JP5943005B2 - 透明電極、電子デバイス、有機電界発光素子、および有機電界発光素子の製造方法 - Google Patents

透明電極、電子デバイス、有機電界発光素子、および有機電界発光素子の製造方法 Download PDF

Info

Publication number
JP5943005B2
JP5943005B2 JP2013551703A JP2013551703A JP5943005B2 JP 5943005 B2 JP5943005 B2 JP 5943005B2 JP 2013551703 A JP2013551703 A JP 2013551703A JP 2013551703 A JP2013551703 A JP 2013551703A JP 5943005 B2 JP5943005 B2 JP 5943005B2
Authority
JP
Japan
Prior art keywords
group
layer
ring
electrode
organic electroluminescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013551703A
Other languages
English (en)
Other versions
JPWO2013099867A1 (ja
Inventor
和央 吉田
和央 吉田
健 波木井
健 波木井
押山 智寛
智寛 押山
宏 石代
宏 石代
敏幸 木下
敏幸 木下
辻村 隆俊
隆俊 辻村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2013099867A1 publication Critical patent/JPWO2013099867A1/ja
Application granted granted Critical
Publication of JP5943005B2 publication Critical patent/JP5943005B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/826Multilayers, e.g. opaque multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80517Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80523Multilayers, e.g. opaque multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、透明電極、電子デバイス、有機電界発光素子、および有機電界発光素子の製造方法に関し、特には導電性と光透過性とを兼ね備えた透明電極、さらにはこの透明電極を用いた電子デバイスおよび有機電界発光素子、およびこの透明電極を有する有機電界発光素子の製造方法に関する。
有機材料のエレクトロルミネッセンス(electroluminescence:以下ELと記す)を利用した有機電界発光素子(いわゆる有機EL素子)は、数V〜数十V程度の低電圧で発光が可能な薄膜型の完全固体素子であり、高輝度、高発光効率、薄型、軽量といった多くの優れた特徴を有する。このため、各種ディスプレイのバックライト、看板や非常灯等の表示板、照明光源等の面発光体として近年注目されている。
このような有機電界発光素子は、2枚の電極間に有機材料を用いて構成された発光層を挟持した構成であり、発光層で生じた発光光は電極を透過して外部に取り出される。このため、2枚の電極のうちの少なくとも一方は透明電極として構成される。
透明電極としては、スパッタ法によって成膜される酸化インジウムスズ(SnO2−In2O3:Indium Tin Oxide:ITO)等の酸化物半導体系の材料が一般的に用いられているが、ITOと銀とを積層して低抵抗化を狙った検討もなされている(例えば下記引用文献1参照)。また、積層構造の透明電極膜の形成においては、電極膜を積層した後に加熱処理を行うことによって透明電極膜を低抵抗化する方法が提案されている(例えば下記特許文献2参照)。またこの他にも、電気伝導率の高い銀等の金属材料を薄膜化した構成や、銀にアルミニウムを混ぜた薄膜を蒸着によって成膜することにより、銀単独よりも薄い膜厚で導電性を確保する構成(例えば下記特許文献3参照)、さらには銀以外の金属からなる下地層上に銀薄膜層を設けた積層構造とすることにより光透過性を確保する構成(例えば下記特許文献4参照)が提案されている。
特開2002−15623号公報 特開2006−164961号公報 特開2009−151963号公報 特開2008−171637号公報
しかしながら、電気伝導率の高い銀やアルミニウムを用いて構成された透明電極であっても、十分な導電性と光透過性との両立を図ることは困難であった。
そこで本発明は、十分な導電性と光透過性とを兼ね備えた透明電極を提供すること、およびこの透明電極を用いることによって性能の向上が図られた電子デバイスおよび有機電界発光素子を提供する、さらには十分な導電性と光透過性とを兼ね備えた透明電極を形成することにより輝度ムラを抑え、かつ光取り出し効率の向上を図ることが可能な有機電界発光素子の製造方法を提供する。
本発明の上記目的は、以下の構成により達成される。
1.窒素原子をヘテロ原子とした複素環を有し、下記式(1)で表される銀との有効作用エネルギーΔEefが下記式(2)を満たす化合物を用いて構成された窒素含有層と、銀または銀を主成分とした合金を用いて前記窒素含有層に隣接して設けられた電極層とを備えた透明電極。
Figure 0005943005
2.前記化合物と銀との有効作用エネルギーΔEefは、下記式(3)を満たす前記1に記載の透明電極。
Figure 0005943005
3.前記化合物は、下記一般式(1)で表される化合物を含む前記1または2に記載の透明電極。
Figure 0005943005
ただし一般式(1)中、Y5は、アリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基を表す。
E51〜E66、E71〜E88は、各々−C(R3)=または−N=を表し、R3は水素原子または置換基を表す。
またE71〜E79の少なくとも1つおよびE80〜E88の少なくとも1つは−N=を表す。n3およびn4は0〜4の整数を表すが、n3+n4は2以上の整数である。
4.前記化合物は、下記一般式(2)で表される化合物を含む前記1または2に記載の透明電極。
Figure 0005943005
ただし一般式(2)中、Rは置換基を表し、T11,T12,T21〜T25、T31〜T35は、各々−C(R12)=または−N=を表し、T13〜T15は、各々−C(R12)=を表し、前記R12は、水素原子(H)または置換基を表す。T11,T12のうち少なくとも1つは−N=であり、T21〜T25のうち少なくとも1つは−N=であり、T31〜T35のうち少なくとも1つは−N=である。
5.前記1〜4の何れかに記載の透明電極を有する電子デバイス。
6.前記電子デバイスが有機電界発光素子である前記5に記載の電子デバイス。
7.前記1〜4の何れかに記載の透明電極と、前記透明電極における前記電極層側に設けられた発光機能層と、前記透明電極との間に前記発光機能層を挟持する状態で設けられた対向電極とを有する有機電界発光素子。
8.前記1〜4の何れかに記載の透明電極と、前記透明電極における前記窒素含有層側に設けられた発光機能層と、前記透明電極との間に前記発光機能層を挟持する状態で設けられた対向電極とを有する有機電界発光素子。
以上のように構成された本発明の透明電極は、窒素原子をヘテロ原子とした複素環を有する化合物を用いて構成された窒素含有層に隣接させて、銀または銀を主成分とした合金を用いた電極層を設けた構成である。これにより、窒素含有層に隣接させて電極層を成膜する際には、電極層を構成する銀原子が窒素含有層を構成する窒素原子を含んだ化合物と相互作用し、銀原子の窒素含有層表面においての拡散距離が減少し、銀の凝集が抑えられる。このため、一般的には核成長型(Volumer−Weber:VW型)での膜成長により島状に孤立し易い銀薄膜が、単層成長型(Frank−van der Merwe:FW型)の膜成長によって成膜されるようになる。したがって、薄い膜厚でありながらも、均一な膜厚の電極層が得られるようになる。
そして特に、窒素含有層を構成する化合物と、電極層を構成する銀との間に相互に作用するエネルギーとして、上記式(1)に示した有効作用エネルギーΔEefを定義し、この値が特定範囲となる化合物を用いて窒素含有層を構成するようにした。これにより、上述したような「銀の凝集を抑える」効果が確実に得られる化合物を用いて、窒素含有層が形成されるようになる。これは、後の実施例で詳細に説明するように、このような窒素含有層上には、極薄膜でありながらもシート抵抗の低い電極層が形成されることからも確認された。この結果、この様な窒素含有層の上部に、薄い膜厚であることで光透過性を確保しつつも、均一な膜厚であることで導電性が確保された電極層を確実に得ることが可能になる。
また本発明は、上述した透明電極を用いた有機電界発光素子の製造方法でもあり、以下の工程を行う。
9.基板上に第1の電極を形成する工程と、
前記第1の電極上に有機材料を用いた発光機能層を形成する工程と、
前記発光機能層上に第2の電極を形成する工程とを含み、
前記第1の電極を形成する工程および前記第2の電極を形成する工程の少なくとも一方行う際には、先ず、上述した透明電極を構成する窒素含有層を形成し、当該窒素含有層に隣接させて銀または銀を主成分とした合金を用いて構成された光透過性を有する電極層を形成する。
以上のような工程を行う本発明の有機電界発光素子の製造方法では、発光機能層を挟んで設けられる2つの電極のうちの少なくとも一方を形成する際、上述した窒素含有層を形成し、この窒素含有層に隣接させて銀または銀を主成分とした合金を用いて構成された光透過性を有する電極層を蒸着によって形成する。このため、このような電極層の形成においては、先に説明したように単層成長型の膜成長によって、薄い膜厚でありながらも均一な膜厚の電極層が確実に得られるようになる。
以上説明したように本発明によれば、透明電極における導電性の向上と光透過性の向上との両立を図ることが可能になり、またこの透明電極を用いた電子デバイスおよび有機電界発光素子の性能の向上を図ることが可能になる。また本発明の製造方法によれば、発光機能層に積層される位置に、十分な導電性と光透過性とを兼ね備えた電極層を形成することが可能となることにより、輝度ムラの発生を抑えることが可能であると共に、光取り出し効率の向上を図ることが可能な有機電界発光素子を作製することが可能になる。
有機電界発光素子に用いる透明電極の構成および製造方法を示す断面模式図である。 本発明の製造方法を適用して得られる有機電界発光素子の第1例を示す断面構成図である。 第1例の有機電界発光素子の製造方法を示す断面工程図(その1)である。 第1例の有機電界発光素子の製造方法を示す断面工程図(その2)である。 第1例の有機電界発光素子の製造方法を示す断面工程図(その3)である。 本発明の製造方法を適用して得られる有機電界発光素子の第2例を示す断面構成図である。 本発明の製造方法を適用して得られる有機電界発光素子の第3例を示す断面構成図である。 本発明の製造方法を適用して得られる有機電界発光素子の第4例を示す断面構成図である。 本発明の製造方法を適用して得られた有機電界発光素子を用いて発光面を大面積化した照明装置の断面構成図である。 実施例1で作製した透明電極における有効作用エネルギーΔEefとシート抵抗との関係を示すグラフである。 実施例3および実施例4で作製した有機電界発光素子を説明する断面構成図である。 実施例5および実施例6で作製した有機電界発光素子を説明する断面構成図である。
以下、本発明の実施の形態を、図面に基づいて次に示す順に説明する。
1.透明電極
2.透明電極の用途
3.有機電界発光素子の第1例(トップエミッション型)
4.有機電界発光素子の第2例(ボトムエミッション型)
5.有機電界発光素子の第3例(両面発光型)
6.有機電界発光素子の第4例(逆積み構成)
7.有機電界発光素子の用途
8.照明装置−1
9.照明装置−2
≪1.透明電極≫
図1は、実施形態の透明電極の構成を示す断面模式図である。この図に示すように、透明電極1は、窒素含有層1aと、この窒素含有層に隣接して成膜された電極層1bとを積層した2層構造であり、例えば基材11の上部に、窒素含有層1a、電極層1bの順に設けられている。このうち、透明電極1における電極部分を構成する電極層1bは、銀(Ag)または銀を主成分とした合金を用いて構成された層である。また電極層1bに対して隣接して設けられた窒素含有層1aは、ヘテロ原子を窒素原子(N)とした複素環を含む化合物のうち、特に電極層1bを構成する主材料である銀との間に、以降に説明する有効作用エネルギーΔEefが特定の関係を有する材料を用いて構成された層であることを特徴としている。
以下に、このような積層構造の透明電極1が設けられる基材11、透明電極1を構成する窒素含有層1aおよび電極層1bの順に、詳細な構成を説明する。尚、本発明の透明電極1の透明とは波長550nmでの光透過率が50%以上であることをいう。
<基材11>
本発明の透明電極1が形成される基材11は、例えばガラス、プラスチック等を挙げることができるが、これらに限定されない。また、基材11は透明であっても不透明であってもよい。本発明の透明電極1が、基材11側から光を取り出す電子デバイスに用いられる場合には、基材11は透明であることが好ましい。好ましく用いられる透明な基材11としては、ガラス、石英、透明樹脂フィルムを挙げることができる。
ガラスとしては、例えば、シリカガラス、ソーダ石灰シリカガラス、鉛ガラス、ホウケイ酸塩ガラス、無アルカリガラス等が挙げられる。これらのガラス材料の表面には、窒素含有層1aとの密着性、耐久性、平滑性の観点から、必要に応じて、研磨等の物理的処理を施したり、無機物または有機物からなる被膜や、これらの被膜を組み合わせたハイブリッド被膜が形成される。
樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等が挙げられる。
樹脂フィルムの表面には、無機物または有機物からなる被膜や、これらの被膜を組み合わせたハイブリッド被膜が形成されていてもよい。このような被膜およびハイブリッド被膜は、JIS−K−7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度90±2%RH)が0.01g/(m2・24時間)以下のバリア性フィルム(バリア膜等ともいう)であることが好ましい。またさらには、JIS−K−7126−1987に準拠した方法で測定された酸素透過度が10-3ml/(m2・24時間・atm)以下、水蒸気透過度が10-5g/(m2・24時間)以下の高バリア性フィルムであることが好ましい。
以上のようなバリア性フィルムを形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。さらに当該バリア性フィルムの脆弱性を改良するために、これら無機層と有機材料からなる層(有機層)の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
バリア性フィルムの形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004−68143号公報に記載の大気圧プラズマ重合法によるものが特に好ましい。
一方、基材11が不透明なものである場合、例えば、アルミニウム、ステンレス等の金属基板、フィルムや不透明樹脂基板、セラミック製の基板等を用いることができる。
<窒素含有層1a>
窒素含有層1aは、窒素原子(N)をヘテロ原子とした複素環を含む化合物のうち、電極層1bを構成する主材料である銀(Ag)との間に、特定の関係を有する化合物を用いて構成された層である。ここでは、化合物と銀との間に相互に作用するエネルギーとして、下記式(1)で示される有効作用エネルギーΔEefを定義した。そして、この有効作用エネルギーΔEefが下記式(2)を満たす、特定の関係を有する化合物を用いて窒素含有層1aを構成する。
Figure 0005943005
銀と安定的に結合する化合物中の窒素原子の数[n]とは、化合物中に含有される窒素原子のうちから、銀と安定的に結合する窒素原子のみを、特定の窒素原子として選択してカウントした数である。選択対象となる窒素原子は、化合物中に含まれる全ての窒素原子であり、複素環を構成する窒素原子に限定されることはない。このような化合物中に含まれる全ての窒素原子の中からの、特定の窒素原子の選択は、例えば分子軌道計算法によって算出される銀と化合物中の窒素原子との結合距離[r(Ag・N)]、または化合物中の窒素原子を含む環に対して当該窒素原子と銀とのなす角度、すなわち二面角[D]を指標として次のように行われる。尚、分子軌道計算は、例えばGaussian 03(Gaussian, Inc., Wallingford, CT, 2003)を用いて行われる。
先ず、結合距離[r(Ag・N)]を指標とした場合、各化合物の立体的な構造を考慮し、当該化合物において窒素原子と銀とが安定的に結合する距離を、「安定結合距離」として設定しておく。そして、当該化合物に含有される各窒素原子について、分子軌道計算法を用いて結合距離[r(Ag・N)]を算出する。そして算出された結合距離[r(Ag・N)]が、「安定結合距離」と近い値を示す窒素原子を、特定の窒素原子として選択する。このような窒素原子の選択は、複素環を構成する窒素原子が多く含まれる化合物、および複素環を構成しない窒素原子が多く含まれる化合物に対して適用される。
また二面角[D]を指標とした場合、分子軌道計算法を用いて上述した二面角[D]を算出する。そして算出された二面角[D]がD<10度をなす窒素原子を、特定の窒素原子として選択する。このような窒素原子の選択は、複素環を構成する窒素原子が多く含まれる化合物に対して適用される。
また、銀(Ag)と化合物中における窒素(N)との相互作用エネルギー[ΔE]は、分子軌道計算法によって算出することができ、上記のように選択された窒素と銀との間の相互作用エネルギーである。
さらに表面積[s]は、Tencube/WM(株式会社テンキューブ製)を用いて、上記最適化された構造に対して算出される。
以上のように定義される有効作用エネルギーΔEefは、下記式(3)を満たす範囲であればさらに好ましい。
Figure 0005943005
また窒素含有層1aを構成する化合物に含まれる窒素原子(N)をヘテロ原子とした複素環としては、アジリジン、アジリン、アゼチジン、アゼト、アゾリジン、アゾール、アジナン、ピリジン、アゼパン、アゼピン、イミダゾール、ピラゾール、オキサゾール、チアゾール、イミダゾリン、ピラジン、モルホリン、チアジン、インドール、イソインドール、ベンゾイミダゾール、プリン、キノリン、イソキノリン、キノキサリン、シンノリン、プテリジン、アクリジン、カルバゾール、ベンゾ−C−シンノリン、ポルフィリン、クロリン、コリン等が挙げられる。
また窒素原子をヘテロ原子とした複素環を有する化合物として、好ましく用いられる化合物は、例えば下記一般式(1)で表される化合物や、以降に示す一般式(2)で表される化合物が例示される。本発明の透明電極1を構成する窒素含有層1aは、上述した式(1)または式(2)に当てはまる化合物の中から、これらの一般式(1)または一般式(2)で示される化合物が選択して用いられる。
Figure 0005943005
上記一般式(1)の式中、Y5は、アリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基を表す。E51〜E66、E71〜E88は、各々−C(R3)=または−N=を表し、R3は水素原子または置換基を表す。但し、E71〜E79の少なくとも1つ及びE80〜E88の少なくとも1つは−N=を表す。n3及びn4は0〜4の整数を表すが、n3+n4は2以上の整数である。
一般式(1)において、Y5で表されるアリーレン基としては、例えば、o−フェニレン基、p−フェニレン基、ナフタレンジイル基、アントラセンジイル基、ナフタセンジイル基、ピレンジイル基、ナフチルナフタレンジイル基、ビフェニルジイル基(例えば、[1,1’−ビフェニル]−4,4’−ジイル基、3,3’−ビフェニルジイル基、3,6−ビフェニルジイル基等)、テルフェニルジイル基、クアテルフェニルジイル基、キンクフェニルジイル基、セキシフェニルジイル基、セプチフェニルジイル基、オクチフェニルジイル基、ノビフェニルジイル基、デシフェニルジイル基等が例示される。
また一般式(1)において、Y5で表されるヘテロアリーレン基としては、例えば、カルバゾール環、カルボリン環、ジアザカルバゾール環(モノアザカルボリン環ともいい、カルボリン環を構成する炭素原子のひとつが窒素原子で置き換わった構成の環構成を示す)、トリアゾール環、ピロール環、ピリジン環、ピラジン環、キノキサリン環、チオフェン環、オキサジアゾール環、ジベンゾフラン環、ジベンゾチオフェン環、インドール環からなる群から導出される2価の基等が例示される。
Y5で表されるアリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基の好ましい態様としては、ヘテロアリーレン基の中でも、3環以上の環が縮合してなる縮合芳香族複素環から導出される基を含むことが好ましく、また、当該3環以上の環が縮合してなる縮合芳香族複素環から導出される基としては、ジベンゾフラン環から導出される基またはジベンゾチオフェン環から導出される基が好ましい。
一般式(1)において、E51〜E66、E71〜E88で各々表される−C(R3)=のR3で表される置換基の例としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す)、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2−エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2−ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基またはヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基、ピペリジル基(ピペリジニル基ともいう)、2,2,6,6−テトラメチルピペリジニル基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、リン酸エステル基(例えば、ジヘキシルホスホリル基等)、亜リン酸エステル基(例えばジフェニルホスフィニル基等)、ホスホノ基等が挙げられる。
これらの置換基の一部は、上記の置換基によってさらに置換されていてもよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。
一般式(1)において、E51〜E58のうちの6つ以上及びE59〜E66のうちの6つ以上が、各々−C(R3)=で表されることが好ましい。
一般式(1)において、E75〜E79の少なくとも1つ及びE84〜E88の少なくとも1つが−N=を表すことが好ましい。
さらには、一般式(1)において、E75〜E79のいずれか1つ及びE84〜E88のいずれか1つが−N=を表すことが好ましい。
また、一般式(1)において、E71〜E74及びE80〜E83が、各々−C(R3)=で表されることが好ましい態様として挙げられる。
さらに、一般式(1)で表される化合物において、E53が−C(R3)=で表され、且つ、R3が連結部位を表すことが好ましく、さらに、E61も同時に−C(R3)=で表され、且つ、R3が連結部位を表すことが好ましい。
さらに、E75及びE84が−N=で表されることが好ましく、E71〜E74及びE80〜E83が、各々−C(R3)=で表されることが好ましい。
また窒素含有層1aを構成する化合物の他の例として、下記一般式(2)で表される化合物が用いられる。
Figure 0005943005
上記一般式(2)の式中、Rは置換基を示す。置換基の例としては、一般式(1)のR3と同様のものが挙げられる。これらの置換基の一部は、上記の置換基によってさらに置換されていてもよい。
また一般式(2)の式中、T11,T12,T21〜T25、T31〜T35は、各々−C(R12)=または−N=を表し、T13〜T15は、各々−C(R12)=を表す。このうちR12は、水素原子(H)または置換基を表す。置換基の例としては、一般式(1)のR3と同様のものが挙げられる。これらの置換基の一部は、上記の置換基によってさらに置換されていてもよい。
ただし、T11,T12のうち少なくとも1つは−N=であり、T21〜T25のうち少なくとも1つは−N=であり、T31〜T35のうち少なくとも1つは−N=である。
以上のような窒素含有層1aが基材11上に成膜されたものである場合、その成膜方法としては、塗布法、インクジェット法、コーティング法、ディップ法などのウェットプロセスを用いる方法や、蒸着法(抵抗加熱、EB法など)、スパッタ法、CVD法などのドライプロセスを用いる方法などが挙げられる。なかでも蒸着法が好ましく適用される。
[化合物の具体例]
以下に、窒素含有層1aを構成する化合物の具体例(1〜117)を示すが、これらに限定されない。尚、ここでは、上記一般式(1)および一般式(2)には含まれない化合物も例示している。また本発明の透明電極1を構成する窒素含有層1aは、以下に例示される化合物(1〜117)のうちから、上述した式(1)または式(2)に当てはまる化合物が選択して用いられる。
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
[化合物の合成例]
以下に代表的な化合物の合成例として、化合物5の具体的な合成例を示すが、これに限定されない。
Figure 0005943005
工程1:(中間体1の合成)
窒素雰囲気下、2,8−ジブロモジベンゾフラン(1.0モル)、カルバゾール(2.0モル)、銅粉末(3.0モル)、炭酸カリウム(1.5モル)を、DMAc(ジメチルアセトアミド)300ml中で混合し、130℃で24時間撹拌した。これによって得た反応液を室温まで冷却後、トルエン1Lを加え、蒸留水で3回洗浄し、減圧雰囲気下において洗浄物から溶媒を留去し、その残渣をシリカゲルフラッシュクロマトグラフィー(n−ヘプタン:トルエン=4:1〜3:1)にて精製し、中間体1を収率85%で得た。
工程2:(中間体2の合成)
室温、大気下で中間体1(0.5モル)をDMF(ジメチルホルムアミド)100mlに溶解し、NBS(N−ブロモコハク酸イミド)(2.0モル)を加え、一晩室温で撹拌した。得られた沈殿を濾過し、メタノールで洗浄し、中間体2を収率92%で得た。
工程3:(化合物5の合成)
窒素雰囲気下、中間体2(0.25モル)、2−フェニルピリジン(1.0モル)、ルテニウム錯体[(η6−C6H6)RuCl2]2(0.05モル)、トリフェニルホスフィン(0.2モル)、炭酸カリウム(12モル)を、NMP(N−メチル−2−ピロリドン)3L中で混合し、140℃で一晩撹拌した。
反応液を室温まで冷却後、ジクロロメタン5Lを加え、反応液を濾過した。次いで減圧雰囲気下(800Pa、80℃)において濾液から溶媒を留去し、その残渣をシリカゲルフラッシュクロマトグラフィー(CH2Cl2:Et3N=20:1〜10:1)にて精製した。
減圧雰囲気下において、精製物から溶媒を留去した後、その残渣をジクロロメタンに再び溶解し、水で3回洗浄した。洗浄によって得られた物質を無水硫酸マグネシウムで乾燥させ、減圧雰囲気下において乾燥後の物質から溶媒を留去することにより、化合物5を収率68%で得た。
<電極層1b>
電極層1bは、銀(Ag)で構成された層であって、窒素含有層1aに隣接する状態で、例えば当該窒素含有層1a上に成膜された層である。このような電極層1bの成膜方法としては、塗布法、インクジェット法、コーティング法、ディップ法などのウェットプロセスを用いる方法や、蒸着法(抵抗加熱、EB法など)、スパッタ法、CVD法などのドライプロセスを用いる方法などが挙げられる。なかでも蒸着法またはスパッタ法が好ましく適用される。また電極層1bは、窒素含有層1aに隣接して成膜されることにより、成膜後の高温アニール処理等がなくても十分に導電性を有することを特徴とするが、必要に応じて、成膜後に高温アニール処理等を行ったものであっても良い。
電極層1bを構成する銀(Ag)は、銀(Ag)または銀を主成分とする合金であっても良く、合金である場合には一例として銀マグネシウム(AgMg)、銀銅(AgCu)、銀パラジウム(AgPd)、銀パラジウム銅(AgPdCu)、銀インジウム(AgIn)などが挙げられる。ここでは特に、銀の体積割合が97%以上として電極層1bが構成されていることが好ましい。
以上のような電極層1bは、以上のような銀で構成された層が、必要に応じて複数の層に分けて積層された構成であっても良い。
さらにこの電極層1bは、膜厚が4〜12nmの範囲にあることが好ましい。膜厚が12nm以下であることにより、層の吸収成分または反射成分が低く抑えられ、透明バリア膜の光透過率が維持されるため好ましい。また、膜厚が4nm以上であることにより、層の導電性も確保される。
尚、以上のような窒素含有層1aとこれに隣接して成膜された電極層1bとからなる積層構造の透明電極1は、電極層1bの上部が保護膜で覆われていたり、別の導電性層が積層されていても良い。この場合、透明電極1の光透過性を損なうことのないように、保護膜及び導電性層が光透過性を有することが好ましい。また窒素含有層1aの下部、すなわち窒素含有層1aと基材11との間にも、必要に応じた層を設けた構成としても良い。
<透明電極1の効果>
以上のように構成された透明電極1は、窒素原子をヘテロ原子とした複素環を有する化合物を用いて構成された窒素含有層1aに隣接させて、銀で構成された電極層1bを設けた構成である。これにより、窒素含有層1aに隣接させて電極層1bを成膜する際には、電極層1bを構成する銀原子が窒素含有層1aを構成する窒素原子を含んだ化合物と相互作用し、銀原子の窒素含有層1a表面においての拡散距離が減少し、銀の凝集が抑えられる。このため、一般的には核成長型(Volumer−Weber:VW型)での膜成長により島状に孤立し易い銀薄膜が、単層成長型(Frank−van der Merwe:FW型)の膜成長によって成膜されるようになる。したがって、薄い膜厚でありながらも、均一な膜厚の電極層1bが得られるようになる。
そして特に、窒素含有層1aを構成する化合物と、電極層1bを構成する銀との間に相互に作用するエネルギーとして、上記式(1)に示した有効作用エネルギーΔEefを定義し、この値がΔEef≦−0.10となる化合物を用いて窒素含有層1aを構成するようにした。これにより、上述したような「銀の凝集を抑える」効果が確実に得られる化合物を用いて、窒素含有層1aを形成することが可能になる。これは、後の実施例で詳細に説明するように、このような窒素含有層1a上には、極薄膜でありながらもシート抵抗の測定が可能な電極層1bが、蒸着によって形成されることからも確認された。
以上の結果、この様な窒素含有層1aに隣接して、薄い膜厚であることで光透過性を確保しつつも、均一な膜厚であることで導電性が確保された電極層1bを確実に得ることができ、銀を用いた透明電極1における導電性の向上と光透過性の向上との両立を図ることが可能になる。
またこのような透明電極1は、レアメタルであるインジウム(In)を用いていないため低コストであり、またZnOのような化学的に不安定な材料を用いていないため長期信頼性にも優れている。
≪2.透明電極の用途≫
上述した構成の透明電極1は、各種電子デバイスに用いることができる。電子デバイスの例としては、有機電界発光素子、LED(light Emitting Diode)、液晶素子、太陽電池、タッチパネル等が挙げられ、これらの電子デバイスにおいて光透過性を必要とされる電極部材として、上述の透明電極1を用いることができる。
以下では、用途の一例として、透明電極をアノードおよびカソードとして用いた有機電界発光素子の実施の形態を説明する。
≪3.有機電界発光素子の第1例(トップエミッション型)≫
<有機電界発光素子EL-1の構成>
図2は、本発明の電子デバイスの一例として、上述した透明電極1を用いた有機電界発光素子の第1例を示す断面構成図である。以下にこの図に基づいて有機電界発光素子の構成を説明し、次いで有機電界発光素子の製造方法を説明する。
図2に示す有機電界発光素子EL-1は、基板13上に設けられており、基板13側から順に、第1の電極としての対向電極5-1、有機材料等を用いて構成された発光機能層3、および第2の電極としての透明電極1をこの順に積層して構成されている。この有機電界発光素子EL-1においては、透明電極1として、先に説明した本発明の透明電極1を用いているところが特徴的である。このため有機電界発光素子EL-1は、発生させた光(以下、発光光hと記す)を、少なくとも基板13と逆側から取り出すトップエミッション型として構成されている。
また有機電界発光素子EL-1の全体的な層構造が限定されることはなく、一般的な層構造であって良い。ここでは、透明電極1がカソード(すなわち陰極)側に配置され、主に電極層1bがカソードとして機能する一方、対向電極5-1がアノード(すなわち陽極)として機能する。
この場合、例えば発光機能層3は、アノードである対向電極5-1側から順に[正孔注入層3a/正孔輸送層3b/発光層3c/電子輸送層3d/電子注入層3e]を積層した構成が例示されるが、このうち少なくとも有機材料を用いて構成された発光層3cを有することが必須である。正孔注入層3aおよび正孔輸送層3bは、正孔輸送/注入層として設けられても良い。電子輸送層3dおよび電子注入層3eは、電子輸送/注入層として設けられても良い。またこれらの発光機能層3のうち、例えば電子注入層3eは無機材料で構成されている場合もある。
またさらに、カソードとして設けられた透明電極1のうち、窒素含有層1aは、電子注入層を兼ねていても良く、電子輸送/注入層を兼ねていても良い。
また発光機能層3は、これらの層の他にも正孔阻止層や電子阻止層等が必要に応じて必要箇所に積層されていて良い。さらに発光層3cは、各波長領域の発光光を発生させる各色発光層を有し、これらの各色発光層を、非発光性の中間層を介して積層させて発光層ユニットとして形成されていても良い。中間層は、正孔阻止層、電子阻止層として機能しても良い。さらにアノードである対向電極5-1も、必要に応じた積層構造であっても良い。このような構成において、透明電極1と対向電極5-1とで発光機能層3が挟持された部分のみが、有機電界発光素子EL-1における発光領域となる。
また以上のような層構成においては、透明電極1の低抵抗化を図ることを目的とし、透明電極1の電極層1bに接して補助電極15が設けられていても良い。
以上のような構成の有機電界発光素子EL-1は、有機材料等を用いて構成された発光機能層3の劣化を防止することを目的として、基板13上において後述する透明封止材17で封止されている。この透明封止材17は、接着剤19を介して基板13側に固定されている。ただし、透明電極1および対向電極5-1の端子部分は、基板13上において発光機能層3によって互いに絶縁性を保った状態で透明封止材17から露出させた状態で設けられていることとする。
以下、上述した有機電界発光素子EL-1を構成するための主要各層の詳細を、基板13、透明電極1、対向電極5-1、発光機能層3の発光層3c、発光機能層3の他の層、補助電極15、および透明封止材17の順に説明する。その後、有機電界発光素子EL-1の作製方法を説明する。
[基板13]
基板13は、先に説明した本発明の透明電極1が設けられる基材と同様のものが用いられる。ただしこの有機電界発光素子EL-1が、対向電極5-1側からも発光光hを取り出す両面発光型である場合、基材11のうちから光透過性を有する透明なものが選択して用いられる。
[透明電極1(カソード側)]
透明電極1は、先に説明した本発明の透明電極1であり、発光機能層3側から順に、窒素含有層1aおよび電極層1bを順に成膜した構成である。ここでは特に、透明電極1を構成する電極層1bが実質的なカソードとなる。また本実施形態の有機電界発光素子EL-1においては、発光機能層3と、実質的なカソードとして用いられる電極層1bとの間に、有機材料からなる窒素含有層1aが配置された構成となる。このため本実施形態における透明電極1の窒素含有層1aは、発光機能層3の一部を構成する層であるともみなされる。このような窒素含有層1aは、上述した式(1)または式(2)を満たす材料のなかから、さらに電子輸送性または電子注入性を有する材料を用いて構成されることが好ましい。またこのような窒素含有層1aは、以降において電子輸送材料として例示する材料のなかから、さらに式(1)または式(2)を満たす材料を用いて構成されても良い。
[対向電極5-1(アノード)]
対向電極5-1は、発光機能層3に正孔を供給するためのアノードとして機能する電極膜であり、金属、合金、有機または無機の導電性化合物、およびこれらの混合物が用いられる。具体的には、金、アルミニウム、銀、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、インジウム、リチウム/アルミニウム混合物、希土類金属、ITO、ZnO、TiO2、SnO2等の酸化物半導体などが挙げられる。
対向電極5-1は、これらの導電性材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより作製することができる。また、対向電極5-1としてのシート抵抗は、数百Ω/sq.以下が好ましく、膜厚は通常5nm〜5μm、好ましくは5nm〜200nmの範囲で選ばれる。
尚、この有機電界発光素子EL-1が、対向電極5-1側からも発光光hを取り出す、両面発光型であれば、上述した導電性材料のうち光透過性の良好な導電性材料を選択して対向電極5-1を構成すれば良い。
[発光層3c]
本発明に用いられる発光層3cは、発光材料として例えば燐光発光化合物が含有されている。
この発光層3cは、電極または電子輸送層3dから注入された電子と、正孔輸送層3bから注入された正孔とが再結合して発光する層であり、発光する部分は発光層3cの層内であっても発光層3cと隣接する層との界面であってもよい。
このような発光層3cとしては、含まれる発光材料が発光要件を満たしていれば、その構成には特に制限はない。また、同一の発光スペクトルや発光極大波長を有する層が複数層あってもよい。この場合、各発光層3c間には非発光性の中間層(図示せず)を有していることが好ましい。
発光層3cの膜厚の総和は1〜100nmの範囲にあることが好ましく、さらに好ましくは、より低い駆動電圧を得ることができることから1〜30nmである。尚、発光層3cの膜厚の総和とは、発光層3c間に非発光性の中間層が存在する場合には、当該中間層も含む膜厚である。
複数層を積層した構成の発光層3cの場合、個々の発光層の膜厚としては、1〜50nmの範囲に調整することが好ましく、さらに好ましくは1〜20nmの範囲に調整することがより好ましい。積層された複数の発光層が、青、緑、赤のそれぞれの発光色に対応する場合、青、緑、赤の各発光層の膜厚の関係については、特に制限はない。
以上のような発光層3cは、後述する発光材料やホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜形成方法により成膜して形成することができる。
また発光層3cは、複数の発光材料を混合してもよく、また燐光発光材料と蛍光発光材料(蛍光ドーパント、蛍光性化合物ともいう)を同一発光層3c中に混合して用いてもよい。
発光層3cの構成として、ホスト化合物(発光ホスト等ともいう)、発光材料(発光ドーパント化合物ともいう)を含有し、発光材料より発光させることが好ましい。
(ホスト化合物)
発光層3cに含有されるホスト化合物としては、室温(25℃)における燐光発光の燐光量子収率が0.1未満の化合物が好ましい。さらに好ましくは燐光量子収率が0.01未満である。また、発光層3cに含有される化合物の中で、その層中での体積比が50%以上であることが好ましい。
ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、または複数種用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機電界発光素子EL-1を高効率化することができる。また、後述する発光材料を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。
用いられるホスト化合物としては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもよい。
公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、発光の長波長化を防ぎ、かつ高Tg(ガラス転移温度)化合物が好ましい。ここでいうガラス転移点(Tg)とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS−K−7121に準拠した方法により求められる値である。
以下に、本発明で用いることのできるホスト化合物の具体例(H1〜H79)を示すが、これらに限定されない。尚、ホスト化合物H68〜H79において、x及びyはランダム共重合体の比率を表す。その比率は、例えば、x:y=1:10などとすることができる。
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
公知のホスト化合物の具体例としては、以下の文献に記載されている化合物を用いることもできる。例えば、特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−141173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−231453号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−255934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報等が挙げられる。
(発光材料)
本発明で用いることのできる発光材料としては、燐光発光性化合物(燐光性化合物、燐光発光材料ともいう)が挙げられる。
燐光発光性化合物とは、励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にて燐光発光する化合物であり、燐光量子収率が25℃において0.01以上の化合物であると定義されるが、好ましい燐光量子収率は0.1以上である。
上記燐光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中での燐光量子収率は種々の溶媒を用いて測定できるが、本発明において燐光発光性化合物を用いる場合、任意の溶媒のいずれかにおいて上記燐光量子収率(0.01以上)が達成されればよい。
燐光発光性化合物の発光の原理としては2種挙げられる。一つは、キャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーを燐光発光性化合物に移動させることで燐光発光性化合物からの発光を得るというエネルギー移動型であり、もう一つは、燐光発光性化合物がキャリアトラップとなり、燐光発光性化合物上でキャリアの再結合が起こり燐光発光性化合物からの発光が得られるというキャリアトラップ型である。いずれの場合においても、燐光発光性化合物の励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件となる。
燐光発光性化合物は、一般的な有機電界発光素子の発光層に使用される公知のものの中から適宜選択して用いることができるが、好ましくは元素の周期表で8〜10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。
本発明においては、少なくとも一つの発光層3cに2種以上の燐光発光性化合物を含有していてもよく、発光層3cにおける燐光発光性化合物の濃度比が発光層3cの厚さ方向で変化していてもよい。
燐光発光性化合物は好ましくは発光層3cの総量に対し0.1体積%以上30体積%未満である。
(一般式(3)で表される化合物)
発光層3cに含まれる化合物(燐光発光性化合物)は、下記一般式(3)で表される化合物であることが好ましい。
尚、一般式(3)で表される燐光発光性化合物(燐光発光性の金属錯体ともいう)は、有機電界発光素子EL-1の発光層3cに発光ドーパントとして含有されることが好ましい態様であるが、発光層3c以外の発光機能層に含有されていてもよい。
Figure 0005943005
上記一般式(3)中、P、Qは、各々炭素原子または窒素原子を表し、A1はP−Cと共に芳香族炭化水素環または芳香族複素環を形成する原子群を表す。A2はQ−Nと共に芳香族複素環を形成する原子群を表す。P1−L1−P2は2座の配位子を表し、P1、P2は各々独立に炭素原子、窒素原子または酸素原子を表す。L1はP1、P2と共に2座の配位子を形成する原子群を表す。j1は1〜3の整数を表し、j2は0〜2の整数を表すが、j1+j2は2または3である。M1は元素周期表における8族〜10族の遷移金属元素を表す。
一般式(3)において、P、Qは、各々炭素原子または窒素原子を表す。
そして、一般式(3)において、A1が、P−Cと共に形成する芳香族炭化水素環としては、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o−テルフェニル環、m−テルフェニル環、p−テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。
これらの環はさらに、一般式(1)において、E51〜E66、E71〜E88で各々表される−C(R3)=のR3で表される置換基を有しても良い。
一般式(3)において、A1が、P−Cと共に形成する芳香族複素環としては、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、カルバゾール環、アザカルバゾール環等が挙げられる。
ここで、アザカルバゾール環とは、前記カルバゾール環を構成するベンゼン環の炭素原子が1つ以上窒素原子で置き換わったものを示す。
これらの環はさらに、一般式(1)において、E51〜E66、E71〜E88で各々表される−C(R3)=のR3で表される置換基を有しても良い。
一般式(3)において、A2が、Q−Nと共に形成する芳香族複素環としては、オキサゾール環、オキサジアゾール環、オキサトリアゾール環、イソオキサゾール環、テトラゾール環、チアジアゾール環、チアトリアゾール環、イソチアゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、イミダゾール環、ピラゾール環、トリアゾール環等が挙げられる。
これらの環はさらに、一般式(1)において、E51〜E66、E71〜E88で各々表される−C(R3)=のR3で表される置換基を有しても良い。
一般式(3)において、P1−L1−P2は2座の配位子を表し、P1、P2は各々独立に炭素原子、窒素原子または酸素原子を表す。L1はP1、P2と共に2座の配位子を形成する原子群を表す。
P1−L1−P2で表される2座の配位子としては、フェニルピリジン、フェニルピラゾール、フェニルイミダゾール、フェニルトリアゾール、フェニルテトラゾール、ピラザボール、アセチルアセトン、ピコリン酸等が挙げられる。
一般式(3)において、j1は1〜3の整数を表し、j2は0〜2の整数を表すが、j1+j2は2または3を表す、中でも、j2は0である場合が好ましい。
一般式(3)において、M1は元素周期表における8族〜10族の遷移金属元素(単に遷移金属ともいう)が用いられるが、中でも、イリジウム好ましい。
(一般式(4)で表される化合物)
一般式(3)で表される化合物の中でも、下記一般式(4)で表される化合物であることがさらに好ましい。
Figure 0005943005
上記一般式(4)式中、Zは、炭化水素環基または複素環基を表す。P、Qは、各々炭素原子または窒素原子を表し、A1はP−Cと共に芳香族炭化水素環または芳香族複素環を形成する原子群を表す。A3は−C(R01)=C(R02)−、−N=C(R02)−、−C(R01)=N−または−N=N−を表し、R01、R02は、各々水素原子または置換基を表す。P1−L1−P2は2座の配位子を表し、P1、P2は各々独立に炭素原子、窒素原子、または酸素原子を表す。L1はP1、P2と共に2座の配位子を形成する原子群を表す。j1は1〜3の整数を表し、j2は0〜2の整数を表すが、j1+j2は2または3である。M1は元素周期表における8族〜10族の遷移金属元素を表す。
一般式(4)において、Zで表される炭化水素環基としては、非芳香族炭化水素環基、芳香族炭化水素環基が挙げられ、非芳香族炭化水素環基としては、シクロプロピル基、シクロペンチル基、シクロヘキシル基等が挙げられる。これらの基は、無置換でも後述する置換基を有していてもよい。
また、芳香族炭化水素環基(芳香族炭化水素基、アリール基等ともいう)としては、例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等が挙げられる。
これらの基は、無置換でもよく、一般式(1)において、E51〜E66、E71〜E88で各々表される−C(R3)=のR3で表される置換基を有しても良い。
一般式(4)において、Zで表される複素環基としては、非芳香族複素環基、芳香族複素環基等が挙げられ、非芳香族複素環基としては、例えば、エポキシ環、アジリジン環、チイラン環、オキセタン環、アゼチジン環、チエタン環、テトラヒドロフラン環、ジオキソラン環、ピロリジン環、ピラゾリジン環、イミダゾリジン環、オキサゾリジン環、テトラヒドロチオフェン環、スルホラン環、チアゾリジン環、ε−カプロラクトン環、ε−カプロラクタム環、ピペリジン環、ヘキサヒドロピリダジン環、ヘキサヒドロピリミジン環、ピペラジン環、モルホリン環、テトラヒドロピラン環、1,3−ジオキサン環、1,4−ジオキサン環、トリオキサン環、テトラヒドロチオピラン環、チオモルホリン環、チオモルホリン−1,1−ジオキシド環、ピラノース環、ジアザビシクロ[2,2,2]−オクタン環等から導出される基を挙げられる。
これらの基は、無置換でもよく、一般式(1)において、E51〜E66、E71〜E88で各々表される−C(R3)=のR3で表される置換基を有しても良い。
芳香族複素環基としては、例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4−トリアゾール−1−イル基、1,2,3−トリアゾール−1−イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等が挙げられる。
これらの基は、無置換でもよく、一般式(1)において、E51〜E66、E71〜88で各々表される−C(R3)=のR3で表される置換基を有しても良い。
好ましくは、Zで表される基は芳香族炭化水素環基または芳香族複素環基である。
一般式(4)において、A1が、P−Cと共に形成する芳香族炭化水素環としては、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o−テルフェニル環、m−テルフェニル環、p−テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。
これらの環はさらに、一般式(1)において、E51〜E66、E71〜E88で各々表される−C(R3)=のR3で表される置換基を有しても良い。
一般式(4)において、A1がP−Cと共に形成する芳香族複素環としては、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、カルバゾール環、カルボリン環、アザカルバゾール環等が挙げられる。
ここで、アザカルバゾール環とは、前記カルバゾール環を構成するベンゼン環の炭素原子が1つ以上窒素原子で置き換わったものを示す。
これらの環はさらに、一般式(1)において、E51〜E66、E71〜E88で各々表される−C(R3)=のR3で表される置換基を有しても良い。
一般式(4)のA3で表される、−C(R01)=C(R02)−、−N=C(R02)−、−C(R01)=N−において、R01、R02で各々表される置換基は、一般式(1)において、E51〜E66、E71〜E88で各々表される−C(R3)=のR3で表される置換基と同義である。
一般式(4)において、P1−L1−P2で表される2座の配位子としては、フェニルピリジン、フェニルピラゾール、フェニルイミダゾール、フェニルトリアゾール、フェニルテトラゾール、ピラザボール、アセチルアセトン、ピコリン酸等が挙げられる。
また、j1は1〜3の整数を表し、j2は0〜2の整数を表すが、j1+j2は2または3を表す、中でも、j2は0である場合が好ましい。
一般式(4)において、M1で表される元素周期表における8族〜10族の遷移金属元素(単に遷移金属ともいう)は、一般式(3)において、M1で表される元素周期表における8族〜10族の遷移金属元素と同義である。
(一般式(5)で表される化合物)
上記一般式(4)で表される化合物の好ましい態様の一つとして、下記一般式(5)で表される化合物が挙げられる。
Figure 0005943005
上記一般式(5)式中、R03は置換基を表し、R04は水素原子または置換基を表し、複数のR04は互いに結合して環を形成してもよい。n01は1〜4の整数を表す。R05は水素原子または置換基を表し、複数のR05は互いに結合して環を形成してもよい。n02は1〜2の整数を表す。R06は水素原子または置換基を表し、互いに結合して環を形成してもよい。n03は1〜4の整数を表す。Z1はC−Cと共に6員の芳香族炭化水素環もしくは、5員または6員の芳香族複素環を形成するのに必要な原子群を表す。Z2は炭化水素環基または複素環基を形成するのに必要な原子群を表す。P1−L1−P2は2座の配位子を表し、P1、P2は各々独立に炭素原子、窒素原子または酸素原子を表す。L1はP1、P2と共に2座の配位子を形成する原子群を表す。j1は1〜3の整数を表し、j2は0〜2の整数を表すが、j1+j2は2または3である。M1は元素周期表における8族〜10族の遷移金属元素を表す。R03とR06、R04とR06及びR05とR06は互いに結合して環を形成していてもよい。
一般式(5)において、R03、R04、R05、R06で各々表される置換基は、一般式(1)において、E51〜E66、E71〜E88で各々表される−C(R3)=のR3で表される置換基と同義である。
一般式(5)において、Z1がC−Cと共に形成する6員の芳香族炭化水素環としては、ベンゼン環等が挙げられる。
これらの環はさらに、一般式(1)において、E51〜E66、E71〜E88で各々表される−C(R3)=のR3で表される置換基を有してもよい。
一般式(5)において、Z1がC−Cと共に形成する5員または6員の芳香族複素環としては、例えば、オキサゾール環、オキサジアゾール環、オキサトリアゾール環、イソオキサゾール環、テトラゾール環、チアジアゾール環、チアトリアゾール環、イソチアゾール環、チオフェン環、フラン環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、イミダゾール環、ピラゾール環、トリアゾール環等が挙げられる。
これらの環はさらに、一般式(1)において、E51〜E66、E71〜E88で各々表される−C(R3)=のR3で表される置換基を有してもよい。
一般式(5)において、Z2で表される炭化水素環基としては、非芳香族炭化水素環基、芳香族炭化水素環基が挙げられ、非芳香族炭化水素環基としては、シクロプロピル基、シクロペンチル基、シクロヘキシル基等が挙げられる。これらの基は、無置換でも後述する置換基を有していてもよい。
また、芳香族炭化水素環基(芳香族炭化水素基、アリール基等ともいう)としては、例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等が挙げられる。これらの基は、無置換でもよく、一般式(1)において、E51〜E66、E71〜E88で各々表される−C(R3)=のR3で表される置換基を有してもよい。
一般式(5)において、Z2で表される複素環基としては、非芳香族複素環基、芳香族複素環基等が挙げられ、非芳香族複素環基としては、例えば、エポキシ環、アジリジン環、チイラン環、オキセタン環、アゼチジン環、チエタン環、テトラヒドロフラン環、ジオキソラン環、ピロリジン環、ピラゾリジン環、イミダゾリジン環、オキサゾリジン環、テトラヒドロチオフェン環、スルホラン環、チアゾリジン環、ε−カプロラクトン環、ε−カプロラクタム環、ピペリジン環、ヘキサヒドロピリダジン環、ヘキサヒドロピリミジン環、ピペラジン環、モルホリン環、テトラヒドロピラン環、1,3−ジオキサン環、1,4−ジオキサン環、トリオキサン環、テトラヒドロチオピラン環、チオモルホリン環、チオモルホリン−1,1−ジオキシド環、ピラノース環、ジアザビシクロ[2,2,2]−オクタン環等から導出される基を挙げることができる。これらの基は無置換でもよく、また、一般式(1)において、E51〜E66、E71〜E88で各々表される−C(R3)=のR3で表される置換基を有してもよい。
芳香族複素環基としては、例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4−トリアゾール−1−イル基、1,2,3−トリアゾール−1−イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等が挙げられる。
これらの環は無置換でもよく、さらに、一般式(1)において、E51〜E66、E71〜E88で各々表される−C(R3)=のR3で表される置換基を有してもよい。
一般式(5)において、Z1及びZ2で形成される基としては、ベンゼン環が好ましい。
一般式(5)において、P1−L1−P2で表される2座の配位子は、一般式(3)において、P1−L1−P2で表される2座の配位子と同義である。
一般式(5)において、M1で表される元素周期表における8族〜10族の遷移金属元素は、一般式(3)において、M1で表される元素周期表における8族〜10族の遷移金属元素と同義である。
また、燐光発光性化合物は、有機電界発光素子EL-1の発光層3cに使用される公知のものの中から適宜選択して用いることができる。
本発明に係る燐光発光性化合物は、好ましくは元素の周期表で8〜10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。
本発明に係る燐光発光性化合物の具体例(Pt−1〜Pt−3、A−1、Ir−1〜Ir−45)を以下に示すが、本発明はこれらに限定されない。尚、これらの化合物において、m及びnは繰り返し数を表す。
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
Figure 0005943005
上記の燐光発光性化合物(燐光発光性金属錯体等ともいう)は、例えば、Organic Letters誌、vol.3、No.16、2579〜2581頁(2001)、Inorganic Chemistry,第30巻、第8号、1685〜1687頁(1991年)、J.Am.Chem.Soc.,123巻、4304頁(2001年)、Inorganic Chemistry,第40巻、第7号、1704〜1711頁(2001年)、Inorganic Chemistry,第41巻、第12号、3055〜3066頁(2002年)、New Journal of Chemistry.,第26巻、1171頁(2002年)、European Journal of Organic Chemistry,第4巻、695〜709頁(2004年)、さらにこれらの文献中に記載の参考文献等の方法を適用することにより合成できる。
(蛍光発光材料)
蛍光発光材料としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、または希土類錯体系蛍光体等が挙げられる。
[注入層:正孔注入層3a、電子注入層3e]
注入層とは、駆動電圧低下や発光輝度向上のために電極と発光層3cの間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されており、正孔注入層3aと電子注入層3eとがある。
注入層は、必要に応じて設けることができる。正孔注入層3aであれば、アノードと発光層3cまたは正孔輸送層3bの間、電子注入層3eであればカソードと発光層3cまたは電子輸送層3dとの間に存在させてもよい。
正孔注入層3aは、特開平9−45479号公報、同9−260062号公報、同8−288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニン層、酸化バナジウムに代表される酸化物層、アモルファスカーボン層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子層等が挙げられる。
電子注入層3eは、特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属層、フッ化カリウムに代表されるアルカリ金属ハライド層、フッ化マグネシウムに代表されるアルカリ土類金属化合物層、酸化モリブデンに代表される酸化物層等が挙げられる。本発明の電子注入層3eはごく薄い膜であることが望ましく、素材にもよるがその膜厚は1nm〜10μmの範囲が好ましい。
[正孔輸送層3b]
正孔輸送層3bは、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層3a、電子阻止層も正孔輸送層3bに含まれる。正孔輸送層3bは単層または複数層設けることができる。
正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また、導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
正孔輸送材料としては、上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′−テトラフェニル−4,4′−ジアミノフェニル;N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−〔1,1′−ビフェニル〕−4,4′−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N′,N′−テトラ−p−トリル−4,4′−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N′−ジフェニル−N,N′−ジ(4−メトキシフェニル)−4,4′−ジアミノビフェニル;N,N,N′,N′−テトラフェニル−4,4′−ジアミノジフェニルエーテル;4,4′−ビス(ジフェニルアミノ)クオードリフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4′−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4′−N,N−ジフェニルアミノスチルベンゼン;N−フェニルカルバゾール、さらには米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型−Si、p型−SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
また、特開平11−251067号公報、J.Huang et.al.,Applied Physics Letters,80(2002),p.139に記載されているような所謂、p型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることから、これらの材料を用いることが好ましい。
正孔輸送層3bは、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層3bの膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。この正孔輸送層3bは、上記材料の1種または2種以上からなる一層構造であってもよい。
また、正孔輸送層3bの材料に不純物をドープしてp性を高くすることもできる。その例としては、特開平4−297076号公報、特開2000−196140号公報、同2001−102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
このように、正孔輸送層3bのp性を高くすると、より低消費電力の素子を作製することができるため好ましい。
[電子輸送層3d]
電子輸送層3dは、電子を輸送する機能を有する材料からなり、広い意味で電子注入層3e、正孔阻止層(図示せず)も電子輸送層3dに含まれる。電子輸送層3dは単層構造または複数層の積層構造として設けることができる。
単層構造の電子輸送層3d、および積層構造の電子輸送層3dにおいて発光層3cに隣接する層部分を構成する電子輸送材料(正孔阻止材料を兼ねる)としては、カソードより注入された電子を発光層3cに伝達する機能を有していれば良い。このような材料としては従来公知の化合物の中から任意のものを選択して用いることができる。例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体及びオキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送層3dの材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
また、8−キノリノール誘導体の金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq3)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送層3dの材料として用いることができる。
その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送層3dの材料として好ましく用いることができる。また、発光層3cの材料としても例示されるジスチリルピラジン誘導体も電子輸送層3dの材料として用いることができるし、正孔注入層3a、正孔輸送層3bと同様にn型−Si、n型−SiC等の無機半導体も電子輸送層3dの材料として用いることができる。
電子輸送層3dは、上記材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層3dの膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。電子輸送層3dは上記材料の1種または2種以上からなる一層構造であってもよい。
また、電子輸送層3dに不純物をドープし、n性を高くすることもできる。その例としては、特開平4−297076号公報、同10−270172号公報、特開2000−196140号公報、同2001−102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。さらに電子輸送層3dには、カリウムやカリウム化合物などを含有させることが好ましい。カリウム化合物としては、例えば、フッ化カリウム等を用いることができる。このように電子輸送層3dのn性を高くすると、より低消費電力の素子を作製することができる。
また電子輸送層3dの材料(電子輸送性化合物)として、好ましくは、下記一般式(6)で表される化合物を用いることができる。
(Ar1)n1−Y1…一般式(6)
一般式(6)の式中、n1は1以上の整数を表し、Y1はn1が1の場合は置換基を表し、n1が2以上の場合は単なる結合手またはn1価の連結基を表す。Ar1は後記する一般式(A)で表される基を表し、n1が2以上の場合、複数のAr1は同一でも異なっていてもよい。ただし、前記一般式(6)で表される化合物は分子内に3環以上の環が縮合してなる縮合芳香族複素環を少なくとも2つ有する。
一般式(6)において、Y1で表される置換基の例としては、透明電極1の窒素含有層1aを構成する化合物として示した一般式(1)におけるE51〜E66、E71〜E88で各々表される−C(R3)=のR3で表される置換基と同義である。
一般式(6)において、Y1で表されるn1価の連結基としては、具体的には、2価の連結基、3価の連結基、4価の連結基等が挙げられる。
一般式(6)において、Y1で表される2価の連結基としては、アルキレン基(例えば、エチレン基、トリメチレン基、テトラメチレン基、プロピレン基、エチルエチレン基、ペンタメチレン基、ヘキサメチレン基、2,2,4−トリメチルヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基、シクロヘキシレン基(例えば、1,6−シクロヘキサンジイル基等)、シクロペンチレン基(例えば、1,5−シクロペンタンジイル基など)等)、アルケニレン基(例えば、ビニレン基、プロペニレン基、ブテニレン基、ペンテニレン基、1−メチルビニレン基、1−メチルプロペニレン基、2−メチルプロペニレン基、1−メチルペンテニレン基、3−メチルペンテニレン基、1−エチルビニレン基、1−エチルプロペニレン基、1−エチルブテニレン基、3−エチルブテニレン基等)、アルキニレン基(例えば、エチニレン基、1−プロピニレン基、1−ブチニレン基、1−ペンチニレン基、1−ヘキシニレン基、2−ブチニレン基、2−ペンチニレン基、1−メチルエチニレン基、3−メチル−1−プロピニレン基、3−メチル−1−ブチニレン基等)、アリーレン基(例えば、o−フェニレン基、p−フェニレン基、ナフタレンジイル基、アントラセンジイル基、ナフタセンジイル基、ピレンジイル基、ナフチルナフタレンジイル基、ビフェニルジイル基(例えば、[1,1’−ビフェニル]−4,4’−ジイル基、3,3’−ビフェニルジイル基、3,6−ビフェニルジイル基等)、テルフェニルジイル基、クアテルフェニルジイル基、キンクフェニルジイル基、セキシフェニルジイル基、セプチフェニルジイル基、オクチフェニルジイル基、ノビフェニルジイル基、デシフェニルジイル基等)、ヘテロアリーレン基(例えば、カルバゾール環、カルボリン環、ジアザカルバゾール環(モノアザカルボリン環ともいい、カルボリン環を構成する炭素原子のひとつが窒素原子で置き換わった構成の環構成を示す)、トリアゾール環、ピロール環、ピリジン環、ピラジン環、キノキサリン環、チオフェン環、オキサジアゾール環、ジベンゾフラン環、ジベンゾチオフェン環、インドール環からなる群から導出される2価の基等)、酸素や硫黄などのカルコゲン原子、3環以上の環が縮合してなる縮合芳香族複素環から導出される基等(ここで、3環以上の環が縮合してなる縮合芳香族複素環としては、好ましくはN、O及びSから選択されたヘテロ原子を、縮合環を構成する元素として含有する芳香族複素縮合環であることが好ましく、具体的には、アクリジン環、ベンゾキノリン環、カルバゾール環、フェナジン環、フェナントリジン環、フェナントロリン環、カルボリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の任意の一つが窒素原子で置き換わったものを表す)、フェナントロリン環、ジベンゾフラン環、ジベンゾチオフェン環、ナフトフラン環、ナフトチオフェン環、ベンゾジフラン環、ベンゾジチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、チオファントレン環(ナフトチオフェン環)等)が挙げられる。
一般式(6)において、Y1で表される3価の連結基としては、例えば、エタントリイル基、プロパントリイル基、ブタントリイル基、ペンタントリイル基、ヘキサントリイル基、ヘプタントリイル基、オクタントリイル基、ノナントリイル基、デカントリイル基、ウンデカントリイル基、ドデカントリイル基、シクロヘキサントリイル基、シクロペンタントリイル基、ベンゼントリイル基、ナフタレントリイル基、ピリジントリイル基、カルバゾールトリイル基等が挙げられる。
一般式(6)において、Y1で表される4価の連結基としては、上記の3価の基にさらにひとつ結合基がついたものであり、例えば、プロパンジイリデン基、1,3−プロパンジイル−2−イリデン基、ブタンジイリデン基、ペンタンジイリデン基、ヘキサンジイリデン基、ヘプタンジイリデン基、オクタンジイリデン基、ノナンジイリデン基、デカンジイリデン基、ウンデカンジイリデン基、ドデカンジイリデン基、シクロヘキサンジイリデン基、シクロペンタンジイリデン基、ベンゼンテトライル基、ナフタレンテトライル基、ピリジンテトライル基、カルバゾールテトライル基等が挙げられる。
尚、上記の2価の連結基、3価の連結基、4価の連結基は、各々さらに、一般式(1)におけるE51〜E66、E71〜E88で各々表される−C(R3)=のR3で表される置換基を有していてもよい。
一般式(6)で表される化合物の好ましい態様としては、Y1が3環以上の環が縮合してなる縮合芳香族複素環から導出される基を表すことが好ましく、当該3環以上の環が縮合してなる縮合芳香族複素環としては、ジベンゾフラン環またはジベンゾチオフェン環が好ましい。また、n1が2以上であることが好ましい。
さらに、一般式(6)で表される化合物は、分子内に上記の3環以上の環が縮合してなる縮合芳香族複素環を少なくとも2つ有する。
また、Y1がn1価の連結基を表す場合、一般式(6)で表される化合物の三重項励起エネルギーを高く保つために、Y1は非共役であることが好ましく、さらに、Tg(ガラス転移点、ガラス転移温度ともいう)を向上させる点から、芳香環(芳香族炭化水素環+芳香族複素環)で構成されていることが好ましい。
ここで、非共役とは、連結基が単結合(一重結合ともいう)と二重結合の繰り返しによって表記できないか、または連結基を構成する芳香環同士の共役が立体的に切断されている場合を意味する。
[一般式(A)で表される基]
一般式(6)中におけるAr1は、下記一般式(A)で表される基を表す。
Figure 0005943005
式中、Xは、−N(R)−、−O−、−S−または−Si(R)(R′)−を表し、E1〜E8は、−C(R1)=または−N=を表し、R、R′及びR1は水素原子、置換基またはY1との連結部位を表す。*はY1との連結部位を表す。Y2は単なる結合手または2価の連結基を表す。Y3及びY4は、各々5員または6員の芳香族環から導出される基を表し、少なくとも一方は環構成原子として窒素原子を含む芳香族複素環から導出される基を表す。n2は1〜4の整数を表す。
ここで、一般式(A)のXで表される−N(R)−または−Si(R)(R′)−において、さらに、E1〜E8で表される−C(R1)=において、R、R′及びR1で各々表される置換基は、一般式(1)におけるE51〜E66、E71〜E88で各々表される−C(R3)=のR3で表される置換基と同義である。
また、一般式(A)において、Y2で表される2価の連結基としては、一般式(6)において、Y1で表される2価の連結基と同義である。
さらに、一般式(A)において、Y3及びY4で各々表される5員または6員の芳香族環から導出される基の形成に用いられる5員または6員の芳香族環としては、ベンゼン環、オキサゾール環、チオフェン環、フラン環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ジアジン環、トリアジン環、イミダゾール環、イソオキサゾール環、ピラゾール環、トリアゾール環等が挙げられる。
さらに、Y3及びY4で各々表される5員または6員の芳香族環から導出される基の少なくとも一方は、環構成原子として窒素原子を含む芳香族複素環から導出される基を表すが、当該環構成原子として窒素原子を含む芳香族複素環としては、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ジアジン環、トリアジン環、イミダゾール環、イソオキサゾール環、ピラゾール環、トリアゾール環等が挙げられる。
(Y3で表される基の好ましい態様)
一般式(A)において、Y3で表される基としては、上記6員の芳香族環から導出される基であることが好ましく、さらに好ましくは、ベンゼン環から導出される基である。
(Y4で表される基の好ましい態様)
一般式(A)において、Y4で表される基としては、上記6員の芳香族環から導出される基であることが好ましく、さらに好ましくは、窒素原子を環構成原子として含む芳香族複素環から導出される基であり、特に好ましくは、Y4がピリジン環から導出される基であることである。
(一般式(A)で表される基の好ましい態様)
一般式(A)で表される基の好ましい態様としては、下記一般式(A−1)、(A−2)、(A−3)、または(A−4)のいずれかで表される基が挙げられる。
Figure 0005943005
上記一般式(A−1)の式中、Xは−N(R)−、−O−、−S−または−Si(R)(R′)−を表し、E1〜E8は−C(R1)=または−N=を表し、R、R′及びR1は水素原子、置換基またはY1との連結部位を表す。Y2は単なる結合手または2価の連結基を表す。E11〜E20は、−C(R2)=または−N=を表し、少なくとも1つは−N=を表す。R2は、水素原子、置換基または連結部位を表す。但し、E11、E12の少なくとも1つは−C(R2)=を表し、R2は連結部位を表す。n2は1〜4の整数を表す。*は、上記一般式(6)のY1との連結部位を表す。
Figure 0005943005
上記一般式(A−2)の式中、Xは−N(R)−、−O−、−S−または−Si(R)(R′)−を表し、E1〜E8は−C(R1)=または−N=を表し、R、R′及びR1は水素原子、置換基またはY1との連結部位を表す。Y2は単なる結合手または2価の連結基を表す。E21〜E25は−C(R2)=または−N=を表し、E26〜E30は−C(R2)=、−N=、−O−、−S−または−Si(R3)(R4)−を表し、E21〜E30の少なくとも1つは−N=を表す。R2は、水素原子、置換基または連結部位を表し、R3及びR4は水素原子または置換基を表す。但し、E21またはE22の少なくとも1つは−C(R2)=を表し、R2は連結部位を表す。n2は1〜4の整数を表す。*は、上記一般式(6)のY1との連結部位を表す。
Figure 0005943005
上記一般式(A−3)の式中、Xは−N(R)−、−O−、−S−または−Si(R)(R′)−を表し、E1〜E8は−C(R1)=または−N=を表し、R、R′及びR1は水素原子、置換基またはY1との連結部位を表す。Y2は単なる結合手または2価の連結基を表す。E31〜E35は−C(R2)=、−N=、−O−、−S−または−Si(R3)(R4)−を表し、E36〜E40は−C(R2)=または−N=を表し、E31〜E40の少なくとも1つは−N=を表す。R2は、水素原子、置換基または連結部位を表し、R3及びR4は水素原子または置換基を表す。但し、E32またはE33の少なくとも1つは−C(R2)=で表され、R2は連結部位を表す。n2は1〜4の整数を表す。*は、上記一般式(6)のY1との連結部位を表す。
Figure 0005943005
上記一般式(A−4)の式中、Xは−N(R)−、−O−、−S−または−Si(R)(R′)−を表し、E1〜E8は−C(R1)=または−N=を表し、R、R′及びR1は水素原子、置換基またはY1との連結部位を表す。Y2は単なる結合手または2価の連結基を表す。E41〜E50は−C(R2)=、−N=、−O−、−S−または−Si(R3)(R4)−を表し、少なくとも1つは−N=を表す。R2は、水素原子、置換基または連結部位を表し、R3及びR4は水素原子または置換基を表す。但し、E42またはE43の少なくとも1つは−C(R2)=で表され、R2は連結部位を表す。n2は1〜4の整数を表す。*は、上記一般式(6)のY1との連結部位を表す。
以下、一般式(A−1)〜(A−4)のいずれかで表される基について説明する。
一般式(A−1)〜(A−4)で表される基のいずれかのXで表される−N(R)−または−Si(R)(R′)−において、さらに、E1〜E8で表される−C(R1)=において、R、R′及びR1で各々表される置換基は、一般式(1)におけるE51〜E66、E71〜E88で各々表される−C(R3)=のR3で表される置換基と同義である。
一般式(A−1)〜(A−4)で表される基のいずれかにおいて、Y2で表される2価の連結基としては、一般式(6)において、Y1で表される2価の連結基と同義である。
一般式(A−1)のE11〜E20、一般式(A−2)のE21〜E30、一般式(A−3)のE31〜E40、一般式(A−4)のE41〜E50で、各々表される−C(R2)=のR2で表される置換基、さらに−Si(R3)(R4)−のR3,R4で表される置換基は、は、一般式(1)におけるE51〜E66、E71〜E88で各々表される−C(R3)=のR3で表される置換基と同義である。
次に、本発明に係る一般式(6)で表される化合物のさらに好ましい態様について説明する。
[一般式(7)で表される化合物]
本発明では、上記一般式(6)で表される化合物の中でも、下記一般式(7)で表される化合物が好ましい。この一般式(7)は、透明電極1の窒素含有層1aを構成する化合物として示した一般式(1)を含む。以下、一般式(7)で表される化合物について説明する。
Figure 0005943005
上記一般式(7)の式中、Y5は、アリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基を表す。E51〜E66は、各々−C(R3)=または−N=を表し、R3は水素原子または置換基を表す。Y6〜Y9は、各々芳香族炭化水素環から導出される基または芳香族複素環から導出される基を表し、Y6またはY7の少なくとも一方、及びY8またはY9の少なくとも一方は、N原子を含む芳香族複素環から導出される基を表す。n3及びn4は0〜4の整数を表すが、n3+n4は2以上の整数である。
一般式(7)におけるY5は、一般式(1)におけるY5と同義である。
一般式(7)におけるE51〜E66は、一般式(1)におけるE51〜E66と同義である。
一般式(7)において、E51〜E66で各々表される基としては、E51〜E58のうちの6つ以上及びE59〜E66のうちの6つ以上が、各々−C(R3)=で表されることが好ましい。
一般式(7)において、Y6〜Y9は、各々芳香族炭化水素環から導出される基の形成に用いられる芳香族炭化水素環としては、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o−テルフェニル環、m−テルフェニル環、p−テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。
さらに、前記芳香族炭化水素環は、一般式(1)におけるE51〜E66で各々表される−C(R3)=のR3で表される置換基を有してもよい。
一般式(7)において、Y6〜Y9は、各々芳香族複素環から導出される基の形成に用いられる芳香族複素環としては、例えば、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の一つがさらに窒素原子で置換されている環を示す)等が挙げられる。
さらに、前記芳香族炭化水素環は、一般式(1)におけるE51〜E66で各々表される−C(R3)=のR3で表される置換基を有してもよい。
一般式(7)において、Y6またはY7の少なくとも一方、及びY8またはY9の少なくとも一方で表されるN原子を含む芳香族複素環から導出される基の形成に用いられるN原子を含む芳香族複素環としては、例えば、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の一つがさらに窒素原子で置換されている環を示す)等が挙げられる。
一般式(7)において、Y7、Y9で表される基としては、各々ピリジン環から導出される基を表すことが好ましい。
また、一般式(7)において、Y6及びY8で表される基としては、各々ベンゼン環から導出される基を表すことが好ましい。
以上説明したような一般式(7)で表される化合物の中でもさらに好ましい態様として、透明電極1の窒素含有層1aを構成する化合物として示した一般式(1)で表される化合物が例示される。
以上のような一般式(6),(7)、または一般式(1)で表される化合物の具体例として、上記で例示した化合物(1〜112)が示される。
[阻止層:正孔阻止層、電子阻止層]
阻止層は、上記の如く有機化合物薄膜の基本構成層の他に、必要に応じて設けられるものである。例えば、特開平11−204258号公報、同11−204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
正孔阻止層とは、広い意味では、電子輸送層3dの機能を有する。正孔阻止層は、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層3dの構成を必要に応じて、本発明に係る正孔阻止層として用いることができる。正孔阻止層は、発光層3cに隣接して設けられていることが好ましい。
一方、電子阻止層とは、広い意味では、正孔輸送層3bの機能を有する。電子阻止層は、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層3bの構成を必要に応じて電子阻止層として用いることができる。本発明に係る阻止層の膜厚としては、好ましくは3〜100nmであり、さらに好ましくは5〜30nmである。
[補助電極15]
補助電極15は、透明電極1の抵抗を下げる目的で設けるものであって、透明電極1の電極層1bに接して設けられる。補助電極15を形成する材料は、金、白金、銀、銅、アルミニウム等の抵抗が低い金属が好ましい。これらの金属は光透過性が低いため、光取り出し面17aからの発光光hの取り出しの影響のない範囲でパターン形成される。このような補助電極15の形成方法としては、蒸着法、スパッタリング法、印刷法、インクジェット法、エアロゾルジェット法などが挙げられる。補助電極15の線幅は、光を取り出す開口率の観点から50μm以下であることが好ましく、補助電極15の厚さは、導電性の観点から1μ以上であることが好ましい。
[透明封止材17]
透明封止材17は、有機電界発光素子EL-1を覆うものであって、板状(フィルム状)の封止部材であって接着剤19によって基板13側に固定されるものであっても良く、封止膜であっても良い。この透明封止材17の表面は、有機電界発光素子EL-1の発光光hを取り出す光取り出し面17aとなっている。このような透明封止材17は、有機電界発光素子EL-1における透明電極1および対向電極5-1の端子部分を露出させる状態で、少なくとも発光機能層3を覆う状態で設けられている。また透明封止材17に電極を設け、有機電界発光素子EL-1の透明電極1および対向電極5-1の端子部分と、この電極とを導通させるように構成されていても良い。
板状(フィルム状)の透明封止材17としては、具体的には、ガラス基板、ポリマー基板が挙げられ、これらの基板材料をさらに薄型のフィルム状にして用いても良い。ガラス基板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー基板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。
なかでも、素子を薄膜化できるということから、透明封止材17としてポリマー基板を薄型のフィルム状にしたものを好ましく使用することができる。
さらには、フィルム状としたポリマー基板は、JIS K 7126−1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m2・24h・atm)以下、JIS K 7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m2・24h)以下のものであることが好ましい。
また以上のような基板材料は、凹板状に加工して透明封止材17として用いても良い。この場合、上述した基板部材に対してサンドブラスト加工、化学エッチング加工等の加工が施され、凹状が形成される。
またこのような板状の透明封止材17を基板13側に固定するための接着剤19は、透明封止材17と基板13との間に挟持された有機電界発光素子EL-1を封止するためのシール剤として用いられる。このような接着剤19は、具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2−シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。
またこのような接着剤19としては、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
尚、有機電界発光素子EL-1を構成する有機材料は、熱処理により劣化する場合がある。このため、接着剤19は、室温から80℃までに接着硬化できるものが好ましい。また、接着剤19中に乾燥剤を分散させておいてもよい。
透明封止材17と基板13との接着部分への接着剤19の塗布は、市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
また板状の透明封止材17と基板13と接着剤19との間に隙間が形成される場合、この間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
一方、透明封止材17として封止膜を用いる場合、有機電界発光素子EL-1における発光機能層3を完全に覆い、かつ有機電界発光素子EL-1における透明電極1および対向電極5-1の端子部分を露出させる状態で、基板13上に封止膜が設けられる。
このような封止膜は、無機材料や有機材料を用いて構成される。特に、水分や酸素等、有機電界発光素子EL-1における発光機能層3の劣化をもたらす物質の浸入を抑制する機能を有する材料で構成されることとする。このような材料として、例えば、酸化珪素、二酸化珪素、窒化珪素等の無機材料が用いられる。さらに封止膜の脆弱性を改良するために、これら無機材料からなる膜と共に、有機材料からなる膜を用いて積層構造としても良い。
これらの膜の形成方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。
[保護膜、保護板]
尚、ここでの図示は省略したが、基板13との間に有機電界発光素子ELおよび透明封止材17を挟んで保護膜もしくは保護板を設けても良い。この保護膜もしくは保護板は、有機電界発光素子ELを機械的に保護するためのものであり、特に透明封止材17が封止膜である場合には、有機電界発光素子ELに対する機械的な保護が十分ではないため、このような保護膜もしくは保護板を設けることが好ましい。
以上のような保護膜もしくは保護板は、ガラス板、ポリマー板、これよりも薄型のポリマーフィルム、金属板、これよりも薄型の金属フィルム、またはポリマー材料膜や金属材料膜が適用される。このうち特に、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
<有機電界発光素子の製造方法>
次に、有機電界発光素子EL-1の製造方法を、図3〜図5の断面工程図を用いて説明する。
先ず図3に示すように、基板13上に、第1の電極としてアノードとなる対向電極5-1を、蒸着法やスパッタ法などの適宜の成膜法によって形成する。この際、マスクを用いた成膜を行うことにより、対向電極5-1をパターン成膜する。
次にこの上に、正孔注入層3a、正孔輸送層3b、発光層3c、電子輸送層3d、電子注入層3eの順に成膜し、発光機能層3を形成する。これらの各層の成膜は、スピンコート法、キャスト法、インクジェット法、蒸着法、スパッタ法、印刷法等があるが、均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、真空蒸着法またはスピンコート法が特に好ましい。さらに層ごとに異なる成膜法を適用してもよい。これらの各層の成膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50℃〜450℃、真空度10-6Pa〜10-2Pa、蒸着速度0.01nm/秒〜50nm/秒、基板温度−50℃〜300℃、膜厚0.1μm〜5μmの範囲で、各条件を適宜選択することが望ましい。この際、マスクを用いた成膜を行うことにより、対向電極5-1上に発光機能層3をパターン成膜する。
次いで図4に示すように、窒素原子を含んだ化合物からなる窒素含有層1aを、1μm以下、好ましくは1nm〜100nmの膜厚になるように形成する。窒素含有層1aの形成は、スピンコート法、キャスト法、インクジェット法、蒸着法、スパッタ法、印刷法等があるが、均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、真空蒸着法が特に好ましい。この際、マスクを用いた成膜を行うことにより、発光機能層3上に窒素含有層1aをパターン成膜する。この窒素含有層1aは、図示したような発光機能層3と同一パターンであってもよく、また次に形成する電極層と同一パターンであってもよい。
また、窒素含有層1aの上部には、必要に応じて補助電極15をパターン形成する。
その後、図5に示すように、銀(または銀を主成分とした合金)で構成された電極層1bを、4nm〜12nmの膜厚になるように形成する。これにより、窒素含有層1aと電極層1bとで構成されたカソード側の透明電極1を第2の電極として作製する。電極層1bの形成は、スピンコート法、キャスト法、インクジェット法、蒸着法、スパッタ法、印刷法等があるが、均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、真空蒸着法またはスパッタ法が特に好ましい。
また特に電極層1bの形成においては、発光機能層3および窒素含有層1aによって対向電極5-1に対して絶縁状態を保ちつつ、発光機能層3の上方から基板13の周縁に端子部分を引き出した形状にパターン形成する。また、電極層1bの形成前後には、必要に応じて補助電極15のパターン形成を行う。これにより、有機電界発光素子EL-1が得られる。
また以上の後には、先の図2に示したように、有機電界発光素子EL-1における透明電極1および対向電極5-1の端子部分を露出させた状態で、少なくとも発光機能層3を覆う透明封止材17を設ける。この際、接着剤19を用いて、透明封止材17を基板13側に接着し、これらの透明封止材17−基板13間に有機電界発光素子EL-1を封止する。尚、透明電極1および対向電極5-1において、透明封止材17から露出している端子部分は、必要に応じて任意の電極材料によって厚膜化する。
以上により、基板13上に所望の有機電界発光素子EL-1が得られる。このような有機電界発光素子EL-1の作製においては、一回の真空引きで一貫して発光機能層3から対向電極5-1まで作製するのが好ましいが、途中で真空雰囲気から基板13を取り出して異なる成膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。
このようにして得られた有機電界発光素子EL-1に直流電圧を印加する場合には、アノードである対向電極5-1を+の極性とし、カソードである電極層1bを−の極性として、電圧2V以上40V以下程度を印加すると発光が観測できる。また交流電圧を印加してもよい。尚、印加する交流の波形は任意でよい。
<有機電界発光素子EL-1の効果>
以上説明した有機電界発光素子EL-1は、その製造工程において発光機能層3を形成した後に、先に説明した特徴を有する窒素含有層1aを形成し、この上部に銀で構成された電極層1bを蒸着によって形成する。これにより、極薄膜であることにより高い光透過性を保ちながらもシート抵抗の低い電極層1bを、発光機能層3の上部に形成することが可能となる。
そして有機電界発光素子EL-1は、このような導電性と光透過性とを兼ね備えた透明電極1をカソードとして用い、この透明電極1における窒素含有層1a側に発光機能層3とアノードとなる対向電極5-1とをこの順に設けた構成である。したがって、透明電極1と対向電極5-1との間に十分な電圧を印加して有機電界発光素子EL-1での高輝度発光を実現しつつ、透明電極1側からの発光光hの取り出し効率が向上することによる高輝度化を図ることが可能である。さらに、所定輝度を得るための駆動電圧の低減による発光寿命の向上を図ることも可能になる。
また、上述したように窒素含有層1aと電極層1bとを有する透明電極1は、蒸着によって形成可能である。このため、第1の電極としての対向電極5-1、発光機能層3、さらには第2の電極としての透明電極を構成する窒素含有層1aおよび電極層1bの全てを、蒸着法によって形成することが可能である。したがって、例えばスパッタ成膜によって形成されるITOを用いて透明電極を形成する場合と比較して、対向電極5-1〜電極層1bまでの全層の形成を連続的に行うことが可能になるため、プロセスの簡略化を図ることが可能になる。
さらに、発光機能層3上部の窒素含有層1aおよび電極層1bの両方を蒸着法によって形成することにより、発光機能層3に対してダメージが加わることがなく、有機電界発光素子EL-1の発光機能を確保することが可能になる。
≪4.有機電界発光素子の第2例(ボトムエミッション型)≫
<有機電界発光素子の構成>
図6は、本発明の電子デバイスの一例として、上述した透明電極を用いた有機電界発光素子の第2例を示す断面構成図である。この図に示す第2例の有機電界発光素子EL-2が、図2を用いて説明した第1例の有機電界発光素子EL-1と異なるところは、透明基板13’上に第1の電極としての透明電極1を設け、この上部に発光機能層3と、第2の電極としての対向電極5-2とをこの順に積層したところにある。以下、第1例と同様の構成要素についての重複する詳細な説明は省略し、第2例の有機電界発光素子EL-2の特徴的な構成を説明する。
図6に示す有機電界発光素子EL-2は、透明基板13’上に設けられており、透明基板13’側から順に、アノードとなる透明電極1、発光機能層3、およびカソードとなる対向電極5-2が積層されている。このうち、透明電極1として、先に説明した本発明の透明電極1を用いているところが特徴的である。このため有機電界発光素子EL-2は、少なくとも透明基板13’側から発光光hを取り出すボトムエミッション型として構成されている。
このような有機電界発光素子EL-2における発光機能層3の層構造が限定されることはなく、一般的な層構造であって良いことは、第1例と同様である。本第2例の場合の一例としては、アノードとして機能する透明電極1の上部に、正孔注入層3a/正孔輸送層3b/発光層3c/電子輸送層3d/電子注入層3eがこの順に積層され、さらにこの上部にカソードとなる対向電極5-2が積層された構成が例示される。ただし、このうち少なくとも有機材料を用いて構成された発光層3cを有することが必須である。また、電子輸送層3dは、電子注入層3eを兼ねたもので、電子注入性を有する電子輸送層3dとして設けられていても良い。
尚、発光機能層3は、これらの層の他にも、第1例で説明したのと同様に、必要に応じたさまざまな構成が採用され、ここでの図示を省略した正孔阻止層や電子阻止層が設けられても良い。以上のような構成において、透明電極1と対向電極5-2とで発光機能層3が挟持された部分のみが、有機電界発光素子EL-2における発光領域となることも、第1例と同様である。
また本実施形態の有機電界発光素子EL-2においては、透明電極1のうち実質的にアノードとして機能する電極層1b上に、直接、発光機能層3が設けられる。したがって、電極層1bの窒素含有層1aは、上述した式(1)または式(2)を満たす材料を用いて構成されれば良く、電子輸送性や電子注入性を有する材料を用いる必要はない。
また以上のような層構成においては、透明電極1の低抵抗化を図ることを目的とし、透明電極1の電極層1bに接して補助電極15が設けられていても良いことは、第1例と同様である。
さらに、発光機能層3の上方にカソードとして設けられる対向電極5-2は、金属、合金、有機または無機の導電性化合物、およびこれらの混合物が用いられる。具体的には、金(Au)等の金属、ヨウ化銅(CuI)、ITO、ZnO、TiO2、SnO2等の酸化物半導体などが挙げられる。
以上のような対向電極5-2は、これらの導電性材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより作製することができる。また、対向電極5-2としてのシート抵抗は、数百Ω/sq.以下が好ましく、膜厚は通常5nm〜5μm、好ましくは5nm〜200nmの範囲で選ばれる。
またこのようなボトムエミッション型の有機電界発光素子EL-2を封止する封止材17’は、光透過性を有している必要はない。このような封止材17’は、先の第1例で用いた透明封止材と同様の材料の他、金属材料で構成されたものを用いることができる。金属材料としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブデン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属または合金からなるものが挙げられる。このような金属材料は、薄型のフィルム状にして封止材17’として用いることにより、有機電界発光素子が設けられた発光パネル全体を薄膜化できる。
尚、この有機電界発光素子EL-2が、対向電極5-2側からも発光光hを取り出すものである場合、対向電極5-2を構成する材料としては、上述した導電性材料のうち光透過性の良好な導電性材料を選択して用いれば良い。またこの場合、封止材17’としては、光透過性を有する透明封止材が用いられる。
<有機電界発光素子EL-2の製造方法>
以上のような有機電界発光素子電界発光素子EL-2の製造方法は、透明基板13’側から順に、窒素含有層1a、電極層1b、発光機能層3、および対向電極5-2を順次形成すれば良く、各層の形成は先に説明した第1例の有機電界発光素子と同様であって良い。特にこの場合、発光機能層3よりも先に形成される第1の電極としての透明電極1の窒素含有層1aは、蒸着法以外の方法で形成しても良い。これに対して、この窒素含有層1aに隣接して形成される電極層1bは、蒸着法またはスパッタ法によって形成することが好ましい。
<有機電界発光素子EL-2の効果>
以上説明した有機電界発光素子EL-2は、その製造工程において発光機能層3を形成する前に、先に説明した特徴を有する窒素含有層1aを形成し、この上部に銀で構成された電極層1bを蒸着によって形成する。これにより、極薄膜であることにより高い光透過性を保ちながらもシート抵抗の低い電極層1bを、発光機能層3の下部に形成することが可能となる。
そして有機電界発光素子EL-2は、このような導電性と光透過性とを兼ね備えた透明電極1をアノードとして用い、この上部に発光機能層3とカソードとなる対向電極5-2とを設けた構成である。このため、第1例と同様に、透明電極1と対向電極5-2との間に十分な電圧を印加して有機電界発光素子EL-2での高輝度発光を実現しつつ、透明電極1側からの発光光hの取り出し効率が向上することによる高輝度化を図ることが可能である。さらに、所定輝度を得るための駆動電圧の低減による発光寿命の向上を図ることも可能になる。
また第1例と同様に、窒素含有層1aと電極層1bとを有する透明電極1は、蒸着によって形成可能である。このため、第1の電極としての透明電極を構成する窒素含有層1aおよび電極層1b、発光機能層3、さらには第2の電極としての対向電極5-2の全てを、蒸着法によって形成することが可能である。したがって、例えばスパッタ成膜によって形成されるITOを用いて透明電極を形成する場合と比較して、窒素含有層1a〜対向電極5-2までの全層の形成を連続的に行うことが可能になるため、プロセスの簡略化を図ることが可能になる。さらに、発光機能層3上部の対向電極5-2を蒸着法によって形成することにより、発光機能層3に対してダメージが加わることがなく、有機電界発光素子EL-2の発光機能を確保することが可能になる。
≪5.有機電界発光素子の第3例(両面発光型)≫
<有機電界発光素子の構成>
図7は、本発明の電子デバイスの一例として、上述した透明電極を用いた有機電界発光素子の第3例を示す断面構成図である。この図に示す第3例の有機電界発光素子EL-3が、図2を用いて説明した第1例の有機電界発光素子EL-1と異なるところは、第1の電極および第2の電極としての2つの透明電極1間に発光機能層3を挟持させたところにある。以下、第1例と同様の構成要素についての重複する詳細な説明は省略し、第3例の有機電界発光素子EL-3の特徴的な構成を説明する。
図7に示す有機電界発光素子EL-3は、透明基板13’上に設けられており、透明基板13’側から順に、アノードとなる透明電極1、発光機能層3、およびカソードとなる透明電極1がこの順に積層されている。このうち、透明電極1として、先に説明した本発明の透明電極1を用いているところが特徴的である。これにより有機電界発光素子EL-3は、透明基板13’側およびこれとは逆側の透明封止材17側の両面から発光光hを取り出す両面発光型として構成されている。
このような有機電界発光素子EL-3における発光機能層3の層構造が限定されることはなく、一般的な層構造であって良いことは、第1例と同様である。本第3例の場合の一例としては、アノードとなる透明電極1の上部に、正孔注入層3a/正孔輸送層3b/発光層3c/電子輸送層3dをこの順に設けた構成が例示され、この上部にカソードとなる透明電極1が積層された構成が例示される。図示した例では、電子輸送層3dが、電子注入層を兼ねると共に、透明電極1の窒素含有層1aを兼ねて設けられている。
尚、発光機能層3は、第1例で説明したと同様に、必要に応じたさまざまな構成が採用され、ここでの図示を省略した正孔阻止層や電子阻止層が設けられても良い。以上のような構成において、2つの透明電極1で挟持された部分のみが、有機電界発光素子EL-3における発光領域となることも、第1例と同様である。
また本実施形態の有機電界発光素子EL-3においては、透明基板13'側に設けられた透明電極1は、透明基板13’側から窒素含有層1a、電極層1bの順に設けられ、実質的にアノードとして機能する電極層1bの上部に発光機能層3が直接設けられた状態となる。したがって、電極層1bの窒素含有層1aは、上述した式(1)または式(2)を満たす材料を用いて構成されれば良く、電子輸送性や電子注入性を有する材料を用いる必要はない。
これに対して、発光機能層3上に設けられた透明電極1は、発光機能層3側から窒素含有層1a、電極層1bの順に設けられ、実質的にカソードとして機能する電極層1bと発光機能層3との間に窒素含有層1aが配置された状態となる。このため、窒素含有層1aは、発光機能層3の一部を構成する層ともなる。このような窒素含有層1aは、上述した式(1)または式(2)を満たす材料のうち、電子輸送性または電子注入性を有する材料を用いて構成されることが好ましい。したがって、例えば電子輸送材料として例示した一般式(6)、(7)、および一般式(1)で表される電子輸送材料のうちから、式(1)または式(2)を満たす材料が選択して用いられることとする。
また以上のような層構成においては、透明電極1の低抵抗化を図ることを目的とし、2つの透明電極1の電極層1bに接して補助電極15が設けられていても良いことも、第1例と同様である。
さらにこの有機電界発光素子EL-3は、両面発光型であるため、光透過性を有する透明封止材17によって封止される。
<有機電界発光素子EL-3の製造方法>
以上のような有機電界発光素子電界発光素子EL-3の製造方法は、透明基板13’側から順に、窒素含有層1a、電極層1b、発光機能層3、窒素含有層1a、および電極層1bを順次形成すれば良く、各層の形成は先に説明した第1例の有機電界発光素子と同様であって良い。特にこの場合、発光機能層3よりも先に形成される第1の電極としての透明電極1の窒素含有層1aは、蒸着法以外の方法で形成しても良い。これに対して、この窒素含有層1a上に形成される電極層1bは、蒸着法またはスパッタ法によって形成することが好ましい。また、発光機能層3の次に形成される透明電極1の窒素含有層1aは、蒸着法によって形成することが好ましく、電極層1bは蒸着法またはスパッタ法によって形成することが好ましい。
<有機電界発光素子EL-3の効果>
以上説明した有機電界発光素子EL-3は、その製造工程において、発光機能層3の形成の前後に、第1の電極および第2の電極として透明電極1を形成する際、先に説明した特徴を有する窒素含有層1aの上部に、銀で構成された電極層1bを蒸着によって形成する。これにより、極薄膜であることにより高い光透過性を保ちながらもシート抵抗の低い電極層1bを、発光機能層3を挟持する状態で形成することが可能となる。
そして有機電界発光素子EL-3は、このような導電性と光透過性とを兼ね備えた透明電極1をアノードおよびカソードとして用い、この間に発光機能層3を挟持した構成である。このため、第1例と同様に、2つの透明電極1間に十分な電圧を印加して有機電界発光素子EL-3での高輝度発光を実現しつつ、2つの透明電極1側からの発光光hの取り出し効率が向上することによる高輝度化を図ることが可能である。さらに、所定輝度を得るための駆動電圧の低減による発光寿命の向上を図ることも可能になる。
また第1例と同様に、窒素含有層1aと電極層1bとを有する透明電極1は、蒸着によって形成可能である。このため、第1の電極としての透明電極1を構成する窒素含有層1aおよび電極層1b、発光機能層3、さらには第2の電極としての透明電極1を構成する窒素含有層1aおよび電極層1bの全てを、蒸着法によって形成することが可能である。したがって、例えばスパッタ成膜によって形成されるITOを用いて透明電極を形成する場合と比較して、有機電界発光素子EL-3を構成する全層の形成を連続的に行うことが可能になるため、プロセスの簡略化を図ることが可能になる。さらに、発光機能層3上部の窒素含有層1aおよび電極層1bを蒸着法によって形成することにより、発光機能層3に対してダメージが加わることがなく、有機電界発光素子EL-3の発光機能を確保することが可能になる。
≪6.有機電界発光素子の第4例(逆積み構成)≫
<有機電界発光素子の構成>
図8は、本発明の電子デバイスの一例として、上述した透明電極を用いた有機電界発光素子の第4例を示す断面構成図である。この図に示す第4例の有機電界発光素子EL-4が、図2を用いて説明した第1例の有機電界発光素子EL-1と異なるところは、透明基板13’側から順にカソード(第1の電極)、発光機能層3、アノード(第2の電極)を設けて積層順を逆にしたところにある。また、発光機能層3下方の第1の電極を透明電極とし、発光機能層3上方の第2の電極を対向電極5-4としたボトムエミッション構成である。以下、第1例と同様の構成要素についての重複する詳細な説明は省略し、第4例の有機電界発光素子EL-4の特徴的な構成を説明する。
図8に示す有機電界発光素子EL-4は、透明基板13’上に設けられており、透明基板13’側から順に、カソードとなる透明電極1、発光機能層3、およびアノードとなる対向電極5-4がこの順に積層されている。このうち、透明電極1として、先に説明した本発明の透明電極1を用いているところが特徴的である。このため有機電界発光素子EL-4は、少なくとも透明基板13'側から発光光hを取り出すボトムエミッション型として構成されている。
このような有機電界発光素子EL-4における発光機能層3の層構造が限定されることはなく、一般的な層構造であって良いことは、第1例と同様である。本第4例の場合の一例としては、カソードとなる透明電極1の上部に、電子注入層3e/電子輸送層3d/発光層3c/正孔輸送層3b/正孔注入層3aをこの順に設けた構成が例示され、この上部にアノードとなる対向電極5-4が積層された構成が例示される。
尚、発光機能層3は、第1例で説明したと同様に、必要に応じたさまざまな構成が採用され、ここでの図示を省略した正孔阻止層や電子阻止層が設けられても良い。以上のような構成において、透明電極1と対向電極5-4とで挟持された部分のみが、有機電界発光素子EL-4における発光領域となることも、第1例と同様である。
また本実施形態の有機電界発光素子EL-4においては、透明基板13'側に設けられた透明電極1は、実質的にカソードとして機能する電極層1b上に、直接、発光機能層3が設けられた状態となる。したがって、電極層1bに隣接する窒素含有層1aは、上述した式(1)または式(2)を満たす材料を用いて構成されれば良く、正孔輸送性や正孔注入性を有する材料を用いる必要はない。
また以上のような層構成においては、透明電極1の低抵抗化を図ることを目的とし、透明電極1の電極層1bに接して補助電極15が設けられていても良いことも、第1例と同様である。
さらに、発光機能層3の上方にアノードとして設けられる対向電極5-4は、第1例のアノードと同様の金属、合金、有機または無機の導電性化合物、およびこれらの混合物が用いられる。
尚、本第実施形態の変形例として、発光機能層3上のアノードも透明電極1とする構成が例示される。この場合、発光機能層3上に窒素含有層1aを介して設けられた電極層1bが実質的なアノードとなる。そして、発光機能層3上に設けられた窒素含有層1aは、発光機能層3の一部を構成する層ともなる。このような窒素含有層1aは、上述した式(1)または式(2)を満たす材料のうち、正孔輸送性または正孔注入性を有する材料を用いて構成されることが好ましい。
<有機電界発光素子EL-4の製造方法>
以上のような有機電界発光素子電界発光素子EL-4の製造方法は、透明基板13’側から順に、窒素含有層1a、電極層1b、発光機能層3、および対向電極5-4を順次形成すれば良く、各層の形成は先に説明した第1例の有機電界発光素子と同様であって良い。特にこの場合、発光機能層3よりも先に形成される第1の電極としての透明電極1の窒素含有層1aは、蒸着法以外の方法で形成しても良い。これに対して、この窒素含有層1a上に形成される電極層1bは、蒸着法またはスパッタ法によって形成することが好ましい。
<有機電界発光素子EL-4の効果>
以上説明した有機電界発光素子EL-4は、その製造工程において発光機能層3を形成する前に、先に説明した特徴を有する窒素含有層1aを形成し、この上部に銀で構成された電極層1bを蒸着によって形成する。これにより、極薄膜であることにより高い光透過性を保ちながらもシート抵抗の低い電極層1bを、発光機能層3の下部に形成することが可能となる。
そして有機電界発光素子EL-4は、このような本発明の導電性と光透過性とを兼ね備えた透明電極1をカソードとして用い、この上部に発光機能層3とアノードとなる対向電極5-4とをこの順に設けた構成である。このため、第1例と同様に、透明電極1と対向電極5-4との間に十分な電圧を印加して有機電界発光素子EL-4での高輝度発光を実現しつつ、透明電極1側からの発光光hの取り出し効率が向上することによる高輝度化を図ることが可能である。さらに、所定輝度を得るための駆動電圧の低減による発光寿命の向上を図ることも可能になる。
また第1例と同様に、窒素含有層1aと電極層1bとを有する透明電極1は、蒸着によって形成可能である。このため、第1の電極としての透明電極を構成する窒素含有層1aおよび電極層1b、発光機能層3、さらには第2の電極としての対向電極5-4の全てを、蒸着法によって形成することが可能である。したがって、例えばスパッタ成膜によって形成されるITOを用いて透明電極を形成する場合と比較して、窒素含有層1a〜対向電極5-4までの全層の形成を連続的に行うことが可能になるため、プロセスの簡略化を図ることが可能になる。さらに、発光機能層3上部の対向電極5-4を蒸着法によって形成することにより、発光機能層3に対してダメージが加わることがなく、有機電界発光素子EL-2の発光機能を確保することが可能になる。
≪7.有機電界発光素子の用途≫
上述した各構成の有機電界発光素子は、上述したように面発光体であるため各種の発光光源として用いることができる。例えば、家庭用照明や車内照明などの照明装置、時計や液晶用のバックライト、看板広告用照明、信号機の光源、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これに限定するものではなく、特にカラーフィルターと組み合わせた液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
また、本発明の有機電界発光素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。この場合、近年の照明装置およびディスプレイの大型化にともない、有機電界発光素子を設けた発光パネル同士を平面的に接合する、いわゆるタイリングによって発光面を大面積化しても良い。
動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。また異なる発光色を有する本発明の有機電界発光素子を2種以上使用することにより、カラーまたはフルカラー表示装置を作製することが可能である。
以下では、用途の一例として照明装置について説明し、次にタイリングによって発光面を大面積化した照明装置について説明する。
≪8.照明装置−1≫
本発明の照明装置は、上記有機電界発光素子を有する。
本発明の照明装置に用いる有機電界発光素子は、上述した構成の各有機電界発光素子に共振器構造を持たせた設計としてもよい。共振器構造として構成された有機電界発光素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより上記用途に使用してもよい。
尚、本発明の有機電界発光素子に用いられる材料は、実質的に白色の発光を生じる有機電界発光素子(白色有機電界発光素子ともいう)に適用できる。例えば、複数の発光材料により複数の発光色を同時に発光させて混色により白色発光を得ることもできる。複数の発光色の組み合わせとしては、赤色、緑色、青色の3原色の3つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した2つの発光極大波長を含有したものでもよい。
また、複数の発光色を得るための発光材料の組み合わせは、複数のリン光または蛍光で発光する材料を複数組み合わせたもの、蛍光またはリン光で発光する発光材料と、発光材料からの光を励起光として発光する色素材料との組み合わせたもののいずれでもよいが、白色有機電界発光素子においては、発光ドーパントを複数組み合わせて混合したものでもよい。
このような白色有機電界発光素子は、各色発光の有機電界発光素子をアレー状に個別に並列配置して白色発光を得る構成と異なり、有機電界発光素子自体が白色を発光する。このため、素子を構成するほとんどの層の成膜にマスクを必要とせず、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で例えば電極膜を形成でき、生産性も向上する。
またこのような白色有機電界発光素子の発光層に用いる発光材料としては、特に制限はなく、例えば液晶表示素子におけるバックライトであれば、CF(カラーフィルター)特性に対応した波長範囲に適合するように、本発明に係る金属錯体、また公知の発光材料の中から任意のものを選択して組み合わせて白色化すればよい。
以上に説明した白色有機電界発光素子を用いれば、実質的に白色の発光を生じる照明装置を作製することが可能である。
≪9.照明装置−2≫
図9には、上記各構成の有機電界発光素子を複数用いて発光面を大面積化した照明装置の断面構成図を示す。この図に示す照明装置は、例えば透明基板13’上に有機電界発光素子EL-2を設けた複数の発光パネル21を、支持基板23上に複数配列する(すなわちタイリングする)ことによって発光面を大面積化した構成である。支持基板23は、封止材17’を兼ねるものであっても良く、この支持基板23と、発光パネル21の透明基板13’との間に有機電界発光素子EL-2を挟持する状態で各発光パネル21をタイリングする。支持基板23と透明基板13’との間には接着剤19を充填し、これによって有機電界発光素子EL-2を封止しても良い。尚、発光パネル21の周囲には、アノードである透明電極1およびカソードである対向電極5-2の端部を露出させておく。ただし図面においては対向電極5-2の露出部分のみを図示した。
このような構成の照明装置では、各発光パネル21の中央が発光領域Aとなり、発光パネル21間には非発光領域Bが発生する。このため、非発光領域Bからの光取り出し量を増加させるための光取り出し部材を、光取り出し面13aの非発光領域Bに設けても良い。光取り出し部材としては、集光シートや光拡散シートを用いることができる。
尚、このような支持基板23上にタイリングする発光パネル21は、有機電界発光素子EL-2を備えたものを例示したが、この発光パネル21には上述した各有機電界発光素子を用いることができ、支持基板23が光取り出し側となる場合には、光透過性を有する支持基板23を用いれば良い。
≪透明電極の作製−1≫
以下に説明するように、試料1-1〜1-12の各透明電極を、導電性領域の面積が5cm×5cmとなるように作製した。
試料1-1では、銀を用いた膜厚5nmの電極層で構成された単層構造の透明電極を作製した。試料1-2の透明電極の作製においては、窒素を含有しないアントラセン(化合物No.01)を用いた層と、この上部の銀を用いた膜厚5nmの電極層との積層構造の透明電極を作製した。
また試料1-3〜1-12では、各化合物で構成された窒素含有層とこの上部の銀を用いた膜厚5nmの電極層との積層構造の透明電極を作製した。試料1-3〜1-12のそれぞれの透明電極の作製においては、窒素含有層を構成する化合物として、下記に示すような窒素を含有する各化合物No.02〜No.11用いた。これらの化合物のうち、化合物No.03、No.08は一般式(1)に含まれる化合物であり、化合物No.11は一般式(2)に含まれる化合物である。
Figure 0005943005
Figure 0005943005
下記表1には、試料1-3〜1-12で用いた各化合物No.02〜No.11についての、銀(Ag)と安定的に結合する化合物中の窒素原子の数[n]、銀(Ag)と化合物中における窒素(N)との相互作用エネルギー[ΔE]、および化合物の表面積[s]、およびこれらから算出した有効作用エネルギー[ΔEef]を示した。[n]を求めるための化合物中の窒素原子を含む環に対して当該窒素原子と銀とのなす二面角[D]、および[ΔE]は、Gaussian 03(Gaussian, Inc., Wallingford, CT, 2003)を用いて算出した。尚、これらの試料1-3〜1-12で用いた各化合物No.02〜No.11においては、二面角D<10度の範囲である窒素原子を、数[n]にカウントした。
化合物No.02は、化合物中に含まれる窒素原子(N)と、電極層を構成する銀(Ag)との関係を示す有効エネルギー[ΔEef]が、ΔEef>−0.1である。これに対して、化合物No.03〜No.11の化合物は、ΔEef≦−0.1である。
<試料1-1の透明電極の作製手順>
先ず、透明な無アルカリガラス製の基材を、市販の真空蒸着装置の基材ホルダーに固定し、真空蒸着装置の真空槽に取り付けた。またタングステン製の抵抗加熱ボートに銀(Ag)を入れ、当該真空槽内に取り付けた。次に、真空槽を4×10-4Paまで減圧した後、抵抗加熱ボートを通電して加熱し、蒸着速度0.1nm/秒〜0.2nm/秒で、膜厚5nmの銀からなる単層構造の透明電極を形成した。
<試料1-2〜1-12の透明電極の作製手順>
透明な無アルカリガラス製の基材を市販の真空蒸着装置の基材ホルダーに固定した。また、各透明電極の作製において、上記各化合物No.01〜No.11をタンタル製抵抗加熱ボートに入れた。これらの基板ホルダーと加熱ボートとを真空蒸着装置の第1真空槽に取り付けた。また、タングステン製の抵抗加熱ボートに銀(Ag)を入れ、第2真空槽内に取り付けた。
この状態で、先ず、第1真空槽を4×10-4Paまで減圧した後、各化合物の入った加熱ボートに通電して加熱し、蒸着速度0.1nm/秒〜0.2nm/秒で基材上に膜厚25nmの各化合物で構成され下地層(試料1-3〜1-12においては窒素含有層)を設けた。
次に、窒素含有層まで成膜した基材を真空のまま第2真空槽に移し、第2真空槽を4×10-4Paまで減圧した後、銀の入った加熱ボートを通電して加熱した。これにより、蒸着速度0.1nm/秒〜0.2nm/秒で膜厚5nmの銀からなる電極層を形成し、下地層(試料1-3〜1-12においては窒素含有層)と、この上部の電極層との積層構造からなる試料1-2〜1-12の各透明電極を得た。
<実施例1の各試料の評価>
上記で作製した試料1-1〜1-12の各透明電極について、シート抵抗値を測定した。シート抵抗値の測定は、抵抗率計(三菱化学社製MCP−T610)を用い、4端子4探針法定電流印加方式で行った。この結果を下記表1に合わせて示す。
Figure 0005943005
<実施例1の評価結果>
表1から明らかなように、有効作用エネルギーΔEefがΔEef≦−0.1である化合物No.03〜No.11を用いて窒素含有層を構成した試料1-4〜1-12の透明電極は、実質的な導電性を担う銀を用いた電極層が5nmと極薄膜でありながらも、シート抵抗値の測定が可能であり、単層成長型(Frank−van der Merwe:FW型)の膜成長によってほぼ均一な膜厚で形成されていることが確認された。これに対して、窒素含有層を設けていない単層構造の試料1-1の透明電極、窒素を含有しない化合物No.1を用いて窒素含有層に換わる層を構成した試料1-2の透明電極、およびΔEef>−0.1である化合物No.02を用いて窒素含有層を構成した試料1-3の透明電極は、シート抵抗の測定が不可能であった。
また図10には、窒素含有層を構成する化合物No.03〜No.11についての有効作用エネルギーΔEefと、各透明電極について測定されたシート抵抗との関係を示す。この図10から、有効作用エネルギーΔEefがΔEef≦−0.1の確認された範囲では、ΔEefの値が低いほど、透明電極のシート抵抗が低くなる傾向が明らかである。また、有効作用エネルギーΔEefがΔEef≦−0.2の範囲であれば、シート抵抗が1000[Ω/sq.]以下に保たれてさらに好ましい。
以上より、有効作用エネルギーΔEefを指標として窒素含有層を構成する化合物を選択して用いることにより、光透過性を得るために薄膜でありながらも低抵抗な電極膜(すなわち透明電極)が得られることが確認された。
≪透明電極の作製−2≫
以下に説明するように、試料2-1〜2-13の透明電極を、導電性領域の面積が5cm×5cmとなるように作製した。各試料2-1〜2-13の構成を下記表2に示す。
<試料2-1〜2-2の透明電極の作製手順>
試料1-1の作製と同様の手順で、透明な無アルカリガラス製の基材上に、銀からなる単層構造の透明電極を形成した。膜厚は、試料2-1では5nm、試料2-2は15nmとした。
<試料2-3〜2-13の透明電極の作製手順>
実施例1における試料1-2〜1-12と同様の手順で、下記表2に示すように、各化合物を用いて膜厚25nmの下地層(窒素含有層)を形成し、この上部に銀を用いて各膜厚の電極層を形成し、2層構造の透明電極を得た。下地層を構成する化合物は、実施例1で用いたものの中から選択した化合物を用いた。下記表2には、試料2-3〜2-13で用いた各化合物の有効作用エネルギー[ΔEef]を合わせて示した。尚、試料2-3〜2-11の作製においては基板として透明な無アルカリガラスを用い、試料2-12,2-13の作製においては、基板としてポリエチレンテレフタレート(PET)を用いた。
Figure 0005943005
<実施例2の各試料の評価>
上記で作製した試料2-1〜2-13の各透明電極について、光透過率を測定した。光透過率の測定は、分光光度計(日立製作所製U−3300)を用い、試料と同じ基材をベースラインとして行った。この結果を上記表2に合わせて示す。
上記で作製した試料2-1〜2-13の各透明電極について、実施例1と同様にシート抵抗値を測定した。この結果を上記表2に合わせて示す。
<実施例2の評価結果>
表2から明らかなように、有効作用エネルギーΔEefがΔEef≦−0.1である化合物を用いて下地層を構成した試料2-5〜2-13の透明電極は、シート抵抗値が測定され電極として用いることが可能であり、かつ光透過率も50%以上であって透明電極として用いることが可能であることが確認された。また、有効作用エネルギーΔEefが低い化合物No.08,No.11を用いた試料2-7,2-9〜2-13は、基板の種類に係わらずに、膜厚が8nmであっても光透過率が70%前後の高い値に保持され、厚膜化によるシート抵抗値の低下も確認され、光透過率の向上と導電性の向上との両立が図られていることが確認された。
≪有機電界発光素子の作製≫
実施例1,2で作製した構成の各透明電極を、カソードとして発光機能層の上部に設けた構成の有機電界発光素子を作製した。以下、下記表3と共に図11を参照し、作製手順を説明する。尚ここでは、アノードとなる対向電極をITOで構成したことにより、対向電極側からも発光光が取り出されるため、得られる有機電界発光素子は、実際には両面発光型となる。
<試料3-1〜3-9の有機電界発光素子の作製手順>
先ず、透明な無アルカリガラス製の基板13の上部に、スパッタ法によって膜厚100nmのITOで構成された対向電極5-1をアノードとしてパターン形成した。
対向電極5-1が形成された基板を、市販の真空蒸着装置の基板ホルダーに固定し、対向電極5-1の形成面側に蒸着マスクを対向配置し、真空蒸着装置の第1真空槽に取り付けた。また真空蒸着装置内の加熱ボートの各々に、発光機能層3および透明電極1を構成する各材料を、それぞれの層の成膜に最適な量で充填し、当該第1真空槽内に取り付けた。尚、加熱ボートはタングステン製抵抗加熱用材料で作製されたものを用いた。
次いで、真空蒸着装置の第1真空層内を4×10-4Paまで減圧し、各材料が入った加熱ボートを順次通電して加熱することにより、以下のように各層を成膜した。
先ず、正孔輸送注入材料として下記構造式に示すα−NPDが入った加熱ボートに通電して加熱し、α−NPDよりなる正孔注入層と正孔輸送層とを兼ねた正孔輸送・注入層31を、対向電極5-1上に成膜した。この際、蒸着速度0.1nm/秒〜0.2nm/秒、膜厚20nmとした。
Figure 0005943005
次に、先に構造式を示したホスト材料H4の入った加熱ボートと、先に構造式を示した燐光発光性化合物Ir−4の入った加熱ボートとを、それぞれ独立に通電し、ホスト材料H4と燐光発光性化合物Ir−4とよりなる発光層32を、正孔輸送・注入層31上に成膜した。この際、蒸着速度がホスト材料H4:燐光発光性化合物Ir−4=100:6となるように、加熱ボートの通電を調節した。また膜厚30nmとした。
次いで、正孔阻止材料として下記構造式に示すBAlqが入った加熱ボートに通電して加熱し、BAlqよりなる正孔阻止層33を、発光層32上に成膜した。この際、蒸着速度0.1nm/秒〜0.2nm/秒、膜厚10nmとした。
Figure 0005943005
その後、下記構造式に示す化合物10の入った加熱ボートと、フッ化カリウムの入った加熱ボートとを、それぞれ独立に通電し、化合物10とフッ化カリウムとよりなる電子注入層と電子輸送層とを兼ねた電子輸送・注入層34を、正孔阻止層33上に成膜した。この際、蒸着速度が化合物10:フッ化カリウム=75:25になるように、加熱ボートの通電を調節した。また膜厚30nmとした。尚、下記化合物10は、先の実施形態において窒素含有層を構成する化合物の具体例として示した化合物の一つである。
Figure 0005943005
以上の後には、試料3-1〜3-9において、各化合物の入った加熱ボートに通電して加熱し、各化合物で構成された各下地層(試料3-1〜3-9においては窒素含有層1a)を、電子輸送・注入層34上に成膜した。この際、蒸着速度0.1nm/秒〜0.2nm/秒、膜厚25nmとした。下地層を構成する各化合物は、実施例1で用いたものの中から選択した化合物を用いた。
次に、下地層(窒素含有層1a)までを形成した基板13を、真空蒸着装置の第2真空槽内に移送し、第2真空層内を4×10-4Paまで減圧した後、第2真空槽内に取り付けられた銀の入った加熱ボートを通電して加熱した。これにより、蒸着速度0.3nm/秒で膜厚5nmまたは8nmの銀からなる電極層1bを形成し、各試料3-1〜3-9において、各下地層1aとこの上部電極層1bとの積層構造からなる各透明電極1を得た。電極層1bは、カソードとして用いられる。以上により基板13上に、有機電界発光素子EL-1を形成した。
その後、有機電界発光素子EL-1を、厚さ300μmのガラス基板からなる透明封止材17で覆い、有機電界発光素子EL-1を囲む状態で、透明封止材17と基板13との間に接着剤19(シール材)を充填した。接着剤19としては、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を用いた。透明封止材17と基板13との間に充填した接着剤19に対して、ガラス基板(透明封止材17)側からUV光を照射し、接着剤19を硬化させて有機電界発光素子EL-1を封止した。
尚、有機電界発光素子EL-1の形成においては、各層の形成に蒸着マスクを使用し、5cm×5cmの基板13における中央の4.5cm×4.5cmを発光領域Aとし、発光領域Aの全周に幅0.25cmの非発光領域Bを設けた。また、アノードである対向電極5-1と、カソードである透明電極1の電極層1bとは、正孔輸送・注入層31〜下地層1aによって絶縁された状態で、基板13の周縁に端子部分を引き出された形状で形成した。
以上のようにして、基板13上に有機電界発光素子EL-1を設け、これを透明封止材17と接着剤19とで封止した試料3-1〜3-9の有機電界発光素子の各発光パネルを得た。これらの各発光パネルにおいては、発光層32で発生した各色の発光光hが、透明封止材17側、およびITOを用いて構成された対向電極5-1側からも取り出される。
<実施例3の各試料の評価>
試料3-1〜3-9で作製した有機電界発光素子EL-1(発光パネル)について、実施例2と同様に素子全体の光透過率を測定した。この結果を下記表3に合わせて示す。
また試料3-1〜3-9で作製した有機電界発光素子EL-1について、駆動電圧を測定した。この結果を下記表3に合わせて示す。駆動電圧の測定においては、各有機電界発光素子EL-1の透明電極1側(すなわち透明封止材17側)での正面輝度が1000cd/m2となるときの電圧を駆動電圧として測定した。尚、輝度の測定には分光放射輝度計CS−1000(コニカミノルタセンシング製)を用いた。得られた駆動電圧の数値が小さいほど、好ましい結果であることを表わす。
Figure 0005943005
<実施例3の評価結果>
表3から明らかなように、有効作用エネルギーΔEefがΔEef≦−0.1である化合物を用いた下地層を有する試料3-3〜3-9の有機電界発光素子は、素子の光透過率が40%以上であり、駆動電圧の印加による発光が確認された。これに対して、試料3-1〜3-2の、本発明構成ではない透明電極を用いた有機電界発光素子は、素子の光透過率が40%以下であり、または電圧を印加しても発光しなかった。
これにより本発明構成の透明電極を用いた有機電界発光素子は、低い駆動電圧で高輝度発光が可能であることが確認された。またこれにより、所定輝度を得るための駆動電圧の低減と、発光寿命の向上が見込まれることが確認された。
以上の実施例3においては、透明電極1における下地層(窒素含有層1a)の膜厚を25nmとしたが、次の実施例4にも示すように、下地層(窒素含有層1a)の膜厚5nm程度でも同様の結果が得られる。
≪トップエミッション型の有機電界発光素子の作製≫
発光機能層の上部にカソードとして透明電極を設けたトップエミッション型の各有機電界発光素子を作製した。下記表4には、ここで作製した試料4-1〜4-9の各有機電界発光素子の構成を示す。以下、表4と共に図11を参照し、作製手順を説明する。
<試料4-1〜4-9の有機電界発光素子の作製手順>
先ず、透明な無アルカリガラス製の基板13の上部に、スパッタ法によってアルミニウムで構成された対向電極5-1をアノードとしてパターン形成した。膜厚は100nmとした。
次いで、アルミニウムからなる対向電極5-1が形成された基板13上に、先の実施例3の各試料3-1〜3-9と同様の構成で、α−NPDよりなる正孔注入層と正孔輸送層とを兼ねた正孔輸送・注入層31(膜厚20nm)、ホスト材料H4と燐光発光性化合物Ir−4とよりなる発光層32(膜厚30nm)、BAlqよりなる正孔阻止層33(膜厚10nm)、化合物10とフッ化カリウムとよりなる電子輸送・注入層34(膜厚30nm)を積層した発光機能層3を形成した。これらの各層の形成は、実施例3で説明したと同様に行った。
以上の後には、試料4-1〜4-9において、各化合物の入った加熱ボートに通電して加熱し、各化合物で構成された各下地層(窒素含有層1a)を、発光機能層3上に成膜した。この際、蒸着速度0.1nm/秒〜0.2nm/秒、膜厚5nmとした。下地層を構成する化合物は、実施例1で用いたものの中から選択した化合物を用いた。ただし、試料4-3の作製においては、実施例3において正孔輸送・注入層31を構成する材料として示したα−NPDを用いて下地層を成膜した。α−NPDに含有される窒素は、先に説明した二面角[D]が10度以上であるため、有効作用エネルギーΔEefの測定は不能である。
次に、試料4-1および試料4-5の作製においては、下地層(窒素含有層1a)までを形成した基板13をスパッタ装置の処理槽内に移送し、下地層(窒素含有層1a)窒素含有層1aの上部に、スパッタ法によって銀(Ag)で構成された膜厚8nmの電極層1bを形成した。
一方、試料4-2〜4-4、および試料4-6〜4-9においては、窒素含有層1aまでを形成した基板13を真空蒸着装置のもう一つの真空槽内に移送し、この真空槽内を4×10-4Paまで減圧した後、この真空槽内に取り付けられた加熱ボートを通電して加熱した。これにより、蒸着速度0.3nm/秒で膜厚8nmの銀(Ag)で構成された電極層1bを形成した。ただし、試料4-4においては、銀(Ag)とアルミニウム(Al)との共蒸着によって、アルミニウム(Al)を体積比で5%含む銀(AgAl_5%)で構成された電極層1bを形成した。
これにより、各試料4-1〜4-9において、各下地層(窒素含有層1a)とこの上部の実質的にカソードとして用いられる電極層1bとの積層構造からなる各透明電極1を得た。またこれにより、トップエミッション型の有機電界発光素子EL-1を形成した。
その後、実施例3と同様の手順で有機電界発光素子EL-1を封止した。また、有機電界発光素子EL-1の形成においては、各層の形成に蒸着マスクを使用し、5cm×5cmの基板13における中央の4.5cm×4.5cmを発光領域Aとし、発光領域Aの全周に幅0.25cmの非発光領域Bを設けた。また、アノードである対向電極5-1と、カソードである電極層1bとは、正孔輸送・注入層31〜電子輸送・注入層34によって絶縁された状態で、基板13の周縁に端子部分を引き出された形状で形成した。このようにして得られた各発光パネルにおいては、発光層32で発生した各色の発光光hが、透明封止材17側から取り出される。
<実施例4の各試料の評価−1>
試料4-1〜4-9で作製した有機電界発光素子EL-1(発光パネル)について、駆動電圧を測定した。駆動電圧の測定においては、各有機電界発光素子EL-1の透明電極1側(すなわち透明封止材17側)での正面輝度が1000cd/m2となるときの電圧を駆動電圧として測定した。尚、輝度の測定には分光放射輝度計CS−1000(コニカミノルタセンシング製)を用いた。得られた駆動電圧の数値が小さいほど、好ましい結果であることを表わす。この結果を下記表4に合わせて示す。
<実施例4の各試料の評価−2>
また試料4-1〜4-9で作製した有機電界発光素子EL-1(発光パネル)について、輝度の均一性の評価を行った。輝度の均一性の評価においては、各有機電界発光素子EL-1に2.5mA/cm2の電流を加え、透明電極1側(すなわち透明封止材17側)の発光面における中心の輝度(中心輝度)と、透明電極1側の給電点に近い端部の輝度(端部輝度)とを測定した。輝度の測定には上記分光放射輝度計CS−1000(コニカミノルタセンシング製)を用いた。そして、測定された端部輝度に対する中心輝度を、輝度の均一性として算出した。このため、輝度の均一性は、数値が1に近いほど好ましい結果であることを表わす。この結果を下記表4に合わせて示す。
<実施例4の各試料の評価−3>
さらに試料4-1〜4-9で作製した有機電界発光素子EL-1(発光パネル)について、寿命特性として輝度半減寿命を測定した。輝度半減寿命の測定においては、各有機電界発光素子EL-1の透明電極1側(すなわち透明封止材17側)での正面輝度が1000cd/m2となるときの電流を求めた。得られた電流を一定に保ち、経時での輝度の変化を分光放射輝度計CS−1000(コニカミノルタセンシング製)で測定し、初期輝度に対する輝度が50%になるのに要する時間を、各有機電界発光素子EL-1の輝度半減寿命とした。ここでは、試料4-3の有機電界発光素子EL-1の輝度半減寿命を100%とした時の相対寿命を算出し、この結果を下記表4に合わせて示す。
Figure 0005943005
<実施例4の評価結果>
表4から明らかなように、試料4-4〜4-9の有機電界発光素子、すなわち有効作用エネルギーΔEef≦−0.1である化合物で構成された窒素含有層1a上に電極層1bを設けた透明電極を有する有機電界発光素子は、駆動電圧の印加による発光が確認された。またこれらの有機電界発光素子は、駆動電圧6V以下の低い駆動電圧で1000cd/m2の正面輝度の発光が得られることが確認された。さらにこれらの有機電界発光素子は、輝度の均一性が0.9以上と良好であり、かつ輝度半減寿命も1.6倍以上であって、長寿命化が達成されていることが確認された。
以上の結果は、電極層1bを蒸着法によって形成した場合であっても、スパッタ法によって形成した場合であっても、ほぼ同様であった。また、電極層1bが、アルミニウムを含有している場合であっても同様であった。
これに対して、試料4-1〜4-2の有機電界発光素子、すなわち有効作用エネルギーΔEef>−0.1である化合物で構成された下地層(窒素含有層1a)上に電極層1bを設けた透明電極を有する有機電界発光素子は、電極層1bの成膜方法に係わらず発光が得られなかった。また、試料4-3の有効作用エネルギーΔEefが測定不能な化合物(α−NPD)で構成された下地層上に電極層1bを設けた透明電極を有する有機電界発光素子では、駆動電圧8V以上と高く、輝度の均一性も0.7と低かった。
≪有機電界発光素子の作製≫
実施例1,2で作製した構成の各透明電極を、アノードとして発光機能層の下部に設けた有機電界発光素子を作製した。以下、表5と共に図12を参照し、作製手順を説明する。尚ここでは、カソードとなる対向電極をITOで構成したことにより、対向電極側からも発光光が取り出されるため、得られる有機電界発光素子は、実際には両面発光型となる。
<試料5-1〜5-10の有機電界発光素子の作製手順>
先ず試料5-1〜5-10の作製において、透明な無アルカリガラス製の透明基板13’の
上部に、各化合物で構成された下地層(窒素含有層1a)を25nmの膜厚で形成し、続いて銀を用いた電極層1bを各膜厚で形成し、2層構造の透明電極1を得た。このような各透明電極1は、実施例1の試料1-2〜1-12と同様の手順で形成した。ここで形成した電極層1bが実質的なアノードとして用いられる。
その後、先の実施例3の各試料3-1〜3-9と同様の構成で、α−NPDよりなる正孔注入層と正孔輸送層とを兼ねた正孔輸送・注入層31(膜厚20nm)、ホスト材料H4と燐光発光性化合物Ir−4とよりなる発光層32(膜厚30nm)、BAlqよりなる正孔阻止層33(膜厚10nm)、化合物10とフッ化カリウムとよりなる電子輸送・注入層34(膜厚30nm)を積層した発光機能層3を形成した。これらの各層の形成は、実施例3で説明したと同様に行った。
以上の後には、発光機能層3が形成された透明基板13’上に、スパッタ法によって膜厚100nmのITOからなる対向電極5-2を形成した。この対向電極5-2は、カソードとして用いられる。以上により透明基板13’上に、有機電界発光素子EL-2を形成した。
その後は、実施例3と同様に、有機電界発光素子EL-2を、ガラス基板(封止材17’)で封止した。また、有機電界発光素子EL-2の形成においては、各層の形成に蒸着マスクを使用し、5cm×5cmの透明基板13における中央の4.5cm×4.5cmを発光領域Aとし、発光領域Aの全周に幅0.25cmの非発光領域Bを設けた。また、アノードである透明電極1の電極層1bと、カソードである対向電極5-2とは、正孔輸送・注入層31〜電子輸送・注入層34によって絶縁された状態で、透明基板13’の周縁に端子部分を引き出された形状で形成した。
以上のようにして、透明基板13’上に有機電界発光素子EL-2を設け、これを封止材17’と接着剤19とで封止した試料5-1〜5-10の有機電界発光素子の各発光パネルを得た。これらの各発光パネルにおいては、発光層32で発生した各色の発光光hが、透明封基板13’側から、およびITOで構成された対向電極5-2側からも取り出される。
<実施例5の各試料の評価>
試料5-1〜5-10で作製した有機電界発光素子EL-2(発光パネル)について、実施例3と同様に、光透過率と駆動電圧とを測定した。この結果を下記表5に合わせて示す。
Figure 0005943005
<実施例5の評価結果>
表5から明らかなように、有効作用エネルギーΔEefがΔEef≦−0.1である化合物を用いた下地層(窒素含有層1a)を有する試料5-4〜5-10の有機電界発光素子は、素子の光透過率が40%以上であり、駆動電圧の印加による発光が確認された。これに対して、試料5-1〜5-3の、本発明構成ではない透明電極を用いた有機電界発光素子は、素子の光透過率が40%以下であり、または電圧を印加しても発光しなかった。
これにより本発明構成の透明電極を用いた有機電界発光素子は、低い駆動電圧で高輝度発光が可能であることが確認された。またこれにより、所定輝度を得るための駆動電圧の低減と、発光寿命の向上が見込まれることが確認された。
≪ボトムエミッション型の有機電界発光素子の作製≫
発光機能層の下部に、アノードとして透明電極を設けたボトムエミッション型の有機電界発光素子を作製した。下記表6には、ここで作製した試料6-1〜6-12の各有機電界発光素子の構成を示す。以下、表6と共に図12を参照し、作製手順を説明する。
<試料6-1〜6-12の有機電界発光素子の作製手順>
先ず試料6-1〜6-12の作製において、透明な無アルカリガラス製の透明基板13’の上部に、先の実施例で説明した蒸着法によって、各化合物で構成された下地層(窒素含有層1a)を25nmの膜厚で形成した。下地層を構成する各化合物は、実施例1で用いたものの中から選択した化合物を用いた。ただし、試料6-3の作製においてはアルミニウムで構成された下地層を膜厚0.1nmで成膜した。また、試料6-4の作製においては、実施例3において正孔輸送・注入層31を構成する材料として示したα−NPDを用いて下地層を成膜した。
次に、試料6-1および試料6-6の作製においては、下地層(窒素含有層1a)までを形成した透明基板13’をスパッタ装置の処理槽内に移送し、下地層(窒素含有層1a)の上部に、スパッタ法によって銀で構成された膜厚8nmの電極層1bを形成した。
一方、試料6-2〜6-5、および試料6-7〜6-12においては、下地層(窒素含有層1a)までを形成した基板13を真空蒸着装置のもう一つの真空槽内に移送し、この真空槽内を4×10-4Paまで減圧した後、この真空槽内に取り付けられた加熱ボートを通電して加熱した。これにより、蒸着速度0.3nm/秒で膜厚8nmの銀(Ag)で構成された電極層1bを形成した。ただし、試料6-5においては、銀(Ag)とアルミニウム(Al)との共蒸着によって、アルミニウム(Al)を体積比で5%含む銀(AgAl_5%)で構成された電極層1bを形成した。
これにより、各試料6-1〜6-12において、各下地層(窒素含有層1a)と、この上部の実質的なアノードとして用いられる電極層1bとの積層構造からなる各透明電極1を得た。
その後、先の実施例3の各試料3-1〜3-9と同様の構成で、α−NPDよりなる正孔注入層と正孔輸送層とを兼ねた正孔輸送・注入層31(膜厚20nm)、ホスト材料H4と燐光発光性化合物Ir−4とよりなる発光層32(膜厚30nm)、BAlqよりなる正孔阻止層33(膜厚10nm)、化合物10とフッ化カリウムとよりなる電子輸送・注入層34(膜厚30nm)を積層した発光機能層3を形成した。
この際、試料6-1〜6-10では、実施例2で説明したと同様に蒸着法によって各層を成膜した。一方、試料6-11、6-12では、正孔輸送・注入層31を塗布法によって成膜した後、その他の発光層32、正孔阻止層33、および電子輸送・注入層34の各層を蒸着法によって順次成膜した。
以上の後、発光機能層3が形成された透明基板13’を、真空蒸着装置のもう一つの真空槽内に移送し、この真空槽内を4×10-4Paまで減圧した後、この真空槽内に取り付けられたアルミニウムの入った加熱ボートを通電して加熱した。これにより、蒸着速度0.3nm/秒で膜厚100nmのアルミニウムからなる対向電極5-2を形成した。この対向電極5-2は、カソードとして用いられる。以上により透明基板13’上に、ボトムエミッション型の有機電界発光素子EL-2を形成した。
その後は、実施例3と同様の手順で有機電界発光素子EL-1を封止した。また、有機電界発光素子EL-2の形成においては、各層の形成に蒸着マスクを使用し、5cm×5cmの透明基板13における中央の4.5cm×4.5cmを発光領域Aとし、発光領域Aの全周に幅0.25cmの非発光領域Bを設けた。また、アノードである透明電極1の電極層1bと、カソードである対向電極5-2とは、正孔輸送・注入層31〜電子輸送・注入層34によって絶縁された状態で、透明基板13’の周縁に端子部分を引き出された形状で形成した。このようにして得られた各発光パネルにおいては、発光層32で発生した各色の発光光hが透明基板13’側から取り出される。
<実施例6の各試料の評価−1>
試料6-1〜6-12で作製した有機電界発光素子EL-2(発光パネル)について、実施例3と同様にして駆動電圧を測定した。この結果を下記表6に合わせて示す。
<実施例6の各試料の評価−2>
また試料6-1〜6-12で作製した有機電界発光素子EL-2(発光パネル)について、実施例4と同様にして輝度の均一性を算出した。この結果を下記表6に合わせて示す。
<実施例6の各試料の評価−3>
また試料6-1〜6-12で作製した有機電界発光素子EL-2(発光パネル)について、実施例4と同様にして輝度半減寿命を測定した。ここでは、試料6-3の有機電界発光素子の輝度半減寿命を100%とした時の相対寿命を算出し、この結果を下記表6に合わせて示す。
<実施例6の各試料の評価−4>
さらに試料6-1〜6-12で作製した有機電界発光素子EL-2(発光パネル)について、整流比を測定した。ここでは、順方向に+2.5Vの駆動電圧を印加した場合の電流値と、逆方向に−2.5V駆動電圧を印加した場合の電流値を測定し、[電流値(+2.5V)/電流値(−2.5V)]を、整流比として算出した。この結果を下記表6に合わせて示す。
<実施例6の各試料の評価−5>
また試料6-1〜6-12で作製した有機電界発光素子EL-2について、有機電界発光素子EL-2に流れる電流値に対する正面輝度(透明基板13’側)を、電流効率[cd/A]として算出した。ここでは、試料6-3の有機電界発光素子の電流効率を100%とした時の相対的な電流効率を算出し、この結果を下記表6に合わせて示す。
Figure 0005943005
<実施例6の評価結果>
表6から明らかなように、試料6-5〜6-12の有機電界発光素子、すなわち有効作用エネルギーΔEef≦−0.1である化合物で構成された窒素含有層1a上に電極層1bを設けた透明電極を有する有機電界発光素子は、駆動電圧の印加による発光が確認された。またこれらの有機電界発光素子は、駆動電圧6.1V以下の低い駆動電圧で1000cd/m2の正面輝度の発光が得られることが確認された。さらにこれらの有機電界発光素子は、輝度の均一性が0.9以上と良好であり、かつ輝度半減寿命も1.6倍以上であって、長寿命化が達成されていることが確認された。またさらにこれらの有機電界発光素子は、整流比および電流効率のどちらの値も高く、リーク電流が抑えられていた。このことから透明電極1上に、良好な発光機能層が成膜されていることが確認された。
以上の結果は、電極層1bを蒸着法によって形成した場合であっても、スパッタ法によって形成した場合であっても、ほぼ同様であった。また、電極層1bが、アルミニウムを含有している場合であっても同様であった。
これに対して、試料6-1〜6-2の有機電界発光素子、すなわち有効作用エネルギーΔEef>−0.1である化合物で構成された窒素含有層1a上に電極層1bを設けた透明電極を有する有機電界発光素子は、電極層1bの成膜方法に係わらず発光が得られなかった。また、試料6-3のアルミニウムの下地層上に電極層1bを設けた透明電極を有する有機電界発光素子、および試料6-4の有効作用エネルギーΔEefが測定不能な化合物(α−NPD)で構成された下地層上に電極層1bを設けた透明電極を有する有機電界発光素子では、駆動電圧7V以上と高く、輝度の均一性も0.7以下と低く、輝度半減寿命および整流比も100%以下であった。
1a…窒素含有層、1b…電極層、13…基板、13’…透明基板、EL-1,EL-2,EL-3,EL-4…有機電界発光素子(電子デバイス)

Claims (12)

  1. 透明基板と、
    窒素原子をヘテロ原子とした複素環を有し、下記式(1)で表される銀との有効作用エネルギーΔEefが下記式(2)を満たす化合物を用いて構成された窒素含有層と、
    銀または銀を主成分とした合金を用いて前記窒素含有層に隣接して設けられた電極層とを備え、
    前記透明基板上に、前記窒素含有層と前記電極層とがこの順に設けられた
    透明電極。
    Figure 0005943005
  2. 前記化合物と銀との有効作用エネルギーΔEefは、下記式(3)を満たす
    請求項1記載の透明電極。
    Figure 0005943005
  3. 前記化合物は、下記一般式(1)で表される化合物を含む
    請求項1または2に記載の透明電極。
    Figure 0005943005
    〔ただし一般式(1)中、Y5は、アリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基を表す。
    E51〜E66、E71〜E88は、各々−C(R3)=または−N=を表し、R3は水素原子または置換基を表す。
    またE71〜E79の少なくとも1つおよびE80〜E88の少なくとも1つは−N=を表す。n3およびn4は0〜4の整数を表すが、n3+n4は2以上の整数である。〕
  4. 前記化合物は、下記一般式(2)で表される化合物を含む
    請求項1または2に記載の透明電極。
    Figure 0005943005
    〔ただし一般式(2)中、
    Rは置換基を表し、
    T11,T12,T21〜T25、T31〜T35は、各々−C(R12)=または−N=を表し、
    T13〜T15は、各々−C(R12)=を表し、
    前記R12は、水素原子(H)または置換基を表し、
    T11,T12のうち少なくとも1つは−N=であり、
    T21〜T25のうち少なくとも1つは−N=であり、
    T31〜T35のうち少なくとも1つは−N=である。〕
  5. 請求項1〜4の何れかに記載の透明電極を有し、前記電極層上に当該電極層に接して機能層を設けた
    電子デバイス。
  6. 前記電子デバイスが有機電界発光素子である
    請求項5に記載の電子デバイス。
  7. 請求項1〜4の何れかに記載の透明電極と、
    前記透明電極における前記電極層側に設けられた発光機能層と、
    前記透明電極との間に前記発光機能層を挟持する状態で設けられた対向電極とを有する
    有機電界発光素子。
  8. 透明基板上に第1の電極を形成する工程と、
    前記第1の電極上に有機材料を用いた発光機能層を形成する工程と、
    前記発光機能層上に第2の電極を形成する工程とを含み、
    前記第1の電極を形成する工程行う際には、窒素原子をヘテロ原子とした複素環を有し、下記式(1)で表される銀との有効作用エネルギーΔEefが下記式(2)を満たす化合物を用いて構成された窒素含有層を形成し、当該窒素含有層に隣接させて銀または銀を主成分とした合金を用いて構成された光透過性を有する電極層を形成する
    有機電界発光素子の製造方法。
    Figure 0005943005
  9. 前記第1の電極、前記発光機能層、および前記第2の電極を、全て蒸着法によって形成する
    請求項8に記載の有機電界発光素子の製造方法。
  10. 前記化合物と銀との有効作用エネルギーΔEefは、下記式(3)を満たす
    請求項8または9に記載の有機電界発光素子の製造方法。
    Figure 0005943005
  11. 前記化合物は、下記一般式(1)で表される化合物を含む
    請求項8〜10の何れかに記載の有機電界発光素子の製造方法。
    Figure 0005943005
    〔ただし一般式(1)中、Y5は、アリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基を表す。
    E51〜E66、E71〜E88は、各々−C(R3)=または−N=を表し、R3は水素原子または置換基を表す。
    またE71〜E79の少なくとも1つおよびE80〜E88の少なくとも1つは−N=を表す。n3およびn4は0〜4の整数を表すが、n3+n4は2以上の整数である。〕
  12. 前記化合物は、下記一般式(2)で表される化合物を含む
    請求項8〜10の何れかに記載の有機電界発光素子の製造方法。
    Figure 0005943005
    〔ただし一般式(2)中、
    Rは置換基を表し、
    T11,T12,T21〜T25、T31〜T35は、各々−C(R12)=または−N=を表し、
    T13〜T15は、各々−C(R12)=を表し、
    前記R12は、水素原子(H)または置換基を表し、
    T11,T12のうち少なくとも1つは−N=であり、
    T21〜T25のうち少なくとも1つは−N=であり、
    T31〜T35のうち少なくとも1つは−N=である。〕
JP2013551703A 2011-12-27 2012-12-25 透明電極、電子デバイス、有機電界発光素子、および有機電界発光素子の製造方法 Active JP5943005B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2011286813 2011-12-27
JP2011286813 2011-12-27
JP2012041056 2012-02-28
JP2012041056 2012-02-28
PCT/JP2012/083473 WO2013099867A1 (ja) 2011-12-27 2012-12-25 透明電極、電子デバイス、有機電界発光素子、および有機電界発光素子の製造方法

Publications (2)

Publication Number Publication Date
JPWO2013099867A1 JPWO2013099867A1 (ja) 2015-05-07
JP5943005B2 true JP5943005B2 (ja) 2016-06-29

Family

ID=48697352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013551703A Active JP5943005B2 (ja) 2011-12-27 2012-12-25 透明電極、電子デバイス、有機電界発光素子、および有機電界発光素子の製造方法

Country Status (4)

Country Link
US (1) US20150001516A1 (ja)
EP (1) EP2799226A4 (ja)
JP (1) JP5943005B2 (ja)
WO (1) WO2013099867A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6028794B2 (ja) * 2012-04-27 2016-11-16 コニカミノルタ株式会社 電子デバイスの製造装置
JP6028668B2 (ja) * 2013-04-17 2016-11-16 コニカミノルタ株式会社 透明電極、電子デバイス及び有機エレクトロルミネッセンス素子
WO2015015993A1 (ja) * 2013-08-01 2015-02-05 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
TWI583036B (zh) * 2013-09-30 2017-05-11 樂金顯示科技股份有限公司 積層體及其製造方法
KR101512661B1 (ko) * 2013-12-10 2015-04-17 지스마트 주식회사 창틀에 설치가능한 복층 구조를 갖는 투명전광판 및 그 제조방법
US9391610B2 (en) 2014-05-29 2016-07-12 Parade Technologies, Ltd. Single layer touchscreen with ground insertion
KR20190070959A (ko) 2016-12-19 2019-06-21 코니카 미놀타 가부시키가이샤 투명 전극 및 전자 디바이스
UA128288C2 (uk) 2018-03-08 2024-05-29 Інсайт Корпорейшн СПОЛУКИ АМІНОПІРАЗИНДІОЛУ ЯК ІНГІБІТОРИ PI3K-<font face="Symbol">g</font>
US11046658B2 (en) 2018-07-02 2021-06-29 Incyte Corporation Aminopyrazine derivatives as PI3K-γ inhibitors
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH04297076A (ja) 1991-01-31 1992-10-21 Toshiba Corp 有機el素子
JP3016896B2 (ja) 1991-04-08 2000-03-06 パイオニア株式会社 有機エレクトロルミネッセンス素子
JPH06325871A (ja) 1993-05-18 1994-11-25 Mitsubishi Kasei Corp 有機電界発光素子
JP3561549B2 (ja) 1995-04-07 2004-09-02 三洋電機株式会社 有機エレクトロルミネッセンス素子
JP3529543B2 (ja) 1995-04-27 2004-05-24 パイオニア株式会社 有機エレクトロルミネッセンス素子
US5719467A (en) 1995-07-27 1998-02-17 Hewlett-Packard Company Organic electroluminescent device
JP3645642B2 (ja) 1996-03-25 2005-05-11 Tdk株式会社 有機エレクトロルミネセンス素子
US5776623A (en) * 1996-07-29 1998-07-07 Eastman Kodak Company Transparent electron-injecting electrode for use in an electroluminescent device
US5776622A (en) 1996-07-29 1998-07-07 Eastman Kodak Company Bilayer eletron-injeting electrode for use in an electroluminescent device
JP4486713B2 (ja) 1997-01-27 2010-06-23 淳二 城戸 有機エレクトロルミネッセント素子
JP3852509B2 (ja) 1998-01-09 2006-11-29 ソニー株式会社 電界発光素子及びその製造方法
JPH11204359A (ja) 1998-01-14 1999-07-30 Tokin Corp 圧粉磁芯の製造方法と製造装置
JPH11251067A (ja) 1998-03-02 1999-09-17 Junji Kido 有機エレクトロルミネッセント素子
JP2000196140A (ja) 1998-12-28 2000-07-14 Sharp Corp 有機エレクトロルミネッセンス素子とその製造法
JP4729154B2 (ja) 1999-09-29 2011-07-20 淳二 城戸 有機エレクトロルミネッセント素子、有機エレクトロルミネッセント素子群及びその発光スペクトルの制御方法
JP4890669B2 (ja) 2000-03-13 2012-03-07 Tdk株式会社 有機el素子
JP2002008860A (ja) 2000-04-18 2002-01-11 Mitsubishi Chemicals Corp 有機電界発光素子
JP2002015623A (ja) 2000-04-27 2002-01-18 Mitsui Chemicals Inc 透明電極
JP2002015871A (ja) 2000-04-27 2002-01-18 Toray Ind Inc 発光素子
JP2001313179A (ja) 2000-05-01 2001-11-09 Mitsubishi Chemicals Corp 有機電界発光素子
JP4290858B2 (ja) 2000-06-12 2009-07-08 富士フイルム株式会社 有機電界発光素子
JP2002043056A (ja) 2000-07-19 2002-02-08 Canon Inc 発光素子
JP2002141173A (ja) 2000-08-22 2002-05-17 Semiconductor Energy Lab Co Ltd 発光装置
JP4344494B2 (ja) 2000-08-24 2009-10-14 富士フイルム株式会社 発光素子及び新規重合体子
JP4554047B2 (ja) 2000-08-29 2010-09-29 株式会社半導体エネルギー研究所 発光装置
JP4026740B2 (ja) 2000-09-29 2007-12-26 富士フイルム株式会社 有機発光素子材料及びそれを用いた有機発光素子
JP4092901B2 (ja) 2000-10-30 2008-05-28 株式会社豊田中央研究所 有機電界発光素子
JP3855675B2 (ja) 2000-11-30 2006-12-13 三菱化学株式会社 有機電界発光素子
JP2002255934A (ja) 2000-12-25 2002-09-11 Fuji Photo Film Co Ltd 新規化合物、その重合体、それらを利用した発光素子材料およびその発光素子
JP4048525B2 (ja) 2000-12-25 2008-02-20 富士フイルム株式会社 新規インドール誘導体およびそれを利用した発光素子
JP4153694B2 (ja) 2000-12-28 2008-09-24 株式会社東芝 有機el素子および表示装置
US6720090B2 (en) 2001-01-02 2004-04-13 Eastman Kodak Company Organic light emitting diode devices with improved luminance efficiency
JP4598282B2 (ja) 2001-02-09 2010-12-15 三井化学株式会社 アミン化合物および該化合物を含有する有機電界発光素子
JP4655410B2 (ja) 2001-03-09 2011-03-23 ソニー株式会社 有機電界発光素子
JP2002334787A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002334788A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002334786A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP4169246B2 (ja) 2001-03-16 2008-10-22 富士フイルム株式会社 ヘテロ環化合物及びそれを用いた発光素子
JP2002299060A (ja) 2001-03-30 2002-10-11 Fuji Photo Film Co Ltd 有機発光素子
JP2002302516A (ja) 2001-04-03 2002-10-18 Fuji Photo Film Co Ltd 新規ポリマーおよびそれを用いた発光素子
JP2002363227A (ja) 2001-04-03 2002-12-18 Fuji Photo Film Co Ltd 新規ポリマーおよびそれを用いた発光素子
JP2002305083A (ja) 2001-04-04 2002-10-18 Mitsubishi Chemicals Corp 有機電界発光素子
JP2002308837A (ja) 2001-04-05 2002-10-23 Fuji Photo Film Co Ltd 新規化合物、およびそれを用いた発光素子
JP2002308855A (ja) 2001-04-05 2002-10-23 Fuji Photo Film Co Ltd 新規化合物、およびそれを用いた発光素子
JP2002343568A (ja) 2001-05-10 2002-11-29 Sony Corp 有機電界発光素子
JP2002352957A (ja) 2001-05-23 2002-12-06 Honda Motor Co Ltd 有機エレクトロルミネッセンス素子
JP4628594B2 (ja) 2001-06-25 2011-02-09 昭和電工株式会社 有機発光素子および発光材料
JP4003824B2 (ja) 2001-07-11 2007-11-07 富士フイルム株式会社 発光素子
JP4433680B2 (ja) 2002-06-10 2010-03-17 コニカミノルタホールディングス株式会社 薄膜形成方法
JP2006164961A (ja) 2004-11-09 2006-06-22 Ulvac Seimaku Kk 積層型透明電極層の製造方法及びこの方法に使用する積層型透明電極形成用の積層体
JP2008171637A (ja) 2007-01-10 2008-07-24 Fuji Electric Holdings Co Ltd 透明導電膜積層体、該透明導電膜積層体を用いた有機el素子、並びに、これらの製造方法
JP5402639B2 (ja) * 2007-10-26 2014-01-29 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2009151963A (ja) 2007-12-19 2009-07-09 Institute Of Physical & Chemical Research 透明電極およびその製造方法
EP2460866B1 (en) * 2008-05-13 2019-12-11 Konica Minolta Holdings, Inc. Organic electroluminescent element, display device and lighting device
JPWO2010044342A1 (ja) * 2008-10-15 2012-03-15 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、白色有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2010123439A (ja) * 2008-11-20 2010-06-03 Fujifilm Corp 有機電界発光素子
WO2010110164A1 (ja) * 2009-03-26 2010-09-30 コニカミノルタホールディングス株式会社 有機光電変換素子、それを用いた太陽電池及び光センサアレイ
WO2011004807A1 (ja) * 2009-07-10 2011-01-13 コニカミノルタホールディングス株式会社 有機光電変換素子、それを用いた太陽電池および光センサアレイ
JP5577186B2 (ja) * 2009-09-04 2014-08-20 株式会社ジャパンディスプレイ 有機el表示装置
JP2011065765A (ja) * 2009-09-15 2011-03-31 Konica Minolta Holdings Inc 透明電極とそれを用いた有機電子デバイス
WO2011046165A1 (ja) * 2009-10-17 2011-04-21 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、白色に発光する有機エレクトロルミネッセンス素子、表示装置及び照明装置

Also Published As

Publication number Publication date
EP2799226A4 (en) 2016-01-20
JPWO2013099867A1 (ja) 2015-05-07
US20150001516A1 (en) 2015-01-01
EP2799226A1 (en) 2014-11-05
WO2013099867A1 (ja) 2013-07-04

Similar Documents

Publication Publication Date Title
JP6070567B2 (ja) 透明電極、および電子デバイス
JP6003981B2 (ja) 透明電極、電子デバイス、および有機電界発光素子
JP6128117B2 (ja) 透明電極の製造方法
JP5888096B2 (ja) 表示装置
JP5943005B2 (ja) 透明電極、電子デバイス、有機電界発光素子、および有機電界発光素子の製造方法
JP6137170B2 (ja) 有機電界発光素子
JP6256349B2 (ja) 透明電極、及び、電子デバイス
JPWO2013105569A1 (ja) 透明電極、電子デバイス及び有機エレクトロルミネッセンス素子
WO2013035490A1 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP6119742B2 (ja) 透明電極、透明電極の製造方法、電子デバイス、および有機電界発光素子
JPWO2014030666A1 (ja) 透明電極、電子デバイス、および透明電極の製造方法
JP6241281B2 (ja) 透明電極および電子デバイス
JP6070320B2 (ja) 透明電極付き基板、及び、電子デバイス
JP6028794B2 (ja) 電子デバイスの製造装置
JP5998789B2 (ja) 透明電極、及び電子デバイス
JP6366221B2 (ja) 透明電極、及び電子デバイス
WO2013137234A1 (ja) 透明電極、電子デバイス、および透明電極の製造方法
JP6241282B2 (ja) 透明電極および電子デバイス
JP6119605B2 (ja) 有機エレクトロルミネッセンス素子及び照明装置
JP5817557B2 (ja) 透明バリア膜、および電子デバイス
JPWO2014181640A1 (ja) 発光素子および表示装置
WO2014098014A1 (ja) 透明電極、及び、電子デバイス

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160509

R150 Certificate of patent or registration of utility model

Ref document number: 5943005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150