JP6217642B2 - 透明電極、電子デバイス、および透明電極の製造方法 - Google Patents

透明電極、電子デバイス、および透明電極の製造方法 Download PDF

Info

Publication number
JP6217642B2
JP6217642B2 JP2014531648A JP2014531648A JP6217642B2 JP 6217642 B2 JP6217642 B2 JP 6217642B2 JP 2014531648 A JP2014531648 A JP 2014531648A JP 2014531648 A JP2014531648 A JP 2014531648A JP 6217642 B2 JP6217642 B2 JP 6217642B2
Authority
JP
Japan
Prior art keywords
layer
nitrogen
group
transparent electrode
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014531648A
Other languages
English (en)
Other versions
JPWO2014030666A1 (ja
Inventor
和央 吉田
和央 吉田
健 波木井
健 波木井
宏 石代
宏 石代
敏幸 木下
敏幸 木下
辻村 隆俊
隆俊 辻村
美奈子 小野
美奈子 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2014030666A1 publication Critical patent/JPWO2014030666A1/ja
Application granted granted Critical
Publication of JP6217642B2 publication Critical patent/JP6217642B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/56Three layers or more
    • B05D7/58No clear coat specified
    • B05D7/588No curing step for the last layer
    • B05D7/5883No curing step for any layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree

Description

本発明は、透明電極、電子デバイス、および透明電極の製造方法に関し、特には導電性と光透過性とを兼ね備えた透明電極、さらにはこの透明電極を用いた電子デバイス、およびこの透明電極の製造方法に関する。
有機材料のエレクトロルミネッセンス(electroluminescence:以下ELと記す)を利用した有機電界発光素子(いわゆる有機EL素子)は、数V〜数十V程度の低電圧で発光が可能な薄膜型の完全固体素子であり、高輝度、高発光効率、薄型、軽量といった多くの優れた特徴を有する。このため、各種ディスプレイのバックライト、看板や非常灯等の表示板、照明光源等の面発光体として近年注目されている。
このような有機電界発光素子は、2枚の電極間に有機材料を用いて構成された発光層を挟持した構成であり、発光層で生じた発光光は電極を透過して外部に取り出される。このため、2枚の電極のうちの少なくとも一方は透明電極として構成される。
透明電極としては、ITO(酸化インジウムスズ;分子式:SnO−In)等の酸化物半導体系の材料が一般的に用いられているが、ITOと銀とを積層して低抵抗化を狙った検討もなされている(例えば下記特許文献1,2参照)。しかしながら、ITOはレアメタルのインジウムを使用しているため、材料コストが高く、また抵抗を下げるために成膜後に300℃程度でアニール処理する必要がある。そこで、電気伝導率の高い銀等の金属材料を薄膜化した構成や、銀にアルミニウムを混ぜることにより銀単独よりも薄い膜厚で導電性を確保する構成も提案されている(例えば下記特許文献3参照)。
特開2002−15623号公報 特開2006−164961号公報 特開2009−151963号公報
しかしながら、電気伝導率の高い銀やアルミニウムを用いて構成された透明電極であっても、十分な導電性と光透過性との両立を図ることは困難であった。
そこで本発明は、十分な導電性と光透過性とを兼ね備えた透明電極を提供すること、およびこの透明電極を用いることによって性能の向上が図られた電子デバイスおよび透明電極の製造方法を提供することを目的とする。
上記目的を達成するための本発明の透明電極は、以下の構成を備える。
窒素原子を含有すると共に当該窒素原子が有する非共有電子対のうち芳香族性に関与せずかつ金属に配位していない非共有電子対の数をn、分子量をMとした場合の有効非共有電子対含有率[n/M]が2.0×10-3≦[n/M]となる化合物を用いて構成された窒素含有層と、
銀を主成分とする電極層と、
銀よりも昇華熱エンタルピーが大きい高表面エネルギー材料を用いて構成され、前記窒素含有層と前記電極層とに接してこれらの間に挟持された高表面エネルギー材料層とを備える。
また本発明の電子デバイスは、前記透明電極を有する電子デバイスである。
さらに本発明の透明電極の製造方法は、前記透明電極の製造方法であり、窒素原子を含有すると共に当該窒素原子が有する非共有電子対のうち芳香族性に関与せずかつ金属に配位していない非共有電子対の数をn、分子量をMとした場合の有効非共有電子対含有率[n/M]が2.0×10-3≦[n/M]となる化合物を用いて窒素含有層を形成する工程と、前記窒素含有層に接して、銀よりも昇華熱エンタルピーが大きい高表面エネルギー材料を用いて高表面エネルギー材料層を形成する工程と、前記高表面エネルギー材料層が設けられた前記窒素含有層上に銀を主成分とする電極層を形成する工程とを有する。
以上のように構成された透明電極は、窒素原子を含有する化合物を用いて構成された窒素含有層に対して、高表面エネルギー材料層を介して銀を主成分とした電極層を隣接させて設けた構成を有する。これにより銀を主成分とする電極層は、高表面エネルギー材料層との相互作用、および窒素含有層を構成する窒素原子との相互作用により、隣接界面においての銀の拡散距離が減少して凝集が抑えられたものとなる。このため、一般的には核成長型(Volumer−Weber:VW型)での膜成長により島状に孤立し易い銀薄膜が、単層成長型(Frank−van der Merwe:FM型)の膜成長によって成膜されるようになる。したがって、薄い膜厚でありながらも、均一な膜厚の電極層が得られるようになる。
また特に、窒素含有層に対する電極層を構成する銀の結合安定性の指標として、上述した有効非共有電子対含有率[n/M]を適用し、この値が2.0×10-3≦[n/M]となる化合物を用いて窒素含有層を構成するようにした。これにより、上述したような「銀の凝集を抑える」効果が確実に得られる窒素含有層を設けることが可能になる。この効果は、後の実施例で詳細に説明するように、このような窒素含有層上には、光透過性を阻害しない程度に極薄膜の高表面エネルギー材料層を介して、6nmと言った極薄膜でありながらもシート抵抗が2桁程度の低い値に抑えられた電極層が形成されることからも確認された。
したがって、この透明電極においては、薄い膜厚であることで光透過性を確保しつつも、均一な膜厚であることで導電性が確保された電極層を確実に得ることができ、銀を用いた透明電極における導電性の向上と光透過性の向上との両立を図ることが可能になる。
以上説明したように本発明によれば、透明電極における導電性の向上と光透過性の向上との両立を図ることが可能になり、またこの透明電極を用いた電子デバイスの性能の向上を図ることが可能になる。また本発明の製造方法によれば、このように導電性の向上と光透過性の向上との両立が図られた透明電極を得ることが可能である。
本発明の透明電極の構成を示す断面模式図である。 本発明の透明電極を用いた有機電界発光素子の第1例を示す断面構成図である。 本発明の透明電極を用いた有機電界発光素子の第2例を示す断面構成図である。 本発明の透明電極を用いた有機電界発光素子の第3例を示す断面構成図である。 本発明の透明電極を用いた有機電界発光素子の第4例を示す断面構成図である。 窒素含有層の有効非共有電子対含有率[n/M]と、窒素含有層に積層された電極層のシート抵抗との関係を示すグラフである。 実施例2で作製したボトムエミッション型の有機電界発光素子を説明する断面構成図である。
以下、本発明の実施の形態を、図面に基づいて次に示す順に説明する。
1.透明電極
2.透明電極の用途
3.有機電界発光素子の第1例(トップエミッション型)
4.有機電界発光素子の第2例(ボトムエミッション型)
5.有機電界発光素子の第3例(両面発光型)
6.有機電界発光素子の第4例(逆積み構成)
7.有機電界発光素子の用途
8.照明装置−1
9.照明装置−2
≪1.透明電極≫
図1は、実施形態の透明電極の構成を示す断面模式図である。この図に示すように、透明電極1は、窒素含有層1aと、電極層1bと、これらの窒素含有層1a−電極層1b間に挟持された高表面エネルギー材料層Aとを備えた積層構造である。この透明電極1は、例えば基材11の上部に、窒素含有層1a、高表面エネルギー材料層A、電極層1bの順に設けられている。このうち、透明電極1における電極部分を構成する電極層1bは、銀(Ag)を主成分として構成された層である。また電極層1bに対する窒素含有層1aは、窒素原子(N)を含有する化合物を用いて構成されおり、特に電極層1bを構成する主材料である銀と安定的に結合する窒素原子の非共有電子対を[有効非共有電子対]とし、この[有効非共有電子対]の含有率が所定範囲である化合物を用いていることを特徴としている。また高表面エネルギー材料層Aは、電極層1bを構成する銀(Ag)よりも、昇華熱エンタルピーが大きい材料を用いて構成された層であることを特徴としている。
以下に、このような積層構造の透明電極1が設けられる基材11、透明電極1を構成する窒素含有層1a、高表面エネルギー材料層A、および電極層1bの順に、詳細な構成を説明する。尚、本発明の透明電極1の透明とは波長550nmでの光透過率が50%以上であることをいう。
<基材11>
本発明の透明電極1が形成される基材11は、例えばガラス、プラスチック等を挙げることができるが、これらに限定されない。また、基材11は透明であっても不透明であってもよい。本発明の透明電極1が、基材11側から光を取り出す電子デバイスに用いられる場合には、基材11は透明であることが好ましい。好ましく用いられる透明な基材11としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい基材11は、透明電極1およびこれを用いて構成される有機電界発光素子などの電子デバイスにフレキシブル性を与えることが可能な樹脂フィルムである。
ガラスとしては、例えば、シリカガラス、ソーダ石灰シリカガラス、鉛ガラス、ホウケイ酸塩ガラス、無アルカリガラス等が挙げられる。これらのガラス材料の表面には、窒素含有層1aとの密着性、耐久性、平滑性の観点から、必要に応じて、研磨等の物理的処理を施したり、無機物または有機物からなる被膜や、これらの被膜を組み合わせたハイブリッド被膜が形成される。
樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等が挙げられる。
樹脂フィルムの表面には、無機物または有機物からなる被膜や、これらの被膜を組み合わせたハイブリッド被膜が形成されていてもよい。このような被膜およびハイブリッド被膜は、JIS−K−7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度90±2%RH)が0.01g/(m2・24時間)以下のバリア性フィルム(バリア膜等ともいう)であることが好ましい。またさらには、JIS−K−7126−1987に準拠した方法で測定された酸素透過度が10-3ml/(m2・24時間・atm)以下、水蒸気透過度が10-5g/(m2・24時間)以下の高バリア性フィルムであることが好ましい。
以上のようなバリア性フィルムを形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。さらに当該バリア性フィルムの脆弱性を改良するために、これら無機層と有機材料からなる層(有機層)の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
バリア性フィルムの形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004−68143号公報に記載の大気圧プラズマ重合法によるものが特に好ましい。
一方、基材11が不透明なものである場合、例えば、アルミニウム、ステンレス等の金属基板、不透明樹脂基板、セラミック製の基板等を用いることができる。これらの基板は、フレキシブルに屈曲するフィルム状であっても良い。
<窒素含有層1a>
窒素含有層1aは、高表面エネルギー材料層Aに隣接して設けられた層であり、窒素原子(N)を含有する化合物を用いて構成されている。この窒素含有層1aは、一部が電極層1bに接していても良い。この窒素含有層1aを構成する化合物は、当該化合物に含有される窒素原子のうち、特に電極層1bを構成する主材料である銀と安定的に結合する窒素原子の非共有電子対を[有効非共有電子対]とし、この[有効非共有電子対]の含有率が所定範囲であることを特徴としている。
ここで[有効非共有電子対]とは、化合物に含有される窒素原子が有する非共有電子対のうち、芳香族性に関与せずかつ金属に配位していない非共有電子対であることとする。ここでの芳香族性とは、π電子を持つ原子が環状に並んだ不飽和環状構造を言い、いわゆる「ヒュッケル則」に従う芳香族性であって、環上のπ電子系に含まれる電子の数が「4n+2」(n=0、または自然数)個であることを条件としている。
以上のような[有効非共有電子対]は、その非共有電子対を備えた窒素原子自体が、芳香環を構成するヘテロ原子であるか否かにかかわらず、窒素原子が有する非共有電子対が芳香族性と関与しているか否かによって選択される。例えば、ある窒素原子が芳香環を構成するヘテロ原子であっても、その窒素原子が芳香族性に関与しない非共有電子対を有していれば、その非共有電子対は[有効非共有電子対]の一つとしてカウントされる。これに対して、ある窒素原子が芳香環を構成するヘテロ原子でない場合であっても、その窒素原子の非共有電子対の全てが芳香族性に関与していれば、その窒素原子の非共有電子対は[有効非共有電子対]としてカウントされることはない。尚、各化合物において、上述した[有効非共有電子対]の数nは、[有効非共有電子対]を有する窒素原子の数と一致する。
特に本実施形態においては、このような化合物の分子量Mに対する[有効非共有電子対]の数nを、例えば有効非共有電子対含有率[n/M]と定義する。そして窒素含有層1aは、この[n/M]が、2.0×10-3≦[n/M]となるように選択された化合物を用いて構成されているところが特徴的である。また窒素含有層1aは、以上のように定義される有効非共有電子対含有率[n/M]が、3.9×10-3≦[n/M]の範囲であれば好ましく、6.5×10-3≦[n/M]の範囲であればさらに好ましい。
また窒素含有層1aは、有効非共有電子対含有率[n/M]が上述した所定範囲である化合物を用いて構成されていれば良く、このような化合物のみで構成されていても良く、またこのような化合物と他の化合物とを混合して用いて構成されていても良い。他の化合物は、窒素原子が含有されていてもいなくても良く、さらに有効非共有電子対含有率[n/M]が上述した所定範囲でなくても良い。
窒素含有層1aが、複数の化合物を用いて構成されている場合、例えば化合物の混合比に基づき、これらの化合物を混合した混合化合物の分子量Mを求め、この分子量Mに対しての[有効非共有電子対]の合計の数nを、有効非共有電子対含有率[n/M]の平均値として求め、この値が上述した所定範囲であることが好ましい。つまり窒素含有層1a自体の有効非共有電子対含有率[n/M]が所定範囲であることが好ましい。
尚、窒素含有層1aが、複数の化合物を用いて構成されている場合であって、膜厚方向に化合物の混合比(含有比)が異なる構成であれば、高表面エネルギー材料層Aおよび電極層1bと接する側の窒素含有層1aの表面層における有効非共有電子対含有率[n/M]が所定範囲であれば良い。
[化合物−1]
以下に、窒素含有層1aを構成する化合物として、上述した有効非共有電子対含有率[n/M]が2.0×10-3≦[n/M]を満たす化合物の具体例(No.1〜No.45)を示す。各化合物No.1〜No.45には、[有効非共有電子対]を有する窒素原子に対して○を付した。また、下記表1には、これらの化合物No.1〜No.45の分子量M、[有効非共有電子対]の数n、および有効非共有電子対含有率[n/M]を示す。下記化合物33の銅フタロシアニンにおいては、窒素原子が有する非共有電子対のうち銅に配位していない非共有電子対が[有効非共有電子対]としてカウントされる。
尚、上記表1には、これらの例示化合物が、以降に説明する他の化合物を表す一般式(1)〜(8a)にも属する場合の該当一般式を示した。
[化合物−2]
また窒素含有層1aを構成する化合物としては、以上のような有効非共有電子対含有率[n/M]が上述した所定範囲である化合物の他、この窒素含有層1aを備えた透明電極1が適用される電子デバイスごとに必要とされる性質を有する化合物が用いられる。例えば、この透明電極1が、有機電界発光素子の電極として用いられる場合、その成膜性や、電子輸送性の観点から、窒素含有層1aを構成する化合物としては、以降に説明する一般式(1)〜(8a)で表される化合物が用いられる。
これらの一般式(1)〜(8a)で示される化合物の中には、上述した有効非共有電子対含有率[n/M]の範囲に当てはまる化合物も含まれ、このような化合物であれば単独で窒素含有層1aを構成する化合物として用いることができる(上記表1参照)。一方、下記一般式(1)〜(8a)で示される化合物が、上述した有効非共有電子対含有率[n/M]の範囲に当てはまらない化合物であれば、有効非共有電子対含有率[n/M]が上述した範囲の化合物と混合することで窒素含有層1aを構成する化合物として用いることができる。
上記一般式(1)の式中、E101〜E108は、各々−C(R12)=または−N=を表し、E101〜E108のうち少なくとも1つは−N=である。また、一般式(1)中のR11、および上記R12は水素原子または置換基を表す。
この置換基の例としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す)、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2−エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2−ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基またはヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基、ピペリジル基(ピペリジニル基ともいう)、2,2,6,6−テトラメチルピペリジニル基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、リン酸エステル基(例えば、ジヘキシルホスホリル基等)、亜リン酸エステル基(例えばジフェニルホスフィニル基等)、ホスホノ基等が挙げられる。
これらの置換基の一部は、上記の置換基によってさらに置換されていてもよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。
一般式(1a)で示される化合物は、上記一般式(1)で示される化合物の一形態であり、一般式(1)におけるE103およびE106を−N=とした化合物である。
この一般式(2)は、一般式(1)の一形態でもある。上記一般式(2)の式中、Y21は、アリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基を表す。E201〜E216、E221〜E238は、各々−C(R21)=または−N=を表し、R21は水素原子または置換基を表す。ただし、E221〜E229の少なくとも1つおよびE230〜E238の少なくとも1つは−N=を表す。k21およびk22は0〜4の整数を表すが、k21+k22は2以上の整数である。
一般式(2)において、Y21で表されるアリーレン基としては、例えば、o−フェニレン基、p−フェニレン基、ナフタレンジイル基、アントラセンジイル基、ナフタセンジイル基、ピレンジイル基、ナフチルナフタレンジイル基、ビフェニルジイル基(例えば、[1,1’−ビフェニル]−4,4’−ジイル基、3,3’−ビフェニルジイル基、3,6−ビフェニルジイル基等)、テルフェニルジイル基、クアテルフェニルジイル基、キンクフェニルジイル基、セキシフェニルジイル基、セプチフェニルジイル基、オクチフェニルジイル基、ノビフェニルジイル基、デシフェニルジイル基等が例示される。
また一般式(2)において、Y21で表されるヘテロアリーレン基としては、例えば、カルバゾール環、カルボリン環、ジアザカルバゾール環(モノアザカルボリン環ともいい、カルボリン環を構成する炭素原子のひとつが窒素原子で置き換わった構成の環構成を示す)、トリアゾール環、ピロール環、ピリジン環、ピラジン環、キノキサリン環、チオフェン環、オキサジアゾール環、ジベンゾフラン環、ジベンゾチオフェン環、インドール環からなる群から導出される2価の基等が例示される。
Y21で表されるアリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基の好ましい態様としては、ヘテロアリーレン基の中でも、3環以上の環が縮合してなる縮合芳香族複素環から導出される基を含むことが好ましく、また、当該3環以上の環が縮合してなる縮合芳香族複素環から導出される基としては、ジベンゾフラン環から導出される基またはジベンゾチオフェン環から導出される基が好ましい。
一般式(2)において、E201〜E216、E221〜E238で各々表される−C(R21)=のR21が置換基である場合、その置換基の例としては、一般式(1)のR11,R12として例示した置換基が同様に適用される。
一般式(2)において、E201〜E208のうちの6つ以上、およびE209〜E216のうちの6つ以上が、各々−C(R21)=で表されることが好ましい。
一般式(2)において、E225〜E229の少なくとも1つ、およびE234〜E238の少なくとも1つが−N=を表すことが好ましい。
さらには、一般式(2)において、E225〜E229のいずれか1つ、およびE234〜E238のいずれか1つが−N=を表すことが好ましい。
また、一般式(2)において、E221〜E224およびE230〜E233が、各々−C(R21)=で表されることが好ましい態様として挙げられる。
さらに、一般式(2)で表される化合物において、E203が−C(R21)=で表され、かつR21が連結部位を表すことが好ましく、さらに、E211も同時に−C(R21)=で表され、かつR21が連結部位を表すことが好ましい。
さらに、E225及びE234が−N=で表されることが好ましく、E221〜E224およびE230〜E233が、各々−C(R21)=で表されることが好ましい。
この一般式(3)は、一般式(1)の一形態でもある。上記一般式(3)の式中、E301〜E312は、各々−C(R31)=を表し、R31は水素原子または置換基を表す。また、Y31は、アリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基を表す。
上記一般式(3)において、E301〜E312で各々表される−C(R31)=のR31が置換基である場合、その置換基の例としては、一般式(1)のR11,R12として例示した置換基が同様に適用される。
また一般式(3)において、Y31で表されるアリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基の好ましい態様としては、一般式(2)のY21と同様のものが挙げられる。
この一般式(4)は、一般式(1)の一形態でもある。上記一般式(4)の式中、E401〜E414は、各々−C(R41)=を表し、R41は水素原子または置換基を表す。またAr41は、置換あるいは無置換の、芳香族炭化水素環あるいは芳香族複素環を表す。さらにk41は3以上の整数を表す。
上記一般式(4)において、E401〜E414で各々表される−C(R41)=のR41が置換基である場合、その置換基の例としては、一般式(1)のR11,R12として例示した置換基が同様に適用される。
また一般式(4)において、Ar41が芳香族炭化水素環を表す場合、この芳香族炭化水素環としては、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o−テルフェニル環、m−テルフェニル環、p−テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。これらの環は、さらに一般式(1)のR11,R12として例示した置換基を有しても良い。
また一般式(4)において、Ar41が芳香族複素環を表す場合、この芳香族複素環としては、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、カルバゾール環、アザカルバゾール環等が挙げられる。尚、アザカルバゾール環とは、カルバゾール環を構成するベンゼン環の炭素原子が1つ以上窒素原子で置き換わったものを示す。これらの環は、さらに一般式(1)において、R11,R12として例示した置換基を有しても良い。
上記一般式(5)の式中、R51は置換基を表し、E501,E502、E511〜E515、E521〜E525は、各々−C(R52)=または−N=を表し、E503〜E505は、各々−C(R52)=を表す。このうちのR52は、水素原子(H)または置換基を表す。またE501およびE502のうちの少なくとも1つは−N=(窒素原子)であり、E511〜E515のうちの少なくとも1つは−N=(窒素原子)であり、E521〜E525のうちの少なくとも1つは−N=(窒素原子)である。
上記一般式(5)において、R51,R52が置換基を表す場合、その置換基の例としては、一般式(1)のR11,R12として例示した置換基が同様に適用される。
上記一般式(6)の式中、E601〜E612は、各々−C(R61)=または−N=を表し、R61は水素原子または置換基を表す。またAr61は、置換あるいは無置換の、芳香族炭化水素環あるいは芳香族複素環を表す。
上記一般式(6)において、E601〜E612で各々表される−C(R61)=のR61が置換基である場合、その置換基の例としては、一般式(1)のR11,R12として例示した置換基が同様に適用される。
また一般式(6)において、Ar61が表す、置換あるいは無置換の、芳香族炭化水素環あるいは芳香族複素環は、一般式(4)のAr41と同様のものが挙げられる。
上記一般式(7)の式中、R71〜R73は、各々水素原子(H)または置換基を表し、Ar71は、芳香族炭化水素環基あるいは芳香族複素環基を表す。
また一般式(7)において、R71〜R73がそれぞれ置換基である場合、その置換基の例としては、一般式(1)のR11,R12として例示した置換基が同様に適用される。
また一般式(7)において、Ar71が表す芳香族炭化水素環あるいは芳香族複素環は、一般式(4)のAr41と同様のものが挙げられる。
上記一般式(8)は、一般式(7)の一形態でもある。上記一般式(8)の式中、R81〜R86は、各々水素原子(H)または置換基を表す。E801〜E803は、各々−C(R87)=または−N=を表し、R87は水素原子(H)または置換基を表す。Ar81は、芳香族炭化水素環基または芳香族複素環基を表す。
また一般式(8)において、R81〜R87がそれぞれ置換基である場合、その置換基の例としては、一般式(1)のR11,R12として例示した置換基が同様に適用される。
また一般式(8)において、Ar81が表す、芳香族炭化水素環あるいは芳香族複素環は、一般式(4)のAr41と同様のものが挙げられる。
上記一般式(8a)で示される窒素含有化合物は、上記一般式(8)で示される窒素含有化合物の一形態であり、一般式(8)におけるAr81がカルバゾール誘導体である。上記一般式(8a)の式中、E804〜E811は、各々−C(R88)=または−N=を表し、R88は水素原子(H)または置換基を表す。E808〜E811のうち少なくとも一つは−N=であり、E804〜E807、E808〜E811は、各々互いに結合して新たな環を形成してもよい。
また一般式(8a)において、R88が置換基である場合、その置換基の例としては、一般式(1)のR11,R12として例示した置換基が同様に適用される。
[化合物−3]
また窒素含有層1aを構成するさらに他の化合物として、以上のような一般式(1)〜(8a)で表される化合物の他、下記に具体例を示す化合物1〜166が例示される。これらの化合物は、電子輸送性または電子注入性を備えた材料である。したがって、これらの化合物を用いて窒素含有層1aを構成した透明電極1は、有機電界発光素子における透明電極として好適であり、有機電界発光素子における電子輸送層または電子注入層として窒素含有層1aを用いることができるのである。尚、これらの化合物1〜166の中には、上述した有効非共有電子対含有率[n/M]の範囲に当てはまる化合物も含まれ、このような化合物であれば単独で窒素含有層1aを構成する化合物として用いることができる。さらに、これらの化合物1〜166の中には、上述した一般式(1)〜(8a)に当てはまる化合物もある。
[化合物の合成例]
以下に代表的な化合物の合成例として、化合物5の具体的な合成例を示すが、これに限定されない。
工程1:(中間体1の合成)
窒素雰囲気下、2,8−ジブロモジベンゾフラン(1.0モル)、カルバゾール(2.0モル)、銅粉末(3.0モル)、炭酸カリウム(1.5モル)を、DMAc(ジメチルアセトアミド)300ml中で混合し、130℃で24時間撹拌した。これによって得た反応液を室温まで冷却後、トルエン1Lを加え、蒸留水で3回洗浄し、減圧雰囲気下において洗浄物から溶媒を留去し、その残渣をシリカゲルフラッシュクロマトグラフィー(n−ヘプタン:トルエン=4:1〜3:1)にて精製し、中間体1を収率85%で得た。
工程2:(中間体2の合成)
室温、大気下で中間体1(0.5モル)をDMF(ジメチルホルムアミド)100mlに溶解し、NBS(N−ブロモコハク酸イミド)(2.0モル)を加え、一晩室温で撹拌した。得られた沈殿を濾過し、メタノールで洗浄し、中間体2を収率92%で得た。
工程3:(化合物5の合成)
窒素雰囲気下、中間体2(0.25モル)、2−フェニルピリジン(1.0モル)、ルテニウム錯体[(η−C)RuCl(0.05モル)、トリフェニルホスフィン(0.2モル)、炭酸カリウム(12モル)を、NMP(N−メチル−2−ピロリドン)3L中で混合し、140℃で一晩撹拌した。
反応液を室温まで冷却後、ジクロロメタン5Lを加え、反応液を濾過した。次いで減圧雰囲気下(800Pa、80℃)において濾液から溶媒を留去し、その残渣をシリカゲルフラッシュクロマトグラフィー(CHCl:EtN=20:1〜10:1)にて精製した。
減圧雰囲気下において、精製物から溶媒を留去した後、その残渣をジクロロメタンに再び溶解し、水で3回洗浄した。洗浄によって得られた物質を無水硫酸マグネシウムで乾燥させ、減圧雰囲気下において乾燥後の物質から溶媒を留去することにより、化合物5を収率68%で得た。
[窒素含有層1aの成膜方法]
以上のような窒素含有層1aが基材11上に成膜されたものである場合、その成膜方法としては、塗布法、インクジェット法、コーティング法、ディップ法などのウェットプロセスを用いる方法や、蒸着法(抵抗加熱法、電子ビーム蒸着法など)、スパッタ法、CVD法などのドライプロセスを用いる方法などが挙げられる。なかでも蒸着法が好ましく適用される。
特に、複数の化合物を用いて窒素含有層1aを成膜する場合であれば、複数の蒸着源から複数の化合物を同時に供給する共蒸着が適用される。また化合物として高分子材料を用いる場合であれば、塗布法が好ましく適用される。この場合、化合物を溶媒に溶解させた塗布液を用いる。化合物を溶解させる溶媒が限定されることはない。さらに、複数の化合物を用いて窒素含有層1aを成膜する場合であれば、複数の化合物を溶解させることが可能な溶媒を用いて塗布液を作製すれば良い。
<高表面エネルギー材料層A>
高表面エネルギー材料層Aは、電極層1bを構成する銀(Ag)よりも、昇華熱エンタルピーが大きい高表面エネルギー材料を用いて構成された層であって、窒素含有層1aおよび電極層1bに接した状態で、これらの層間に設けられている。銀(Ag)よりも、昇華熱エンタルピーが大きい材料(高表面エネルギー材料)としては、アルミニウム(Al)、チタン(Ti)、金(Au)、プラチナ(Pt)等が例示される。高表面エネルギー材料層Aは、これらの材料のうちの少なくとも1つを用いて構成されると共に、これらの材料を主成分とし、その他の材料を含有していてもよい。その他の材料としては、銀(Ag)、マグネシウム(Mg)、銅(Cu)、インジウム(In)、リチウム(Li)などが用いられる。
以上のような高表面エネルギー材料層Aは、透明電極1の光透過性を阻害することなく、かつ窒素含有層1aに含有されている窒素の電極層1bへの影響を阻害することのない程度に十分に薄い膜厚であることが重要である。このため、このような高表面エネルギー材料層Aは、1nm以下の膜厚であって良く、連続した膜として構成されている必要はなく、島状であったり、複数の孔を有する形状であっても良い。このような高表面エネルギー材料層Aは、電極層1bと共に、透明電極1における実質的な電極層部分を構成する。
尚、このような高表面エネルギー材料層Aの成膜方法が特に限定されることはないが、なかでも蒸着法(特に電子ビーム蒸着法)やスパッタ法が好ましく適用される。
<電極層1b>
電極層1bは、銀を主成分として構成された層であって、銀または銀を主成分とした合金を用いて構成され、窒素含有層1aとの間に高表面エネルギー材料層Aを挟持する状態で配置された層である。このような電極層1bは、高表面エネルギー材料層Aに隣接して設けられている。また、高表面エネルギー材料層Aが連続膜ではなく、島状であったり孔を有する層である場合、電極層1bの一部は窒素含有層1aに隣接して設けられている。
このような電極層1bの成膜方法としては、塗布法、インクジェット法、コーティング法、ディップ法などのウェットプロセスを用いる方法や、蒸着法(抵抗加熱法、電子ビーム蒸着法など)、スパッタ法、CVD法などのドライプロセスを用いる方法などが挙げられる。なかでも蒸着法が好ましく適用される。また電極層1bは、極薄い高表面エネルギー材料層Aを介して窒素含有層1a上に成膜されることにより、成膜後の高温アニール処理等がなくても十分に導電性を有することを特徴とするが、必要に応じて、成膜後に高温アニール処理等を行ったものであっても良い。
電極層1bを構成する銀(Ag)を主成分とする合金は、一例として銀マグネシウム(AgMg)、銀銅(AgCu)、銀パラジウム(AgPd)、銀パラジウム銅(AgPdCu)、銀インジウム(AgIn)などが挙げられる。
以上のような電極層1bは、銀または銀を主成分とした合金の層が、必要に応じて複数の層に分けて積層された構成であっても良い。
さらにこの電極層1bは、膜厚が4〜12nmの範囲にあることが好ましい。膜厚が12nm以下であることにより、層の吸収成分または反射成分が低く抑えられ、電極層1bの光透過率が維持されるため好ましい。また、膜厚が4nm以上であることにより、層の導電性も確保される。
尚、以上のような、窒素含有層1aと電極層1bとの間に高表面エネルギー材料層Aを挟持した積層構造の透明電極1は、電極層1bの上部が保護膜で覆われていたり、別の導電性層が積層されていても良い。この場合、透明電極1の光透過性を損なうことのないように、保護膜及び導電性層が光透過性を有することが好ましい。また、窒素含有層1aの下部、すなわち、窒素含有層1aと基材11との間にも、必要に応じた層を追加で設けた構成としても良い。
透明電極1に対して追加で設けられる他の層の具体例としては、例えば高屈折率層が例示される。ここで、金属を用いて構成された電極層1bは、屈折率として虚数部を持っており、これらの項に起因する長波長部の光透過率の低下が発生する。高屈折率層を電極層1bの近傍に配置することで、このような光透過率を調整することが可能であり、光透過率の低下を抑制することが可能である。
このような高屈折率層は、窒素含有層3の屈折率よりも高い屈折率を有する光透過性材料で構成された層であり、電極層1bの上部に設けられている場合であれば、電極層1bに対しての保護膜ともなる。
以上のような高屈折率層を構成する材料としては、例えば、金属酸化物、金属窒化物、金属硫化物等を挙げることができる。具体的には、酸化亜鉛(ZnO:n=1.9〜2.0)の他、酸化チタン(TiO:n=2.3〜2.4)、酸化ジルコニウム(ZrO:n=2.4)、酸化カドミウム(CdO:n=2.49)、酸化インジウムスズ(ITO:n=2.1〜2.2)、酸化ハフニウム(HfO:n=1.9〜2.1)、五酸化タンタル(Ta:n=2.16)、酸化ニオブ(Nb:n=2.2〜2.4)等の光学フィルムに一般的に用いられる高屈折率材料が用いられる。
このような高屈折率層は、真空蒸着法、スパッタリング法のようなドライ法、またはナノサイズの金属酸化物インクが溶媒中に分散したインクを塗布する方法のようなウェット法など、公知の製膜方法から適宜選択して成膜することができる。
<透明電極1の効果>
以上のように構成された透明電極1は、窒素原子を含有する化合物を用いて構成された窒素含有層1aと、銀(Ag)を主成分とした電極層1bとの間に、銀(Ag)よりも昇華熱エンタルピーが大きい材料を用いて構成された高表面エネルギー材料層Aを挟持した構成である。これにより、銀を主成分とする電極層1bは、高表面エネルギー材料層Aを構成する材料と銀(Ag)との相互作用、および窒素含有層1aを構成する窒素原子と銀(Ag)との相互作用により、隣接界面においての銀の拡散距離が減少して凝集が抑えられたものとなる。
このため、一般的には核成長型(Volumer−Weber:VW型)での膜成長により島状に孤立し易い銀薄膜が、単層成長型(Frank−van der Merwe:FM型)の膜成長によって成膜されるようになる。したがって、薄い膜厚でありながらも、均一な膜厚の電極層1bが得られるようになる。
以上のような電極層1bにおいての銀の凝集を抑える効果を得るためには、高表面エネルギー材料層Aの膜厚は極薄膜で良いため、高表面エネルギー材料層Aでの光の吸収が最小限に抑えられ、透明電極1の光透過性が阻害されることはない。また、高表面エネルギー材料層Aの膜厚が極薄膜であることにより、窒素含有層1aを構成する窒素が高表面エネルギー材料層Aを介して電極層1bを構成する銀と相互作用することも可能となる。
そして特に、窒素含有層1aに対する電極層1bを構成する銀の結合安定性の指標として、上述した有効非共有電子対含有率[n/M]を適用し、この値が2.0×10-3≦[n/M]となる化合物を用いて窒素含有層1aを構成するようにした。これにより、上述したような「銀の凝集を抑える」効果が確実に得られる窒素含有層1aを設けることが可能になる。これは、後の実施例で詳細に説明するように、このような窒素含有層1a上には、6nmと言った極薄膜でありながらもシート抵抗が2桁程度の低い値に抑えられた電極層1bが形成されることからも確認された。
以上の結果、この透明電極1においては、薄い膜厚であることで光透過性を確保しつつも、均一な膜厚であることで導電性が確保された電極層1bを確実に得ることができ、銀を用いた透明電極1における導電性の向上と光透過性の向上との両立を図ることが可能になる。
またこのような透明電極1は、レアメタルであるインジウム(In)を用いていないため低コストであり、またZnOのような化学的に不安定な材料を用いていないため長期信頼性にも優れている。
≪2.透明電極の用途≫
上述した構成の透明電極1は、各種電子デバイスに用いることができる。電子デバイスの例としては、有機電界発光素子、LED(light Emitting Diode)、液晶素子、太陽電池、タッチパネル等が挙げられ、これらの電子デバイスにおいて光透過性を必要とされる電極部材として、上述の透明電極1を用いることができる。
以下では、用途の一例として、透明電極を陽極または陰極として用いた各有機電界発光素子の実施の形態を説明する。
≪3.有機電界発光素子≫
<有機電界発光素子EL-1の構成>
図2は、本発明の電子デバイスの一例として、上述した透明電極1を用いた有機電界発光素子の第1例を示す断面構成図である。以下にこの図に基づいて有機電界発光素子の構成を説明する。
図2に示す有機電界発光素子EL-1は、基板13上に設けられており、基板13側から順に、対向電極5-1、有機材料等を用いて構成された発光機能層3、および透明電極1をこの順に積層して構成されている。この有機電界発光素子EL-1においては、透明電極1として、先に説明した本発明の透明電極1を用いているところが特徴的である。このため有機電界発光素子EL-1は、発生させた光(以下、発光光hと記す)を、少なくとも基板13と逆側から取り出すトップエミッション型として構成されている。
また有機電界発光素子EL-1の全体的な層構造が限定されることはなく、一般的な層構造であって良いが、本実施形態においては透明電極1が陰極側に配置され、主に電極層1bが陰極として機能する一方、対向電極5-1が陽極として機能する。
本発明の有機電界発光素子EL-1における代表的な素子構成としては、以下の構成を上げることができるが、これらに限定されるものではない。
(1)陽極/発光層/陰極
(2)陽極/発光層/電子輸送層/陰極
(3)陽極/正孔輸送層/発光層/陰極
(4)陽極/正孔輸送層/発光層/電子輸送層/陰極
(5)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(6)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
(7)陽極/正孔注入層/正孔輸送層/(電子阻止層/)発光層/(正孔阻止層/)電子輸送層/電子注入層/陰極
上記の中で(7)の構成が好ましく用いられるが、これに限定されるものではない。
本実施形態においては、陽極である対向電極5-1側から順に[正孔注入層3a/正孔輸送層3b/発光層3c/電子輸送層3d/電子注入層3e]を積層した構成が例示されるが、このうち少なくとも有機材料を用いて構成された発光層3cを有することが必須である。
本発明に係る発光層は、単層または複数層で構成されており、発光層が複数の場合は各発光層の間に非発光性の中間層を設けてもよい。
必要に応じて、発光層と陰極との間に正孔阻止層(正孔障壁層ともいう)や電子注入層(陰極バッファー層ともいう)を設けてもよく、また、発光層と陽極との間に電子阻止層(電子障壁層ともいう)や正孔注入層(陽極バッファー層ともいう)を設けてもよい。
本発明に係る電子輸送層とは、電子を輸送する機能を有する層であり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。また、複数層で構成されていてもよい。
本発明に係る正孔輸送層とは、正孔を輸送する機能を有する層であり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。また、複数層で構成されていてもよい。
上記の代表的な素子構成において、陽極と陰極を除いた発光機能層3を「有機層」ともいう。尚、発光機能層3のうち、例えば電子注入層は無機材料で構成されている場合もある。
またさらに、陰極として設けられた透明電極1のうち、窒素含有層1aは、電子注入層を兼ねていても良く、電子輸送層および電子注入層を兼ねていても良い。
(タンデム構造)
また、本発明に係る有機電界発光素子は、少なくとも1層の発光層を含む発光機能層を1つの発光ユニットとし、陽極と陰極との間にこの発光ユニット(発光機能層)を複数積層した、いわゆるタンデム構造の素子であってもよい。
タンデム構造の代表的な素子構成としては、例えば以下の構成を挙げることができる。
[陽極/第1発光ユニット/中間層/第2発光ユニット/中間層/第3発光ユニット/陰極]
ここで、上記第1発光ユニット、第2発光ユニット、および第3発光ユニットは、全て同じであっても、異なっていてもよい。また2つの発光ユニットが同じであり、残る1つが異なっていてもよい。
複数の発光ユニットは直接積層されていても、中間層を介して積層されていてもよく、中間層は、一般的に中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、陽極側の隣接層に電子を、陰極側の隣接層に正孔を供給する機能を持った層であれば、公知の材料構成を用いることができる。
中間層に用いられる材料としては、例えば、ITO(インジウム・錫酸化物)、IZO(インジウム・亜鉛酸化物)、ZnO、TiN、ZrN、HfN、TiO、VO、CuI、InN、GaN、CuAlO、CuGaO、SrCu、LaB、RuO、Al等の導電性無機化合物層や、Au/Bi等の2層膜や、SnO/Ag/SnO、ZnO/Ag/ZnO、Bi/Au/Bi、TiO/TiN/TiO、TiO/ZrN/TiO等の多層膜、またC60等のフラーレン類、オリゴチオフェン等の導電性有機物、金属フタロシアニン類、無金属フタロシアニン類、金属ポルフィリン類、無金属ポルフィリン類等の導電性有機化合物等が挙げられるが、本発明はこれらに限定されない。
発光ユニット(発光機能層)内の好ましい構成としては、例えば上記の代表的な素子構成で挙げた(1)〜(7)の構成から、陽極と陰極を除いたもの等が挙げられるが、本発明はこれらに限定されない。そして、最も陰極側の発光ユニット(発光機能層)が電子注入層または電子輸送層を有する場合、窒素含有層1aがこれらの層を兼ねてもよい。
タンデム型の有機電界発光素子の具体例としては、例えば、米国特許第6,337,492号、米国特許第7,420,203号、米国特許第7,473,923号、米国特許第6,872,472号、米国特許第6,107,734号、米国特許第6,337,492号、国際公開第2005/009087号、特開2006−228712号、特開2006−24791号、特開2006−49393号、特開2006−49394号、特開2006−49396号、特開2011−96679号、特開2005−340187号、特許第4711424号、特許第3496681号、特許第3884564号、特許第4213169号、特開2010−192719号、特開2009−076929号、特開2008−078414号、特開2007−059848号、特開2003−272860号、特開2003−045676号、国際公開第2005/094130号等に記載の素子構成や構成材料等が挙げられるが、本発明はこれらに限定されない。
以下、上述した有機電界発光素子EL-1を構成する主要各層の詳細を、基板13、透明電極1、対向電極5-1、発光機能層3を構成する各層、発光機能層3の形成方法、補助電極15、および透明封止材17の順に説明する。その後、有機電界発光素子EL-1の作製方法を説明する。
[基板13]
基板13は、先に説明した本発明の透明電極1が設けられる基材と同様のものが用いられる。ただしこの有機電界発光素子EL-1が、対向電極5-1側からも発光光hを取り出す両面発光型である場合、例示した基材のうちから光透過性を有する透明なものが選択して用いられる。
[透明電極1(陰極側)]
透明電極1は、先に説明した本発明の透明電極1であり、発光機能層3側から順に、窒素含有層1a、高表面エネルギー材料層A、および電極層1bを順に成膜した構成である。ここでは特に、透明電極1を構成する電極層1bおよび高表面エネルギー材料層Aが実質的な陰極となる。また本実施形態の有機電界発光素子EL-1においては、発光機能層3と、実質的な陰極として用いられる電極層1bとの間に、有機材料からなる窒素含有層1aが配置された構成となる。このため本実施形態における透明電極1の窒素含有層1aは、発光機能層3の一部を構成する層であるともみなされる。
このような窒素含有層1aは、上述した有効非共有電子対含有率[n/M]が所定範囲の化合物のなかから、さらに電子輸送性または電子注入性を有する化合物を用いて構成される。または、このような窒素含有層1aは、窒素含有層1a自体が上述した有効非共有電子対含有率[n/M]となるように、電子輸送性または電子注入性を有する化合物と、ある程度の大きさの有効非共有電子対含有率[n/M]を有する化合物とを混合して用いて構成されていても良い。また窒素含有層1aは、積層構造であっても良い。この場合、窒素含有層1aにおける高表面エネルギー材料層A側の膜厚5nm程度の界面層が、上述した有効非共有電子対含有率[n/M]となるように構成されていることが好ましい。一方、これよりも発光機能層3側の層は、窒素含有化合物を用いた電子輸送層または電子注入層として構成されていていることが好ましい。
[対向電極5-1(陽極)]
対向電極5-1は、発光機能層3に正孔を供給するための陽極として機能する電極膜であり、発光機能層3に接する側の界面層が、陽極として適する材料で構成されていることとする。陽極として適する材料としては、仕事関数の大きい(4eV以上、好ましくは4.5eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In−ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。
あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/sq.以下が好ましい。
陽極の膜厚は材料にもよるが、通常10nm〜1μm、好ましくは10nm〜200nmの範囲で選ばれる。
尚、この有機電界発光素子EL-1が、対向電極5-1側からも発光光hを取り出す、両面発光型であれば、上述した導電性材料のうち光透過性の良好な導電性材料を選択して対向電極5-1を構成すれば良い。
[発光層]
本発明に係る発光層は、電極または隣接層から注入されてくる電子及び正孔が再結合し、励起子を経由して発光する場を提供する層であり、発光する部分は発光層の層内であっても、発光層と隣接層との界面であってもよい。本発明に係る発光層は、本発明で規定する要件を満たしていれば、その構成に特に制限はない。
発光層の膜厚の総和は、特に制限はないが、形成する膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、且つ、駆動電流に対する発光色の安定性向上の観点から、2nm〜5μmの範囲に調整することが好ましく、より好ましくは2nm〜500nmの範囲に調整され、更に好ましくは5nm〜200nmの範囲に調整される。
また、発光層の膜厚としては、2nm〜1μmの範囲に調整することが好ましく、より好ましくは2nm〜200nmnmの範囲に調整され、更に好ましくは3nm〜150nmの範囲に調整される。
発光層には、発光ドーパント(発光性ドーパント化合物、ドーパント化合物、単にドーパントともいう)と、ホスト化合物(マトリックス材料、発光ホスト化合物、単にホストともいう)とを含有することが好ましい。
(1)発光ドーパント
本発明に係る発光ドーパントについて説明する。
発光ドーパントとしては、蛍光発光性ドーパント(蛍光ドーパント、蛍光性化合物ともいう)と、リン光発光性ドーパント(リン光ドーパント、リン光性化合物ともいう)が好ましく用いられる。本発明においては、少なくとも1層の発光層がリン光発光ドーパントを含有することが好ましい。
発光層中の発光ドーパントの濃度については、使用される特定のドーパントおよびデバイスの必要条件に基づいて、任意に決定することができ、発光層の膜厚方向に対し、均一な濃度で含有されていてもよく、また任意の濃度分布を有していてもよい。
また、本発明に係る発光ドーパントは、複数種を併用して用いてもよく、構造の異なるドーパント同士の組み合わせや、蛍光発光性ドーパントとリン光発光性ドーパントとを組み合わせて用いてもよい。これにより、任意の発光色を得ることができる。
本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS−2000(コニカミノルタセンシング(株)製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
本発明においては、1層または複数層の発光層が、発光色の異なる複数の発光ドーパントを含有し、白色発光を示すことも好ましい。
白色を示す発光ドーパントの組み合わせについては特に限定はないが、例えば青と橙や、青と緑と赤の組み合わせ等が挙げられる。
本発明の有機EL素子における白色とは、2度視野角正面輝度を前述の方法により測定した際に、1000cd/mでのCIE1931表色系における色度がx=0.39±0.09、y=0.38±0.08の領域内にあることが好ましい。
(1.1)リン光発光性ドーパント
本発明に係るリン光発光性ドーパント(以下、「リン光ドーパント」ともいう)について説明する。
本発明に係るリン光ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に係るリン光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。
リン光ドーパントの発光は原理としては二種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光ドーパントに移動させることでリン光ドーパントからの発光を得るというエネルギー移動型である。もう一つはリン光ドーパントがキャリアトラップとなり、リン光ドーパント上でキャリアの再結合が起こりリン光ドーパントからの発光が得られるというキャリアトラップ型である。いずれの場合においても、リン光ドーパントの励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。
(さらに本発明においては併用する)リン光ドーパントは、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。
本発明に使用できる公知のリン光ドーパントの具体例としては、以下の文献に記載されている化合物等が挙げられる。
赤色のリン光ドーパントが記載されている文献:Nature 395,151 (1998)、Appl. Phys. Lett. 78, 1622 (2001)、Adv. Mater. 19, 739 (2007)、Chern. Mater. 17, 3532 (2005)、Adv. Mater. 17, 1059 (2005)、国際公開第2009100991号、国際公開第2008101842号、国際公開第2003040257号、米国特許公開第2006835469号、米国特許公開第20060202194号、米国特許公開第20070087321号、米国特許公開第20050244673号等である。
緑色のリン光ドーパントが記載されている文献:Inorg. Chern. 40, 1704 (2001)、Chern. Mater. 16, 2480 (2004)、Adv. Mater. 16, 2003 (2004)、Angew. Chern. lnt. Ed. 2006, 45, 7800、Appl. Phys. Lett. 86, 153505 (2005)、Chern. Lett. 34, 592 (2005)、Chern. Commun. 2906 (2005)、Inorg. Chern. 42, 1248 (2003)、国際公開第2009050290号、国際公開第2002015645号、国際公開第2009000673号、米国特許公開第20020034656号、米国特許第7332232号、米国特許公開第20090108737号、米国特許公開第20090039776号、米国特許第6921915号、米国特許第6687266号、米国特許公開第20070190359号、米国特許公開第20060008670号、米国特許公開第20090165846号、米国特許公開第20080015355号、米国特許第7250226号、米国特許第7396598号、米国特許公開第20060263635号、米国特許公開第20030138657号、米国特許公開第20030152802号、米国特許第7090928号等である。
青色のリン光ドーパントが記載されている文献:Angew. Chern. lnt. Ed. 47, 1 (2008)、Chern. Mater. 18, 5119 (2006)、Inorg. Chern. 46, 4308 (2007)、Organometallics 23, 3745 (2004)、Appl. Phys. Lett. 74, 1361 (1999)、国際公開第2002002714号、国際公開第2006009024号、国際公開第2006056418号、国際公開第2005019373号、国際公開第2005123873号、国際公開第2007004380号、国際公開第2006082742号、米国特許公開第20060251923号、米国特許公開第20050260441号、米国特許第7393599号、米国特許第7534505号、米国特許第7445855号、米国特許公開第20070190359号、米国特許公開第20080297033号、米国特許第7338722号、米国特許公開第20020134984号、米国特許第7279704号、米国特許公開第2006098120号、米国特許公開第2006103874号等である。
青色を中心に各色のリン光ドーパントが記載されている文献:国際公開第2005076380号、国際公開第2010032663号、国際公開第第2008140115号、国際公開第2007052431号、国際公開第2011134013号、国際公開第2011157339号、国際公開第2010086089号、国際公開第2009113646号、国際公開第2012020327号、国際公開第2011051404号、国際公開第2011004639号、国際公開第2011073149号、米国特許公開第2012228583号、米国特許公開第2012212126号、特開2012−069737号、特開2012−195554、特開2009−114086号、特開2003−81988号、特開2002−302671号、特開2002−363552号等である。
中でも、好ましいリン光ドーパントとしてはIrを中心金属に有する有機金属錯体が挙げられる。さらに好ましくは、金属−炭素結合、金属−窒素結合、金属−酸素結合、金属−硫黄結合の少なくとも1つの配位様式を含む錯体が好ましい。
ここで、本発明に使用できる公知のリン光ドーパントの具体例(D1〜D81)を挙げるが、本発明はこれらに限定されない。
(1.2)蛍光発光性ドーパント
本発明に係る蛍光発光性ドーパント(以下、「蛍光ドーパント」ともいう)について説明する。
本発明に係る蛍光ドーパントは、励起一重項からの発光が可能な化合物であり、励起一重項からの発光が観測される限り特に限定されない。
本発明に係る蛍光ドーパントとしては、例えば、アントラセン誘導体、ピレン誘導体、クリセン誘導体、フルオランテン誘導体、ペリレン誘導体、フルオレン誘導体、アリールアセチレン誘導体、スチリルアリーレン誘導体、スチリルアミン誘導体、アリールアミン誘導体、ホウ素錯体、クマリン誘導体、ピラン誘導体、シアニン誘導体、クロコニウム誘導体、スクアリウム誘導体、オキソベンツアントラセン誘導体、フルオレセイン誘導体、ローダミン誘導体、ピリリウム誘導体、ペリレン誘導体、ポリチオフェン誘導体、又は希土類錯体系化合物等が挙げられる。
また、近年では遅延蛍光を利用した発光ドーパントも開発されており、これらを用いてもよい。
遅延蛍光を利用した発光ドーパントの具体例としては、例えば、国際公開第2011/156793号、特開2011−213643号、特開2010−93181号等に記載の化合物が挙げられるが、本発明はこれらに限定されない。
(2)ホスト化合物
本発明に係るホスト化合物は、発光層において主に電荷の注入および輸送を担う化合物であり、有機EL素子においてそれ自体の発光は実質的に観測されない。
好ましくは室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物であり、さらに好ましくはリン光量子収率が0.01未満の化合物である。また、発光層に含有される化合物の内で、その層中での質量比が20%以上であることが好ましい。
また、ホスト化合物の励起状態エネルギーは、同一層内に含有される発光ドーパントの励起状態エネルギーよりも高いことが好ましい。
ホスト化合物は、単独で用いてもよく、または複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。
本発明で用いることができるホスト化合物としては、特に制限はなく、従来有機EL素子で用いられる化合物を用いることができる。低分子化合物でも繰り返し単位を有する高分子化合物でもよく、また、ビニル基やエポキシ基のような反応性基を有する化合物でもよい。
公知のホスト化合物としては、正孔輸送能または電子輸送能を有しつつ、且つ、発光の長波長化を防ぎ、さらに、有機EL素子を高温駆動時や素子駆動中の発熱に対して安定して動作させる観点から、高いガラス転移温度(Tg)を有することが好まし。好ましくはTgが90℃以上であり、より好ましくは120℃以上である。
ここで、ガラス転移点(Tg)とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS−K−7121に準拠した方法により求められる値である。
本発明の有機EL素子に用いられる、公知のホスト化合物の具体例としては、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。
特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−141173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−231453号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−255934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報、米国特許公開第20030175553号、米国特許公開第20060280965号、米国特許公開第20050112407号、米国特許公開第20090017330号、米国特許公開第20090030202号、米国特許公開第20050238919号、国際公開第2001039234号、国際公開第2009021126号、国際公開第2008056746号、国際公開第2004093207号、国際公開第2005089025号、国際公開第2007063796号、国際公開第2007063754号、国際公開第2004107822号、国際公開第2005030900号、国際公開第2006114966号、国際公開第2009086028号、国際公開第2009003898号、国際公開第2012023947号、特開2008−074939号、特開2007−254297号、EP2034538等である。
[電子輸送層]
本発明において電子輸送層とは、電子を輸送する機能を有する材料からなり、陰極より注入された電子を発光層に伝達する機能を有していればよい。
本発明の電子輸送層の総膜厚については特に制限はないが、通常は2nm〜5μmの範囲であり、より好ましくは2nm〜500nmであり、さらに好ましくは5nm〜200nmである。
また、有機EL素子においては発光層で生じた光を電極から取り出す際、発光層から直接取り出される光と、光を取り出す電極と対極に位置する電極によって反射されてから取り出される光とが干渉を起こすことが知られている。光が陰極で反射される場合は、電子輸送層の総膜厚を数nm〜数μmの間で適宜調整することにより、この干渉効果を効率的に利用することが可能である。
一方で、電子輸送層の膜厚を厚くすると電圧が上昇しやすくなるため、特に膜厚が厚い場合においては、電子輸送層の電子移動度は10−5cm2/Vs以上であることが好ましい。
電子輸送層に用いられる材料(以下、電子輸送材料という)としては、電子の注入性または輸送性、正孔の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。
例えば、含窒素芳香族複素環誘導体(カルバゾール誘導体、アザカルバゾール誘導体(カルバゾール環を構成する炭素原子の1つ以上が窒素原子に置換されたもの)、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピリダジン誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、フェナントロリン誘導体、アザトリフェニレン誘導体、オキサゾール誘導体、チアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体等)、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、シロール誘導体、芳香族炭化水素環誘導体(ナフタレン誘導体、アントラセン誘導体、トリフェニレン等)等が挙げられる。
また、配位子にキノリノール骨格やジベンゾキノリノール骨格を有する金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。
その他、メタルフリーもしくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型−Si、n型−SiC等の無機半導体も電子輸送材料として用いることができる。
また、これらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
本発明に係る電子輸送層においては、電子輸送層にドープ材をゲスト材料としてドープして、n性の高い(電子リッチ)電子輸送層を形成してもよい。ドープ材としては、金属錯体やハロゲン化金属など金属化合物等のn型ドーパントが挙げられる。このような構成の電子輸送層の具体例としては、例えば、特開平4−297076号公報、同10−270172号公報、特開2000−196140号公報、同2001−102175号公報、J.Appl.Phys.,95,5773(2004)等の文献に記載されたものが挙げられる。
本発明の有機EL素子に用いられる、公知の好ましい電子輸送材料の具体例としては、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。
米国特許第6528187号 、米国特許第7230107号、米国特許公開第20050025993号 、米国特許公開第20040036077号 、米国特許公開第20090115316号 、米国特許公開第20090101870号 、米国特許公開第20090179554号 、国際公開第2003060956号、国際公開第2008132085号、Appl. Phys. Lett. 75, 4 (1999)、Appl. Phys. Lett. 79, 449 (2001)、Appl. Phys. Lett. 81, 162 (2002)、Appl. Phys. Lett. 81, 162 (2002)、Appl. Phys. Lett. 79, 156 (2001)、米国特許第7964293号 、米国特許公開第2009030202号 、国際公開第2004080975号 、国際公開第2004063159号、国際公開第2005085387号、国際公開第2006067931号、国際公開第2007086552号、国際公開第2008114690号、国際公開第2009069442号 、国際公開第2009066779号 、国際公開第2009054253号、国際公開第2011086935号 、国際公開第2010150593号 、国際公開第2010047707号 、EP2311826号 、特開2010−251675号 、特開2009−209133号 、特開2009−124114号 、特開2008−277810号 、特開2006−156445号 、特開2005−340122号 、特開2003−45662号 、特開2003−31367号 、特開2003−282270号、国際公開第2012115034号等である。
本発明におけるよりより好ましい電子輸送材料としては、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、トリアジン誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、カルバゾール誘導体、アザカルバゾール誘導体、ベンズイミダゾール誘導体が挙げられる。
電子輸送材料は単独で用いてもよく、また複数種を併用して用いてもよい。
[正孔阻止層]
正孔阻止層とは広い意味では電子輸送層の機能を有する層であり、好ましくは電子を輸送する機能を有しつつ正孔を輸送する能力が小さい材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
また、前述する電子輸送層の構成を必要に応じて、本発明に係る正孔阻止層として用いることができる。
本発明の有機EL素子に設ける正孔阻止層は、発光層の陰極側に隣接して設けられることが好ましい。
本発明に係る正孔阻止層の膜厚としては、好ましくは3〜100nmの範囲であり、更に好ましくは5〜30nmの範囲である。
正孔阻止層に用いられる材料としては、前述の電子輸送層に用いられる材料が好ましく用いられ、また、前述のホスト化合物として用いられる材料も正孔阻止層に好ましく用いられる。
[電子注入層]
本発明に係る電子注入層(「陰極バッファー層」ともいう)とは、駆動電圧低下や発光輝度向上のために陰極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されている。
本発明において電子注入層は必要に応じて設け、上記の如く陰極と発光層との間、または陰極と電子輸送層との間に存在させてもよい。
電子注入層はごく薄い膜であることが好ましく、素材にもよるがその膜厚は0.1nm〜5nmの範囲が好ましい。また構成材料が断続的に存在する不均一な膜であってもよい。
電子注入層は、特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にもその詳細が記載されており、電子注入層に好ましく用いられる材料の具体例としては、ストロンチウムやアルミニウム等に代表される金属、フッ化リチウム、フッ化ナトリウム、フッ化カリウム等に代表されるアルカリ金属化合物、フッ化マグネシウム、フッ化カルシウム等に代表されるアルカリ土類金属化合物、酸化アルミニウムに代表される金属酸化物、リチウム8−ヒドロキシキノレート(Liq)等に代表される金属錯体等が挙げられる。また、前述の電子輸送材料を用いることも可能である。
また、上記の電子注入層に用いられる材料は単独で用いてもよく、複数種を併用して用いてもよい。
[正孔輸送層]
本発明において正孔輸送層とは、正孔を輸送する機能を有する材料からなり、陽極より注入された正孔を発光層に伝達する機能を有していればよい。
本発明の正孔輸送層の総膜厚については特に制限はないが、通常は5nm〜5μmの範囲であり、より好ましくは2nm〜500nmであり、さらに好ましくは5nm〜200nmである。
正孔輸送層に用いられる材料(以下、正孔輸送材料という)としては、正孔の注入性または輸送性、電子の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。
例えば、ポルフィリン誘導体、フタロシアニン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリアリールアルカン誘導体、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、イソインドール誘導体、アントラセンやナフタレン等のアセン系誘導体、フルオレン誘導体、フルオレノン誘導体、、及びポリビニルカルバゾール、芳香族アミンを主鎖または側鎖に導入した高分子材料またはオリゴマー、ポリシラン、導電性ポリマーまたはオリゴマー(例えばPEDOT:PSS、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。
トリアリールアミン誘導体としては、αNPDに代表されるベンジジン型や、MTDATAに代表されるスターバースト型、トリアリールアミン連結コア部にフルオレンやアントラセンを有する化合物等が挙げられる。
また、特表2003−519432号公報や特開2006−135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。
さらに不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4−297076号公報、特開2000−196140号公報、同2001−102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
また、特開平11−251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、所謂p型正孔輸送材料やp型−Si、p型−SiC等の無機化合物を用いることもできる。さらにIr(ppy)3に代表されるような中心金属にIrやPtを有するオルトメタル化有機金属錯体も好ましく用いられる。
正孔輸送材料としては、上記のものを使用することができるが、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、アザトリフェニレン誘導体、有機金属錯体、芳香族アミンを主鎖または側鎖に導入した高分子材料またはオリゴマー等が好ましく用いられる。
本発明の有機EL素子に用いられる、公知の好ましい正孔輸送材料の具体例としては、上記で挙げた文献の他、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。
例えば、Appl. Phys. Lett. 69, 2160 (1996)、J. Lumin. 72-74, 985 (1997)、Appl. Phys. Lett. 78, 673 (2001)、Appl. Phys. Lett. 90, 183503 (2007)、Appl. Phys. Lett. 90, 183503 (2007)、Appl. Phys. Lett. 51, 913 (1987)、Synth. Met. 87, 171 (1997)、Synth. Met. 91, 209 (1997)、Synth. Met. 111,421 (2000)、SID Symposium Digest, 37, 923 (2006)、J. Mater. Chern. 3, 319 (1993)、Adv. Mater. 6, 677 (1994)、Chern. Mater. 15,3148 (2003)、米国特許公開第20030162053号、米国特許公開第20020158242号、米国特許公開第20060240279号、米国特許公開第20080220265号、米国特許第5061569号、国際公開第2007002683号、国際公開第2009018009号、EP650955、米国特許公開第20080124572号、米国特許公開第20070278938号、米国特許公開第20080106190号、米国特許公開第20080018221号、国際公開第2012115034号、特表2003−519432号公報、特開2006−135145号、米国特許出願番号13/585981号等である。
正孔輸送材料は単独で用いてもよく、また複数種を併用して用いてもよい。
[電子阻止層]
電子阻止層とは広い意味では正孔輸送層の機能を有する層であり、好ましくは正孔を輸送する機能を有しつつ電子を輸送する能力が小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。
また、前述する正孔輸送層の構成を必要に応じて、本発明に係る電子阻止層として用いることができる。
本発明の有機EL素子に設ける電子阻止層は、発光層の陽極側に隣接して設けられることが好ましい。
本発明に係る電子阻止層の膜厚としては、好ましくは3〜100nmの範囲であり、更に好ましくは5〜30nmの範囲である。
電子阻止層に用いられる材料としては、前述の正孔輸送層に用いられる材料が好ましく用いられ、また、前述のホスト化合物として用いられる材料も電子阻止層に好ましく用いられる。
[正孔注入層]
本発明に係る正孔注入層(「陽極バッファー層」ともいう)とは、駆動電圧低下や発光輝度向上のために陽極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されている。
本発明において正孔注入層は必要に応じて設け、上記の如く陽極と発光層又は陽極と正孔輸送層との間に存在させてもよい。
正孔注入層は、特開平9−45479号公報、同9−260062号公報、同8−288069号公報等にもその詳細が記載されており、正孔注入層に用いられる材料としては、例えば前述の正孔輸送層に用いられる材料等が挙げられる。
中でも銅フタロシアニンに代表されるフタロシアニン誘導体、特表2003−519432や特開2006−135145等に記載されているようなヘキサアザトリフェニレン誘導体、酸化バナジウムに代表される金属酸化物、アモルファスカーボン、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子、トリス(2−フェニルピリジン)イリジウム錯体等に代表されるオルトメタル化錯体、トリアリールアミン誘導体等が好ましい。
前述の正孔注入層に用いられる材料は単独で用いてもよく、また複数種を併用して用いてもよい。
[含有物]
前述した発光機能層を構成する各層は、さらに他の含有物が含まれていてもよい。
含有物としては、例えば臭素、ヨウ素及び塩素等のハロゲン元素やハロゲン化化合物、Pd、Ca、Na等のアルカリ金属やアルカリ土類金属、遷移金属の化合物や錯体、塩等が挙げられる。
含有物の含有量は、任意に決定することができるが、含有される層の全質量%に対して1000ppm以下であることが好ましく、より好ましくは500ppm以下であり、さらに好ましくは50ppm以下である。
ただし、電子や正孔の輸送性を向上させる目的や、励起子のエネルギー移動を有利にするための目的などによってはこの範囲内ではない。
[発光機能層の形成方法]
発光機能層を構成する各層(正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、電子注入層等)の形成方法について説明する。
発光機能層を構成する各層の形成方法は、特に制限はなく、従来公知の例えば真空蒸着法、湿式法(ウェットプロセスともいう)等による形成方法を用いることができる。
湿式法としては、スピンコート法、キャスト法、インクジェット法、印刷法、ダイコート法、ブレードコート法、ロールコート法、スプレーコート法、カーテンコート法、LB法(ラングミュア−ブロジェット法)等があるが、均質な薄膜が得られやすく、且つ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法などのロール・ツー・ロール方式適性の高い方法が好ましい。
本発明に係る有機EL材料を溶解または分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。
また、分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。
更に層毎に異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50℃〜450℃、真空度10−6Pa〜10−2Pa、蒸着速度0.01nm/秒〜50nm/秒、基板温度−50℃〜300℃、膜厚0.1nm〜5μm、好ましくは5nm〜200nmの範囲で適宜選ぶことが望ましい。
本発明の有機層の形成は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる製膜法を施しても構わない。その際は作業を乾燥不活性ガス雰囲気下で行うことが好ましい。
[補助電極15]
補助電極15は、透明電極1の抵抗を下げる目的で設けるものであって、透明電極1の電極層1bに接して設けられる。補助電極15を形成する材料は、金、白金、銀、銅、アルミニウム等の抵抗が低い金属が好ましい。これらの金属は光透過性が低いため、光取り出し面17aからの発光光hの取り出しの影響のない範囲でパターン形成される。このような補助電極15の形成方法としては、蒸着法、スパッタリング法、印刷法、インクジェット法、エアロゾルジェット法などが挙げられる。補助電極15の線幅は、光を取り出す開口率の観点から50μm以下であることが好ましく、補助電極15の厚さは、導電性の観点から1μ以上であることが好ましい。
[透明封止材17]
透明封止材17は、有機電界発光素子EL-1を覆うものであって、板状(フィルム状)の封止部材であって接着剤19によって基板13側に固定されるものであっても良く、封止膜であっても良い。この透明封止材17の表面は、有機電界発光素子EL-1の発光光hを取り出す光取り出し面17aとなっている。このような透明封止材17は、有機電界発光素子EL-1における透明電極1および対向電極5-1の端子部分を露出させる状態で、少なくとも発光機能層3を覆う状態で設けられている。また透明封止材17に電極を設け、有機電界発光素子EL-1の透明電極1および対向電極5-1の端子部分と、この電極とを導通させるように構成されていても良い。
板状(フィルム状)の透明封止材17としては、具体的には、ガラス基板、ポリマー基板が挙げられ、これらの基板材料をさらに薄型のフィルム状にして用いても良い。ガラス基板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー基板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。
なかでも、素子を薄膜化できるということから、透明封止材17としてポリマー基板を薄型のフィルム状にしたものを好ましく使用することができる。
さらには、フィルム状としたポリマー基板は、JIS K 7126−1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m2・24h・atm)以下、JIS K 7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m2・24h)以下のものであることが好ましい。
また以上のような基板材料は、凹板状に加工して透明封止材17として用いても良い。この場合、上述した基板部材に対してサンドブラスト加工、化学エッチング加工等の加工が施され、凹状が形成される。
またこのような板状の透明封止材17を基板13側に固定するための接着剤19は、透明封止材17と基板13との間に挟持された有機電界発光素子EL-1を封止するためのシール剤として用いられる。このような接着剤19は、具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2−シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。
またこのような接着剤19としては、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
尚、有機電界発光素子EL-1を構成する有機材料は、熱処理により劣化する場合がある。このため、接着剤19は、室温から80℃までに接着硬化できるものが好ましい。また、接着剤19中に乾燥剤を分散させておいてもよい。
透明封止材17と基板13との接着部分への接着剤19の塗布は、市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
また板状の透明封止材17と基板13と接着剤19との間に隙間が形成される場合、この間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
一方、透明封止材17として封止膜を用いる場合、有機電界発光素子EL-1における発光機能層3を完全に覆い、かつ有機電界発光素子EL-1における透明電極1および対向電極5-1の端子部分を露出させる状態で、基板13上に封止膜が設けられる。
このような封止膜は、水分や酸素等、有機電界発光素子EL-1における発光機能層3の劣化をもたらす物質の浸入を抑制する機能を有する材料で構成されることとする。このような材料として、例えば、酸化珪素、二酸化珪素、窒化珪素等の無機材料が用いられる。さらに封止膜の脆弱性を改良するために、これら無機材料からなる膜と共に、有機材料からなる膜を用いて積層構造としても良い。
これらの膜の形成方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。
[保護膜、保護板]
尚、ここでの図示は省略したが、基板13との間に有機電界発光素子ELおよび透明封止材17を挟んで保護膜もしくは保護板を設けても良い。この保護膜もしくは保護板は、有機電界発光素子ELを機械的に保護するためのものであり、特に透明封止材17が封止膜である場合には、有機電界発光素子ELに対する機械的な保護が十分ではないため、このような保護膜もしくは保護板を設けることが好ましい。
以上のような保護膜もしくは保護板は、ガラス板、ポリマー板、これよりも薄型のポリマーフィルム、金属板、これよりも薄型の金属フィルム、またはポリマー材料膜や金属材料膜が適用される。このうち特に、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
尚、本発明の有機電界発光素子EL-1は、発光光hの室温における外部取り出し効率は、1%以上であることが好ましく、5%以上であるとより好ましい。ここで、外部取り出し量子効率(%)=有機電界発光素子の外部に取り出された光子数/有機EL素子に流した電子数×100である。また、光取りだし側に配置する状態で、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。
[有機電界発光素子の作製方法]
ここでは一例として、図2に示す有機電界発光素子EL-1の製造方法を説明する。
先ず基板13上に、先に説明した適宜の方法により、陽極となる対向電極5-1を形成し、さらに発光機能層3を形成する。
次いで、窒素含有層1aを、1μm以下、好ましくは10nm〜100nmの膜厚になるように形成する。次に、アルミニウムを用いた高表面エネルギー材料層Aを、極薄膜として、好ましくは1nm以下の膜厚で形成する。その後、銀(または銀を主成分とした合金)からなる電極層1bを、4nm〜12nmの膜厚になるように形成し、陰極側の透明電極1を作製する。これらの窒素含有層1a、高表面エネルギー材料層A、および電極層1bの形成は、スピンコート法、キャスト法、インクジェット法、蒸着法、スパッタ法、印刷法等があるが、均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、真空蒸着法が特に好ましい。
また特に電極層1bの形成においては、発光機能層3によって対向電極5-1に対して絶縁状態を保ちつつ、発光機能層3の上方から基板13の周縁に端子部分を引き出した形状にパターン形成する。尚、窒素含有層1aおよび高表面エネルギー材料層Aも、電極層1bと同様の形状にパターン形成されていても良い。また、電極層1bの形成前後または高表面エネルギー材料層Aの形成後には、必要に応じて補助電極15のパターン形成を行う。これにより、有機電界発光素子EL-1が得られる。またその後には、有機電界発光素子EL-1における透明電極1および対向電極5-1の端子部分を露出させた状態で、少なくとも発光機能層3を覆う透明封止材17を設ける。この際、接着剤19を用いて、透明封止材17を基板13側に接着し、これらの透明封止材17−基板13間に有機電界発光素子EL-1を封止する。
以上により、基板13上に所望の有機電界発光素子EL-1が得られる。このような有機電界発光素子EL-1の作製においては、一回の真空引きで一貫して発光機能層3から対向電極5-1まで作製するのが好ましいが、途中で真空雰囲気から基板13を取り出して異なる成膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。
このようにして得られた有機電界発光素子EL-1に直流電圧を印加する場合には、陽極である対向電極5-1を+の極性とし、陰極である電極層1bを−の極性として、電圧2V以上40V以下程度を印加すると発光が観測できる。また交流電圧を印加してもよい。尚、印加する交流の波形は任意でよい。
<有機電界発光素子EL-1の効果>
以上説明した有機電界発光素子EL-1は、本発明の導電性と光透過性とを兼ね備えた透明電極1を陰極として用い、この透明電極1における窒素含有層1a側に発光機能層3と陽極となる対向電極5-1とをこの順に設けた構成である。このため、透明電極1と対向電極5-1との間に十分な電圧を印加して有機電界発光素子EL-1での高輝度発光を実現しつつ、透明電極1側からの発光光hの取り出し効率が向上することによる高輝度化を図ることが可能である。さらに、所定輝度を得るための駆動電圧の低減による発光寿命の向上を図ることも可能になる。また有機電界発光素子EL-1は、均一な膜厚であることで平滑性の高い透明電極1を用いたことにより、整流比が向上し、短絡の可能性が低く信頼性の向上が図られたものとなる。
≪4.有機電界発光素子の第2例(ボトムエミッション型)≫
<有機電界発光素子の構成>
図3は、本発明の電子デバイスの一例として、上述した透明電極を用いた有機電界発光素子の第2例を示す断面構成図である。この図に示す第2例の有機電界発光素子EL-2が、図2を用いて説明した第1例の有機電界発光素子EL-1と異なるところは、透明基板13’上に透明電極1を設け、この上部に発光機能層3と対向電極5-2とをこの順に積層したところにある。以下、第1例と同様の構成要素についての重複する詳細な説明は省略し、第2例の有機電界発光素子EL-2の特徴的な構成を説明する。
図3に示す有機電界発光素子EL-2は、透明基板13’上に設けられており、透明基板13’側から順に、陽極となる透明電極1、発光機能層3、および陰極となる対向電極5-2が積層されている。このうち、透明電極1として、先に説明した本発明の透明電極1を用いているところが特徴的である。このため有機電界発光素子EL-2は、少なくとも透明基板13’側から発光光hを取り出すボトムエミッション型として構成されている。
このような有機電界発光素子EL-2の全体的な層構造が限定されることはく、一般的な層構造であって良いことは、第1例と同様である。本第2例の場合の一例としては、陽極として機能する透明電極1の上部に、正孔注入層3a/正孔輸送層3b/発光層3c/電子輸送層3d/電子注入層3eがこの順に積層され、さらにこの上部に陰極となる対向電極5-2が積層された構成が例示される。以上のような構成において、透明電極1と対向電極5-2とで発光機能層3が挟持された部分のみが、有機電界発光素子EL-2における発光領域となることも、第1例と同様である。
また本実施形態の有機電界発光素子EL-2においては、透明基板13’上に窒素含有層1a、高表面エネルギー材料層A、および電極層1bの順に積層された透明電極1のうち、実質的に陽極として機能する電極層1b上に、直接、発光機能層3が設けられる。したがって、窒素含有層1aは、上述した有効非共有電子対含有率[n/M]が所定範囲の化合物を用いて構成され、さらには窒素含有層1a自体の有効非共有電子対含有率[n/M]が所定範囲であれば好ましく、正孔輸送性や正孔注入性を有する材料を用いる必要はない。また窒素含有層1aは、積層構造であっても良い。この場合、窒素含有層1aにおける高表面エネルギー材料層A側の膜厚5nm程度の界面層が、上述した有効非共有電子対含有率[n/M]となるように構成されていることが好ましい。
また以上のような層構成においては、透明電極1の低抵抗化を図ることを目的とし、透明電極1の電極層1bに接して補助電極15が設けられていても良いことは、第1例と同様である。
さらに、発光機能層3の上方に設けられる対向電極5-2は、陰極として機能する電極膜であり、発光機能層3に接する側の界面層が、陰極として適する材料で構成されていることとする。陰極として適する材料としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、インジウム、リチウム/アルミニウム混合物、アルミニウム、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/sq.以下が好ましく、膜厚は通常10nm〜5μm、好ましくは50nm〜200nmの範囲で選ばれる。
またこのようなボトムエミッション型の有機電界発光素子EL-2を封止する封止材17’は、光透過性を有している必要はない。このような封止材17’は、先の第1例で用いた透明封止材と同様の材料の他、金属材料で構成されたものを用いることができる。金属材料としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブデン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属または合金からなるものが挙げられる。このような金属材料は、薄型のフィルム状にして封止材17’として用いることにより、有機電界発光素子が設けられた発光パネル全体を薄膜化できる。
尚、この有機電界発光素子EL-2が、対向電極5-2側からも発光光hを取り出すものである場合、対向電極5-2を構成する材料としては、上述した導電性材料のうち光透過性の良好な導電性材料を選択して用いれば良い。またこの場合、封止材17’としては、光透過性を有する透明封止材が用いられる。
<有機電界発光素子EL-2の効果>
以上説明した有機電界発光素子EL-2は、本発明の導電性と光透過性とを兼ね備えた透明電極1を陽極として用い、この上部に発光機能層3と陰極となる対向電極5-2とを設けた構成である。このため、第1例と同様に、透明電極1と対向電極5-2との間に十分な電圧を印加して有機電界発光素子EL-2での高輝度発光を実現しつつ、透明電極1側からの発光光hの取り出し効率が向上することによる高輝度化を図ることが可能である。さらに、所定輝度を得るための駆動電圧の低減による発光寿命の向上を図ることも可能になる。また有機電界発光素子EL-2は、均一な膜厚であることで平滑性の高い透明電極1を用いたことにより、第1例と同様に整流比が向上し、短絡の可能性が低く信頼性の向上が図られたものとなる。
≪5.有機電界発光素子の第3例(両面発光型)≫
<有機電界発光素子の構成>
図4は、本発明の電子デバイスの一例として、上述した透明電極を用いた有機電界発光素子の第3例を示す断面構成図である。この図に示す第3例の有機電界発光素子EL-3が、図2を用いて説明した第1例の有機電界発光素子EL-1と異なるところは、基板として透明基板13’を用い、2つの透明電極1間に発光機能層3を挟持させたところにある。以下、第1例と同様の構成要素についての重複する詳細な説明は省略し、第3例の有機電界発光素子EL-3の特徴的な構成を説明する。
図4に示す有機電界発光素子EL-3は、透明基板13’上に設けられており、透明基板13’側から順に、陽極となる透明電極1、発光機能層3、および陰極となる透明電極1がこの順に積層されている。このうち、透明電極1として、先に説明した本発明の透明電極1を用いているところが特徴的である。これにより有機電界発光素子EL-3は、透明基板13’側およびこれとは逆側の透明封止材17側の両面から発光光hを取り出す両面発光型として構成されている。
このような有機電界発光素子EL-3の全体的な層構造が限定されることはく、一般的な層構造であって良いことは、第1例と同様である。本第3例の場合の一例としては、陽極となる透明電極1の上部に、正孔注入層3a/正孔輸送層3b/発光層3c/電子輸送層3dをこの順に設けた構成が例示され、この上部に陰極となる透明電極1が積層された構成が例示される。図示した例では、電子輸送層3dが、電子注入層を兼ねると共に、陰極となる透明電極1の窒素含有層1aを兼ねて設けられている。
尚、発光機能層3は、第1例で説明したと同様に、必要に応じたさまざまな構成が採用され、ここでの図示を省略した正孔阻止層や電子阻止層が設けられても良い。以上のような構成において、2つの透明電極1で挟持された部分のみが、有機電界発光素子EL-3における発光領域となることも、第1例と同様である。
また本実施形態の有機電界発光素子EL-3においては、透明基板13’側に設けられた透明電極1は、透明基板13’側から窒素含有層1a、高表面エネルギー材料層A、電極層1bの順に設けられ、実質的に陽極として機能する電極層1bの上部に発光機能層3が直接設けられた状態となる。したがって、透明基板13’側の窒素含有層1aは、上述した有効非共有電子対含有率[n/M]が所定範囲を満たす化合物を用いて構成されれば良く、さらには窒素含有層1a自体の有効非共有電子対含有率[n/M]が所定範囲であれば好ましく、正孔輸送性や正孔注入性を有する材料を用いる必要はない。またこの窒素含有層1aは、積層構造であっても良い。この場合、窒素含有層1aにおける高表面エネルギー材料層A側の膜厚5nm程度の界面層が、上述した有効非共有電子対含有率[n/M]となるように構成されていることが好ましい。
これに対して、発光機能層3上に設けられた透明電極1は、発光機能層3側から窒素含有層1a、高表面エネルギー材料層A、電極層1bの順に設けられ、実質的に陰極として機能する電極層1bおよび高表面エネルギー材料層Aと発光機能層3との間に窒素含有層1aが配置された状態となる。このため、発光機能層3上の窒素含有層1aは、発光機能層3の一部を構成する層ともなる。このような窒素含有層1aは、上述した有効非共有電子対含有率[n/M]が所定範囲の化合物のなかから、さらに電子輸送性または電子注入性を有する化合物を用いて構成される。または、このような窒素含有層1aは、窒素含有層1a自体が上述した有効非共有電子対含有率[n/M]となるように、電子輸送性または電子注入性を有する化合物と、ある程度の大きさの有効非共有電子対含有率[n/M]を有する化合物とを混合して用いて構成されていても良い。またこの窒素含有層1aは、積層構造であっても良い。この場合、窒素含有層1aにおける高表面エネルギー材料層A側の膜厚5nm程度の界面層が、上述した有効非共有電子対含有率[n/M]となるように構成されていることが好ましい。一方、これよりも発光機能層3側の層は、窒素含有化合物を用いた電子輸送層または電子注入層として構成されていていることが好ましい。
また以上のような層構成においては、透明電極1の低抵抗化を図ることを目的とし、2つの透明電極1の電極層1bに接して補助電極15が設けられていても良いことも、第1例と同様である。
さらにこの有機電界発光素子EL-3は、両面発光型であるため、光透過性を有する透明封止材17によって封止される。
<有機電界発光素子EL-3の効果>
以上説明した有機電界発光素子EL-3は、本発明の導電性と光透過性とを兼ね備えた透明電極1を陽極および陰極として用い、この間に発光機能層3を挟持した構成である。このため、第1例と同様に、2つの透明電極1間に十分な電圧を印加して有機電界発光素子EL-3での高輝度発光を実現しつつ、2つの透明電極1側からの発光光hの取り出し効率が向上することによる高輝度化を図ることが可能である。さらに、所定輝度を得るための駆動電圧の低減による発光寿命の向上を図ることも可能になる。また有機電界発光素子EL-3は、均一な膜厚であることで平滑性の高い透明電極1を用いたことにより、第1例と同様に整流比が向上し、短絡の可能性が低く信頼性の向上が図られたものとなる。
≪6.有機電界発光素子の第4例(逆積み構成)≫
<有機電界発光素子の構成>
図5は、本発明の電子デバイスの一例として、上述した透明電極を用いた有機電界発光素子の第4例を示す断面構成図である。この図に示す第4例の有機電界発光素子EL-4が、図2を用いて説明した第1例の有機電界発光素子EL-1と異なるところは、透明基板13’側から順に陰極(透明電極1)、発光機能層3、陽極(対向電極5-4)を設けて積層順を逆にしたところにある。以下、第1例と同様の構成要素についての重複する詳細な説明は省略し、第4例の有機電界発光素子EL-4の特徴的な構成を説明する。
図5に示す有機電界発光素子EL-4は、透明基板13’上に設けられており、透明基板13’側から順に、陰極となる透明電極1、発光機能層3、および陽極となる対向電極5-4がこの順に積層されている。このうち、透明電極1として、先に説明した本発明の透明電極1を用いているところが特徴的である。このため有機電界発光素子EL-4は、少なくとも透明基板13’側から発光光hを取り出すボトムエミッション型として構成されている。
このような有機電界発光素子EL-4の全体的な層構造が限定されることはく、一般的な層構造であって良いことは、第1例と同様である。本第4例の場合の一例としては、陰極となる透明電極1の上部に、電子注入層3e/電子輸送層3d/発光層3c/正孔輸送層3b/正孔注入層3aをこの順に設けた構成が例示され、この上部に陽極となる対向電極5-4が積層された構成が例示される。
尚、発光機能層3は、第1例で説明したと同様に、必要に応じたさまざまな構成が採用され、ここでの図示を省略した正孔阻止層や電子阻止層が設けられても良い。以上のような構成において、透明電極1と対向電極5-4とで挟持された部分のみが、有機電界発光素子EL-4における発光領域となることも、第1例と同様である。
また本実施形態の有機電界発光素子EL-4においては、透明基板13’上に窒素含有層1a、高表面エネルギー材料層A、および電極層1bの順に積層された透明電極1のうち、実質的に陰極として機能する電極層1b上に、直接、発光機能層3が設けられる。したがって窒素含有層1aは、上述した有効非共有電子対含有率[n/M]が所定範囲を満たす化合物を用いて構成されれば良く、さらには窒素含有層1a自体の有効非共有電子対含有率[n/M]が所定範囲であれば好ましく、電子輸送性や電子注入性を有する材料を用いる必要はない。また窒素含有層1aは、積層構造であっても良い。この場合、窒素含有層1aにおける高表面エネルギー材料層A側の膜厚5nm程度の界面層が、上述した有効非共有電子対含有率[n/M]となるように構成されていることが好ましい。
また以上のような層構成においては、透明電極1の低抵抗化を図ることを目的とし、透明電極1の電極層1bに接して補助電極15が設けられていても良いことも、第1例と同様である。
さらに、発光機能層3の上方に陽極として設けられる対向電極5-4は、第1例で説明した陽極と同様の材料を用いて構成される。
尚、本第実施形態の変形例として、発光機能層3上の陽極も透明電極1とする構成が例示される。この場合、発光機能層3上に窒素含有層1aを介して設けられた高表面エネルギー材料層Aおよび電極層1bが実質的な陽極となる。そして、発光機能層3上に設けられた窒素含有層1aは、発光機能層3の一部を構成する層ともなる。このような窒素含有層1aは、上述した有効非共有電子対含有率[n/M]が所定範囲の化合物なかから、さらに正孔輸送性または正孔注入性を有する化合物を用いて構成されることが好ましい。または、このような窒素含有層1aは、窒素含有層1a自体が上述した有効非共有電子対含有率[n/M]となるように、正孔輸送性または正孔注入性を有する化合物と、ある程度の大きさの有効非共有電子対含有率[n/M]を有する化合物とを混合して用いて構成されていても良い。この窒素含有層1aも、積層構造であっても良い。この場合、窒素含有層1aにおける高表面エネルギー材料層A側の膜厚5nm程度の界面層が、上述した有効非共有電子対含有率[n/M]となるように構成されていることが好ましい。一方、これよりも発光機能層3側の層は、窒素含有化合物を用いた正孔輸送層または正孔注入層として構成されていていることが好ましい。
<有機電界発光素子EL-4の効果>
以上説明した有機電界発光素子EL-4は、本発明の導電性と光透過性とを兼ね備えた透明電極1を陰極として用い、この上部に発光機能層3と陽極となる対向電極5-4とをこの順に設けた構成である。このため、第1例と同様に、透明電極1と対向電極5-4との間に十分な電圧を印加して有機電界発光素子EL-4での高輝度発光を実現しつつ、透明電極1側からの発光光hの取り出し効率が向上することによる高輝度化を図ることが可能である。さらに、所定輝度を得るための駆動電圧の低減による発光寿命の向上を図ることも可能になる。また有機電界発光素子EL-4は、均一な膜厚であることで平滑性の高い透明電極1を用いたことにより、第1例と同様に整流比が向上し、短絡の可能性が低く信頼性の向上が図られたものとなる。
≪7.有機電界発光素子の用途≫
上述した各構成の有機電界発光素子は、上述したように面発光体であるため各種の発光光源として用いることができる。例えば、家庭用照明や車内照明などの照明装置、時計や液晶用のバックライト、看板広告用照明、信号機の光源、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これに限定するものではなく、特にカラーフィルターと組み合わせた液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
また、本発明の有機電界発光素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。この場合、近年の照明装置およびディスプレイの大型化にともない、有機電界発光素子を設けた発光パネル同士を平面的に接合する、いわゆるタイリングによって発光面を大面積化しても良い。
動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。また異なる発光色を有する本発明の有機電界発光素子を2種以上使用することにより、カラーまたはフルカラー表示装置を作製することが可能である。
以下では、用途の一例として照明装置について説明し、次にタイリングによって発光面を大面積化した照明装置について説明する。
≪8.照明装置−1≫
本発明の照明装置は、上記有機電界発光素子を有する。
本発明の照明装置に用いる有機電界発光素子は、上述した構成の各有機電界発光素子に共振器構造を持たせた設計としてもよい。共振器構造として構成された有機電界発光素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより上記用途に使用してもよい。
尚、本発明の有機電界発光素子に用いられる材料は、実質的に白色の発光を生じる有機電界発光素子(白色有機電界発光素子ともいう)に適用できる。例えば、複数の発光材料により複数の発光色を同時に発光させて混色により白色発光を得ることもできる。複数の発光色の組み合わせとしては、赤色、緑色、青色の3原色の3つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した2つの発光極大波長を含有したものでもよい。
また、複数の発光色を得るための発光材料の組み合わせは、複数のリン光または蛍光で発光する材料を複数組み合わせたもの、蛍光またはリン光で発光する発光材料と、発光材料からの光を励起光として発光する色素材料との組み合わせたもののいずれでもよいが、白色有機電界発光素子においては、発光ドーパントを複数組み合わせて混合したものでもよい。
このような白色有機電界発光素子は、各色発光の有機電界発光素子をアレー状に個別に並列配置して白色発光を得る構成と異なり、有機電界発光素子自体が白色を発光する。このため、素子を構成するほとんどの層の成膜にマスクを必要とせず、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で例えば電極膜を形成でき、生産性も向上する。
またこのような白色有機電界発光素子の発光層に用いる発光材料としては、特に制限はなく、例えば液晶表示素子におけるバックライトであれば、CF(カラーフィルター)特性に対応した波長範囲に適合するように、本発明に係る金属錯体、また公知の発光材料の中から任意のものを選択して組み合わせて白色化すればよい。
以上に説明した白色有機電界発光素子を用いれば、実質的に白色の発光を生じる照明装置を作製することが可能である。
≪9.照明装置−2≫
また本発明の有機電界発光素子は、複数用いて発光面を大面積化した照明装置としても用いることができる。この場合、透明基板上に有機電界発光素子を設けた複数の発光パネルを、支持基板上に複数配列する(すなわちタイリングする)ことによって発光面を大面積化する。支持基板は、封止材を兼ねるものであっても良く、この支持基板と、発光パネルの透明基板との間に有機電界発光素子を挟持する状態で各発光パネルをタイリングする。支持基板と透明基板との間には接着剤を充填し、これによって有機電界発光素子を封止しても良い。尚、発光パネルの周囲には、透明電極および対向電極の端子を露出させておく。
このような構成の照明装置では、各発光パネルの中央が発光領域となり、発光パネル間には非発光領域が発生する。このため、非発光領域からの光取り出し量を増加させるための光取り出し部材を、光取り出し面の非発光領域に設けても良い。光取り出し部材としては、集光シートや光拡散シートを用いることができる。
≪透明電極の作製≫
以降の表2に構成を示すように、試料101〜132の各透明電極を、導電性領域の面積が5cm×5cmとなるように作製した。尚、ここでは、上記表1に示した化合物No.1〜No.45の中から適宜選択した化合物を用いた。
<試料101,102の透明電極の作製手順>
以下のようにして、ガラス製の基材上に、下記表2に示すそれぞれの膜厚で銀(Ag)からなる電極層を形成した。
先ず、透明な無アルカリガラス製の基材を、市販の真空蒸着装置の基材ホルダーに固定し、真空蒸着装置の真空槽に取り付けた。またタングステン製の抵抗加熱ボートに銀(Ag)を入れ、当該真空槽内に取り付けた。次に、真空槽を4×10-4Paまで減圧した後、抵抗加熱ボートを通電して加熱し、蒸着速度0.1nm/秒〜0.2nm/秒で、銀からなる電極層をそれぞれの膜厚で形成した。試料101では膜厚6nmで電極層を形成し、試料102では膜厚15nmで電極層を形成した。
<試料103〜111の透明電極の作製手順>
以下のようにして、ガラス製の基材上に、下記表2に示すそれぞれの材料を用いた窒素含有層と、銀からなる電極層との2層構造の透明電極を形成した。尚、試料103では、窒素含有層に換えて窒素を含有しない下地層を形成した。
先ず、透明な無アルカリガラス製の基材を市販の真空蒸着装置の基材ホルダーに固定した。また、各透明電極の作製において、下記表2に示す各化合物をタンタル製抵抗加熱ボートに入れた。これらの基板ホルダーと加熱ボートとを真空蒸着装置の第1真空槽に取り付けた。また、タングステン製の抵抗加熱ボートに銀(Ag)を入れ、第2真空槽内に取り付けた。
ここで用いた化合物のうち、化合物No.-1〜No.-5は以下に示すものであり、[有効非共有電子対]を有する窒素原子に対して○を付した。このうち化合物No.-1は窒素原子を含有していないアントラセンであり、化合物No.-2〜No.-5は窒素を含有するが有効非共有電子対含有率[n/M]の値が[n/M]<2.0×10-3である。
一方、化合物No.1,No.39,No.40,No.38は、先の実施形態で有効非共有電子対含有率[n/M]の値が[n/M]≧2.0×10-3であるとして示した例示化合物である。下記表2にはここで用いた化合物の有効非共有電子対の数[n]、分子量[M]、および有効非共有電子対含有率[n/M]も示した。
次いで、第1真空槽を4×10-4Paまで減圧した後、各化合物の入った加熱ボートに通電して加熱し、蒸着速度0.1nm/秒〜0.2nm/秒で基材上に膜厚25nmの各化合物で構成された窒素含有層(試料103では下地層)を設けた。
次に、窒素含有層(下地層)まで成膜した基材を真空のまま第2真空槽に移し、第2真空槽を4×10-4Paまで減圧した後、銀の入った加熱ボートを通電して加熱した。これにより、蒸着速度0.1nm/秒〜0.2nm/秒で膜厚6nmの銀からなる電極層を形成し、窒素含有層(下地層)とこの上部の電極層との積層構造からなる試料103〜1111の各透明電極を得た。
<試料112〜114の透明電極の作製手順>
以下のようにして、ガラス製の基材上に、下記表2に示すそれぞれの材料を用いた窒素含有層と、プラチナ(Pt)からなる高表面エネルギー材料層と、銀からなる電極層との3層構造の透明電極を形成した。
先ず、透明な無アルカリガラス製の基材を市販の真空蒸着装置の基材ホルダーに固定した。また、各透明電極の作製において、下記表2に示す各化合物No.1,No.4,No.39をタンタル製抵抗加熱ボートに入れた。これらの基板ホルダーと加熱ボートとを真空蒸着装置の第1真空槽に取り付けた。また、タングステン製の抵抗加熱ボートに銀(Ag)を入れ、真空蒸着装置の第2真空槽内に取り付けた。さらにスパッタ成膜装置の真空槽内にスパッタターゲットとしてプラチナ(Pt)を配置した。
各化合物No.1,No.4,No.39は、先の実施形態で有効非共有電子対含有率[n/M]の値が[n/M]≧2.0×10-3であるとして示した例示化合物である。下記表2にはここで用いた化合物の有効非共有電子対の数[n]、分子量[M]、および有効非共有電子対含有率[n/M]も示した。
次いで、真空蒸着装置の第1真空槽を4×10-4Paまで減圧した後、各化合物の入った加熱ボートに通電して加熱し、蒸着速度0.1nm/秒〜0.2nm/秒で基材上に膜厚25nmの各化合物で構成された窒素含有層を設けた。
次に、窒素含有層まで成膜した基材をスパッタ成膜装置の真空槽内に移し、この真空槽内においてプラチナ(Pt)を速度0.05nm/秒でスパッタ成膜し、膜厚0.5nmの高表面エネルギー材料層を形成した。
高表面エネルギー材料層まで成膜した基材を真空蒸着装置の第2真空槽に移し、第2真空槽を4×10-4Paまで減圧した後、銀(Ag)の入った加熱ボートを通電して加熱した。これにより、蒸着速度0.1nm/秒〜0.2nm/秒で膜厚6nmの銀からなる電極層を形成し、窒素含有層、高表面エネルギー材料層、および電極層をこの順に積層した試料112〜114の各透明電極を得た。
<試料115〜127の透明電極の作製手順>
上記試料112〜114と同様の手順で、試料115〜127の各透明電極を得た。ただし、窒素含有層を構成する化合物は下記表2に示す通りであり、高表面エネルギー材料層を構成する材料としてチタン(Ti)を用いた。チタン(Ti)からなる高表面エネルギー層の形成は、窒素含有層および電極層の形成とは別の真空槽内において電子ビーム蒸着法によって行った。
<試料128,129の透明電極の作製手順>
上記試料112〜114と同様の手順で、試料128,129の各透明電極を得た。ただし、窒素含有層を構成する化合物として下記表2に示す各材料を用い、高表面エネルギー材料層を構成する材料としてチタン(Ti)を用い、銀からなる電極層の膜厚を8nmとした。チタン(Ti)からなる高表面エネルギー層の形成は、窒素含有層および電極層の形成とは別の真空槽内において電子ビーム蒸着法によって行った。
<試料130,131の透明電極の作製手順>
上記試料112〜114と同様の手順で、試料128,129の各透明電極を得た。ただし、基材としてポリエチレンテレフタレート(PET)を用い、窒素含有層を構成する化合物として下記表2に示す各材料を用い、高表面エネルギー材料層を構成する材料としてチタン(Ti)を用い、銀からなる電極層の膜厚を8nmとした。チタン(Ti)からなる高表面エネルギー層の形成は、窒素含有層および電極層の形成とは別の真空槽内において電子ビーム蒸着法によって行った。
<試料132の透明電極の作製手順>
上記試料115のようにして作製した透明電極の電極層上に、さらに酸化チタン(TiO)からなる高屈折率層を膜厚50nmで形成した。高屈折率層の形成は、電極層の形成に引き続き、電極層の形成とは別の真空槽内において電子ビーム蒸着法によって行った。
<実施例1の各試料の評価>
上記で作製した試料101〜132の各透明電極について、波長550nmの光に対する光透過率、およびシート抵抗値を測定した。光透過率の測定は、分光光度計(日立製作所製U−3300)を用い、試料と同じ基材をベースラインとして行った。シート抵抗値の測定は、抵抗率計(三菱化学社製MCP−T610)を用い、4端子4探針法定電流印加方式で行った。この結果を下記表2に合わせて示す。
<実施例1の評価結果>
表2から明らかなように、試料112〜132の透明電極、すなわち有効非共有電子対含有率[n/M]が2.0×10-3≦[n/M]の確認された所定範囲内である化合物No.1〜No.45を用いて構成された窒素含有層と、この上部の高表面エネルギー材料層と、銀で構成された電極層とを備えた透明電極は、実質的な導電性を担う電極層が8nmまたは6nmと極薄膜でありながらも、シート抵抗値の値が20Ω/sq.以下の低い値に抑えられていた。このことから、本発明構成の透明電極では、高表面エネルギー材料層を介して窒素含有層上に形成された電極層が、単層成長型(Frank−van der Merwe:FM型)の膜成長によってほぼ均一な膜厚で形成されていることが確認された。
また、これら試料112〜132の透明電極は、高表面エネルギー材料層を備えながらも、その膜厚が0.5nm程度で十分に薄いことにより、光透過率も70%以上であって透明電極として用いることが可能であることが確認された。
以上の結果は、基材の材料のみが異なる試料128,129と試料130,131との比較から、基材がガラスであってもプラスチック材料(PET)であっても同様である事が確認された。
そして特に、電極層の膜厚のみが異なる、試料115と試料128、および試料125と試料129を比較すると、電極層が6nmであっても8nmであっても、光透過率が70%を越える高い値に保持され、電極層の6nmから8nmへの厚膜化によるシート抵抗値の低下も確認され、光透過率の向上と導電性の向上との両立が図られることが確認された。
また、電極層の上部にさらに高屈折率層を設けた試料132の透明電極は、高屈折率層を設けていない試料115の透明電極と比較すると、高屈折率層を設けたことによる光透過率の15%程度もの向上が確認された。
これに対して、試料101〜111の透明電極、すなわち高表面エネルギー材料層を設けていない透明電極は、先の試料112〜132の透明電極と比較して、光透過率が60%以下と低く、またシート抵抗の値も30Ω/sq.以上と高かった。
なかでも、そもそも窒素含有層を設けていない試料101〜試料103、および有効非共有電子対含有率[n/M]が2.0×10-3>[n/M]でしかない化合物No.-1〜No.-5を用いて窒素含有層を構成した試料104〜107の透明電極は、シート抵抗の測定が不可能であり、電極として用いることができなかった。しかもこれらの透明電極は、光透過率も50%より低く、透明電極として用いることもできなかった。尚、窒素含有層や下地層を設けていない試料102は、電極層の膜厚が15nmと厚膜であるため、シート抵抗は低いものの光透過率が低く透明電極として用いることはできないものであった。
図6には、有効非共有電子対含有率[n/M]が、2.0×10-3≦[n/M]≦1.9×10−2である化合物No.1〜No.20を用いた窒素含有層の上部に、膜厚6nmの電極層を設けた透明電極について、窒素含有層を構成する化合物の有効非共有電子対含有率[n/M]と、各透明電極について測定されたシート抵抗の値をプロットしたグラフを示す。
図6のグラフから、有効非共有電子対含有率[n/M]が2.0×10-3≦[n/M]≦1.9×10−2の範囲では、有効非共有電子対含有率[n/M]の値が大きいほど、透明電極のシート抵抗が低くなる傾向が見られた。そして有効非共有電子対含有率[n/M]=3.9×10-3を境にして、3.9×10-3≦[n/M]の範囲であれば、飛躍的にシート抵抗を低下させる効果が得られることが確認された。さらに有効非共有電子対含有率[n/M]が6.5×10-3≦[n/M]であれば、確実にシート抵抗を低下させる効果が得られることが確認された。
また以上の結果は、化合物No.19,No.20を用い塗布成膜によって窒素含有層を形成した場合でも同様であった。
以上より、有効非共有電子対含有率[n/M]を指標として、電極層に隣接して設けた窒素含有層を構成する化合物を選択して用いることにより、光透過性を得るために薄膜でありながらも低抵抗な電極膜(すなわち透明電極)が得られることが確認された。
≪ボトムエミッション型の有機電界発光素子の作製≫
以降の表3に構成を示すように、各構成の透明電極を陽極として発光機能層の下部に設けた試料201〜216のボトムエミッション型の各有機電界発光素子を作製した。図7を参照し、作製手順を説明する。尚、下記表3には、試料201〜216の有機電界発光素子に用いた透明電極の構成を示した。各透明電極を構成する各層の形成手順は実施例1で説明した手順と同様である。またここで用いた各化合物は、実施例1で用いた化合物の中からさらに選択した化合物である。
<試料201〜216の有機電界発光素子の作製手順>
(透明電極1の形成)
先ず試料201〜216において、透明なPET製の透明基板13’の上部に、下記表3に示した各化合物で構成された窒素含有層1aを25nmの膜厚で形成した。
次に、試料201〜203においては、窒素含有層1aの上部に、銀(Ag)を用いた電極層を6nmの膜厚で形成し、窒素含有層1aと電極層1bとの2層構造の透明電極を形成した。
一方、試料204〜216においては、窒素含有層1aの上部に、下記表3に示した材料からなる高表面エネルギー材料層Aを0.5nmの膜厚で形成し、その後銀(Ag)を用いた電極層を下記表3に示した各膜厚で形成した。これにより、窒素含有層1aと、高表面エネルギー材料層Aと、電極層1bとの3層構造の透明電極1を形成した。
(正孔輸送・注入層31の形成)
先ず、正孔輸送注入材料として下記構造式に示すα−NPDが入った加熱ボートに通電して加熱し、α−NPDよりなる正孔注入層と正孔輸送層とを兼ねた正孔輸送・注入層31を、透明電極1上に成膜した。この際、蒸着速度0.1nm/秒〜0.2nm/秒、膜厚20nmとした。
(発光層32の形成)
次に、下記構造式に示すホスト材料H-1の入った加熱ボートと、下記構造式に示す燐光発光性化合物Ir1の入った加熱ボートとを、それぞれ独立に通電し、ホスト材料H−1と燐光発光性化合物Ir1とよりなる発光層32を、正孔輸送・注入層31上に成膜した。この際、蒸着速度がホスト材料H−1:燐光発光性化合物Ir1=100:6となるように、加熱ボートの通電を調節した。また膜厚30nmとした。
(正孔阻止層33の形成)
次いで、正孔阻止材料として下記構造式に示すBAlqが入った加熱ボートに通電して加熱し、BAlqよりなる正孔阻止層33を、発光層32上に成膜した。この際、蒸着速度0.1nm/秒〜0.2nm/秒、膜厚10nmとした。
(電子輸送・注入層34の形成)
その後、電子輸送材料として、先に構造式を示した化合物10の入った加熱ボートと、フッ化カリウムの入った加熱ボートとをそれぞれ独立に通電し、化合物10とフッ化カリウムとよりなる電子注入層と電子輸送層とを兼ねた電子輸送・注入層34を、正孔阻止層33上に成膜した。この際、蒸着速度が化合物10:フッ化カリウム=75:25になるように、加熱ボートの通電を調節した。また膜厚30nmとした。尚、化合物10は、有効非共有電子対含有率[n/M]が所定範囲である化合物No.7でもある。
(対向電極5-2:陰極の形成)
以上の後には、発光機能層3が形成された透明基板13’を、真空蒸着装置の第2真空槽内に移送し、第2真空槽内を4×10-4Paまで減圧した後、第2真空槽内に取り付けられたアルミニウムの入った加熱ボートを通電して加熱した。これにより、蒸着速度0.3nm/秒で膜厚100nmのアルミニウムからなる対向電極5-2を形成した。この対向電極5-2は、陰極として用いられる。以上により透明基板13’上に、ボトムエミッション型の有機電界発光素子EL-2を形成した。
(素子の封止)
その後、有機電界発光素子EL-2を、厚さ300μmのガラス基板からなる封止材17’で覆い、有機電界発光素子EL-2を囲む状態で、封止材17’と透明基板13’との間に接着剤19(シール材)を充填した。接着剤19としては、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を用いた。封止材17’と透明基板13’との間に充填した接着剤19に対して、ガラス基板からなる封止材17’側からUV光を照射し、接着剤19を硬化させて有機電界発光素子EL-2を封止した。
尚、有機電界発光素子EL-2の形成においては、各層の形成に蒸着マスクを使用し、5cm×5cmの透明基板13’における中央の4.5cm×4.5cmを発光領域aとし、発光領域aの全周に幅0.25cmの非発光領域bを設けた。また、陽極である透明電極1の電極層1bと、陰極である対向電極5-2とは、正孔輸送・注入層31〜電子輸送・注入層34によって絶縁された状態で、透明基板13’の周縁に端子部分を引き出された形状で形成した。
以上のようにして、透明基板13’上に有機電界発光素子EL-2を設け、これを封止材17’と接着剤19とで封止した試料201〜203の有機電界発光素子の各発光パネルを得た。これらの各発光パネルにおいては、発光層32で発生した各色の発光光hが、透明基板13’側から取り出される。
<実施例2の各試料の評価>
試料201〜216で作製した有機電界発光素子EL-2(発光パネル)について、駆動電圧の測定、輝度ムラおよび高温・高湿保存性の評価を行った。この結果を下記表3に合わせて示す。
駆動電圧の測定においては、各有機電界発光素子EL-2の透明電極1側(すなわち透明基板13’側)での正面輝度が1000cd/m2となるときの電圧を駆動電圧として測定した。尚、輝度の測定には分光放射輝度計CS−1000(コニカミノルタセンシング製)を用いた。得られた駆動電圧の数値が小さいほど、好ましい結果であることを表わす。
また輝度ムラの評価においては、各有機電界発光素子EL-2に2.5mA/cmの電流を加え、透明電極1側(すなわち透明基板13’側)の発光面における中心の輝度(中心輝度)と、透明電極1側の給電点に近い端部の輝度(端部輝度)とを測定した。輝度の測定には上記分光放射輝度計CS−1000(コニカミノルタセンシング製)を用いた。そして、測定された端部輝度に対する中心輝度を、輝度ムラとして算出した。このため、輝度ムラは、発光面内における発光輝度の均一性を表し、100%に近いほど好ましい結果となる。
高温・高湿保存性の評価においては、試料201〜216の各発光パネルを高温高湿環境(温度60℃、湿度90%)下に300時間保存し、保存前後での各発光パネルの駆動電圧差ΔVと、保存後の整流比とを評価した。駆動電圧差ΔVは、各発光パネルを保存前後で輝度が1000cdとなるように駆動し、その際に測定された駆動電圧の変化量として算出した。算出された駆動電圧差ΔVは、数値が小さいほど好ましい結果であることを表す。整流比は、保存後の各発光パネルに対して、順方向に+2.5Vの駆動電圧を印加した場合の電流値と、逆方向に−2.5V駆動電圧を印加した場合の電流値を測定し、これらの電流値の比[電流値(+2.5V)/電流値(−2.5V)]の対数値を算出して整流比(log)とした。整流比(log)が高いほどリーク特性に優れていることを表す。この結果を下記表3に合わせて示す。
<実施例2の評価結果>
表3から明らかなように、試料204〜216の有機電界発光素子、すなわち有効非共有電子対含有率[n/M]が2.0×10-3≦[n/M]である化合物No.1〜No.45のうちの何れかを用いた窒素含有層1aと、この上部の高表面エネルギー材料層Aと、銀で構成された電極層1bとを備えた透明電極1を有する有機電界発光素子EL-2は、駆動電圧が10V以下、具体的には6V以下の低い駆動電圧で1000cd/m2の正面輝度の発光が得られることが確認された。またこれらの試料204〜216の有機電界発光素子EL-2は、発光面内の均一性を示す輝度ムラの値が90%を越えて大きく輝度ムラの発生が小さく抑えられていることが確認された。さらにこれらの試料204〜216の有機電界発光素子EL-2は、高温・高湿環境下での保存後にも発光が確認され、駆動電圧差ΔVも低い値であり、保存後の整流比も十分でリークが抑えられており、高温・高湿保存性にも優れていることが確認された。またこれにより、銀からなる電極層1bが連続膜として構成されてバリア性を発揮し、有機材料で構成された発光機能層3の劣化が防止されていることが確認された。
これに対して、高表面エネルギー材料層Aを有していない透明電極を用いた試料201〜203の有機電界発光素子は、先の試料204〜216と比較して、駆動電圧が高く、輝度ムラも大きく、高温・高湿保存性も低かった。特に、試料201,202の、有効非共有電子対含有率[n/M]が上記範囲を外れた化合物No.-2,No.-4を用いた窒素含有層を有する試料201,202有機電界発光素子は、駆動電圧が10Vを超えても発光が得られなかった。
以上より、本発明構成の透明電極1を用いた有機電界発光素子EL-2は、低い駆動電圧での高輝度発光が可能でかつ保存性に優れていることが確認された。またこれにより、所定輝度を得るための駆動電圧の低減と、発光寿命の向上が見込まれることが確認された。
実施例1で作製した本発明構成の試料112〜132の透明電極を陽極として用い、この陽極を発光機能層の下部に設けた白色発光のボトムエミッション型の各有機電界発光素子を作製した。作製した各有機電界発光素子について、実施例2と同様の評価を行ったところ、実施例2と同様に、輝度ムラの発生が小さく抑えられ、有機材料で構成された発光機能層の劣化が防止されていることが確認された。これにより、本発明は、白色発光の有機電界発光素子の構成としても有効であることが確認された。
尚、実施例3で作製した白色発光の各有機電界発光素子の作製手順は次のようである。
先ず、30mm×30mm、厚さ0.7mmのガラス製の透明基板上に、実施例1で作製した本発明構成の試料112〜132の透明電極を陽極として形成した。次いで、各陽極が形成された透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
一方、真空蒸着装置内の蒸着用るつぼの各々に、次に形成する各層の構成材料を、各々素子作製に最適の量だけ充填し、真空蒸着装置に固定した。蒸着用るつぼはモリブデン製またはタングステン製の抵抗加熱用材料で作製されたものを用いた。
その後、真空蒸着装置内を真空度1×10-4Paまで減圧した後、上記α−NPDの入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で透明電極上に蒸着し、膜厚40nmの正孔注入輸送層を形成した。
次いで、青色の発光ドーパントである下記化合物BD−1、およびホスト化合物である下記化合物H−2を、化合物BD−1が5%の濃度になるように蒸着速度0.1nm/秒で共蒸着し、膜厚15nmの青色発光を呈する蛍光発光層を形成した。
次いで、緑色の発光ドーパントである下記化合物GD−1、赤色の発光ドーパントである下記化合物RD−1、およびホスト化合物である下記化合物H−3を、化合物GD−1が17%、化合物RD−1が0.8%の濃度になるように蒸着速度0.1nm/秒で共蒸着し、膜厚15nmの黄色を呈するリン光発光層を形成した。尚、化合物GD−1は先に発光ドーパントとして示した化合物D−15であり、化合物RD−1は先に発光ドーパントとして示した化合物D−1である。
その後、下記化合物E−1を蒸着速度0.1nm/秒で蒸着し、膜厚30nmの電子輸送層を形成した。尚、化合物E−1は、先に窒素含有層を構成する材料として示した化合物10である。
さらに、LiFを膜厚1.5nmにて形成した後に、アルミニウム110nmを蒸着して陰極を形成した。
次いで、上記素子の非発光面をガラスケースで覆い、各有機電界発光素子を作製した。
実施例1で作製した本発明構成の試料112〜132の透明電極を陽極として用い、この陽極を発光機能層の下部に設けた白色発光のタンデム型の各有機電界発光素子を作製した。作製した各有機電界発光素子について、実施例2と同様の評価を行ったところ、実施例2と同様に、輝度ムラの発生が小さく抑えられ、有機材料で構成された発光機能層の劣化が防止されていることが確認された。これにより、本発明は、タンデム型の有機電界発光素子の構成としても有効であることが確認された。
尚、実施例4で作製したタンデム型の各有機電界発光素子の作製手順は次のようである。
先ず、30mm×30mm、厚さ0.7mmのガラス製の透明基板上に、実施例1で作製した本発明構成の試料112〜132の透明電極を陽極として形成した。次いで、各陽極が形成された透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
一方、真空蒸着装置内の蒸着用るつぼの各々に、次に形成する各層の構成材料を、各々素子作製に最適の量だけ充填し、真空蒸着装置に固定した。蒸着用るつぼはモリブデン製またはタングステン製の抵抗加熱用材料で作製されたものを用いた。
その後、真空蒸着装置内を真空度1×10-4Paまで減圧した後、上記α−NPDの入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で透明電極上に蒸着し、膜厚40nmの正孔注入輸送層を形成した。
次いで、青色の発光ドーパントである上記化合物BD−1、およびホスト化合物である上記化合物H−2を、化合物BD−1が5%の濃度になるように蒸着速度0.1nm/秒で共蒸着し、膜厚30nmの青色発光を呈する蛍光発光層を形成した。
次いで、上記化合物E−1を蒸着速度0.1nm/秒で蒸着し、膜厚30nmの電子輸送層を形成した。
続いて、リチウムを1nmの膜厚に蒸着し、中間金属層を形成した。
次いで、上記α−NPDを蒸着速度0.1nm/秒で蒸着し、膜厚50nmの正孔注入輸送層を形成した。
次いで、緑色の発光ドーパントである上記化合物GD−1、赤色の発光ドーパントである上記化合物RD−1、およびホスト化合物である上記化合物H−3を、化合物GD−1が17%、化合物RD−1が0.8%の濃度になるように蒸着速度0.1nm/秒で共蒸着し、膜厚30nmの黄色を呈するリン光発光層を形成した。
その後、上記化合物E−1を蒸着速度0.1nm/秒で蒸着し、膜厚30nmの電子輸送層を形成した。
さらに、LiFを膜厚1.5nmにて形成した後に、アルミニウム110nmを蒸着して陰極を形成した。
次いで、上記素子の非発光面をガラスケースで覆い、各有機電界発光素子を作製した。
1…透明電極、1a…窒素含有層、1b…電極層、A…高表面エネルギー材料層、EL,EL-1,EL-2,EL-3,EL-4…有機電界発光素子(電子デバイス)

Claims (18)

  1. 窒素原子を含有すると共に当該窒素原子が有する非共有電子対のうち芳香族性に関与せずかつ金属に配位していない非共有電子対の数をn、分子量をMとした場合の有効非共有電子対含有率[n/M]が2.0×10−3≦[n/M]となる化合物を用いて構成された窒素含有層と、
    銀を主成分とする電極層と、
    銀よりも昇華熱エンタルピーが大きい高表面エネルギー材料(ただし高表面エネルギー材料がアルミニウム(Al)である場合を除く)を用いて構成され、前記窒素含有層と前記電極層とに接してこれらの間に挟持された高表面エネルギー材料層と、
    透明な基板とを備え、
    前記透明な基板上に前記窒素含有層、前記高表面エネルギー材料層、および前記電極層がこの順に積層された透明電極であって、
    前記電極層の上部に当該電極層から電荷供給される機能層が設けられる
    透明電極。
  2. 前記化合物における前記有効非共有電子対含有率[n/M]が、3.9×10−3≦[n/M]である
    請求項1記載の透明電極。
  3. 前記化合物における前記有効非共有電子対含有率[n/M]が、6.5×10−3≦[n/M]である
    請求項1に記載の透明電極。
  4. 前記窒素含有層は、前記化合物と共に他の化合物を用いて構成され、これらの化合物の混合比を考慮した前記有効非共有電子対含有率[n/M]の平均値が、2.0×10−3≦[n/M]である
    請求項1〜3に記載の透明電極。
  5. 前記窒素含有層は、下記一般式(1)で表される化合物を含有する
    請求項1〜4の何れかに記載の透明電極。
    [ただし一般式(1)中、E101〜E108は、各々−C(R12)=または−N=を表し、E101〜E108のうち少なくとも1つは−N=である。
    またR11および上記R12は水素原子または置換基を表す。]
  6. 前記窒素含有層は、
    前記一般式(1)におけるE103およびE106を−N=とした下記一般式(1a)で表される化合物を含有する
    請求項5記載の透明電極。
  7. 前記窒素含有層は、下記一般式(2)で表される化合物を含有する
    請求項1〜4の何れかに記載の透明電極。
    [ただし一般式(2)中、Y21は、アリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基を表す。
    E201〜E216、E221〜E238は、各々−C(R21)=または−N=を表し、上記R21は水素原子または置換基を表す。
    またE221〜E229の少なくとも1つおよびE230〜E238の少なくとも1つは−N=を表す。
    k21およびk22は0〜4の整数を表すが、k21+k22は2以上の整数である。]
  8. 前記窒素含有層は、下記一般式(3)で表される化合物を含有する
    請求項1〜4の何れかに記載の透明電極。

    [ただし一般式(3)中、E301〜E312は、各々−C(R31)=を表し、R31は水素原子または置換基を表す。
    Y31は、アリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基を表す。]
  9. 前記窒素含有層は、下記一般式(4)で表される化合物を含有する
    請求項1〜4の何れかに記載の透明電極。
    [ただし一般式(4)中、E401〜E414は、各々−C(R41)=を表し、R41は水素原子または置換基を表す。
    Ar41は、置換あるいは無置換の、芳香族炭化水素環あるいは芳香族複素環を表す。
    またk41は3以上の整数を表す。]
  10. 前記窒素含有層は、下記一般式(5)で表される化合物を含有する
    請求項1〜4の何れかに記載の透明電極。
    [ただし一般式(5)中、
    R51は置換基を表し、
    E501,E502、E511〜E515、E521〜E525は、各々−C(R52)=または−N=を表し、
    E503〜E505は、各々−C(R52)=を表し、
    前記R52は、水素原子(H)または置換基を表し、
    E501およびE502のうち少なくとも1つは−N=であり、
    E511〜E515のうち少なくとも1つは−N=であり、
    E521〜E525のうち少なくとも1つは−N=である。]
  11. 前記窒素含有層は、下記一般式(6)で表される化合物を含有する
    請求項1〜4の何れかに記載の透明電極。

    [ただし一般式(6)中、E601〜E612は、各々−C(R61)=または−N=を表し、R61は水素原子または置換基を表す。
    Ar61は、置換あるいは無置換の、芳香族炭化水素環あるいは芳香族複素環を表す。]
  12. 前記窒素含有層は、下記一般式(7)で表される化合物を含有する 請求項1〜4のいずれかに記載の透明電極。
    [ただし一般式(7)中、
    R71〜R73は、各々水素原子(H)または置換基を表し、
    Ar71は、芳香族炭化水素環基または芳香族複素環基を表す。]
  13. 前記窒素含有層は、下記一般式(8)で表される化合物を含有する
    請求項1〜4のいずれかに記載の透明電極。
    [ただし一般式(8)中、
    R81〜R86は、各々水素原子(H)または置換基を表し、
    E801〜E803は、各々−C(R87)=または−N=を表し、
    前記R87は、水素原子(H)または置換基を表し、
    Ar81は、芳香族炭化水素環基または芳香族複素環基を表す。]
  14. 前記窒素含有層は、下記一般式(8a)で表される化合物を含有する
    請求項13に記載の透明電極。
    [ただし一般式(8a)中において、
    E804〜E811は、各々−C(R88)=または−N=を表し、
    前記R88は、それぞれが水素原子(H)または置換基と表し、
    E808〜E811のうち少なくとも一つは−N=であり、
    E804〜E807、E808〜E811は、各々互いに結合して新たな環を形成してもよい。]
  15. 前記高表面エネルギー材料として、白金(Pt)、金(Au)、およびチタン(Ti)の少なくとも1つが用いられる
    請求項1〜14の何れかに記載の透明電極。
  16. 請求項1〜15の何れかに記載の透明電極を有する
    電子デバイス。
  17. 前記機能層が発光機能層であり、
    前記透明電極との間に前記発光機能層を挟持する状態で設けられた対向電極を有する
    請求項16記載の電子デバイス。
  18. 透明な基板上に窒素原子を含有すると共に当該窒素原子が有する非共有電子対のうち芳香族性に関与せずかつ金属に配位していない非共有電子対の数をn、分子量をMとした場合の有効非共有電子対含有率[n/M]が2.0×10−3≦[n/M]となる化合物を用いて窒素含有層を形成する工程と、
    前記窒素含有層上に前記窒素含有層に接して、銀よりも昇華熱エンタルピーが大きい高表面エネルギー材料(ただし高表面エネルギー材料がアルミニウム(Al)である場合を除く)を用いて高表面エネルギー材料層を形成する工程と、
    前記高表面エネルギー材料層が設けられた前記窒素含有層上に銀を主成分とする電極層を形成する工程とを有する
    透明電極の製造方法。
JP2014531648A 2012-08-24 2013-08-21 透明電極、電子デバイス、および透明電極の製造方法 Active JP6217642B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012185433 2012-08-24
JP2012185433 2012-08-24
PCT/JP2013/072269 WO2014030666A1 (ja) 2012-08-24 2013-08-21 透明電極、電子デバイス、および透明電極の製造方法

Publications (2)

Publication Number Publication Date
JPWO2014030666A1 JPWO2014030666A1 (ja) 2016-07-28
JP6217642B2 true JP6217642B2 (ja) 2017-10-25

Family

ID=50149972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014531648A Active JP6217642B2 (ja) 2012-08-24 2013-08-21 透明電極、電子デバイス、および透明電極の製造方法

Country Status (4)

Country Link
US (1) US20150207080A1 (ja)
EP (1) EP2890221A4 (ja)
JP (1) JP6217642B2 (ja)
WO (1) WO2014030666A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6428202B2 (ja) * 2014-11-28 2018-11-28 住友化学株式会社 光学積層体
CN104934140B (zh) * 2015-06-08 2016-09-21 郑州大学 一种自支撑pedot/pss透明导电薄膜的制备方法
KR102323243B1 (ko) * 2015-07-22 2021-11-08 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함하는 유기 발광 표시 장치
KR102031064B1 (ko) * 2015-08-12 2019-10-11 후지필름 가부시키가이샤 적층 필름
JP6748611B2 (ja) * 2017-07-12 2020-09-02 株式会社Joled 有機el素子、有機el表示パネル、および、有機el表示パネルの製造方法
US11426818B2 (en) 2018-08-10 2022-08-30 The Research Foundation for the State University Additive manufacturing processes and additively manufactured products

Family Cites Families (212)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH04297076A (ja) 1991-01-31 1992-10-21 Toshiba Corp 有機el素子
JPH06325871A (ja) 1993-05-18 1994-11-25 Mitsubishi Kasei Corp 有機電界発光素子
DE69412567T2 (de) 1993-11-01 1999-02-04 Hodogaya Chemical Co Ltd Aminverbindung und sie enthaltende Elektrolumineszenzvorrichtung
US5707745A (en) 1994-12-13 1998-01-13 The Trustees Of Princeton University Multicolor organic light emitting devices
JP3561549B2 (ja) 1995-04-07 2004-09-02 三洋電機株式会社 有機エレクトロルミネッセンス素子
JP3529543B2 (ja) 1995-04-27 2004-05-24 パイオニア株式会社 有機エレクトロルミネッセンス素子
US5719467A (en) 1995-07-27 1998-02-17 Hewlett-Packard Company Organic electroluminescent device
JP3645642B2 (ja) 1996-03-25 2005-05-11 Tdk株式会社 有機エレクトロルミネセンス素子
JPH1170610A (ja) * 1996-07-26 1999-03-16 Asahi Glass Co Ltd 透明導電膜、および透明電極の形成方法
US5776622A (en) 1996-07-29 1998-07-07 Eastman Kodak Company Bilayer eletron-injeting electrode for use in an electroluminescent device
JP4486713B2 (ja) 1997-01-27 2010-06-23 淳二 城戸 有機エレクトロルミネッセント素子
US6337492B1 (en) 1997-07-11 2002-01-08 Emagin Corporation Serially-connected organic light emitting diode stack having conductors sandwiching each light emitting layer
JPH11251067A (ja) 1998-03-02 1999-09-17 Junji Kido 有機エレクトロルミネッセント素子
JP3884564B2 (ja) 1998-05-20 2007-02-21 出光興産株式会社 有機el発光素子およびそれを用いた発光装置
US6528187B1 (en) 1998-09-08 2003-03-04 Fuji Photo Film Co., Ltd. Material for luminescence element and luminescence element using the same
US6830828B2 (en) 1998-09-14 2004-12-14 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
JP2000196140A (ja) 1998-12-28 2000-07-14 Sharp Corp 有機エレクトロルミネッセンス素子とその製造法
JP4729154B2 (ja) 1999-09-29 2011-07-20 淳二 城戸 有機エレクトロルミネッセント素子、有機エレクトロルミネッセント素子群及びその発光スペクトルの制御方法
US6458475B1 (en) 1999-11-24 2002-10-01 The Trustee Of Princeton University Organic light emitting diode having a blue phosphorescent molecule as an emitter
KR100377321B1 (ko) 1999-12-31 2003-03-26 주식회사 엘지화학 피-형 반도체 성질을 갖는 유기 화합물을 포함하는 전기소자
JP3929706B2 (ja) 2000-02-10 2007-06-13 富士フイルム株式会社 イリジウム錯体からなる発光素子材料及び発光素子
JP4890669B2 (ja) 2000-03-13 2012-03-07 Tdk株式会社 有機el素子
JP2002008860A (ja) 2000-04-18 2002-01-11 Mitsubishi Chemicals Corp 有機電界発光素子
JP2002015623A (ja) 2000-04-27 2002-01-18 Mitsui Chemicals Inc 透明電極
JP2002015871A (ja) 2000-04-27 2002-01-18 Toray Ind Inc 発光素子
JP2001313179A (ja) 2000-05-01 2001-11-09 Mitsubishi Chemicals Corp 有機電界発光素子
JP4290858B2 (ja) 2000-06-12 2009-07-08 富士フイルム株式会社 有機電界発光素子
JP2002020142A (ja) 2000-06-29 2002-01-23 Nippon Sheet Glass Co Ltd 車両用窓ガラスおよびその製造方法
US20020121638A1 (en) 2000-06-30 2002-09-05 Vladimir Grushin Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
JP2002043056A (ja) 2000-07-19 2002-02-08 Canon Inc 発光素子
WO2002015645A1 (en) 2000-08-11 2002-02-21 The Trustees Of Princeton University Organometallic compounds and emission-shifting organic electrophosphorescence
JP2002141173A (ja) 2000-08-22 2002-05-17 Semiconductor Energy Lab Co Ltd 発光装置
JP4344494B2 (ja) 2000-08-24 2009-10-14 富士フイルム株式会社 発光素子及び新規重合体子
JP4554047B2 (ja) 2000-08-29 2010-09-29 株式会社半導体エネルギー研究所 発光装置
JP4154139B2 (ja) 2000-09-26 2008-09-24 キヤノン株式会社 発光素子
JP4026740B2 (ja) 2000-09-29 2007-12-26 富士フイルム株式会社 有機発光素子材料及びそれを用いた有機発光素子
JP4092901B2 (ja) 2000-10-30 2008-05-28 株式会社豊田中央研究所 有機電界発光素子
JP3855675B2 (ja) 2000-11-30 2006-12-13 三菱化学株式会社 有機電界発光素子
US6579630B2 (en) 2000-12-07 2003-06-17 Canon Kabushiki Kaisha Deuterated semiconducting organic compounds used for opto-electronic devices
JP4048525B2 (ja) 2000-12-25 2008-02-20 富士フイルム株式会社 新規インドール誘導体およびそれを利用した発光素子
JP2002255934A (ja) 2000-12-25 2002-09-11 Fuji Photo Film Co Ltd 新規化合物、その重合体、それらを利用した発光素子材料およびその発光素子
JP4153694B2 (ja) 2000-12-28 2008-09-24 株式会社東芝 有機el素子および表示装置
US6720090B2 (en) 2001-01-02 2004-04-13 Eastman Kodak Company Organic light emitting diode devices with improved luminance efficiency
JP3812730B2 (ja) 2001-02-01 2006-08-23 富士写真フイルム株式会社 遷移金属錯体及び発光素子
JP4598282B2 (ja) 2001-02-09 2010-12-15 三井化学株式会社 アミン化合物および該化合物を含有する有機電界発光素子
TWI243197B (en) 2001-03-08 2005-11-11 Univ Hong Kong Organometallic light-emitting material
JP4307000B2 (ja) 2001-03-08 2009-08-05 キヤノン株式会社 金属配位化合物、電界発光素子及び表示装置
JP4655410B2 (ja) 2001-03-09 2011-03-23 ソニー株式会社 有機電界発光素子
JP2002334786A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002334788A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002334787A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
US20030004773A1 (en) * 2001-03-15 2003-01-02 Objectsoft, Inc. Scheduling system with methods for polling to determine best date and time
JP4169246B2 (ja) 2001-03-16 2008-10-22 富士フイルム株式会社 ヘテロ環化合物及びそれを用いた発光素子
JP2002299060A (ja) 2001-03-30 2002-10-11 Fuji Photo Film Co Ltd 有機発光素子
JP2002363227A (ja) 2001-04-03 2002-12-18 Fuji Photo Film Co Ltd 新規ポリマーおよびそれを用いた発光素子
JP2002302516A (ja) 2001-04-03 2002-10-18 Fuji Photo Film Co Ltd 新規ポリマーおよびそれを用いた発光素子
JP2002305083A (ja) 2001-04-04 2002-10-18 Mitsubishi Chemicals Corp 有機電界発光素子
JP2002308837A (ja) 2001-04-05 2002-10-23 Fuji Photo Film Co Ltd 新規化合物、およびそれを用いた発光素子
JP2002308855A (ja) 2001-04-05 2002-10-23 Fuji Photo Film Co Ltd 新規化合物、およびそれを用いた発光素子
JP2002343568A (ja) 2001-05-10 2002-11-29 Sony Corp 有機電界発光素子
JP2002352957A (ja) 2001-05-23 2002-12-06 Honda Motor Co Ltd 有機エレクトロルミネッセンス素子
JP4310077B2 (ja) 2001-06-19 2009-08-05 キヤノン株式会社 金属配位化合物及び有機発光素子
US7396598B2 (en) 2001-06-20 2008-07-08 Showa Denko K.K. Light emitting material and organic light-emitting device
JP4628594B2 (ja) 2001-06-25 2011-02-09 昭和電工株式会社 有機発光素子および発光材料
JP4804661B2 (ja) 2001-07-11 2011-11-02 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子
JP4003824B2 (ja) 2001-07-11 2007-11-07 富士フイルム株式会社 発光素子
JP3850241B2 (ja) 2001-07-19 2006-11-29 シャープ株式会社 照明装置およびそれを用いた液晶表示装置
JP4611578B2 (ja) 2001-07-26 2011-01-12 淳二 城戸 有機エレクトロルミネッセント素子
JP5135657B2 (ja) 2001-08-01 2013-02-06 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及び表示装置
US7250226B2 (en) 2001-08-31 2007-07-31 Nippon Hoso Kyokai Phosphorescent compound, a phosphorescent composition and an organic light-emitting device
US7166368B2 (en) 2001-11-07 2007-01-23 E. I. Du Pont De Nemours And Company Electroluminescent platinum compounds and devices made with such compounds
SG142163A1 (en) 2001-12-05 2008-05-28 Semiconductor Energy Lab Organic semiconductor element
US6863997B2 (en) 2001-12-28 2005-03-08 The Trustees Of Princeton University White light emitting OLEDs from combined monomer and aggregate emission
KR100691543B1 (ko) 2002-01-18 2007-03-09 주식회사 엘지화학 새로운 전자 수송용 물질 및 이를 이용한 유기 발광 소자
US6872472B2 (en) 2002-02-15 2005-03-29 Eastman Kodak Company Providing an organic electroluminescent device having stacked electroluminescent units
JP3925265B2 (ja) 2002-03-25 2007-06-06 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及びそれを用いた表示装置
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
JP4433680B2 (ja) 2002-06-10 2010-03-17 コニカミノルタホールディングス株式会社 薄膜形成方法
US7189989B2 (en) 2002-08-22 2007-03-13 Fuji Photo Film Co., Ltd. Light emitting element
JP4313308B2 (ja) 2002-08-27 2009-08-12 富士フイルム株式会社 有機金属錯体、有機el素子及び有機elディスプレイ
FR2844661B1 (fr) 2002-09-16 2005-10-14 France Telecom Procede d'acquisition de donnees de description de contenus audiovisuels, systeme, serveur de diffusion, serveur de description, et terminal de reception pour la mise en oeuvre de ce procede
US6687266B1 (en) 2002-11-08 2004-02-03 Universal Display Corporation Organic light emitting materials and devices
EP1582516B1 (en) 2003-01-10 2013-07-17 Idemitsu Kosan Co., Ltd. Nitrogenous heterocyclic derivative and organic electroluminescent element employing the same
KR100998838B1 (ko) 2003-03-13 2010-12-06 이데미쓰 고산 가부시키가이샤 신규한 질소 함유 헤테로환 유도체 및 이를 이용한 유기전기발광 소자
KR101391117B1 (ko) 2003-03-24 2014-04-30 유니버시티 오브 써던 캘리포니아 Ir의 페닐-피라졸 착물
US7090928B2 (en) 2003-04-01 2006-08-15 The University Of Southern California Binuclear compounds
EP2281861A3 (de) 2003-04-15 2012-03-28 Merck Patent GmbH Mischungen von organischen zur Emission befähigten Halbleitern und Matrixmaterialien, deren Verwendung und Elektronikbauteile enthaltend diese Mischungen
JP4673744B2 (ja) 2003-05-29 2011-04-20 新日鐵化学株式会社 有機電界発光素子
CN100591182C (zh) 2003-07-02 2010-02-17 出光兴产株式会社 有机电致发光元件以及使用它的显示装置
US20050025993A1 (en) 2003-07-25 2005-02-03 Thompson Mark E. Materials and structures for enhancing the performance of organic light emitting devices
DE10338550A1 (de) 2003-08-19 2005-03-31 Basf Ag Übergangsmetallkomplexe mit Carbenliganden als Emitter für organische Licht-emittierende Dioden (OLEDs)
HU0302888D0 (en) 2003-09-09 2003-11-28 Pribenszky Csaba Dr In creasing of efficacity of stable storage by freezing of embryos in preimplantation stage with pretreatment by pressure
US20060269780A1 (en) 2003-09-25 2006-11-30 Takayuki Fukumatsu Organic electroluminescent device
JP4961412B2 (ja) 2003-11-10 2012-06-27 淳二 城戸 有機素子、及び、有機素子の製造方法
JP4822687B2 (ja) 2003-11-21 2011-11-24 富士フイルム株式会社 有機電界発光素子
US7332232B2 (en) 2004-02-03 2008-02-19 Universal Display Corporation OLEDs utilizing multidentate ligand systems
JPWO2005085387A1 (ja) 2004-03-08 2007-12-13 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及びそれを利用した有機エレクトロルミネッセンス素子
TW200531592A (en) 2004-03-15 2005-09-16 Nippon Steel Chemical Co Organic electroluminescent device
ATE532383T1 (de) 2004-03-26 2011-11-15 Rohm Co Ltd Organisches lichtemissionselement
JP4869565B2 (ja) 2004-04-23 2012-02-08 富士フイルム株式会社 有機電界発光素子
JP4610408B2 (ja) 2004-04-28 2011-01-12 株式会社半導体エネルギー研究所 発光素子およびその作製方法、並びに発光装置
US7393599B2 (en) 2004-05-18 2008-07-01 The University Of Southern California Luminescent compounds with carbene ligands
US7279704B2 (en) 2004-05-18 2007-10-09 The University Of Southern California Complexes with tridentate ligands
US7491823B2 (en) 2004-05-18 2009-02-17 The University Of Southern California Luminescent compounds with carbene ligands
US7534505B2 (en) 2004-05-18 2009-05-19 The University Of Southern California Organometallic compounds for use in electroluminescent devices
US7445855B2 (en) 2004-05-18 2008-11-04 The University Of Southern California Cationic metal-carbene complexes
JP2005340122A (ja) 2004-05-31 2005-12-08 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP4894513B2 (ja) 2004-06-17 2012-03-14 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
US7820828B2 (en) 2004-06-28 2010-10-26 Ciba Specialty Chemicals Corp. Electroluminescent metal complexes with triazoles and benzotriazoles
US20060008670A1 (en) 2004-07-06 2006-01-12 Chun Lin Organic light emitting materials and devices
JP4925569B2 (ja) 2004-07-08 2012-04-25 ローム株式会社 有機エレクトロルミネッセント素子
EP2271183B1 (en) 2004-07-23 2015-03-18 Konica Minolta Holdings, Inc. Organic electroluminescent element, display and illuminator
JP4565921B2 (ja) 2004-07-30 2010-10-20 三洋電機株式会社 有機エレクトロルミネッセント素子及び有機エレクトロルミネッセント表示装置
JP4565922B2 (ja) 2004-07-30 2010-10-20 三洋電機株式会社 有機エレクトロルミネッセント素子及び有機エレクトロルミネッセント表示装置
JP4315874B2 (ja) 2004-07-30 2009-08-19 三洋電機株式会社 有機エレクトロルミネッセント素子及び有機エレクトロルミネッセント表示装置
JP4168998B2 (ja) 2004-11-05 2008-10-22 ブラザー工業株式会社 画像処理システムおよび画像処理装置
JP2006135145A (ja) 2004-11-08 2006-05-25 Sony Corp 表示素子用有機材料および表示素子
JP2006164961A (ja) 2004-11-09 2006-06-22 Ulvac Seimaku Kk 積層型透明電極層の製造方法及びこの方法に使用する積層型透明電極形成用の積層体
JP4810669B2 (ja) 2004-11-25 2011-11-09 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
DE102004057072A1 (de) 2004-11-25 2006-06-01 Basf Ag Verwendung von Übergangsmetall-Carbenkomplexen in organischen Licht-emittierenden Dioden (OLEDs)
JP4790260B2 (ja) 2004-12-22 2011-10-12 出光興産株式会社 アントラセン誘導体を用いた有機エレクトロルミネッセンス素子
US7230107B1 (en) 2004-12-29 2007-06-12 E. I. Du Pont De Nemours And Company Metal quinoline complexes
JP4939809B2 (ja) 2005-01-21 2012-05-30 株式会社半導体エネルギー研究所 発光装置
US8377571B2 (en) 2005-02-04 2013-02-19 Konica Minolta Holdings, Inc. Material for organic electroluminescence element, organic electroluminescence element, display device and lighting device
JP2006241077A (ja) 2005-03-03 2006-09-14 Idemitsu Kosan Co Ltd 発光性金属錯体及びその製造方法ならびにそれを用いた有機エレクトロルミネッセンス発光素子
KR100803125B1 (ko) 2005-03-08 2008-02-14 엘지전자 주식회사 적색 인광 화합물 및 이를 사용한 유기전계발광소자
US8231983B2 (en) 2005-04-18 2012-07-31 Konica Minolta Holdings Inc. Organic electroluminescent device, display and illuminating device
US7807275B2 (en) 2005-04-21 2010-10-05 Universal Display Corporation Non-blocked phosphorescent OLEDs
US9051344B2 (en) 2005-05-06 2015-06-09 Universal Display Corporation Stability OLED materials and devices
JP4533796B2 (ja) 2005-05-06 2010-09-01 富士フイルム株式会社 有機電界発光素子
US7728517B2 (en) 2005-05-20 2010-06-01 Lg Display Co., Ltd. Intermediate electrodes for stacked OLEDs
KR101634423B1 (ko) 2005-05-31 2016-06-28 유니버셜 디스플레이 코포레이션 인광 발광 다이오드에서의 트리페닐렌 호스트
EP1899993B1 (en) 2005-06-27 2012-06-27 E.I. Du Pont De Nemours And Company Electrically conductive polymer compositions
WO2007004380A1 (ja) 2005-07-01 2007-01-11 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP4837958B2 (ja) 2005-08-26 2011-12-14 大日本印刷株式会社 有機エレクトロルミネッセンス素子
KR101418840B1 (ko) 2005-09-05 2014-07-11 제이엔씨 주식회사 전자 수송 재료 및 이것을 이용한 유기 전계발광 소자
WO2007028417A1 (en) 2005-09-07 2007-03-15 Technische Universität Braunschweig Triplett emitter having condensed five-membered rings
WO2007043299A1 (ja) 2005-09-22 2007-04-19 Matsushita Electric Works, Ltd. 有機発光素子及びその製造方法
US8758903B2 (en) 2005-10-31 2014-06-24 Konica Minolta Holdings, Inc. Organic electroluminescent element, display device and lighting device
EP1956666A4 (en) 2005-12-01 2010-06-16 Nippon Steel Chemical Co ORGANIC ELECTROLUMINESCENCE ELEMENT
JP4593631B2 (ja) 2005-12-01 2010-12-08 新日鐵化学株式会社 有機電界発光素子用化合物及び有機電界発光素子
CN101375083B (zh) 2006-01-26 2012-10-17 纳博特斯克株式会社 减速装置
TW200738636A (en) 2006-01-30 2007-10-16 Chisso Corp Novel chemical compound and organic electroluminescent device using the same
KR20180117719A (ko) 2006-02-10 2018-10-29 유니버셜 디스플레이 코포레이션 시클로금속화 이미다조[1,2-f]페난트리딘 및 디이미다조[1,2-a:1',2'-c]퀴나졸린 리간드, 및 이의 등전자성 및 벤즈고리화된 유사체의 금속 착체
JP4823730B2 (ja) 2006-03-20 2011-11-24 新日鐵化学株式会社 発光層化合物及び有機電界発光素子
JP4213169B2 (ja) 2006-04-21 2009-01-21 出光興産株式会社 有機el発光素子およびそれを用いた発光装置
KR101453109B1 (ko) 2006-04-26 2014-10-27 이데미쓰 고산 가부시키가이샤 방향족 아민 유도체 및 그들을 이용한 유기 전기 발광 소자
KR20090016684A (ko) 2006-06-02 2009-02-17 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자용 재료 및 그것을 이용한 유기 전기발광 소자
EP2055701A1 (en) 2006-08-23 2009-05-06 Idemitsu Kosan Co., Ltd. Aromatic amine derivatives and organic electroluminescent devices made by using the same
JP5589251B2 (ja) 2006-09-21 2014-09-17 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子材料
JP5237541B2 (ja) 2006-09-21 2013-07-17 パナソニック株式会社 有機エレクトロルミネッセンス素子
JP4388590B2 (ja) 2006-11-09 2009-12-24 新日鐵化学株式会社 有機電界発光素子用化合物及び有機電界発光素子
WO2008062636A1 (en) 2006-11-24 2008-05-29 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using the same
US8778508B2 (en) 2006-12-08 2014-07-15 Universal Display Corporation Light-emitting organometallic complexes
US8119255B2 (en) 2006-12-08 2012-02-21 Universal Display Corporation Cross-linkable iridium complexes and organic light-emitting devices using the same
US9362510B2 (en) 2007-02-23 2016-06-07 Basf Se Electroluminescent metal complexes with benzotriazoles
CN101663300B (zh) 2007-03-15 2013-11-06 保土谷化学工业株式会社 取代的联吡啶基通过亚苯基与吡啶并吲哚环结构连结的化合物和有机电致发光器件
WO2008132085A1 (de) 2007-04-26 2008-11-06 Basf Se Silane enthaltend phenothiazin-s-oxid oder phenothiazin-s,s-dioxid-gruppen und deren verwendung in oleds
JP5482201B2 (ja) 2007-05-16 2014-05-07 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2008156879A1 (en) 2007-06-20 2008-12-24 Universal Display Corporation Blue phosphorescent imidazophenanthridine materials
EP2170911B1 (en) 2007-06-22 2018-11-28 UDC Ireland Limited Light emitting cu(i) complexes
KR101577465B1 (ko) 2007-07-05 2015-12-14 바스프 에스이 카르벤 전이 금속 착체 이미터, 및 디실릴카르바졸, 디실릴디벤조푸란, 디실릴디벤조티오펜, 디실릴디벤조포스폴, 디실릴디벤조티오펜 s-옥사이드 및 디실릴디벤조티오펜 s,s-디옥사이드로부터 선택된 1종 이상의 화합물을 포함하는 유기 발광 다이오드
EP2015412B1 (en) 2007-07-06 2022-03-09 Lumentum Operations LLC Semiconductor laser with narrow beam divergence.
US8080658B2 (en) 2007-07-10 2011-12-20 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent element and organic electroluminescent element employing the same
JPWO2009008099A1 (ja) 2007-07-10 2010-09-02 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
CN101688052A (zh) 2007-07-27 2010-03-31 E.I.内穆尔杜邦公司 包含无机纳米颗粒的导电聚合物的含水分散体
WO2009021126A2 (en) 2007-08-08 2009-02-12 Universal Display Corporation Benzo-fused thiophene or benzo-fused furan compounds comprising a triphenylene group
JP2009040728A (ja) 2007-08-09 2009-02-26 Canon Inc 有機金属錯体及びこれを用いた有機発光素子
ATE519770T1 (de) 2007-10-17 2011-08-15 Basf Se Übergangsmetallkomplexe mit verbrückten carbenliganden und deren verwendung in oleds
JP2009124114A (ja) 2007-10-22 2009-06-04 Chisso Corp シロール誘導体化合物を用いた電子輸送・注入層用材料及び有機電界発光素子
US20090101870A1 (en) 2007-10-22 2009-04-23 E. I. Du Pont De Nemours And Company Electron transport bi-layers and devices made with such bi-layers
JP5402639B2 (ja) 2007-10-26 2014-01-29 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5279234B2 (ja) 2007-11-02 2013-09-04 キヤノン株式会社 白金錯体及びこれを用いた有機発光素子
US8759819B2 (en) 2007-11-22 2014-06-24 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
WO2009069442A1 (ja) 2007-11-26 2009-06-04 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2009151963A (ja) 2007-12-19 2009-07-09 Institute Of Physical & Chemical Research 透明電極およびその製造方法
US8221905B2 (en) 2007-12-28 2012-07-17 Universal Display Corporation Carbazole-containing materials in phosphorescent light emitting diodes
JP5509606B2 (ja) 2008-02-05 2014-06-04 Jnc株式会社 ピリジル基を有するアントラセン誘導体化合物及び有機電界発光素子
KR101812441B1 (ko) 2008-02-12 2017-12-26 유디씨 아일랜드 리미티드 디벤조[f,h]퀴녹살린과의 전계발광 금속 착물
TW200946537A (en) 2008-03-13 2009-11-16 Ube Industries Substituted ethynyl golden-cyclic alkylaminocarbene complex and organic electroluminescent element
JP4844585B2 (ja) 2008-04-14 2011-12-28 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及び表示装置
EP2479234B1 (en) 2008-05-13 2017-06-21 Konica Minolta Holdings, Inc. Organic electroluminescent element, display device and lighting device
WO2010032663A1 (ja) 2008-09-17 2010-03-25 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置、照明装置及び有機エレクトロルミネッセンス素子材料
JP2010093181A (ja) 2008-10-10 2010-04-22 Canon Inc 有機発光素子
CN102203975B (zh) 2008-10-23 2014-04-30 通用显示公司 有机发光器件和用于其中的材料
CN102119158B (zh) 2008-11-03 2015-09-09 株式会社Lg化学 含氮杂环化合物及使用该化合物的有机电子器件
JP2010123439A (ja) * 2008-11-20 2010-06-03 Fujifilm Corp 有機電界発光素子
DE102009007038A1 (de) 2009-02-02 2010-08-05 Merck Patent Gmbh Metallkomplexe
JP2010192719A (ja) 2009-02-19 2010-09-02 Yamagata Promotional Organization For Industrial Technology 有機エレクトロルミネッセンス素子
KR101511072B1 (ko) * 2009-03-20 2015-04-10 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광소자
JP5321684B2 (ja) 2009-06-24 2013-10-23 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置、照明装置及び縮合多環式複素環化合物
JP5472301B2 (ja) 2009-07-07 2014-04-16 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、新規な化合物、照明装置及び表示装置
WO2011004807A1 (ja) * 2009-07-10 2011-01-13 コニカミノルタホールディングス株式会社 有機光電変換素子、それを用いた太陽電池および光センサアレイ
JP2011032533A (ja) * 2009-07-31 2011-02-17 Kobe Steel Ltd 反射膜積層体
WO2011046165A1 (ja) * 2009-10-17 2011-04-21 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、白色に発光する有機エレクトロルミネッセンス素子、表示装置及び照明装置
KR101986469B1 (ko) 2009-10-28 2019-06-05 유디씨 아일랜드 리미티드 이종 리간드 카르벤 착체 및 유기 전자장치에서의 이의 용도
ES2525757T3 (es) 2009-12-14 2014-12-30 Basf Se Complejos metálicos que contienen ligandos de diazabencimidazolcarbeno y su uso en OLED
CN102471269B (zh) 2010-01-15 2016-02-03 出光兴产株式会社 含氮杂环衍生物及含有它的有机电致发光元件
JP2011213643A (ja) 2010-03-31 2011-10-27 Canon Inc 銅錯体化合物及びこれを用いた有機発光素子
JP5734411B2 (ja) 2010-04-16 2015-06-17 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 橋かけベンズイミダゾールカルベン錯体およびoledにおけるその使用
JP5673675B2 (ja) * 2010-04-26 2015-02-18 コニカミノルタ株式会社 透明電極の製造方法、透明電極および有機電子素子
KR101837216B1 (ko) 2010-04-28 2018-03-09 커먼웰쓰 사이언티픽 앤드 인더스트리얼 리서치 오가니제이션 인광 이리듐 및 관련 제8족 금속 다중고리 화합물을 기본물로 하는 전계발광 장치
US8742657B2 (en) 2010-06-11 2014-06-03 Universal Display Corporation Triplet-Triplet annihilation up conversion (TTA-UC) for display and lighting applications
CN102939296B (zh) 2010-06-15 2016-02-10 默克专利有限公司 金属络合物
JP5770289B2 (ja) 2010-08-20 2015-08-26 ユニバーサル ディスプレイ コーポレイション Oledのためのビカルバゾール化合物
JP5652083B2 (ja) 2010-09-24 2015-01-14 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2012115034A1 (ja) 2011-02-22 2012-08-30 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
US9005772B2 (en) 2011-02-23 2015-04-14 Universal Display Corporation Thioazole and oxazole carbene metal complexes as phosphorescent OLED materials
JP5747736B2 (ja) 2011-03-01 2015-07-15 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US8883322B2 (en) 2011-03-08 2014-11-11 Universal Display Corporation Pyridyl carbene phosphorescent emitters
JP5333558B2 (ja) * 2011-10-03 2013-11-06 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Also Published As

Publication number Publication date
WO2014030666A1 (ja) 2014-02-27
EP2890221A4 (en) 2016-09-14
EP2890221A1 (en) 2015-07-01
JPWO2014030666A1 (ja) 2016-07-28
US20150207080A1 (en) 2015-07-23

Similar Documents

Publication Publication Date Title
JP6070567B2 (ja) 透明電極、および電子デバイス
JP6003981B2 (ja) 透明電極、電子デバイス、および有機電界発光素子
JP6128117B2 (ja) 透明電極の製造方法
JP6287854B2 (ja) 透明電極、電子デバイス、および有機電界発光素子
JP5943005B2 (ja) 透明電極、電子デバイス、有機電界発光素子、および有機電界発光素子の製造方法
JP6256349B2 (ja) 透明電極、及び、電子デバイス
JP6119742B2 (ja) 透明電極、透明電極の製造方法、電子デバイス、および有機電界発光素子
JP6217642B2 (ja) 透明電極、電子デバイス、および透明電極の製造方法
JP6314838B2 (ja) 透明電極、電子デバイス、および有機電界発光素子
JPWO2013141057A1 (ja) 有機電界発光素子
JP6112107B2 (ja) 透明電極、電子デバイス及び有機エレクトロルミネッセンス素子
JP6304229B2 (ja) 透明電極、電子デバイス、および有機電界発光素子
JP6241281B2 (ja) 透明電極および電子デバイス
JP6070320B2 (ja) 透明電極付き基板、及び、電子デバイス
WO2013137234A1 (ja) 透明電極、電子デバイス、および透明電極の製造方法
JP6241282B2 (ja) 透明電極および電子デバイス
WO2014181640A1 (ja) 発光素子および表示装置
JP6314839B2 (ja) 透明電極、電子デバイス、および有機電界発光素子
JPWO2014098014A1 (ja) 透明電極、及び、電子デバイス

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170605

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170911

R150 Certificate of patent or registration of utility model

Ref document number: 6217642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150