CN105622071A - 一种含有片状微晶的α-A12O3陶瓷颗粒及其制备方法和应用 - Google Patents

一种含有片状微晶的α-A12O3陶瓷颗粒及其制备方法和应用 Download PDF

Info

Publication number
CN105622071A
CN105622071A CN201510975607.6A CN201510975607A CN105622071A CN 105622071 A CN105622071 A CN 105622071A CN 201510975607 A CN201510975607 A CN 201510975607A CN 105622071 A CN105622071 A CN 105622071A
Authority
CN
China
Prior art keywords
ceramic particles
ceramic particle
crystallite
alpha
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510975607.6A
Other languages
English (en)
Inventor
张立
焦秀玲
陈代荣
张建
韩颖
刘洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN201510975607.6A priority Critical patent/CN105622071A/zh
Publication of CN105622071A publication Critical patent/CN105622071A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本发明涉及一种含有片状微晶的α-A12O3陶瓷颗粒及其制备方法和应用,该α-A12O3陶瓷颗粒,由磁铅石片晶和氧化铝晶体组成,并且磁铅石片晶穿插于氧化铝晶体中。具体制备方法为:1)将低成本的工业级拟薄水铝石分散成浆液,然后加入酸及添加剂水溶液,搅拌均匀;2)将浆液在180~240℃下水热处理24~72h得凝胶;3)将凝胶干燥,粉碎、筛分成不同粒度的半成品;4)将半成品在真空状态下缓慢升温到1500~1600℃,在目标温度下保温2~4h,即得。本发明的含有片状微晶的α-A12O3陶瓷颗粒韧性好,一次晶体形貌可控性好,有优异的磨削性能,陶瓷颗粒硬度值大于20GPa,球磨韧性大于76%。

Description

一种含有片状微晶的α-A12O3陶瓷颗粒及其制备方法和应用
技术领域
本发明涉及一种含有片状微晶的α-A12O3陶瓷颗粒及其制备方法和应用,属于无机非金属材料领域。
背景技术
氧化铝陶瓷是以α-A12O3为主晶相的陶瓷材料,具有机械强度高、硬度大、熔点高、电阻率高、绝缘性好、热膨胀系数小且耐磨性、耐腐蚀性能好等优点,广泛应用于机械、电子、电力、化工、医学、建筑以及其它的高科技领域(参见:新材料产业2006,12,17),但是氧化铝陶瓷有弱点,即断裂韧性低。氧化铝微晶陶瓷的晶粒、晶界都是纳米数量级,晶界数量大,因此氧化铝微晶陶瓷不仅具有氧化铝陶瓷的一系列优点,而且具有强度高、韧性好和超塑性等优异性能。因此制备硬度高、韧性好的氧化铝微晶陶瓷受到广泛关注(参见:NanoLett.2007,7,3196)。某些稀土氧化物与二价金属阳离子同氧化铝会在烧结过程中反应生成六方稀土铝酸盐,用化学式表示是LnMAl11O19,式中:Ln是一种镧系稀土离子,如La3+、Nd3+、Ce3+、Pr3+、Sm3+、Gd3+、Eu3+;M是一种两价金属阳离子,如Mg2+、Mn2+、Zn2+、Ni2+、Co2+,这类六方稀土铝酸盐具有磁铅石型结构。磁铅石型六铝酸盐结构和β-Al2O3很相近,都属于空间群P63/mmc,是由互成镜像的氧化铝尖晶石结构单元和M离子形成的镜面层交替堆积而成的层状结构,允许各种取代,如La1-xSrxMgAl11-xTixO19(参见:J.Am.Ceram.Soc.2013,96,1063)。两者的区别主要在镜面层上:磁铅石型结构中的镜面层由一个M、一个Al和三个O组成,而β-Al2O3型结构中的镜面层仅由一个M和一个O组成。磁铅石型六铝酸盐显微结构通常呈片晶状,一般长约0.5~3μm,厚约0.05~0.1μm,片状形貌为六铝酸盐的特征微观结构的宏观反映。经研究发现,这种片晶的引入,使得氧化铝微晶陶瓷颗粒表现出一系列的优异性能,而这种片晶可改善陶瓷颗粒的韧性,纳米片可增强陶瓷纳米颗粒中的晶间结构,使得陶瓷颗粒具有优异的性能。这是因为片状纳米结构可增强晶间结构而引起穿晶断裂,使主要的断裂方式不会延伸到晶界,而进入到基体晶粒。在基体晶粒中,片状纳米结构可使断裂方式偏转,使断裂途径延伸且更加曲折,并且阻碍其它地方的断裂,导致消耗更大的断裂能;因而能增强陶瓷颗粒的强度和韧性(参见:J.Ceram.Soc.Jpn.1990,25,17)。
中国专利文件CN1772695A(申请号:200510112725.0)公开了一种微晶氧化铝陶瓷颗粒的制备方法,其特征在于其制备过程是采用超细氢氧化铝为起始原料,制备出的α-氧化铝,再与氢氧化铝和拟薄水铝石混合研磨,配制成悬浮液,制备成凝胶体干燥、破碎后,在1250~1650℃的温度下烧结,破碎、筛分,制得微晶氧化铝陶瓷颗粒。采用该方法制备的氧化铝陶瓷颗粒相对于白刚玉、棕刚玉等传统氧化铝基磨粒而言,具有硬度高,韧性好,耐磨性好等优点,一次结晶颗粒粒径为200nm~2μm,由这种磨料所制备的磨具的耐用性大大提高。
但是,上述微晶氧化铝陶瓷颗粒的制备方法中主要原材料为超细氢氧化铝和拟薄水铝石两种,其中超细氢氧化铝制备成本较高,需经过特殊的研磨工艺才能得到;此外,还需要首先制备α-氧化铝,这样在整个工艺过程中就存在两个煅烧步骤,而且还需要两次长时间的研磨,工艺步骤繁琐冗长。所制备的微晶氧化铝陶瓷颗粒尺寸可控性差,形貌为类多面体状。
目前,磁铅石型六铝酸盐多采用固相法合成,烧成温度一般在1600℃,也有一些用微浮液方法合成前驱体在1400℃可以烧成,但是制备方法本身存在局限性,很难实现工业化生产。
发明内容
针对现有技术的不足,本发明提供一种含有片状微晶的α-A12O3陶瓷颗粒及其制备方法和应用。以低成本的工业级拟薄水铝石作原料,采用水热法制备出半成品,然后在较低温度下烧成了一种α-A12O3微晶陶瓷颗粒,这种α-A12O3微晶陶瓷颗粒具有独特的片状结构,含有片状微晶;陶瓷颗粒微观结构致密,硬度值>18GPa,球磨韧性>70%。
本发明的技术方案如下:
一种含有片状微晶的α-A12O3陶瓷颗粒,由磁铅石片晶和氧化铝晶体组成,并且磁铅石片晶穿插于氧化铝晶体中。
根据本发明,优选的,所述的磁铅石片晶的化学组成为LnMeAl11O19,其中:Ln为镧系元素;Me为Mg、Mn、Fe、Co。
根据本发明,优选的,所述的含有片状微晶的α-A12O3陶瓷颗粒中,磁铅石片晶占氧化铝晶体的5~20%,进一步优选8~12%,质量百分比。磁铅石片晶的含量通过调整添加剂的量进行控制。在上述范围内α-A12O3陶瓷颗粒性能最佳。
根据本发明,优选的,所述的磁铅石片晶的厚度为100~200nm,长度为1~2μm。
根据本发明,上述含有片状微晶的α-A12O3陶瓷颗粒的制备方法,包括以下步骤:
(1)将拟薄水铝石分散于水中,制得均匀的拟薄水铝石悬浮液;然后在拟薄水铝石悬浮液中加入添加剂水溶液和酸液,混合分散均匀,得浆液;
所述添加剂为稀土金属氧化物、过渡金属氧化物、碱土金属氧化物、稀土金属硝酸盐、过渡金属硝酸盐、碱土金属硝酸盐中的两种以上混合;
(2)将步骤(1)得到的浆液在180~240℃下水热反应24~72h,得到凝胶;
(3)将步骤(2)得到的凝胶干燥、粉碎后,筛分,取120目筛以上的颗粒;在真空状态下升温到1500~1600℃,保温2~4h,即得含有片状微晶的α-A12O3陶瓷颗粒。
根据本发明的制备方法,优选的,步骤(1)拟薄水铝石悬浮液中,拟薄水铝石占悬浮液总质量的10~25%。
根据本发明的制备方法,优选的,步骤(1)中所述的稀土金属为镧系元素,进一步优选La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm或/和Yb,最优选La或/和Nd;
优选的,所述的过渡金属为Mn、Fe或/和Co,进一步优选Mn或/和Co;
优选的,所述的碱土金属为镁。
根据本发明的制备方法,优选的,步骤(1)中所述的酸液为硝酸、盐酸或醋酸;进一步优选硝酸。
根据本发明的制备方法,优选的,步骤(1)中添加剂的加入量控制在最终产物中磁铅石型六铝酸盐占氧化铝晶体的5~20%,进一步优选8~12%,质量百分比;酸液的加入量为拟薄水铝石的1~6%,质量百分比。
根据本发明的制备方法,优选的,步骤(2)中水热反应的温度为200~220℃。
根据本发明的制备方法,优选的,步骤(3)中在真空状态下升温到1500~1600℃的升温速率为1~5℃/min;
优选的,真空状态下的真空度为-0.05~-0.09MPa。
根据本发明,所述的含有片状微晶的α-A12O3陶瓷颗粒作为磨料在研磨材料中的应用。
根据本发明,所述的含有片状微晶的α-A12O3陶瓷颗粒在研磨材料方面有较好的应用效果,尤其作为磨料应用于固结及涂附磨具领域时,展现了优异的磨削性能,主要体现在磨削精度高,磨削阻力小,可以实现大进给磨削。
本发明的有益效果:
1、本发明的含有片状微晶的α-A12O3陶瓷颗粒韧性更好,一次晶体形貌可控性好,具有优异的磨削性能,对难磨削的材料具有更好的磨削效果,且磨削进给量可以大大提高。
2、本发明采用水热法与溶胶凝胶相结合的方法,制备前驱体,磁铅石型六铝酸盐是在煅烧过程中与α-A12O3同进形成的,煅烧温度较低,工业化前景较好。
3、本发明所采用的原材料单一,且为常规工业品,成本较低,而且工艺过程中不需要长时间的研磨,制备方法简单易控。
附图说明
图1为本发明实施例1所得的含有片状微晶的α-A12O3陶瓷颗粒的表面结构扫描电镜图。
图2为本发明实施例1所得的含有片状微晶的α-A12O3陶瓷颗粒的断面结构扫描电镜图。
具体实施方式
下面通过具体实施例并结合附图对本发明作进一步说明,但不限于此。
实施例中所用原料均为常规原料,市购产品。
本发明以简单稳定的工艺制得了一种含有片状微晶的α-A12O3陶瓷颗粒,表面是磁铅石片晶穿插于氧化铝晶体中,附图1;断面致密无孔,附图2。
实施例1、含有片状微晶的α-A12O3陶瓷颗粒的制备
(1)将200.0g拟薄水铝石滤饼加入2.0kg去离子水中,搅拌分散成拟薄水铝石悬浮液;将8.0g六水合硝酸镧、5.0g六水合硝酸镁、0.1g六水合硝酸钴和10.0g硝酸(65wt%)加入200.0g去离子水中制得溶液;将得到的水溶液加到拟薄水铝石悬浮液中,混合分散均匀,得浆液;
(2)将步骤(1)得到的浆液在200℃下水热反应36h,得到凝胶;
(3)将步骤(2)得到的凝胶在80℃的烘箱中干燥得到干凝胶颗粒,用万能粉碎机粉碎,过筛,得120目以上的颗粒,在真空状态下(-0.05MPa)以2.0℃/min的速度缓慢升温到1500℃,在目标温度下保温3h,即得含有片状微晶的α-A12O3陶瓷颗粒。
对本实施例制得的含有片状微晶的α-A12O3陶瓷颗粒进行电镜扫描,如图1、2所示;由图1可知,所得α-A12O3陶瓷颗粒表面是磁铅石片晶穿插于氧化铝晶体中,磁铅石片晶的厚度为100~200nm,长度为1~2μm。磁铅石片晶的化学组成为LaMg1-xCoxAl11O19(0.01≤x≤0.02)。由图2可知,所得含有片状微晶的α-A12O3陶瓷颗粒断面致密无孔,硬度为20GPa,球磨韧性为79%。
实施例2、含有片状微晶的α-A12O3陶瓷颗粒的制备
如实施例1所述,所不同的是步骤(3)将凝胶在80℃干燥得到干凝胶颗粒,用万能粉碎机粉碎,过筛得120目以上的颗粒,在真空状态下以2.0℃/min的速度缓慢升温到1600℃,在目标温度下保温3h,即可得到含有片状微晶的α-A12O3陶瓷颗粒。
所得的α-A12O3微晶陶瓷颗粒的硬度为19.5GPa,球磨韧性为75%。
实施例3、含有片状微晶的α-A12O3陶瓷颗粒的制备
如实施例1所述,所不同的是步骤(3)将凝胶在80℃干燥得到干凝胶颗粒,用万能粉碎机粉碎,过筛得120目以上的颗粒,在真空状态下以2.0℃/min的速度缓慢升温到1450℃,在目标温度下保温3h,即可得到含有片状微晶的α-A12O3陶瓷颗粒。
所得的α-A12O3微晶陶瓷颗粒的硬度为18.5GPa,球磨韧性为78%。
实施例4、含有片状微晶的α-A12O3陶瓷颗粒的制备
如实施例1所述,所不同的是步骤(1)中的添加剂为12.0g六水合硝酸镧、6.0g六水合硝酸镁、0.5g六水合硝酸钴,酸为5.0g硝酸(65wt%),加入200.0g去离子水溶解得水溶液。
所得的α-A12O3微晶陶瓷颗粒的硬度为21GPa,球磨韧性为77%。
实施例5、含有片状微晶的α-A12O3陶瓷颗粒的制备
如实施例4所述,所不同的是将步骤(2)将凝胶在80℃干燥得到干凝胶颗粒,用万能粉碎机粉碎,过筛得120目以上的颗粒,在真空状态下以5.0℃/min的速度缓慢升温到1500℃,在目标温度下保温3h,即可得到含有片状微晶的α-A12O3陶瓷颗粒。
所得的α-A12O3陶瓷颗粒的硬度为20.5GPa,球磨韧性为71%。
实施例6、含有片状微晶的α-A12O3陶瓷颗粒的制备
如实施例4所述,所不同的是步骤(2)将凝胶在80℃干燥得到干凝胶颗粒,用万能粉碎机粉碎,过筛得120目以上的颗粒,在真空状态下以5.0℃/min的速度缓慢升温到1600℃,在目标温度下保温3h,即可得到含有片状微晶的α-A12O3陶瓷颗粒。
所得的α-A12O3陶瓷颗粒的硬度为22GPa,球磨韧性为76%。
实施例7、含有片状微晶的α-A12O3陶瓷颗粒的制备
如实施例1所述,所不同的是步骤(1)将200.0g拟薄水铝石滤饼加入2.0kg去离子水中,搅拌分散成拟薄水铝石悬浮液;将8.0g六水合硝酸钕、5.0g六水合硝酸镁和10.0g硝酸(65wt%)加入200.0g去离子水中制得溶液;将得到的水溶液加到拟薄水铝石悬浮液中,混合分散均匀,得浆液;
所得的α-A12O3陶瓷颗粒的硬度为20.5GPa,球磨韧性为78.5%。
实施例8、含有片状微晶的α-A12O3陶瓷颗粒的制备
如实施例1所述,所不同的是步骤(1)将200.0g拟薄水铝石滤饼加入2.0kg去离子水中,搅拌分散成拟薄水铝石悬浮液;将4.0g六水合硝酸钕、4.0g六水合硝酸镧、5.0g六水合硝酸镁和10.0g硝酸(65wt%)加入200.0g去离子水中制得溶液;将得到的水溶液加到拟薄水铝石悬浮液中,混合分散均匀,得浆液;
所得的α-A12O3陶瓷颗粒的硬度为20GPa,球磨韧性为80%。
实施例9、含有片状微晶的α-A12O3陶瓷颗粒的制备
如实施例1所述,所不同的是步骤(1)将200.0g拟薄水铝石滤饼加入2.0kg去离子水中,搅拌分散成拟薄水铝石悬浮液;将8.0g六水合硝酸镧、5.0g六水合硝酸钴和10.0g硝酸(65wt%)加入200.0g去离子水中制得溶液;将得到的水溶液加到拟薄水铝石悬浮液中,混合分散均匀,得浆液;
所得的α-A12O3陶瓷颗粒的硬度为18.5GPa,球磨韧性为72%。

Claims (10)

1.一种含有片状微晶的α-A12O3陶瓷颗粒,其特征在于,该陶瓷颗粒由磁铅石片晶和氧化铝晶体组成,并且磁铅石片晶穿插于氧化铝晶体中。
2.根据权利要求1所述的含有片状微晶的α-A12O3陶瓷颗粒,其特征在于,所述的磁铅石片晶的化学组成为LnMeAl11O19,其中:Ln为镧系元素;Me为Mg、Mn、Fe、Co。
3.根据权利要求1所述的含有片状微晶的α-A12O3陶瓷颗粒,其特征在于,所述的含有片状微晶的α-A12O3陶瓷颗粒中,磁铅石片晶占氧化铝晶体的5~20%,优选8~12%,质量百分比。
4.根据权利要求1所述的含有片状微晶的α-A12O3陶瓷颗粒,其特征在于,所述的磁铅石片晶的厚度为100~200nm,长度为1~2μm。
5.一种权利要求1-4任一项所述的含有片状微晶的α-A12O3陶瓷颗粒的制备方法,包括以下步骤:
(1)将拟薄水铝石分散于水中,制得均匀的拟薄水铝石悬浮液;然后在拟薄水铝石悬浮液中加入添加剂水溶液和酸液,混合分散均匀,得浆液;
所述添加剂为稀土金属氧化物、过渡金属氧化物、碱土金属氧化物、稀土金属硝酸盐、过渡金属硝酸盐、碱土金属硝酸盐中的两种以上混合;
(2)将步骤(1)得到的浆液在180~240℃下水热反应24~72h,得到凝胶;
(3)将步骤(2)得到的凝胶干燥、粉碎后,筛分,取120目筛以上的颗粒;在真空状态下升温到1500~1600℃,保温2~4h,即得含有片状微晶的α-A12O3陶瓷颗粒。
6.根据权利要求5所述的制备方法,其特征在于,步骤(1)拟薄水铝石悬浮液中,拟薄水铝石占悬浮液总质量的10~25%。
7.根据权利要求5所述的制备方法,其特征在于,步骤(1)中所述的稀土金属为镧系元素,优选La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm或/和Yb,
所述的过渡金属为Mn、Fe或/和Co,
所述的碱土金属为镁。
8.根据权利要求5所述的制备方法,其特征在于,步骤(1)中所述的酸液为硝酸、盐酸或醋酸。
9.根据权利要求5所述的制备方法,其特征在于,步骤(1)中添加剂的加入量控制在最终产物中磁铅石型六铝酸盐占氧化铝晶体的5~20%,质量百分比;酸液的加入量为拟薄水铝石的1~6%,质量百分比。
10.权利要求1-4任一项所述的含有片状微晶的α-A12O3陶瓷颗粒作为磨料在研磨材料中的应用。
CN201510975607.6A 2015-12-23 2015-12-23 一种含有片状微晶的α-A12O3陶瓷颗粒及其制备方法和应用 Pending CN105622071A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510975607.6A CN105622071A (zh) 2015-12-23 2015-12-23 一种含有片状微晶的α-A12O3陶瓷颗粒及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510975607.6A CN105622071A (zh) 2015-12-23 2015-12-23 一种含有片状微晶的α-A12O3陶瓷颗粒及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN105622071A true CN105622071A (zh) 2016-06-01

Family

ID=56037469

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510975607.6A Pending CN105622071A (zh) 2015-12-23 2015-12-23 一种含有片状微晶的α-A12O3陶瓷颗粒及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN105622071A (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109485392A (zh) * 2018-10-12 2019-03-19 天津大学 一种微观片状互锁结构陶瓷刚玉磨料
EP3642293A4 (en) * 2017-06-21 2021-03-17 Saint-Gobain Ceramics&Plastics, Inc. PARTICULATE MATERIALS AND METHOD FOR MANUFACTURING THEREOF
US11142673B2 (en) 2012-01-10 2021-10-12 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US11148254B2 (en) 2012-10-15 2021-10-19 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
CN113845356A (zh) * 2021-10-22 2021-12-28 湖南约瑟夫科技有限公司 一种陶瓷刚玉磨料及其制备方法和应用
US11230653B2 (en) 2016-09-29 2022-01-25 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
CN113979735A (zh) * 2021-11-26 2022-01-28 河南建筑材料研究设计院有限责任公司 利用不定型粒状微晶陶瓷磨料前驱体干凝胶过细粉制备柱状、丝状陶瓷磨料的方法
US11427740B2 (en) 2017-01-31 2022-08-30 Saint-Gobain Ceramics & Plastics, Inc. Method of making shaped abrasive particles and articles comprising forming a flange from overfilling
US11453811B2 (en) 2011-12-30 2022-09-27 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
US11472989B2 (en) 2015-03-31 2022-10-18 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US11590632B2 (en) 2013-03-29 2023-02-28 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US11608459B2 (en) 2014-12-23 2023-03-21 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US11643582B2 (en) 2015-03-31 2023-05-09 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US11718774B2 (en) 2016-05-10 2023-08-08 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles and methods of forming same
US11879087B2 (en) 2015-06-11 2024-01-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US11891559B2 (en) 2014-04-14 2024-02-06 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US11926781B2 (en) 2014-01-31 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
US11926019B2 (en) 2019-12-27 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles and methods of forming same
US11959009B2 (en) 2016-05-10 2024-04-16 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles and methods of forming same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4881951A (en) * 1987-05-27 1989-11-21 Minnesota Mining And Manufacturing Co. Abrasive grits formed of ceramic containing oxides of aluminum and rare earth metal, method of making and products made therewith
CN1772695A (zh) * 2005-10-12 2006-05-17 中国铝业股份有限公司 一种微晶氧化铝陶瓷颗粒的制备方法
CN102295304A (zh) * 2011-06-14 2011-12-28 山东大学 一种拟薄水铝石及微晶刚玉磨料的制备方法
CN102807240A (zh) * 2012-07-27 2012-12-05 上海度朔磨料磨具有限公司 拟薄水铝石及微晶刚玉磨料的制备方法
CN103013443A (zh) * 2011-09-22 2013-04-03 鲁信创业投资集团股份有限公司 一种含片状结构的α-氧化铝基磨料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4881951A (en) * 1987-05-27 1989-11-21 Minnesota Mining And Manufacturing Co. Abrasive grits formed of ceramic containing oxides of aluminum and rare earth metal, method of making and products made therewith
CN1772695A (zh) * 2005-10-12 2006-05-17 中国铝业股份有限公司 一种微晶氧化铝陶瓷颗粒的制备方法
CN102295304A (zh) * 2011-06-14 2011-12-28 山东大学 一种拟薄水铝石及微晶刚玉磨料的制备方法
CN103013443A (zh) * 2011-09-22 2013-04-03 鲁信创业投资集团股份有限公司 一种含片状结构的α-氧化铝基磨料及其制备方法
CN102807240A (zh) * 2012-07-27 2012-12-05 上海度朔磨料磨具有限公司 拟薄水铝石及微晶刚玉磨料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
石涛等: "水热辅助溶胶-凝胶法制备纳米晶γ-Al2O3及表征", 《无机化学学报》 *
胥雯雯: "不同微观结构氧化铝微晶陶瓷颗粒的制备与表征", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11453811B2 (en) 2011-12-30 2022-09-27 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
US11649388B2 (en) 2012-01-10 2023-05-16 Saint-Gobain Cermaics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US11859120B2 (en) 2012-01-10 2024-01-02 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having an elongated body comprising a twist along an axis of the body
US11142673B2 (en) 2012-01-10 2021-10-12 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US11148254B2 (en) 2012-10-15 2021-10-19 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US11154964B2 (en) 2012-10-15 2021-10-26 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US11590632B2 (en) 2013-03-29 2023-02-28 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US11926781B2 (en) 2014-01-31 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
US11891559B2 (en) 2014-04-14 2024-02-06 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US11926780B2 (en) 2014-12-23 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US11608459B2 (en) 2014-12-23 2023-03-21 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US11472989B2 (en) 2015-03-31 2022-10-18 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US11643582B2 (en) 2015-03-31 2023-05-09 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US11879087B2 (en) 2015-06-11 2024-01-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US11718774B2 (en) 2016-05-10 2023-08-08 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles and methods of forming same
US11959009B2 (en) 2016-05-10 2024-04-16 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles and methods of forming same
US11230653B2 (en) 2016-09-29 2022-01-25 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US11549040B2 (en) 2017-01-31 2023-01-10 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles having a tooth portion on a surface
US11427740B2 (en) 2017-01-31 2022-08-30 Saint-Gobain Ceramics & Plastics, Inc. Method of making shaped abrasive particles and articles comprising forming a flange from overfilling
US11932802B2 (en) 2017-01-31 2024-03-19 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles comprising a particular toothed body
EP3642293A4 (en) * 2017-06-21 2021-03-17 Saint-Gobain Ceramics&Plastics, Inc. PARTICULATE MATERIALS AND METHOD FOR MANUFACTURING THEREOF
CN109485392A (zh) * 2018-10-12 2019-03-19 天津大学 一种微观片状互锁结构陶瓷刚玉磨料
US11926019B2 (en) 2019-12-27 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles and methods of forming same
CN113845356B (zh) * 2021-10-22 2022-11-29 湖南约瑟夫科技有限公司 一种陶瓷刚玉磨料及其制备方法和应用
CN113845356A (zh) * 2021-10-22 2021-12-28 湖南约瑟夫科技有限公司 一种陶瓷刚玉磨料及其制备方法和应用
CN113979735A (zh) * 2021-11-26 2022-01-28 河南建筑材料研究设计院有限责任公司 利用不定型粒状微晶陶瓷磨料前驱体干凝胶过细粉制备柱状、丝状陶瓷磨料的方法

Similar Documents

Publication Publication Date Title
CN105622071A (zh) 一种含有片状微晶的α-A12O3陶瓷颗粒及其制备方法和应用
Li et al. Co-precipitation synthesis route to yttrium aluminum garnet (YAG) transparent ceramics
CN107759218B (zh) 一种氧化钇稳定氧化锆陶瓷及其制备方法
US20070179041A1 (en) Zirconia Ceramic
CN109715560B (zh) 含氧化镁的尖晶石粉末及其制造方法
JP2000219570A (ja) 透光性アルミナ焼結体の製造方法およびその用途
Rahmani et al. A comparative study of synthesis and spark plasma sintering of YAG nano powders by different co-precipitation methods
CN104761251B (zh) 一种制备镁铝尖晶石的反应烧结方法
CN111825452B (zh) 一种低热导高熵铝酸盐陶瓷及其制备方法
Singh et al. Development of spinel sol bonded high pure alumina castable composition
Shijina et al. Very low thermal conductivity in lanthanum phosphate–zirconia ceramic nanocomposites processed using a precipitation–peptization synthetic approach
JP6278476B2 (ja) アルミナを含むセラミック組成物
JP6754288B2 (ja) 高強度で熱伝導率の低い酸化亜鉛焼結体作製用酸化亜鉛粉末
Liu et al. Effect of ammonium carbonate to metal ions molar ratio on synthesis and sintering of Nd: YAG nanopowders
JP4162599B2 (ja) セリウム系複合酸化物、その焼結体及び製造法
Mohan et al. Study on the formation and densification of magnesium aluminate spinel using commercial grade reactants: effect of planetary milling
JP2016011247A (ja) 板状リン酸化合物粒子、それを含む板状リン酸化合物粉体、及び、板状リン酸化合物粉体の製造方法、並びに板状リン酸化合物粉体を用いた結晶配向アパタイトの製造方法
Koley et al. Correlation of compaction pressure, green density, pore size distribution and sintering temperature of a nano-crystalline 2Y-TZP-Al2O3 composite
JPH0553751B2 (zh)
Nath et al. Effect of mechanical activation on cordierite synthesis through solid-state sintering method
KR20100100654A (ko) 옥살산바륨티타닐의 제조 방법 및 티탄산바륨의 제조 방법
JP4465753B2 (ja) アルミナ混合組成物およびその成形体、ならびに該成形体を用いた焼結体の製造方法
JPH09188562A (ja) ジルコニア質焼結体及びその製造方法並びに粉砕用部品材料
JP2000095564A (ja) ジルコニア質焼結体及びその製造方法ならびに粉砕部材用材料
JP2021054703A (ja) セルロースナノファイバー添加ZrO2−Al2O3系セラミックス造粒体、当該造粒体の製造方法、当該造粒体を用いた仮焼粉体及びその製造方法、当該仮焼粉体を用いたセラミックス焼結体及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160601