 성형 연마 입자의 주 표면 및 백킹의 표면 사이에서의 각도에 의해 정의된 바와 같이, 수직 배향을 가진 입자이며, 여기에서 각도는 45도들 이상이다. 따라서, 45도들 이상의 각도를 가진 성형 연마 입자는 서 있거나 또는 측 배향을 갖는 것으로 고려되고, 45도의 각도를 가진 성형 연마 입자는 비스듬히 서 있는 것으로 고려되며, 45도 미만의 각도를 가진 성형 연마 입자는 아래 배향을 갖는 것으로 고려된다.
5) 파라미터 프로토콜*
% 상향 결정립들 ((0.5×1)+3+5)/(1+2+3+4+5)
㎠당 결정립들의 총 # (1+2+3+4+5)
㎠당 상향 결정립들의 # (%상향 결정립들×㎠당 결정립들의 총 #)
* - 이것들은 모두 이미지의 대표적인 면적에 대해 정규화된다.
+ - 0.5의 척도 인자는 그것들이 이미지에 완전히 존재하지 않는다는 사실을 고려하기 위해 적용되었다.
더욱이, 성형 연마 입자들을 갖고 만들어진 연마 물품들은 성형 연마 입자들의 다양한 함량들을 이용할 수 있다. 예를 들면, 연마 물품들은 개방-코트 구성 또는 폐쇄 코트 구성에서 성형 연마 입자들의 단일 층을 포함한 코팅된 연마 물품들일 수 있다. 그러나, 매우 예상 외로, 성형 연마 입자들이 개방 코트 구성에서 우수한 결과들을 입증한다는 것을 발견하였다. 예를 들면, 복수의 성형 연마 입자들은 약 70 입자들/㎠ 이하의 성형 연마 입자들의 코팅 밀도를 가진 개방 코트 연마 제품을 정의할 수 있다. 다른 인스턴스들에서, 연마 물품의 제곱 센티미터당 성형 연마 입자의 밀도는 약 60 입자들/㎠ 이하, 약 55 입자들/㎠ 이하, 또는 심지어 약 50 입자들/㎠ 이하와 같은, 약 65 입자들/㎠ 이하일 수 있다. 계속해서, 비-제한적인 일 실시예에서, 여기에서의 성형 연마 입자를 사용한 개방 코트 코팅된 연마제의 밀도는 적어도 약 5 입자들/㎠, 또는 심지어 적어도 약 10 입자들/㎠일 수 있다. 연마 물품의 제곱 센티미터당 성형 연마 입자들의 밀도는 상기 최소 및 최대 값들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다.
특정한 인스턴스들에서, 연마 물품은 물품의 외부 연마 표면을 커버하는 연마 입자의 약 50% 이하를 코팅하는 개방 코트 밀도를 가질 수 있다. 다른 실시예들에서, 연마 면적의 총 면적에 대한 연마 입자들의 퍼센티지 코팅은 약 40% 이하, 약 30% 이하, 약 25% 이하, 또는 심지어 약 20% 이하일 수 있다. 계속해서, 비-제한적인 일 실시예에서, 연마 표면의 총 면적에 대한 연마 입자들의 퍼센티지 코팅은 적어도 약 10%, 적어도 약 15%, 적어도 약 20%, 적어도 약 25%, 적어도 약 30%, 적어도 약 35%, 또는 심지어 적어도 약 40%와 같은, 적어도 약 5%일 수 있다. 연마 표면의 총 면적에 대한 성형 연마 입자들의 퍼센트 커버리지는 상기 최소 및 최대 값들 중 임의의 것 사이에서의 범위 내에 있을 수 있다는 것이 이해될 것이다.
몇몇 연마 물품은 백킹의 길이(예로서, 림(ream))에 대한 특정한 함량의 연마 입자들을 가질 수 있다. 예를 들면, 일 실시예에서, 연마 물품은 적어도 약 25 lbs/ream, 또는 심지어 적어도 약 30 lbs/ream와 같은, 적어도 약 10 lbs/ream(148 그램/m2), 적어도 약 15 lbs/ream, 적어도 약 20 lbs/ream의 성형 연마 입자들의 정규화된 중량을 이용할 수 있다. 계속해서, 비-제한적인 일 실시예에서, 연마 물품들은 약 50 lbs/ream 이하, 또는 심지어 약 45 lbs/ream 이하와 같은, 약 60 lbs/ream(890 그램들/m2) 이하의 성형 연마 입자들의 정규화된 중량을 포함할 수 있다. 여기에서의 실시예들의 연마 물품들은 상기 최소 및 최대 값들 중 임의의 것 사이에서의 범위 내에서의 성형 연마 입자의 정규화된 중량을 이용할 수 있다는 것이 이해될 것이다.
특정한 인스턴스들에서, 연마 물품들은 특정한 워크피스들 상에서 사용될 수 있다. 적절한 대표적인 워크피스는 무기 재료, 유기 재료, 천연 재료, 및 그것의 조합을 포함할 수 있다. 특정한 실시예에 따르면, 워크피스는 철-계 재료, 니켈-계 재료 등과 같은, 금속 또는 금속 합금을 포함할 수 있다. 일 실시예에서, 워크피스는 스틸일 수 있으며, 보다 특히, 근본적으로 스테인리스 스틸(예로서, 304 스테인리스 스틸)로 이루어질 수 있다.
예 1
연삭 테스트는 연삭 방향에 대해 성형 연마립의 배향의 효과를 평가하기 위해 행해진다. 테스트에서, 제 1 세트의 성형 연마 입자들(샘플 A)은 연삭 방향에 대해 정면 배향으로 배향된다. 간단히 3b로 가면, 성형 연마 입자(102)는 정면 배향 연삭 방향(385)을 가지며, 따라서 주 표면(363)은 연삭 방향에 실질적으로 수직인 평면을 정의하며, 보다 특히 성형 연마 입자(102)의 등분 축(231)은 연삭 방향(385)에 실질적으로 수직이다. 샘플 A는 오스테나이트 스테인리스 스틸에 대해 정면 배향으로 홀더 상에 장착되었다. 휠 속도 및 동작 속도는 각각 22 m/s 및 16 mm/s로 유지되었다. 절단의 깊이는 0 및 30 마이크론 사이에서 선택될 수 있다. 각각의 테스트는 8인치 길이 워크피스에 걸쳐 15개의 패스들로 이루어졌다. 각각의 테스트에 대해, 10개의 반복 샘플들이 실행되며 결과들이 분석되고 평균되었다. 스크래치 길이의 시작에서 끝까지 홈의 단면적에서의 변화는 그릿 마모를 결정하기 위해 측정되었다.
제 2 세트의 샘플들(샘플 B)이 또한 샘플 A에 대해 상기 설명된 연삭 테스트에 따라 테스트된다. 특히, 그러나 샘플 B의 성형 연마 입자들은 연삭 방향에 대해 백킹 상에서 옆 배향을 가진다. 간단히 도 3b로 가면, 성형 연마 입자(103)는 연삭 방향(385)에 대해 옆 배향을 갖는 것으로 예시된다. 예시된 바와 같이, 성형 연마 입자(103)는 측 표면들(371 및 372)에 의해 접합될 수 있는, 주 표면들(391 및 392)을 포함할 수 있으며, 성형 연마 입자(103)는 연삭 방향(385)의 벡터에 대해 특정한 각도를 형성하는 등분 축(373)을 가질 수 있다. 예시된 바와 같이, 성형 연마 입자(103)의 등분 축들(373)은 연삭 방향(385)과 실질적으로 평행 배향을 가질 수 있으며, 따라서 등분 축(373) 및 연삭 방향(385) 사이에서의 각도는 근본적으로 0도이다. 따라서, 성형 연마 입자(103)의 옆 배향은 성형 연마 입자(103)의 다른 표면들 중 임의의 것 전에 워크피스와의 측 표면(372)의 초기 접촉을 용이하게 할 수 있다.
도 21은 예 1의 연삭 테스트에 따라 샘플 A 및 샘플 B에 대한 수직항력(N) 대 절단 수의 플롯을 포함한다. 도 21은 다수의 패스들 또는 절단들을 위해 대표적인 샘플들(A 및 B)의 성형 연마 입자들을 갖고 워크피스의 연삭을 행하기 위해 필요한 수직항력을 예시한다. 예시된 바와 같이, 샘플 A의 수직항력은 처음에 샘플 B의 수직항력보다 낮다. 그러나, 테스팅이 계속됨에 따라, 샘플 A의 수직항력은 샘플 B의 수직항력을 초과한다. 따라서, 몇몇 인스턴스들에서, 연마 물품은 개선된 연삭 성능을 가능하게 하기 위해 의도된 연삭 방향에 대해 성형 연마 입자들의 상이한 배향들(예로서, 정면 배향 및 옆 배향)의 조합을 이용할 수 있다. 특히, 도 21에 예시된 바와 같이, 연삭 방향에 대한 성형 연마 입자들의 배향들의 조합은 연마 물품의 수명 전체에 걸쳐 보다 낮은 수직항력들, 개선된 연삭 효율성, 및 연마 물품의 보다 큰 사용 가능한 수명을 가능하게 할 수 있다. 따라서, 예 1은 다른 것들 중에서, 서로에 대한 상이한 미리 결정된 배향 특성들 및 연삭 방향을 가진 상이한 그룹들의 성형 연마 입자들의 이용은 종래의 패터닝된 결정립들을 가진 패턴들에 비해 개선된 성능을 가능하게 할 수 있다는 것을 입증한다.
예 2
5개의 샘플들이 성형 연마 입자들의 배향을 비교하기 위해 분석된다. 3개의 샘플들(샘플들(S1, S2, 및 S3))이 실시예에 따라 만들어진다. 도 22는 여기에 설명된 조건들에 따른 CT 스캔 기계를 통해 2D 미소초점 X-선을 사용하여 샘플(S1)의 일 부분의 이미지를 포함한다. 두 개의 다른 샘플들(샘플들(CS1 및 CS2))은 성형 연마 입자들을 포함한 종래의 연마성 제품들을 나타낸다. 샘플들(CS1 및 CS2)은 Cubitron II로서 3M으로부터 상업적으로 이용 가능하다. 샘플(CS2)은 Cubitron II으로서 3M으로부터 상업적으로 이용 가능하다. 도 23은 여기에 설명된 조건들에 따라 CT 스캔 기계를 통해 2D 미소초점 X-선을 사용하여 샘플(CS2)의 일 부분의 이미지를 포함한다. 샘플들의 각각은 X-선 분석을 통해 성형 연마 입자들의 배향을 평가하기 위해 여기에 설명된 조건들에 따라 평가된다.
도 24는 샘플들(샘플 1 및 샘플 C1)의 각각에 대한 상향 결정립들/㎠ 및 결정립들/㎠의 총 수의 플롯을 포함한다. 예시된 바와 같이, 샘플들(CS1 및 CS2)은 샘플들(S1, S2, 및 S3)에 비교하여 측 배향(즉, 직립 배향)으로 배향된 상당히 더 적은 수의 성형 연마 입자들을 보여준다. 특히, 샘플(S1)은 측정된 모든 성형 연마 입자들(즉, 100%)이 측 배향으로 배향되지만, CS2의 성형 연마 입자들의 총 수의 단지 72 퍼센트만이 측 배향을 갖는다는 것을 보여준다. 입증된 바와 같이, 성형 연마 입자들을 사용한 최신의 종래의 연마 물품들(C1)은 현재 설명된 연마 물품들의 배향의 정밀도를 달성하지 않았다.
예 3
두 개의 샘플들은 연삭 효율성에 대한 다양한 분포들의 효과를 분석하기 위해 만들어지고 테스트되었다. 제 1 샘플(샘플 S4)은 도 28에 예시된 패턴에 의해 입증된 바와 같이 비-섀도잉 분포들을 가진 실시예에 따라 만들어졌다. 성형 연마 입자들의 배열은 플롯의 Y-축에 실질적으로 평행하며 백킹의 세로 축에 실질적으로 평행하여 연장된 연삭 방향에 대해 비-섀도잉 배열을 가졌다. 샘플(S4)은 삼각형 2-차원 형태를 가진 성형 연마 입자들을 사용하였고, 대략 20 lbs/ream의 성형 연마 입자들, 및 적어도 70%의 성형 연마 입자들이 측 배향으로 배향되었다.
제 2의, 종래의 샘플(샘플 CS3)은 성형 연마 입자들의 종래의 패턴을 갖고 만들어졌으며, 이것은 도 29에 입증된 바와 같이 일 유형의 섀도잉 분포의 예이며, 이것은 정사각형 반복 유닛의 측면들이 백킹의 세로 및 가로 축과 정렬되는 정사각형 패턴을 보여준 샘플(CS3)의 일 부분의 이미지이다. 샘플(S4)에 사용된 성형 연마 입자들의 동일한 크기, 형태, 및 양이 샘플(CS3)에 사용되었으며, 단지 상당한 차이는 백킹에서 성형 연마 입자들의 배열이다. 예시된 바와 같이, 성형 연마 입자들의 배열은 백킹의 가로 축 및 세로 축에 대해 섀도잉 배열이다. 연삭 방향은 백킹의 세로 축에 실질적으로 평행하였다.
샘플들은 이하의 표 4에 제공된 조건들 하에서 테스트되었다.
재료 4140 탄소 스틸
치수 1" 정사각형
40 psi
제품 속도 5000 sfm
기계: 122 Ds 하이 포스
연삭기(일정한 힘 벨트 테스터 #4580)
테스팅을 위해 사용된 워크피스들은 연삭 동작 후 워크피스의 표면 특성들을 결정하기 위해 Nanovea 3D 광학 조면계(백색 광 색 수차 기술)를 사용하여 분석되었다. 테스트된 각각의 워크피스에 대해, 하나의 면적은 5.0mm x 5.0mm의 면적 스캔을 사용하여 각각의 샘플 상에서 프로파일링되었다. 10㎛의 스텝 크기는 모든 샘플들에 대해 X 및 Y 축들 모두에 대해 사용되었다. 필터링되지 않은 면적 파라미터들(Sx)은 전체 스캐닝된 면적에 대해 산출되었다. 20 라인 프로필들은 면적 스캔으로부터 추출되었으며 평균 파라미터들이 산출되었다(Px). 샘플 데이터에서 보고된 모든 프로파일 파라미터들은 참조를 위해 부가적인 슬라이드에서 세세하게 설명된다. 분석은 이하의 표 4에 제공된 바와 같이 6 표면 특성화들의 산출을 가능하게 하였다. Sa는 EUR 15178 EN 보고(즉, 유럽 공동체들의 위원회를 대신하여 공개된 Stout, K. J., " 3차원들에서 조도의 특성화를 위한 방법들의 개발")에 따라 표면의 기하 평균 편차임을 주의하자. Sq는 EUR 15178 EN 보고에 따라 표면의 평균 제곱근 편차이다. St는 표면의 총 높이이며 가장 높은 피크 및 가장 깊은 밸리 사이에서의 높이 차의 측정치이다. Sp는 정상들의 최대 높이이며 최고 피크 및 평균 평면 사이에서의 높이 차의 측정치이다. Sv는 밸리들의 최대 깊이이며 평균 평면 및 가장 깊은 밸리 사이에서의 거리의 측정치이다. Sz는 표면의 10 포인트 높이이며 EUR 15178 EN 보고에 따라 5개의 가장 높은 피크들 및 5개의 가장 깊은 밸리들 사이에서의 거리의 평균이다.
Figure 112015044712525-pct00054

도 29는 샘플(S4)의 연마제를 갖고 연삭 동작을 행한 후 워크피스의 표면의 일 부분의 이미지를 포함한다. 도 30은 샘플(CS3)의 접착제를 갖고 연삭 동작을 해한 후 워크피스의 표면의 일 부분의 이미지를 포함한다. 표 5의 이미지들 및 데이터의 비교에서 명확하게 입증된 바와 같이, 샘플(S4)과 연관된 성형 연마 입자들의 비-섀도잉 배열은 성형 연마 입자들의 섀도잉된 패턴을 이용한, 샘플(CS3)을 사용한 연삭 동작에서 획득된 결과들과 비교하여 워크피스의 상당히 더 양호한 연삭 성능 및 전체 표면 마감을 야기하였다.
샘플들(즉, S4 및 CS3)의 각각에 대해, 3개의 테스트 런들이 완료되었으며 테스트 런들의 각각에 대해 제거된 재료의 양이 산출되고 평균되었다. 샘플(S4)에 대해 제거된 평균 재료는 샘플(CS3)에 비교하여 16% 더 컸으며, 따라서 샘플(CS3)에 비교하여 개선된 재료 제거 능력들을 보여준다.
본 출원은 최신 기술로부터의 이탈을 나타낸다. 산업은 성형 연마 입자들이 몰딩 및 스크린 인쇄와 같은 프로세스들을 통해 형성될 수 있음을 인식하였지만, 여기에서의 실시예들의 프로세스들은 이러한 프로세스들과 다르다. 특히, 여기에서의 실시예들은 특정한 특징들을 가진 성형 연마 입자의 배치들의 형성을 용이하게 하는 프로세스 특징들의 조합을 포함한다. 게다가, 여기에서의 실시예들의 연마 물품들은 이에 제한되지 않지만, 성형 연마 입자들의 미리 결정된 분포, 미리 결정된 배향 특성들의 조합의 이용, 그룹들, 로우들, 컬럼들, 컴퍼니들, 마이크로-단위들, 채널 영역들, 이에 제한되지 않지만, 종횡비, 조성, 첨가물들, 2-차원 형태, 3-차원 형태, 높이에서의 차이, 높이 프로파일에서의 차이, 플래싱 퍼센티지, 높이, 디싱, 및 그것의 조합을 포함한, 성형 연마 입자들의 양상들을 포함한 다른 연마 물품들과 다른 특징들의 특정한 조합을 가질 수 있다. 사실상, 여기에서의 실시예들의 연마 물품들은 개선된 연삭 성능을 가능하게 할 수 있다. 산업은 일반적으로 특정한 연마 물품들이 특정한 연마 유닛들에 대한 순서를 갖고 형성될 수 있음을 인식하였지만, 이러한 연마 유닛들은 종래에 결합제 시스템을 통해, 또는 종래의 연마제 또는 초연마제 그릿들을 사용하여 쉽게 몰딩될 수 있는 연마 합성물들에 제한되어 왔다. 산업은 여기에 설명된 바와 같이 미리 결정된 배향 특성들을 가진 성형 연마 입자들로부터 연마 물품들을 형성하기 위한 시스템들을 고려하거나 또는 개발하고 있지 않다. 미리 결정된 배향 특성들을 효과적으로 제어하기 위해 성형 연마 입자들의 조작은 3-공간에서 입자들의 기하급수적으로 개선된 제어를 갖는, 사소하지 않은 문제이며, 이것은 이 기술분야에서 개시되거나 또는 제안되지 않았다. 용어 "동일한"에 대한 참조는 실질적으로 동일함을 의미하는 것으로 이해될 것이다. 게다가, 여기에서의 실시예들은 일반적으로 직사각형 형태를 가진 백킹들을 언급하였지만, 비-섀도잉 배열에서의 성형 연마 입자들의 배열은 다른 형태들의 백킹들(예로서, 둥근 또는 타원형-형태 백킹들)에 동일하게 적용 가능할 수 있다는 것이 이해될 것이다.
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제

Claims (58)

  1. 백킹(backing)과 결합되는 복수의 성형 연마 입자들을 포함하는 제 1 그룹과, 상기 제 1 그룹과 상이하며, 상기 백킹에 결합되는 복수의 성형 연마 입자들을 포함하는 제 2 그룹을 포함하고,
    상기 제 1 그룹의 성형 연마 입자들의 각각의 성형 연마 입자는 미리 결정된 회전 배향, 미리 결정된 가로 배향, 및 미리 결정된 세로 배향 중 적어도 하나를 공유하며, 상기 제 1 그룹의 성형 연마 입자들의 각각의 성형 연마 입자는 제 1 주 표면, 제 2 주 표면, 및 상기 제 1 주 표면과 상기 제 2 주 표면 사이에서 연장하는 측면을 갖는 몸체를 포함하며, 상기 몸체에는 결합제가 없으며, 상기 몸체는 상기 제 1 주 표면 또는 상기 제 2 주 표면의 치수로 정의되는 길이와 폭을 갖고, 상기 측면은 상기 몸체의 높이를 정의하며, 상기 높이는 상기 길이 및 상기 폭보다 작고, 상기 제 1 그룹의 성형 연마 입자들의 각각은 상기 몸체의 측면이 상기 백킹에 가장 가까운 측 배향으로 배열되며, 추가적으로 상기 백킹의 축에 대하여 정면 배향으로 배열되며, 상기 제 1 주 표면 또는 상기 제 2 주 표면은 상기 백킹의 축에 수직이며, 상기 제 1 그룹은 상기 백킹의 축에 대하여 정면 배향으로 배열되면서 상기 백킹에 결합되는 모든 성형 연마 입자들을 포함하며,
    상기 제 2 그룹의 성형 연마 입자들의 각각의 성형 연마 입자는 미리 결정된 회전 배향, 미리 결정된 가로 배향, 및 미리 결정된 세로 배향 중 적어도 하나를 공유하며, 상기 제 2 그룹의 성형 연마 입자들의 각각의 성형 연마 입자는 제 1 주 표면, 제 2 주 표면, 및 상기 제 1 주 표면과 상기 제 2 주 표면 사이에서 연장하는 측면을 갖는 몸체를 포함하며, 상기 몸체에는 결합제가 없으며, 상기 몸체는 상기 제 1 주 표면 또는 상기 제 2 주 표면의 치수로 정의되는 길이와 폭을 갖고, 상기 측면은 상기 몸체의 높이를 정의하며, 상기 높이는 상기 길이 및 상기 폭보다 작고, 상기 제 2 그룹의 성형 연마 입자들의 각각은 상기 몸체의 측면이 상기 백킹에 가장 가까운 측 배향으로 배열되며, 추가적으로 상기 백킹의 축에 대하여 옆 배향으로 배열되며, 상기 제 1 주 표면 또는 상기 제 2 주 표면은 상기 백킹의 축에 평행하며, 상기 제 2 그룹은 상기 백킹의 축에 대하여 옆 배향으로 배열되면서 상기 백킹에 결합된 모든 성형 연마 입자들을 포함하며,
    상기 제 1 그룹은 상기 백킹 상에 제 1 영역을 형성하고, 상기 제 2 그룹은 상기 백킹 상에 제 2 영역을 형성하며, 상기 제 1 영역 및 상기 제 2 영역은 서로 완전히 분리되며,
    상기 제 1 그룹의 복수의 성형 연마 입자들은 서로에 대하여 제어된 비-섀도잉(shadowing) 배열로 배치되며, 상기 제어된 비-섀도잉 배열은 상기 백킹 상에 미리 결정된 제 1 위치에 배치되는 제 1 성형 연마 입자와, 상기 제 1 성형 연마 입자에 바로 인접하면서 상기 백킹 상에 미리 결정된 제 2 위치에 배치되는 제 2 성형 연마 입자를 포함하며, 상기 미리 결정된 제 1 위치 및 상기 미리 결정된 제 2 위치는 상기 백킹의 평면을 형성하는 적어도 두 개의 축에 대하여 서로 엇갈리게 배치되는, 연마 물품.
  2. 청구항 1에 있어서,
    상기 제 1 그룹의 성형 연마 입자들의 각각의 성형 연마 입자는, 상기 제 2 그룹의 성형 연마 입자들의 적어도 하나의 성형 연마 입자와 적어도 하나의 상이한 특징을 포함하며, 상기 특징은 평균 입자 크기, 2-차원 입자 형태, 연삭 방향에 대한 배향, 평균 가로 공간, 평균 세로 공간, 측 배향, 반전 배향, 플랫 배향, 입자 조성, 및 미리 결정된 분포로 이루어진 특징들의 그룹으로부터 선택되는, 연마 물품.
  3. 청구항 1에 있어서,
    상기 제 1 그룹의 복수의 성형 연마 입자들은 서로에 대하여 제 1 제어된 비-섀도잉 배열로 배치되며, 상기 제 2 그룹의 복수의 성형 연마 입자들은 서로에 대하여 제 2 제어된 비-섀도잉 배열로 배치되며, 상기 제 1 제어된 비-섀도잉 배열은 상기 제 2 제어된 비-섀도잉 배열과 상이한, 연마 물품.
  4. 청구항 1에 있어서,
    상기 제 1 그룹의 적어도 하나의 성형 연마 입자의 제 1 주 표면은 다각형, 삼각형, 직사각형, 사변형, 오각형, 육각형, 칠각형, 팔각형, 십각형, 타원형, 숫자, 그리스 알파벳 문자, 라틴 알파벳 문자, 러시아 알파벳 문자, 간지 문자, 직선 부분 및 곡선 부분을 형성하는 다각형 및 타원체의 조합을 포함하는 복합 형태, 또는 이들의 조합으로 이루어진 그룹으로부터 선택되는 2-차원 형태를 갖는, 연마 물품.
  5. 청구항 1에 있어서,
    상기 제어된 비-섀도잉 배열은 잎차례 패턴(phyllotactic pattern)인, 연마 물품.
  6. 청구항 1에 있어서, 상기 백킹은 원형 기하학적 구조를 지닌, 연마 물품.
  7. 청구항 1에 있어서,
    적어도 상기 제 1 성형 연마 입자와 상기 제 2 성형 연마 입자 각각의 최상위 부분은 연삭 방향에서 볼 때 상기 백킹의 평면에서 보여질 수 있으며, 재료 제거 작동의 초기 단계에서의 상기 제 1 성형 연마 입자와 상기 제 2 연마 입자의 중첩의 정도는 25%보다 크지 않은, 연마 물품.
  8. 청구항 1에 있어서, 상기 제 1 그룹은 채널 영역에 의해 상기 제 2 그룹과 분리되는, 연마 물품.
  9. 청구항 8에 있어서, 상기 채널 영역은 성형 연마 입자가 없는, 연마 물품.
  10. 청구항 8에 있어서,
    상기 채널 영역은 상기 백킹을 따라 연장하고, 패턴화된 영역을 형성하며, 상기 패턴화된 영역은 성형 연마 입자가 없고, 상기 제 1 그룹과 상기 제 2 그룹을 분리시키는, 연마 물품.
  11. 청구항 8에 있어서, 상기 채널 영역은, 상기 제 1 그룹 내의 임의의 2개의 바로 인접하는 성형 연마 입자들 사이의 거리보다 큰 폭을 갖는, 연마 물품.
  12. 청구항 1에 있어서,
    상기 제 2 그룹의 복수의 성형 연마 입자들은 서로에 대하여 제 2 제어된 비-섀도잉 배열로 배치되며, 상기 제 2 제어된 비-섀도잉 배열은 상기 백킹 상에 미리 결정된 제 1 위치에 배치되는 제 1 성형 연마 입자와, 상기 제 1 성형 연마 입자에 바로 인접하면서 상기 백킹 상에 미리 결정된 제 2 위치에 배치되는 제 2 성형 연마 입자를 포함하며, 상기 미리 결정된 제 1 위치 및 상기 미리 결정된 제 2 위치는 상기 백킹의 평면을 형성하는 적어도 두 개의 축에 대하여 서로 엇갈리게 배치되는, 연마 물품.
  13. 청구항 1에 있어서,
    상기 제 1 그룹 및 상기 제 2 그룹과 상이하며, 상기 백킹에 결합되는 복수의 성형 연마 입자들을 포함하는 제 3 그룹을 추가로 포함하고,
    상기 제 3 그룹의 성형 연마 입자들의 각각의 성형 연마 입자는 미리 결정된 회전 배향, 미리 결정된 가로 배향, 및 미리 결정된 세로 배향 중 적어도 하나를 공유하며, 상기 제 3 그룹의 성형 연마 입자들의 각각의 성형 연마 입자는 제 1 주 표면, 제 2 주 표면, 및 상기 제 1 주 표면과 상기 제 2 주 표면 사이에서 연장하는 측면을 갖는 몸체를 가지며, 상기 몸체에는 결합제가 없으며, 상기 몸체는 상기 제 1 주 표면 또는 상기 제 2 주 표면의 치수로 정의되는 길이와 폭을 갖고, 상기 측면은 상기 몸체의 높이를 정의하며, 상기 높이는 상기 길이 및 상기 폭보다 작고, 상기 제 3 그룹의 성형 연마 입자들의 각각은 상기 몸체의 측면이 상기 백킹에 가장 가까운 측 배향으로 배열되며, 추가적으로 상기 백킹의 축에 대하여 제 3 회전 배향으로 배열되며, 상기 제 3 회전 배향은 상기 제 1 그룹 및 상기 제 2 그룹 내의 상기 성형 연마 입자들의 회전 배향과 상이하며, 상기 제 3 그룹은 상기 백킹의 축에 대하여 제 3 회전 배향으로 배열되면서 상기 백킹에 결합되는 모든 성형 연마 입자들을 포함하며,
    상기 제 3 그룹의 복수의 성형 연마 입자들은 서로에 대하여 제어된 비-섀도잉(shadowing) 배열로 배치되며, 상기 제어된 비-섀도잉 배열은 상기 백킹 상에 미리 결정된 제 1 위치에 배치되는 제 1 성형 연마 입자와, 상기 제 1 성형 연마 입자에 바로 인접하면서 상기 백킹 상에 미리 결정된 제 2 위치에 배치되는 제 2 성형 연마 입자를 포함하며, 상기 미리 결정된 제 1 위치 및 상기 미리 결정된 제 2 위치는 상기 백킹의 평면을 형성하는 적어도 두 개의 축에 대하여 서로 엇갈리게 배치되는, 연마 물품.
  14. 청구항 1에 있어서,
    상기 제 1 영역은 연속적이고, 상기 제 2 영역은 연속적이며, 상기 제 1 영역과 상기 제 2 영역은 중첩되지 않는, 연마 물품.
  15. 청구항 1에 있어서,
    상기 제 1 그룹의 성형 연마 입자들의 아래에 놓이는 접착 재료의 비연속 층을 추가로 포함하는, 연마 물품.
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
  22. 삭제
  23. 삭제
  24. 삭제
  25. 삭제
  26. 삭제
  27. 삭제
  28. 삭제
  29. 삭제
  30. 삭제
  31. 삭제
  32. 삭제
  33. 삭제
  34. 삭제
  35. 삭제
  36. 삭제
  37. 삭제
  38. 삭제
  39. 삭제
  40. 삭제
  41. 삭제
  42. 삭제
  43. 삭제
  44. 삭제
  45. 삭제
  46. 삭제
  47. 삭제
  48. 삭제
  49. 삭제
  50. 삭제
  51. 삭제
  52. 삭제
  53. 삭제
  54. 삭제
  55. 삭제
  56. 삭제
  57. 삭제
  58. 삭제
KR1020157012244A 2012-10-15 2013-10-15 특정한 형태들을 가진 연마 입자들 및 이러한 입자들을 형성하는 방법들 KR101736085B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201261714028P 2012-10-15 2012-10-15
US61/714,028 2012-10-15
US201261747535P 2012-12-31 2012-12-31
US61/747,535 2012-12-31
PCT/US2013/065085 WO2014062701A1 (en) 2012-10-15 2013-10-15 Abrasive particles having particular shapes and methods of forming such particles

Publications (2)

Publication Number Publication Date
KR20150067357A KR20150067357A (ko) 2015-06-17
KR101736085B1 true KR101736085B1 (ko) 2017-05-16

Family

ID=50475567

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157012244A KR101736085B1 (ko) 2012-10-15 2013-10-15 특정한 형태들을 가진 연마 입자들 및 이러한 입자들을 형성하는 방법들

Country Status (11)

Country Link
US (5) US9440332B2 (ko)
EP (1) EP2906392A4 (ko)
JP (2) JP5982580B2 (ko)
KR (1) KR101736085B1 (ko)
CN (2) CN104822494B (ko)
BR (1) BR112015008144B1 (ko)
CA (1) CA2887561C (ko)
IL (1) IL238225A (ko)
MX (2) MX2015004594A (ko)
RU (1) RU2614488C2 (ko)
WO (1) WO2014062701A1 (ko)

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103370174B (zh) 2010-12-31 2017-03-29 圣戈本陶瓷及塑料股份有限公司 具有特定形状的研磨颗粒和此类颗粒的形成方法
WO2013003830A2 (en) 2011-06-30 2013-01-03 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particles of silicon nitride
CN103764349B (zh) 2011-06-30 2017-06-09 圣戈本陶瓷及塑料股份有限公司 液相烧结碳化硅研磨颗粒
BR112014007089A2 (pt) 2011-09-26 2017-03-28 Saint-Gobain Ceram & Plastics Inc artigos abrasivos incluindo materiais de partículas abrasivas, abrasivos revestidos usando os materiais de partículas abrasivas e os métodos de formação
KR102187425B1 (ko) 2011-12-30 2020-12-09 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 형상화 연마입자 및 이의 형성방법
PL2797716T3 (pl) 2011-12-30 2021-07-05 Saint-Gobain Ceramics & Plastics, Inc. Kompozytowe ukształtowane cząstki ścierne i sposób ich formowania
US8840696B2 (en) 2012-01-10 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
EP3705177A1 (en) 2012-01-10 2020-09-09 Saint-Gobain Ceramics & Plastics Inc. Abrasive particles having complex shapes and methods of forming same
US9242346B2 (en) 2012-03-30 2016-01-26 Saint-Gobain Abrasives, Inc. Abrasive products having fibrillated fibers
KR102534897B1 (ko) 2012-05-23 2023-05-30 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 형상화 연마입자들 및 이의 형성방법
US10106714B2 (en) 2012-06-29 2018-10-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9440332B2 (en) 2012-10-15 2016-09-13 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
KR101818946B1 (ko) 2012-12-31 2018-01-17 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 미립자 소재 및 이의 형성방법
CN107685296B (zh) 2013-03-29 2020-03-06 圣戈班磨料磨具有限公司 具有特定形状的磨粒、形成这种粒子的方法及其用途
US9969057B2 (en) * 2013-06-28 2018-05-15 Robert Bosch Gmbh Abrasive means
TW201502263A (zh) 2013-06-28 2015-01-16 Saint Gobain Ceramics 包含成形研磨粒子之研磨物品
TWI589404B (zh) * 2013-06-28 2017-07-01 聖高拜磨料有限公司 基於向日葵圖案之經塗佈的研磨製品
CA3114978A1 (en) 2013-09-30 2015-04-02 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
KR101870617B1 (ko) 2013-12-31 2018-06-26 생-고뱅 어브레이시브즈, 인코포레이티드 형상화 연마 입자들을 포함하는 연마 물품
US9771507B2 (en) 2014-01-31 2017-09-26 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
MX2016013464A (es) 2014-04-14 2017-04-13 Saint-Gobain Ceram & Plastics Inc Articulo abrasivo que incluye particulas abrasivas conformadas.
ES2972193T3 (es) 2014-04-14 2024-06-11 Saint Gobain Ceramics Artículo abrasivo que incluye partículas abrasivas conformadas
US9683613B2 (en) * 2014-04-29 2017-06-20 Paul A. STEFANUTTI Friction material and method of forming the same
WO2015184355A1 (en) 2014-05-30 2015-12-03 Saint-Gobain Abrasives, Inc. Method of using an abrasive article including shaped abrasive particles
DE112015003830T5 (de) * 2014-08-21 2017-05-04 3M Innovative Properties Company Schleifgegenstand mit Schleifmittel auf Unterlage mit gebündelten Strukturen aus Schleifpartikeln und Verfahren zur Herstellung
WO2016044158A1 (en) 2014-09-15 2016-03-24 3M Innovative Properties Company Methods of making abrasive articles and bonded abrasive wheel preparable thereby
US9707529B2 (en) 2014-12-23 2017-07-18 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
US9914864B2 (en) 2014-12-23 2018-03-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US9676981B2 (en) 2014-12-24 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle fractions and method of forming same
KR102447902B1 (ko) 2015-03-30 2022-09-26 쓰리엠 이노베이티브 프로퍼티즈 컴파니 코팅된 연마 용품 및 그의 제조 방법
WO2016161157A1 (en) * 2015-03-31 2016-10-06 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
TWI634200B (zh) 2015-03-31 2018-09-01 聖高拜磨料有限公司 固定磨料物品及其形成方法
WO2016196795A1 (en) 2015-06-02 2016-12-08 3M Innovative Properties Company Method of transferring particles to a substrate
US10245703B2 (en) 2015-06-02 2019-04-02 3M Innovative Properties Company Latterally-stretched netting bearing abrasive particles, and method for making
EP3307483B1 (en) 2015-06-11 2020-06-17 Saint-Gobain Ceramics&Plastics, Inc. Abrasive article including shaped abrasive particles
WO2016205133A1 (en) 2015-06-19 2016-12-22 3M Innovative Properties Company Abrasive article with abrasive particles having random rotational orientation within a range
WO2016205267A1 (en) * 2015-06-19 2016-12-22 3M Innovative Properties Company Systems and methods for making abrasive articles
WO2017007703A1 (en) * 2015-07-08 2017-01-12 3M Innovative Properties Company Systems and methods for making abrasive articles
EP3319758B1 (en) * 2015-07-08 2021-01-06 3M Innovative Properties Company Systems and methods for making abrasive articles
WO2017120547A1 (en) * 2016-01-08 2017-07-13 Saint-Gobain Abrasives, Inc. Abrasive articles including an abrasive performance enhancing composition
PL3455321T3 (pl) 2016-05-10 2022-12-12 Saint-Gobain Ceramics&Plastics, Inc. Sposób formowania cząstek ściernych
CN109462993A (zh) 2016-05-10 2019-03-12 圣戈本陶瓷及塑料股份有限公司 磨料颗粒及其形成方法
WO2018005111A1 (en) * 2016-07-01 2018-01-04 3M Innovative Properties Company Nonwoven abrasive article including abrasive particles
EP4349896A3 (en) * 2016-09-29 2024-06-12 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
EP3519137A4 (en) 2016-09-30 2020-06-10 3M Innovative Properties Company ABRASIVE ARTICLES AND METHOD FOR THE PRODUCTION THEREOF
KR20190055224A (ko) * 2016-09-30 2019-05-22 쓰리엠 이노베이티브 프로퍼티즈 캄파니 연마 물품 제조 시스템
CN109863568B (zh) * 2016-10-25 2020-05-15 3M创新有限公司 制备可磁化磨料颗粒的方法
EP3532561B1 (en) 2016-10-25 2021-04-28 3M Innovative Properties Company Magnetizable abrasive particles and abrasive articles including them
US11597860B2 (en) 2016-10-25 2023-03-07 3M Innovative Properties Company Magnetizable abrasive particle and method of making the same
US10947432B2 (en) 2016-10-25 2021-03-16 3M Innovative Properties Company Magnetizable abrasive particle and method of making the same
EP3532249A4 (en) 2016-10-25 2020-06-17 3M Innovative Properties Company STRUCTURED ABRASIVE ITEM AND METHOD FOR USE THEREOF
EP3532560A4 (en) * 2016-10-25 2020-04-01 3M Innovative Properties Company FUNCTIONAL GRINDING ARTICLES, GRINDING ARTICLES AND METHOD FOR THE PRODUCTION THEREOF
WO2018080784A1 (en) 2016-10-25 2018-05-03 3M Innovative Properties Company Bonded abrasive wheel and method of making the same
CN109963691A (zh) * 2016-11-16 2019-07-02 3M创新有限公司 包括具有改善的结构完整性的特征的结构化磨料制品
WO2018118688A1 (en) 2016-12-21 2018-06-28 3M Innovative Properties Company Abrasive article with different pluralities of abrasive particles
WO2018118690A1 (en) 2016-12-21 2018-06-28 3M Innovative Properties Company Systems, methods and tools for distributing different pluralities of abrasive particles to make abrasive articles
US11534892B2 (en) 2016-12-21 2022-12-27 3M Innovative Properties Company Systems and methods for making abrasive articles
WO2018136268A1 (en) * 2017-01-19 2018-07-26 3M Innovative Properties Company Manipulation of magnetizable abrasive particles with modulation of magnetic field angle or strength
CN110225953A (zh) * 2017-01-23 2019-09-10 3M创新有限公司 可磁化磨料颗粒的磁力辅助布置
US10563105B2 (en) 2017-01-31 2020-02-18 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10759024B2 (en) 2017-01-31 2020-09-01 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
EP3621771A1 (en) 2017-05-12 2020-03-18 3M Innovative Properties Company Tetrahedral abrasive particles in abrasive articles
WO2018236989A1 (en) 2017-06-21 2018-12-27 Saint-Gobain Ceramics & Plastics, Inc. PARTICULATE MATERIALS AND METHODS OF FORMATION THEREOF
DE102017210799A1 (de) * 2017-06-27 2018-12-27 Robert Bosch Gmbh Geformtes keramisches Schleifkorn sowie Verfahren zur Herstellung eines geformten keramischen Schleifkorns
EP3713712B1 (en) * 2017-11-21 2023-05-31 3M Innovative Properties Company Coated abrasive disc and methods of making and using the same
CN111386176A (zh) * 2017-11-21 2020-07-07 3M创新有限公司 涂覆磨盘及其制备和使用方法
US11597059B2 (en) 2017-11-21 2023-03-07 3M Innovative Properties Company Coated abrasive disc and methods of making and using the same
US20200353594A1 (en) * 2017-11-27 2020-11-12 3M Innovative Properties Company Abrasive article
WO2019108805A2 (en) * 2017-11-30 2019-06-06 Saint-Gobain Abrasives, Inc. Abrasive articles and methods of forming same
WO2019210285A2 (en) 2018-04-26 2019-10-31 San Diego State University Selective sintering-based fabrication of fully dense complex shaped parts
CN113226647A (zh) 2018-12-18 2021-08-06 3M创新有限公司 具有不同加工速度的磨料制品制造机
CN113423537A (zh) * 2018-12-18 2021-09-21 3M创新有限公司 磨料制品产生中改善的颗粒接收
WO2020128842A1 (en) * 2018-12-18 2020-06-25 3M Innovative Properties Company Shaped abrasive particle transfer assembly
WO2020128853A1 (en) 2018-12-18 2020-06-25 3M Innovative Properties Company Tooling splice accommodation for abrasive article production
WO2020128720A2 (en) * 2018-12-18 2020-06-25 3M Innovative Properties Company Improved particle reception in abrasive article creation
WO2020128717A1 (en) * 2018-12-18 2020-06-25 3M Innovative Properties Company Patterned abrasive substrate and method
CN113195162A (zh) * 2018-12-18 2021-07-30 3M创新有限公司 图案化磨料基底和方法
JP6755378B1 (ja) * 2019-03-28 2020-09-16 住友化学株式会社 ターゲット材の研磨方法、ターゲット材の製造方法及びリサイクル鋳塊の製造方法
DE102019207822A1 (de) * 2019-05-28 2020-12-03 Robert Bosch Gmbh Verfahren zur Herstellung eines Schleifartikels sowie Schleifartikel
DK180350B1 (da) * 2019-09-18 2021-01-22 Flex Trim As Slibeelement til brug i roterende slibe- eller pudseværktøj
KR20220116556A (ko) 2019-12-27 2022-08-23 세인트-고바인 세라믹스 앤드 플라스틱스, 인크. 연마 물품 및 이의 형성 방법
WO2021152444A1 (en) * 2020-01-31 2021-08-05 3M Innovative Properties Company Coated abrasive articles
WO2023130053A1 (en) * 2021-12-30 2023-07-06 Saint-Gobain Abrasives, Inc. Abrasive articles and methods of forming same
WO2023130052A1 (en) * 2021-12-30 2023-07-06 Saint-Gobain Abrasives, Inc. Abrasive articles and methods of forming same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010070294A1 (en) * 2008-12-18 2010-06-24 The University Of Nottingham Superabrasive cutting element and manufacturing method with high degree of control of distribution and crystallographic orientation of the micro cutting edges
WO2012112305A2 (en) * 2011-02-16 2012-08-23 3M Innovative Properties Company Coated abrasive article having rotationally aligned formed ceramic abrasive particles and method of making

Family Cites Families (801)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA743715A (en) 1966-10-04 The Carborundum Company Manufacture of sintered abrasive grain of geometrical shape and controlled grit size
US3123948A (en) 1964-03-10 Reinforced
US345604A (en) 1886-07-13 Process of making porous alum
US1910444A (en) 1931-02-13 1933-05-23 Carborundum Co Process of making abrasive materials
US2248064A (en) 1933-06-01 1941-07-08 Minnesota Mining & Mfg Coating, particularly for manufacture of abrasives
US2049874A (en) 1933-08-21 1936-08-04 Miami Abrasive Products Inc Slotted abrasive wheel
US2036903A (en) 1934-03-05 1936-04-07 Norton Co Cutting-off abrasive wheel
US2148400A (en) 1938-01-13 1939-02-21 Norton Co Grinding wheel
US2248990A (en) 1938-08-17 1941-07-15 Heany John Allen Process of making porous abrasive bodies
US2290877A (en) 1938-09-24 1942-07-28 Heany Ind Ceramic Corp Porous abrading material and process of making the same
US2318360A (en) 1941-05-05 1943-05-04 Carborundum Co Abrasive
US2376343A (en) 1942-07-28 1945-05-22 Minnesota Mining & Mfg Manufacture of abrasives
US2563650A (en) 1949-04-26 1951-08-07 Porocel Corp Method of hardening bauxite with colloidal silica
US2880080A (en) 1955-11-07 1959-03-31 Minnesota Mining & Mfg Reinforced abrasive articles and intermediate products
US3067551A (en) 1958-09-22 1962-12-11 Bethlehem Steel Corp Grinding method
US3041156A (en) 1959-07-22 1962-06-26 Norton Co Phenolic resin bonded grinding wheels
US3079243A (en) 1959-10-19 1963-02-26 Norton Co Abrasive grain
US3079242A (en) 1959-12-31 1963-02-26 Nat Tank Co Flame arrestor
US3377660A (en) 1961-04-20 1968-04-16 Norton Co Apparatus for making crystal abrasive
GB986847A (en) 1962-02-07 1965-03-24 Charles Beck Rosenberg Brunswi Improvements in or relating to abrasives
US3141271A (en) 1962-10-12 1964-07-21 Herbert C Fischer Grinding wheels with reinforcing elements
US3276852A (en) 1962-11-20 1966-10-04 Jerome H Lemelson Filament-reinforced composite abrasive articles
US3379543A (en) 1964-03-27 1968-04-23 Corning Glass Works Composition and method for making ceramic articles
US3481723A (en) 1965-03-02 1969-12-02 Itt Abrasive grinding wheel
US3477180A (en) 1965-06-14 1969-11-11 Norton Co Reinforced grinding wheels and reinforcement network therefor
US3454385A (en) 1965-08-04 1969-07-08 Norton Co Sintered alpha-alumina and zirconia abrasive product and process
US3387957A (en) 1966-04-04 1968-06-11 Carborundum Co Microcrystalline sintered bauxite abrasive grain
US3480772A (en) 1967-03-09 1969-11-25 Gen Electric Luminaire
US3536005A (en) 1967-10-12 1970-10-27 American Screen Process Equip Vacuum screen printing method
US3480395A (en) 1967-12-05 1969-11-25 Carborundum Co Method of preparing extruded grains of silicon carbide
US3491492A (en) 1968-01-15 1970-01-27 Us Industries Inc Method of making alumina abrasive grains
US3615308A (en) 1968-02-09 1971-10-26 Norton Co Crystalline abrasive alumina
US3590799A (en) 1968-09-03 1971-07-06 Gerszon Gluchowicz Method of dressing the grinding wheel in a grinding machine
US3495359A (en) 1968-10-10 1970-02-17 Norton Co Core drill
US3619151A (en) 1968-10-16 1971-11-09 Landis Tool Co Phosphate bonded grinding wheel
US3608134A (en) 1969-02-10 1971-09-28 Norton Co Molding apparatus for orienting elongated particles
US3637360A (en) 1969-08-26 1972-01-25 Us Industries Inc Process for making cubical sintered aluminous abrasive grains
US3608050A (en) 1969-09-12 1971-09-21 Union Carbide Corp Production of single crystal sapphire by carefully controlled cooling from a melt of alumina
US3874856A (en) 1970-02-09 1975-04-01 Ducommun Inc Porous composite of abrasive particles in a pyrolytic carbon matrix and the method of making it
US3670467A (en) 1970-04-27 1972-06-20 Robert H Walker Method and apparatus for manufacturing tumbling media
US3672934A (en) 1970-05-01 1972-06-27 Du Pont Method of improving line resolution in screen printing
US3808747A (en) 1970-06-08 1974-05-07 Wheelabrator Corp Mechanical finishing and media therefor
US3909991A (en) 1970-09-22 1975-10-07 Norton Co Process for making sintered abrasive grains
US3986885A (en) 1971-07-06 1976-10-19 Battelle Development Corporation Flexural strength in fiber-containing concrete
US3819785A (en) 1972-02-02 1974-06-25 Western Electric Co Fine-grain alumina bodies
US4261706A (en) 1972-05-15 1981-04-14 Corning Glass Works Method of manufacturing connected particles of uniform size and shape with a backing
US3859407A (en) 1972-05-15 1975-01-07 Corning Glass Works Method of manufacturing particles of uniform size and shape
DE2437522C3 (de) 1973-08-10 1983-03-31 De Beers Industrial Diamond Division (Proprietary) Ltd., Johannesburg, Transvaal Verfahren zum Herstellen eines Schleifkörpers
US4055451A (en) 1973-08-31 1977-10-25 Alan Gray Cockbain Composite materials
US3950148A (en) 1973-10-09 1976-04-13 Heijiro Fukuda Laminated three-layer resinoid wheels having core layer of reinforcing material and method for producing same
US4004934A (en) 1973-10-24 1977-01-25 General Electric Company Sintered dense silicon carbide
US3940276A (en) 1973-11-01 1976-02-24 Corning Glass Works Spinel and aluminum-base metal cermet
US3960577A (en) 1974-01-08 1976-06-01 General Electric Company Dense polycrystalline silicon carbide
ZA741477B (en) 1974-03-07 1975-10-29 Edenvale Eng Works Abrasive tools
JPS5236637B2 (ko) 1974-03-18 1977-09-17
US4045919A (en) 1974-05-10 1977-09-06 Seiko Seiki Kabushiki Kaisha High speed grinding spindle
US3991527A (en) 1975-07-10 1976-11-16 Bates Abrasive Products, Inc. Coated abrasive disc
US4028453A (en) 1975-10-20 1977-06-07 Lava Crucible Refractories Company Process for making refractory shapes
US4194887A (en) 1975-12-01 1980-03-25 U.S. Industries, Inc. Fused alumina-zirconia abrasive material formed by an immersion process
US4073096A (en) 1975-12-01 1978-02-14 U.S. Industries, Inc. Process for the manufacture of abrasive material
US4092573A (en) 1975-12-22 1978-05-30 Texas Instruments Incorporated Motor starting and protecting apparatus
US4037367A (en) 1975-12-22 1977-07-26 Kruse James A Grinding tool
DE2725704A1 (de) 1976-06-11 1977-12-22 Swarovski Tyrolit Schleif Herstellung von korundhaeltigen schleifkoernern, beispielsweise aus zirkonkorund
JPS5364890A (en) 1976-11-19 1978-06-09 Toshiba Corp Method of producing silicon nitride grinding wheel
US4114322A (en) 1977-08-02 1978-09-19 Harold Jack Greenspan Abrasive member
US4711750A (en) 1977-12-19 1987-12-08 Norton Company Abrasive casting process
JPS5524813A (en) 1978-08-03 1980-02-22 Showa Denko Kk Alumina grinding grain
JPS6016388B2 (ja) 1978-11-04 1985-04-25 日本特殊陶業株式会社 高靭性セラミック工具の製法
US4314827A (en) 1979-06-29 1982-02-09 Minnesota Mining And Manufacturing Company Non-fused aluminum oxide-based abrasive mineral
DE2935914A1 (de) 1979-09-06 1981-04-02 Kali-Chemie Ag, 3000 Hannover Verfahren zur herstellung von kugelfoermigen formkoerpern auf basis al(pfeil abwaerts)2(pfeil abwaerts)o(pfeil abwaerts)3(pfeil abwaerts) und/oder sio(pfeil abwaerts)2(pfeil abwaerts)
US4286905A (en) 1980-04-30 1981-09-01 Ford Motor Company Method of machining steel, malleable or nodular cast iron
JPS622946Y2 (ko) 1980-11-13 1987-01-23
US4541842A (en) 1980-12-29 1985-09-17 Norton Company Glass bonded abrasive agglomerates
JPS57121469A (en) 1981-01-13 1982-07-28 Matsushita Electric Ind Co Ltd Manufacture of electrodeposition grinder
US4393021A (en) 1981-06-09 1983-07-12 Vereinigte Schmirgel Und Maschinen-Fabriken Ag Method for the manufacture of granular grit for use as abrasives
EP0078896A2 (en) 1981-11-10 1983-05-18 Norton Company Abrasive bodies such as grinding wheels
JPS5871938U (ja) 1981-11-10 1983-05-16 セイコーエプソン株式会社 電子時計のスイツチ構造
US4728043A (en) 1982-02-25 1988-03-01 Norton Company Mechanical sorting system for crude silicon carbide
JPS58223564A (ja) 1982-05-10 1983-12-26 Toshiba Corp 砥石およびその製造法
US4548617A (en) 1982-08-20 1985-10-22 Tokyo Shibaura Denki Kabushiki Kaisha Abrasive and method for manufacturing the same
JPS5890466A (ja) 1982-11-04 1983-05-30 Toshiba Corp 研削砥石
US4469758A (en) 1983-04-04 1984-09-04 Norton Co. Magnetic recording materials
JPS606356U (ja) 1983-06-24 1985-01-17 神田通信工業株式会社 携帯通信装置
US4505720A (en) 1983-06-29 1985-03-19 Minnesota Mining And Manufacturing Company Granular silicon carbide abrasive grain coated with refractory material, method of making the same and articles made therewith
US4452911A (en) 1983-08-10 1984-06-05 Hri, Inc. Frangible catalyst pretreatment method for use in hydrocarbon hydrodemetallization process
US4457767A (en) 1983-09-29 1984-07-03 Norton Company Alumina-zirconia abrasive
US4623364A (en) 1984-03-23 1986-11-18 Norton Company Abrasive material and method for preparing the same
NZ210805A (en) 1984-01-19 1988-04-29 Norton Co Aluminous abrasive grits or shaped bodies
US5395407B1 (en) 1984-01-19 1997-08-26 Norton Co Abrasive material and method
US5383945A (en) 1984-01-19 1995-01-24 Norton Company Abrasive material and method
US5227104A (en) 1984-06-14 1993-07-13 Norton Company High solids content gels and a process for producing them
US4570048A (en) 1984-06-29 1986-02-11 Plasma Materials, Inc. Plasma jet torch having gas vortex in its nozzle for arc constriction
US4963012A (en) 1984-07-20 1990-10-16 The United States Of America As Represented By The United States Department Of Energy Passivation coating for flexible substrate mirrors
US4961757A (en) 1985-03-14 1990-10-09 Advanced Composite Materials Corporation Reinforced ceramic cutting tools
CA1254238A (en) 1985-04-30 1989-05-16 Alvin P. Gerk Process for durable sol-gel produced alumina-based ceramics, abrasive grain and abrasive products
US4659341A (en) 1985-05-23 1987-04-21 Gte Products Corporation Silicon nitride abrasive frit
US4678560A (en) 1985-08-15 1987-07-07 Norton Company Screening device and process
US4657754A (en) 1985-11-21 1987-04-14 Norton Company Aluminum oxide powders and process
US4770671A (en) 1985-12-30 1988-09-13 Minnesota Mining And Manufacturing Company Abrasive grits formed of ceramic containing oxides of aluminum and yttrium, method of making and using the same and products made therewith
AT389882B (de) 1986-06-03 1990-02-12 Treibacher Chemische Werke Ag Verfahren zur herstellung eines mikrokristallinen schleifmaterials
DE3705540A1 (de) 1986-06-13 1987-12-17 Ruetgerswerke Ag Hochtemperaturbestaendige formstoffe
JPH0753604B2 (ja) 1986-09-03 1995-06-07 株式会社豊田中央研究所 炭化ケイ素質複合セラミツクス
US5053367A (en) 1986-09-16 1991-10-01 Lanxide Technology Company, Lp Composite ceramic structures
WO1988002299A1 (en) 1986-09-24 1988-04-07 Foseco International Limited Abrasive media
US5180630A (en) 1986-10-14 1993-01-19 American Cyanamid Company Fibrillated fibers and articles made therefrom
US5024795A (en) 1986-12-22 1991-06-18 Lanxide Technology Company, Lp Method of making shaped ceramic composites
US4876226A (en) 1987-01-12 1989-10-24 Fuentes Ricardo I Silicon carbide sintering
US4829027A (en) 1987-01-12 1989-05-09 Ceramatec, Inc. Liquid phase sintering of silicon carbide
GB8701553D0 (en) 1987-01-24 1987-02-25 Interface Developments Ltd Abrasive article
US4799939A (en) 1987-02-26 1989-01-24 Minnesota Mining And Manufacturing Company Erodable agglomerates and abrasive products containing the same
US5244849A (en) 1987-05-06 1993-09-14 Coors Porcelain Company Method for producing transparent polycrystalline body with high ultraviolet transmittance
US4960441A (en) 1987-05-11 1990-10-02 Norton Company Sintered alumina-zirconia ceramic bodies
US5312789A (en) 1987-05-27 1994-05-17 Minnesota Mining And Manufacturing Company Abrasive grits formed of ceramic, impregnation method of making the same and products made therewith
AU604899B2 (en) 1987-05-27 1991-01-03 Minnesota Mining And Manufacturing Company Abrasive grits formed of ceramic, impregnation method of making the same and products made therewith
US4881951A (en) 1987-05-27 1989-11-21 Minnesota Mining And Manufacturing Co. Abrasive grits formed of ceramic containing oxides of aluminum and rare earth metal, method of making and products made therewith
US5185299A (en) 1987-06-05 1993-02-09 Minnesota Mining And Manufacturing Company Microcrystalline alumina-based ceramic articles
US4954462A (en) 1987-06-05 1990-09-04 Minnesota Mining And Manufacturing Company Microcrystalline alumina-based ceramic articles
US4858527A (en) 1987-07-22 1989-08-22 Masanao Ozeki Screen printer with screen length and snap-off angle control
US4797139A (en) 1987-08-11 1989-01-10 Norton Company Boehmite produced by a seeded hydyothermal process and ceramic bodies produced therefrom
US5376598A (en) 1987-10-08 1994-12-27 The Boeing Company Fiber reinforced ceramic matrix laminate
US4848041A (en) 1987-11-23 1989-07-18 Minnesota Mining And Manufacturing Company Abrasive grains in the shape of platelets
US4871376A (en) * 1987-12-14 1989-10-03 Minnesota Mining And Manufacturing Company Resin systems for coated products; and method
US4797269A (en) 1988-02-08 1989-01-10 Norton Company Production of beta alumina by seeding and beta alumina produced thereby
US4930266A (en) 1988-02-26 1990-06-05 Minnesota Mining And Manufacturing Company Abrasive sheeting having individually positioned abrasive granules
US5076991A (en) 1988-04-29 1991-12-31 Norton Company Method and apparatus for rapid solidification
US4917852A (en) 1988-04-29 1990-04-17 Norton Company Method and apparatus for rapid solidification
US4942011A (en) 1988-05-03 1990-07-17 E. I. Du Pont De Nemours And Company Process for preparing silicon carbide fibers
EP0347162A3 (en) 1988-06-14 1990-09-12 Tektronix, Inc. Apparatus and methods for controlling data flow processes by generated instruction sequences
CH675250A5 (ko) 1988-06-17 1990-09-14 Lonza Ag
DE3923671C2 (de) 1988-07-22 1998-02-19 Showa Denko Kk CBN-Schleifmittelkörner aus kubischem Bornitrid und ein Verfahren zu deren Herstellung
JP2601333B2 (ja) 1988-10-05 1997-04-16 三井金属鉱業株式会社 複合砥石およびその製造方法
US5011508A (en) 1988-10-14 1991-04-30 Minnesota Mining And Manufacturing Company Shelling-resistant abrasive grain, a method of making the same, and abrasive products
US5053369A (en) 1988-11-02 1991-10-01 Treibacher Chemische Werke Aktiengesellschaft Sintered microcrystalline ceramic material
US4964883A (en) 1988-12-12 1990-10-23 Minnesota Mining And Manufacturing Company Ceramic alumina abrasive grains seeded with iron oxide
US5098740A (en) 1989-12-13 1992-03-24 Norton Company Uniformly-coated ceramic particles
US5190568B1 (en) 1989-01-30 1996-03-12 Ultimate Abrasive Syst Inc Abrasive tool with contoured surface
US4925457B1 (en) 1989-01-30 1995-09-26 Ultimate Abrasive Syst Inc Method for making an abrasive tool
US5108963A (en) 1989-02-01 1992-04-28 Industrial Technology Research Institute Silicon carbide whisker reinforced alumina ceramic composites
US5032304A (en) 1989-02-02 1991-07-16 Sumitomo Special Metal Co. Ltd. Method of manufacturing transparent high density ceramic material
WO1990009969A1 (en) 1989-02-22 1990-09-07 Kabushiki Kaisha Kobe Seiko Sho Alumina ceramic, production thereof, and throwaway tip made therefrom
US5224970A (en) 1989-03-01 1993-07-06 Sumitomo Chemical Co., Ltd. Abrasive material
YU32490A (en) 1989-03-13 1991-10-31 Lonza Ag Hydrophobic layered grinding particles
JPH0320317A (ja) 1989-03-14 1991-01-29 Mitsui Toatsu Chem Inc 狭い粒度分布を持ったアミノ系樹脂微粒子の製造方法
US5094986A (en) 1989-04-11 1992-03-10 Hercules Incorporated Wear resistant ceramic with a high alpha-content silicon nitride phase
US5035723A (en) 1989-04-28 1991-07-30 Norton Company Bonded abrasive products containing sintered sol gel alumina abrasive filaments
US5103598A (en) 1989-04-28 1992-04-14 Norton Company Coated abrasive material containing abrasive filaments
US4970057A (en) 1989-04-28 1990-11-13 Norton Company Silicon nitride vacuum furnace process
US5244477A (en) 1989-04-28 1993-09-14 Norton Company Sintered sol gel alumina abrasive filaments
US5009676A (en) 1989-04-28 1991-04-23 Norton Company Sintered sol gel alumina abrasive filaments
US5014468A (en) 1989-05-05 1991-05-14 Norton Company Patterned coated abrasive for fine surface finishing
JPH078474B2 (ja) 1989-08-22 1995-02-01 瑞穂研磨砥石株式会社 高速研削用超硬砥粒砥石
US5431967A (en) 1989-09-05 1995-07-11 Board Of Regents, The University Of Texas System Selective laser sintering using nanocomposite materials
US4997461A (en) 1989-09-11 1991-03-05 Norton Company Nitrified bonded sol gel sintered aluminous abrasive bodies
EP0432907B1 (en) 1989-11-22 1995-05-17 Johnson Matthey Public Limited Company Improved paste compositions
JPH03194269A (ja) 1989-12-20 1991-08-23 Seiko Electronic Components Ltd 全金属ダイヤフラムバルブ
US5081082A (en) 1990-01-17 1992-01-14 Korean Institute Of Machinery And Metals Production of alumina ceramics reinforced with β'"-alumina
US5049166A (en) 1990-02-27 1991-09-17 Washington Mills Ceramics Corporation Light weight abrasive tumbling media and method of making same
CA2036247A1 (en) 1990-03-29 1991-09-30 Jeffrey L. Berger Nonwoven surface finishing articles reinforced with a polymer backing layer and method of making same
JP2779252B2 (ja) 1990-04-04 1998-07-23 株式会社ノリタケカンパニーリミテド 窒化けい素質焼結研摩材及びその製法
US5129919A (en) 1990-05-02 1992-07-14 Norton Company Bonded abrasive products containing sintered sol gel alumina abrasive filaments
US5085671A (en) 1990-05-02 1992-02-04 Minnesota Mining And Manufacturing Company Method of coating alumina particles with refractory material, abrasive particles made by the method and abrasive products containing the same
US5035724A (en) 1990-05-09 1991-07-30 Norton Company Sol-gel alumina shaped bodies
EP0531310B1 (en) 1990-05-25 1997-04-02 The Australian National University Abrasive compact of cubic boron nitride and method of making same
US7022179B1 (en) 1990-06-19 2006-04-04 Dry Carolyn M Self-repairing, reinforced matrix materials
JP3094300B2 (ja) 1990-06-29 2000-10-03 株式会社日立製作所 熱転写記録装置
US5139978A (en) 1990-07-16 1992-08-18 Minnesota Mining And Manufacturing Company Impregnation method for transformation of transition alumina to a alpha alumina
US5219806A (en) 1990-07-16 1993-06-15 Minnesota Mining And Manufacturing Company Alpha phase seeding of transition alumina using chromium oxide-based nucleating agents
CA2043261A1 (en) 1990-10-09 1992-04-10 Muni S. Ramakrishnan Dry grinding wheel
US5078753A (en) 1990-10-09 1992-01-07 Minnesota Mining And Manufacturing Company Coated abrasive containing erodable agglomerates
ATE170425T1 (de) 1990-10-12 1998-09-15 Union Carbide Chem Plastic Alkylenoxid-katalysator mit verbesserter aktivität und/oder stabilität
US5114438A (en) 1990-10-29 1992-05-19 Ppg Industries, Inc. Abrasive article
US5132984A (en) 1990-11-01 1992-07-21 Norton Company Segmented electric furnace
US5090968A (en) 1991-01-08 1992-02-25 Norton Company Process for the manufacture of filamentary abrasive particles
EP0529078B1 (en) 1991-02-04 1998-05-13 Seiko Epson Corporation Ink flow passage of hydrophilic properties
US5152917B1 (en) 1991-02-06 1998-01-13 Minnesota Mining & Mfg Structured abrasive article
US5236472A (en) 1991-02-22 1993-08-17 Minnesota Mining And Manufacturing Company Abrasive product having a binder comprising an aminoplast binder
US5120327A (en) 1991-03-05 1992-06-09 Diamant-Boart Stratabit (Usa) Inc. Cutting composite formed of cemented carbide substrate and diamond layer
US5131926A (en) 1991-03-15 1992-07-21 Norton Company Vitrified bonded finely milled sol gel aluminous bodies
US5178849A (en) 1991-03-22 1993-01-12 Norton Company Process for manufacturing alpha alumina from dispersible boehmite
US5221294A (en) 1991-05-22 1993-06-22 Norton Company Process of producing self-bonded ceramic abrasive wheels
US5160509A (en) 1991-05-22 1992-11-03 Norton Company Self-bonded ceramic abrasive wheels
US5641469A (en) 1991-05-28 1997-06-24 Norton Company Production of alpha alumina
US5817204A (en) 1991-06-10 1998-10-06 Ultimate Abrasive Systems, L.L.C. Method for making patterned abrasive material
US5273558A (en) 1991-08-30 1993-12-28 Minnesota Mining And Manufacturing Company Abrasive composition and articles incorporating same
US5203886A (en) 1991-08-12 1993-04-20 Norton Company High porosity vitrified bonded grinding wheels
US5316812A (en) 1991-12-20 1994-05-31 Minnesota Mining And Manufacturing Company Coated abrasive backing
BR9206806A (pt) 1991-12-20 1995-10-31 Minnesota Mining & Mfg Suporte abrasivo revestido e abrasivo revestido
US5219462A (en) 1992-01-13 1993-06-15 Minnesota Mining And Manufacturing Company Abrasive article having abrasive composite members positioned in recesses
US5437754A (en) 1992-01-13 1995-08-01 Minnesota Mining And Manufacturing Company Abrasive article having precise lateral spacing between abrasive composite members
US6258137B1 (en) 1992-02-05 2001-07-10 Saint-Gobain Industrial Ceramics, Inc. CMP products
AU650382B2 (en) 1992-02-05 1994-06-16 Norton Company Nano-sized alpha alumina particles
US5215552A (en) 1992-02-26 1993-06-01 Norton Company Sol-gel alumina abrasive grain
US5314513A (en) 1992-03-03 1994-05-24 Minnesota Mining And Manufacturing Company Abrasive product having a binder comprising a maleimide binder
US5282875A (en) 1992-03-18 1994-02-01 Cincinnati Milacron Inc. High density sol-gel alumina-based abrasive vitreous bonded grinding wheel
JPH05285833A (ja) 1992-04-14 1993-11-02 Nippon Steel Corp 研削ホイール用ドレッサ
KR100277320B1 (ko) 1992-06-03 2001-01-15 가나이 쓰도무 온라인 롤 연삭 장치를 구비한 압연기와 압연 방법 및 회전 숫돌
JPH05338370A (ja) 1992-06-10 1993-12-21 Dainippon Screen Mfg Co Ltd スクリーン印刷用メタルマスク版
JPH06773A (ja) 1992-06-22 1994-01-11 Fuji Photo Film Co Ltd 研磨テープの製造方法
CA2099734A1 (en) 1992-07-01 1994-01-02 Akihiko Takahashi Process for preparing polyhedral alpha-alumina particles
RU95105160A (ru) 1992-07-23 1997-01-10 Миннесота Майнинг энд Мануфакчуринг Компани (US) Способ приготовления абразивной частицы, абразивные изделия и изделия с абразивным покрытием
DE69318409T2 (de) 1992-07-23 1998-12-03 Minnesota Mining & Mfg Geformte schleifteilchen und verfahren zur ihrer herstellung
US5366523A (en) 1992-07-23 1994-11-22 Minnesota Mining And Manufacturing Company Abrasive article containing shaped abrasive particles
US5201916A (en) 1992-07-23 1993-04-13 Minnesota Mining And Manufacturing Company Shaped abrasive particles and method of making same
US5304331A (en) 1992-07-23 1994-04-19 Minnesota Mining And Manufacturing Company Method and apparatus for extruding bingham plastic-type materials
JP3160084B2 (ja) 1992-07-24 2001-04-23 株式会社ムラカミ スクリーン印刷用メタルマスクの製造方法
CA2138532A1 (en) 1992-07-28 1994-02-03 Ahmet Celikkaya Abrasive grain, method of making same and abrasive products
US5213591A (en) 1992-07-28 1993-05-25 Ahmet Celikkaya Abrasive grain, method of making same and abrasive products
US5312791A (en) 1992-08-21 1994-05-17 Saint Gobain/Norton Industrial Ceramics Corp. Process for the preparation of ceramic flakes, fibers, and grains from ceramic sols
KR960702420A (ko) 1992-09-25 1996-04-27 워렌 리처드 보비 알루미나 및 지르코니아를 함유하는 연마 입자(abrasive grain containing alumina and zirconia)
WO1994007969A1 (en) 1992-09-25 1994-04-14 Minnesota Mining And Manufacturing Company Abrasive grain including rare earth oxide therein
EP0614861B1 (en) 1992-10-01 2001-05-23 Nihon Cement Co., Ltd. Method of manufacturing titania and alumina ceramic sintered bodies
JPH06114739A (ja) 1992-10-09 1994-04-26 Mitsubishi Materials Corp 電着砥石
CA2102656A1 (en) 1992-12-14 1994-06-15 Dwight D. Erickson Abrasive grain comprising calcium oxide and/or strontium oxide
US5690707A (en) 1992-12-23 1997-11-25 Minnesota Mining & Manufacturing Company Abrasive grain comprising manganese oxide
US5435816A (en) 1993-01-14 1995-07-25 Minnesota Mining And Manufacturing Company Method of making an abrasive article
CA2114571A1 (en) 1993-02-04 1994-08-05 Franciscus Van Dijen Silicon carbide sintered abrasive grain and process for producing same
US5277702A (en) 1993-03-08 1994-01-11 St. Gobain/Norton Industrial Ceramics Corp. Plately alumina
CA2115889A1 (en) 1993-03-18 1994-09-19 David E. Broberg Coated abrasive article having diluent particles and shaped abrasive particles
CH685051A5 (de) 1993-04-15 1995-03-15 Lonza Ag Siliciumnitrid-Sinterschleifkorn und Verfahren zu dessen Herstellung.
US5441549A (en) 1993-04-19 1995-08-15 Minnesota Mining And Manufacturing Company Abrasive articles comprising a grinding aid dispersed in a polymeric blend binder
JPH08511733A (ja) 1993-06-17 1996-12-10 ミネソタ マイニング アンド マニュファクチャリング カンパニー パターン化された研磨用製品並びに製法及び使用法
US5681612A (en) 1993-06-17 1997-10-28 Minnesota Mining And Manufacturing Company Coated abrasives and methods of preparation
US5549962A (en) 1993-06-30 1996-08-27 Minnesota Mining And Manufacturing Company Precisely shaped particles and method of making the same
WO1995003370A1 (en) 1993-07-22 1995-02-02 Saint-Gobain/Norton Industrial Ceramics Corporation Silicon carbide grain
US5300130A (en) 1993-07-26 1994-04-05 Saint Gobain/Norton Industrial Ceramics Corp. Polishing material
RU2138461C1 (ru) 1993-07-27 1999-09-27 Сумитомо Кемикал Компани, Лимитед Алюмооксидная композиция (варианты) и способ получения алюмооксидной керамики
EP0720520B1 (en) 1993-09-13 1999-07-28 Minnesota Mining And Manufacturing Company Abrasive article, method of manufacture of same, method of using same for finishing, and a production tool
JP3194269B2 (ja) 1993-09-17 2001-07-30 旭化成株式会社 研磨用モノフィラメント
US5470806A (en) 1993-09-20 1995-11-28 Krstic; Vladimir D. Making of sintered silicon carbide bodies
US5429648A (en) 1993-09-23 1995-07-04 Norton Company Process for inducing porosity in an abrasive article
US5453106A (en) 1993-10-27 1995-09-26 Roberts; Ellis E. Oriented particles in hard surfaces
US5454844A (en) 1993-10-29 1995-10-03 Minnesota Mining And Manufacturing Company Abrasive article, a process of making same, and a method of using same to finish a workpiece surface
DE4339031C1 (de) 1993-11-15 1995-01-12 Treibacher Chemische Werke Ag Verfahren und Vorrichtung zur Herstellung eines Schleifmittels auf Basis Korund
US5372620A (en) 1993-12-13 1994-12-13 Saint Gobain/Norton Industrial Ceramics Corporation Modified sol-gel alumina abrasive filaments
US6136288A (en) 1993-12-16 2000-10-24 Norton Company Firing fines
US5409645A (en) 1993-12-20 1995-04-25 Saint Gobain/Norton Industrial Ceramics Corp. Molding shaped articles
US5376602A (en) 1993-12-23 1994-12-27 The Dow Chemical Company Low temperature, pressureless sintering of silicon nitride
JPH0829975B2 (ja) 1993-12-24 1996-03-27 工業技術院長 アルミナ基セラミックス焼結体
US5489204A (en) 1993-12-28 1996-02-06 Minnesota Mining And Manufacturing Company Apparatus for sintering abrasive grain
CA2177701A1 (en) 1993-12-28 1995-07-06 Stanley L. Conwell Alpha alumina-based abrasive grain
WO1995018192A1 (en) 1993-12-28 1995-07-06 Minnesota Mining And Manufacturing Company Alpha alumina-based abrasive grain having an as sintered outer surface
US5443603A (en) 1994-01-11 1995-08-22 Washington Mills Ceramics Corporation Light weight ceramic abrasive media
US5505747A (en) 1994-01-13 1996-04-09 Minnesota Mining And Manufacturing Company Method of making an abrasive article
JP2750499B2 (ja) 1994-01-25 1998-05-13 オークマ株式会社 Nc研削盤における超砥粒砥石のドレッシング確認方法
JPH09508324A (ja) 1994-01-28 1997-08-26 ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー 侵食性凝集体を含有する被覆研磨材
DE69504875T2 (de) 1994-02-14 1999-03-11 Toyota Motor Co Ltd Verfahren zur Herstellung von Aluminiumboratwhiskern mit einer verbesserten Oberfläche auf der Basis von Gamma-Aluminiumoxyd
WO1995022438A1 (en) 1994-02-22 1995-08-24 Minnesota Mining And Manufacturing Company Method for making an endless coated abrasive article and the product thereof
JPH07299708A (ja) 1994-04-26 1995-11-14 Sumitomo Electric Ind Ltd 窒化ケイ素系セラミックス部品の製造方法
US5486496A (en) 1994-06-10 1996-01-23 Alumina Ceramics Co. (Aci) Graphite-loaded silicon carbide
US5567251A (en) 1994-08-01 1996-10-22 Amorphous Alloys Corp. Amorphous metal/reinforcement composite material
US5656217A (en) 1994-09-13 1997-08-12 Advanced Composite Materials Corporation Pressureless sintering of whisker reinforced alumina composites
US5759481A (en) 1994-10-18 1998-06-02 Saint-Gobain/Norton Industrial Ceramics Corp. Silicon nitride having a high tensile strength
US6054093A (en) 1994-10-19 2000-04-25 Saint Gobain-Norton Industrial Ceramics Corporation Screen printing shaped articles
US5525100A (en) 1994-11-09 1996-06-11 Norton Company Abrasive products
US5527369A (en) 1994-11-17 1996-06-18 Saint-Gobain/Norton Industrial Ceramics Corp. Modified sol-gel alumina
US5578095A (en) 1994-11-21 1996-11-26 Minnesota Mining And Manufacturing Company Coated abrasive article
KR19980702613A (ko) 1995-03-02 1998-08-05 워렌리차드보비 구조적 연마재를 이용하여 기판을 텍스쳐링하는 방법
JP2671945B2 (ja) 1995-03-03 1997-11-05 科学技術庁無機材質研究所長 超塑性炭化ケイ素焼結体とその製造方法
CN1179825A (zh) * 1995-03-23 1998-04-22 麦斯韦尔技术股份有限公司 电热化学火药点火器
US5725162A (en) 1995-04-05 1998-03-10 Saint Gobain/Norton Industrial Ceramics Corporation Firing sol-gel alumina particles
US5516347A (en) 1995-04-05 1996-05-14 Saint-Gobain/Norton Industrial Ceramics Corp. Modified alpha alumina particles
US5736619A (en) 1995-04-21 1998-04-07 Ameron International Corporation Phenolic resin compositions with improved impact resistance
US5567214A (en) 1995-05-03 1996-10-22 Saint-Gobain/Norton Industrial Ceramics Corporation Process for production of alumina/zirconia materials
US5582625A (en) 1995-06-01 1996-12-10 Norton Company Curl-resistant coated abrasives
US5571297A (en) 1995-06-06 1996-11-05 Norton Company Dual-cure binder system
KR19990022384A (ko) 1995-06-07 1999-03-25 볼스트 스테판 엘. 직물로 짜여진 절단면을 가진 절단 공구
US5645619A (en) 1995-06-20 1997-07-08 Minnesota Mining And Manufacturing Company Method of making alpha alumina-based abrasive grain containing silica and iron oxide
US5611829A (en) 1995-06-20 1997-03-18 Minnesota Mining And Manufacturing Company Alpha alumina-based abrasive grain containing silica and iron oxide
WO1997000836A1 (en) 1995-06-20 1997-01-09 Minnesota Mining And Manufacturing Company Alpha alumina-based abrasive grain containing silica and iron oxide
US5593468A (en) 1995-07-26 1997-01-14 Saint-Gobain/Norton Industrial Ceramics Corporation Sol-gel alumina abrasives
US5578096A (en) 1995-08-10 1996-11-26 Minnesota Mining And Manufacturing Company Method for making a spliceless coated abrasive belt and the product thereof
EP0846041B1 (en) * 1995-08-11 2003-04-23 Minnesota Mining And Manufacturing Company Method of making a coated abrasive article having multiple abrasive natures
US5576409B1 (en) 1995-08-25 1998-09-22 Ici Plc Internal mold release compositions
US5958794A (en) 1995-09-22 1999-09-28 Minnesota Mining And Manufacturing Company Method of modifying an exposed surface of a semiconductor wafer
US5683844A (en) 1995-09-28 1997-11-04 Xerox Corporation Fibrillated carrier compositions and processes for making and using
US5975987A (en) 1995-10-05 1999-11-02 3M Innovative Properties Company Method and apparatus for knurling a workpiece, method of molding an article with such workpiece, and such molded article
US5702811A (en) 1995-10-20 1997-12-30 Ho; Kwok-Lun High performance abrasive articles containing abrasive grains and nonabrasive composite grains
JP2686248B2 (ja) 1995-11-16 1997-12-08 住友電気工業株式会社 Si3N4セラミックスとその製造用Si基組成物及びこれらの製造方法
CA2189516A1 (en) 1995-11-06 1997-05-07 Timothy Edward Easler Sintering alpha silicon carbide powder with multiple sintering aids
WO1997020011A1 (en) 1995-11-22 1997-06-05 Minnesota Mining And Manufacturing Company Method of making alumina abrasive grain having a metal carbide or metal nitride coating thereon
US5651925A (en) 1995-11-29 1997-07-29 Saint-Gobain/Norton Industrial Ceramics Corporation Process for quenching molten ceramic material
US5578222A (en) 1995-12-20 1996-11-26 Saint-Gobain/Norton Industrial Ceramics Corp. Reclamation of abrasive grain
US5669941A (en) 1996-01-05 1997-09-23 Minnesota Mining And Manufacturing Company Coated abrasive article
US5855997A (en) 1996-02-14 1999-01-05 The Penn State Research Foundation Laminated ceramic cutting tool
US5876793A (en) 1996-02-21 1999-03-02 Ultramet Fine powders and method for manufacturing
JP2957492B2 (ja) 1996-03-26 1999-10-04 合資会社亀井鉄工所 ワーク表面の研削方法
US6083622A (en) 1996-03-27 2000-07-04 Saint-Gobain Industrial Ceramics, Inc. Firing sol-gel alumina particles
US5667542A (en) 1996-05-08 1997-09-16 Minnesota Mining And Manufacturing Company Antiloading components for abrasive articles
US5810587A (en) 1996-05-13 1998-09-22 Danville Engineering Friable abrasive media
US5738697A (en) 1996-07-26 1998-04-14 Norton Company High permeability grinding wheels
US5738696A (en) 1996-07-26 1998-04-14 Norton Company Method for making high permeability grinding wheels
US6080215A (en) 1996-08-12 2000-06-27 3M Innovative Properties Company Abrasive article and method of making such article
US6475253B2 (en) 1996-09-11 2002-11-05 3M Innovative Properties Company Abrasive article and method of making
US5779743A (en) 1996-09-18 1998-07-14 Minnesota Mining And Manufacturing Company Method for making abrasive grain and abrasive articles
US6206942B1 (en) 1997-01-09 2001-03-27 Minnesota Mining & Manufacturing Company Method for making abrasive grain using impregnation, and abrasive articles
US5776214A (en) 1996-09-18 1998-07-07 Minnesota Mining And Manufacturing Company Method for making abrasive grain and abrasive articles
KR20000036182A (ko) 1996-09-18 2000-06-26 스프레이그 로버트 월터 함침법을 이용한 연마 입자의 제조 방법 및 연마 물품
US5893935A (en) 1997-01-09 1999-04-13 Minnesota Mining And Manufacturing Company Method for making abrasive grain using impregnation, and abrasive articles
EP0870578A4 (en) 1996-09-30 2002-03-13 Osaka Diamond Ind SUSPERABRASIVE HIGHLY ABRASIVE TOOL AND METHOD FOR THE PRODUCTION THEREOF
JPH10113875A (ja) 1996-10-08 1998-05-06 Noritake Co Ltd 超砥粒研削砥石
US5919549A (en) 1996-11-27 1999-07-06 Minnesota Mining And Manufacturing Company Abrasive articles and method for the manufacture of same
US5902647A (en) 1996-12-03 1999-05-11 General Electric Company Method for protecting passage holes in a metal-based substrate from becoming obstructed, and related compositions
US5863306A (en) 1997-01-07 1999-01-26 Norton Company Production of patterned abrasive surfaces
US7124753B2 (en) * 1997-04-04 2006-10-24 Chien-Min Sung Brazed diamond tools and methods for making the same
US6524681B1 (en) 1997-04-08 2003-02-25 3M Innovative Properties Company Patterned surface friction materials, clutch plate members and methods of making and using same
US6537140B1 (en) * 1997-05-14 2003-03-25 Saint-Gobain Abrasives Technology Company Patterned abrasive tools
JPH10315142A (ja) 1997-05-19 1998-12-02 Japan Vilene Co Ltd 研磨シート
JPH10330734A (ja) 1997-06-03 1998-12-15 Noritake Co Ltd 炭化珪素複合窒化珪素質研磨材及びその製法
US5885311A (en) 1997-06-05 1999-03-23 Norton Company Abrasive products
US5908477A (en) 1997-06-24 1999-06-01 Minnesota Mining & Manufacturing Company Abrasive articles including an antiloading composition
US6024824A (en) 1997-07-17 2000-02-15 3M Innovative Properties Company Method of making articles in sheet form, particularly abrasive articles
US5876470A (en) 1997-08-01 1999-03-02 Minnesota Mining And Manufacturing Company Abrasive articles comprising a blend of abrasive particles
US5946991A (en) 1997-09-03 1999-09-07 3M Innovative Properties Company Method for knurling a workpiece
US5942015A (en) 1997-09-16 1999-08-24 3M Innovative Properties Company Abrasive slurries and abrasive articles comprising multiple abrasive particle grades
US6401795B1 (en) 1997-10-28 2002-06-11 Sandia Corporation Method for freeforming objects with low-binder slurry
US6027326A (en) 1997-10-28 2000-02-22 Sandia Corporation Freeforming objects with low-binder slurry
US6039775A (en) 1997-11-03 2000-03-21 3M Innovative Properties Company Abrasive article containing a grinding aid and method of making the same
US6696258B1 (en) 1998-01-20 2004-02-24 Drexel University Mesoporous materials and methods of making the same
AU7701498A (en) 1998-01-28 1999-08-16 Minnesota Mining And Manufacturing Company Method for making abrasive grain using impregnation and abrasive articles
US6358133B1 (en) 1998-02-06 2002-03-19 3M Innovative Properties Company Grinding wheel
US5989301A (en) 1998-02-18 1999-11-23 Saint-Gobain Industrial Ceramics, Inc. Optical polishing formulation
US5997597A (en) 1998-02-24 1999-12-07 Norton Company Abrasive tool with knurled surface
EP0938923B1 (en) 1998-02-27 2005-03-16 Sandvik Aktiebolag Method and device for discharging free-flowing material in drop form onto a conveyor belt
US6080216A (en) 1998-04-22 2000-06-27 3M Innovative Properties Company Layered alumina-based abrasive grit, abrasive products, and methods
US6228134B1 (en) 1998-04-22 2001-05-08 3M Innovative Properties Company Extruded alumina-based abrasive grit, abrasive products, and methods
US6019805A (en) 1998-05-01 2000-02-01 Norton Company Abrasive filaments in coated abrasives
US6016660A (en) 1998-05-14 2000-01-25 Saint-Gobain Industrial Ceramics, Inc. Cryo-sedimentation process
US6053956A (en) 1998-05-19 2000-04-25 3M Innovative Properties Company Method for making abrasive grain using impregnation and abrasive articles
US6261682B1 (en) 1998-06-30 2001-07-17 3M Innovative Properties Abrasive articles including an antiloading composition
JP2000091280A (ja) 1998-09-16 2000-03-31 Toshiba Corp 半導体研磨装置及び半導体基板の研磨方法
US6283997B1 (en) 1998-11-13 2001-09-04 The Trustees Of Princeton University Controlled architecture ceramic composites by stereolithography
US6179887B1 (en) 1999-02-17 2001-01-30 3M Innovative Properties Company Method for making an abrasive article and abrasive articles thereof
JP2000336344A (ja) 1999-03-23 2000-12-05 Seimi Chem Co Ltd 研磨剤
US6331343B1 (en) 1999-05-07 2001-12-18 3M Innovative Properties Company Films having a fibrillated surface and method of making
DE19925588A1 (de) 1999-06-04 2000-12-07 Deutsch Zentr Luft & Raumfahrt Faden zur Verbindung von Fasern eines Faserhalbzeuges sowie Faserhalbzeug, und Verfahren zur Herstellung von Faserverbundwerkstoffen
JP4456691B2 (ja) 1999-06-09 2010-04-28 旭ダイヤモンド工業株式会社 コンディショナの製造方法
US6238450B1 (en) 1999-06-16 2001-05-29 Saint-Gobain Industrial Ceramics, Inc. Ceria powder
US6391812B1 (en) 1999-06-23 2002-05-21 Ngk Insulators, Ltd. Silicon nitride sintered body and method of producing the same
JP2003520283A (ja) 1999-07-07 2003-07-02 キャボット マイクロエレクトロニクス コーポレイション シラン改質砥粒を含有するcmp組成物
US6319108B1 (en) 1999-07-09 2001-11-20 3M Innovative Properties Company Metal bond abrasive article comprising porous ceramic abrasive composites and method of using same to abrade a workpiece
DE19933194A1 (de) 1999-07-15 2001-01-18 Kempten Elektroschmelz Gmbh Flüssigphasengesinterte SiC-Formkörper mit verbesserter Bruchzähigkeit sowie hohem elektrischen Widerstand und Verfahren zu ihrer Herstellung
TW550141B (en) 1999-07-29 2003-09-01 Saint Gobain Abrasives Inc Depressed center abrasive wheel assembly and abrasive wheel assembly
US6110241A (en) 1999-08-06 2000-08-29 Saint-Gobain Industrial Ceramics, Inc. Abrasive grain with improved projectability
FR2797638B1 (fr) 1999-08-20 2001-09-21 Pem Abrasifs Refractaires Grains abrasifs pour meules, a capacite d'ancrage amelioree
US6258141B1 (en) 1999-08-20 2001-07-10 Saint-Gobain Industrial Ceramics, Inc. Sol-gel alumina abrasive grain
US6277161B1 (en) 1999-09-28 2001-08-21 3M Innovative Properties Company Abrasive grain, abrasive articles, and methods of making and using the same
US6287353B1 (en) 1999-09-28 2001-09-11 3M Innovative Properties Company Abrasive grain, abrasive articles, and methods of making and using the same
JP3376334B2 (ja) 1999-11-19 2003-02-10 株式会社 ヤマシタワークス 研磨材および研磨材を用いた研磨方法
JP2001162541A (ja) 1999-12-13 2001-06-19 Noritake Co Ltd プランジ研削用回転砥石
JP3694627B2 (ja) 1999-12-28 2005-09-14 キンセイマテック株式会社 薄片状ベーマイト粒子の製造方法
US6096107A (en) 2000-01-03 2000-08-01 Norton Company Superabrasive products
US6596041B2 (en) 2000-02-02 2003-07-22 3M Innovative Properties Company Fused AL2O3-MgO-rare earth oxide eutectic abrasive particles, abrasive articles, and methods of making and using the same
JP4536943B2 (ja) 2000-03-22 2010-09-01 日本碍子株式会社 粉体成形体の製造方法
DE10019184A1 (de) 2000-04-17 2001-10-25 Treibacher Schleifmittel Gmbh Formkörper
US6413286B1 (en) 2000-05-03 2002-07-02 Saint-Gobain Abrasives Technology Company Production tool process
DE60112740T2 (de) 2000-05-09 2006-06-01 3M Innovative Properties Co., Saint Paul Poröser schleifgegenstand mit keramischen schleifcomposites, verfahren zur herstellung und verfahren zur verwendung
US6468451B1 (en) 2000-06-23 2002-10-22 3M Innovative Properties Company Method of making a fibrillated article
JP3563017B2 (ja) 2000-07-19 2004-09-08 ロデール・ニッタ株式会社 研磨組成物、研磨組成物の製造方法及びポリシング方法
US6583080B1 (en) 2000-07-19 2003-06-24 3M Innovative Properties Company Fused aluminum oxycarbide/nitride-Al2O3·rare earth oxide eutectic materials
JP2002057130A (ja) * 2000-08-14 2002-02-22 Three M Innovative Properties Co Cmp用研磨パッド
US6776699B2 (en) 2000-08-14 2004-08-17 3M Innovative Properties Company Abrasive pad for CMP
US6579819B2 (en) 2000-08-29 2003-06-17 National Institute For Research In Inorganic Materials Silicon nitride sintered products and processes for their production
AU2001294927A1 (en) 2000-09-29 2002-04-08 Trexel, Inc. Fiber-filler molded articles
ATE350426T1 (de) 2000-10-06 2007-01-15 3M Innovative Properties Co Keramische aggregatteilchen
JP2004511646A (ja) 2000-10-16 2004-04-15 スリーエム イノベイティブ プロパティズ カンパニー 凝集粒子を製造する方法
US6652361B1 (en) 2000-10-26 2003-11-25 Ronald Gash Abrasives distribution method
EP1201741A1 (en) 2000-10-31 2002-05-02 The Procter & Gamble Company Detergent compositions
US20020090901A1 (en) 2000-11-03 2002-07-11 3M Innovative Properties Company Flexible abrasive product and method of making and using the same
US6645624B2 (en) 2000-11-10 2003-11-11 3M Innovative Properties Company Composite abrasive particles and method of manufacture
WO2002038280A2 (en) 2000-11-10 2002-05-16 Therics, Inc. A wetting-resistant nozzle for dispensing small volumes of liquid and a method for manufacturing a wetting-resistant nozzle
US8256091B2 (en) 2000-11-17 2012-09-04 Duescher Wayne O Equal sized spherical beads
US8062098B2 (en) 2000-11-17 2011-11-22 Duescher Wayne O High speed flat lapping platen
US7632434B2 (en) 2000-11-17 2009-12-15 Wayne O. Duescher Abrasive agglomerate coated raised island articles
EP1207015A3 (en) 2000-11-17 2003-07-30 Keltech Engineering, Inc. Raised island abrasive, method of use and lapping apparatus
US8545583B2 (en) 2000-11-17 2013-10-01 Wayne O. Duescher Method of forming a flexible abrasive sheet article
JP2002210659A (ja) 2000-12-22 2002-07-30 Chugoku Sarin Kigyo Kofun Yugenkoshi グリッド状ダイヤモンド配列の化学的機械的平坦化技術パッド仕上げ用具
CA2433059C (en) 2001-01-30 2009-05-12 The Procter & Gamble Company Coating compositions for modifying surfaces
US6669745B2 (en) 2001-02-21 2003-12-30 3M Innovative Properties Company Abrasive article with optimally oriented abrasive particles and method of making the same
US6605128B2 (en) 2001-03-20 2003-08-12 3M Innovative Properties Company Abrasive article having projections attached to a major surface thereof
US20030022961A1 (en) 2001-03-23 2003-01-30 Satoshi Kusaka Friction material and method of mix-fibrillating fibers
WO2002094736A1 (en) 2001-05-21 2002-11-28 Showa Denko K.K. Method for producing cubic boron nitride abrasive grains
US6863596B2 (en) 2001-05-25 2005-03-08 3M Innovative Properties Company Abrasive article
US20020174935A1 (en) 2001-05-25 2002-11-28 Motorola, Inc. Methods for manufacturing patterned ceramic green-sheets and multilayered ceramic packages
GB2375725A (en) 2001-05-26 2002-11-27 Siemens Ag Blasting metallic surfaces
US6451076B1 (en) 2001-06-21 2002-09-17 Saint-Gobain Abrasives Technology Company Engineered abrasives
US6599177B2 (en) 2001-06-25 2003-07-29 Saint-Gobain Abrasives Technology Company Coated abrasives with indicia
US20030022783A1 (en) 2001-07-30 2003-01-30 Dichiara Robert A. Oxide based ceramic matrix composites
BR0211579A (pt) 2001-08-02 2004-07-13 3M Innovative Properties Co Vidro-cerâmica, contas, pluralidade de partìculas abrasivas, artigo abrasivo, e, métodos para abradar uma superfìcie, para fabricar vidro-cerâmica, para fabricar um artigo de vidro-cerâmica e para fabricar partìculas abrasivas
BR0211578A (pt) 2001-08-02 2006-04-04 3M Innovative Properties Co vidro, cerámica, métodos para a fabricação de um vidro, de uma cerámica, e de um artigo compreendendo vidro, vidro-cerámica, métodos para a fabricação de um vidro-cerámica, e de um artigo de vidro-cerámica, partìcula abrasiva, método para a fabricação de partìculas abrasivas, pluralidade de partìculas abrasivas, artigo abrasivo, e, método para desbastar uma superfìcie
JP5148807B2 (ja) 2001-08-02 2013-02-20 スリーエム イノベイティブ プロパティズ カンパニー Al2O3−希土類酸化物−ZrO2/HfO2材料およびその製造方法ならびに使用方法
JP2003049158A (ja) 2001-08-09 2003-02-21 Hitachi Maxell Ltd 研磨粒子および研磨体
WO2003014251A1 (en) 2001-08-09 2003-02-20 Hitachi Maxell, Ltd. Non-magnetic particles having a plate shape and method for production thereof, abrasive material, polishing article and abrasive fluid comprising such particles
US6762140B2 (en) 2001-08-20 2004-07-13 Saint-Gobain Ceramics & Plastics, Inc. Silicon carbide ceramic composition and method of making
NL1018906C2 (nl) 2001-09-07 2003-03-11 Jense Systemen B V Laser scanner.
US6593699B2 (en) 2001-11-07 2003-07-15 Axcelis Technologies, Inc. Method for molding a polymer surface that reduces particle generation and surface adhesion forces while maintaining a high heat transfer coefficient
WO2003043954A1 (en) 2001-11-19 2003-05-30 Stanton Advanced Ceramics Llc Thermal shock resistant ceramic composites
US6685755B2 (en) 2001-11-21 2004-02-03 Saint-Gobain Abrasives Technology Company Porous abrasive tool and method for making the same
US6706319B2 (en) 2001-12-05 2004-03-16 Siemens Westinghouse Power Corporation Mixed powder deposition of components for wear, erosion and abrasion resistant applications
US6878456B2 (en) 2001-12-28 2005-04-12 3M Innovative Properties Co. Polycrystalline translucent alumina-based ceramic material, uses, and methods
US6949128B2 (en) 2001-12-28 2005-09-27 3M Innovative Properties Company Method of making an abrasive product
US6758734B2 (en) * 2002-03-18 2004-07-06 3M Innovative Properties Company Coated abrasive article
US6750173B2 (en) 2002-04-08 2004-06-15 Scientific Design Company, Inc. Ethylene oxide catalyst
US6949267B2 (en) 2002-04-08 2005-09-27 Engelhard Corporation Combinatorial synthesis
US6833186B2 (en) 2002-04-10 2004-12-21 Ppg Industries Ohio, Inc. Mineral-filled coatings having enhanced abrasion resistance and wear clarity and methods for using the same
AU2003238888A1 (en) 2002-06-05 2003-12-22 Arizona Board Of Regents Abrasive particles to clean semiconductor wafers during chemical mechanical planarization
US6811579B1 (en) 2002-06-14 2004-11-02 Diamond Innovations, Inc. Abrasive tools with precisely controlled abrasive array and method of fabrication
US7044989B2 (en) 2002-07-26 2006-05-16 3M Innovative Properties Company Abrasive product, method of making and using the same, and apparatus for making the same
US6833014B2 (en) 2002-07-26 2004-12-21 3M Innovative Properties Company Abrasive product, method of making and using the same, and apparatus for making the same
US7297170B2 (en) 2002-07-26 2007-11-20 3M Innovative Properties Company Method of using abrasive product
US8056370B2 (en) 2002-08-02 2011-11-15 3M Innovative Properties Company Method of making amorphous and ceramics via melt spinning
US20040115477A1 (en) 2002-12-12 2004-06-17 Bruce Nesbitt Coating reinforcing underlayment and method of manufacturing same
FR2848889B1 (fr) 2002-12-23 2005-10-21 Pem Abrasifs Refractaires Grains abrasifs a base d'oxynitrure d'aluminium et de zirconium
JP2004209624A (ja) 2003-01-07 2004-07-29 Akimichi Koide 砥粒含有繊維の製造並びに製造方法
US6821196B2 (en) 2003-01-21 2004-11-23 L.R. Oliver & Co., Inc. Pyramidal molded tooth structure
US7811496B2 (en) 2003-02-05 2010-10-12 3M Innovative Properties Company Methods of making ceramic particles
US20040148868A1 (en) 2003-02-05 2004-08-05 3M Innovative Properties Company Methods of making ceramics
WO2005021147A2 (en) 2003-02-06 2005-03-10 William Marsh Rice University High strength polycrystalline ceramic spheres
US7070908B2 (en) 2003-04-14 2006-07-04 Agilent Technologies, Inc. Feature formation in thick-film inks
US6802878B1 (en) 2003-04-17 2004-10-12 3M Innovative Properties Company Abrasive particles, abrasive articles, and methods of making and using the same
US20040220627A1 (en) 2003-04-30 2004-11-04 Crespi Ann M. Complex-shaped ceramic capacitors for implantable cardioverter defibrillators and method of manufacture
JP2005026593A (ja) 2003-05-08 2005-01-27 Ngk Insulators Ltd セラミック製品、耐蝕性部材およびセラミック製品の製造方法
FR2857660B1 (fr) 2003-07-18 2006-03-03 Snecma Propulsion Solide Structure composite thermostructurale a gradient de composition et son procede de fabrication
US6843815B1 (en) 2003-09-04 2005-01-18 3M Innovative Properties Company Coated abrasive articles and method of abrading
US7141522B2 (en) 2003-09-18 2006-11-28 3M Innovative Properties Company Ceramics comprising Al2O3, Y2O3, ZrO2 and/or HfO2, and Nb2O5 and/or Ta2O5 and methods of making the same
US7300479B2 (en) 2003-09-23 2007-11-27 3M Innovative Properties Company Compositions for abrasive articles
US20050064805A1 (en) 2003-09-23 2005-03-24 3M Innovative Properties Company Structured abrasive article
US7267700B2 (en) 2003-09-23 2007-09-11 3M Innovative Properties Company Structured abrasive with parabolic sides
US20050060941A1 (en) 2003-09-23 2005-03-24 3M Innovative Properties Company Abrasive article and methods of making the same
US20050076577A1 (en) 2003-10-10 2005-04-14 Hall Richard W.J. Abrasive tools made with a self-avoiding abrasive grain array
US7312274B2 (en) 2003-11-24 2007-12-25 General Electric Company Composition and method for use with ceramic matrix composite T-sections
JP4186810B2 (ja) 2003-12-08 2008-11-26 トヨタ自動車株式会社 燃料電池の製造方法および燃料電池
US20050132655A1 (en) 2003-12-18 2005-06-23 3M Innovative Properties Company Method of making abrasive particles
WO2005068099A1 (en) 2003-12-23 2005-07-28 Diamond Innovations Inc. Grinding wheel for roll grinding application and method of roll grinding thereof
WO2005080624A1 (en) 2004-02-13 2005-09-01 Nv Bekaert Sa Steel wire with metal layer and roughnesses
US6888360B1 (en) 2004-02-20 2005-05-03 Research In Motion Limited Surface mount technology evaluation board having varied board pad characteristics
JP4311247B2 (ja) 2004-03-19 2009-08-12 日立電線株式会社 研磨用砥粒、研磨剤、研磨液の製造方法
US7674706B2 (en) 2004-04-13 2010-03-09 Fei Company System for modifying small structures using localized charge transfer mechanism to remove or deposit material
US7393371B2 (en) 2004-04-13 2008-07-01 3M Innovative Properties Company Nonwoven abrasive articles and methods
US7297402B2 (en) 2004-04-15 2007-11-20 Shell Oil Company Shaped particle having an asymmetrical cross sectional geometry
BRPI0510534A (pt) 2004-05-03 2007-10-30 3M Innovative Properties Co sapata para suportar uma fita abrasiva que tem uma face abrasiva e uma face traseira oposta, aparelho para promover a abrasão de uma superfìcie periférica externa de uma parede de empuxo, e, método para promover a abrasão de uma face de uma peça de trabalho
EP1758713B1 (en) 2004-05-17 2009-04-01 Anthony David Pollasky Abrasive material and method of forming same
US20050255801A1 (en) 2004-05-17 2005-11-17 Pollasky Anthony D Abrasive material and method of forming same
US7581906B2 (en) 2004-05-19 2009-09-01 Tdy Industries, Inc. Al2O3 ceramic tools with diffusion bonding enhanced layer
US20050266221A1 (en) 2004-05-28 2005-12-01 Panolam Industries International, Inc. Fiber-reinforced decorative laminate
US7794557B2 (en) 2004-06-15 2010-09-14 Inframat Corporation Tape casting method and tape cast materials
US7560062B2 (en) 2004-07-12 2009-07-14 Aspen Aerogels, Inc. High strength, nanoporous bodies reinforced with fibrous materials
EP2112968A4 (en) 2004-08-24 2011-05-25 Albright & Wilson Australia CERAMIC AND METALLIC COMPONENTS AND METHOD FOR THE PRODUCTION THEREOF OF FLEXIBLE LAYERED MATERIALS
GB2417921A (en) 2004-09-10 2006-03-15 Dytech Corp Ltd A method of fabricating a catalyst carrier
CA2564741C (en) * 2004-09-23 2013-05-14 Element Six (Pty) Ltd Polycrystalline abrasive materials and method of manufacture
JP2006130586A (ja) 2004-11-04 2006-05-25 Mitsubishi Materials Corp Cmpコンディショナおよびその製造方法
JP4471816B2 (ja) 2004-11-09 2010-06-02 株式会社ノリタケスーパーアブレーシブ ワイヤソーの製造方法
JP4901184B2 (ja) 2004-11-11 2012-03-21 株式会社不二製作所 研磨材及び該研磨材の製造方法,並びに前記研磨材を用いたブラスト加工方法
US20060118989A1 (en) 2004-12-07 2006-06-08 3M Innovative Properties Company Method of making composite material
US7666475B2 (en) 2004-12-14 2010-02-23 Siemens Energy, Inc. Method for forming interphase layers in ceramic matrix composites
US7169029B2 (en) 2004-12-16 2007-01-30 3M Innovative Properties Company Resilient structured sanding article
JP2006192540A (ja) 2005-01-14 2006-07-27 Tmp Co Ltd 液晶カラーフィルター用研磨フィルム
EP1900317A3 (en) 2005-02-07 2009-03-11 The Procter and Gamble Company Abrasive wipe for treating a surface
US7524345B2 (en) 2005-02-22 2009-04-28 Saint-Gobain Abrasives, Inc. Rapid tooling system and methods for manufacturing abrasive articles
US7875091B2 (en) 2005-02-22 2011-01-25 Saint-Gobain Abrasives, Inc. Rapid tooling system and methods for manufacturing abrasive articles
US7867302B2 (en) 2005-02-22 2011-01-11 Saint-Gobain Abrasives, Inc. Rapid tooling system and methods for manufacturing abrasive articles
WO2006115106A1 (ja) 2005-04-24 2006-11-02 Produce Co., Ltd. スクリーン印刷装置
JP4917278B2 (ja) 2005-06-17 2012-04-18 信越半導体株式会社 スクリーン印刷版およびスクリーン印刷装置
BRPI0614000B1 (pt) * 2005-06-29 2017-11-21 Saint-Gobain Abrasives, Inc. Abrasive product, reticulated resin, curable composition, abrasive product preparation process and abrasion process
US7906057B2 (en) 2005-07-14 2011-03-15 3M Innovative Properties Company Nanostructured article and method of making the same
DE102005033392B4 (de) 2005-07-16 2008-08-14 Center For Abrasives And Refractories Research & Development C.A.R.R.D. Gmbh Nanokristalline Sinterkörper auf Basis von Alpha-Aluminiumoxyd, Verfahren zu Herstellung sowie ihre Verwendung
US20070020457A1 (en) 2005-07-21 2007-01-25 3M Innovative Properties Company Composite particle comprising an abrasive grit
US7556558B2 (en) 2005-09-27 2009-07-07 3M Innovative Properties Company Shape controlled abrasive article and method
US7722691B2 (en) 2005-09-30 2010-05-25 Saint-Gobain Abrasives, Inc. Abrasive tools having a permeable structure
US7491251B2 (en) 2005-10-05 2009-02-17 3M Innovative Properties Company Method of making a structured abrasive article
EP1974422A4 (en) 2005-12-15 2011-12-07 Laser Abrasive Technologies Llc METHOD AND APPARATUS FOR TREATING SOLID MATERIAL COMPRISING HARD TISSUES
JP2010522776A (ja) 2006-03-29 2010-07-08 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド 多結晶質研磨材料成形体
DE102006015014B4 (de) 2006-03-31 2008-07-24 Uibel, Krishna, Dipl.-Ing. Verfahren zur Herstellung dreidimensionaler keramischer Formkörper
US7410413B2 (en) 2006-04-27 2008-08-12 3M Innovative Properties Company Structured abrasive article and method of making and using the same
US7670679B2 (en) 2006-05-30 2010-03-02 General Electric Company Core-shell ceramic particulate and method of making
US7373887B2 (en) 2006-07-01 2008-05-20 Jason Stewart Jackson Expanding projectile
JP5374810B2 (ja) 2006-07-18 2013-12-25 株式会社リコー スクリーン印刷版
US20080236635A1 (en) 2006-07-31 2008-10-02 Maximilian Rosenzweig Steam mop
JP5285609B2 (ja) * 2006-08-30 2013-09-11 スリーエム イノベイティブ プロパティズ カンパニー 長寿命化された研磨物品及び方法
US20080271384A1 (en) * 2006-09-22 2008-11-06 Saint-Gobain Ceramics & Plastics, Inc. Conditioning tools and techniques for chemical mechanical planarization
US20080098659A1 (en) * 2006-10-26 2008-05-01 Chien-Min Sung Methods for securing individual abrasive particles to a substrate in a predetermined pattern
US20100056816A1 (en) 2006-11-01 2010-03-04 Wallin Sten A Shaped porous bodies of alpha-alumina and methods for the preparation thereof
JP2008132560A (ja) 2006-11-28 2008-06-12 Allied Material Corp 単結晶超砥粒および単結晶超砥粒を用いた超砥粒工具
US7695542B2 (en) 2006-11-30 2010-04-13 Longyear Tm, Inc. Fiber-containing diamond-impregnated cutting tools
US8083820B2 (en) 2006-12-22 2011-12-27 3M Innovative Properties Company Structured fixed abrasive articles including surface treated nano-ceria filler, and method for making and using the same
UA99909C2 (ru) 2007-01-15 2012-10-25 Сейнт-Гобейн Серамикс Энд Пластик, Инк. Керамический зернистый материал и способ его получения
JP5474566B2 (ja) 2007-01-23 2014-04-16 サンーゴバン アブレイシブズ,インコーポレイティド 凝集塊を含む研磨布紙製品
US20080179783A1 (en) 2007-01-31 2008-07-31 Geo2 Technologies, Inc. Extruded Fibrous Silicon Carbide Substrate and Methods for Producing the Same
JP2008194761A (ja) 2007-02-08 2008-08-28 Roki Techno Co Ltd 研磨シート及びその製造方法
ES2350653T3 (es) 2007-02-28 2011-01-25 Corning Incorporated Método para fabricar dispositivos microfluídicos.
US8080072B2 (en) * 2007-03-05 2011-12-20 3M Innovative Properties Company Abrasive article with supersize coating, and methods
US7628829B2 (en) 2007-03-20 2009-12-08 3M Innovative Properties Company Abrasive article and method of making and using the same
US20080233850A1 (en) 2007-03-20 2008-09-25 3M Innovative Properties Company Abrasive article and method of making and using the same
DE102007026978A1 (de) 2007-06-06 2008-12-11 Thieme Gmbh & Co. Kg Verfahren und Vorrichtung zum Bedrucken von Solarzellen mittels Siebdruck
US20090017736A1 (en) 2007-07-10 2009-01-15 Saint-Gobain Abrasives, Inc. Single-use edging wheel for finishing glass
FI20075533L (fi) * 2007-07-10 2009-01-11 Kwh Mirka Ab Oy Hiomatuote ja menetelmä tämän valmistamiseksi
US8038750B2 (en) 2007-07-13 2011-10-18 3M Innovative Properties Company Structured abrasive with overlayer, and method of making and using the same
EP2176191B1 (en) 2007-07-23 2013-01-16 Element Six Abrasives S.A. Method for producing an abrasive compact
JP5291307B2 (ja) 2007-08-03 2013-09-18 株式会社不二製作所 スクリーン印刷用メタルマスクの製造方法
CN101376234B (zh) 2007-08-28 2013-05-29 侯家祥 一种研磨工具磨料颗粒有序排列的方法
US8258251B2 (en) 2007-11-30 2012-09-04 The United States Of America, As Represented By The Administrator Of The National Aeronautics And Space Administration Highly porous ceramic oxide aerogels having improved flexibility
US8080073B2 (en) 2007-12-20 2011-12-20 3M Innovative Properties Company Abrasive article having a plurality of precisely-shaped abrasive composites
WO2009085841A2 (en) 2007-12-27 2009-07-09 3M Innovative Properties Company Shaped, fractured abrasive particle, abrasive article using same and method of making
US8123828B2 (en) 2007-12-27 2012-02-28 3M Innovative Properties Company Method of making abrasive shards, shaped abrasive particles with an opening, or dish-shaped abrasive particles
US8444458B2 (en) 2007-12-31 2013-05-21 3M Innovative Properties Company Plasma treated abrasive article and method of making same
EP2278315A1 (en) 2008-01-18 2011-01-26 Lifescan Scotland Limited Analyte test strip having predetermined calibration characteristics
US20110045745A1 (en) 2008-02-08 2011-02-24 Umicore Doped Ceria Abrasives with Controlled Morphology and Preparation Thereof
JP5527937B2 (ja) 2008-03-26 2014-06-25 京セラ株式会社 窒化珪素質焼結体
UA100413C2 (en) 2008-04-18 2012-12-25 Saint Gobain Abrasives Inc Hydrophilic and hydrophobic silane surface modification of abrasive grains
US8513154B2 (en) 2008-04-30 2013-08-20 Dow Technology Investments, Llc Porous body precursors, shaped porous bodies, processes for making them, and end-use products based upon the same
US8481438B2 (en) 2008-06-13 2013-07-09 Washington Mills Management, Inc. Very low packing density ceramic abrasive grits and methods of producing and using the same
KR20110033920A (ko) 2008-06-20 2011-04-01 쓰리엠 이노베이티브 프로퍼티즈 컴파니 중합체 주형 및 그로부터 제조된 용품
JP2010012530A (ja) 2008-07-01 2010-01-21 Showa Denko Kk 研磨テープ、研磨テープの製造方法およびバーニッシュ加工方法
CN102076462B (zh) 2008-07-02 2013-01-16 圣戈班磨料磨具有限公司 用于电子工业中的磨料切片工具
KR101602001B1 (ko) 2008-08-28 2016-03-17 쓰리엠 이노베이티브 프로퍼티즈 컴파니 구조화된 연마 용품, 그 제조 방법, 및 웨이퍼 평탄화에서의 사용
CA2736753C (en) 2008-09-16 2015-09-01 Diamond Innovations, Inc. Abrasive grains having unique features
US8927101B2 (en) 2008-09-16 2015-01-06 Diamond Innovations, Inc Abrasive particles having a unique morphology
EP2174717B1 (en) 2008-10-09 2020-04-29 Imertech Sas Grinding method
US10137556B2 (en) 2009-06-22 2018-11-27 3M Innovative Properties Company Shaped abrasive particles with low roundness factor
US8142531B2 (en) 2008-12-17 2012-03-27 3M Innovative Properties Company Shaped abrasive particles with a sloping sidewall
US8142532B2 (en) 2008-12-17 2012-03-27 3M Innovative Properties Company Shaped abrasive particles with an opening
JP5525546B2 (ja) 2008-12-17 2014-06-18 スリーエム イノベイティブ プロパティズ カンパニー 溝を有する成形された研磨粒子
US8142891B2 (en) 2008-12-17 2012-03-27 3M Innovative Properties Company Dish-shaped abrasive particles with a recessed surface
CN102256746B (zh) 2008-12-30 2014-04-16 圣戈班磨料磨具有限公司 增强的粘结的磨料工具
WO2010079729A1 (ja) 2009-01-06 2010-07-15 日本碍子株式会社 成形型、及び、その成形型を用いた成形体の製造方法
JP5669764B2 (ja) 2009-03-11 2015-02-18 サンーゴバン アブレイシブズ,インコーポレイティド 改善された形状を有する融解ジルコニアアルミナ砥粒を含む研磨物品
CN102484054A (zh) * 2009-06-02 2012-05-30 圣戈班磨料磨具有限公司 耐腐蚀性cmp修整工件及其制造和使用方法
SE532851C2 (sv) 2009-06-22 2010-04-20 Gsab Glasmaesteribranschens Se Anordning vid en i en bärprofil fixerbar gångjärnsprofil
US8628597B2 (en) 2009-06-25 2014-01-14 3M Innovative Properties Company Method of sorting abrasive particles, abrasive particle distributions, and abrasive articles including the same
US8906522B2 (en) 2009-07-07 2014-12-09 Morgan Advanced Materials And Technology Inc. Hard non-oxide or oxide ceramic / hard non-oxide or oxide ceramic composite hybrid article
US20110081848A1 (en) * 2009-10-05 2011-04-07 Chia-Pei Chen Grinding tool and method of manufacturing the grinding tool
JP5551568B2 (ja) 2009-11-12 2014-07-16 日東電工株式会社 樹脂封止用粘着テープ及びこれを用いた樹脂封止型半導体装置の製造方法
JP2013511467A (ja) 2009-11-23 2013-04-04 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー カーボンナノチューブ浸出繊維材料を含有するセラミック複合材料とその製造方法
US9447311B2 (en) 2009-12-02 2016-09-20 3M Innovative Properties Company Dual tapered shaped abrasive particles
EP2507016B1 (en) 2009-12-02 2020-09-23 3M Innovative Properties Company Method of making a coated abrasive article having shaped abrasive particles and resulting product
EP2778157A1 (en) 2009-12-17 2014-09-17 Scientific Design Company Inc. Process for epoxidation start-up
US8480772B2 (en) 2009-12-22 2013-07-09 3M Innovative Properties Company Transfer assisted screen printing method of making shaped abrasive particles and the resulting shaped abrasive particles
US8440602B2 (en) 2009-12-22 2013-05-14 The Procter & Gamble Company Liquid cleaning and/or cleansing composition comprising a divinyl benzene cross-linked styrene polymer
MX2012007608A (es) 2009-12-31 2012-07-30 Oxane Materials Inc Particulas de ceramica con colocacion y/o tamaño de poro y/o microesfera controlados y metodo para hacerlas.
BR112012022084A2 (pt) 2010-03-03 2016-06-14 3M Innovative Properties Co roda de abrasivo ligado
CN101944853B (zh) 2010-03-19 2013-06-19 郁百超 绿色功率变换器
CN102232949A (zh) 2010-04-27 2011-11-09 孙远 提高药物溶出度的组合物及其制备方法
RU2539246C2 (ru) 2010-04-27 2015-01-20 3М Инновейтив Пропертиз Компани Керамические формованные абразивные частицы, способы их получения, и абразивные изделия, содержащие их
US8551577B2 (en) 2010-05-25 2013-10-08 3M Innovative Properties Company Layered particle electrostatic deposition process for making a coated abrasive article
FI20105606A (fi) 2010-05-28 2010-11-25 Kwh Mirka Ab Oy Hiomatuote ja menetelmä tällaisen valmistamiseksi
RU2555269C2 (ru) * 2010-07-02 2015-07-10 Зм Инновейтив Пропертиз Компани Покрытые абразивные изделия
BR112013001831B8 (pt) 2010-08-04 2021-05-04 3M Innovative Properties Co partículas abrasivas formatadas
EP2601015B1 (en) 2010-08-06 2023-05-10 Saint-Gobain Abrasives, Inc. Abrasive tool and a method for finishing complex shapes in workpieces
TWI613285B (zh) 2010-09-03 2018-02-01 聖高拜磨料有限公司 粘結的磨料物品及形成方法
EP2431453B1 (en) 2010-09-21 2019-06-19 The Procter & Gamble Company Liquid cleaning and/or cleansing composition
WO2012091778A2 (en) 2010-10-01 2012-07-05 Intelligent Material Solutions, Inc. Morphologically and size uniform monodisperse particles and their shape-directed self-assembly
DE102010047690A1 (de) 2010-10-06 2012-04-12 Vsm-Vereinigte Schmirgel- Und Maschinen-Fabriken Ag Verfahren zum Herstellen von Zirkonia-verstärkten Alumina-Schleifkörnern und hierdurch hergestellte Schleifkörner
US9073179B2 (en) 2010-11-01 2015-07-07 3M Innovative Properties Company Laser method for making shaped ceramic abrasive particles, shaped ceramic abrasive particles, and abrasive articles
US9039797B2 (en) 2010-11-01 2015-05-26 3M Innovative Properties Company Shaped abrasive particles and method of making
CN103347975A (zh) 2010-12-30 2013-10-09 圣戈本陶瓷及塑料股份有限公司 形成成型的磨料颗粒的方法
CN103370174B (zh) 2010-12-31 2017-03-29 圣戈本陶瓷及塑料股份有限公司 具有特定形状的研磨颗粒和此类颗粒的形成方法
WO2012112322A2 (en) 2011-02-16 2012-08-23 3M Innovative Properties Company Electrostatic abrasive particle coating apparatus and method
ES2633316T3 (es) 2011-04-14 2017-09-20 3M Innovative Properties Company Artículo abrasivo no tejido que contiene aglomerados ligados por elastómeros de grano abrasivo conformado
EP2529694B1 (de) 2011-05-31 2017-11-15 Ivoclar Vivadent AG Verfahren zur generativen Herstellung von Keramikformkörpern durch 3D-Inkjet-Drucken
US9259726B2 (en) 2011-06-06 2016-02-16 Dow Technology Investments Llc Methods for producing epoxidation catalysts and epoxidation methods utilizing them
US8852643B2 (en) 2011-06-20 2014-10-07 The Procter & Gamble Company Liquid cleaning and/or cleansing composition
RU2566750C2 (ru) 2011-06-20 2015-10-27 Дзе Проктер Энд Гэмбл Компани Жидкий состав для чистки и/или глубокой очистки
EP2537917A1 (en) 2011-06-20 2012-12-26 The Procter & Gamble Company Liquid detergent composition with abrasive particles
US20120321567A1 (en) 2011-06-20 2012-12-20 Denis Alfred Gonzales Liquid cleaning and/or cleansing composition
CN103717726A (zh) 2011-06-20 2014-04-09 宝洁公司 液体清洁和/或净化组合物
CN103764349B (zh) 2011-06-30 2017-06-09 圣戈本陶瓷及塑料股份有限公司 液相烧结碳化硅研磨颗粒
WO2013003830A2 (en) 2011-06-30 2013-01-03 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particles of silicon nitride
CA2841435A1 (en) 2011-07-12 2013-01-17 3M Innovative Properties Company Method of making ceramic shaped abrasive particles, sol-gel composition, and ceramic shaped abrasive particles
US9038055B2 (en) 2011-08-05 2015-05-19 Microsoft Technology Licensing, Llc Using virtual machines to manage software builds
US8921687B1 (en) 2011-08-19 2014-12-30 Magnolia Solar, Inc. High efficiency quantum well waveguide solar cells and methods for constructing the same
EP2567784B1 (en) 2011-09-08 2019-07-31 3M Innovative Properties Co. Bonded abrasive article
MX2014002620A (es) 2011-09-07 2014-04-14 3M Innovative Properties Co Articulo abrasivo unido.
CA2847807C (en) 2011-09-07 2019-12-03 3M Innovative Properties Company Method of abrading a workpiece
TWI477356B (zh) 2011-09-16 2015-03-21 Saint Gobain Abrasives Inc 磨料物品及形成方法
EP2573156A1 (en) 2011-09-20 2013-03-27 The Procter & Gamble Company Liquid cleaning composition
EP2573157A1 (en) 2011-09-20 2013-03-27 The Procter and Gamble Company Liquid detergent composition with abrasive particles
BR112014007089A2 (pt) 2011-09-26 2017-03-28 Saint-Gobain Ceram & Plastics Inc artigos abrasivos incluindo materiais de partículas abrasivas, abrasivos revestidos usando os materiais de partículas abrasivas e os métodos de formação
RU2599067C2 (ru) 2011-11-09 2016-10-10 3М Инновейтив Пропертиз Компани Композитный абразивный круг
WO2013101575A2 (en) 2011-12-29 2013-07-04 3M Innovative Properties Company Coated abrasive article
CN104114664B (zh) 2011-12-30 2016-06-15 圣戈本陶瓷及塑料股份有限公司 形成成型研磨颗粒
PL2797716T3 (pl) 2011-12-30 2021-07-05 Saint-Gobain Ceramics & Plastics, Inc. Kompozytowe ukształtowane cząstki ścierne i sposób ich formowania
KR102187425B1 (ko) 2011-12-30 2020-12-09 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 형상화 연마입자 및 이의 형성방법
CN106002638B (zh) 2011-12-31 2019-01-11 圣戈班磨料磨具有限公司 具有开口的不均匀分布的研磨制品
US8840696B2 (en) 2012-01-10 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
EP3705177A1 (en) 2012-01-10 2020-09-09 Saint-Gobain Ceramics & Plastics Inc. Abrasive particles having complex shapes and methods of forming same
EP2631286A1 (en) 2012-02-23 2013-08-28 The Procter & Gamble Company Liquid cleaning composition
CN104144797B (zh) 2012-02-29 2016-06-22 株式会社普利司通 轮胎
US9242346B2 (en) 2012-03-30 2016-01-26 Saint-Gobain Abrasives, Inc. Abrasive products having fibrillated fibers
MX350057B (es) 2012-04-04 2017-08-25 3M Innovative Properties Co Partículas abrasivas, método para producir partículas abrasivas y artículos abrasivos.
US9079154B2 (en) 2012-05-04 2015-07-14 Basf Se Catalyst for the epoxidation of alkenes
KR102534897B1 (ko) 2012-05-23 2023-05-30 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 형상화 연마입자들 및 이의 형성방법
GB201210230D0 (en) 2012-06-11 2012-07-25 Element Six Ltd Method for making tool elements and tools comprising same
US20130337725A1 (en) 2012-06-13 2013-12-19 3M Innovative Property Company Abrasive particles, abrasive articles, and methods of making and using the same
US10106714B2 (en) 2012-06-29 2018-10-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
RU2620846C2 (ru) 2012-07-06 2017-05-30 3М Инновейтив Пропертиз Компани Абразивное изделие с покрытием
SG11201500802TA (en) 2012-08-02 2015-04-29 3M Innovative Properties Co Abrasive articles with precisely shaped features and method of making thereof
WO2014022453A1 (en) 2012-08-02 2014-02-06 3M Innovative Properties Company Abrasive element precursor with precisely shaped features and method of making thereof
EP2692818A1 (de) 2012-08-02 2014-02-05 Robert Bosch Gmbh Schleifkorn mit Hauptoberflächen und Nebenoberflächen
US9771505B2 (en) 2012-08-02 2017-09-26 Robert Bosch Gmbh Abrasive grain containing a first face without vertices and a second face with vertices
EP2692815A1 (de) 2012-08-02 2014-02-05 Robert Bosch Gmbh Schleifkorn mit konkavem Abschnitt
EP2692821A1 (de) 2012-08-02 2014-02-05 Robert Bosch Gmbh Schleifkorn mit Basiskörper und Aufsatzkörper
SG11201500713PA (en) 2012-08-02 2015-02-27 3M Innovative Properties Co Abrasive elements with precisely shaped features, abrasive articles fabricated therefrom and methods of making thereof
EP2692819A1 (de) 2012-08-02 2014-02-05 Robert Bosch GmbH Schleifkorn mit Basisfläche und Erhebungen
EP2692816A1 (de) 2012-08-02 2014-02-05 Robert Bosch Gmbh Schleifkorn mit einander durchdringenden flächigen Körpern
EP2692813A1 (de) 2012-08-02 2014-02-05 Robert Bosch Gmbh Schleifkorn mit Erhebungen verschiedener Höhen
EP2692817A1 (de) 2012-08-02 2014-02-05 Robert Bosch Gmbh Schleifkorn mit unter einem Winkel angeordneten Platten
EP2692820A1 (de) 2012-08-02 2014-02-05 Robert Bosch Gmbh Schleifkorn mit Basiskörper, Erhebung und Öffnung
EP2938691B1 (de) 2012-08-02 2022-07-27 Robert Bosch GmbH Schleifkorn mit höchstens drei flächen und einer ecke
EP2692814A1 (de) 2012-08-02 2014-02-05 Robert Bosch Gmbh Schleifkorn, enthaltend eine erste Fläche ohne Ecke und zweite Fläche mit Ecke
GB201218125D0 (en) 2012-10-10 2012-11-21 Imerys Minerals Ltd Method for grinding a particulate inorganic material
DE102012023688A1 (de) 2012-10-14 2014-04-17 Dronco Ag Geometrisch bestimmtes Schleifkorn, Verfahren zur Herstellung derartiger Schleifkörner und deren Verwendung in einer Schleifscheibe oder in einem Schleifmittel auf Unterlage
US9440332B2 (en) 2012-10-15 2016-09-13 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
ES2577147T3 (es) 2012-10-15 2016-07-13 The Procter & Gamble Company Composición detergente líquida con partículas abrasivas
KR102146313B1 (ko) 2012-10-31 2020-08-21 쓰리엠 이노베이티브 프로퍼티즈 컴파니 성형 연마 입자, 그의 제조 방법, 및 그를 포함하는 연마 용품
KR101818946B1 (ko) 2012-12-31 2018-01-17 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 미립자 소재 및 이의 형성방법
JP2016501737A (ja) 2012-12-31 2016-01-21 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド ブラスト加工媒体、並びにその製造方法及び使用方法
DE102013202204A1 (de) 2013-02-11 2014-08-14 Robert Bosch Gmbh Schleifelement
WO2014124554A1 (en) 2013-02-13 2014-08-21 Shengguo Wang Abrasive grain with controlled aspect ratio
MX2015011535A (es) 2013-03-04 2016-02-05 3M Innovative Properties Co Articulo abrasivo no tejido que contiene particulas abrasivas conformadas.
CA2905551C (en) 2013-03-12 2021-02-16 3M Innovative Properties Company Bonded abrasive article
CN107685296B (zh) 2013-03-29 2020-03-06 圣戈班磨料磨具有限公司 具有特定形状的磨粒、形成这种粒子的方法及其用途
JP6550374B2 (ja) 2013-04-05 2019-07-24 スリーエム イノベイティブ プロパティズ カンパニー 焼結された研磨粒子、それを作製する方法、及びそれを含む研磨物品
CN205497246U (zh) 2013-04-24 2016-08-24 3M创新有限公司 涂覆磨料带
US20140352722A1 (en) 2013-05-29 2014-12-04 The Procter & Gamble Company Liquid cleaning and/or cleansing composition
US20140352721A1 (en) 2013-05-29 2014-12-04 The Procter & Gamble Company Liquid cleaning and/or cleansing composition
EP2808379A1 (en) 2013-05-29 2014-12-03 The Procter & Gamble Company Liquid cleaning and/or cleansing composition
DE102013210158A1 (de) 2013-05-31 2014-12-18 Robert Bosch Gmbh Rollenförmige Drahtbürste
DE102013210716A1 (de) 2013-06-10 2014-12-11 Robert Bosch Gmbh Verfahren zum Herstellen von Schleifmittelkörpern für ein Schleifwerkzeug
US10005171B2 (en) 2013-06-24 2018-06-26 3M Innovative Properties Company Abrasive particles, method of making abrasive particles, and abrasive articles
TWI590917B (zh) 2013-06-25 2017-07-11 聖高拜磨料有限公司 研磨製品及其製造方法
DE102013212528A1 (de) 2013-06-27 2014-12-31 Robert Bosch Gmbh Verfahren zur Herstellung eines Stahlformkörpers
DE102013212680A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Schleifkörpertransportvorrichtung
DE102013212666A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Verfahren zur Herstellung eines Schleifmittels
US9969057B2 (en) 2013-06-28 2018-05-15 Robert Bosch Gmbh Abrasive means
DE102013212644A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Verfahren zur Herstellung eines Schleifmittels
DE102013212687A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Schleifelement
DE102013212690A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Schleifkorn
DE102013212654A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Schleifelement
TWI527886B (zh) 2013-06-28 2016-04-01 聖高拜陶器塑膠公司 包含成形研磨粒子之研磨物品
DE102013212639A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Schleifwerkzeug
DE102014210836A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Schleifeinheit
DE102013212598A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Haltevorrichtung für ein Schleifmittel
TW201502263A (zh) 2013-06-28 2015-01-16 Saint Gobain Ceramics 包含成形研磨粒子之研磨物品
DE102013212661A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Schleifkorn
DE102013212622A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Verfahren zu einer Aufbringung von Schleifelementen auf zumindest einen Grundkörper
DE102013212677A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Verfahren zur Herstellung eines Schleifkorns
DE102013212634A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Schleifmittel
TWI527887B (zh) 2013-06-28 2016-04-01 聖高拜陶器塑膠公司 包含成形研磨粒子之研磨物品
DE102013212653A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Schleifelement
DE102013212700A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Verfahren zur Herstellung einer Schleifeinheit
EP2821469B1 (en) 2013-07-02 2018-03-14 The Procter & Gamble Company Liquid cleaning and/or cleansing composition
EP2821472B1 (en) 2013-07-02 2018-08-29 The Procter and Gamble Company Liquid cleaning and/or cleansing composition
US9878954B2 (en) 2013-09-13 2018-01-30 3M Innovative Properties Company Vacuum glazing pillars for insulated glass units
CA3114978A1 (en) 2013-09-30 2015-04-02 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
PL3052271T3 (pl) 2013-10-04 2021-10-04 3M Innovative Properties Company Spojone wyroby ścierne i sposoby
CN105706181B (zh) 2013-11-15 2018-11-16 3M创新有限公司 包含成型颗粒的导电制品及其制造方法
CN105813808B (zh) 2013-12-09 2018-10-09 3M创新有限公司 砾岩磨料颗粒、含有砾岩磨料颗粒的磨料制品及其制备方法
AT515223B1 (de) 2013-12-18 2016-06-15 Tyrolit - Schleifmittelwerke Swarovski K G Verfahren zur Herstellung von Schleifmittel
AT515258B1 (de) 2013-12-18 2016-09-15 Tyrolit - Schleifmittelwerke Swarovski K G Verfahren zur Herstellung von Schleifkörpern
AT515229B1 (de) 2013-12-18 2016-08-15 Tyrolit - Schleifmittelwerke Swarovski K G Verfahren zur Herstellung von Schleifmittel
EP2941354B1 (de) 2013-12-19 2017-03-22 Klingspor AG Schleifpartikel und schleifmittel mit hoher schleifleistung
CN105992676B (zh) 2013-12-19 2018-08-03 金世博股份公司 用于制备多层磨料颗粒的方法
KR102238267B1 (ko) 2013-12-23 2021-04-12 쓰리엠 이노베이티브 프로퍼티즈 컴파니 코팅된 연마 용품을 제조하는 방법
WO2015100018A1 (en) 2013-12-23 2015-07-02 3M Innovative Properties Company Abrasive particle positioning systems and production tools therefor
US10518388B2 (en) 2013-12-23 2019-12-31 3M Innovative Properties Company Coated abrasive article maker apparatus
KR101870617B1 (ko) 2013-12-31 2018-06-26 생-고뱅 어브레이시브즈, 인코포레이티드 형상화 연마 입자들을 포함하는 연마 물품
WO2015112379A1 (en) 2014-01-22 2015-07-30 United Technologies Corporation Apparatuses, systems and methods for aligned abrasive grains
US9771507B2 (en) 2014-01-31 2017-09-26 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
WO2015130487A1 (en) 2014-02-27 2015-09-03 3M Innovative Properties Company Abrasive particles, abrasive articles, and methods of making and using the same
JP6452295B2 (ja) 2014-03-19 2019-01-16 スリーエム イノベイティブ プロパティズ カンパニー 研磨パッド及びガラス基板の研磨方法
DE202014101739U1 (de) 2014-04-11 2014-05-09 Robert Bosch Gmbh Schleifkorn mit Knoten und Fortsätzen
DE202014101741U1 (de) 2014-04-11 2014-05-09 Robert Bosch Gmbh Teilweise beschichtetes Schleifkorn
JP2017518887A (ja) 2014-04-14 2017-07-13 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 成形研磨粒子を含む研磨物品
ES2972193T3 (es) 2014-04-14 2024-06-11 Saint Gobain Ceramics Artículo abrasivo que incluye partículas abrasivas conformadas
MX2016013464A (es) 2014-04-14 2017-04-13 Saint-Gobain Ceram & Plastics Inc Articulo abrasivo que incluye particulas abrasivas conformadas.
WO2015158009A1 (en) 2014-04-19 2015-10-22 Shengguo Wang Alumina zirconia abrasive grain especially designed for light duty grinding applications
US10150900B2 (en) 2014-04-21 2018-12-11 3M Innovative Properties Company Abrasive particles and abrasive articles including the same
BR112016006779A2 (pt) 2014-05-01 2017-08-01 3M Innovative Properties Co artigos abrasivos flexíveis e método de abrasão de uma peça de trabalho
CN106458760A (zh) 2014-05-02 2017-02-22 王胜国 陶瓷刚玉干燥、制粒和成型的生产工艺
KR102292300B1 (ko) 2014-05-20 2021-08-24 쓰리엠 이노베이티브 프로퍼티즈 컴파니 복수의 연마 요소의 상이한 세트들을 갖는 연마 재료
US20170088759A1 (en) 2014-05-25 2017-03-30 Shengguo WANG Method and apparatus for producing alumina monohydrate and sol gel abrasive grain
WO2015184355A1 (en) 2014-05-30 2015-12-03 Saint-Gobain Abrasives, Inc. Method of using an abrasive article including shaped abrasive particles
DK3046983T3 (da) 2014-06-18 2020-06-02 Klingspor Ag Flerlags-slibepartikler
DE112015003830T5 (de) 2014-08-21 2017-05-04 3M Innovative Properties Company Schleifgegenstand mit Schleifmittel auf Unterlage mit gebündelten Strukturen aus Schleifpartikeln und Verfahren zur Herstellung
WO2016044158A1 (en) 2014-09-15 2016-03-24 3M Innovative Properties Company Methods of making abrasive articles and bonded abrasive wheel preparable thereby
US10259102B2 (en) 2014-10-21 2019-04-16 3M Innovative Properties Company Abrasive preforms, method of making an abrasive article, and bonded abrasive article
BR112017011549A2 (pt) 2014-12-04 2018-01-16 3M Innovative Properties Co esteira abrasiva com partículas abrasivas com formato angular
US20160177152A1 (en) 2014-12-23 2016-06-23 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
US9914864B2 (en) 2014-12-23 2018-03-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US9707529B2 (en) 2014-12-23 2017-07-18 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
SI3237147T1 (sl) 2014-12-23 2021-01-29 Saint-Gobain Ceramics&Plastics, Inc. Oblikovani abrazivni deli in metoda oblikovanja istih
US9676981B2 (en) 2014-12-24 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle fractions and method of forming same
KR102447902B1 (ko) 2015-03-30 2022-09-26 쓰리엠 이노베이티브 프로퍼티즈 컴파니 코팅된 연마 용품 및 그의 제조 방법
WO2016161157A1 (en) 2015-03-31 2016-10-06 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
TWI634200B (zh) 2015-03-31 2018-09-01 聖高拜磨料有限公司 固定磨料物品及其形成方法
BR112017022200A2 (pt) 2015-04-14 2018-07-03 3M Innovative Properties Co artigo abrasivo não tecido e método para fabricação do mesmo
TWI603813B (zh) 2015-04-20 2017-11-01 中國砂輪企業股份有限公司 研磨工具及其製造方法
TWI609742B (zh) 2015-04-20 2018-01-01 中國砂輪企業股份有限公司 研磨工具
TWI621590B (zh) 2015-05-21 2018-04-21 聖高拜陶器塑膠公司 研磨顆粒及形成研磨顆粒之方法
US10245703B2 (en) 2015-06-02 2019-04-02 3M Innovative Properties Company Latterally-stretched netting bearing abrasive particles, and method for making
WO2016196795A1 (en) 2015-06-02 2016-12-08 3M Innovative Properties Company Method of transferring particles to a substrate
DE102015108812A1 (de) 2015-06-03 2016-12-08 Center For Abrasives And Refractories Research & Development C.A.R.R.D. Gmbh Plättchenförmige, zufällig geformte, gesinterte Schleifpartikel sowie ein Verfahren zu ihrer Herstellung
EP3307483B1 (en) 2015-06-11 2020-06-17 Saint-Gobain Ceramics&Plastics, Inc. Abrasive article including shaped abrasive particles
WO2016205267A1 (en) 2015-06-19 2016-12-22 3M Innovative Properties Company Systems and methods for making abrasive articles
WO2016205133A1 (en) 2015-06-19 2016-12-22 3M Innovative Properties Company Abrasive article with abrasive particles having random rotational orientation within a range
JP7458693B2 (ja) 2015-06-25 2024-04-01 スリーエム イノベイティブ プロパティズ カンパニー ガラス質ボンド研磨物品及びその製造方法
EP3319758B1 (en) 2015-07-08 2021-01-06 3M Innovative Properties Company Systems and methods for making abrasive articles
WO2017007703A1 (en) 2015-07-08 2017-01-12 3M Innovative Properties Company Systems and methods for making abrasive articles
JP6865216B2 (ja) 2015-10-07 2021-04-28 スリーエム イノベイティブ プロパティズ カンパニー エポキシ官能性シランカップリング剤、表面改質された研磨粒子、及び結合研磨物品
US9849563B2 (en) 2015-11-05 2017-12-26 3M Innovative Properties Company Abrasive article and method of making the same
US10350642B2 (en) 2015-11-13 2019-07-16 3M Innovative Properties Company Method of shape sorting crushed abrasive particles
JP6983155B2 (ja) 2015-11-13 2021-12-17 スリーエム イノベイティブ プロパティズ カンパニー 結合研磨物品及びその製造方法
CN105622071A (zh) 2015-12-23 2016-06-01 山东大学 一种含有片状微晶的α-A12O3陶瓷颗粒及其制备方法和应用
EP4011923A1 (en) 2016-01-21 2022-06-15 3M Innovative Properties Company Methods of making metal bond and vitreous bond abrasive articles, and abrasive article precursors
WO2017151498A1 (en) 2016-03-03 2017-09-08 3M Innovative Properties Company Depressed center grinding wheel
US9717674B1 (en) 2016-04-06 2017-08-01 The Procter & Gamble Company Skin cleansing compositions comprising biodegradable abrasive particles
EP3238879A1 (en) 2016-04-25 2017-11-01 3M Innovative Properties Company Resin bonded cut-off tool
PL3455321T3 (pl) 2016-05-10 2022-12-12 Saint-Gobain Ceramics&Plastics, Inc. Sposób formowania cząstek ściernych
FR3052993B1 (fr) 2016-06-22 2019-01-25 Imerys Fused Minerals Beyrede Sas Particule abrasive frittee a base d'oxydes presents dans la bauxite
DE102016113125A1 (de) 2016-07-15 2018-01-18 Vsm-Vereinigte Schmirgel- Und Maschinen-Fabriken Ag Verfahren zum Herstellen eines Schleifkorns und Schleifkorn
MX2019001254A (es) 2016-08-01 2019-07-04 3M Innovative Properties Co Particulas abrasivas conformadas con puntas afiladas.
WO2018057558A1 (en) 2016-09-21 2018-03-29 3M Innovative Properties Company Abrasive particle with enhanced retention features
WO2018057465A1 (en) 2016-09-26 2018-03-29 3M Innovative Properties Company Nonwoven abrasive articles having electrostatically-oriented abrasive particles and methods of making same
EP3519135A4 (en) 2016-09-27 2020-06-10 3M Innovative Properties Company OPEN LAYERED ABRASIVE ARTICLE AND ABRASION METHOD
EP4349896A3 (en) 2016-09-29 2024-06-12 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
EP3519138A4 (en) 2016-09-30 2020-09-02 3M Innovative Properties Company VERSATILE TOOLS FOR SHAPED PARTICLES
KR20190055224A (ko) 2016-09-30 2019-05-22 쓰리엠 이노베이티브 프로퍼티즈 캄파니 연마 물품 제조 시스템
EP3519137A4 (en) 2016-09-30 2020-06-10 3M Innovative Properties Company ABRASIVE ARTICLES AND METHOD FOR THE PRODUCTION THEREOF
CN109863568B (zh) 2016-10-25 2020-05-15 3M创新有限公司 制备可磁化磨料颗粒的方法
CN109844054B (zh) 2016-10-25 2021-08-24 3M创新有限公司 可磁化团聚物磨料颗粒、磨料制品及其制备方法
WO2018080784A1 (en) 2016-10-25 2018-05-03 3M Innovative Properties Company Bonded abrasive wheel and method of making the same
EP3532561B1 (en) 2016-10-25 2021-04-28 3M Innovative Properties Company Magnetizable abrasive particles and abrasive articles including them
CN109890566B (zh) 2016-10-25 2021-11-19 3M创新有限公司 粘结砂轮及其制备方法
EP3532249A4 (en) 2016-10-25 2020-06-17 3M Innovative Properties Company STRUCTURED ABRASIVE ITEM AND METHOD FOR USE THEREOF
CN109890568B (zh) 2016-10-25 2022-07-29 3M创新有限公司 包括取向磨料颗粒的粘结磨料制品及其制备方法
US11478899B2 (en) 2016-10-25 2022-10-25 3M Innovative Properties Company Shaped vitrified abrasive agglomerate with shaped abrasive particles, abrasive articles, and related methods
EP3532560A4 (en) 2016-10-25 2020-04-01 3M Innovative Properties Company FUNCTIONAL GRINDING ARTICLES, GRINDING ARTICLES AND METHOD FOR THE PRODUCTION THEREOF
JP7008474B2 (ja) 2016-11-30 2022-01-25 東京エレクトロン株式会社 プラズマエッチング方法
AT519483B1 (de) 2016-12-20 2018-12-15 Tyrolit Schleifmittelwerke Swarovski Kg Verfahren zur herstellung von schleifmittelteilchen
WO2018118690A1 (en) 2016-12-21 2018-06-28 3M Innovative Properties Company Systems, methods and tools for distributing different pluralities of abrasive particles to make abrasive articles
WO2018118688A1 (en) 2016-12-21 2018-06-28 3M Innovative Properties Company Abrasive article with different pluralities of abrasive particles
US11534892B2 (en) 2016-12-21 2022-12-27 3M Innovative Properties Company Systems and methods for making abrasive articles
CN110087833A (zh) 2016-12-22 2019-08-02 3M创新有限公司 具有多种颜色的树脂粘结磨料制品
US11826883B2 (en) 2016-12-22 2023-11-28 Innovative Properties Company Abrasive article and method of making the same
CN110198810A (zh) 2017-01-19 2019-09-03 3M创新有限公司 可磁化磨料颗粒的磁性辅助转移及其相关的方法、装置和系统
WO2018136268A1 (en) 2017-01-19 2018-07-26 3M Innovative Properties Company Manipulation of magnetizable abrasive particles with modulation of magnetic field angle or strength
CN110191783B (zh) 2017-01-19 2022-05-03 3M创新有限公司 具有可磁化磨料颗粒的磁性元件的使用,使用磁性元件制备磨料制品的方法、设备和系统
CN110225953A (zh) 2017-01-23 2019-09-10 3M创新有限公司 可磁化磨料颗粒的磁力辅助布置
US10563105B2 (en) 2017-01-31 2020-02-18 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10759024B2 (en) 2017-01-31 2020-09-01 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
DE102017204605A1 (de) 2017-03-20 2018-09-20 Robert Bosch Gmbh Verfahren zu einem elektrostatischen Streuen eines Schleifkorns
EP3621771A1 (en) 2017-05-12 2020-03-18 3M Innovative Properties Company Tetrahedral abrasive particles in abrasive articles
WO2018236989A1 (en) 2017-06-21 2018-12-27 Saint-Gobain Ceramics & Plastics, Inc. PARTICULATE MATERIALS AND METHODS OF FORMATION THEREOF
DE102017210799A1 (de) 2017-06-27 2018-12-27 Robert Bosch Gmbh Geformtes keramisches Schleifkorn sowie Verfahren zur Herstellung eines geformten keramischen Schleifkorns
US20200156215A1 (en) 2017-07-31 2020-05-21 3M Innovative Properties Company Placement of abrasive particles for achieving orientation independent scratches and minimizing observable manufacturing defects
CN111183199B (zh) 2017-10-02 2022-08-02 3M创新有限公司 细长磨料颗粒、其制备方法以及包含细长磨料颗粒的磨料制品
CN111386176A (zh) 2017-11-21 2020-07-07 3M创新有限公司 涂覆磨盘及其制备和使用方法
CN111372725A (zh) 2017-11-21 2020-07-03 3M创新有限公司 涂覆磨盘及其制备和使用方法
EP3713712B1 (en) 2017-11-21 2023-05-31 3M Innovative Properties Company Coated abrasive disc and methods of making and using the same
JP2021504169A (ja) 2017-11-21 2021-02-15 スリーエム イノベイティブ プロパティズ カンパニー 被覆研磨ディスク並びにその製造方法及び使用方法
US20200353594A1 (en) 2017-11-27 2020-11-12 3M Innovative Properties Company Abrasive article
USD870782S1 (en) 2017-12-12 2019-12-24 3M Innovative Properties Company Coated abrasive disc
USD849066S1 (en) 2017-12-12 2019-05-21 3M Innovative Properties Company Coated abrasive disc
USD862538S1 (en) 2017-12-12 2019-10-08 3M Innovative Properties Company Coated abrasive disc
USD849067S1 (en) 2017-12-12 2019-05-21 3M Innovative Properties Company Coated abrasive disc
CN112055737B (zh) 2018-03-01 2022-04-12 3M创新有限公司 具有成型磨料颗粒的成型硅质磨料团聚物、磨料制品及相关方法
CN111971363A (zh) 2018-04-12 2020-11-20 3M创新有限公司 可磁化磨料颗粒及其制造方法
WO2019207417A1 (en) 2018-04-24 2019-10-31 3M Innovative Properties Company Method of making a coated abrasive article
US20210268627A1 (en) 2018-04-24 2021-09-02 3M Innovative Properties Company Abrasive article with shaped abrasive particles with predetermined rake angles
WO2019207415A1 (en) 2018-04-24 2019-10-31 3M Innovative Properties Company Method of making a coated abrasive article
EP3784434B1 (en) 2018-04-24 2023-08-23 3M Innovative Properties Company Coated abrasive article and method of making the same
WO2019215571A1 (en) 2018-05-10 2019-11-14 3M Innovative Properties Company Abrasive articles including soft shaped abrasive particles
US20210308832A1 (en) 2018-08-13 2021-10-07 3M Innovative Properties Company Structured abrasive article and method of making the same
US20210380857A1 (en) 2018-10-11 2021-12-09 3M Innovative Properties Company Supported abrasive particles, abrasive articles, and methods of making the same
EP3867013A1 (en) 2018-10-15 2021-08-25 3M Innovative Properties Company Abrasive articles having improved performance
CN112912210A (zh) 2018-10-25 2021-06-04 3M创新有限公司 具有在取向上对齐的成形磨料颗粒的细长磨料制品
CN112996632A (zh) 2018-10-26 2021-06-18 3M创新有限公司 包括柔性幅材的磨料制品
US20210388250A1 (en) 2018-11-01 2021-12-16 3M Innovative Properties Company Tetrahedral shaped abrasive particles with predetermined rake angles
WO2020128853A1 (en) 2018-12-18 2020-06-25 3M Innovative Properties Company Tooling splice accommodation for abrasive article production
CN113195164B (zh) 2018-12-18 2023-08-18 3M创新有限公司 带涂层磨料制品及制备带涂层磨料制品的方法
CN113242779A (zh) 2018-12-18 2021-08-10 3M创新有限公司 沉积磨料颗粒的方法
US20220001514A1 (en) 2018-12-18 2022-01-06 3M Innovative Properties Company Abrasive article with microparticle-coated abrasive grains
WO2020128779A2 (en) 2018-12-18 2020-06-25 3M Innovative Properties Company Bonded abrasive articles and methods of manufacture
CN113226647A (zh) 2018-12-18 2021-08-06 3M创新有限公司 具有不同加工速度的磨料制品制造机
WO2020128842A1 (en) 2018-12-18 2020-06-25 3M Innovative Properties Company Shaped abrasive particle transfer assembly
EP3898875A1 (en) 2018-12-18 2021-10-27 3M Innovative Properties Company Bonded abrasive article precursor
WO2020128720A2 (en) 2018-12-18 2020-06-25 3M Innovative Properties Company Improved particle reception in abrasive article creation
US20220041909A1 (en) 2018-12-18 2022-02-10 3M Innovative Properties Company Abrasive articles with varying shaped abrasive particles
EP3898084A1 (en) 2018-12-18 2021-10-27 3M Innovative Properties Company Precision-shaped grain abrasive rail grinding tool and manufacturing method therefor
CN113195162A (zh) 2018-12-18 2021-07-30 3M创新有限公司 图案化磨料基底和方法
WO2020128844A1 (en) 2018-12-18 2020-06-25 3M Innovative Properties Company Macro pattern for abrasive articles
CN113423537A (zh) 2018-12-18 2021-09-21 3M创新有限公司 磨料制品产生中改善的颗粒接收
WO2020128856A1 (en) 2018-12-18 2020-06-25 3M Innovative Properties Company Elastomer-derived ceramic structures and uses thereof
CN113226644A (zh) 2018-12-18 2021-08-06 3M创新有限公司 用于磨料的工具中的多个取向腔
WO2020128717A1 (en) 2018-12-18 2020-06-25 3M Innovative Properties Company Patterned abrasive substrate and method
WO2020128719A1 (en) 2018-12-18 2020-06-25 3M Innovative Properties Company Coated abrasive article having spacer particles, making method and apparatus therefor
WO2020128794A1 (en) 2018-12-19 2020-06-25 3M Innovative Properties Company Serrated shaped abrasive particles and method for manufacturing thereof
EP3999281A1 (en) 2019-07-18 2022-05-25 3M Innovative Properties Company Electrostatic particle alignment method and abrasive article
US20220315820A1 (en) 2019-07-23 2022-10-06 3M Innovative Properties Company Shaped abrasive particles with sharp edges, methods of manufacturing and articles containing the same
US11926782B2 (en) 2019-10-14 2024-03-12 3M Innovative Property Company Magnetizable abrasive particle and method of making the same
CN114555296A (zh) 2019-10-17 2022-05-27 3M创新有限公司 带涂层磨料制品及其制备方法
EP4048477A1 (en) 2019-10-23 2022-08-31 3M Innovative Properties Company Shaped abrasive particles with concave void within one of the plurality of edges

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010070294A1 (en) * 2008-12-18 2010-06-24 The University Of Nottingham Superabrasive cutting element and manufacturing method with high degree of control of distribution and crystallographic orientation of the micro cutting edges
WO2012112305A2 (en) * 2011-02-16 2012-08-23 3M Innovative Properties Company Coated abrasive article having rotationally aligned formed ceramic abrasive particles and method of making

Also Published As

Publication number Publication date
CN108015685B (zh) 2020-07-14
US11154964B2 (en) 2021-10-26
JP2015532218A (ja) 2015-11-09
RU2015117928A (ru) 2016-12-10
US20190217442A1 (en) 2019-07-18
BR112015008144B1 (pt) 2022-01-04
US10286523B2 (en) 2019-05-14
JP2017007088A (ja) 2017-01-12
EP2906392A1 (en) 2015-08-19
US20140106126A1 (en) 2014-04-17
CN104822494B (zh) 2017-11-28
US9440332B2 (en) 2016-09-13
CN108015685A (zh) 2018-05-11
JP6427147B2 (ja) 2018-11-21
US20170028531A1 (en) 2017-02-02
MX2021006803A (es) 2021-07-02
US20170050293A1 (en) 2017-02-23
WO2014062701A1 (en) 2014-04-24
RU2614488C2 (ru) 2017-03-28
US20220001512A1 (en) 2022-01-06
IL238225A0 (en) 2015-06-30
CA2887561A1 (en) 2014-04-24
CA2887561C (en) 2019-01-15
EP2906392A4 (en) 2016-07-13
JP5982580B2 (ja) 2016-08-31
MX2015004594A (es) 2015-07-23
US11148254B2 (en) 2021-10-19
IL238225A (en) 2017-11-30
KR20150067357A (ko) 2015-06-17
CN104822494A (zh) 2015-08-05
BR112015008144A2 (pt) 2017-07-04

Similar Documents

Publication Publication Date Title
KR101736085B1 (ko) 특정한 형태들을 가진 연마 입자들 및 이러한 입자들을 형성하는 방법들
KR101850281B1 (ko) 특정한 형태들을 가진 연마 입자들 및 이러한 입자들을 형성하는 방법들
KR102081045B1 (ko) 형상화 연마 입자들을 포함하는 연마 물품
KR20150023034A (ko) 특정 형상을 가지는 연마입자들 및 이러한 입자들 형성방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant