US20040220627A1 - Complex-shaped ceramic capacitors for implantable cardioverter defibrillators and method of manufacture - Google Patents

Complex-shaped ceramic capacitors for implantable cardioverter defibrillators and method of manufacture Download PDF

Info

Publication number
US20040220627A1
US20040220627A1 US10426680 US42668003A US2004220627A1 US 20040220627 A1 US20040220627 A1 US 20040220627A1 US 10426680 US10426680 US 10426680 US 42668003 A US42668003 A US 42668003A US 2004220627 A1 US2004220627 A1 US 2004220627A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
capacitor
stack
print pattern
method
portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10426680
Inventor
Ann Crespi
John Norton
Frank Duva
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3968Constructional arrangements, e.g. casings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3956Implantable devices for applying electric shocks to the heart, e.g. for cardioversion

Abstract

An improved manufacturing and packaging process for optimizing the size of various implanted medical devices is disclosed. Specifically, complex shapes involving ceramic capacitors with various other shapes are manufactured to optimize fit and shapes within the device housing. The manufacturing process includes various techniques and electrode material selections, including manufacturing processes that enable high energy discharge capacitors to be made in compliant shapes to fit in small ICD footprints.

Description

    FIELD OF THE INVENTION
  • An energy storage and delivery component for an implantable medical device having component external features which are conformal to surrounding components or housing in the medical device. [0001]
  • BACKGROUND OF THE INVENTION
  • Implantable Cardioverter Defibrillators (ICD's) have decreased substantially in volume in recent years, but are still larger than desirable. The high energy discharge capacitors that create the defibrillation pulse are typically the largest components in the device, normally at about 12 cubic centimeters for a 30 Joule device. In addition to small size, it is desirable for the ICD to have a curved profile for patient comfort. As the curved ICD shrinks in size, it becomes more and more necessary for internal components to also be curved to achieve a volume-efficient design. [0002]
  • Defibrillators with aluminum electrolytic capacitors that have a curved profile are currently in use. These capacitors have a “D”-shape which generally fits into the curved bottom or side of the defibrillator can. However, these capacitors are still larger than desirable, and are not likely to reach more than about 4-5 Joules per cubic centimeter in volumetric energy density. “D”-shaped tantalum capacitors for ICD's have also been reported. These capacitors are slightly higher in volumetric energy density than aluminum electrolytic capacitors, but they are much heavier. The weight of these are about 6 grams per cubic centimeter in a finished capacitor. [0003]
  • Another class of capacitors include those generally referred to as ceramic capacitors. Although within that general class there are different constructions, one of these includes the lead lanthanum zirconium titanate (PLZT) ceramic construction. PLZT ceramic capacitors may be useful as high energy discharge capacitors for implantable cardioverter defibrillators. These capacitors are capable of energy densities as high as about 7 Joules per cubic centimeter, compared to about 2.5 to 3 Joules per cubic centimeter that is currently available. [0004]
  • SUMMARY OF THE INVENTION
  • D-shaped capacitors such as the aluminum electrolytics and the tantalums have been manufactured with a straight edge perpendicular to the curve of the D, rather than with a compound radius such as in some batteries within implantable medical devices. Since it is highly desirable for the ICD to have a compound radius forming its outer housing, it is also desirable for the capacitor to have a compound radius so the radius space can be efficiently utilized. This may be accomplished with the present invention by using chip portions of the capacitor having graduated shapes and stacking or ranging the largest chips in the middle and the smallest on the outside. Alternatively, a further reduction in volume may be achieved by milling the edges of the chipped portions so that they are sloped rather than at a 90° or similar angle. [0005]
  • The three largest components in ICD's today are the capacitors, the battery, and the electronics module. The shapes that are possible with each of these components dictates which mechanical designs are feasible. With the current invention, there is greater flexibility of mechanical design for the capacitor, which in turn opens up new possibilities for ICD layout. In one example, a capacitor may be made with a step structure which may overlay another component such as a battery or electronics module. In another embodiment, in view of the capacitor being made of discrete chips having optional differences in sizes, it is not necessary to have the capacitor as a single large component. Rather, it is possible now with this technology to create a number of parts having different shapes and sizes which may be distributed throughout the device in spaces that are otherwise hard to utilize with other component shapes. [0006]
  • It is possible, therefore, to manufacturer an implantable cardioverter defibrillator having at least one capacitor by use of a process including the steps: of providing at least one print pattern for a capacitor to a tape casting and screen printing process; applying a first layer of electrode material onto portions of the print pattern; and creating a stack by applying at least one additional layer of electrode material onto portions of the print pattern after first reversing the print pattern by 180° between each layer application so that the rotation and applying steps creates adjacent terminals on the same side of the capacitor. [0007]
  • In another embodiment, a capacitor may be manufactured by following certain other steps. A plurality of print patterns is provided for at least one capacitor to a tape casting and screen printing process. A first layer of electrode material is then applied onto portions of the print patterns, and a plurality of stacks are created each having a plurality of layers forming chips by applying at least one additional layer of electrode material onto portions of the print patterns. The at least one additional layer is applied after first reversing the print patterns by 180° between each layer application so that the rotation and applying steps creates additional terminals on the same side of the capacitors. The stacks are then laminated at high pressure and a portion of at least one of the stacks is then removed in a manner which alters the shape of a portion of the at least one stack from the original print pattern. A cut line is located on the print pattern in each stack and the capacitor stacks are cut through the cut line between upper and lower surfaces to create portions of the pattern in which at least two chips have difference sizes or shapes. The chips are then processed in normal course, and are partially rotated and then assembled to form various chips as new full capacitor stacks in which the orientation of the portions is different than in the original portions and the shape of the new full capacitor stacks are different than in the initial print pattern. [0008]
  • The invention also includes an implantable cardioverter defibrillator device which comprises at least one capacitor for storing and delivering electrical energy on demand. The capacitor has at least a 30 Joule capacity and a volumetric energy density of at least about 5 Joules per cubic centimeter. The at least one capacitor has outer surfaces which conform and shape to adjacent components or housing walls, with the outer surfaces comprising a plurality of ceramic chips which do not all have the same aspect ratio.[0009]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a top plan view of a tape casting process bar having a plurality of print patterns shaped as capacitor shapes and with a first electrode material layer shown. [0010]
  • FIG. 2 is a top plan view of the bar of FIG. 1 after bar reversal and application of a second layer of electrode material. [0011]
  • FIG. 3 is a portion of the bar of FIG. 2. [0012]
  • FIG. 4 is a top plan view of two of the capacitor print patterns after cutting and at the commencement of re-orienting. [0013]
  • FIG. 5 is a top plan view of the portions of the cut stack shown in FIG. 4 in a re-oriented configuration. [0014]
  • FIG. 6 is a top plan view of the stacked portions of FIG. 5 combined in an overlaying fashion. [0015]
  • FIG. 7 is a perspective elevation view of a capacitor stack embodiment of the invention. [0016]
  • FIG. 8 is a schematic side elevation view of side surfaces of a capacitor manufactured according to at least one embodiment of this invention shown in conformal fit with a housing compound angle. [0017]
  • FIG. 9 is a top plan view of the capacitor depicted in FIG. 8.[0018]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The invention relates to improved manufacturing and packaging know-how, and techniques for optimizing the size of various implantable medical devices without diminishing the power capacity of those devices. In particular, this invention permits certain components to be manufactured in a way to optimize the packaging relating to curved surfaces of device housings and optimizing fit in and among other component shapes within the device. In one embodiment of this invention, ceramic capacitors are provided which are manufactured using various techniques and electrode material selections, but as a minimum including certain features of manufacturing and process steps which enable high energy discharge capacitors to be made in shapes that will allow them to fit in very small ICD footprints. Accordingly, the invention enables efficient manufacture of very small ceramic capacitors with curved or other shaped edges that provide more practicality to meet the demand of today's ever smaller and curved housing-shaped ICD's. The invention further enables manufacture of more complex shapes than are practical or possible in an aluminum electrolytic capacitor, which is housed in a metal can. For example, welding and assembly requirements limit the shapes possible for such a capacitor. In contrast, the individual chips formed using the processes enabled herein may be made into a wide variety of shapes and can be either joined together or dispersed throughout the device to use space most efficiently. [0019]
  • In one embodiment, the process for making such capacitors of the present invention involves a 180° reversal of the bar between prints of the metallic electrodes in order to make alternate layers of opposite polarity. As is known in the tape casting and screen printing industry, and as shown in FIG. 1, bar [0020] 10 comprises a medium upon which is placed a print pattern to guide the application of material during the subsequent process steps. In this example, print pattern 13 generally includes a plurality of capacitor-like shapes 17 forming part of the print pattern. In the process, the bar, upon which is a print pattern, is advanced through a process line to receive layers, including electrode material, on portions of the print pattern. The advancement may be along the direction arrow 21, which merely represents an exemplary direction for further reference.
  • In each capacitor shape [0021] 17, there is shown a border area 27 bounded within the double lines within which there is no metallic ink or electrode material that is printed and thereby has formed an insulating ceramic margin. It should be noted that although the shape 17 is generally that of a D-shape, the invention is not so limited to a specific shape. However, there is also shown a deep U-shaped area 33 (although again the shape is not as critical as the function) which is, in this embodiment, near the center portion of the to remain free of electrode material as well. As will be shown, the areas directly below the shape margin will facilitate formation of termination areas on a subsequently configured capacitor stack. Two of the capacitor shapes are labeled with numerals I′, II′, III′ and IV′. These generally depict half portions of specific capacitor shapes shown on the bar of FIG. 1, and will be useful for tracking the sequence of orienting these portions in subsequent figures. In FIG. 1, the rectangular shape having numerals I′/III′ has the U-shaped area opening towards the straight edge 48, whereas the capacitor shape having portions III′ and IV′ has U-shape opening towards the radius or non-linear surfaces 54. Lines 58 generally indicate that bar 10 has progressed through the processing to a point at which at least one layer of electrode material 58 has been applied to portions of the print pattern 13.
  • FIG. 2 illustrates bar [0022] 10 continuing to proceed in direction 21 through the processing line, however bar 10 has been reversed by 180° as can be seen by the orientation of newly designated capacitor shapes 1, II, III, and IV. It is recognized that process steps describing this bar reversal technique may be variously described. Also, it is contemplated that certain improvements might accrue to less than a 180° reversal. Regardless, as shown in FIG. 2, there is also then applied at least one additional layer of electrode material, shown here as lines 64. Once again, it is recognized that lines 58 and 64 are merely representative of layers applied to the designated portions of the print pattern of the bar. It is further understood that the term “layer” may comprise a wide array of layer depths and other characteristics of the electrode material, consistent with the functional requirements of the intended component and device. It is recognized that, in some embodiments, the term “layer” may have a wide meaning and may not comprise a symmetric coating in cross-section or density, volume, or location.
  • What is shown, therefore in FIGS. 1 and 2 is the creation of a capacitor stack in which a specific process includes providing the initial print pattern for at least one capacitor within a tape casting and screen printing process. Then, a first layer of electrode material [0023] 58 is applied on to portions of the print pattern 13. Finally, a stack is commenced by applying at least one additional layer 64 of electrode material onto portions of the print pattern after first reversing the print pattern by 180°, and continuing to implement such reversals of the bar between each layer application so that the rotation and applying steps creates adjacent terminals on the same side of the capacitor, once formed. In one embodiment, the layering process is repeated until about 20-50 layers are created. However, other amounts of layers are also contemplated within the scope of the invention. FIG. 3 depicts only a portion of the bar shown in FIG. 2 in which the two designated capacitor shapes 70, 71 are highlighted for illustration. FIG. 3 also identifies a cut line 83, which in this embodiment is also a center line of the pattern.
  • Several processes may be used for making ceramic capacitors. The present invention is adaptable to any of these processes. For example, a tape process may be implemented to construct the various elements of the present invention. This process uses wet slurry, which is cast on a belt of various materials, such as stainless steel or mylar, and the thickness of the cast tape is controlled by a doctor blade, viscosity and speed control device or equivalent. Specifically, a wet film is cast on a belt, processed through a drying oven or chamber to remove solvents within the slurry to produce a thin film or ceramic material. The ceramic is held together with a binder and may have a thickness ranging from a few microns to several thousands. The cast tape can be of different widths, depending upon subsequent printing equipment. The cast tapes may be removed from the belt carrier or can remain on the belt as it is processed through the printing stage. Subsequently, a print pattern is screened or applied to the cast tape by various means, but the result is always a printed pattern that eventually makes up a capacitor. After the cast tape is printed, another piece of dried cast tape is placed on top of the printed pattern and another pattern is applied to the surface of the tape. This process is repeated as many times as needed to build the desired capacitor and the predetermined capacitance value. After the stack is completed, a thermal compression method (lamination) is performed to form a relatively solid block and prevent the stack from coming apart at the tape interfaces. Since the cast tape printed patterns are generally more than one per tape section, cutting or singulation is required. [0024]
  • Yet another process that may be used is a wet process. This process is also referred to as wet cast, wet printing and/or waterfall process. These processes are essentially the same or similar to the dry tape process in that a film of wet ceramic is deposited on a carrier. The deposition can be wet cast, similar to the dry tape process, wet printed through a stainless steel screen or flowed. The wet film is dried similar to the tape process. A metal pattern is then deposited on the dried film. Instead of placing another dried section of tape on the printed layer, another wet film is deposited directly on the first printed wet film that has been dried. Thereafter, the second film is dried, printed upon or has a print deposited upon it. The print is dried, and the process repeated for as many times as required. No lamination is needed under the wet process. Similar to the tape process, cutting or singulation is needed. [0025]
  • In one embodiment, it is then desirable to take the configurations of FIG. 3 and cut or otherwise remove them from the bar. The result will be a plurality of stacks of capacitor shapes (with the areas [0026] 33 also removed) which may then be configured for further processing, such as lamination at high pressure. One or more stacks may then be processed further according to the invention. FIG. 4 illustrates an example of the two stacks of FIG. 3 which are being prepared for re-orientation of the portions labeled 1, 11, 111, and IV. As shown in FIG. 4, a separation or cut along cut lines 83 was made resulting in creation of, in this embodiment, two half portions for each of the capacitor stacks 70, 71. These half portions are then rotated in the direction of lines 91, 93. The earlier bar rotation of 180° enabled creation of opposing terminals 101 configured adjacent to each other on the same side of the capacitor stack. This is an improvement over prior known technologies in that it obviates the need for creation of terminals on opposite sides as in conventional ceramic capacitors. It is recognized that, in certain embodiments, the portions shown in FIG. 4 are further processed according to well known techniques relating to binder burnout, firing, termination, burn-in, and acceptance testing. However, the rotation step shown in FIG. 4 is then implemented and completed as shown in FIG. 5 to form newly oriented half portions comprising newly shaped capacitor stacks 110, 111. These stacks have terminations 101 configured as shown, and which then will be further combined in various manner, such as for example that shown in FIG. 6. The half portions (or in asymmetrically configured cuts in alternate embodiments, the portions that result from the cut) are then glued together or otherwise joined, for example by use of epoxy or other suitable material. The joining occurs at the flat, non-terminated edges 115, 116, which results in the terminations being configured at a plurality of locations on the stack. In the embodiment shown in FIGS. 4-6, the particular cut line and particular shape of area 33 results in terminations being configured along generally the same side of a resulting capacitor stack, such as combination stack 125, shown in FIG. 6. Combination stack 125 is simply the combination of smaller stack portions, for example chips represented as shown in FIG. 5 by stacks 110, 111 which are then overlaid into a combined stack 125. As shown in FIG. 6, the two terminals forming the center portion along edge 131 may be utilized for one polarity, and the two terminals at the outside of edge 131 will be joined to make the other polarity.
  • FIG. 7 is a perspective elevation view of a schematic depiction of a capacitor stack [0027] 125 substantially as shown and described in relation to FIG. 6. Although FIG. 7 illustrates a novel complex shape which provides improved efficiencies for capacitor and component level manufacturing, FIG. 7 depicts a generally uniformly shaped arrangement of stacked chips 144 within the capacitor stack. It may be desirable to utilize different cut lines as well as different techniques for removing or re-shaping portions of chips within the capacitor stack during the processing in order to result in a more complex shape of capacitor stack. This would enable yet further improvements in packaging such stacks in relation to the compound radius or irregular shapes of device housings, such as shown in FIG. 8, and which will be further described below, as well as for packaging more efficiently in relation to other components within a device. For example, aspect ratios of capacitors and other components formed according to this technology may have one or more notches, steps, or other shapes creating compound aspect ratios. FIG. 8 is a schematic side elevation view of capacitor 156 having outer surfaces 159, 161, 163, 165, 167 and other similar surfaces. These are formed, for example, using the methods and techniques disclosed herein to create a complex outer shape which is customizable for improved fit within the shape of housing 184 or other adjacent structure. FIG. 9 is a top plan schematic view of capacitor 156 illustrating the multiple surfaces formed by milling or other processes as disclosed or suggested herein.
  • In addition to improved space efficiency for packaging purposes, it is also possible to utilize this technology to create efficient stacking structures that enable improved utilization of multiple capacitor components and/or capacitors distributed throughout the device, rather than in a single location or block, and provide improved packaging efficiency over current multiple capacitor configurations. The technology also enables use of capacitor chips on flexible tape to realize further efficiencies in the manufacturing and assembly processes. What is provided, therefore, is a novel technology which, through certain processes, produces capacitors with outer surfaces that do not all have the same aspect ratio. When used in an implantable cardioverter defibrillator or other energy demanding devices, such capacitors enable improved packaging efficiencies as well as improved configurations of where connections may be designed, other than at a single faceplate location. This enables improved design and packaging to achieve smaller yet powerful devices suitable for all patient needs. In one embodiment, an implantable cardioverter defibrillator device is provided which has at least one capacitor for storing and delivering electrical energy on demand. The capacitor has at least a 30 Joule capacity and a volumetric energy density of at least about 5 Joules per cubic centimeter. The at least one capacitor has outer surfaces which conform in shape to adjacent components or housing walls. The outer surfaces comprise a plurality of ceramic chips or similar structure which may include at least two chips having a different shape or aspect ratio. The device volume of the above implantable cardioverter defibrillator may also be less than about 5 cubic centimeters. [0028]
  • Thus, embodiments of a complex shaped ceramic capacitor are disclosed. One skilled in the art will appreciate that the present invention can be practiced with embodiments other than those disclosed. For example, the capacitor may be formed in an assembly of a plurality of sub-component layers or chips, or by other means of forming different shapes. The disclosed embodiments are presented for purposes of illustration and not limitation, and the present invention is limited only by the claims that follow. [0029]

Claims (23)

    What is claimed is:
  1. 1. An implantable cardioverter defibrillator having at least one capacitor manufactured by a process including the following method steps:
    a. providing at least one print pattern for a capacitor to a tape casting and screen printing process;
    b. applying a first layer of electrode material onto portions of the print pattern; and
    c. creating a stack by applying at least one additional layer of electrode material onto portions of the print pattern after first reversing the print pattern by 180° between each layer application so that the rotation and applying steps creates adjacent terminals on the same side of the capacitor.
  2. 2. The method of claim 1, further comprising the step of laminating the stack at high pressure.
  3. 3. The method of claim 2, further comprising the step of removing a portion of the stack comprising at least one print pattern of a capacitor forming a capacitor stack.
  4. 4. The method of claim 3, further comprising the step of cutting the capacitor stack into at least two parts.
  5. 5. The method of claim 4, further comprising the steps of locating the center of the print pattern and cutting the capacitor stack in half through the center of the stack between upper and lower surfaces to create half portions.
  6. 6. The method of claim 1, in which the step of providing the at least one print pattern includes creating a generally U-shaped area along a centerline of the pattern in which no electrode is material is applied.
  7. 7. The method of claim 5, in which the step of providing the at least one print pattern includes creating a generally D-shaped print pattern with a generally U-shaped area along a centerline of the pattern in which no electrode is material is applied.
  8. 8. The method of claim 5, in which the half portion of the stacks are then processed, joined, partially rotated and then reassembled to form new full D-shaped capacitor stacks in which the orientation of the half portions is different than in the original half portions.
  9. 9. A capacitor manufactured by a process including the following method steps:
    a. providing at least one print pattern for a capacitor to a tape casting and screen printing process;
    b. applying a first layer of electrode material onto portions of the print pattern; and
    c. creating a stack by applying at least one additional layer of electrode material onto portions of the print pattern after first reversing the print pattern by 180° between each layer application so that the rotation and applying steps creates adjacent terminals on the same side of the capacitor.
  10. 10. The method of claim 9, further comprising the step of laminating the stack at high pressure.
  11. 11. The method of claim 10, further comprising the step of removing a portion of the stack comprising at least one print pattern of a capacitor forming a capacitor stack.
  12. 12. The method of claim 11, further comprising the step of cutting the capacitor stack into at least two parts.
  13. 13. The method of claim 12, further comprising the steps of locating the center of the print pattern and cutting the capacitor stack in half through the center of the stack between upper and lower surfaces to create half portions.
  14. 14. The method of claim 9, in which the step of providing the at least one print pattern includes creating a generally U-shaped area along a centerline of the pattern in which no electrode is material is applied.
  15. 15. The method of claim 13, in which the step of providing the at least one print pattern includes creating a generally D-shaped print pattern with a generally U-shaped area along a centerline of the pattern in which no electrode is material is applied.
  16. 16. The method of claim 13, in which the half portion of the stacks are then processed, joined, partially rotated and then reassembled to form new full D-shaped capacitor stacks in which the orientation of the half portions is different than in the original half portions.
  17. 17. A capacitor manufactured by a process including the following method steps:
    a. providing a plurality of print patterns for at least one capacitor to a tape casting and screen printing process;
    b. applying a first layer of electrode material onto portions of the print patterns;
    c. creating a plurality of stacks each having a plurality of layers forming chips by applying at least one additional layer of electrode material onto portions of the print patterns after first reversing the print patterns by 180° between each layer application so that the rotation and applying steps creates adjacent terminals on the same side of the capacitors;
    d. laminating the stacks at high pressure;
    e. removing a portion of at least one of the stacks in a manner which alters the shape of a portion of the at least one stack from the original print pattern;
    f. locating a cut line on the print pattern in each stack and cutting the capacitor stacks through the cut line between upper and lower surfaces to create portions of the pattern in which at least two chips have different sizes; and
    g. processing the chips, and partially rotating at least some of the chips and then assembling various chips to form new full capacitor stacks in which the orientation of the portions is different than in the original portions and the shape of the new full capacitor stacks are different than in the initial print pattern.
  18. 18. The capacitor of claim 17, in which the shape of the new full capacitor stacks includes compound surfaces shaped for conformal fit with another component or housing.
  19. 19. An implantable cardioverter defibrillator comprising at least one capacitor with outer surfaces which conform in shape to adjacent components or housing walls, said outer surfaces comprising a plurality of ceramic chips which do not all have the same aspect ratio.
  20. 20. An implantable cardioverter defibrillator device comprising:
    a. at least one capacitor for storing and delivering electrical energy on demand, the capacitor having at least a 30 Joule capacity and a volumetric energy density of at least about 5 Joules/cubic centimeter; and
    b. said at least one capacitor has outer surfaces which conform in shape to adjacent components or housing walls, said outer surfaces comprising a plurality of ceramic chips which do not all have the same aspect ratio.
  21. 21. The device of claim 20 in which the device volume is less than about 5 cubic centimeters.
  22. 22. A tape process method of manufacture for a capacitor for use in implantable medical devices, the method comprising:
    casting a wet film for casting tape on a surface;
    forming a desired thickness of the film;
    drying the film;
    applying a print pattern to the film; and
    forming a stack having lenticular layers to build the capacitor of a desired capacitance value.
  23. 23. The method of claim 22 wherein one of a wet cast, wet printing and waterfall process is used in lieu of the tape process.
US10426680 2003-04-30 2003-04-30 Complex-shaped ceramic capacitors for implantable cardioverter defibrillators and method of manufacture Abandoned US20040220627A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10426680 US20040220627A1 (en) 2003-04-30 2003-04-30 Complex-shaped ceramic capacitors for implantable cardioverter defibrillators and method of manufacture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10426680 US20040220627A1 (en) 2003-04-30 2003-04-30 Complex-shaped ceramic capacitors for implantable cardioverter defibrillators and method of manufacture
US11348681 US7570996B2 (en) 2003-04-30 2006-02-07 Complex-shaped ceramic capacitors for implantable cardioverter defibrillators and method of manufacture

Publications (1)

Publication Number Publication Date
US20040220627A1 true true US20040220627A1 (en) 2004-11-04

Family

ID=33309931

Family Applications (2)

Application Number Title Priority Date Filing Date
US10426680 Abandoned US20040220627A1 (en) 2003-04-30 2003-04-30 Complex-shaped ceramic capacitors for implantable cardioverter defibrillators and method of manufacture
US11348681 Expired - Fee Related US7570996B2 (en) 2003-04-30 2006-02-07 Complex-shaped ceramic capacitors for implantable cardioverter defibrillators and method of manufacture

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11348681 Expired - Fee Related US7570996B2 (en) 2003-04-30 2006-02-07 Complex-shaped ceramic capacitors for implantable cardioverter defibrillators and method of manufacture

Country Status (1)

Country Link
US (2) US20040220627A1 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040147961A1 (en) * 2000-11-03 2004-07-29 Cardiac Pacemakers, Inc. Flat capacitor for an implantable medical device
US20060012943A1 (en) * 2004-07-16 2006-01-19 Cardiac Pacemakers, Inc. Method and apparatus for connecting electrodes having apertures
US20060011963A1 (en) * 2004-07-16 2006-01-19 Cardiac Pacemakers, Inc. Method and apparatus for interconnecting electrodes with partial titanium coating
US20060012942A1 (en) * 2004-07-16 2006-01-19 Cardiac Pacemakers, Inc. Capacitor with single sided partial etch and stake
US20060012945A1 (en) * 2004-07-16 2006-01-19 Cardiac Pacemakers, Inc. Method and apparatus for a capacitor shell including two mateable cupped components
US20060023396A1 (en) * 2004-07-16 2006-02-02 Cardiac Pacemakers, Inc. Method and apparatus for capacitor interconnection using a metal spray
US20060061938A1 (en) * 2004-07-16 2006-03-23 Cardiac Pacemakers, Inc. Method and apparatus for insulative film for capacitor components
US20060107506A1 (en) * 2004-11-24 2006-05-25 Cardiac Pacemakers, Inc. Method and apparatus for providing flexible partially etched capacitor electrode interconnect
US20060178019A1 (en) * 2002-08-18 2006-08-10 Aviza Technology, Inc. Low temperature deposition of silicon oxides and oxynitrides
US20060238959A1 (en) * 2005-04-22 2006-10-26 Cardiac Pacemakers, Inc. Method and apparatus for connecting electrodes having apertures
US20060247715A1 (en) * 2005-04-29 2006-11-02 Youker Nick A Method and apparatus for an implantable pulse generator with a stacked battery and capacitor
US20060249774A1 (en) * 2005-05-09 2006-11-09 Cardiac Pacemakers, Inc. Capacitor with flexible bus
US20060250752A1 (en) * 2005-05-09 2006-11-09 Cardiac Pacemakers, Inc. Method and apparatus for electrically isolating capacitor electrodes using separator
US20060256501A1 (en) * 2005-04-22 2006-11-16 Poplett James M Method and apparatus for connecting capacitor electrodes
US20060279907A1 (en) * 2005-05-09 2006-12-14 Cardiac Pacemakers, Inc. Method and apparatus for a capacitor shell including two mateable cupped components
US20070014077A1 (en) * 2005-05-09 2007-01-18 Cardiac Pacemakers, Inc. Method and apparatus for electrically connecting capacitor electrodes using a spray
US20080091246A1 (en) * 2006-08-28 2008-04-17 Carey Bart A Implantable pulse generator with a stacked capacitor, battery, and electronics
US7456077B2 (en) 2000-11-03 2008-11-25 Cardiac Pacemakers, Inc. Method for interconnecting anodes and cathodes in a flat capacitor
US7564677B2 (en) 2005-04-22 2009-07-21 Cardiac Pacemakers, Inc. Method and apparatus for a spacer for an electrode layer gap in a power source
US8133286B2 (en) 2004-07-16 2012-03-13 Cardiac Pacemakers, Inc. Method and apparatus for high voltage aluminum capacitor design
US8451587B2 (en) 2000-11-03 2013-05-28 Cardiac Pacemakers, Inc. Method for interconnecting anodes and cathodes in a flat capacitor
US8543201B2 (en) 2000-11-03 2013-09-24 Cardiac Pacemakers, Inc. Flat capacitor having staked foils and edge-connected connection members
US8593816B2 (en) 2011-09-21 2013-11-26 Medtronic, Inc. Compact connector assembly for implantable medical device
US8619408B2 (en) 2009-12-18 2013-12-31 Cardiac Pacemakers, Inc. Sintered capacitor electrode including a folded connection
US9572993B2 (en) 2011-01-26 2017-02-21 Medtronic, Inc. Implantable medical devices and related connector enclosure assemblies utilizing conductors electrically coupled to feedthrough pins
US10032565B2 (en) 2016-11-23 2018-07-24 Cardiac Pacemakers, Inc. Flat capacitor for an implantable medical device

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2013135445A (en) 2010-12-31 2015-02-10 Сэнт-Гобэн Керамикс Энд Пластикс, Инк. The abrasive article (variants) and the method of molding
US8974949B2 (en) 2011-04-07 2015-03-10 Cardiac Pacemakers, Inc. Electrical insulator shaped to conform to power source electrodes
US8986409B2 (en) 2011-06-30 2015-03-24 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particles of silicon nitride
WO2013003831A3 (en) 2011-06-30 2013-02-21 Saint-Gobain Ceramics & Plastics, Inc. Liquid phase sintered silicon carbide abrasive particles
CA2850147A1 (en) 2011-09-26 2013-04-04 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particulate materials, coated abrasives using the abrasive particulate materials and methods of forming
JP6033886B2 (en) 2011-12-30 2016-11-30 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド A method of forming a shaped abrasive particles and the particles
WO2013102176A4 (en) 2011-12-30 2013-08-29 Saint-Gobain Ceramics & Plastics, Inc. Forming shaped abrasive particles
EP2797716A4 (en) 2011-12-30 2016-04-20 Saint Gobain Ceramics Composite shaped abrasive particles and method of forming same
EP2802436A4 (en) 2012-01-10 2016-04-27 Saint Gobain Ceramics&Plastics Inc Abrasive particles having complex shapes and methods of forming same
US8840696B2 (en) 2012-01-10 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9242346B2 (en) 2012-03-30 2016-01-26 Saint-Gobain Abrasives, Inc. Abrasive products having fibrillated fibers
WO2013177446A1 (en) 2012-05-23 2013-11-28 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
CN108015685A (en) 2012-10-15 2018-05-11 圣戈班磨料磨具有限公司 Abrasive grains having a particular shape
WO2014106173A9 (en) 2012-12-31 2014-10-16 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
WO2014161001A1 (en) 2013-03-29 2014-10-02 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
WO2014210532A1 (en) 2013-06-28 2014-12-31 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
EP3052270A4 (en) 2013-09-30 2017-05-03 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
JP6290428B2 (en) 2013-12-31 2018-03-07 サンーゴバン アブレイシブズ,インコーポレイティド Abrasive article comprising shaped abrasive particles
US9771507B2 (en) 2014-01-31 2017-09-26 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
WO2015160855A1 (en) 2014-04-14 2015-10-22 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US9902045B2 (en) 2014-05-30 2018-02-27 Saint-Gobain Abrasives, Inc. Method of using an abrasive article including shaped abrasive particles
US9914864B2 (en) 2014-12-23 2018-03-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US9707529B2 (en) 2014-12-23 2017-07-18 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
US9676981B2 (en) 2014-12-24 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle fractions and method of forming same
US9938440B2 (en) 2015-03-31 2018-04-10 Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs Fixed abrasive articles and methods of forming same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US65539A (en) * 1867-06-11 of budd s lake
US5545184A (en) * 1995-04-19 1996-08-13 The Penn State Research Foundation Cardiac defibrillator with high energy storage antiferroelectric capacitor
US5758398A (en) * 1995-06-27 1998-06-02 U.S. Philips Corporation Method of manufacturing multilayer electronic components
US5814082A (en) * 1997-04-23 1998-09-29 Pacesetter, Inc. Layered capacitor with alignment elements for an implantable cardiac defibrillator
US5983472A (en) * 1997-11-12 1999-11-16 Pacesetter, Inc. Capacitor for an implantable cardiac defibrillator
US6104598A (en) * 1999-07-28 2000-08-15 Delaware Capital Formation, Inc. Free form capacitor
US6169925B1 (en) * 1999-04-30 2001-01-02 Medtronic, Inc. Telemetry system for implantable medical devices
US6240317B1 (en) * 1999-04-30 2001-05-29 Medtronic, Inc. Telemetry system for implantable medical devices
US20020065539A1 (en) * 2000-11-30 2002-05-30 Von Arx Jeffrey A. Telemetry apparatus and method for an implantable medical device
US6456256B1 (en) * 2001-08-03 2002-09-24 Cardiac Pacemakers, Inc. Circumferential antenna for an implantable medical device
US6522525B1 (en) * 2000-11-03 2003-02-18 Cardiac Pacemakers, Inc. Implantable heart monitors having flat capacitors with curved profiles

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3815187A (en) * 1972-07-12 1974-06-11 Union Carbide Corp Process for making ceramic capacitors
US4991283A (en) * 1989-11-27 1991-02-12 Johnson Gary W Sensor elements in multilayer ceramic tape structures
US5317919A (en) * 1992-06-16 1994-06-07 Teledyne Industries, Inc. A precision capacitor sensor
US6345434B1 (en) * 1998-07-06 2002-02-12 Tdk Corporation Process of manufacturing an inductor device with stacked coil pattern units

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US65539A (en) * 1867-06-11 of budd s lake
US5545184A (en) * 1995-04-19 1996-08-13 The Penn State Research Foundation Cardiac defibrillator with high energy storage antiferroelectric capacitor
US5758398A (en) * 1995-06-27 1998-06-02 U.S. Philips Corporation Method of manufacturing multilayer electronic components
US5814082A (en) * 1997-04-23 1998-09-29 Pacesetter, Inc. Layered capacitor with alignment elements for an implantable cardiac defibrillator
US5983472A (en) * 1997-11-12 1999-11-16 Pacesetter, Inc. Capacitor for an implantable cardiac defibrillator
US6169925B1 (en) * 1999-04-30 2001-01-02 Medtronic, Inc. Telemetry system for implantable medical devices
US6240317B1 (en) * 1999-04-30 2001-05-29 Medtronic, Inc. Telemetry system for implantable medical devices
US6104598A (en) * 1999-07-28 2000-08-15 Delaware Capital Formation, Inc. Free form capacitor
US6522525B1 (en) * 2000-11-03 2003-02-18 Cardiac Pacemakers, Inc. Implantable heart monitors having flat capacitors with curved profiles
US20020065539A1 (en) * 2000-11-30 2002-05-30 Von Arx Jeffrey A. Telemetry apparatus and method for an implantable medical device
US6456256B1 (en) * 2001-08-03 2002-09-24 Cardiac Pacemakers, Inc. Circumferential antenna for an implantable medical device

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040147961A1 (en) * 2000-11-03 2004-07-29 Cardiac Pacemakers, Inc. Flat capacitor for an implantable medical device
US7456077B2 (en) 2000-11-03 2008-11-25 Cardiac Pacemakers, Inc. Method for interconnecting anodes and cathodes in a flat capacitor
US8451587B2 (en) 2000-11-03 2013-05-28 Cardiac Pacemakers, Inc. Method for interconnecting anodes and cathodes in a flat capacitor
US8543201B2 (en) 2000-11-03 2013-09-24 Cardiac Pacemakers, Inc. Flat capacitor having staked foils and edge-connected connection members
US8744575B2 (en) 2000-11-03 2014-06-03 Cardiac Pacemakers, Inc. Flat capacitor for an implantable medical device
US9443660B2 (en) 2000-11-03 2016-09-13 Cardiac Pacemakers, Inc. Flat capacitor for an implantable medical device
US20060178019A1 (en) * 2002-08-18 2006-08-10 Aviza Technology, Inc. Low temperature deposition of silicon oxides and oxynitrides
US20080155800A1 (en) * 2004-07-16 2008-07-03 Cardiac Pacemakers, Inc.. Method and apparatus for interconnecting electrodes with partial titanium coating
US7075777B2 (en) 2004-07-16 2006-07-11 Cardiac Pacemakers, Inc. Method and apparatus for a capacitor shell including two mateable cupped components
US20060061938A1 (en) * 2004-07-16 2006-03-23 Cardiac Pacemakers, Inc. Method and apparatus for insulative film for capacitor components
US7092241B2 (en) 2004-07-16 2006-08-15 Cardiac Pacemakers, Inc. Method and apparatus for connecting electrodes having apertures
US7120008B2 (en) 2004-07-16 2006-10-10 Cardiac Pacemakers, Inc. Method and apparatus for capacitor interconnection using a metal spray
US7682921B2 (en) 2004-07-16 2010-03-23 Cardiac Pacemakers, Inc. Method and apparatus for interconnecting electrodes with partial titanium coating
US20060023396A1 (en) * 2004-07-16 2006-02-02 Cardiac Pacemakers, Inc. Method and apparatus for capacitor interconnection using a metal spray
US20060012945A1 (en) * 2004-07-16 2006-01-19 Cardiac Pacemakers, Inc. Method and apparatus for a capacitor shell including two mateable cupped components
US20060012942A1 (en) * 2004-07-16 2006-01-19 Cardiac Pacemakers, Inc. Capacitor with single sided partial etch and stake
US7532456B2 (en) 2004-07-16 2009-05-12 Cardiac Pacemakers, Inc. Method and apparatus for a partially etched capacitor layer including a connection member
US8465555B2 (en) 2004-07-16 2013-06-18 Cardiac Pacemakers, Inc. Method and apparatus for high voltage aluminum capacitor design
US20060011963A1 (en) * 2004-07-16 2006-01-19 Cardiac Pacemakers, Inc. Method and apparatus for interconnecting electrodes with partial titanium coating
US7180727B2 (en) 2004-07-16 2007-02-20 Cardiac Pacemakers, Inc. Capacitor with single sided partial etch and stake
US8133286B2 (en) 2004-07-16 2012-03-13 Cardiac Pacemakers, Inc. Method and apparatus for high voltage aluminum capacitor design
US20060012943A1 (en) * 2004-07-16 2006-01-19 Cardiac Pacemakers, Inc. Method and apparatus for connecting electrodes having apertures
US7846217B2 (en) 2004-07-16 2010-12-07 Cardiac Pacemakers, Inc. Method for a partially etched capacitor layer including a connection member
US7352560B2 (en) 2004-07-16 2008-04-01 Cardiac Pacemakers, Inc. Method and apparatus for interconnecting electrodes with partial titanium coating
US7426104B2 (en) 2004-07-16 2008-09-16 Cardiac Pacemakers, Inc. Method and apparatus for insulative film for capacitor components
US7768772B2 (en) 2004-11-24 2010-08-03 Cardiac Pacemakers, Inc. Method and apparatus for providing flexible partially etched capacitor electrode interconnect
US20090002922A1 (en) * 2004-11-24 2009-01-01 Cardiac Pacemakers, Inc. Method and apparatus for providing flexible partially etched capacitor electrode interconnect
US7419873B2 (en) 2004-11-24 2008-09-02 Cardiac Pacemakers, Inc. Method and apparatus for providing flexible partially etched capacitor electrode interconnect
US20060107506A1 (en) * 2004-11-24 2006-05-25 Cardiac Pacemakers, Inc. Method and apparatus for providing flexible partially etched capacitor electrode interconnect
US7564677B2 (en) 2005-04-22 2009-07-21 Cardiac Pacemakers, Inc. Method and apparatus for a spacer for an electrode layer gap in a power source
US20090257172A1 (en) * 2005-04-22 2009-10-15 Poplett James M Spacer for an electrode layer gap in a power source
US7327557B2 (en) 2005-04-22 2008-02-05 Cardiac Pacemakers, Inc. Method and apparatus for connecting capacitor electrodes
US7443652B2 (en) 2005-04-22 2008-10-28 Cardiac Pacemakers, Inc. Method and apparatus for connecting electrodes having apertures
US7872857B2 (en) 2005-04-22 2011-01-18 Cardiac Pacemakers, Inc. Spacer for an electrode layer gap in a power source
US20060256501A1 (en) * 2005-04-22 2006-11-16 Poplett James M Method and apparatus for connecting capacitor electrodes
US20060238959A1 (en) * 2005-04-22 2006-10-26 Cardiac Pacemakers, Inc. Method and apparatus for connecting electrodes having apertures
US20090044404A1 (en) * 2005-04-22 2009-02-19 Cardiac Pacemakers, Inc. Method for connecting electrodes having apertures
US7963999B2 (en) 2005-04-22 2011-06-21 Cardiac Pacemakers, Inc. Method for connecting electrodes having apertures
US20060247715A1 (en) * 2005-04-29 2006-11-02 Youker Nick A Method and apparatus for an implantable pulse generator with a stacked battery and capacitor
US8406882B2 (en) 2005-04-29 2013-03-26 Cardiac Pacemakers, Inc. Implantable pulse generator with a stacked battery and capacitor
US8055346B2 (en) 2005-04-29 2011-11-08 Cardiac Pacemakers, Inc. Implantable pulse generator with a stacked battery and capacitor
US20090025207A1 (en) * 2005-04-29 2009-01-29 Cardiac Pacemakers, Inc. Method and apparatus for an implantable pulse generator with a stacked battery and capacitor
US20110160812A1 (en) * 2005-04-29 2011-06-30 Youker Nick A Implantable pulse generator with a stacked battery and capacitor
US7917207B2 (en) * 2005-04-29 2011-03-29 Cardiac Pacemakers, Inc. Method and apparatus for an implantable pulse generator with a stacked battery and capacitor
US20060249774A1 (en) * 2005-05-09 2006-11-09 Cardiac Pacemakers, Inc. Capacitor with flexible bus
US7699899B2 (en) 2005-05-09 2010-04-20 Cardiac Pacemakers, Inc. Method for insulative film for capacitor components
US7722683B2 (en) 2005-05-09 2010-05-25 Cardiac Pacemakers, Inc. Method and apparatus for a capacitor shell including two mateable cupped components
US20100155362A1 (en) * 2005-05-09 2010-06-24 Poplett James M Method and apparatus for interconnecting electrodes with partial titanium coating
US7327552B2 (en) 2005-05-09 2008-02-05 Cardiac Pacemakers, Inc. Method and apparatus for electrically connecting capacitor electrodes using a spray
US20100234911A1 (en) * 2005-05-09 2010-09-16 Brian Doffing Method and apparatus for a capacitor shell including two mateable cupped components
US7301753B2 (en) 2005-05-09 2007-11-27 Cardiac Pacemakers, Inc. Method and apparatus for a capacitor with flexible bus
US20070159768A1 (en) * 2005-05-09 2007-07-12 Cardiac Pacemakers, Inc. Method and apparatus for electrically isolating capacitor electrodes using separator
US7355840B2 (en) 2005-05-09 2008-04-08 Cardiac Pacemakers, Inc. Method and apparatus for a capacitor shell including two mateable cupped components
US8870973B2 (en) 2005-05-09 2014-10-28 Cardiac Pacemakers, Inc. Method and apparatus for a capacitor shell including two mateable cupped components
US7656646B2 (en) 2005-05-09 2010-02-02 Cardiac Pacemakers, Inc. Method and apparatus for a capacitor with a flexible interconnect
US8012222B2 (en) 2005-05-09 2011-09-06 Cardiac Pacemakers, Inc. Method and apparatus for interconnecting electrodes with partial titanium coating
US20080172851A1 (en) * 2005-05-09 2008-07-24 Cardiac Pacemakers, Inc. Method and apparatus for a capacitor shell including two mateable cupped components
US7206191B2 (en) 2005-05-09 2007-04-17 Cardiac Pacemakers, Inc. Method and apparatus for electrically isolating capacitor electrodes using separator
US8174818B2 (en) 2005-05-09 2012-05-08 Cardiac Pacemakers, Inc. Method for a capacitor with a flexible interconnect
US7554791B2 (en) 2005-05-09 2009-06-30 Cardiac Pacemakers, Inc. Method and apparatus for electrically isolating capacitor electrodes using separator
US20070014077A1 (en) * 2005-05-09 2007-01-18 Cardiac Pacemakers, Inc. Method and apparatus for electrically connecting capacitor electrodes using a spray
US20060279907A1 (en) * 2005-05-09 2006-12-14 Cardiac Pacemakers, Inc. Method and apparatus for a capacitor shell including two mateable cupped components
US20060250752A1 (en) * 2005-05-09 2006-11-09 Cardiac Pacemakers, Inc. Method and apparatus for electrically isolating capacitor electrodes using separator
US20090000090A1 (en) * 2005-05-09 2009-01-01 Cardiac Pacemakers, Inc. Method for insulative film for capacitor components
US20100095496A1 (en) * 2005-05-09 2010-04-22 Sherwood Gregory J Method for a capacitor with a flexible interconnect
US8874214B2 (en) 2006-08-28 2014-10-28 Cardiac Pacemakers, Inc. Implantable pulse generator with a stacked capacitor, battery, and electronics
US20080091246A1 (en) * 2006-08-28 2008-04-17 Carey Bart A Implantable pulse generator with a stacked capacitor, battery, and electronics
US8619408B2 (en) 2009-12-18 2013-12-31 Cardiac Pacemakers, Inc. Sintered capacitor electrode including a folded connection
US9572993B2 (en) 2011-01-26 2017-02-21 Medtronic, Inc. Implantable medical devices and related connector enclosure assemblies utilizing conductors electrically coupled to feedthrough pins
US9597518B2 (en) 2011-01-26 2017-03-21 Medtronic, Inc. Implantable medical devices and related connector enclosure assemblies utilizing conductors electrically coupled to feedthrough pins
US8593816B2 (en) 2011-09-21 2013-11-26 Medtronic, Inc. Compact connector assembly for implantable medical device
US10032565B2 (en) 2016-11-23 2018-07-24 Cardiac Pacemakers, Inc. Flat capacitor for an implantable medical device

Also Published As

Publication number Publication date Type
US20060126265A1 (en) 2006-06-15 application
US7570996B2 (en) 2009-08-04 grant

Similar Documents

Publication Publication Date Title
US5660737A (en) Process for making a capacitor foil with enhanced surface area
US6423449B1 (en) Lithium secondary cell and method of fabricating the same
US5963418A (en) Multiple anode high energy density electrolytic capacitor
US5749911A (en) Implantable tissue stimulator incorporating deposited multilayer capacitor
US7342774B2 (en) Advanced valve metal anodes with complex interior and surface features and methods for processing same
US20080208289A1 (en) Feedthrough for electrical connectors
US5711988A (en) Energy storage device and its methods of manufacture
US6922330B2 (en) Implantable medical device having flat electrolytic capacitor fabricated with laser welded anode sheets
EP1113511A1 (en) Lithium secondary cell and its producing method
US6343004B1 (en) Solid electrolytic capacitor
US7224575B2 (en) Method and apparatus for high voltage aluminum capacitor design
US6709946B2 (en) Method for interconnecting anodes and cathodes in a flat capacitor
US20060107506A1 (en) Method and apparatus for providing flexible partially etched capacitor electrode interconnect
US20080091246A1 (en) Implantable pulse generator with a stacked capacitor, battery, and electronics
US6763265B2 (en) Method of constructing a capacitor stack for a flat capacitor
US5922215A (en) Method for making anode foil for layered electrolytic capacitor and capacitor made therewith
US5800857A (en) Energy storage device and methods of manufacture
US6377442B1 (en) Floating anode DC electrolytic capacitor
US7180727B2 (en) Capacitor with single sided partial etch and stake
US6678559B1 (en) Implantable medical device having a capacitor assembly with liner
US20080032473A1 (en) Method and apparatus for charging partitioned capacitors
US6512666B1 (en) High current filter feed-through capacitor
US6687118B1 (en) Flat capacitor having staked foils and edge-connected connection members
US6836683B2 (en) Implantable medical device having flat electrolytic capacitor fabricated with expansion riveted anode sheets
JP2001351688A (en) Complex element of cell and capacitor

Legal Events

Date Code Title Description
AS Assignment

Owner name: MEDTRONIC, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DUVA, FRANK A.;CRESPI, ANN M.;NORTON, JOHN D.;REEL/FRAME:014454/0980;SIGNING DATES FROM 20030825 TO 20030827