JP6314839B2 - 透明電極、電子デバイス、および有機電界発光素子 - Google Patents

透明電極、電子デバイス、および有機電界発光素子 Download PDF

Info

Publication number
JP6314839B2
JP6314839B2 JP2014557434A JP2014557434A JP6314839B2 JP 6314839 B2 JP6314839 B2 JP 6314839B2 JP 2014557434 A JP2014557434 A JP 2014557434A JP 2014557434 A JP2014557434 A JP 2014557434A JP 6314839 B2 JP6314839 B2 JP 6314839B2
Authority
JP
Japan
Prior art keywords
layer
nitrogen
transparent electrode
compound
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014557434A
Other languages
English (en)
Other versions
JPWO2014112421A1 (ja
Inventor
和央 吉田
和央 吉田
健 波木井
健 波木井
敏幸 木下
敏幸 木下
小島 茂
茂 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2014112421A1 publication Critical patent/JPWO2014112421A1/ja
Application granted granted Critical
Publication of JP6314839B2 publication Critical patent/JP6314839B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、透明電極、電子デバイス、および有機電界発光素子に関し、特には導電性と光透過性とを兼ね備えた透明電極、さらにはこの透明電極を用いた電子デバイスおよび有機電界発光素子に関する。
有機材料のエレクトロルミネッセンス(electroluminescence:以下ELと記す)を利用した有機電界発光素子(いわゆる有機EL素子)は、数V〜数十V程度の低電圧で発光が可能な薄膜型の完全固体素子であり、高輝度、高発光効率、薄型、軽量といった多くの優れた特徴を有する。このため、各種ディスプレイのバックライト、看板や非常灯等の表示板、照明光源等の面発光体として近年注目されている。
このような有機電界発光素子は、2枚の電極間に有機材料を用いて構成された発光層を挟持した構成であり、発光層で生じた発光光は電極を透過して外部に取り出される。このため、2枚の電極のうちの少なくとも一方は透明電極として構成される。
透明電極としては、酸化インジウムスズ(SnO−In:Indium Tin Oxide:ITO)等の酸化物半導体系の材料が一般的に用いられているが、ITOと銀とを積層して低抵抗化を狙った検討もなされている(例えば下記特許文献1,2参照)。しかしながら、ITOはレアメタルのインジウムを使用しているため、材料コストが高く、また抵抗を下げるために成膜後に300℃程度でアニール処理する必要がある。そこで、電気伝導率の高い銀等の金属材料を薄膜化した構成や、銀にアルミニウムを混ぜることにより銀単独よりも薄い膜厚で導電性を確保する構成(例えば下記特許文献3参照)、さらには銀以外の金属からなる下地層上に銀薄膜層を設けた積層構造とすることにより光透過性を確保する構成(例えば下記特許文献4参照)が提案されている。
特開2002−15623号公報 特開2006−164961号公報 特開2009−151963号公報 特開2008−171637号公報
しかしながら、電気伝導率の高い銀やアルミニウムを用いて構成された透明電極であっても、十分な導電性と光透過性との両立を図ることは困難であった。
そこで本発明は、十分な導電性と光透過性とを兼ね備えた透明電極を提供すること、およびこの透明電極を用いることによって性能の向上が図られた電子デバイスおよび有機電界発光素子を提供することを目的とする。
このような目的を達成するための本発明の透明電極は、窒素原子(N)を含んだ化合物を用いて構成された窒素含有層と、銀(Ag)を主成分とし添加元素としてアルミニウム(Al)、金(Au)、インジウム(In)、銅(Cu)、パラジウム(Pd)、プラチナ(Pt)のうちの少なくとも1種を含有し、前記窒素含有層に隣接して設けられた電極層と、前記窒素含有層よりも高い屈折率を有し、前記電極層と前記窒素含有層とを挟持して配置された2つの高屈折率層とを備えている。
また本発明の電子デバイスは、上記構成の透明電極を有することを特徴としている。電子デバイスは、例えば有機電界発光素子であることとする。
以上のように構成された透明電極は、窒素原子を含有する化合物を用いて構成された窒素含有層に対して、銀を主成分とした電極層を隣接させて設けた構成である。これにより銀を主成分とする電極層は、窒素含有層を構成する窒素原子との相互作用により、隣接界面においての銀の拡散距離が減少して凝集が抑えられたものとなる。このため、一般的には核成長型(Volumer−Weber:VW型)での膜成長により島状に孤立し易い銀薄膜が、単層成長型(Frank−van der Merwe:FM型)の膜成長によって成膜されるようになる。したがって、薄い膜厚でありながらも、均一な膜厚の電極層が得られるようになる。
しかも、銀(Ag)を主成分とする電極層には、銀に対する固溶元素であるアルミニウム(Al)、金(Au)、インジウム(In)、銅(Cu)、パラジウム(Pd)、プラチナ(Pt)のうちの少なくとも1種を含有させている。これにより、電極層は、銀(Ag)とこれらの添加元素との固溶体で構成されたものとなり、銀(Ag)のマイグレーションが抑制されたものとなる。
また、窒素含有層よりも屈折率の高い高屈折率層によって窒素含有層および電極層を挟持したことにより、透明電極においての光反射が防止される。
したがって、この透明電極においては、薄い膜厚であることで光透過性を確保しつつも、均一な膜厚であることで導電性が確保された電極層を確実に得ることができ、さらに光反射が防止されたことによる光透過性の向上も期待でき、かつ電極層におけるマイグレーションの発生が抑えられたことにより、光透過性および導電性を維持することができる。これにより、銀を用いた透明電極における導電性の向上と光透過性の向上との両立と共に、信頼性の向上を図ることが可能になる。
以上説明したように本発明によれば、透明電極における導電性の向上と光透過性の向上との両立を図ると共に信頼性の向上を図ることが可能になり、またこの透明電極を用いた電子デバイスおよび有機電界発光素子の性能の向上を図ることが可能になる。
本発明の透明電極の構成を示す断面模式図である。 窒素原子の結合様式を説明するためのTBACとIr(ppy)の構造式を示す図である。 ピリジン環の構造式と分子軌道を示す図である。 ピロール環の構造式と分子軌道を示す図である。 イミダゾール環の構造式と分子軌道を示す図である。 δ−カルボリン環の構造式と分子軌道を示す図である。 本発明の透明電極を用いた有機電界発光素子の一例を示す断面構成図である。 窒素含有層の有効非共有電子対含有率[n/M]と、窒素含有層に積層された電極層のシート抵抗との関係を示すグラフである。 実施例2で作製したボトムエミッション型の有機電界発光素子を説明する断面構成図である。
以下、本発明の実施の形態を、図面に基づいて次に示す順に説明する。
1.透明電極
2.透明電極の用途
3.有機電界発光素子
4.有機電界発光素子の他の例
5.有機電界発光素子の用途
6.照明装置I
7.照明装置II
≪1.透明電極≫
図1は、実施形態の透明電極の構成を示す断面模式図である。この図に示すように、透明電極1は、窒素含有層1aと、これに隣接して設けられた電極層1bと、これらを挟持する2層の高屈折率層H1,H2とを積層した4層構造であり、例えば基材11の上部に、高屈折率層H1、窒素含有層1a、電極層1b、高屈折率層H2の順に設けられている。このうち、窒素含有層1aは、窒素原子(N)を含有する化合物を用いて構成されている。また電極層1bは、銀(Ag)を主成分として構成された層であり、さらに添加元素としてアルミニウム(Al)、金(Au)、インジウム(In)、銅(Cu)、パラジウム(Pd)、プラチナ(Pt)のうちの少なくとも1種を含有していることを特徴としている。また高屈折率層H1,H2は、窒素含有層1aよりも屈折率が高い層である。
以下に、このような積層構造の透明電極1が設けられる基材11、透明電極1を構成する窒素含有層1a、電極層1b、および高屈折率層H1,H2の順に、詳細な構成を説明する。尚、本発明の透明電極1の透明とは波長550nmでの光透過率が50%以上であることをいう。
<基材11>
本発明の透明電極1が形成される基材11は、例えばガラス、プラスチック等を挙げることができるが、これらに限定されない。また、基材11は透明であっても不透明であってもよい。本発明の透明電極1が、基材11側から光を取り出す電子デバイスに用いられる場合には、基材11は透明であることが好ましい。好ましく用いられる透明な基材11としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい基材11は、透明電極1およびこれを用いて構成される有機電界発光素子などの電子デバイスにフレキシブル性を与えることが可能な樹脂フィルムである。
ガラスとしては、例えば、シリカガラス、ソーダ石灰シリカガラス、鉛ガラス、ホウケイ酸塩ガラス、無アルカリガラス等が挙げられる。これらのガラス材料の表面には、窒素含有層1aとの密着性、耐久性、平滑性の観点から、必要に応じて、研磨等の物理的処理を施したり、無機物または有機物からなる被膜や、これらの被膜を組み合わせたハイブリッド被膜が形成される。
樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等が挙げられる。
樹脂フィルムの表面には、無機物または有機物からなる被膜や、これらの被膜を組み合わせたハイブリッド被膜が形成されていてもよい。このような被膜およびハイブリッド被膜は、JIS−K−7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度90±2%RH)が0.01g/(m2・24時間)以下のバリア性フィルム(バリア膜等ともいう)であることが好ましい。またさらには、JIS−K−7126−1987に準拠した方法で測定された酸素透過度が10-3ml/(m2・24時間・atm)以下、水蒸気透過度が10-5g/(m2・24時間)以下の高バリア性フィルムであることが好ましい。
以上のようなバリア性フィルムを形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。さらに当該バリア性フィルムの脆弱性を改良するために、これら無機層と有機材料からなる層(有機層)の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
バリア性フィルムの形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004−68143号公報に記載の大気圧プラズマ重合法によるものが特に好ましい。
一方、基材11が不透明なものである場合、例えば、アルミニウム、ステンレス等の金属基板、不透明樹脂基板、セラミック製の基板等を用いることができる。これらの基板は、フレキシブルに屈曲するフィルム状であっても良い。
<窒素含有層1a>
窒素含有層1aは、電極層1bに隣接して設けられた層であり、窒素原子(N)を含有する化合物を用いて構成されている。窒素含有層1aの膜厚は、1μm以下、好ましくは100nm以下である。そして特にこの化合物は、一例として当該化合物に含有される窒素原子のうち、特に電極層1bを構成する主材料である銀と安定的に結合する窒素原子の非共有電子対を[有効非共有電子対]とし、この[有効非共有電子対]の含有率が所定範囲である。
ここで[有効非共有電子対]とは、化合物に含有される窒素原子が有する非共有電子対のうち、芳香族性に関与せずかつ金属に配位していない非共有電子対であることとする。ここでの芳香族性とは、π電子を持つ原子が環状に並んだ不飽和環状構造を言い、いわゆる「ヒュッケル則」に従う芳香族性であって、環上のπ電子系に含まれる電子の数が「4n+2」(n=0、または自然数)個であることを条件としている。
以上のような[有効非共有電子対]は、その非共有電子対を備えた窒素原子自体が、芳香環を構成するヘテロ原子であるか否かにかかわらず、窒素原子が有する非共有電子対が芳香族性と関与しているか否かによって選択される。例えば、ある窒素原子が芳香環を構成するヘテロ原子であっても、その窒素原子の非共有電子対が、芳香族性に必須要素として直接的に関与しない非共有電子対、すなわち共役不飽和環構造(芳香環)上の非局在化したπ電子系に芳香族性発現のために必須のものとして関与していない非共有電子対であれば、その非共有電子対は[有効非共有電子対]の一つとしてカウントされる。これに対して、ある窒素原子が芳香環を構成するヘテロ原子でない場合であっても、その窒素原子の非共有電子対が芳香族性に関与していれば、その窒素原子の非共有電子対は[有効非共有電子対]としてカウントされることはない。尚、各化合物において、上述した[有効非共有電子対]の数nは、[有効非共有電子対]を有する窒素原子の数と一致する。
次に、上述した[有効非共有電子対]について、具体例を挙げて詳細に説明する。
窒素原子は、第15族元素であり、最外殻に5個の電子を有する。このうち3個の不対電子は他の原子との共有結合に用いられ、残りの2個は一対の非共有電子対となる。このため、通常、窒素原子の結合本数は3本である。
例えば、窒素原子を有する基として、アミノ基(−NR)、アミド基(−C(=O)NR)、ニトロ基(−NO)、シアノ基(−CN)、ジアゾ基(−N)、アジド基(−N)、ウレア結合(−NRC=ONR−)、イソチオシアネート基(−N=C=S)、チオアミド基(−C(=S)NR)などが挙げられる。尚、R,Rは、それぞれ水素原子(H)または置換基である。これらの基を構成する窒素原子の非共有電子対は、芳香族性に関与せずかつ金属に配位していないため、[有効非共有電子対]に該当する。このうち、ニトロ基(−NO)の窒素原子が有する非共有電子対は、酸素原子との共鳴構造に利用されているものの、以降の実施例で示すように良好な効果が得られていることから、芳香族性に関与せずかつ金属に配位していない[有効非共有電子対]として窒素上に存在すると考えられる。
また、窒素原子は、非共有電子対を利用することで4本目の結合を作り出すこともできる。この場合の一例を図2を用いて説明する。図2は、テトラブチルアンモニウムクロライド(TBAC)の構造式と、トリス(2−フェニルピリジン)イリジウム(III)[Ir(ppy)]の構造式である。
このうち、TBACは、四つのブチル基のうちの1つが窒素原子とイオン結合しており、対イオンとして塩化物イオンを有する第四級アンモニウム塩である。この場合、窒素原子の非共有電子対を構成する電子のうちの1つは、ブチル基とのイオン結合に供与される。このため、TBACの窒素原子は、そもそも非共有電子対が存在していないと同等になる。したがって、TBACを構成する窒素原子の非共有電子対は、芳香族性に関与せずかつ金属に配位していない[有効非共有電子対]には該当しない。
また、Ir(ppy)は、イリジウム原子と窒素原子とが配位結合している中性の金属錯体である。このIr(ppy)を構成する窒素原子の非共有電子対は、イリジウム原子に配位していて、配位結合に利用されている。したがって、Ir(ppy)を構成する窒素原子の非共有電子対も、芳香族性に関与せずかつ金属に配位していない[有効非共有電子対]には該当しない。
また、窒素原子は、芳香環を構成することのできるヘテロ原子として一般的であり、芳香族性の発現に寄与することができる。この「含窒素芳香環」としては、たとえば、ピリジン環、ピラジン環、ピリミジン環、トリアジン環、ピロール環、イミダゾール環、ピラゾール環、トリアゾール環、テトラゾール環等が挙げられる。
図3は、以上に例示した基のうちの一つであるピリジン環の構造式と分子軌道を示す図である。図3に示すとおり、ピリジン環は、6員環状に並んだ共役(共鳴)不飽和環構造において、非局在化したπ電子の数が6個であるため、4n+2(n=0または自然数)のヒュッケル則を満たす。6員環内の窒素原子は、−CH=を置換したものであるため、1個の不対電子を6π電子系に動員するのみで、非共有電子対は芳香族性発現のために必須のものとして関与していない。
したがって、ピリジン環を構成する窒素原子の非共有電子対は、芳香族性に関与せずかつ金属に配位していない[有効非共有電子対]に該当する。
図4は、ピロール環の構造式と分子軌道を示す図である。図4に示すとおり、ピロール環は、5員環を構成する炭素原子のうちの一つが窒素原子に置換された構造であるが、やはりπ電子の数は6個であり、ヒュッケル則を満たした含窒素芳香環である。ピロール環の窒素原子は、水素原子とも結合しているため、非共有電子対が6π電子系に動員される。
したがって、ピロール環の窒素原子は、非共有電子対を有するものの、この非共有電子対は、芳香族性発現のために必須のものとして利用されているため、芳香族性に関与せずかつ金属に配位していない[有効非共有電子対]には該当しない。
図5は、イミダゾール環の構造式と分子軌道を示す図である。図5に示すとおり、イミダゾール環は、二つの窒素原子N,Nが、5員環内の1、3位に置換した構造を有しており、やはりπ電子数が6個の含窒素芳香環である。このうち一つの窒素原子Nは、1個の不対電子のみを6π電子系に動員し、非共有電子対を芳香族性発現のために利用していないピリジン環型の窒素原子であり、この窒素原子Nの非共有電子対は、[有効非共有電子対]に該当する。これに対して、他方の窒素原子Nは、非共有電子対を6π電子系に動員しているピロール環型の窒素原子であるため、この窒素原子Nの非共有電子対は、[有効非共有電子対]に該当しない。
したがって、イミダゾール環においては、これを構成する二つの窒素原子N,Nのうちの一つの窒素原子Nの非共有電子対のみが、[有効非共有電子対]に該当する。
以上のような「含窒素芳香環」の窒素原子における非共有電子対の選別は、含窒素芳香環骨格を有する縮環化合物の場合も同様に適用される。
図6は、δ−カルボリン環の構造式と分子軌道を示す図である。図6に示すとおり、δ−カルボリン環は、含窒素芳香環骨格を有する縮環化合物であり、ベンゼン環骨格、ピロール環骨格、およびピリジン環骨格がこの順に縮合したアザカルバゾール化合物である。このうち、ピリジン環の窒素原子Nは1個の不対電子のみをπ電子系に動員し、ピロール環の窒素原子Nは非共有電子対をπ電子系に動員しており、環を形成している炭素原子からの11個のπ電子とともに、全体のπ電子数が14個の芳香環となっている。
したがって、δ-カルボリン環の二つの窒素原子N,Nのうち、ピリジン環を構成する窒素原子Nの非共有電子対は[有効非共有電子対]に該当するが、ピロール環を構成する窒素原子Nの非共有電子対は、[有効非共有電子対]に該当しない。
このように、縮環化合物を構成する窒素原子の非共有電子対は、縮環化合物を構成するピリジン環やピロール環等の単環中の結合と同様に、縮環化合物中の結合に関与する。
そして以上説明した[有効非共有電子対]は、電極層1bの主成分である銀と強い相互作用を発現するために重要である。そのような[有効非共有電子対]を有する窒素原子は、安定性、耐久性の観点から、含窒素芳香環中の窒素原子であることが好ましい。したがって、窒素含有層1aに含有される化合物は、[有効非共有電子対]を持つ窒素原子をヘテロ原子とした芳香族複素環を有することが好ましい。
特に本実施形態においては、このような化合物の分子量Mに対する[有効非共有電子対]の数nを、例えば有効非共有電子対含有率[n/M]と定義する。そして窒素含有層1aは、この[n/M]が、2.0×10-3≦[n/M]となるように選択された化合物を用いて構成されているところが特徴的である。また窒素含有層1aは、以上のように定義される有効非共有電子対含有率[n/M]が、3.9×10-3≦[n/M]の範囲であれば好ましく、6.5×10-3≦[n/M]の範囲であればさらに好ましい。
また窒素含有層1aは、有効非共有電子対含有率[n/M]が上述した所定範囲である化合物を用いて構成されていれば良く、このような化合物のみで構成されていても良く、またこのような化合物と他の化合物とを混合して用いて構成されていても良い。他の化合物は、窒素原子が含有されていてもいなくても良く、さらに有効非共有電子対含有率[n/M]が上述した所定範囲でなくても良い。
窒素含有層1aが、複数の化合物を用いて構成されている場合、例えば化合物の混合比に基づき、これらの化合物を混合した混合化合物の分子量Mを求め、この分子量Mに対しての[有効非共有電子対]の合計の数nを、有効非共有電子対含有率[n/M]の平均値として求め、この値が上述した所定範囲であることが好ましい。つまり窒素含有層1a自体の有効非共有電子対含有率[n/M]が所定範囲であることが好ましい。
尚、窒素含有層1aが、複数の化合物を用いて構成されている場合であって、膜厚方向に化合物の混合比(含有比)が異なる構成であれば、電極層1bと接する側の窒素含有層1aの表面層における有効非共有電子対含有率[n/M]が所定範囲であれば良い。
[化合物I]
以下に、窒素含有層1aを構成する化合物として、上述した有効非共有電子対含有率[n/M]が2.0×10-3≦[n/M]を満たす化合物の具体例(No.1〜No.48)を示す。各化合物No.1〜No.48には、[有効非共有電子対]を有する窒素原子に対して○を付した。また、下記表1には、これらの化合物No.1〜No.48の分子量M、[有効非共有電子対]の数n、および有効非共有電子対含有率[n/M]を示す。下記化合物33の銅フタロシアニンにおいては、窒素原子が有する非共有電子対のうち銅に配位していない非共有電子対が[有効非共有電子対]としてカウントされる。
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
尚、上記表1には、これらの例示化合物が、以降に説明する他の化合物を表す一般式(1)〜(8a)にも属する場合の該当一般式を示した。
[化合物II]
また窒素含有層1aを構成する化合物としては、以上のような有効非共有電子対含有率[n/M]が上述した所定範囲である化合物に加え、他の化合物を用いても良い。窒素含有層1aに用いられる他の化合物は、有効非共有電子対含有率[n/M]が上述した所定範囲で有る無しにかかわらず、窒素原子を含有する化合物が好ましく用いられる。中でも[有効非共有電子対]を有する窒素原子を含有する化合物が特に好ましく用いられる。また窒素含有層1aに用いられる他の化合物は、この窒素含有層1aを備えた透明電極1が適用される電子デバイスごとに必要とされる性質を有する化合物が用いられる。例えば、この透明電極1が、有機電界発光素子の電極として用いられる場合、その成膜性の観点から、窒素含有層1aを構成する化合物としては、以降に説明する一般式(1)〜(8a)他で表される構造を有する化合物が用いられる。
これらの一般式(1)〜(8a)で示される構造を有する化合物の中には、上述した有効非共有電子対含有率[n/M]の範囲に当てはまる化合物も含まれ、このような化合物であれば単独で窒素含有層1aを構成する化合物として用いることができる(上記表1参照)。一方、下記一般式(1)〜(8a)で示される構造を有する化合物が、上述した有効非共有電子対含有率[n/M]の範囲に当てはまらない化合物であれば、有効非共有電子対含有率[n/M]が上述した範囲の化合物と混合することで窒素含有層1aを構成する化合物として用いることが好ましい。
Figure 0006314839
上記一般式(1)中におけるX11は、−N(R11)−または−O−を表す。また一般式(1)中におけるE101〜E108は、各々−C(R12)=または−N=を表す。E101〜E108のうち少なくとも1つは−N=である。上記R11およびR12は、それぞれが水素原子(H)または置換基を表す。
この置換基の例としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す)、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2−エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2−ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基またはヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基、ピペリジル基(ピペリジニル基ともいう)、2,2,6,6−テトラメチルピペリジニル基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、リン酸エステル基(例えば、ジヘキシルホスホリル基等)、亜リン酸エステル基(例えばジフェニルホスフィニル基等)、ホスホノ基等が挙げられる。
これらの置換基の一部は、上記の置換基によってさらに置換されていてもよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。これらの置換基は、化合物と銀(Ag)との相互作用を阻害することのないものが好ましく用いられ、さらには上述した有効非共有電子対を有する窒素を有するものが特に好ましく適用される。尚、以上の置換基に関する記述は、以降に説明する一般式(2)〜(8a)の説明において示される置換基に対して同様に適用される。
以上のような一般式(1)で表される構造を有する化合物は、化合物中の窒素と、電極層1bを構成する銀との間で強力な相互作用を発現できるため、好ましい。
Figure 0006314839
上記一般式(1a)で示される化合物は、上記一般式(1)で示される構造を有する化合物の一形態であり、一般式(1)におけるX11を−N(R11)−とした化合物である。このような化合物であれば、上記相互作用をより強力に発現できるため、好ましい。
Figure 0006314839
上記一般式(1a−1)で示される化合物は、上記一般式(1a)で示される構造を有する化合物の一形態であり、一般式(1a)におけるE104を−N=とした化合物である。このような化合物であれば、より効果的に上記相互作用を発現できるため、好ましい。
Figure 0006314839
上記一般式(1a−2)で示される化合物は、上記一般式(1a)で示される構造を有する化合物の他の一形態であり、一般式(1a)におけるE103およびE106を−N=とした化合物である。このような化合物は、窒素原子の数が多いことから、より強力に上記相互作用を発現できるため、好ましい。
Figure 0006314839
上記一般式(1b)で示される化合物は、上記一般式(1)で示される構造を有する化合物の他の一形態であり、一般式(1)におけるX11を−O−とし、E104を−N=とした化合物である。このような化合物であれば、より効果的に上記相互作用を発現できるため、好ましい。
さらに、以下の一般式(2)〜(8a)で表される化合物であれば、より効果的に上記相互作用を発現できるため、好ましい。
Figure 0006314839
上記一般式(2)は、一般式(1)の一形態でもある。上記一般式(2)の式中、Y21は、アリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基を表す。E201〜E216、E221〜E238は、各々−C(R21)=または−N=を表す。R21は水素原子(H)または置換基を表す。ただし、E221〜E229の少なくとも1つ、およびE230〜E238の少なくとも1つは−N=を表す。k21およびk22は0〜4の整数を表すが、k21+k22は2以上の整数である。
一般式(2)において、Y21で表されるアリーレン基としては、例えば、o−フェニレン基、p−フェニレン基、ナフタレンジイル基、アントラセンジイル基、ナフタセンジイル基、ピレンジイル基、ナフチルナフタレンジイル基、ビフェニルジイル基(例えば、[1,1’−ビフェニル]−4,4’−ジイル基、3,3’−ビフェニルジイル基、3,6−ビフェニルジイル基等)、テルフェニルジイル基、クアテルフェニルジイル基、キンクフェニルジイル基、セキシフェニルジイル基、セプチフェニルジイル基、オクチフェニルジイル基、ノビフェニルジイル基、デシフェニルジイル基等が例示される。
また一般式(2)において、Y21で表されるヘテロアリーレン基としては、例えば、カルバゾール環、カルボリン環、ジアザカルバゾール環(モノアザカルボリン環ともいい、カルボリン環を構成する炭素原子のひとつが窒素原子で置き換わった構成の環構成を示す)、トリアゾール環、ピロール環、ピリジン環、ピラジン環、キノキサリン環、チオフェン環、オキサジアゾール環、ジベンゾフラン環、ジベンゾチオフェン環、インドール環からなる群から導出される2価の基等が例示される。
Y21で表されるアリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基の好ましい態様としては、ヘテロアリーレン基の中でも、3環以上の環が縮合してなる縮合芳香族複素環から導出される基を含むことが好ましく、また、当該3環以上の環が縮合してなる縮合芳香族複素環から導出される基としては、ジベンゾフラン環から導出される基またはジベンゾチオフェン環から導出される基が好ましい。
一般式(2)において、E201〜E208のうちの6つ以上、およびE209〜E216のうちの6つ以上が、各々−C(R21)=で表されることが好ましい。
一般式(2)において、E225〜E229の少なくとも1つ、およびE234〜E238の少なくとも1つが−N=を表すことが好ましい。
さらには、一般式(2)において、E225〜E229のいずれか1つ、およびE234〜E238のいずれか1つが−N=を表すことが好ましい。
また、一般式(2)において、E221〜E224およびE230〜E233が、各々−C(R21)=で表されることが好ましい態様として挙げられる。
さらに、一般式(2)で表される構造を有する化合物において、E203が−C(R21)=で表され、かつR21が連結部位を表すことが好ましく、さらに、E211も同時に−C(R21)=で表され、かつR21が連結部位を表すことが好ましい。
さらに、E225及びE234が−N=で表されることが好ましく、E221〜E224およびE230〜E233が、各々−C(R21)=で表されることが好ましい。
Figure 0006314839
上記一般式(3)は、一般式(1a−2)の一形態でもある。上記一般式(3)の式中、E301〜E312は、各々−C(R31)=を表し、R31は水素原子(H)または置換基を表す。また、Y31は、アリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基を表す。
上記一般式(3)において、E301〜E312で各々表される−C(R31)=のR31が置換基である場合、その置換基の例としては、一般式(1)のR11,R12として例示した置換基が同様に適用される。
Figure 0006314839
上記一般式(4)は、一般式(1a−1)の一形態でもある。上記一般式(4)の式中、E401〜E414は、各々−C(R41)=を表し、R41は水素原子(H)または置換基を表す。またAr41は、置換あるいは無置換の、芳香族炭化水素環あるいは芳香族複素環を表す。さらにk41は3以上の整数を表す。
また一般式(4)において、Ar41が芳香族炭化水素環を表す場合、この芳香族炭化水素環としては、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o−テルフェニル環、m−テルフェニル環、p−テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。これらの環は、さらに一般式(1)のR11,R12として例示した置換基を有しても良い。
また一般式(4)において、Ar41が芳香族複素環を表す場合、この芳香族複素環としては、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、カルバゾール環、アザカルバゾール環等が挙げられる。尚、アザカルバゾール環とは、カルバゾール環を構成するベンゼン環の炭素原子が1つ以上窒素原子で置き換わったものを示す。これらの環は、さらに一般式(1)において、R11,R12として例示した置換基を有しても良い。
Figure 0006314839
上記一般式(5)の式中、R51は置換基を表す。E501,E502、E511〜E515、E521〜E525は、各々−C(R52)=または−N=を表す。E503〜E505は、各々−C(R52)=を表す。R52は、水素原子(H)または置換基を表す。E501およびE502のうちの少なくとも1つは−N=であり、E511〜E515のうちの少なくとも1つは−N=であり、E521〜E525のうちの少なくとも1つは−N=である。
Figure 0006314839
上記一般式(6)の式中、E601〜E612は、各々−C(R61)=または−N=を表し、R61は水素原子(H)または置換基を表す。またAr61は、置換あるいは無置換の、芳香族炭化水素環あるいは芳香族複素環を表す。
また一般式(6)において、Ar61が表す、置換あるいは無置換の、芳香族炭化水素環あるいは芳香族複素環は、一般式(4)のAr41と同様のものが挙げられる。
Figure 0006314839
上記一般式(7)の式中、R71〜R73は、各々水素原子(H)または置換基を表し、Ar71は、芳香族炭化水素環基あるいは芳香族複素環基を表す。
また一般式(7)において、Ar71が表す芳香族炭化水素環あるいは芳香族複素環は、一般式(4)のAr41と同様のものが挙げられる。
Figure 0006314839
上記一般式(8)は、一般式(7)の一形態でもある。上記一般式(8)の式中、R81〜R86は、各々水素原子(H)または置換基を表す。E801〜E803は、各々−C(R87)=または−N=を表し、R87は水素原子(H)または置換基を表す。Ar81は、芳香族炭化水素環基または芳香族複素環基を表す。
また一般式(8)において、Ar81が表す、芳香族炭化水素環あるいは芳香族複素環は、一般式(4)のAr41と同様のものが挙げられる。
Figure 0006314839
上記一般式(8a)で示される窒素含有化合物は、上記一般式(8)で示される窒素含有化合物の一形態であり、一般式(8)におけるAr81がカルバゾール誘導体である。上記一般式(8a)の式中、E804〜E811は、各々−C(R88)=または−N=を表し、R88は水素原子(H)または置換基を表す。E808〜E811のうち少なくとも一つは−N=であり、E804〜E807、E808〜E811は、各々互いに結合して新たな環を形成してもよい。
[化合物III]
また窒素含有層1aを構成するさらに他の化合物として、以上のような一般式(1)〜(8a)で表される構造を有する化合物の他、下記に具体例を示す化合物1〜166が例示される。これらの化合物は、電極層1bを構成する銀と相互作用する窒素原子を含有する化合物である。また、これらの化合物は、電子輸送性または電子注入性を備えた材料である。尚、これらの化合物1〜166の中には、上述した有効非共有電子対含有率[n/M]の範囲に当てはまる化合物も含まれ、このような化合物であれば単独で窒素含有層1aを構成する化合物として用いることができる。さらに、これらの化合物1〜166の中には、上述した一般式(1)〜(8a)に当てはまる化合物もある。
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
[化合物の合成例]
以下に代表的な化合物の合成例として、化合物5の具体的な合成例を示すが、これに限定されない。
Figure 0006314839
工程1:(中間体1の合成)
窒素雰囲気下、2,8−ジブロモジベンゾフラン(1.0モル)、カルバゾール(2.0モル)、銅粉末(3.0モル)、炭酸カリウム(1.5モル)を、DMAc(ジメチルアセトアミド)300ml中で混合し、130℃で24時間撹拌した。これによって得た反応液を室温まで冷却後、トルエン1Lを加え、蒸留水で3回洗浄し、減圧雰囲気下において洗浄物から溶媒を留去し、その残渣をシリカゲルフラッシュクロマトグラフィー(n−ヘプタン:トルエン=4:1〜3:1)にて精製し、中間体1を収率85%で得た。
工程2:(中間体2の合成)
室温、大気下で中間体1(0.5モル)をDMF(ジメチルホルムアミド)100mlに溶解し、NBS(N−ブロモコハク酸イミド)(2.0モル)を加え、一晩室温で撹拌した。得られた沈殿を濾過し、メタノールで洗浄し、中間体2を収率92%で得た。
工程3:(化合物5の合成)
窒素雰囲気下、中間体2(0.25モル)、2−フェニルピリジン(1.0モル)、ルテニウム錯体[(η−C)RuCl(0.05モル)、トリフェニルホスフィン(0.2モル)、炭酸カリウム(12モル)を、NMP(N−メチル−2−ピロリドン)3L中で混合し、140℃で一晩撹拌した。
反応液を室温まで冷却後、ジクロロメタン5Lを加え、反応液を濾過した。次いで減圧雰囲気下(800Pa、80℃)において濾液から溶媒を留去し、その残渣をシリカゲルフラッシュクロマトグラフィー(CHCl:EtN=20:1〜10:1)にて精製した。
減圧雰囲気下において、精製物から溶媒を留去した後、その残渣をジクロロメタンに再び溶解し、水で3回洗浄した。洗浄によって得られた物質を無水硫酸マグネシウムで乾燥させ、減圧雰囲気下において乾燥後の物質から溶媒を留去することにより、化合物5を収率68%で得た。
[窒素含有層1aの成膜方法]
以上のような窒素含有層1aが基材11上に成膜されたものである場合、その成膜方法としては、塗布法、インクジェット法、コーティング法、ディップ法などのウェットプロセスを用いる方法や、蒸着法(抵抗加熱、EB法など)、スパッタ法、CVD法などのドライプロセスを用いる方法などが挙げられる。なかでも蒸着法が好ましく適用される。
特に、複数の化合物を用いて窒素含有層1aを成膜する場合であれば、複数の蒸着源から複数の化合物を同時に供給する共蒸着が適用される。また化合物として高分子材料を用いる場合であれば、塗布法が好ましく適用される。この場合、化合物を溶媒に溶解させた塗布液を用いる。化合物を溶解させる溶媒が限定されることはない。さらに、複数の化合物を用いて窒素含有層1aを成膜する場合であれば、複数の化合物を溶解させることが可能な溶媒を用いて塗布液を作製すれば良い。
<電極層1b>
電極層1bは、銀を主成分とし添加元素を含有した層であって、窒素含有層1aに隣接して成膜された層である。電極層1bを構成する添加元素は、銀(Ag)と均一に溶け合って固溶体を構成する元素のうち、特に金属元素が用いられる。このような添加元素は、アルミニウム(Al)、金(Au)、インジウム(In)、銅(Cu)、パラジウム(Pd)、プラチナ(Pt)である。電極層1bは、このうちの少なくとも1種を含有していることとする。
また電極層1bにおける、上述した添加元素の濃度は、0.01〜10.0原子%の範囲であることとする。
以上のような電極層1bは、銀を主成分として添加元素を含有する合金層が、必要に応じて複数の層に分けて積層された構成であっても良い。また1層の電極層1bまたは複数層からなる電極層1bの各層に、複数種類の添加元素が添加されていても良い。
さらにこの電極層1bは、膜厚が4〜12nmの範囲にあることが好ましい。膜厚が12nm以下であることにより、層の吸収成分または反射成分が低く抑えられ、電極層1bの光透過率が維持されるため好ましい。また、膜厚が4nm以上であることにより、層の導電性も確保される。
[電極層1bの成膜方法]
以上のような電極層1bの成膜方法としては、塗布法、インクジェット法、コーティング法、ディップ法などのウェットプロセスを用いる方法や、蒸着法(抵抗加熱、EB法など)、スパッタ法、CVD法などのドライプロセスを用いる方法などが挙げられる。
例えば、スパッタ法を適用した電極層1bの成膜であれば、主材料である銀(Ag)に対して添加元素の濃度があらかじめ調整されたスパッタターゲット用意し、このスパッタターゲットを用いたスパッタ成膜を行う。上述した添加元素を用いる全ての場合において、スパッタ法を適用した電極層1bの成膜が行われるが、特に添加元素として銅(Cu)、パラジウム(Pd)、プラチナ(Pt)の何れかを用いる場合には、スパッタ法を適用した電極層1bの成膜が行われる。
また特に、添加元素としてアルミニウム(Al)、金(Au)、インジウム(In)を用いる場合であれば、蒸着法を適用した電極層1bの成膜が行われる。この場合、これらの添加元素と銀(Ag)とを共蒸着する。この際、添加元素の蒸着速度と銀(Ag)の蒸着速度とをそれぞれ調整することにより、主材料である銀(Ag)に対する添加元素の添加濃度を調整した蒸着成膜を行う。
また電極層1bは、窒素含有層1a上に成膜されることにより、成膜後の高温アニール処理等がなくても十分に導電性を有することを特徴とするが、必要に応じて、成膜後に高温アニール処理等を行ったものであっても良い。
<高屈折率層H1,H2>
高屈折率層H1,H2は、窒素含有層1aよりも高い屈折率を有する層である。高屈折率層H1,H2の屈折率は、波長550nmにおける屈折率(n)が、窒素含有層1aの屈折率(n=1.6〜1.8)より0.1以上高いと好ましく、0.3以上高いとさらに好ましい。典型的には、波長550nmにおける屈折率(n)が2.0以上の層であることが好ましい。
このような高屈折率層H1,H2は、高屈折材料を用いて構成されている。高屈折材料としては、例えば光学フィルムに一般的に用いられるような高屈折材料や、その他の高屈折率材料が用いられ、一例として酸化インジウム(In)、酸化亜鉛(ZnO)、酸化チタン(TiO)、または酸化ニオブ(Nb)を主成分とする酸化物が用いられる。このような酸化物の一例としては、酸化チタン(TiO:n=2.3〜2.4)、酸化インジウムスズ(ITO:n=2.1〜2.2)、酸化インジウム亜鉛(In+ZnO:n=2.0〜2.4、例えばIZO)、酸化亜鉛(ZnO:n=1.9〜2.0)、酸化ニオブ(Nb:n=2.2〜2.4)等が例示される。このような高屈折率材料は、透明電極の反射を抑制してくれるため好ましい。
以上の他にも、酸化ハフニウム(HfO:n=1.9〜2.1)、五酸化タンタル(Ta:n=2.16)、酸化セリウム(CeO:n=2.2)、酸化カドミウム(CdO:n=2.49)、酸化ジルコニウム(ZrO:n=2.4)等が、高屈折率層H1,H2として用いられる。
また、各高屈折率層H1,H2は、導電性を有する材料で構成されている場合であっても、主たる電極として用いられることはない。このため各高屈折率層H1,H2は、電極として必要な膜厚を備えている必要はなく、これらの高屈折率層H1,H2を備えた透明電極1が用いられる電子デバイス中における透明電極1の配置状態によって、適切に設定された膜厚を有していれば良い。
以上のような2つの高屈折率層H1,H2は、同じ材料で構成されたものであっても良いし、異なる材料で構成されたものであっても良い。また同じ膜厚であっても良いし異なる膜厚であっても良い。
[高屈折率層H1,H2の成膜方法]
以上のような高屈折率層H1,H2が基材11上に成膜されたものである場合、その成膜方法としては、蒸着法(抵抗加熱、EB法など)またはスパッタ法が挙げられる。特に、EB蒸着であれば、イオンアシストを用いた方法が好適である。このような高屈折率層H1,H2の成膜方法は、これを構成する材料によって適切な方法が選択されることとする。例えば、酸化亜鉛(ZnO)または酸化チタン(TiO)を用いた高屈折率層H1,H2の成膜であれば蒸着法が適用される。また酸化インジウム(In)、酸化インジウムスズ(ITO)、または酸化ニオブ(Nb)を用いた高屈折率層H1,H2の成膜であればスパッタ法が適用される。
尚、ここでの図示は省略したが、透明電極1は、光透過性の向上を目的として、さらに高屈折率層H1,H2の外側に接して低屈折率層を有するものであっても良い。このような低屈折率層は、高屈折率層H1,H2よりも低い屈折率を有する層である。特に波長550nmにおける屈折率が、高屈折率層H1,H2よりも0.1以上低いことが好ましく、高屈折率層H1,H2よりも0.3以上低いことがさらに好ましい。このような低屈折率層は、低い屈折率と、光透過性とを有する材料で構成される。例えば、フッ化マグネシウム(MgF)、フッ化リチウム(LiF)、フッ化カルシウム(CaF)、フッ化アルミニウム(AlF)等の低屈折材料や、光学フィルムに一般的に用いられる低屈折率材料が用いられる。
また以上のような透明電極1は、基材11との間に透明電極1が挟持される状態で、保護膜で覆われていたり、別の導電性層が積層されていても良い。この場合、透明電極1の光透過性を損なうことのないように、保護膜及び導電性層が光透過性を有することが好ましい。また、透明電極1と基材11との間にも、必要に応じた層を設けた構成としても良い。
<透明電極1の効果>
以上のように構成された透明電極1は、窒素原子を含有する化合物を用いて構成された窒素含有層1aに隣接させて、銀を主成分とした電極層1bを設けた構成である。これにより、窒素含有層1aに隣接させて電極層1bを成膜する際には、電極層1bを構成する銀原子が窒素含有層1aを構成する窒素原子を含んだ化合物と相互作用し、銀原子の窒素含有層1a表面においての拡散距離が減少し、銀の凝集が抑えられる。このため、一般的には核成長型(Volumer−Weber:VW型)での膜成長により島状に孤立し易い銀薄膜が、単層成長型(Frank−van der Merwe:FM型)の膜成長によって成膜されるようになる。したがって、薄い膜厚でありながらも、均一な膜厚の電極層1bが得られるようになる。
また特に、窒素含有層1aに対する電極層1bを構成する銀の結合安定性の指標として、上述した有効非共有電子対含有率[n/M]を適用し、この値が2.0×10-3≦[n/M]となる化合物を用いて窒素含有層1aを構成することで、上述したような「銀の凝集を抑える」効果が確実に得られる窒素含有層1aを設けることが可能になる。これは、後の実施例で詳細に説明するように、このような窒素含有層1a上には、6nmと言った極薄膜でありながらもシート抵抗の測定が可能な電極層1bが形成されることからも確認された。
そして特に、銀(Ag)を主成分とする電極層1bには、銀(Ag)に対する固溶元素であるアルミニウム(Al)、金(Au)、インジウム(In)、銅(Cu)、パラジウム(Pd)、プラチナ(Pt)のうちの少なくとも1種を含有させている。これにより、電極層1bは、銀(Ag)とこれらの添加元素とが均一に溶け合った固溶体で構成されたものとなり、電極層1b内においての銀(Ag)のマイグレーションが抑制される。このため、電極層1bにおいての銀(Ag)のマイグレーションによる膜質の劣化が防止される。またこの他にも、銀(Ag)にこれらの固溶元素を添加して電極層1bとすることにより、電極層1bの酸化や硫化が防止される。
また、窒素含有層1aよりも屈折率の高い高屈折率層H1,H2によって窒素含有層1aおよび電極層1bを挟持した4層構造としたことにより、透明電極1においての光反射が防止され、これによる光透過性の向上も期待できる。また高屈折率層H1,H2を構成する材料は、一般的に緻密な膜質を有しているため、電極層1bに隣接して緻密な膜質の高屈折率層H2が配置されることによっても、電極層1bを構成する銀(Ag)のマイグレーションを防止できる。
したがって、この透明電極1においては、薄い膜厚であることで光透過性を確保しつつも、均一な膜厚であることで導電性が確保された電極層1bを確実に得ることができ、さらに光反射が防止されたことによる光透過性の向上も期待でき、かつ電極層1bにおけるマイグレーションの発生が抑えられたことにより、このような光透過性および導電性を維持することができる。これにより、銀を用いた透明電極1における導電性の向上と光透過性の向上との両立と共に、信頼性の向上を図ることが可能になる。
またこのような透明電極1は、レアメタルであるインジウム(In)を用いていないため低コストであり、またZnOのような化学的に不安定な材料を用いていないことからも長期信頼性に優れたものとなる。
≪2.透明電極の用途≫
上述した構成の透明電極1は、各種電子デバイスに用いることができる。電子デバイスの例としては、有機電界発光素子、LED(light Emitting Diode)、液晶素子、太陽電池、タッチパネル等が挙げられ、これらの電子デバイスにおいて光透過性を必要とされる電極部材として、上述の透明電極1を用いることができる。
以下では、用途の一例として、透明電極をアノードおよびカソードとして用いた有機電界発光素子の実施の形態を説明する。
≪3.有機電界発光素子≫
<透明電極を用いた有機電界発光素子の構成>
図2は、本発明の電子デバイスの一例として、上述した透明電極1を用いた有機電界発光素子の一構成例を示す断面構成図である。以下にこの図に基づいて有機電界発光素子の構成を説明する。
図7に示す有機電界発光素子ELは、透明基板13上に設けられており、透明基板13側から順に、透明電極1、発光機能層3、および対向電極5が積層されている。このうち、透明電極1として、先に説明した本発明の透明電極1を用いているところが特徴的である。このため有機電界発光素子ELは、少なくとも透明基板13側から発光光hを取り出すボトムエミッション型として構成されている。
また有機電界発光素子ELの全体的な層構造が限定されることはなく、一般的な層構造であって良い。ここでは、透明電極1が陽極側に配置され、主に電極層1bが陽極として機能する一方、対向電極5が陰極として機能する。
有機電界発光素子EL-1における代表的な素子構成としては、以下の構成を上げることができるが、これらに限定されるものではない。
(1)陽極/発光層/陰極
(2)陽極/発光層/電子輸送層/陰極
(3)陽極/正孔輸送層/発光層/陰極
(4)陽極/正孔輸送層/発光層/電子輸送層/陰極
(5)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(6)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
(7)陽極/正孔注入層/正孔輸送層/(電子阻止層/)発光層/(正孔阻止層/)電子輸送層/電子注入層/陰極
上記の中で(7)の構成が好ましく用いられるが、これに限定されるものではない。
本例においては、例えば発光機能層3は、陽極となる透明電極1側から順に、[正孔注入層3a/正孔輸送層3b/発光層3c/電子輸送層3d/電子注入層3e]を積層した構成が例示されるが、このうち少なくとも有機材料を用いて構成された発光層3cを有することが必須である。
本発明に係る発光層は、単層または複数層で構成されており、発光層が複数の場合は各発光層の間に非発光性の中間層を設けてもよい。
必要に応じて、発光層と陰極との間に正孔阻止層(正孔障壁層ともいう)や電子注入層(陰極バッファー層ともいう)を設けてもよく、また、発光層と陽極との間に電子阻止層(電子障壁層ともいう)や正孔注入層(陽極バッファー層ともいう)を設けてもよい。
本発明に係る電子輸送層とは、電子を輸送する機能を有する層であり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。また、複数層で構成されていてもよい。
本発明に係る正孔輸送層とは、正孔を輸送する機能を有する層であり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。また、複数層で構成されていてもよい。
上記の代表的な素子構成において、陽極と陰極を除いた発光機能層3を「有機層」ともいう。尚、発光機能層3のうち、例えば電子注入層は無機材料で構成されている場合もある。
(タンデム構造)
また、本発明に係る有機電界発光素子は、少なくとも1層の発光層を含む発光機能層を1つの発光ユニットとし、陽極と陰極との間にこの発光ユニット(発光機能層)を複数積層した、いわゆるタンデム構造の素子であってもよい。
タンデム構造の代表的な素子構成としては、例えば以下の構成を挙げることができる。
[陽極/第1発光ユニット/中間層/第2発光ユニット/中間層/第3発光ユニット/陰極]
ここで、上記第1発光ユニット、第2発光ユニット、および第3発光ユニットは、全て同じであっても、異なっていてもよい。また2つの発光ユニットが同じであり、残る1つが異なっていてもよい。
複数の発光ユニットは直接積層されていても、中間層を介して積層されていてもよく、中間層は、一般的に中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、陽極側の隣接層に電子を、陰極側の隣接層に正孔を供給する機能を持った層であれば、公知の材料構成を用いることができる。
中間層に用いられる材料としては、例えば、ITO(インジウム・錫酸化物)、IZO(インジウム・亜鉛酸化物)、ZnO、TiN、ZrN、HfN、TiO、VO、CuI、InN、GaN、CuAlO、CuGaO、SrCu、LaB、RuO、Al等の導電性無機化合物層や、Au/Bi等の2層膜や、SnO/Ag/SnO、ZnO/Ag/ZnO、Bi/Au/Bi、TiO/TiN/TiO、TiO/ZrN/TiO等の多層膜、またC60等のフラーレン類、オリゴチオフェン等の導電性有機物、金属フタロシアニン類、無金属フタロシアニン類、金属ポルフィリン類、無金属ポルフィリン類等の導電性有機化合物等が挙げられるが、本発明はこれらに限定されない。
発光ユニット(発光機能層)内の好ましい構成としては、例えば上記の代表的な素子構成で挙げた(1)〜(7)の構成から、陽極と陰極を除いたもの等が挙げられるが、本発明はこれらに限定されない。
タンデム型の有機電界発光素子の具体例としては、例えば、米国特許第6,337,492号、米国特許第7,420,203号、米国特許第7,473,923号、米国特許第6,872,472号、米国特許第6,107,734号、米国特許第6,337,492号、国際公開第2005/009087号、特開2006−228712号、特開2006−24791号、特開2006−49393号、特開2006−49394号、特開2006−49396号、特開2011−96679号、特開2005−340187号、特許第4711424号、特許第3496681号、特許第3884564号、特許第4213169号、特開2010−192719号、特開2009−076929号、特開2008−078414号、特開2007−059848号、特開2003−272860号、特開2003−045676号、国際公開第2005/094130号等に記載の素子構成や構成材料等が挙げられるが、本発明はこれらに限定されない。
以下、上述した有機電界発光素子ELを構成するための主要各層の詳細を、透明基板13、透明電極1、対向電極5、発光機能層3を構成する各層、発光機能層3の形成方法、および封止材17の順に説明する。その後、有機電界発光素子ELの作製方法を説明する。
[透明基板13]
透明基板13は、先に説明した本発明の透明電極1が設けられる基材のうちから光透過性を有する透明なものが選択して用いられる。この透明基板13においては、その一主面側に有機電界発光素子ELが設けられ、これらが設けられた面とは逆側の面が光取り出し面13aとなっている。
[透明電極1(陽極側)]
透明電極1は、先に説明した本発明の透明電極1であり、発光機能層3下の下部電極として、透明基板13と発光機能層3との間に配置されている。この透明電極1は、透明基板13側から順に、高屈折率層H1、窒素含有層1a、電極層1b、高屈折率層H2の順に設けられた構成である。ここでは特に、透明電極1を構成する電極層1bが実質的な陽極となる。
本実施形態の有機電界発光素子ELにおいては、発光機能層3と、実質的な陽極として用いられる電極層1bとの間に、高屈折率層H2が配置された構成となるが、本構成の透明電極1においては銀(Ag)を主成分とする電極層1bの導電性が極めて高いため、高屈折率層H2に対して導電性が求められることはない。したがって、高屈折率層H1,H2は、先の透明電極1において例示した高屈折率材料の中から、適切な屈折率を有する材料を用いれば良い。またこれらの高屈折率層H1,H2は、電極として必要な膜厚を備えている必要はなく、これらの高屈折率層H1,H2を備えた透明電極1が用いられる電子デバイス中における透明電極1の配置状態によって、適切に設定された膜厚を有していれば良い。
尚、透明電極1は、その端子部分を封止材17から露出させる形状にパターニングされていることとしたが、高屈折率層H1,H2および窒素含有層1aのそれぞれは、絶縁性が良好なものであれば、パターニングされていなくても良く、電極層1bのみがパターニングされていれば良い。
[対向電極5(陰極)]
対向電極5は、発光機能層3上の上部電極として配置されている。この対向電極5は、発光機能層3に電子を供給するための陰極として機能する電極膜である。陰極として適する材料としては、金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、アルミニウム、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/sq.以下が好ましく、膜厚は通常10nm〜5μm、好ましくは50nm〜200nmの範囲で選ばれる。
尚、この有機電界発光素子ELが、対向電極5側からも発光光hを取り出す、両面発光型であれば、上述した導電性材料のうち光透過性の良好な導電性材料を選択して対向電極5を構成すれば良い。
[発光層3c]
本発明に用いられる発光層3cは、電極または隣接層から注入されてくる電子及び正孔が再結合し、励起子を経由して発光する場を提供する層であり、発光する部分は発光層の層内であっても、発光層と隣接層との界面であってもよい。本発明に係る発光層は、本発明で規定する要件を満たしていれば、その構成に特に制限はない。
発光層の膜厚の総和は、特に制限はないが、形成する膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、且つ、駆動電流に対する発光色の安定性向上の観点から、2nm〜5μmの範囲に調整することが好ましく、より好ましくは2nm〜500nmの範囲に調整され、更に好ましくは5nm〜200nmの範囲に調整される。
また、発光層の膜厚としては、2nm〜1μmの範囲に調整することが好ましく、より好ましくは2nm〜200nmnmの範囲に調整され、更に好ましくは3nm〜150nmの範囲に調整される。
発光層には、発光ドーパント(発光性ドーパント化合物、ドーパント化合物、単にドーパントともいう)と、ホスト化合物(マトリックス材料、発光ホスト化合物、単にホストともいう)とを含有することが好ましい。
(1)発光ドーパント
本発明に係る発光ドーパントについて説明する。
発光ドーパントとしては、蛍光発光性ドーパント(蛍光ドーパント、蛍光性化合物ともいう)と、リン光発光性ドーパント(リン光ドーパント、リン光性化合物ともいう)が好ましく用いられる。本発明においては、少なくとも1層の発光層がリン光発光ドーパントを含有することが好ましい。
発光層中の発光ドーパントの濃度については、使用される特定のドーパントおよびデバイスの必要条件に基づいて、任意に決定することができ、発光層の膜厚方向に対し、均一な濃度で含有されていてもよく、また任意の濃度分布を有していてもよい。
また、本発明に係る発光ドーパントは、複数種を併用して用いてもよく、構造の異なるドーパント同士の組み合わせや、蛍光発光性ドーパントとリン光発光性ドーパントとを組み合わせて用いてもよい。これにより、任意の発光色を得ることができる。
本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS−2000(コニカミノルタセンシング(株)製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
本発明においては、1層または複数層の発光層が、発光色の異なる複数の発光ドーパントを含有し、白色発光を示すことも好ましい。
白色を示す発光ドーパントの組み合わせについては特に限定はないが、例えば青と橙や、青と緑と赤の組み合わせ等が挙げられる。
本発明の有機EL素子における白色とは、2度視野角正面輝度を前述の方法により測定した際に、1000cd/mでのCIE1931表色系における色度がx=0.39±0.09、y=0.38±0.08の領域内にあることが好ましい。
(1.1)リン光発光性ドーパント
本発明に係るリン光発光性ドーパント(以下、「リン光ドーパント」ともいう)について説明する。
本発明に係るリン光ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に係るリン光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。
リン光ドーパントの発光は原理としては二種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光ドーパントに移動させることでリン光ドーパントからの発光を得るというエネルギー移動型である。もう一つはリン光ドーパントがキャリアトラップとなり、リン光ドーパント上でキャリアの再結合が起こりリン光ドーパントからの発光が得られるというキャリアトラップ型である。いずれの場合においても、リン光ドーパントの励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。
(さらに本発明においては併用する)リン光ドーパントは、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。
本発明に使用できる公知のリン光ドーパントの具体例としては、以下の文献に記載されている化合物等が挙げられる。
赤色のリン光ドーパントが記載されている文献:Nature 395,151 (1998)、Appl. Phys. Lett. 78, 1622 (2001)、Adv. Mater. 19, 739 (2007)、Chern. Mater. 17, 3532 (2005)、Adv. Mater. 17, 1059 (2005)、国際公開第2009100991号、国際公開第2008101842号、国際公開第2003040257号、米国特許公開第2006835469号、米国特許公開第20060202194号、米国特許公開第20070087321号、米国特許公開第20050244673号等である。
緑色のリン光ドーパントが記載されている文献:Inorg. Chern. 40, 1704 (2001)、Chern. Mater. 16, 2480 (2004)、Adv. Mater. 16, 2003 (2004)、Angew. Chern. lnt. Ed. 2006, 45, 7800、Appl. Phys. Lett. 86, 153505 (2005)、Chern. Lett. 34, 592 (2005)、Chern. Commun. 2906 (2005)、Inorg. Chern. 42, 1248 (2003)、国際公開第2009050290号、国際公開第2002015645号、国際公開第2009000673号、米国特許公開第20020034656号、米国特許第7332232号、米国特許公開第20090108737号、米国特許公開第20090039776号、米国特許第6921915号、米国特許第6687266号、米国特許公開第20070190359号、米国特許公開第20060008670号、米国特許公開第20090165846号、米国特許公開第20080015355号、米国特許第7250226号、米国特許第7396598号、米国特許公開第20060263635号、米国特許公開第20030138657号、米国特許公開第20030152802号、米国特許第7090928号等である。
青色のリン光ドーパントが記載されている文献:Angew. Chern. lnt. Ed. 47, 1 (2008)、Chern. Mater. 18, 5119 (2006)、Inorg. Chern. 46, 4308 (2007)、Organometallics 23, 3745 (2004)、Appl. Phys. Lett. 74, 1361 (1999)、国際公開第2002002714号、国際公開第2006009024号、国際公開第2006056418号、国際公開第2005019373号、国際公開第2005123873号、国際公開第2007004380号、国際公開第2006082742号、米国特許公開第20060251923号、米国特許公開第20050260441号、米国特許第7393599号、米国特許第7534505号、米国特許第7445855号、米国特許公開第20070190359号、米国特許公開第20080297033号、米国特許第7338722号、米国特許公開第20020134984号、米国特許第7279704号、米国特許公開第2006098120号、米国特許公開第2006103874号等である。
青色を中心に各色のリン光ドーパントが記載されている文献:国際公開第2005076380号、国際公開第2010032663号、国際公開第第2008140115号、国際公開第2007052431号、国際公開第2011134013号、国際公開第2011157339号、国際公開第2010086089号、国際公開第2009113646号、国際公開第2012020327号、国際公開第2011051404号、国際公開第2011004639号、国際公開第2011073149号、米国特許公開第2012228583号、米国特許公開第2012212126号、特開2012−069737号、特開2012−195554、特開2009−114086号、特開2003−81988号、特開2002−302671号、特開2002−363552号等である。
中でも、好ましいリン光ドーパントとしてはIrを中心金属に有する有機金属錯体が挙げられる。さらに好ましくは、金属−炭素結合、金属−窒素結合、金属−酸素結合、金属−硫黄結合の少なくとも1つの配位様式を含む錯体が好ましい。
ここで、本発明に使用できる公知のリン光ドーパントの具体例(D1〜D81)を挙げるが、本発明はこれらに限定されない。
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839
Figure 0006314839

(1.2)蛍光発光性ドーパント
本発明に係る蛍光発光性ドーパント(以下、「蛍光ドーパント」ともいう)について説明する。
本発明に係る蛍光ドーパントは、励起一重項からの発光が可能な化合物であり、励起一重項からの発光が観測される限り特に限定されない。
本発明に係る蛍光ドーパントとしては、例えば、アントラセン誘導体、ピレン誘導体、クリセン誘導体、フルオランテン誘導体、ペリレン誘導体、フルオレン誘導体、アリールアセチレン誘導体、スチリルアリーレン誘導体、スチリルアミン誘導体、アリールアミン誘導体、ホウ素錯体、クマリン誘導体、ピラン誘導体、シアニン誘導体、クロコニウム誘導体、スクアリウム誘導体、オキソベンツアントラセン誘導体、フルオレセイン誘導体、ローダミン誘導体、ピリリウム誘導体、ペリレン誘導体、ポリチオフェン誘導体、又は希土類錯体系化合物等が挙げられる。
また、近年では遅延蛍光を利用した発光ドーパントも開発されており、これらを用いてもよい。
遅延蛍光を利用した発光ドーパントの具体例としては、例えば、国際公開第2011/156793号、特開2011−213643号、特開2010−93181号等に記載の化合物が挙げられるが、本発明はこれらに限定されない。
(2)ホスト化合物
本発明に係るホスト化合物は、発光層において主に電荷の注入および輸送を担う化合物であり、有機EL素子においてそれ自体の発光は実質的に観測されない。
好ましくは室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物であり、さらに好ましくはリン光量子収率が0.01未満の化合物である。また、発光層に含有される化合物の内で、その層中での質量比が20%以上であることが好ましい。
また、ホスト化合物の励起状態エネルギーは、同一層内に含有される発光ドーパントの励起状態エネルギーよりも高いことが好ましい。
ホスト化合物は、単独で用いてもよく、または複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。
本発明で用いることができるホスト化合物としては、特に制限はなく、従来有機EL素子で用いられる化合物を用いることができる。低分子化合物でも繰り返し単位を有する高分子化合物でもよく、また、ビニル基やエポキシ基のような反応性基を有する化合物でもよい。
公知のホスト化合物としては、正孔輸送能または電子輸送能を有しつつ、且つ、発光の長波長化を防ぎ、さらに、有機EL素子を高温駆動時や素子駆動中の発熱に対して安定して動作させる観点から、高いガラス転移温度(Tg)を有することが好まし。好ましくはTgが90℃以上であり、より好ましくは120℃以上である。
ここで、ガラス転移点(Tg)とは、DSC(Differential Scanning Calorimetry:示差走査熱量法)を用いて、JIS−K−7121に準拠した方法により求められる値である。
本発明の有機EL素子に用いられる、公知のホスト化合物の具体例としては、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。
特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−141173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−231453号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−255934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報、米国特許公開第20030175553号、米国特許公開第20060280965号、米国特許公開第20050112407号、米国特許公開第20090017330号、米国特許公開第20090030202号、米国特許公開第20050238919号、国際公開第2001039234号、国際公開第2009021126号、国際公開第2008056746号、国際公開第2004093207号、国際公開第2005089025号、国際公開第2007063796号、国際公開第2007063754号、国際公開第2004107822号、国際公開第2005030900号、国際公開第2006114966号、国際公開第2009086028号、国際公開第2009003898号、国際公開第2012023947号、特開2008−074939号、特開2007−254297号、EP2034538等である。
[電子輸送層]
本発明において電子輸送層とは、電子を輸送する機能を有する材料からなり、陰極より注入された電子を発光層に伝達する機能を有していればよい。
本発明の電子輸送層の総膜厚については特に制限はないが、通常は2nm〜5μmの範囲であり、より好ましくは2nm〜500nmであり、さらに好ましくは5nm〜200nmである。
また、有機EL素子においては発光層で生じた光を電極から取り出す際、発光層から直接取り出される光と、光を取り出す電極と対極に位置する電極によって反射されてから取り出される光とが干渉を起こすことが知られている。光が陰極で反射される場合は、電子輸送層の総膜厚を数nm〜数μmの間で適宜調整することにより、この干渉効果を効率的に利用することが可能である。
一方で、電子輸送層の膜厚を厚くすると電圧が上昇しやすくなるため、特に膜厚が厚い場合においては、電子輸送層の電子移動度は10−5cm/Vs以上であることが好ましい。
電子輸送層に用いられる材料(以下、電子輸送材料という)としては、電子の注入性または輸送性、正孔の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。
例えば、含窒素芳香族複素環誘導体(カルバゾール誘導体、アザカルバゾール誘導体(カルバゾール環を構成する炭素原子の1つ以上が窒素原子に置換されたもの)、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピリダジン誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、フェナントロリン誘導体、アザトリフェニレン誘導体、オキサゾール誘導体、チアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体等)、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、シロール誘導体、芳香族炭化水素環誘導体(ナフタレン誘導体、アントラセン誘導体、トリフェニレン等)等が挙げられる。
また、配位子にキノリノール骨格やジベンゾキノリノール骨格を有する金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。
その他、メタルフリーもしくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型Si、n型SiC等の無機半導体も電子輸送材料として用いることができる。
また、これらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
本発明に係る電子輸送層においては、電子輸送層にドープ材をゲスト材料としてドープして、n性の高い(電子リッチ)電子輸送層を形成してもよい。ドープ材としては、金属錯体やハロゲン化金属など金属化合物等のn型ドーパントが挙げられる。このような構成の電子輸送層の具体例としては、例えば、特開平4−297076号公報、同10−270172号公報、特開2000−196140号公報、同2001−102175号公報、J.Appl.Phys.,95,5773(2004)等の文献に記載されたものが挙げられる。
本発明の有機EL素子に用いられる、公知の好ましい電子輸送材料の具体例としては、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。
米国特許第6528187号、米国特許第7230107号、米国特許公開第20050025993号、米国特許公開第20040036077号、米国特許公開第20090115316号、米国特許公開第20090101870号、米国特許公開第20090179554号、国際公開第2003060956号、国際公開第2008132085号、Appl. Phys. Lett. 75, 4 (1999)、Appl. Phys. Lett. 79, 449 (2001)、Appl. Phys. Lett. 81, 162 (2002)、Appl. Phys. Lett. 81, 162 (2002)、Appl. Phys. Lett. 79, 156 (2001)、米国特許第7964293号、米国特許公開第2009030202号、国際公開第2004080975号、国際公開第2004063159号、国際公開第2005085387号、国際公開第2006067931号、国際公開第2007086552号、国際公開第2008114690号、国際公開第2009069442号、国際公開第2009066779号、国際公開第2009054253号、国際公開第2011086935号、国際公開第2010150593号、国際公開第2010047707号、EP2311826号、特開2010−251675号、特開2009−209133号、特開2009−124114号、特開2008−277810号、特開2006−156445号、特開2005−340122号、特開2003−45662号、特開2003−31367号、特開2003−282270号、国際公開第2012115034号等である。
本発明におけるよりより好ましい電子輸送材料としては、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、トリアジン誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、カルバゾール誘導体、アザカルバゾール誘導体、ベンズイミダゾール誘導体が挙げられる。
電子輸送材料は単独で用いてもよく、また複数種を併用して用いてもよい。
[正孔阻止層]
正孔阻止層とは広い意味では電子輸送層の機能を有する層であり、好ましくは電子を輸送する機能を有しつつ正孔を輸送する能力が小さい材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
また、前述する電子輸送層の構成を必要に応じて、本発明に係る正孔阻止層として用いることができる。
本発明の有機EL素子に設ける正孔阻止層は、発光層の陰極側に隣接して設けられることが好ましい。
本発明に係る正孔阻止層の膜厚としては、好ましくは3〜100nmの範囲であり、更に好ましくは5〜30nmの範囲である。
正孔阻止層に用いられる材料としては、前述の電子輸送層に用いられる材料が好ましく用いられ、また、前述のホスト化合物として用いられる材料も正孔阻止層に好ましく用いられる。
[電子注入層]
本発明に係る電子注入層(「陰極バッファー層」ともいう)とは、駆動電圧低下や発光輝度向上のために陰極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されている。
本発明において電子注入層は必要に応じて設け、上記の如く陰極と発光層との間、または陰極と電子輸送層との間に存在させてもよい。
電子注入層はごく薄い膜であることが好ましく、素材にもよるがその膜厚は0.1nm〜5nmの範囲が好ましい。また構成材料が断続的に存在する不均一な膜であってもよい。
電子注入層は、特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にもその詳細が記載されており、電子注入層に好ましく用いられる材料の具体例としては、ストロンチウムやアルミニウム等に代表される金属、フッ化リチウム、フッ化ナトリウム、フッ化カリウム等に代表されるアルカリ金属化合物、フッ化マグネシウム、フッ化カルシウム等に代表されるアルカリ土類金属化合物、酸化アルミニウムに代表される金属酸化物、リチウム8−ヒドロキシキノレート(Liq)等に代表される金属錯体等が挙げられる。また、前述の電子輸送材料を用いることも可能である。
また、上記の電子注入層に用いられる材料は単独で用いてもよく、複数種を併用して用いてもよい。
[正孔輸送層]
本発明において正孔輸送層とは、正孔を輸送する機能を有する材料からなり、陽極より注入された正孔を発光層に伝達する機能を有していればよい。
本発明の正孔輸送層の総膜厚については特に制限はないが、通常は5nm〜5μmの範囲であり、より好ましくは2nm〜500nmであり、さらに好ましくは5nm〜200nmである。
正孔輸送層に用いられる材料(以下、正孔輸送材料という)としては、正孔の注入性または輸送性、電子の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。
例えば、ポルフィリン誘導体、フタロシアニン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリアリールアルカン誘導体、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、イソインドール誘導体、アントラセンやナフタレン等のアセン系誘導体、フルオレン誘導体、フルオレノン誘導体、、及びポリビニルカルバゾール、芳香族アミンを主鎖または側鎖に導入した高分子材料またはオリゴマー、ポリシラン、導電性ポリマーまたはオリゴマー(例えばPEDOT:PSS、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。
トリアリールアミン誘導体としては、αNPDに代表されるベンジジン型や、MTDATAに代表されるスターバースト型、トリアリールアミン連結コア部にフルオレンやアントラセンを有する化合物等が挙げられる。
また、特表2003−519432号公報や特開2006−135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。
さらに不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4−297076号公報、特開2000−196140号公報、同2001−102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
また、特開平11−251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、所謂p型正孔輸送材料やp型Si、p型SiC等の無機化合物を用いることもできる。さらにIr(ppy)3に代表されるような中心金属にIrやPtを有するオルトメタル化有機金属錯体も好ましく用いられる。
正孔輸送材料としては、上記のものを使用することができるが、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、アザトリフェニレン誘導体、有機金属錯体、芳香族アミンを主鎖または側鎖に導入した高分子材料またはオリゴマー等が好ましく用いられる。
本発明の有機EL素子に用いられる、公知の好ましい正孔輸送材料の具体例としては、上記で挙げた文献の他、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。
例えば、Appl. Phys. Lett. 69, 2160 (1996)、J. Lumin. 72-74, 985 (1997)、Appl. Phys. Lett. 78, 673 (2001)、Appl. Phys. Lett. 90, 183503 (2007)、Appl. Phys. Lett. 90, 183503 (2007)、Appl. Phys. Lett. 51, 913 (1987)、Synth. Met. 87, 171 (1997)、Synth. Met. 91, 209 (1997)、Synth. Met. 111,421 (2000)、SID Symposium Digest, 37, 923 (2006)、J. Mater. Chern. 3, 319 (1993)、Adv. Mater. 6, 677 (1994)、Chern. Mater. 15,3148 (2003)、米国特許公開第20030162053号、米国特許公開第20020158242号、米国特許公開第20060240279号、米国特許公開第20080220265号、米国特許第5061569号、国際公開第2007002683号、国際公開第2009018009号、EP650955、米国特許公開第20080124572号、米国特許公開第20070278938号、米国特許公開第20080106190号、米国特許公開第20080018221号、国際公開第2012115034号、特表2003−519432号公報、特開2006−135145号、米国特許出願番号13/585981号等である。
正孔輸送材料は単独で用いてもよく、また複数種を併用して用いてもよい。
[電子阻止層]
電子阻止層とは広い意味では正孔輸送層の機能を有する層であり、好ましくは正孔を輸送する機能を有しつつ電子を輸送する能力が小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。
また、前述する正孔輸送層の構成を必要に応じて、本発明に係る電子阻止層として用いることができる。
本発明の有機EL素子に設ける電子阻止層は、発光層の陽極側に隣接して設けられることが好ましい。
本発明に係る電子阻止層の膜厚としては、好ましくは3〜100nmの範囲であり、更に好ましくは5〜30nmの範囲である。
電子阻止層に用いられる材料としては、前述の正孔輸送層に用いられる材料が好ましく用いられ、また、前述のホスト化合物として用いられる材料も電子阻止層に好ましく用いられる。
[正孔注入層]
本発明に係る正孔注入層(「陽極バッファー層」ともいう)とは、駆動電圧低下や発光輝度向上のために陽極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されている。
本発明において正孔注入層は必要に応じて設け、上記の如く陽極と発光層又は陽極と正孔輸送層との間に存在させてもよい。
正孔注入層は、特開平9−45479号公報、同9−260062号公報、同8−288069号公報等にもその詳細が記載されており、正孔注入層に用いられる材料としては、例えば前述の正孔輸送層に用いられる材料等が挙げられる。
中でも銅フタロシアニンに代表されるフタロシアニン誘導体、特表2003−519432や特開2006−135145等に記載されているようなヘキサアザトリフェニレン誘導体、酸化バナジウムに代表される金属酸化物、アモルファスカーボン、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子、トリス(2−フェニルピリジン)イリジウム錯体等に代表されるオルトメタル化錯体、トリアリールアミン誘導体等が好ましい。
前述の正孔注入層に用いられる材料は単独で用いてもよく、また複数種を併用して用いてもよい。
[含有物]
前述した発光機能層を構成する各層は、さらに他の含有物が含まれていてもよい。
含有物としては、例えば臭素、ヨウ素及び塩素等のハロゲン元素やハロゲン化化合物、Pd、Ca、Na等のアルカリ金属やアルカリ土類金属、遷移金属の化合物や錯体、塩等が挙げられる。
含有物の含有量は、任意に決定することができるが、含有される層の全質量%に対して1000ppm以下であることが好ましく、より好ましくは500ppm以下であり、さらに好ましくは50ppm以下である。
ただし、電子や正孔の輸送性を向上させる目的や、励起子のエネルギー移動を有利にするための目的などによってはこの範囲内ではない。
[発光機能層の形成方法]
発光機能層を構成する各層(正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、電子注入層等)の形成方法について説明する。
発光機能層を構成する各層の形成方法は、特に制限はなく、従来公知の例えば真空蒸着法、湿式法(ウェットプロセスともいう)等による形成方法を用いることができる。
湿式法としては、スピンコート法、キャスト法、インクジェット法、印刷法、ダイコート法、ブレードコート法、ロールコート法、スプレーコート法、カーテンコート法、LB法(ラングミュア−ブロジェット法)等があるが、均質な薄膜が得られやすく、且つ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法などのロール・ツー・ロール方式適性の高い方法が好ましい。
本発明に係る有機EL材料を溶解または分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。
また、分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。
更に層毎に異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50℃〜450℃、真空度10−6Pa〜10−2Pa、蒸着速度0.01nm/秒〜50nm/秒、基板温度−50℃〜300℃、膜厚0.1nm〜5μm、好ましくは5nm〜200nmの範囲で適宜選ぶことが望ましい。
本発明の有機層の形成は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる製膜法を施しても構わない。その際は作業を乾燥不活性ガス雰囲気下で行うことが好ましい。
[封止材17]
封止材17は、有機電界発光素子ELを覆うものであって、光透過性を有していてもいなくても良い。このような封止材17は、板状(フィルム状)の封止部材であって接着剤19によって透明基板13側に固定されるものであっても良く、封止膜であっても良い。
板状(フィルム状)の封止材17としては、具体的には、光透過性を有するものであれば、ガラス基板、ポリマー基板が挙げられ、これらの基板材料をさらに薄型のフィルム状にして用いても良い。ガラス基板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー基板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。
なかでも、素子を薄膜化できるということから、封止材17としてポリマー基板を薄型のフィルム状にしたものを好ましく使用することができる。
さらには、フィルム状としたポリマー基板は、JIS K 7126−1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m2・24h・atm)以下、JIS K 7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度90±2%RH)が、1×10-3g/(m2・24h)以下のものであることが好ましい。
また以上のような基板材料は、凹板状に加工して封止材17として用いても良い。この場合、上述した基板部材に対してサンドブラスト加工、化学エッチング加工等の加工が施され、凹状が形成される。
また板状の封止材17の他の例として、金属材料で構成されたものを用いることができる。金属材料としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブデン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属または合金からなるものが挙げられる。このような金属材料は、薄型のフィルム状にして封止材17として用いることにより、有機電界発光素子ELが設けられた発光パネル全体を薄膜化できる。
また以上のような板状の封止材17を透明基板13側に固定するための接着剤19は、封止材17と透明基板13との間に挟持された有機電界発光素子ELを封止するためのシール剤として用いられる。このような接着剤19は、具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2−シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。
またこのような接着剤19としては、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
なお、有機電界発光素子ELを構成する有機材料は、熱処理により劣化する場合がある。このため、接着剤19は、室温から80℃までに接着硬化できるものが好ましい。また、接着剤19中に乾燥剤を分散させておいてもよい。
封止材17と透明基板13との接着部分への接着剤19の塗布は、市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。この接着剤19は、図示したように封止材17の周縁のみに設けられても良いし、硬化後に十分な光透過性を有する材料であれば、封止材17と有機電界発光素子ELとの間に隙間なく充填されても良い。
また板状の封止材17と透明基板13と接着剤19との間に隙間が形成される場合、この間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
一方、封止材17として封止膜を用いる場合、有機電界発光素子ELにおける発光機能層3を完全に覆い、かつ有機電界発光素子ELにおける透明電極1および対向電極5の端子部分を露出させる状態で、透明基板13上に封止膜が設けられる。
このような封止膜は、無機材料や有機材料を用いて構成される。特に、水分や酸素等、有機電界発光素子ELにおける発光機能層3の劣化をもたらす物質の浸入を抑制する機能を有する材料で構成されることとする。このような材料として、例えば、酸化珪素、二酸化珪素、窒化珪素等の無機材料が用いられる。さらに封止膜の脆弱性を改良するために、これら無機材料からなる膜と共に、有機材料からなる膜を用いて積層構造としても良い。
これらの膜の形成方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。
以上のような封止材17は、有機電界発光素子ELにおける透明電極1および対向電極5の端子部分を露出させると共に、少なくとも発光機能層3を覆う状態で設けられている。また封止材17に電極を設け、有機電界発光素子ELの透明電極1および対向電極5の端子部分と、この電極とを導通させるように構成されていても良い。
尚、この有機電界発光素子ELが、対向電極5側からも発光光hを取り出すものである場合、封止材17としては、上述した板状の封止部材または封止膜の中から光透過性を有する透明封止材が用いられ、この封止材17の表面も、有機電界発光素子ELの発光光hを取り出す光取り出し面となる。
[保護膜、保護板]
ここでの図示は省略したが、透明基板13との間に有機電界発光素子ELおよび封止材17を挟んで保護膜もしくは保護板を設けても良い。この保護膜もしくは保護板は、有機電界発光素子ELを機械的に保護するためのものであり、特に封止材17が封止膜である場合には、有機電界発光素子ELに対する機械的な保護が十分ではないため、このような保護膜もしくは保護板を設けることが好ましい。
以上のような保護膜もしくは保護板は、ガラス板、ポリマー板、これよりも薄型のポリマーフィルム、金属板、これよりも薄型の金属フィルム、またはポリマー材料膜や金属材料膜が適用される。このうち特に、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
[補助電極]
さらにここでの図示は省略したが、以上のような構成においては、透明電極1の低抵抗化を図ることを目的とし、透明電極1の電極層1bに接して補助電極が設けられていても良い。補助電極は、透明電極1の抵抗を下げる目的で設けるものであって、透明電極1の電極層1bに接して設けられる。補助電極を形成する材料は、金、白金、銀、銅、アルミニウム等の抵抗が低い金属が好ましい。これらの金属は光透過性が低いため、光取り出し面13aからの発光光hの取り出しの影響のない範囲でパターン形成される。このような補助電極の形成方法としては、蒸着法、スパッタリング法、印刷法、インクジェット法、エアロゾルジェット法などが挙げられる。補助電極の線幅は、光を取り出す開口率の観点から50μm以下であることが好ましく、補助電極の厚さは、導電性の観点から1μm以上であることが好ましい。
また、本発明の有機電界発光素子EL-1は、発光光hの室温における外部取り出し効率は、1%以上であることが好ましく、5%以上であるとより好ましい。ここで、外部取り出し量子効率(%)=有機電界発光素子の外部に取り出された光子数/有機EL素子に流した電子数×100である。また、光取りだし側に配置する状態で、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。
<有機電界発光素子の作製方法>
以上のような有機電界発光素子ELの製造は、次のように行う。
先ず透明基板13上に、所望の膜厚で高屈折率層H1を成膜する。次いで、窒素含有層1aを、1μm以下、好ましくは100nm以下の膜厚になるように形成する。次に、銀(または銀を主成分とした合金)からなる電極層1bを、4nm〜12nmの膜厚になるように形成する。その後、所望の膜厚で高屈折率層H2を成膜する。以上の成膜においては、上述した透明電極1の実施形態で説明した各層の成膜方法にしたがって成膜を行う。また各層の成膜においては、必要に応じて例えばマスクを用いた成膜を行うことにより、透明基板13の周縁に端子部分を引き出した形状の透明電極1を形成する。
尚、透明電極1の形成は、各層を成膜した後に、成膜された各層を所定形状にパターニングするようにしても良い。また電極層1bの形成前後には、必要に応じて補助電極のパターン形成を行っても良い。
次にこの上に、正孔注入層3a、正孔輸送層3b、発光層3c、電子輸送層3d、電子注入層3eの順に成膜し、発光機能層3を形成する。これらの各層の成膜は、スピンコート法、キャスト法、インクジェット法、蒸着法、スパッタ法、印刷法等があるが、均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、真空蒸着法またはスピンコート法が特に好ましい。さらに層ごとに異なる成膜法を適用してもよい。これらの各層の成膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般に化合物を収蔵したボート加熱温度50℃〜450℃、真空度10-6Pa〜10-2Pa、蒸着速度0.01nm/秒〜50nm/秒、基板温度−50℃〜300℃、膜厚0.1μm〜5μmの範囲で、各条件を適宜選択することが望ましい。
次いで、カソードとなる対向電極5を、蒸着法やスパッタ法などの適宜の成膜法によって形成する。
以上のようなまた各層の成膜においては、必要に応じて例えばマスクを用いた成膜を行うか、または各層を成膜した後に、成膜された各層を所定形状にパターニングする。これにより、発光機能層3によって透明電極1と対向電極5との絶縁状態を保ちつつ、透明基板13の周縁に透明電極1および対向電極5の端子部分を引き出した形状に各層をパターン形成する。
尚、電極層1bの形成前後には、必要に応じて補助電極のパターン形成を行っても良い。
以上により、透明電極1が設けられた透明基板13側から発光光hを取り出すボトムエミッション型の有機電界発光素子ELが得られる。またその後には、有機電界発光素子ELにおける透明電極1および対向電極5の端子部分を露出させた状態で、少なくとも発光機能層3を覆う封止材17を設ける。この際、接着剤19を用いて、封止材17を透明基板13側に接着し、これらの封止材17−透明基板13間に有機電界発光素子ELを封止する。
以上により、透明基板13上に所望の有機電界発光素子ELが得られる。このような有機電界発光素子ELの作製においては、一回の真空引きで一貫して発光機能層3から対向電極5まで作製するのが好ましいが、途中で真空雰囲気から透明基板13を取り出して異なる成膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。
このようにして得られた有機電界発光素子ELに直流電圧を印加する場合には、アノードである透明電極1(電極層1b)を+の極性とし、カソードである対向電極5を−の極性として、電圧2V以上40V以下程度を印加すると発光が観測できる。また交流電圧を印加してもよい。尚、印加する交流の波形は任意でよい。
<有機電界発光素子ELの効果>
以上説明した有機電界発光素子ELは、本発明の導電性と光透過性とを兼ね備えると共に信頼性の向上が図られた透明電極1をアノードとして用い、この透明電極1における高屈折率層H2側に、発光機能層3とアノードとなる対向電極5とをこの順に設けた構成である。このため、透明電極1と対向電極5との間に十分な電圧を印加して有機電界発光素子ELでの高輝度発光を実現しつつ、透明電極1側からの発光光hの取り出し効率が向上することによる高輝度化を図ることが可能である。しかも、このような性能を長期的に維持することができ、長期信頼性の向上をも図ることが可能である。さらに、所定輝度を得るための駆動電圧の低減によっても、発光寿命の向上が図られる。
≪4.有機電界発光素子の他の例≫
以上説明した実施形態においては、図1を用いて説明した透明電極1を、発光機能層3下の下部電極として配置すると共に陽極として機能させ、この透明電極1に対する対向電極5を発光機能層3上の上部電極として配置すると共に陰極として機能させた有機電界発光素子ELの構成を説明した。
しかしながら本発明の電子デバイスとしての有機電界発光素子ELは、このように透明電極1を用いる構成に限定されることはなく、下記の変形例1〜3のような様々な構成をとることができる。
<変形例1>
有機電界発光素子ELは、透明電極1を陰極として機能させ、対向電極5を陽極としても良い。この場合、透明電極1側から順に、電子注入層3e、電子輸送層3d、発光層3c、正孔輸送層3b、および正孔注入層3aを配置した構成が例示されるが、発光層3c以外は必要に応じた層を設ければ良い。
さらに、発光機能層3の上方に設けられる対向電極5は、陽極として機能する電極膜であり、発光機能層3に接する側の界面層が、陽極として適する材料で構成されていることとする。陽極として適する材料としては、仕事関数の大きい(4eV以上、好ましくは4.5V以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In−ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。
あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/sq.以下が好ましい。
陽極の膜厚は材料にもよるが、通常10nm〜1μm、好ましくは10nm〜200nmの範囲で選ばれる。
<変形例2>
有機電界発光素子ELは、透明電極1を発光機能層3上の上部電極として配置しても良い。この場合、発光機能層3の下部電極として対向電極5を配置し、対向電極5上に、発光機能層3および透明電極1をこの順に配置する。また封止材17を透明材料で構成する。発光機能層3上の透明電極1は、発光機能層3側から順に、高屈折率層H1、窒素含有層1a、電極層1b、および高屈折率層H2を配置する。この場合、透明電極1と対向電極5とは、何れか一方が陽極、何れか他方が陰極となり、これに合わせて発光機能層3の積層順を適宜に設定すればよい。対向電極5は、陽極か陰極かによって、上述したそれぞれに適する材料を用いて構成される。
<変形例3>
有機電界発光素子ELは、透明電極1を発光機能層3に対する上部電極および下部電極として配置しても良い。この場合、封止材17を透明材料で構成する。また発光機能層3上の透明電極1は、変形例2と同様に、発光機能層3側から順に、高屈折率層H1、窒素含有層1a、電極層1b、および高屈折率層H2を配置する。この場合、2つの透明電極1は、何れか一方が陽極、何れか他方が陰極となり、これに合わせて発光機能層3の積層順を適宜に設定すればよい。
≪5.有機電界発光素子の用途≫
上述した構成の有機電界発光素子は、面発光体であるため各種の発光光源として用いることができる。例えば、家庭用照明や車内照明などの照明装置、時計や液晶用のバックライト、看板広告用照明、信号機の光源、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これに限定するものではなく、特にカラーフィルターと組み合わせた液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
また、本発明の有機電界発光素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。この場合、近年の照明装置およびディスプレイの大型化にともない、有機電界発光素子を設けた発光パネル同士を平面的に接合する、いわゆるタイリングによって発光面を大面積化しても良い。
動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。また異なる発光色を有する本発明の有機電界発光素子を2種以上使用することにより、カラーまたはフルカラー表示装置を作製することが可能である。
以下では、用途の一例として照明装置について説明し、次にタイリングによって発光面を大面積化した照明装置について説明する。
≪6.照明装置I≫
本発明の照明装置は、上記有機電界発光素子を有する。
本発明の照明装置に用いる有機電界発光素子は、上述した構成の各有機電界発光素子に共振器構造を持たせた設計としてもよい。共振器構造として構成された有機電界発光素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより上記用途に使用してもよい。
尚、本発明の有機電界発光素子に用いられる材料は、実質的に白色の発光を生じる有機電界発光素子(白色有機電界発光素子ともいう)に適用できる。例えば、複数の発光材料により複数の発光色を同時に発光させて混色により白色発光を得ることもできる。複数の発光色の組み合わせとしては、赤色、緑色、青色の3原色の3つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した2つの発光極大波長を含有したものでもよい。
また、複数の発光色を得るための発光材料の組み合わせは、複数のリン光または蛍光で発光する材料を複数組み合わせたもの、蛍光またはリン光で発光する発光材料と、発光材料からの光を励起光として発光する色素材料との組み合わせたもののいずれでもよいが、白色有機電界発光素子においては、発光ドーパントを複数組み合わせて混合したものでもよい。
このような白色有機電界発光素子は、各色発光の有機電界発光素子をアレー状に個別に並列配置して白色発光を得る構成と異なり、有機電界発光素子自体が白色を発光する。このため、素子を構成するほとんどの層の成膜にマスクを必要とせず、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で例えば電極膜を形成でき、生産性も向上する。
またこのような白色有機電界発光素子の発光層に用いる発光材料としては、特に制限はなく、例えば液晶表示素子におけるバックライトであれば、CF(カラーフィルター)特性に対応した波長範囲に適合するように、本発明に係る金属錯体、また公知の発光材料の中から任意のものを選択して組み合わせて白色化すればよい。
以上に説明した白色有機電界発光素子を用いれば、実質的に白色の発光を生じる照明装置を作製することが可能である。
≪7.照明装置II≫
また本発明の有機電界発光素子は、複数用いて発光面を大面積化した照明装置としても用いることができる。この場合、透明基板上に有機電界発光素子を設けた複数の発光パネルを、支持基板上に複数配列する(すなわちタイリングする)ことによって発光面を大面積化する。支持基板は、封止材を兼ねるものであっても良く、この支持基板と、発光パネルの透明基板との間に有機電界発光素子を挟持する状態で各発光パネルをタイリングする。支持基板と透明基板との間には接着剤を充填し、これによって有機電界発光素子を封止しても良い。尚、発光パネルの周囲には、透明電極および対向電極の端子を露出させておく。
このような構成の照明装置では、各発光パネルの中央が発光領域となり、発光パネル間には非発光領域が発生する。このため、非発光領域からの光取り出し量を増加させるための光取り出し部材を、光取り出し面の非発光領域に設けても良い。光取り出し部材としては、集光シートや光拡散シートを用いることができる。
≪透明電極の作製≫
以降の表2に構成を示すように、試料101〜144の各透明電極を、導電性領域の面積が5cm×5cmとなるように作製した。
<試料101,102の作製手順>
以下のようにして、ガラス製の基材上に、下記表2に示すそれぞれの膜厚で銀(Ag)からなる電極層を形成した。
先ず、透明な無アルカリガラス製の基材を、市販の真空蒸着装置の基材ホルダーに固定し、真空蒸着装置の真空槽内に取り付けた。またタングステン製の抵抗加熱ボートに銀(Ag)を入れ、当該真空槽内に取り付けた。次に、真空槽内を4×10-4Paまで減圧した後、抵抗加熱ボートを通電して加熱し、蒸着速度0.1nm/秒〜0.2nm/秒で、銀からなる電極層をそれぞれの膜厚で形成した。試料101では膜厚6nmで電極層を形成し、試料102では膜厚15nmで電極層を形成した。
<試料103、104の作製手順>
以下のようにして下記2に示すそれぞれの材料で構成された高屈折率層で電極層を挟持した構成の電極を作製した。
先ず、透明な無アルカリガラス製の基材上に、高屈折率層を形成した。
試料103では、電子ビーム蒸着装置を用いて酸化チタン(TiO2)で構成された高屈折率層を形成した。この際、酸化チタン(TiO2)が収容された銅(Cu)製のハースライナーを、電子ビーム蒸着装置の真空槽内にセットし、真空槽内に酸素ガス(O)を加えて2×10-2Paにまで減圧し、イオンアシスト蒸着(IAD)を使用して成膜速度0.2nm/秒で膜厚40nmの高屈折率層を形成した。
一方、試料104では、スパッタ成膜装置を用いて酸化ニオブ(Nb)で構成された高屈折率層を形成した。この際、スパッタ成膜装置においてRF(高周波)バイアス300Wとし、成膜速度0.2nm/秒で膜厚40nmの高屈折率層を形成した。
次いで、高屈折率層まで成膜した基材を、各成膜装置内においての真空状態を保ったまま真空蒸着装置の真空槽内に移し、真空槽内を4×10-4Paまで減圧した後、銀の入った加熱ボートを通電して加熱した。これにより、蒸着速度0.1nm/秒で膜厚9nmの銀からなる電極層を形成した。
その後、各試料103,104において、先と同様の手順にて、電極層の上部に高屈折率層を形成した。すなわち試料103においては、イオンアシスト蒸着(IAD)を使用して電子ビーム蒸着装置を用いて酸化チタン(TiO2)で構成された高屈折率層を膜厚40nmで形成した。また試料104においては、スパッタ成膜装置を用いて酸化ニオブ(Nb)で構成された高屈折率層を膜厚40nmで形成した。この際、電極層まで成膜した基材を、真空蒸着装置の真空槽内においての真空状態を保ったまま、各成膜装置に移動させて高屈折率層を形成した。
以上により、高屈折率層と、銀を用いた電極層と、高屈折率層とを、この順に積層した試料103,104の透明電極を作製した。
<試料105の作製手順>
以下のようにして、銀(Ag)にアルミニウム(Al)を添加した電極層を形成した。
先ず、透明な無アルカリガラス製の基材を、市販の真空蒸着装置の基材ホルダーに固定した。また、タングステン製の各抵抗加熱ボートに、銀(Ag)とアルミニウム(Al)とをそれぞれ入れ、これらの基板ホルダーと各抵抗加熱ボートとを真空蒸着装置の真空槽内に取り付けた。次に、真空槽内を4×10-4Paまで減圧した後、各抵抗加熱ボートへの電流調整によって蒸着速度を調整した共蒸着により、銀(Ag)にアルミニウム(Al)を20.0原子%の濃度で添加して合金化した電極層を膜厚9nmで形成した。
<試料106〜109の作製手順>
以下のようにして、ガラス製の基材上に、下記表2に示すそれぞれの材料を用いた窒素含有層と、銀からなる電極層との2層構造の透明電極を形成した。尚、試料106では、窒素含有層に換えて窒素を含有しない下地層を形成した。
先ず、透明な無アルカリガラス製の基材を市販の真空蒸着装置の基材ホルダーに固定した。また、各透明電極の作製において、下記表2に示す各化合物をタンタル製の抵抗加熱ボートに入れた。これらの基板ホルダーと抵抗加熱ボートとを真空蒸着装置の第1真空槽内に取り付けた。また、タングステン製の抵抗加熱ボートに銀(Ag)を入れ、真空蒸着装置の第2真空槽内に取り付けた。
ここで用いた化合物のうち、化合物(1)は窒素原子を含有していないアントラセンであり、化合物(2)は窒素を含有するが有効非共有電子対含有率[n/M]の値が[n/M]<2.0×10-3である。
Figure 0006314839
また、化合物No.1,No.39は、上記表1に示した化合物の中から適宜選択した有効非共有電子対含有率[n/M]の値が2.0×10-3≦[n/M]の化合物である。下記表2にはここで用いた化合物の有効非共有電子対の数[n]、分子量[M]、および有効非共有電子対含有率[n/M]も示した。
次いで、第1真空槽内を4×10-4Paまで減圧した後、各化合物の入った加熱ボートに通電して加熱し、蒸着速度0.1nm/秒〜0.2nm/秒で基材上に膜厚3nmの各化合物で構成された窒素含有層(試料106では下地層)を設けた。
次に、窒素含有層(下地層)まで成膜した基材を真空のまま第2真空槽内に移し、第2真空槽内を4×10-4Paまで減圧した後、銀の入った加熱ボートを通電して加熱した。これにより、蒸着速度0.1nm/秒〜0.2nm/秒で膜厚9nmの銀からなる電極層を形成し、窒素含有層(下地層)とこの上部の電極層との積層構造からなる試料106〜109の各透明電極を得た。
<試料110〜144の透明電極の作製手順>
下記表2を参照し、ガラス製またはPET製の基材上に、高屈折率層、窒素含有層、銀(Ag)を主成分として添加元素を含有する電極層、および高屈折率層をこの順に積層した透明電極を作製した。
先ず、透明な無アルカリガラス製の基材またはPET製の基材上に、膜厚40nmの高屈折率層を形成した。この際、高屈折率層を構成する材料によって、異なる成膜装置を用いた成膜を行った。すなわち、酸化ニオブ(Nb)、酸化インジウム亜鉛(IZO)、または酸化インジウムスズ(ITO)で構成された高屈折率層の形成には、スパッタ成膜装置を用いた成膜を行った。一方、酸化チタン(TiO2)で構成された高屈折率層の形成には、イオンアシスト蒸着(IAD)を使用して電子ビーム蒸着装置を用いた成膜を行なった。これらの各装置を用いた高屈折率層の形成は、試料103,104において説明した手順と同様に行った。
また、各表2に示す各化合物をタンタル製の抵抗加熱ボートに入れて真空蒸着装置の第1真空槽内に取り付けた。また、タングステン製の各抵抗加熱ボートに、銀(Ag)と各添加元素とをそれぞれ入れ、真空蒸着装置の第2真空槽内に取り付けた。
そして、高屈折率層までを成膜した基材を、各成膜装置内においての真空状態を保ったまま真空蒸着装置の第1真空槽内に移し、第1真空槽内を4×10-4Paまで減圧した後、各化合物の入った加熱ボートに通電して加熱し、蒸着速度0.1nm/秒〜0.2nm/秒で基材上に膜厚3nmの各化合物からなる窒素含有層を形成した。
次に、窒素含有層まで成膜した基材を真空のまま第2真空槽内に移し、第2真空槽内を4×10-4Paまで減圧した後、各抵抗加熱ボートへの電流調整によって蒸着速度を調整した共蒸着により、銀(Ag)に各添加元素を各濃度で添加した固溶体からなる電極層を膜厚9nmで形成した。
その後、各試料において、先と同様の手順にて、電極層の上部に膜厚40nmの高屈折率層を形成した。すなわち酸化ニオブ(Nb)、酸化インジウム亜鉛(IZO)、または酸化インジウムスズ(ITO)で構成された高屈折率層の形成には、スパッタ成膜装置を用いた成膜を行った。一方、酸化チタン(TiO2)で構成された高屈折率層の形成には、イオンアシスト蒸着(IAD)を使用して電子ビーム蒸着装置を用いた成膜を行なった。これらの各装置を用いた高屈折率層の形成は、試料103,104において説明した手順と同様に行った。またこの際、電極層まで成膜した基材を、真空蒸着装置の真空槽内においての真空状態を保ったまま、各成膜装置に移動させて高屈折率層を形成した。以上により、高屈折率層と、窒素含有層と、銀に各添加元素を添加した電極層と、高屈折率層とを、この順に積層した試料110〜144の各透明電極を作製した。
<実施例1の各試料の評価>
上記で作製した試料101〜144の各透明電極について、(1)波長550nmの光に対する光透過率、(2)シート抵抗、および(3)高温・高湿保存性を測定した。
(1)光透過率の測定は、分光光度計(日立製作所製U−3300)を用い、試料と同じ基材をベースラインとして行った。(2)シート抵抗の測定は、抵抗測定器(ナプソン株式会社製EC-80)を用い、非接触での抵抗測定を行った。(3)高温・高湿保存性の測定においては、高温高湿環境(温度60℃、湿度90%)下に試料101〜144の各透明電極を300時間保存した後のシート抵抗を測定した。そして、保存前のシート抵抗に対する保存後のシート抵抗の上昇率を、高温・高湿保存性として算出した。得られた値が小さいほど、好ましい結果であることを表す。この結果を下記表2に合わせて示す。
Figure 0006314839
<実施例1の評価結果>
表2から明らかなように、試料110〜144の各透明電極、すなわち高屈折率層、窒素含有層、銀(Ag)を主成分として添加元素を含有する電極層、および高屈折率層がこの順に積層された透明電極は、光透過率が80%以上であるにもかかわらず、シート抵抗値も10Ω/sq.未満であり、高温・高湿保存性も140%以下であり、導電性の向上と光透過性の向上との両立と共に、信頼性の向上を図られた透明電極であることが確認された。
また試料110〜144のうち、高屈折率層の材料のみが異なる試料110〜112,114,118,119を比較すると、高屈折率層の屈折率が高いほど(酸化ニオブ(Nb)、酸化チタン(TiO)などを用いた試料110,114,118,119)、光透過率の値が高くなる傾向が確認された。これは、2つの高屈折率層が異なる場合であっても同様であった。
また試料110〜144のうち、有効非共有電子対含有率[n/M]が2.0×10-3≦[n/M]の化合物を用いて構成された窒素含有層を備えた透明電極(試料110〜116,118〜144)は、これを備えていない透明電極(試料117)と比較して、シート抵抗が低くかつ光透過率も高く、単層成長型(Frank−van der Merwe:FM型)の膜成長によってほぼ均一な膜厚で形成されていることが確認された。
また、これら試料110〜116、118〜144の透明電極は、高温・高湿保存性が100%であり、高温・高湿耐性に優れていることが確認された。
さらに試料110〜144のうち、有効非共有電子対含有率[n/M]の値のみが異なる試料119,125〜142を比較すると、有効非共有電子対含有率[n/M]が高いほど、シート抵抗が低い傾向にあり、有効非共有電子対含有率[n/M]がFM型の膜成長に影響を及ぼすことが確認された。
以上の結果は、基材がガラスであってもプラスチック材料(PET)であっても同様であった。
さらに試料110〜144のうち、電極層における添加元素の濃度のみを0.01〜20.0原子%の範囲で変更した試料113〜116を比較すると、添加元素が10.0原子%以下である場合に、特に高い光透過率と、低いシート抵抗値と、良好な高温・高湿保存性が得られていることが確認された。
一方、窒素含有層など下地層を設けていない試料101は、シート抵抗の測定が不可能であり、試料102は電極層の膜厚が15nmと厚膜であるため、シート抵抗は低いものの光透過率が低く透明電極として用いることはできないものであった。また、銀(Ag)で構成された電極層のみを高屈折率層で挟持した試料103,104、銀(Ag)を主成分としてアルミニウムを添加しただけの試料105、有機層や窒素含有層に銀(Ag)で構成された電極層を積層させた試料106〜109の中には、導電性の向上と光透過性の向上との両立と共に、信頼性の向上が図られた透明電極はなかった。
また試料141の透明電極は、No.47のニトロ基を有する化合物を用いて窒素含有層を形成したものであり、光透過率、シート抵抗、および高温・高湿保存性に良好な結果が得られることが確認された。したがって、ニトロ基(−NO)の非共有電子対は、共鳴構造に利用されているものの、芳香族性に関与せずかつ金属に配位していない非共有電子対であって[有効非共有電子対]として、銀(Ag)との結合に効果を発揮していることが確認された。
尚、図8には、有効非共有電子対含有率[n/M]が、2.0×10-3≦[n/M]≦1.9×10−2である化合物No.1〜No.20を用いた窒素含有層の上部に、膜厚6nmの銀(Ag)からなる電極層を設けた透明電極について、窒素含有層を構成する化合物の有効非共有電子対含有率[n/M]と、各透明電極について測定されたシート抵抗の値をプロットしたグラフを示す。
図8のグラフから、有効非共有電子対含有率[n/M]が2.0×10-3≦[n/M]≦1.9×10−2の範囲では、有効非共有電子対含有率[n/M]の値が大きいほど、透明電極のシート抵抗が低くなる傾向が見られた。そして有効非共有電子対含有率[n/M]=3.9×10-3を境にして、3.9×10-3≦[n/M]の範囲であれば、飛躍的にシート抵抗を低下させる効果が得られることが確認された。また、6.5×10-3≦[n/M]の範囲であれば、確実にシート抵抗を低下させる効果が得られることが確認された。
また以上の結果は、塗布成膜によって窒素含有層を形成した試料でも同様であった。また、窒素を含有する化合物を他の化合物と混合して窒素含有層を構成した試料でも同様の結果が得られた。
以上より、有効非共有電子対含有率[n/M]を指標として、電極層に隣接して設けた窒素含有層を構成する化合物を選択して用いることにより、光透過性を得るために薄膜でありながらも低抵抗な電極膜(すなわち透明電極)が得られることが確認された。
≪ボトムエミッション型の有機電界発光素子の作製≫
以降の表3に構成を示すように、各構成の透明電極をアノードとして発光機能層の下部に設けた試料201〜233のボトムエミッション型の各有機電界発光素子を作製した。図9を参照し、作製手順を説明する。尚、下記表3には、試料201〜233の有機電界発光素子に用いた透明電極の構成を示した。
<試料201〜233の有機電界発光素子の作製手順>
(透明電極1’の形成)
先ず試料201〜233において、PET製の透明基板13の上部に、下記表3に示した各構成の透明電極1’を形成した。各構造の透明電極の形成手順は、実施例1で対応する構造の透明電極の作製と同様に行った。各構成の透明電極1’のうち、試料208〜233では、本発明構成の透明電極1となる。
(正孔輸送・注入層31の形成)
正孔輸送注入材料として下記構造式に示すα−NPDが入った加熱ボートに通電して加熱し、α−NPDよりなる正孔注入層と正孔輸送層とを兼ねた正孔輸送・注入層31を、透明電極1’上に成膜した。この際、蒸着速度0.1nm/秒〜0.2nm/秒、膜厚20nmとした。
Figure 0006314839
(発光層32の形成)
次に、下記構造式を示したホスト材料H−1の入った加熱ボートと、下記構造式を示す燐光発光性化合物Ir1の入った加熱ボートとを、それぞれ独立に通電し、ホスト材料H−1と燐光発光性化合物Ir1とよりなる発光層32を、正孔輸送・注入層31上に成膜した。この際、蒸着速度がホスト材料H−1:燐光発光性化合物Ir1=100:6となるように、加熱ボートの通電を調節した。また膜厚30nmとした。
Figure 0006314839
(正孔阻止層33の形成)
次いで、正孔阻止材料として下記構造式に示すBAlqが入った加熱ボートに通電して加熱し、BAlqよりなる正孔阻止層33を、発光層32上に成膜した。この際、蒸着速度0.1nm/秒〜0.2nm/秒、膜厚10nmとした。
Figure 0006314839
(電子輸送・注入層34の形成)
その後、電子輸送材料として、先に窒素含有層を構成する化合物として構造式を示した化合物10の入った加熱ボートと、フッ化カリウムの入った加熱ボートとを、それぞれ独立に通電し、化合物10とフッ化カリウムとよりなる電子注入層と電子輸送層とを兼ねた電子輸送・注入層34を、正孔阻止層33上に成膜した。この際、蒸着速度が化合物10:フッ化カリウム=75:25になるように、加熱ボートの通電を調節した。また膜厚30nmとした。
(対向電極5:陰極の形成)
以上の後には、発光機能層3が形成された透明基板13を、真空蒸着装置の第2真空槽内に移送し、第2真空槽内を4×10-4Paまで減圧した後、第2真空槽内に取り付けられたアルミニウムの入った加熱ボートを通電して加熱した。これにより、蒸着速度0.3nm/秒で膜厚100nmのアルミニウムからなる対向電極5を形成した。この対向電極5は、カソードとして用いられる。以上により透明基板13上に、ボトムエミッション型の有機電界発光素子ELを形成した。
(素子の封止)
その後、有機電界発光素子ELを、厚さ300μmのガラス基板からなる封止材17で覆い、有機電界発光素子ELを囲む状態で、封止材17と透明基板13との間に接着剤19(シール材)を充填した。接着剤19としては、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を用いた。封止材17と透明基板13との間に充填した接着剤19に対して、ガラス基板からなる封止材17側からUV光を照射し、接着剤19を硬化させて有機電界発光素子ELを封止した。
尚、有機電界発光素子ELの形成においては、各層の形成に蒸着マスクを使用し、5cm×5cmの透明基板13における中央の4.5cm×4.5cmを発光領域Aとし、発光領域Aの全周に幅0.25cmの非発光領域Bを設けた。また、アノードである透明電極1’の電極層1bと、カソードである対向電極5とは、正孔輸送・注入層31〜電子輸送・注入層34によって絶縁された状態で、透明基板13の周縁に端子部分を引き出された形状で形成した。
以上のようにして、透明基板13上に有機電界発光素子ELを設け、これを封止材17と接着剤19とで封止した試料201〜229の有機電界発光素子の各発光パネルを得た。これらの各発光パネルにおいては、発光層32で発生した各色の発光光hが、透明基板13側から取り出される。
<実施例2の各試料の評価>
試料201〜233で作製した有機電界発光素子EL(発光パネル)について、(1)外部量子効率(External Quantum Efficiency:EQE)、(2)高温・高湿保存性の各評価を行った。この結果を下記表3に合わせて示す。
(1)外部量子効率(EQE)は、各有機電界発光素子を発光させた際の輝度、および発光スペクトルを、分光放射輝度計CS−1000(コニカミノルタセンシング社製)を用いて測定し、これらの測定値に基づいて輝度換算法により算出した。ここでは、さらに試料201の有機電界発光素子の値を1.0とした相対値として示した。
(2)高温・高湿保存性は、試料201〜233のように封止された有機電界発光素子ELのそれぞれを、各10個用意し、これらを高温高湿環境下で保存した後、a)発光個数[/10個]、b)保存前後での駆動電圧の変化量[ΔV]、c)整流比[log]で評価した。高温高湿環境は、温度60℃、湿度90%とし、保存時間は300時間とした。保存中においては、各有機電界発光素子ELを、輝度が1000cdになる駆動電圧で駆動させた。a)発光個数[/10個]は、各10個の試料201〜233のうち、300時間の保存後にも発光が確認された個数であり、10に近いほど好ましい。b)駆動電圧の変化量[ΔV]は、各試料201〜233において保存後に発光が確認された有機電界発光素子ELの平均値として算出し、数値が小さいほど好ましい。c)整流比[log]は、保存後の各発光パネルに対して、順方向に+2.5Vの駆動電圧を印加した場合の電流値と、逆方向に−2.5V駆動電圧を印加した場合の電流値を測定し、これらの電流値の比[電流値(+2.5V)/電流値(−2.5V)]の対数値を算出して整流比[log]とした。整流比[log]が高いほどリーク特性に優れていることを表す。この結果を下記表3に合わせて示す。
Figure 0006314839
<実施例2の評価結果>
表3から明らかなように、試料208〜233の各有機電界発光素子EL、すなわち高屈折率層、窒素含有層、銀(Ag)を主成分として添加元素を含有する電極層、および高屈折率層がこの順に積層された透明電極を用いた有機電界発光素子ELは、試料201〜207と比較して、外部量子効率(EQE)が高く発光特性に優れ、各10個の試料のうちの全てにおいて保存後に発光が確認され、高温高湿環境下での保存後の駆動電圧差[ΔV]が1.5V以下と低く、さらに保存後における整流比[log]も4.0以上と十分な値であり、高温・高湿耐性にも優れていることが確認された。
なかでも、窒素含有層を構成する化合物として、有効非共有電子対含有率[n/M]が2.0×10-3≦[n/M]の化合物を用いた試料209〜233の各有機電界発光素子ELは、外部量子効率(EQE)も1.16以上と高く、高温・高湿保存後の駆動電圧差[ΔV]も1.2以下に抑えられていて高温高湿耐性も良好であった。
以上より、本発明構成の透明電極を用いた有機電界発光素子ELは、低い駆動電圧での高輝度発光が可能でかつ長期信頼性に優れていることが確認された。さらに、所定輝度を得るための駆動電圧の低減と、これによる発光寿命の向上も見込まれることが確認された。
実施例1で作製した本発明構成の試料110〜144の透明電極を陽極として用い、この陽極を発光機能層の下部に設けた白色発光のボトムエミッション型の各有機電界発光素子を作製した。作製した各有機電界発光素子について、実施例2と同様の評価を行ったところ、実施例2と同様に、輝度ムラの発生が小さく抑えられ、高温・高湿保存性に優れていることが確認された。これにより、本発明は、白色発光の有機電界発光素子の構成としても有効であることが確認された。
尚、実施例3で作製した白色発光の各有機電界発光素子の作製手順は次のようである。
先ず、30mm×30mm、厚さ0.7mmのガラス製の透明基板上に、実施例1で作製した本発明構成の試料110〜144の透明電極を陽極として形成した。次いで、各陽極が形成された透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
一方、真空蒸着装置内の蒸着用るつぼの各々に、次に形成する各層の構成材料を、各々素子作製に最適の量だけ充填し、真空蒸着装置に固定した。蒸着用るつぼはモリブデン製またはタングステン製の抵抗加熱用材料で作製されたものを用いた。
その後、真空蒸着装置内を真空度1×10-4Paまで減圧した後、上記α−NPDの入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で透明電極上に蒸着し、膜厚40nmの正孔注入輸送層を形成した。
次いで、青色の発光ドーパントである下記化合物BD−1、およびホスト化合物である下記化合物H−2を、化合物BD−1が5%の濃度になるように蒸着速度0.1nm/秒で共蒸着し、膜厚15nmの青色発光を呈する蛍光発光層を形成した。
Figure 0006314839
次いで、緑色の発光ドーパントである下記化合物GD−1、赤色の発光ドーパントである下記化合物RD−1、およびホスト化合物である下記化合物H−3を、化合物GD−1が17%、化合物RD−1が0.8%の濃度になるように蒸着速度0.1nm/秒で共蒸着し、膜厚15nmの黄色を呈するリン光発光層を形成した。尚、化合物GD−1は先に発光ドーパントとして示した化合物D−15であり、化合物RD−1は先に発光ドーパントとして示した化合物D−1である。
Figure 0006314839
その後、下記化合物E−1を蒸着速度0.1nm/秒で蒸着し、膜厚30nmの電子輸送層を形成した。尚、化合物E−1は、先に窒素含有層を構成する材料として示した化合物10である。
Figure 0006314839
さらに、LiFを膜厚1.5nmにて形成した後に、アルミニウム110nmを蒸着して陰極を形成した。
次いで、上記素子の非発光面をガラスケースで覆い、各有機電界発光素子を作製した。
実施例1で作製した本発明構成の試料110〜144の透明電極を陽極として用い、この陽極を発光機能層の下部に設けた白色発光のタンデム型の各有機電界発光素子を作製した。作製した各有機電界発光素子について、実施例2と同様の評価を行ったところ、実施例2と同様に、輝度ムラの発生が小さく抑えられ、高温・高湿保存性に優れていることが確認された。これにより、本発明は、タンデム型の有機電界発光素子の構成としても有効であることが確認された。
尚、実施例4で作製したタンデム型の各有機電界発光素子の作製手順は次のようである。
先ず、30mm×30mm、厚さ0.7mmのガラス製の透明基板上に、実施例1で作製した本発明構成の試料110〜144の透明電極を陽極として形成した。次いで、各陽極が形成された透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
一方、真空蒸着装置内の蒸着用るつぼの各々に、次に形成する各層の構成材料を、各々素子作製に最適の量だけ充填し、真空蒸着装置に固定した。蒸着用るつぼはモリブデン製またはタングステン製の抵抗加熱用材料で作製されたものを用いた。
その後、真空蒸着装置内を真空度1×10-4Paまで減圧した後、上記α−NPDの入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で透明電極上に蒸着し、膜厚40nmの正孔注入輸送層を形成した。
次いで、青色の発光ドーパントである上記化合物BD−1、およびホスト化合物である上記化合物H−2を、化合物BD−1が5%の濃度になるように蒸着速度0.1nm/秒で共蒸着し、膜厚30nmの青色発光を呈する蛍光発光層を形成した。
次いで、上記化合物E−1を蒸着速度0.1nm/秒で蒸着し、膜厚30nmの電子輸送層を形成した。
続いて、リチウムを1nmの膜厚に蒸着し、中間金属層を形成した。
次いで、上記α−NPDを蒸着速度0.1nm/秒で蒸着し、膜厚50nmの正孔注入輸送層を形成した。
次いで、緑色の発光ドーパントである上記化合物GD−1、赤色の発光ドーパントである上記化合物RD−1、およびホスト化合物である上記化合物H−3を、化合物GD−1が17%、化合物RD−1が0.8%の濃度になるように蒸着速度0.1nm/秒で共蒸着し、膜厚30nmの黄色を呈するリン光発光層を形成した。
その後、上記化合物E−1を蒸着速度0.1nm/秒で蒸着し、膜厚30nmの電子輸送層を形成した。
さらに、LiFを膜厚1.5nmにて形成した後に、アルミニウム110nmを蒸着して陰極を形成した。
次いで、上記素子の非発光面をガラスケースで覆い、各有機電界発光素子を作製した。
1,1’…透明電極、1a…窒素含有層、1b…電極層、3…発光機能層、5…対向電極、H1,H2…高屈折率層、EL…有機電界発光素子(電子デバイス)

Claims (26)

  1. 窒素原子(N)を含んだ化合物を用いて構成された窒素含有層と、
    銀(Ag)を主成分とし添加元素としてアルミニウム(Al)、金(Au)、インジウム(In)、銅(Cu)、パラジウム(Pd)、プラチナ(Pt)のうちの少なくとも1種を含有し、前記窒素含有層に隣接して設けられた電極層と、
    前記窒素含有層よりも高い屈折率を有し、前記電極層と前記窒素含有層とを挟持して配置された2つの高屈折率層とを備え
    前記高屈折率層のそれぞれが、酸化インジウム亜鉛、酸化チタン、または酸化ニオブで構成された
    透明電極。
  2. 前記高屈折率層のうち前記窒素含有層に対し前記電極層とは反対側に配置された高屈折率層が、酸化ニオブで構成されている
    請求項1に記載の透明電極。
  3. 前記高屈折率層のうち前記電極層に対し前記窒素含有層とは反対側に配置された高屈折率層が、酸化チタンで構成されている
    請求項1または2に記載の透明電極。
  4. 前記電極層は、銀(Ag)を主成分とし添加元素としてアルミニウム(Al)を含有する
    請求項1〜3の何れか一項に記載の透明電極。
  5. 前記化合物は、当該化合物に含まれる窒素原子(N)が有する非共有電子対のうち芳香族性に関与せずかつ金属に配位していない非共有電子対の数をn、分子量をMとした場合の有効非共有電子対含有率[n/M]が、2.0×10−3≦[n/M]となる
    請求項1〜4の何れか一項に記載の透明電極。
  6. 前記化合物における前記有効非共有電子対含有率[n/M]が、3.9×10−3≦[n/M]である
    請求項5に記載の透明電極。
  7. 前記化合物における前記有効非共有電子対含有率[n/M]が、6.5×10−3≦[n/M]である
    請求項5に記載の透明電極。
  8. 前記窒素含有層は、前記電極層側の界面における前記有効非共有電子対含有率[n/M]の値が2.0×10−3≦[n/M]である
    請求項5〜7の何れか一項に記載の透明電極。
  9. 前記電極層における前記添加元素の濃度は0.01〜10.0原子%である
    請求項1〜8の何れか一項に記載の透明電極。
  10. 前記窒素含有層は、下記一般式(1)で表される構造を有する化合物を含有する
    請求項1〜9の何れか一項に記載の透明電極。
    Figure 0006314839
    [ただし一般式(1)中において、
    X11は、−N(R11)−または−O−を表し、
    E101〜E108は、各々−C(R12)=または−N=を表し、E101〜E108のうち少なくとも一つは−N=であり、
    前記R11および前記R12は、それぞれが水素原子(H)または置換基を表す。]
  11. 前記窒素含有層は、前記一般式(1)におけるX11を−N(R11)−とした下記一般式(1a)で表される構造を有する化合物を含有する
    請求項10に記載の透明電極。
    Figure 0006314839
  12. 前記窒素含有層は、前記一般式(1a)におけるE104を−N=とした下記一般式(1a−1)で表される構造を有する化合物を含有する
    請求項11に記載の透明電極。
    Figure 0006314839
  13. 前記窒素含有層は、前記一般式(1a)におけるE103およびE106を−N=とした下記一般式(1a−2)で表される構造を有する化合物を含有する
    請求項11に記載の透明電極。
    Figure 0006314839
  14. 前記窒素含有層は、前記一般式(1)におけるX11を−O−とし、E104を−N=とした下記一般式(1b)で表される構造を有する化合物を含有する
    請求項10に記載の透明電極。
    Figure 0006314839
  15. 前記窒素含有層は、下記一般式(2)で表される構造を有する化合物を含有する
    請求項1〜9の何れか一項に記載の透明電極。
    Figure 0006314839
    [ただし一般式(2)中、
    Y21は、アリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基を表し、
    E201〜E216、E221〜E238は、各々−C(R21)=または−N=を表し、
    前記R21は、水素原子(H)または置換基を表し、
    E221〜E229の少なくとも1つおよびE230〜E238の少なくとも1つは−N=であり、
    k21およびk22は、0〜4の整数を表すが、k21+k22は2以上の整数である。]
  16. 前記窒素含有層は、下記一般式(3)で表される構造を有する化合物を含有する
    請求項1〜9の何れか一項に記載の透明電極。
    Figure 0006314839
    [ただし一般式(3)中、
    E301〜E312は、各々−C(R31)=を表し、
    前記R31は水素原子(H)または置換基を表し、
    Y31は、アリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基を表す。]
  17. 前記窒素含有層は、下記一般式(4)で表される構造を有する化合物を含有する
    請求項1〜9の何れか一項に記載の透明電極。
    Figure 0006314839
    [ただし一般式(4)中、
    E401〜E414は、各々−C(R41)=を表し、
    前記R41は水素原子(H)または置換基を表し、
    Ar41は、置換あるいは無置換の、芳香族炭化水素環あるいは芳香族複素環を表し、
    k41は3以上の整数を表す。]
  18. 前記窒素含有層は、下記一般式(5)で表される構造を有する化合物を含有する
    請求項1〜9の何れか一項に記載の透明電極。
    Figure 0006314839
    [ただし一般式(5)中、
    R51は置換基を表し、
    E501,E502、E511〜E515、E521〜E525は、各々−C(R52)=または−N=を表し、
    E503〜E505は、各々−C(R52)=を表し、
    前記R52は、水素原子(H)または置換基を表し、
    E501およびE502のうち少なくとも1つは−N=であり、
    E511〜E515のうち少なくとも1つは−N=であり、
    E521〜E525のうち少なくとも1つは−N=である。]
  19. 前記窒素含有層は、下記一般式(6)で表される構造を有する化合物を含有する
    請求項1〜9の何れか一項に記載の透明電極。
    Figure 0006314839
    [ただし一般式(6)中、
    E601〜E612は、各々−C(R61)=または−N=を表し、
    前記R61は水素原子(H)または置換基を表し、
    Ar61は、置換あるいは無置換の、芳香族炭化水素環あるいは芳香族複素環を表す。]
  20. 前記窒素含有層は、下記一般式(7)で表される構造を有する化合物を含有する
    請求項1〜9の何れか一項に記載の透明電極。
    Figure 0006314839
    〔ただし一般式(7)中、
    R71〜R73は、各々水素原子(H)または置換基を表し、
    Ar71は、芳香族炭化水素環基または芳香族複素環基を表す。〕
  21. 前記窒素含有層は、下記一般式(8)で表される構造を有する化合物を含有する
    請求項1〜9の何れか一項に記載の透明電極。
    Figure 0006314839
    〔ただし一般式(8)中、
    R81〜R86は、各々水素原子(H)または置換基を表し、
    E801〜E803は、各々−C(R87)=または−N=を表し、
    前記R87は、水素原子(H)または置換基を表し、
    Ar81は、芳香族炭化水素環基または芳香族複素環基を表す。〕
  22. 前記窒素含有層は、下記一般式(8a)で表される構造を有する化合物を含有する
    請求項21に記載の透明電極。
    Figure 0006314839
    〔ただし一般式(8a)中において、
    E804〜E811は、各々−C(R88)=または−N=を表し、
    前記R88は、それぞれが水素原子(H)または置換基と表し、
    E808〜E811のうち少なくとも一つは−N=であり、
    E804〜E807、E808〜E811は、各々互いに結合して新たな環を形成してもよい。〕
  23. 請求項1〜22の何れか一項に記載の透明電極を有する
    電子デバイス。
  24. 前記電子デバイスが有機電界発光素子である
    請求項23に記載の電子デバイス。
  25. 請求項1〜22の何れか一項に記載の透明電極と、
    前記透明電極に積層して設けられた発光機能層と、
    前記透明電極との間に前記発光機能層を挟持する状態で設けられた対向電極とを有する
    有機電界発光素子。
  26. 前記発光機能層は、前記窒素含有層との間に前記電極層を挟持する位置に設けられた
    請求項25に記載の有機電界発光素子。
JP2014557434A 2013-01-15 2014-01-09 透明電極、電子デバイス、および有機電界発光素子 Active JP6314839B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013004794 2013-01-15
JP2013004794 2013-01-15
PCT/JP2014/050201 WO2014112421A1 (ja) 2013-01-15 2014-01-09 透明電極、電子デバイス、および有機電界発光素子

Publications (2)

Publication Number Publication Date
JPWO2014112421A1 JPWO2014112421A1 (ja) 2017-01-19
JP6314839B2 true JP6314839B2 (ja) 2018-04-25

Family

ID=51209513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014557434A Active JP6314839B2 (ja) 2013-01-15 2014-01-09 透明電極、電子デバイス、および有機電界発光素子

Country Status (2)

Country Link
JP (1) JP6314839B2 (ja)
WO (1) WO2014112421A1 (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110365A (ja) * 2000-10-04 2002-04-12 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス表示素子用透明電極基板および有機エレクトロルミネッセンス表示素子
JP2002313139A (ja) * 2001-04-12 2002-10-25 Mitsui Chemicals Inc 透明導電性薄膜積層体
JP2005044790A (ja) * 2003-07-08 2005-02-17 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置および表示装置
WO2009054253A1 (ja) * 2007-10-26 2009-04-30 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
EP2479234B1 (en) * 2008-05-13 2017-06-21 Konica Minolta Holdings, Inc. Organic electroluminescent element, display device and lighting device
WO2011004807A1 (ja) * 2009-07-10 2011-01-13 コニカミノルタホールディングス株式会社 有機光電変換素子、それを用いた太陽電池および光センサアレイ
JP5577186B2 (ja) * 2009-09-04 2014-08-20 株式会社ジャパンディスプレイ 有機el表示装置

Also Published As

Publication number Publication date
WO2014112421A1 (ja) 2014-07-24
JPWO2014112421A1 (ja) 2017-01-19

Similar Documents

Publication Publication Date Title
JP6070567B2 (ja) 透明電極、および電子デバイス
JP6128117B2 (ja) 透明電極の製造方法
JP6287854B2 (ja) 透明電極、電子デバイス、および有機電界発光素子
JP6217642B2 (ja) 透明電極、電子デバイス、および透明電極の製造方法
JP5943005B2 (ja) 透明電極、電子デバイス、有機電界発光素子、および有機電界発光素子の製造方法
JP6256349B2 (ja) 透明電極、及び、電子デバイス
JP6314838B2 (ja) 透明電極、電子デバイス、および有機電界発光素子
JP6241189B2 (ja) 透明電極、透明電極の製造方法、電子デバイス及び有機エレクトロルミネッセンス素子
JP6304229B2 (ja) 透明電極、電子デバイス、および有機電界発光素子
JP6112107B2 (ja) 透明電極、電子デバイス及び有機エレクトロルミネッセンス素子
JP6241281B2 (ja) 透明電極および電子デバイス
JP6070320B2 (ja) 透明電極付き基板、及び、電子デバイス
JPWO2015125581A1 (ja) 有機電界発光素子
WO2013137234A1 (ja) 透明電極、電子デバイス、および透明電極の製造方法
JP6187471B2 (ja) 透明電極、電子デバイス及び有機エレクトロルミネッセンス素子
JP6314839B2 (ja) 透明電極、電子デバイス、および有機電界発光素子
WO2014181640A1 (ja) 発光素子および表示装置
JPWO2014057796A1 (ja) 透明電極、電子デバイス及び有機エレクトロルミネッセンス素子
JP2015060717A (ja) 透明電極、電子デバイス及び有機エレクトロルミネッセンス素子
WO2014175451A1 (ja) 透明導電体、及び、電子デバイス
WO2014175181A1 (ja) 透明導電体、及び、電子デバイス
JPWO2014065213A1 (ja) 透明電極、電子デバイス及び有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180312

R150 Certificate of patent or registration of utility model

Ref document number: 6314839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150