WO2015015993A1 - 有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2015015993A1
WO2015015993A1 PCT/JP2014/067717 JP2014067717W WO2015015993A1 WO 2015015993 A1 WO2015015993 A1 WO 2015015993A1 JP 2014067717 W JP2014067717 W JP 2014067717W WO 2015015993 A1 WO2015015993 A1 WO 2015015993A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
group
general formula
compound
Prior art date
Application number
PCT/JP2014/067717
Other languages
English (en)
French (fr)
Inventor
健 波木井
敏幸 木下
小島 茂
和央 吉田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015529471A priority Critical patent/JPWO2015015993A1/ja
Publication of WO2015015993A1 publication Critical patent/WO2015015993A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom

Definitions

  • the present invention relates to an organic electroluminescence element using a transparent electrode.
  • organic electroluminescence element (hereinafter also referred to as “organic EL element”) is a thin-film type all-solid structure in which an organic thin film layer (single layer portion or multilayer portion) containing an organic light-emitting substance is formed between an anode and a cathode. It is an element.
  • organic EL element When a voltage is applied to such an organic EL element, electrons are injected from the cathode into the organic thin film layer and holes are injected from the anode, and these are recombined in the light emitting layer (organic light emitting substance-containing layer) to generate excitons.
  • the organic EL element is a light-emitting element using light emission (fluorescence / phosphorescence) from these excitons, and is a technology expected as a next-generation flat display and illumination.
  • the phosphorescence emission method is a very high potential method, but in the organic EL device using phosphorescence emission, the method for controlling the position of the emission center is very different from that using fluorescence emission. In particular, how to stabilize the light emission by recombination inside the light emitting layer is an important technical issue in terms of capturing the efficiency and lifetime of the device.
  • a multilayer stacked device having a hole transport layer located on the anode side of the light emitting layer and an electron transport layer located on the cathode side of the light emitting layer in a form adjacent to the light emitting layer is well known. Yes.
  • a mixed layer using a phosphorescent compound as a light emitting dopant and a host compound is often used for the light emitting layer.
  • the emitted light generated in the light emitting layer of such an organic EL element is transmitted to the outside through the anode or the cathode.
  • at least one of the anode and the cathode is configured as a transparent electrode.
  • an oxide semiconductor material such as indium tin oxide (SnO 2 —In 2 O 3 : Indium Tin Oxide: ITO) is generally used. Studies aiming at resistance have also been made (see, for example, Patent Document 1 below). However, since ITO uses rare metal indium, the material cost is high, and it is necessary to perform annealing at about 300 ° C. after film formation in order to reduce resistance, but it is not suitable for a resin substrate. Further, when used as an electrode of an organic EL element, the surface smoothness of the electrode is insufficient, and a treatment such as polishing is necessary.
  • the structure which thinned silver etc. by providing metal materials, such as silver, adjacent to the organic layer comprised using the nitrogen compound, and the structure which used this transparent electrode for the electronic device has been proposed.
  • a transparent electrode made of silver or aluminum having a high electric conductivity has insufficient surface smoothness.
  • the transparent electrode is configured as a thin film of silver or the like by providing a metal material such as silver adjacent to the organic layer, when the transparent electrode is used for the bottom emission type of an organic EL element, It was confirmed that problems such as a decrease in rectification ratio and occurrence of leakage occurred due to insufficient smoothness of the surface of the transparent electrode. Therefore, in such an organic electroluminescence element, a reduction in the rectification ratio or leakage caused by the smoothness of the transparent electrode is suppressed, and an improvement in reliability is required.
  • the present invention provides an organic electroluminescence element that is improved in reliability while improving the light extraction efficiency.
  • the organic electroluminescence device of the present invention has a transparent substrate, a transparent electrode made of silver or an alloy containing silver as a main component and provided on one main surface of the transparent substrate, and a light emitting layer made of an organic material. And a light emitting functional layer provided on one main surface of the transparent substrate via the transparent electrode, and a counter electrode provided on one main surface of the transparent substrate via the light emitting functional layer. Further, between the transparent substrate and the transparent electrode, it contains at least one of a scattering layer, an organic layer, and MoO 3 , Pd, Fe, Mn, Ga, Ge, In, Ni, and Co from the transparent substrate side. And a metal movement preventing layer configured to have a thickness of 1 nm or less are further stacked in this order.
  • the organic electroluminescence element of the present invention by providing the scattering layer on the transparent substrate, the extraction efficiency of light extracted from the transparent substrate side through the transparent electrode is improved.
  • the uneven surface of the scattering layer can be smoothed by providing the organic layer on the scattering layer. Furthermore, a metal migration prevention layer of 1 nm or less is provided on the organic layer whose surface is smoothed, and a transparent electrode composed of silver or an alloy containing silver as a main component is formed. Interaction with silver in the electrode can be obtained, and a transparent electrode having a uniform thickness can be formed though it is thin.
  • the metal migration preventing layer is 1 nm or less, the interaction between the organic layer and the transparent electrode is not inhibited. Therefore, the uniformity of the transparent electrode can be further enhanced by the synergistic effect of the organic layer and the metal migration preventing layer on the transparent electrode, and the smoothness of the electrode surface is further improved.
  • the organic electroluminescence device of the present invention has a structure in which a light emitting functional layer is provided on a transparent electrode, and as described above, the smoothness of the surface of the transparent electrode is improved, so that the rectification ratio in the device is reduced. And leakage can be suppressed.
  • the organic electroluminescence device of the present invention has reduced rectification ratio and leakage due to insufficient smoothness of the electrode surface, and is reliable while improving light extraction efficiency. The improvement is achieved.
  • an organic electroluminescence element in which reliability is improved while improving light extraction efficiency.
  • FIG. 2 is a diagram showing a structural formula and molecular orbital of a ⁇ -carboline ring.
  • Second Embodiment Organic Electroluminescence Device with Smooth Layer
  • FIG. 1 is a schematic cross-sectional view showing the configuration of the organic EL element according to the first embodiment of the present invention.
  • the configuration of the organic EL element 10 having a bottom emission structure will be described.
  • the organic EL element 10 has a so-called bottom emission type configuration in which the obtained emitted light h is extracted from the transparent substrate 11 side.
  • the organic EL element 10 includes a transparent electrode 2 made of silver or an alloy containing silver as a main component on the transparent substrate 11, and a light emitting functional layer 3 and a counter electrode 5 are laminated on the transparent electrode 2. ing.
  • the light emitting functional layer 3 has a light emitting layer 3a made of at least an organic material.
  • the organic EL element 10 further has a configuration in which a scattering layer 1a, an organic layer 1b, and a metal movement preventing layer 1c are stacked in this order from the transparent substrate 11 side between the transparent substrate 11 and the transparent electrode 2.
  • the scattering layer 1a, the organic layer 1b, the metal movement preventing layer 1c, the transparent electrode 2, the light emitting functional layer 3, and the counter electrode 5 are laminated on the transparent substrate 11 in this order. It is a configuration.
  • the organic EL element 10 having such a stacked structure will be described in detail in the order of the transparent substrate 11, the scattering layer 1a, the organic layer 1b, the metal movement preventing layer 1c, the transparent electrode 2, the light emitting functional layer 3, and the counter electrode 5.
  • the transparency of the transparent electrode 2 of the present invention means that the light transmittance at a wavelength of 550 nm is 50% or more.
  • the transparent substrate 11 is composed of a light-transmitting substrate material, and examples thereof include glass, quartz, and a transparent resin film, but are not limited thereto. Particularly preferred transparent substrate 11 is a resin film that can give flexibility to organic EL element 10.
  • the glass examples include silica glass, soda lime silica glass, lead glass, borosilicate glass, and alkali-free glass. From the viewpoint of adhesion to the scattering layer 1a, durability, and smoothness, the surface of these glass materials is subjected to physical treatment such as polishing, or a coating made of an inorganic or organic material, if necessary, A hybrid film is formed by combining these films.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfone , Polyether imide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic and polyarylates, arton (trade name, manufactured by JSR) or abortion (trade name, manufactured by Mitsui),
  • a barrier film made of an inorganic film, an organic film, or a hybrid film of both may be formed on the surface of the resin film.
  • the barrier film has a water vapor transmission rate (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) of 0.01 g / (m 2 ⁇ 24 h) measured by a method according to JIS K 7129-1992.
  • the following barrier films are preferred.
  • the oxygen permeability measured by a method according to JIS K 7126-1987 is 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less
  • the water vapor permeability is 10 ⁇ 5 g / (m 2 ⁇ 24h)
  • the following high-barrier film is preferable.
  • the material for forming the barrier film as described above may be any material that has a function of suppressing the intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • the method for forming the barrier film is not particularly limited.
  • the vacuum deposition method, the sputtering method, the reactive sputtering method, the molecular beam epitaxy method, the cluster ion beam method, the ion plating method, the plasma polymerization method, the atmospheric pressure plasma weighting can be used, but an atmospheric pressure plasma polymerization method described in JP-A No. 2004-68143 is particularly preferable.
  • the scattering layer 1 a is a layer provided between the transparent substrate 11 and the transparent electrode 2, and is provided on one main surface of the transparent substrate 11.
  • the scattering layer 1a is a layer that improves the light extraction efficiency of the emitted light h, and has a visible light transmittance of preferably 50% or more, more preferably 55% or more, and 60% or more. It is particularly preferred.
  • the scattering layer 1a is preferably a high refractive index layer having a refractive index at a wavelength of 550 nm of 1.7 to less than 2.5.
  • a specific optical mode such as waveguide mode light confined in the light emitting layer 3a of the organic EL element 10, plasmon mode light reflected from the cathode, or the like. The light can be taken out.
  • the higher-order mode of the plasmon mode there is almost no light in a region with a refractive index of 2.5 or higher, and the amount of light that can be extracted even with a refractive index higher than this does not increase.
  • the rate may be less than 2.5.
  • Such a scattering layer 1a may be formed of a single material having a refractive index of 1.7 or more and less than 2.5, or a refractive index of 1.7 or more and 2 by mixing two or more materials. Less than 5 layers may be formed.
  • the refractive index of the scattering layer 1a can be substituted by a calculated refractive index calculated by a total value obtained by multiplying the refractive index specific to each material by the mixing ratio.
  • the refractive index of each material may be less than 1.7 or 2.5 or more, and when mixed, the refractive index of the whole layer is 1.7 to less than 2.5. It only has to satisfy.
  • the scattering layer 1a of the present invention may be a mixed scattering layer using a difference in refractive index due to a mixture of resin and particles, or a shape control scattering layer formed by shape control of an uneven structure or the like.
  • the scattering layer 1a will be described in detail in the order of (1.1) mixed scattering layer and (1.2) shape control scattering layer.
  • the mixed scattering layer of the present invention is a layer provided between the transparent substrate 11 and the transparent electrode 2, and is particularly preferably provided on the outermost surface on the transparent substrate 11.
  • the mixed scattering layer is composed of a layer medium and particles contained in the layer medium.
  • the refractive index difference between the resin material (binder) which is a layer medium and the contained particles is larger in the refractive index of the particles, being 0.03 or more, preferably 0.1 or more, more preferably 0. .2 or more, particularly preferably 0.3 or more.
  • a scattering effect occurs at the interface between the layer medium and the particles.
  • a larger refractive index difference is preferable because refraction at the interface increases and the scattering effect improves.
  • the mixed scattering layer is a layer that diffuses light due to the difference in refractive index between the layer medium and the particles. Therefore, the contained particles are preferably transparent particles having a particle size equal to or larger than a region that causes Mie scattering in the visible light region, and the average particle size is preferably 0.2 ⁇ m or more.
  • the upper limit of the average particle diameter is preferably less than 10 ⁇ m, more preferably less than 5 ⁇ m, particularly preferably less than 3 ⁇ m, and most preferably less than 1 ⁇ m.
  • the average particle diameter of the high refractive index particles can be measured by, for example, an apparatus using a dynamic light scattering method such as Nanotrack UPA-EX150 manufactured by Nikkiso Co., Ltd., or image processing of an electron micrograph.
  • Such particles are not particularly limited and can be appropriately selected according to the purpose.
  • the particles may be organic fine particles or inorganic fine particles, and among them, inorganic fine particles having a high refractive index. Is preferred.
  • organic fine particles having a high refractive index examples include polymethyl methacrylate beads, acrylic-styrene copolymer beads, melamine beads, polycarbonate beads, styrene beads, crosslinked polystyrene beads, polyvinyl chloride beads, benzoguanamine-melamine formaldehyde beads, and the like. Can be mentioned.
  • the inorganic fine particles having a high refractive index examples include inorganic oxide particles composed of at least one oxide selected from zirconium, titanium, aluminum, indium, zinc, tin, antimony, and the like.
  • Specific examples of the inorganic oxide particles include ZrO 2 , TiO 2 , BaTiO 3 , Al 2 O 3 , In 2 O 3 , ZnO, SnO 2 , Sb 2 O 3 , ITO, SiO 2 , ZrSiO 4 , zeolite.
  • TiO 2 , BaTiO 3 , ZrO 2 , ZnO and SnO 2 are preferable, and TiO 2 is most preferable.
  • the rutile type is more preferable than the anatase type because the catalyst activity is low, so that the weather resistance of the high refractive index layer and the adjacent layer is high and the refractive index is high.
  • specific materials for the surface treatment include different inorganic oxides such as silicon oxide and zirconium oxide, metal hydroxides such as aluminum hydroxide, organic acids such as organosiloxane and stearic acid, and the like. It is done. These surface treatment materials may be used individually by 1 type, and may be used in combination of multiple types. Among these, from the viewpoint of the stability of the dispersion, the surface treatment material is preferably a different inorganic oxide and / or metal hydroxide, more preferably a metal hydroxide.
  • the coating amount (in general, this coating amount is indicated by the mass ratio of the surface treatment material used on the surface of the particle to the mass of the particles). Is preferably 0.01 to 99% by mass. In particular, the content is more preferably 0.1 to 10% by mass. In the present invention, when it is 0.1% by mass or more, the effect of improving the dispersibility and stability by the surface treatment can be sufficiently obtained, and when it is 10% by mass or less, the mixed scattering layer A decrease in refractive index can be avoided.
  • quantum dots described in International Publication No. 2009/014707 and US Pat. No. 6,608,439 can be suitably used as the high refractive index material.
  • the high refractive index particles have a refractive index of 1.7 or more, preferably 1.85 or more, and particularly preferably 2.0 or more. If the refractive index is less than 1.7, the difference in refractive index from the binder becomes small, the amount of scattering decreases, and the effect of improving the light extraction efficiency may not be obtained. On the other hand, the upper limit of the refractive index of the high refractive index particles is less than 3.0. Within the above range, if the refractive index difference with the binder is large, a sufficient amount of scattering can be obtained, and the effect of improving the light extraction efficiency can be obtained.
  • the high refractive index particles are arranged with the thickness of one particle layer so that the particles are in contact with or close to the interface between the mixed scattering layer (scattering layer 1a) and the organic layer 1b.
  • the layer adjacent to the mixed scattering layer is the organic layer 1b.
  • the present invention is not limited to this, and the same effect can be obtained even if another layer is adjacent.
  • the high refractive index particles are present in a range exceeding the average particle size (for example, the film thickness of the mixed scattering layer is 1.3 times the average particle size of the high refractive index particles), the particles are at the interface of the scattering layer 1a.
  • the evanescent light is not scattered and does not contribute to the improvement of the light extraction efficiency.
  • problems such as a decrease in coating uniformity or interface smoothness, or a decrease in display performance due to an increase in reflected scattered light may occur.
  • the content of the high refractive index particles in the mixed scattering layer is preferably in the range of 1.0 to 70%, more preferably in the range of 5 to 50% in terms of volume filling factor.
  • the density distribution of the refractive index can be made dense at the interface between the mixed scattering layer and the organic layer 1b, and the light extraction efficiency can be increased by increasing the amount of light scattering.
  • the layer medium is a resin material
  • the above-mentioned particles are dispersed in a resin material (polymer) solution (a solvent in which particles are not dissolved) used as a medium, and transparent. It is formed by applying on the substrate 11. Since these particles are actually polydisperse particles and difficult to arrange regularly, they have a diffractive effect locally, but many parts change the direction of light by diffusion. Improve extraction efficiency.
  • binder of the present invention known resins (binders) can be used without particular limitation.
  • hydrophilic resins can also be used.
  • hydrophilic resins include water-soluble resins, water-dispersible resins, colloid-dispersed resins, and mixtures thereof.
  • hydrophilic resin include acrylic resins, polyester resins, polyamide resins, polyurethane resins, fluorine resins, and the like.
  • Polymers such as acid, polymethacrylic acid, polyacrylamide, polymethacrylamide, polystyrene sulfonic acid, cellulose, hydroxyl ethyl cellulose, carboxyl methyl cellulose, hydroxyl ethyl cellulose, dextran, dextrin, pullulan, water-soluble polyvinyl butyral can be mentioned, but these Among these, polyvinyl alcohol is preferable.
  • the polymer used as the binder resin one type may be used alone, or two or more types may be mixed and used as necessary.
  • a resin curable mainly by ultraviolet rays or an electron beam that is, a mixture of a thermoplastic resin and a solvent in an ionizing radiation curable resin or a thermosetting resin can be suitably used.
  • Such a binder resin is preferably a polymer having a saturated hydrocarbon or polyether as the main chain, and more preferably a polymer having a saturated hydrocarbon as the main chain.
  • the binder is preferably crosslinked.
  • the polymer having a saturated hydrocarbon as the main chain is preferably obtained by a polymerization reaction of an ethylenically unsaturated monomer.
  • a compound capable of forming a metal oxide, metal nitride or metal oxynitride by ultraviolet irradiation under a specific atmosphere is particularly preferably used.
  • a compound suitable for the present invention a compound which can be modified at a relatively low temperature described in JP-A-8-112879 is preferable.
  • polysiloxane having Si—O—Si bond including polysilsesquioxane
  • polysilazane having Si—N—Si bond both Si—O—Si bond and Si—N—Si bond
  • polysiloxazan containing can be used in combination of two or more. Moreover, it can be used even if different compounds are sequentially laminated or simultaneously laminated.
  • the polysiloxane used in the present invention includes [(R 01 ) 3 SiO 1/2 ], [(R 01 ) 2 SiO], [(R 01 ) SiO 3/2 ] and [SiO 2 as general structural units. ] Can be included.
  • R 01 is a hydrogen atom, an alkyl group containing 1 to 20 carbon atoms (eg, methyl, ethyl, propyl, etc.), an aryl group (eg, phenyl, etc.), an unsaturated alkyl group (eg, vinyl, etc.)
  • specific polysiloxane groups include [PhSiO 3/2 ], [MeSiO 3/2 ], [HSiO 3/2 ], [MePhSiO], [Ph 2 SiO], [PhViSiO], [ViSiO 3/2 ].
  • Vi represents a vinyl group
  • [MeHSiO] [MeViSiO]
  • [Me 2 SiO] [Me 3 SiO 1/2 ] and the like.
  • Mixtures and copolymers of polysiloxanes can also be used.
  • Polysilsesquioxane is a compound containing silsesquioxane in a structural unit.
  • the “silsesquioxane” is a compound represented by [(R 02 ) SiO 3/2 ], and usually (R 02 ) SiX 3 (R 02 is a hydrogen atom, an alkyl group, an alkenyl group, an aryl And X is a halogen, an alkoxy group, etc.)
  • R 02 is a hydrogen atom, an alkyl group, an alkenyl group, an aryl And X is a halogen, an alkoxy group, etc.
  • the molecular arrangement of polysilsesquioxane is typically an amorphous structure, a ladder structure, a cage structure, or a partially cleaved structure (a structure in which a silicon atom is missing from a cage structure or a cage structure).
  • a structure in which the silicon-oxygen bond in the structure is partially broken is known.
  • hydrogen silsesquioxane polymer examples include a hydridosiloxane polymer represented by HSi (OH) x [O (R 03 )] y O z / 2 .
  • R 03 is an organic group or a substituted organic group, and forms a hydrolyzable substituent when bonded to silicon by an oxygen atom.
  • x 0 to 2
  • y 0 to 2
  • z 1 to 3
  • x + y + z 3.
  • R 03 examples include an alkyl group (for example, methyl, ethyl, propyl, butyl and the like), an aryl group (for example, phenyl and the like), and an alkenyl group (for example, allyl and vinyl and the like).
  • These resins are either fully condensed (HSiO 3/2 ) n , or only partially hydrolyzed (ie, including some Si—OR 03 ) and / or partially condensed (ie, Including some Si-OH).
  • the polysilazane used in the present invention is a polymer having a silicon-nitrogen bond, and is composed of Si—N, Si—H, NH or the like, SiO 2 , Si 3 N 4 and both intermediate solid solutions SiO x N y (x : 0.1 to 1.9, y: 0.1 to 1.3) and the like.
  • the polysilazane preferably used in the present invention is represented by the following general formula (I).
  • R 001 , R 002 and R 003 each represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group or an alkoxy group.
  • perhydropolysilazane in which all of R 001 , R 002 and R 003 are hydrogen atoms is particularly preferred from the viewpoint of compactness.
  • the ionizing radiation curable resin composition can be cured by a normal curing method, that is, by irradiation with electron beams or ultraviolet rays.
  • keV emitted from various electron beam accelerators such as a Cockrowalton type, a bandegraph type, a resonance transformer type, an insulating core transformer type, a linear type, a dynamitron type, and a high frequency type.
  • an electron beam having an energy of 30 to 300 keV is used, and in the case of ultraviolet curing, ultraviolet rays emitted from rays of ultra-high pressure mercury lamp, high pressure mercury lamp, low pressure mercury lamp, carbon arc, xenon arc, metal halide lamp, etc. Available.
  • a rare gas excimer lamp that emits vacuum ultraviolet rays of 100 to 230 nm is specifically mentioned.
  • a rare gas atom such as Xe, Kr, Ar, Ne, etc. is called an inert gas because it is not chemically bonded to form a molecule.
  • rare gas atoms excited atoms
  • excimer light of 172 nm is emitted when the excited excimer molecule Xe 2 * transitions to the ground state as shown in the following reaction formula.
  • ⁇ Excimer lamps are characterized by high efficiency because radiation concentrates on one wavelength and almost no other light is emitted. Moreover, since extra light is not radiated
  • a dielectric barrier discharge lamp has a structure in which a discharge is generated between electrodes via a dielectric. Generally, at least one electrode is disposed between a discharge vessel made of a dielectric and the outside thereof. That's fine.
  • a dielectric barrier discharge lamp for example, a rare gas such as xenon is enclosed in a double cylindrical discharge vessel composed of a thick tube and a thin tube made of quartz glass, and a net-like second discharge vessel is formed outside the discharge vessel. There is one in which one electrode is provided and another electrode is provided inside the inner tube.
  • a dielectric barrier discharge lamp generates a dielectric barrier discharge inside a discharge vessel by applying a high frequency voltage between electrodes, and generates excimer light when excimer molecules such as xenon generated by the discharge dissociate. .
  • Excimer lamps can be lit with low power input because of their high light generation efficiency. In addition, since light having a long wavelength that causes a temperature rise is not emitted and energy is emitted at a single wavelength in the ultraviolet region, the temperature rise of the irradiation object due to the irradiation light itself is suppressed.
  • the shape control scattering layer of the present invention is a layer provided between the transparent substrate 11 and the transparent electrode 2, and is preferably provided at the total reflection interface. It is preferable to be provided at the interface.
  • the total reflection interface refers to an interface having a refractive index difference of 0.05 or more, the effect being more effective is an interface having a refractive index difference of 0.1 or more, and particularly effective is an interface having a refractive index difference of 0.15 or more. .
  • the shape control scattering layer is preferably provided at a location closest to the transparent substrate 11.
  • the shape control scattering layer of the present invention has a concavo-convex structure for diffracting or diffusing light, and is provided on the outermost surface on the transparent substrate 11.
  • the organic layer 1b, the metal movement preventing layer 1c, the transparent electrode (anode) 2, each light emitting functional layer 3 including the light emitting layer, the counter electrode 5 and the like were formed in this order on the shape control scattering layer.
  • an organic EL element is produced, it is possible to prevent total reflection at the interface between the transparent substrate 11 and the organic layer 1b in the light emitted from the light emitting layer, and to improve the light emission efficiency.
  • the concavo-convex structure for diffracting light is not shown, it is formed of a concavo-convex structure having a constant pitch (period).
  • a diffraction grating for diffracting light within a wavelength range of 400 to 750 nm in a visible light medium.
  • the pitch of the concave / convex array needs to have a constant value in the range of 150 to 3000 nm corresponding to the wavelength at which the extraction efficiency is improved.
  • the concavo-convex structure acting as a diffraction grating is described in, for example, Japanese Patent Application Laid-Open Nos. 11-283751 and 2003-115377.
  • the stripe-shaped diffraction grating does not have a diffraction effect in the direction parallel to the stripe, and thus preferably functions as a diffraction grating uniformly from any direction two-dimensionally.
  • concave portions and convex portions having a predetermined shape are regularly formed at predetermined intervals.
  • Examples of the shape of the hole constituting the recess include, but are not limited to, a circle, a triangle, a quadrangle, and a polygon.
  • the inner diameter of the hole (assuming a circle with the same area) is preferably in the range of 75 to 1500 nm.
  • examples of the cross-sectional shape viewed from the planar direction of the recess (dent) include hemispherical, rectangular, kamaboko, and pyramid shapes, but are not particularly limited.
  • the depth of the recess is preferably in the range of 50 to 1600 nm, and more preferably in the range of 50 to 1200 nm.
  • the depth of the recess is 50 nm or more, the effect of diffraction or scattering by the shape control scattering layer can be sufficiently obtained.
  • the depth of the recess is 1600 nm or less, the effect of diffraction or scattering can be sufficiently obtained without impairing the smoothness of the display element.
  • the arrangement of these recesses is repeated regularly two-dimensionally, such as a square lattice (square lattice), a honeycomb lattice, or the like.
  • the shape of the protrusion is the same as the shape of the concave portion.
  • the shape viewed from the normal direction of the surface is circular or triangular. , Square or polygonal.
  • the height and pitch (cycle) of the protrusions are the same as in the case where the above-described holes are formed. That is, the shape of these unevennesses may be formed so that the convex portion has the value of the concave portion.
  • the shape control scattering layer having such a concavo-convex structure on the surface of the transparent substrate 11, for example, when light is extracted from the transparent substrate 11 side, light having a wavelength corresponding to the pitch (period) of the concavo-convex structure
  • the taking-out efficiency can be improved.
  • thermoplastic resin such as polymethyl methacrylate (PMMA)
  • PMMA polymethyl methacrylate
  • a desired concavo-convex structure can be formed by applying pressure and transferring the concavo-convex shape of the mold.
  • a mold provided with unevenness is closely attached and irradiated with ultraviolet light, and cured by photopolymerization to transfer the uneven shape of the mold. It is also possible to use a technique such as Moreover, when the transparent substrate 11 is formed of the resin material, a concavo-convex structure may be directly formed on the transparent substrate.
  • the barrier layer comprised by inorganic oxides such as a silicon oxide
  • a concavo-convex structure can be formed in a barrier layer using reactive ion etching etc.
  • a barrier film composed of an inorganic oxide such as silicon oxide is formed, after creating a gel-like film using the sol-gel method, a mold having irregularities on the gel-like film is pressed. By heating while being applied, an uneven structure can be formed in the barrier film.
  • the concavo-convex structure for diffusing light is a structure for diffusing light by diffraction, refraction, or reflection of light.
  • a corrugated shape or the like in the range of 100 to 7000 nm which is about 1/5 to 1/3 of the pitch.
  • the amount of light that diffuses and takes out the light propagating through the light emitting layer 3a by total reflection or reflection by the counter electrode 5 be at least 100 nm or more in comparison with the amount of light emitted directly to the outside.
  • the corrugated pitch (period) is too long, the light is absorbed by the light emitting layer 3a before the scattering phenomenon occurs, and if the average height is too large, it becomes difficult to form the light emitting layer 3a provided on the top. So undesirable.
  • the organic layer 1b is a layer provided between the transparent substrate 11 and the transparent electrode 2, and is provided on one main surface of the transparent substrate 11 via the scattering layer 1a.
  • Such an organic layer 1b is a layer containing a Lewis base, and is composed of a compound having a Lewis base, that is, a compound containing an atom having an unshared electron pair. Examples of such a compound having a Lewis base include nitrogen-containing compounds and sulfur-containing compounds.
  • the organic layer 1b is a layer configured using at least one or both of a nitrogen-containing compound and a sulfur-containing compound, and each may contain a plurality of types of compounds.
  • the compound which comprises the organic layer 1b may be a compound containing both a nitrogen atom (N) and a sulfur atom (S).
  • the transparent electrode 2 containing silver as a main component can interact with the nitrogen atom or sulfur atom constituting the organic layer 1b at the adjacent interface.
  • the silver diffusion distance is reduced and aggregation is suppressed.
  • a silver thin film that is generally isolated in an island shape by film growth of a nuclear growth type (Volume-Weber: VW type) is generally grown as a single-layer growth type (Frank-van der Merwe: FM type).
  • a film is formed. Therefore, the uniformity of the transparent electrode 2 can be improved and the smoothness of the electrode surface can be improved.
  • the uneven surface of the scattering layer 1a can be smoothed by forming the organic layer 1b on the scattering layer 1a.
  • the nitrogen-containing compound I constituting the organic layer 1b may be a compound containing a nitrogen atom (N), but is particularly preferably an organic compound containing a nitrogen atom having an unshared electron pair.
  • the nitrogen-containing compound which comprises the organic layer 1b is a nitrogen atom which couple
  • an unshared electron pair of sulfur atoms is defined as an [effective unshared electron pair], and the content of the [effective unshared electron pair] is within a predetermined range.
  • [effective unshared electron pair] is an unshared electron pair that does not participate in aromaticity and is not coordinated to a metal among the unshared electron pairs of the nitrogen atom contained in the compound.
  • [Effective unshared electron pair] as described above refers to an unshared electron pair possessed by a nitrogen atom regardless of whether or not the nitrogen atom itself provided with the unshared electron pair is a hetero atom constituting an aromatic ring. Is selected depending on whether or not is involved in aromaticity. For example, even if a nitrogen atom is a heteroatom constituting an aromatic ring, an unshared electron pair of the nitrogen atom that does not directly participate as an essential element in aromaticity, that is, a conjugated unsaturated ring structure If an unshared electron pair is not involved in the delocalized ⁇ -electron system on the (aromatic ring) as an essential element for the expression of aromaticity, the unshared electron pair is [effective unshared electron pair.
  • Nitrogen atom is a Group 15 element and has 5 electrons in the outermost shell. Of these, three unpaired electrons are used for covalent bonds with other atoms, and the remaining two become a pair of unshared electron pairs. For this reason, the number of bonds of nitrogen atoms is usually three.
  • R 1 and R 2 are each a hydrogen atom (H) or a substituent.
  • the non-shared electron pair of the nitrogen atom constituting these groups does not participate in aromaticity and is not coordinated to the metal, and thus corresponds to [effective unshared electron pair].
  • the unshared electron pair possessed by the nitrogen atom of the nitro group (—NO 2 ) is used for the resonance structure with the oxygen atom, but has a good effect as shown in the following examples. Therefore, it is considered that it exists on nitrogen as an [effective unshared electron pair] that is not involved in aromaticity and coordinated to a metal.
  • FIG. 2 shows a structural formula of tetrabutylammonium chloride (TBAC) and a structural formula of tris (2-phenylpyridine) iridium (III) [Ir (ppy) 3 ].
  • TBAC is a quaternary ammonium salt in which one of four butyl groups is ionically bonded to a nitrogen atom and has a chloride ion as a counter ion.
  • one of the electrons constituting the unshared electron pair of the nitrogen atom is donated to the ionic bond with the butyl group.
  • the nitrogen atom of TBAC is equivalent to the absence of an unshared electron pair in the first place. Therefore, the unshared electron pair of the nitrogen atom constituting TBAC does not correspond to the [effective unshared electron pair] that is not involved in aromaticity and coordinated to the metal.
  • Ir (ppy) 3 is a neutral metal complex in which an iridium atom and a nitrogen atom are coordinated.
  • the unshared electron pair of the nitrogen atom constituting this Ir (ppy) 3 is coordinated to the iridium atom, and is utilized for coordination bonding. Therefore, the unshared electron pair of the nitrogen atom constituting Ir (ppy) 3 does not correspond to the [effective unshared electron pair] that is not involved in aromaticity and coordinated to the metal.
  • nitrogen atoms are common as heteroatoms that can constitute an aromatic ring, and can contribute to the expression of aromaticity.
  • nitrogen-containing aromatic ring examples include pyridine ring, pyrazine ring, pyrimidine ring, triazine ring, pyrrole ring, imidazole ring, pyrazole ring, triazole ring, tetrazole ring and the like.
  • FIG. 3 is a diagram showing the structural formula and molecular orbital of the pyridine ring, which is one of the groups exemplified above.
  • the unshared electron pair of the nitrogen atom constituting the pyridine ring corresponds to an [effective unshared electron pair] that does not participate in aromaticity and is not coordinated to the metal.
  • FIG. 4 shows the structural formula and molecular orbitals of the pyrrole ring.
  • the pyrrole ring has a structure in which one of the carbon atoms constituting the five-membered ring is substituted with a nitrogen atom, but the number of ⁇ electrons is also six and satisfies the Hückel rule. Nitrogen-containing aromatic ring. Since the nitrogen atom of the pyrrole ring is also bonded to a hydrogen atom, an unshared electron pair is mobilized to the 6 ⁇ electron system.
  • the nitrogen atom of the pyrrole ring has an unshared electron pair, since this unshared electron pair is used as an essential element for the expression of aromaticity, it does not participate in aromaticity and is a metal. It does not fall under [Effective unshared electron pairs] that are not coordinated to.
  • FIG. 5 is a diagram showing the structural formula and molecular orbitals of the imidazole ring.
  • the imidazole ring has a structure in which two nitrogen atoms N 1 and N 2 are substituted at the 1- and 3-positions in a 5-membered ring, and the nitrogen-containing ⁇ -electron number is also 6 It is an aromatic ring.
  • one nitrogen atom N 1 is a pyridine ring-type nitrogen atom that mobilizes only one unpaired electron to the 6 ⁇ -electron system and does not utilize the unshared electron pair for the expression of aromaticity, This unshared electron pair of the nitrogen atom N 1 corresponds to [effective unshared electron pair].
  • the unshared electron pair of the nitrogen atom N 2 is [effective Does not fall under [Unshared electron pair].
  • FIG. 6 shows the structural formula and molecular orbital of the ⁇ -carboline ring.
  • the ⁇ -carboline ring is a condensed ring compound having a nitrogen-containing aromatic ring skeleton, and is an azacarbazole compound in which a benzene ring skeleton, a pyrrole ring skeleton, and a pyridine ring skeleton are condensed in this order.
  • the nitrogen atom N 3 of the pyridine ring mobilizes only one unpaired electron to the ⁇ -electron system
  • the nitrogen atom N 4 of the pyrrole ring mobilizes an unshared electron pair to the ⁇ -electron system.
  • the total number of ⁇ electrons is an aromatic ring of 14.
  • the unshared electron pair of the nitrogen atom N 3 constituting the pyridine ring corresponds to [effective unshared electron pair], but constitutes a pyrrole ring.
  • the unshared electron pair of the nitrogen atom constituting the condensed ring compound is involved in the bond in the condensed ring compound as well as the bond in the monocyclic compound such as pyridine ring and pyrrole ring constituting the condensed ring compound. To do.
  • the [effective unshared electron pair] described above is important for expressing a strong interaction with silver which is the main component of the transparent electrode 2.
  • the nitrogen atom having such an [effective unshared electron pair] is preferably a nitrogen atom in the nitrogen-containing aromatic ring from the viewpoint of stability and durability. Therefore, the compound contained in the organic layer 1c preferably has an aromatic heterocycle having a nitrogen atom having an [effective unshared electron pair] as a heteroatom.
  • the number n of [effective unshared electron pairs] with respect to the molecular weight M of such a compound is defined as, for example, the effective unshared electron pair content [n / M].
  • the organic layer 1b is characterized in that this [n / M] is composed of a compound selected such that 2.0 ⁇ 10 ⁇ 3 ⁇ [n / M].
  • the organic layer 1b is preferable if the effective unshared electron pair content [n / M] defined as described above is in the range of 3.9 ⁇ 10 ⁇ 3 ⁇ [n / M], and 6.5 More preferably, it is in the range of ⁇ 10 ⁇ 3 ⁇ [n / M].
  • the organic layer 1b should just be comprised using the nitrogen-containing compound whose effective unshared electron pair content [n / M] is the predetermined range mentioned above, and may be comprised only with such a compound. Further, such a compound and another compound may be mixed and used. The other compound may or may not contain a nitrogen atom, and the effective unshared electron pair content [n / M] may not be within the predetermined range described above.
  • the organic layer 1b is constituted by using a plurality of compounds, for example, based on the mixing ratio of the compounds, the molecular weight M of the mixed compound obtained by mixing these compounds is obtained, and [effective non-sharing with respect to the molecular weight M is obtained.
  • the total number n of [electron pairs] is obtained as an average value of the effective unshared electron pair content [n / M], and this value is preferably within the predetermined range described above. That is, it is preferable that the effective unshared electron pair content [n / M] of the organic layer 1b itself is in a predetermined range.
  • the organic layer 1b is comprised using a some compound, Comprising: If the mixing ratio (content ratio) of a compound differs in a film thickness direction, the organic of the side in which the transparent electrode 2 is provided will be provided.
  • the effective unshared electron pair content [n / M] on the surface of the layer 1b may be within a predetermined range.
  • nitrogen-containing compounds satisfying the above-described effective unshared electron pair content [n / M] of 2.0 ⁇ 10 ⁇ 3 ⁇ [n / M] as nitrogen-containing compounds constituting the organic layer 1b are shown below. (No. 1 to No. 48). Each of the nitrogen-containing compounds No. 1 to No. 48 is marked with a circle with respect to the nitrogen atom having [effective unshared electron pair]. Table 1 below shows the molecular weight M of these nitrogen-containing compounds No. 1 to No. 48, the number n of [effective unshared electron pairs], and the effective unshared electron pair content [n / M]. . In the copper phthalocyanine of the following nitrogen-containing compound No. 33, unshared electron pairs that are not coordinated to copper among the unshared electron pairs of the nitrogen atom are counted as [effective unshared electron pairs].
  • Table 1 shows the corresponding general formulas when these exemplified nitrogen-containing compounds also belong to the general formulas (1) to (8a) representing other nitrogen compounds II described below.
  • the other nitrogen-containing compound II constituting the organic layer 1b is not limited to the nitrogen-containing compound I in which the effective unshared electron pair content [n / M] is within the predetermined range described above.
  • a contained compound may be used.
  • a compound containing a nitrogen atom is preferably used regardless of whether the effective unshared electron pair content [n / M] is in the predetermined range described above.
  • the compound containing a nitrogen atom having the [effective unshared electron pair] described above is particularly preferably used.
  • the other nitrogen-containing compound used in the organic layer 1b a compound having a property required for each electronic device to which the organic layer 1b is applied is used.
  • the organic layer 1b when used as a base of the transparent electrode 2 of the organic EL element, it has a structure represented by the following general formulas (1) to (8a) from the viewpoint of film forming properties. Nitrogen-containing compound II is used.
  • nitrogen-containing compounds II having the structures represented by these general formulas (1) to (8a) and others, there are also nitrogen-containing compounds I that fall within the range of the effective unshared electron pair content [n / M] described above. Any such nitrogen-containing compound can be used alone as a nitrogen-containing compound constituting the organic layer 1b (see Table 1 above).
  • the compound having the structure represented by the following general formulas (1) to (8a) is a nitrogen-containing compound that does not fall within the above-mentioned range of the effective unshared electron pair content [n / M], effective unshared It is preferable to use it as a nitrogen-containing compound constituting the organic layer 1b by mixing with a nitrogen-containing compound having an electron pair content [n / M] in the above-described range.
  • X11 in the general formula (1) represents —N (R11) — or —O—.
  • R11 and R12 each represent a hydrogen atom (H) or a substituent.
  • substituents examples include an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group).
  • alkyl group for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group.
  • cycloalkyl groups for example, cyclopentyl group, cyclohexyl group, etc.
  • alkenyl groups for example, vinyl group, allyl group, etc.
  • alkynyl groups for example, ethynyl group, propargyl group, etc.
  • aromatic hydrocarbon groups aromatic Also referred to as aromatic carbocyclic group, aryl group, etc., for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl group , Pyrenyl group, biphenylyl group), aromatic heterocyclic group (eg , Furyl group, thienyl group, pyridyl group, pyridazinyl group,
  • substituents may be further substituted with the above substituents.
  • a plurality of these substituents may be bonded to each other to form a ring.
  • substituents those which do not inhibit the interaction between the compound and silver (Ag) are preferably used, and those having a nitrogen atom having an effective unshared electron pair described above are particularly preferably applied. .
  • the above description regarding the substituents is similarly applied to the substituents shown in the description of the general formulas (2) to (8a) described below.
  • the nitrogen-containing compound having the structure represented by the general formula (1) as described above is preferable because a strong interaction can be expressed between the nitrogen atom in the compound and the silver constituting the transparent electrode 2.
  • the nitrogen-containing compound having the structure represented by the general formula (1a) is one form of the nitrogen-containing compound having the structure represented by the general formula (1), and X11 in the general formula (1) is represented by —N (R11 Nitrogen-containing compounds designated as)-.
  • X11 in the general formula (1) is represented by —N (R11 Nitrogen-containing compounds designated as)-.
  • Such a nitrogen-containing compound is preferable because the interaction can be expressed more strongly.
  • a nitrogen-containing compound is preferable because the above interaction can be expressed more effectively.
  • Such a nitrogen-containing compound is preferable because it has a larger number of nitrogen atoms and can express the above interaction more strongly.
  • the above general formula (2) is also a form of the general formula (1).
  • Y21 represents a divalent linking group composed of an arylene group, a heteroarylene group, or a combination thereof.
  • R21 represents a hydrogen atom (H) or a substituent.
  • k21 and k22 represent an integer of 0 to 4, and k21 + k22 is an integer of 2 or more.
  • examples of the arylene group represented by Y21 include o-phenylene group, p-phenylene group, naphthalenediyl group, anthracenediyl group, naphthacenediyl group, pyrenediyl group, naphthylnaphthalenediyl group, and biphenyldiyl.
  • examples of the heteroarylene group represented by Y21 include a carbazole ring, a carboline ring, a diazacarbazole ring (also referred to as a monoazacarboline ring, and one of carbon atoms constituting the carboline ring is nitrogen.
  • the ring structure is replaced by an atom), a triazole ring, a pyrrole ring, a pyridine ring, a pyrazine ring, a quinoxaline ring, a thiophene ring, an oxadiazole ring, a dibenzofuran ring, a dibenzothiophene ring, and an indole ring.
  • a carbazole ring also referred to as a monoazacarboline ring
  • a triazole ring also referred to as a monoazacarboline ring
  • a pyrrole ring also referred to as a monoazacarboline ring
  • a condensed aromatic heterocyclic ring formed by condensing three or more rings is used.
  • a group derived from a condensed aromatic heterocyclic ring formed by condensing three or more rings is preferably included, and a group derived from a dibenzofuran ring or a dibenzothiophene ring is preferable.
  • a group derived from a dibenzofuran ring or a dibenzothiophene ring is preferable.
  • R21 of —C (R21) represented by E201 to E216 and E221 to E238 is a substituent
  • examples of the substituent include R11 of the general formula (1)
  • the substituents exemplified as R12 apply similarly.
  • E221 to E224 and E230 to E233 are each represented by —C (R21) ⁇ .
  • E203 is represented by —C (R21) ⁇ and R21 represents a linking site
  • the general formula (3) is also a form of the general formula (1a-2).
  • E301 to E312 each represent —C (R31) ⁇
  • R31 represents a hydrogen atom (H) or a substituent.
  • Y31 represents a divalent linking group composed of an arylene group, a heteroarylene group, or a combination thereof.
  • the general formula (4) is also a form of the general formula (1a-1).
  • E401 to E414 each represent —C (R41) ⁇
  • R41 represents a hydrogen atom (H) or a substituent.
  • Ar41 represents a substituted or unsubstituted aromatic hydrocarbon ring or aromatic heterocyclic ring.
  • k41 represents an integer of 3 or more.
  • the aromatic hydrocarbon ring includes benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene Ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen And a ring, a picene ring, a pyrene ring, a pyranthrene ring, and an anthraanthrene ring.
  • These rings may further have the substituents exemplified as R11
  • the aromatic heterocycle when Ar41 represents an aromatic heterocycle, the aromatic heterocycle includes a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, Triazine ring, benzimidazole ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, phthalazine ring, carbazole ring And azacarbazole ring.
  • the azacarbazole ring refers to one in which at least one carbon atom of the benzene ring constituting the carbazole ring is replaced with a nitrogen atom. These rings may further have the substituents exemplified as R11 and R12 in the general formula (1).
  • R51 represents a substituent.
  • R52 represents a hydrogen atom (H) or a substituent.
  • E601 to E612 each represent —C (R61) ⁇ or —N ⁇ , and R61 represents a hydrogen atom (H) or a substituent.
  • Ar61 represents a substituted or unsubstituted aromatic hydrocarbon ring or aromatic heterocyclic ring.
  • the substituted or unsubstituted aromatic hydrocarbon ring or aromatic heterocyclic ring represented by Ar61 may be the same as Ar41 in the general formula (4).
  • R71 to R73 each represents a hydrogen atom (H) or a substituent
  • Ar71 represents an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
  • examples of the aromatic hydrocarbon ring or aromatic heterocycle represented by Ar71 include those similar to Ar41 in the general formula (4).
  • R81 to R86 each represent a hydrogen atom (H) or a substituent.
  • E801 to E803 each represent —C (R87) ⁇ or —N ⁇ , and R87 represents a hydrogen atom (H) or a substituent.
  • Ar81 represents an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
  • examples of the aromatic hydrocarbon ring or aromatic heterocycle represented by Ar81 include those similar to Ar41 in the general formula (4).
  • the nitrogen-containing compound having the structure represented by the general formula (8a) is one form of the nitrogen-containing compound represented by the general formula (8), and Ar81 in the general formula (8) is a carbazole derivative.
  • E804 to E811 each represent —C (R88) ⁇ or —N ⁇ , and R88 represents a hydrogen atom (H) or a substituent.
  • the general formula (1a) is used from the viewpoint of improving the uniformity and smoothness of the transparent electrode 2 together with the metal migration preventing layer 1c provided on the organic layer 1b.
  • (1a-2), (3), (7), (8), and nitrogen-containing compounds represented by (8a) are preferred.
  • nitrogen-containing compound III As other nitrogen-containing compounds III constituting the organic layer 1b, in addition to the above general formulas (1) to (8a), the following nitrogen-containing compounds 1 to 166 are exemplified. These nitrogen-containing compounds are materials having excellent film forming properties. These nitrogen-containing compounds can also be used as a material constituting the electron transport layer or the electron injection layer in the organic EL element 10. These nitrogen-containing compounds 1 to 166 include nitrogen-containing compounds that fall within the range of the effective unshared electron pair content [n / M] described above. Can be used as a nitrogen-containing compound constituting the organic layer 1b. Further, among these nitrogen-containing compounds 1 to 166, there are also nitrogen-containing compounds that fall under the general formulas (1) to (8a) described above.
  • Step 1 (Synthesis of Intermediate 1) Under a nitrogen atmosphere, 2,8-dibromodibenzofuran (1.0 mol), carbazole (2.0 mol), copper powder (3.0 mol), potassium carbonate (1.5 mol), DMAc (dimethylacetamide) 300 ml Mixed in and stirred at 130 ° C. for 24 hours.
  • Step 2 (Synthesis of Intermediate 2)
  • Intermediate 1 (0.5 mol) was dissolved in 100 ml of DMF (dimethylformamide) at room temperature in the atmosphere, NBS (N-bromosuccinimide) (2.0 mol) was added, and the mixture was stirred overnight at room temperature. The resulting precipitate was filtered and washed with methanol, yielding intermediate 2 in 92% yield.
  • Step 3 (Synthesis of nitrogen-containing compound 5) Under a nitrogen atmosphere, intermediate 2 (0.25 mol), 2-phenylpyridine (1.0 mol), ruthenium complex [( ⁇ 6 -C 6 H 6 ) RuCl 2 ] 2 (0.05 mol), triphenyl Phosphine (0.2 mol) and potassium carbonate (12 mol) were mixed in 3 L of NMP (N-methyl-2-pyrrolidone) and stirred at 140 ° C. overnight.
  • NMP N-methyl-2-pyrrolidone
  • the sulfur-containing compound constituting the organic layer 1b may be a compound containing sulfur (S), but is particularly an organic compound containing a sulfur atom having an unshared electron pair, and has the following general structure having a divalent sulfur atom. It is represented by Formula (9), General Formula (10), General Formula (11), or General Formula (12).
  • R 91 and R 92 each represent a substituent.
  • substituent represented by R 91 and R 92 include a substituted or unsubstituted hydrocarbon group. These hydrocarbon groups may contain an oxygen atom, a nitrogen atom, or a phosphorus atom.
  • Examples of the substituted or unsubstituted hydrocarbon group represented by R 91 and R 92 include an alkyl group and an aryl group.
  • Examples of the alkyl group include methyl, ethyl, propyl, i-propyl, butyl, t-butyl, pentyl, cyclopentyl, hexyl, cyclohexyl, octyl, dodecyl, hydroxyethyl, methoxyethyl, trifluoromethyl, and benzyl.
  • Examples of the aryl group include a phenyl group and a naphthyl group.
  • R 93 and R 94 represent a substituent.
  • Examples of the substituent represented by R 93 and R 94 include the same substituents as R 91 and R 92 .
  • R 95 represents a substituent
  • Examples of the substituent represented by R95 include the same substituents as R91 and R92 .
  • R 96 represents a substituent
  • Examples of the substituent represented by R 96 include the same substituents as R 91 and R 92 .
  • sulfur-containing compound represented by the general formula (9) include the following 1-1 to 1-9.
  • sulfur-containing compound represented by the general formula (10) include the following 2-1 to 2-11.
  • sulfur-containing compound represented by the general formula (11) include the following 3-1 to 3-23.
  • sulfur-containing compound represented by the general formula (12) include the following 4-1.
  • the sulfur-containing compound constituting the organic layer 1b has an effective unshared electron pair content [n / M] of 2.0 ⁇ 10 ⁇ 3 ⁇ the same as the nitrogen-containing compound in addition to the compounds exemplified above. It may be a compound selected to be [n / M], and is preferably in the range of 3.9 ⁇ 10 ⁇ 3 ⁇ [n / M], and 6.5 ⁇ 10 ⁇ 3 ⁇ [n / M M] is more preferable.
  • the effective unshared electron pair content [n / M] is the same as defined in the nitrogen-containing compound I. That is, among the sulfur atoms contained in the sulfur-containing compound, in particular, when the unshared electron pair of the sulfur atom that is stably bonded to silver which is the main material constituting the transparent electrode 2 is [effective unshared electron pair] The number of [effective unshared electron pairs] with respect to the molecular weight M of the compound is n. Also.
  • the organic layer 1b preferably has its own effective unshared electron pair content [n / M] within a predetermined range, and the effective unshared electron pair content in the surface layer of the organic layer 1b on the side in contact with the transparent electrode 2
  • [n / M] is within a predetermined range is the same as when a nitrogen-containing compound is used.
  • Method of forming organic layer 1b As a method for forming the organic layer 1b as described above, a wet process such as a coating method, an inkjet method, a coating method, a dip method, a vapor deposition method (resistance heating method, EB method, etc.), a sputtering method, a CVD method, or the like. And a method using a dry process such as a method. Of these, the vapor deposition method is preferably applied.
  • the organic layer 1b is formed using a plurality of compounds
  • co-evaporation in which a plurality of compounds are simultaneously supplied from a plurality of evaporation sources is applied.
  • a coating method is preferably applied.
  • a coating solution in which the compound is dissolved in a solvent is used.
  • the solvent in which the compound is dissolved is not limited.
  • the coating solution may be prepared using a solvent that can dissolve the plurality of compounds.
  • the metal movement preventing layer 1 c is a layer sandwiched between the organic layer 1 b and the transparent electrode 2.
  • the metal migration preventing layer 1c is a layer formed of a material that hardly diffuses on the organic layer 1b.
  • the transparent electrode 2 composed of silver or an alloy containing silver as a main component
  • Ag atoms attached to the film forming surface generate a lump (nucleus) of a certain size while being surface diffused. Then, the initial thin film growth proceeds along the periphery of this lump (nucleus). For this reason, in the film
  • Such a metal migration preventing layer 1c is a material that is difficult to diffuse on the surface of the organic layer 1b, and is a lump formed by surface diffusion of Ag atoms or the like directly on the organic layer 1b with the spacing between the growth nuclei. Suppose that it is formed with the material which can be narrower than the space
  • Examples of such a material include a material composed of a metal or a metal oxide.
  • MoO 2 , MoO 3 molybdenum oxide
  • Pd palladium
  • Fe iron
  • Examples include materials containing at least one of manganese (Mn), gallium (Ga), germanium (Ge), indium (In), copper (Cu), nickel (Ni), cobalt (Co), and the like. Only one of these materials may be used for the metal migration preventing layer 1c, or two may be used in combination. Of these, molybdenum oxide (MoO 3 ) and palladium (Pd) are preferable from the viewpoint of improving the uniformity and smoothness of the transparent electrode 2.
  • the metal migration preventing layer 1c is difficult to diffuse on the surface of the organic layer 1b and needs to have high affinity with a metal material such as Ag constituting the transparent electrode 2. Moreover, it is preferable that a dense and fine growth nucleus is obtained.
  • a desired metal migration preventing layer 1c growth nucleus
  • IAD ion assisted deposition
  • the average thickness of the metal migration preventing layer 1c is preferably 1 nm or less, and more preferably 0.5 nm or less. Moreover, a monoatomic layer may be sufficient. The average thickness of the metal migration preventing layer 1c is adjusted by the formation speed and the formation time.
  • thin film growth of a material containing a metal or metal oxide is “nucleation and growth” type film growth, that is, the formed islands are combined.
  • the metal migration preventing layer 1c does not become a complete continuous film by setting the average thickness to 1 nm or less, but is formed so that at least a part of the islands are in contact with each other. And the discontinuous part of the metal movement prevention layer 1c becomes a part which the organic layer 1b and the transparent electrode 2 contact.
  • the synergistic effect of the organic layer 1b and the metal migration preventing layer 1c on the transparent electrode 2 can further improve the uniformity of the transparent electrode 2 and further improve the smoothness of the electrode surface.
  • the metal migration preventing layer 1c is not limited to this shape, and may be a continuous and homogeneous film, in which atoms or molecules of the material constituting the metal migration preventing layer 1c are dispersed and dispersed from each other. It may be a so-called island-like structure that is attached to the surface. In this case, it is preferable that atoms or molecules are attached to be separated from each other. Furthermore, the metal movement preventing layer 1c may be formed as a single layer made of only the above material, or may be a layer formed by mixing the above material and a metal material such as Ag constituting the transparent electrode 2.
  • the thickness of the growth nucleus is 1 nm or less, it can be formed by sputtering or vapor deposition.
  • the metal migration preventing layer 1c having a sufficient thickness can be formed, and this layer can be formed by dry etching to leave growth nuclei having a thickness of 1 nm or less.
  • sputtering methods examples include ion beam sputtering, magnetron sputtering, reactive sputtering, bipolar sputtering, and bias sputtering.
  • the sputtering time is appropriately selected according to the average thickness of the metal movement prevention layer 1c (growth nucleus) to be formed and the formation speed.
  • the sputter formation rate is preferably 0.1 to 15 ⁇ / second, more preferably 0.1 to 7 ⁇ / second.
  • the vapor deposition method for example, a vacuum vapor deposition method, an electron beam vapor deposition method, an ion plating method, an ion beam vapor deposition method, or the like can be used.
  • the deposition time is appropriately selected according to the metal migration prevention layer 1c (growth nucleus) to be formed and the formation speed.
  • the deposition rate is preferably 0.1 to 15 ⁇ / second, more preferably 0.1 to 7 ⁇ / second.
  • the method for forming the metal migration preventing layer 1c is not particularly limited.
  • a vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, or a thermal CVD method, or a wet deposition method such as a plating method can be used.
  • etching method of the metal movement preventing layer 1c an etching method involving physical collision of an etching gas, ions, radicals, and the like is used, and reactive gas etching that performs etching only by a chemical reaction is not included.
  • the etching method is not particularly limited as long as it involves such physical collision, and for example, ion beam etching, reverse sputter etching, plasma etching, or the like can be used.
  • ion beam etching is particularly preferable from the viewpoint of easily forming a desired non-continuous portion or unevenness on the metal movement preventing layer 1c after etching.
  • the metal migration preventing layer 1c is too thick, it is difficult to obtain a thin and smooth transparent electrode 2 even if a growth nucleus is formed. Furthermore, the transparent electrode 2 formed starting from this growth nucleus becomes thick.
  • the average thickness of the metal migration preventing layer 1c (growth nucleus) is obtained from the difference between the thickness of the metal migration preventing layer 1c and the etching thickness of the metal migration preventing layer 1c.
  • the etching thickness of the metal movement preventing layer 1c is the product of the etching rate and the etching time.
  • the etching rate is obtained from the time until a 50 nm-thick metal migration preventing layer 1c separately prepared on a glass substrate is etched under the same conditions, and the light transmittance after the etching becomes equivalent to that of the glass substrate (approximately 0 nm thickness). .
  • the average thickness of the metal migration preventing layer 1c (growth nucleus) is adjusted by the dry etching time.
  • the transparent electrode 2 is an electrode that constitutes an anode or a cathode of the organic EL element 10, and is constituted by using silver or an alloy containing silver as a main component. Moreover, it is an electrode provided on the side from which the emitted light h generated in the light emitting functional layer 3 is extracted (on the light extraction surface 11a side), and is provided on one main surface of the transparent substrate 11 via the metal movement prevention layer 1c. Electrode.
  • the alloy mainly composed of silver (Ag) constituting the transparent electrode 2 is preferably an alloy containing 50% by mass or more of silver.
  • an alloy mainly composed of silver (Ag) constituting the transparent electrode 2 is silver magnesium (AgMg), silver copper (AgCu), silver palladium (AgPd), silver palladium copper (AgPdCu), silver indium (AgIn). , Silver aluminum (AgAl), silver molybdenum (AgMo), and the like.
  • the transparent electrode 2 as described above may have a configuration in which silver or an alloy layer mainly composed of silver is divided into a plurality of layers as necessary.
  • the transparent electrode 2 preferably has a film thickness in the range of 4 to 12 nm.
  • a film thickness of 12 nm or less is preferable because the absorption component or reflection component of the layer can be kept low, and the light transmittance of the transparent electrode 2 is maintained.
  • the electroconductivity of a layer is also ensured because a film thickness is 4 nm or more.
  • Method for forming transparent electrode 2 As a method for forming the transparent electrode 2 as described above, a wet process such as a coating method, an ink jet method, a coating method, a dip method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, a CVD method, or the like. And a method using a dry process such as
  • the transparent electrode 2 is formed using the sputtering method.
  • a sputter target made of an alloy mainly composed of silver is prepared, and the film is formed using the sputtering method using the sputtering gate.
  • the transparent electrode 2 is formed by applying a sputtering method.
  • the transparent electrode 2 to which the vapor deposition method is applied is also formed.
  • an alloy component and silver (Ag) are co-deposited.
  • concentration of the alloy component with respect to silver (Ag) which is a main material by adjusting the vapor deposition rate of an alloy component and the vapor deposition rate of silver (Ag), respectively is performed.
  • the transparent electrode 2 is characterized in that it is sufficiently conductive without being subjected to a high-temperature annealing treatment after the film formation by being formed on the metal movement prevention layer 1c. It may be one that has been subjected to high-temperature annealing after film formation.
  • the light emitting functional layer 3 is a layer sandwiched between the transparent electrode 2 and the counter electrode 5, and constitutes the organic EL element 10 together with the transparent electrode 2 and the counter electrode 5.
  • This light emitting functional layer 3 may have a layer structure of a light emitting functional layer in a general organic EL element, and it is essential to have a light emitting layer 3a made of an organic material.
  • the light emitting layer is composed of a single layer or a plurality of layers.
  • a non-light emitting intermediate layer may be provided between the light emitting layers.
  • a hole blocking layer also referred to as a hole blocking layer
  • an electron injection layer also referred to as a cathode buffer layer
  • An electron blocking layer also referred to as an electron barrier layer
  • a hole injection layer also referred to as an anode buffer layer
  • the electron transport layer is a layer having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the hole transport layer is a layer having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. Further, the electron transport layer and the hole transport layer may be composed of a plurality of layers.
  • the organic EL element 10 may be a so-called tandem element in which a plurality of light emitting units including at least one light emitting layer are stacked.
  • the light emitting unit corresponds to the light emitting functional layer 3 having a light emitting property in the configuration of the organic EL element 10.
  • the light emitting unit has, for example, a configuration in which the anode and the cathode are excluded from the configurations (1) to (7) mentioned in the above typical element configuration.
  • first light emitting unit, the second light emitting unit, and the third light emitting unit may all be the same or different.
  • Two light emitting units may be the same, and the remaining one may be different.
  • the plurality of light emitting units may be laminated directly or via an intermediate layer, and the intermediate layer is generally an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer.
  • a known material configuration can be used as long as it is also called an intermediate insulating layer and has a function of supplying electrons to the anode-side adjacent layer and holes to the cathode-side adjacent layer.
  • Examples of materials used for the intermediate layer include ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2 , TiN, ZrN, HfN, TiO x , VO x , CuI, InN, GaN, Conductive inorganic compound layers such as CuAlO 2 , CuGaO 2 , SrCu 2 O 2 , LaB 6 , RuO 2 and Al, two-layer films such as Au / Bi 2 O 3 , SnO 2 / Ag / SnO 2 , ZnO / Multi-layer film such as Ag / ZnO, Bi 2 O 3 / Au / Bi 2 O 3 , TiO 2 / TiN / TiO 2 , TiO 2 / ZrN / TiO 2 , fullerenes such as C60, conductive organic substances such as oligothiophene Layer, metal phthalocyanines, metal-free phthalocyanines, metal porphyrins, metal-free porphyr
  • Examples of a preferable configuration in the light emitting unit include the configurations (1) to (7) mentioned in the above representative element configurations, but the present invention is not limited to these.
  • tandem organic EL element examples include, for example, US Pat. No. 6,337,492, US Pat. No. 7,420,203, US Pat. No. 7,473,923, US Pat. No. 6,872, No. 472, US Pat. No. 6,107,734, US Pat. No. 6,337,492, International Publication No. 2005/009087, JP-A 2006-228712, JP-A 2006-24791, JP-A 2006-49393.
  • the light emitting layer 3a used in the present invention contains, for example, a phosphorescent compound as a light emitting material.
  • the light emitting layer 3a is a layer that emits light by recombination of electrons injected from the cathode side and holes injected from the anode side, and the light emitting portion emits light even in the layer of the light emitting layer 3a. It may be an interface with an adjacent layer in the layer 3a.
  • Such a light emitting layer 3a is not particularly limited in its configuration as long as the contained light emitting material satisfies the light emission requirements. Moreover, there may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, it is preferable to have a non-light emitting intermediate layer (not shown) between the light emitting layers 3a.
  • the total film thickness of the light emitting layer 3a is preferably in the range of 1 to 100 nm, and more preferably 1 to 30 nm because a lower driving voltage can be obtained.
  • the sum total of the film thickness of the light emitting layer 3a is a film thickness also including the said intermediate
  • the film thickness of each light emitting layer is preferably adjusted to a range of 1 to 50 nm, more preferably adjusted to a range of 1 to 20 nm.
  • the plurality of stacked light emitting layers correspond to blue, green, and red light emitting colors, there is no particular limitation on the relationship between the film thicknesses of the blue, green, and red light emitting layers.
  • the light emitting layer 3a as described above is formed by forming a light emitting material or a host compound described later by a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method. be able to.
  • the light emitting layer 3a may be a mixture of a plurality of light emitting materials, and a phosphorescent light emitting material and a fluorescent light emitting material (also referred to as a fluorescent dopant or a fluorescent compound) may be mixed and used in the same light emitting layer 3a.
  • a phosphorescent light emitting material and a fluorescent light emitting material also referred to as a fluorescent dopant or a fluorescent compound
  • the structure of the light emitting layer 3a preferably contains a host compound (also referred to as a light emitting host) and a light emitting material (also referred to as a light emitting dopant compound or a guest material) and emits light from the light emitting material.
  • a host compound also referred to as a light emitting host
  • a light emitting material also referred to as a light emitting dopant compound or a guest material
  • a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. More preferably, the phosphorescence quantum yield is less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in the light emitting layer 3a.
  • the host compound a known host compound may be used alone, or a plurality of types may be used. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element 10 can be made highly efficient. In addition, by using a plurality of kinds of light emitting materials described later, it is possible to mix different light emission, thereby obtaining an arbitrary light emission color.
  • the host compound used may be a conventionally known low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). .
  • Tg glass transition temperature
  • DSC Different Scanning Colorimetry
  • host compounds applicable to the organic EL element 10 include compounds H1 to H79 described in paragraphs [0163] to [0178] of JP2013-4245A.
  • the compounds H1 to H79 described in paragraphs [0163] to [0178] of JP2013-4245 are incorporated in the present specification.
  • a phosphorescent compound As a light-emitting material that can be used in the present invention, a phosphorescent compound (also referred to as a phosphorescent compound or a phosphorescent material) can be given.
  • a phosphorescent compound is a compound in which light emission from an excited triplet is observed. Specifically, a phosphorescent compound emits phosphorescence at room temperature (25 ° C.), and a phosphorescence quantum yield of 0.01 at 25 ° C. Although defined as the above compounds, the preferred phosphorescence quantum yield is 0.1 or more.
  • the phosphorescent quantum yield can be measured by the method described in Spectra II, page 398 (1992 edition, Maruzen) of Experimental Chemistry Course 4 of the 4th edition. Although the phosphorescence quantum yield in a solution can be measured using various solvents, when using a phosphorescent compound in the present invention, the above phosphorescence quantum yield (0.01 or more) is achieved in any solvent. It only has to be done.
  • phosphorescent compounds There are two types of light emission principles of phosphorescent compounds. One is that recombination of carriers occurs on the host compound to which carriers are transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent compound to obtain light emission from the phosphorescent compound.
  • the other is a carrier trap type in which the phosphorescent compound becomes a carrier trap, and carriers are recombined on the phosphorescent compound to emit light from the phosphorescent compound. In either case, it is a condition that the excited state energy of the phosphorescent compound is lower than the excited state energy of the host compound.
  • the phosphorescent compound can be appropriately selected from known compounds used for the light emitting layer of a general organic EL device, and preferably contains a metal of group 8 to 10 in the periodic table of elements.
  • a complex compound more preferably an iridium compound, an osmium compound, a platinum compound (platinum complex compound), or a rare earth complex, and most preferably an iridium compound.
  • At least one light emitting layer 3a may contain two or more phosphorescent compounds, and the concentration ratio of the phosphorescent compound in the light emitting layer 3a varies in the thickness direction of the light emitting layer 3a. It may be.
  • the phosphorescent compound is preferably 0.1% by volume or more and less than 30% by volume with respect to the total amount of the light emitting layer 3a.
  • the phosphorescent compounds applicable to the present invention are represented by the general formulas (4), (5), and (6) described in paragraphs [0185] to [0244] of JP2013-4245A.
  • Preferred examples include compounds and exemplary compounds.
  • Ir-46, Ir-47 and Ir-48 are shown below.
  • Compounds represented by general formula (4), general formula (5) and general formula (6) described in paragraphs [0185] to [0244] of JP2013-4245A, and exemplified compounds (Pt-1 to Pt) -3, Os-1, Ir-1 to Ir-45) are incorporated herein.
  • these phosphorescent compounds are contained in the light emitting layer 3a as light emitting dopants, they are contained in each functional layer other than the light emitting layer 3a. May be.
  • the phosphorescent compound can be appropriately selected from known materials used for the light emitting layer 3a.
  • phosphorescent compounds also referred to as phosphorescent metal complexes and the like
  • Fluorescent materials include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes Examples thereof include dyes, polythiophene dyes, and rare earth complex phosphors.
  • Electron transport used for the organic EL element 10 is made of a material having a function of transporting electrons, and has a function of transmitting electrons injected from the cathode to the light emitting layer 3a.
  • the electron transport material may be used alone or in combination of two or more.
  • the total thickness of the electron transport layer is not particularly limited, but is usually in the range of 2 nm to 5 ⁇ m, more preferably 2 nm to 500 nm, and further preferably 5 nm to 200 nm.
  • the organic EL element 10 when the light generated in the light emitting layer 3a is extracted from the electrode, the light extracted directly from the light emitting layer 3a and the light extracted after being reflected by the electrode from which the light is extracted and the electrode located at the counter electrode Is known to cause interference.
  • this interference effect can be efficiently utilized by appropriately adjusting the total film thickness of the electron transport layer between several nanometers and several micrometers.
  • the electron mobility of the electron transport layer is preferably 10 ⁇ 5 cm 2 / Vs or more, particularly when the thickness is large. .
  • the material used for the electron transporting layer may be any of electron injecting or transporting properties and hole blocking properties, and can be selected from conventionally known compounds. Can be selected and used.
  • Examples include nitrogen-containing aromatic heterocyclic derivatives, aromatic hydrocarbon ring derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, silole derivatives, and the like.
  • nitrogen-containing aromatic heterocyclic derivatives examples include carbazole derivatives, azacarbazole derivatives (one or more carbon atoms constituting the carbazole ring are substituted with nitrogen atoms), pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, pyridazine derivatives, triazine derivatives.
  • aromatic hydrocarbon ring derivative examples include naphthalene derivatives, anthracene derivatives, triphenylene and the like.
  • a metal complex having a quinolinol skeleton or a dibenzoquinolinol skeleton as a ligand such as tris (8-quinolinol) aluminum (Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7 -Dibromo-8-quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • a metal complex in which the central metal is replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as an electron transporting material.
  • metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylpyrazine derivative exemplified as the material for the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si, n-type-SiC, etc. as in the case of the hole injection layer and the hole transport layer. Can also be used as an electron transporting material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • the electron transport layer may be doped as a guest material with a doping material as a guest material to form an electron transport layer having a high n property (electron rich).
  • the doping material include n-type dopants such as metal complexes and metal compounds such as metal halides.
  • Specific examples of the electron transport layer having such a structure include, for example, JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J. Appl. Phys., 95, 5773 (2004) and the like.
  • More preferable electron transport materials include pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, triazine derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, carbazole derivatives, azacarbazole derivatives, and benzimidazole derivatives.
  • the electron transport material may be used alone or in combination of two or more.
  • the hole blocking layer is a layer having a function of an electron transport layer in a broad sense.
  • it is made of a material having a function of transporting electrons and a small ability to transport holes. By blocking holes while transporting electrons, the recombination probability of electrons and holes can be improved.
  • the structure of the above-mentioned electron carrying layer can be used as a hole-blocking layer as needed.
  • the hole blocking layer provided in the organic EL element 10 is preferably provided adjacent to the cathode side of the light emitting layer 3a.
  • the thickness of the hole blocking layer is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
  • the material used for the hole blocking layer the material used for the above-described electron transport layer is preferably used, and the material used as the above-described host compound is also preferably used for the hole blocking layer.
  • the electron injection layer (also referred to as “cathode buffer layer”) is a layer provided between the cathode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance.
  • An example of an electron injection layer can be found in the second chapter, Chapter 2, “Electrode Materials” (pages 123-166) of “Organic EL devices and their industrialization front line (issued by NTT Corporation on November 30, 1998)”. Are listed.
  • the electron injection layer is provided as necessary, and is provided between the cathode and the light emitting layer or between the cathode and the electron transport layer as described above.
  • the electron injection layer is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 nm, depending on the material.
  • membrane in which a constituent material exists intermittently may be sufficient.
  • JP-A-6-325871, JP-A-9-17574, and JP-A-10-74586 Specific examples of materials preferably used for the electron injection layer include metals typified by strontium and aluminum, alkali metal compounds typified by lithium fluoride, sodium fluoride, and potassium fluoride, magnesium fluoride, and fluoride. Examples thereof include alkaline earth metal compounds typified by calcium, metal oxides typified by aluminum oxide, metal complexes typified by lithium 8-hydroxyquinolate (Liq), and the like.
  • the material used for said electron injection layer may be used independently, and may be used in combination of multiple types.
  • the hole transport layer is made of a material having a function of transporting holes.
  • the hole transport layer is a layer having a function of transmitting holes injected from the anode to the light emitting layer 3a.
  • the total thickness of the hole transport layer is not particularly limited, but is usually in the range of 5 nm to 5 ⁇ m, more preferably 2 nm to 500 nm, and further preferably 5 nm to 200 nm.
  • the material used for the hole transport layer may have any of a hole injection property or a transport property and an electron barrier property.
  • a hole transport material an arbitrary material can be selected and used from conventionally known compounds.
  • the hole transport material may be used alone or in combination of two or more.
  • Hole transport materials include, for example, porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, tria Reelamine derivatives, carbazole derivatives, indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, polyvinyl carbazole, polymer materials having aromatic amine introduced in the main chain or side chain, or Oligomer, polysilane, conductive polymer or oligomer (eg, PEDOT: PSS, aniline copolymer, polyaniline, polythiophene, etc.) And the like.
  • PEDOT PEDOT: PS
  • triarylamine derivative examples include a benzidine type typified by ⁇ -NPD, a starburst type typified by MTDATA, and a compound having fluorene or anthracene in the triarylamine linking core part.
  • hexaazatriphenylene derivatives described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as the hole transport material.
  • a hole transport layer having a high p property doped with impurities can also be used.
  • the configurations described in JP-A-4-297076, JP-A-2000-196140, 2001-102175, J. Appl. Phys., 95, 5773 (2004), etc. can also be applied to the transport layer.
  • so-called p-type hole transport materials and p-type materials as described in JP-A-11-251067 and J. Huang et.al. (Applied Physics Letters 80 (2002), p. 139).
  • Inorganic compounds such as -Si and p-type -SiC can also be used.
  • ortho-metalated organometallic complexes having Ir or Pt as the central metal as typified by Ir (ppy) 3 are also preferably used.
  • the above-mentioned materials can be used as the hole transport material, a triarylamine derivative, a carbazole derivative, an indolocarbazole derivative, an azatriphenylene derivative, an organometallic complex, or an aromatic amine is introduced into the main chain or side chain.
  • the polymer materials or oligomers used are preferably used.
  • hole transport material used for the organic EL element 10 include, but are not limited to, the compounds described in the following documents in addition to the documents listed above.
  • the hole transport material may be used alone or in combination of two or more.
  • the electron blocking layer is a layer having a function of a hole transport layer in a broad sense. Preferably, it is made of a material having a function of transporting holes and a small ability to transport electrons.
  • the electron blocking layer can improve the probability of recombination of electrons and holes by blocking electrons while transporting holes.
  • the above-described configuration of the hole transport layer can be used as an electron blocking layer of the organic EL element 10 as necessary.
  • the electron blocking layer provided in the organic EL element 10 is preferably provided adjacent to the anode side of the light emitting layer 3a.
  • the thickness of the electron blocking layer is preferably in the range of 3 to 100 nm, and more preferably in the range of 5 to 30 nm.
  • the materials used for the electron blocking layer can be preferably used.
  • the material used as the above-mentioned host compound can also be preferably used as the electron blocking layer.
  • the hole injection layer (also referred to as “anode buffer layer”) is a layer provided between the anode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance.
  • An example of the hole injection layer is “Organic EL device and its industrialization front line (November 30, 1998, issued by NTT)”, Chapter 2, Chapter 2, “Electrode material” (pages 123-166). It is described in.
  • the hole injection layer is provided as necessary, and is provided between the anode and the light emitting layer 3a or between the anode and the hole transport layer as described above.
  • Examples of the material used for the hole injection layer include the materials used for the hole transport layer described above. Among them, phthalocyanine derivatives typified by copper phthalocyanine, hexaazatriphenylene derivatives as described in JP-T-2003-519432 and JP-A 2006-135145, metal oxides typified by vanadium oxide, amorphous carbon, polyaniline ( Preferred are conductive polymers such as emeraldine) and polythiophene, orthometalated complexes represented by tris (2-phenylpyridine) iridium complex, and triarylamine derivatives.
  • the materials used for the hole injection layer described above may be used alone or in combination of two or more.
  • the light emitting functional layer 3 constituting the organic EL element 10 may further contain other inclusions.
  • the inclusion include halogen elements such as bromine, iodine, and chlorine, halogenated compounds, alkali metals such as Pd, Ca, and Na, alkaline earth metals, transition metal compounds, complexes, and salts.
  • the content of the inclusion can be arbitrarily determined, but is preferably 1000 ppm or less, more preferably 500 ppm or less, and even more preferably 50 ppm or less with respect to the total mass% of the contained layer. . However, it is not within this range depending on the purpose of improving the transportability of electrons and holes or the purpose of favoring the exciton energy transfer.
  • a method for forming a light emitting functional layer (hole injection layer, hole transport layer, light emitting layer 3a, hole blocking layer, electron transport layer, electron injection layer, etc.) of the organic EL element 10 will be described.
  • a light emitting functional layer hole injection layer, hole transport layer, light emitting layer 3a, hole blocking layer, electron transport layer, electron injection layer, etc.
  • limiting in particular in the formation method of the light emission functional layer 3 It can form by conventionally well-known, for example, a vacuum evaporation method, a wet method (wet process) etc.
  • Examples of the wet method include a spin coating method, a casting method, an ink jet method, a printing method, a die coating method, a blade coating method, a roll coating method, a spray coating method, a curtain coating method, and an LB method (Langmuir-Blodgett method).
  • a method having high suitability for a roll-to-roll method such as a die coating method, a roll coating method, an ink jet method, or a spray coating method is preferable.
  • liquid medium for dissolving or dispersing the material of the light emitting functional layer in the wet method examples include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, and the like.
  • Aromatic hydrocarbons such as mesitylene and cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin and dodecane, and organic solvents such as DMF and DMSO can be used.
  • it can disperse
  • the vapor deposition conditions vary depending on the type of compound used, etc., but generally the boat heating temperature is 50 ° C. to 450 ° C. and the degree of vacuum is 10 ⁇ 6 Pa to 10 ⁇ 10. It is desirable to select appropriately within the range of ⁇ 2 Pa, vapor deposition rate of 0.01 nm / second to 50 nm / second, substrate temperature of ⁇ 50 ° C. to 300 ° C., film thickness of 0.1 nm to 5 ⁇ m, preferably 5 nm to 200 nm.
  • the organic EL element 10 is preferably formed from the light emitting functional layer 3 to the counter electrode 5 consistently by a single evacuation, but may be taken out halfway and subjected to different film forming methods. In that case, it is preferable to perform the work in a dry inert gas atmosphere. Different formation methods may be applied for each layer.
  • the counter electrode 5 is an electrode that constitutes an anode or a cathode of the organic EL element 10, and is an electrode provided on one main surface of the transparent substrate 11 via the light emitting functional layer 3.
  • the counter electrode 5 is used as a cathode with respect to the light emitting functional layer 3 of the organic EL element 10 when the transparent electrode 2 is an anode and as an anode when the transparent electrode 2 is a cathode. For this reason, at least the interface layer on the side in contact with the light emitting functional layer 3 is made of a material suitable as a cathode or an anode.
  • the counter electrode 5 is configured as a reflective electrode that reflects, for example, emitted light h generated in the light emitting layer 3 a of the light emitting functional layer 3 to the light extraction surface 11 a side of the transparent substrate 11.
  • the counter electrode 5 may be transmissive to visible light. In this case, the emitted light h can be extracted from the counter electrode 5 side.
  • anode and cathode constituting the counter electrode 5 described above are as follows.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, and a mixture thereof having a high work function (4 eV or more, preferably 4.5 V or more) is used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • a thin film is formed by depositing these electrode materials by a method such as vapor deposition or sputtering, and a pattern having a desired shape is formed by a photolithography method.
  • a method such as vapor deposition or sputtering
  • a pattern having a desired shape is formed by a photolithography method.
  • the pattern may be formed through a mask having a desired shape when the electrode material is formed by vapor deposition or sputtering.
  • a wet film forming method such as a printing method or a coating method can also be used.
  • the sheet resistance as the anode is several hundred ⁇ / sq. The following is preferred.
  • the thickness of the anode depends on the material, but is usually selected in the range of 10 nm to 1 ⁇ m, preferably 10 nm to 200 nm in consideration of transparency or reflectivity.
  • cathode As the cathode, an electrode substance made of a metal having a low work function (4 eV or less) (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, aluminum, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal having a work function value larger and more stable than that of the electron injecting metal for example, magnesium / Silver mixtures, magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by using the above electrode material by vapor deposition or sputtering.
  • the sheet resistance of the cathode is several hundred ⁇ / sq. The following is preferred.
  • the thickness of the cathode depends on the material, but is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 nm to 200 nm in consideration of transparency or reflectivity.
  • the external extraction efficiency of light emission of the organic EL element 10 at room temperature is preferably 1% or more, and more preferably 5% or more.
  • external extraction quantum efficiency (%) number of photons emitted to the outside of the organic EL element / number of electrons flowed to the organic EL element ⁇ 100.
  • a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element 10 into multiple colors using a phosphor may be used in combination.
  • the organic EL element 10 emits light well with a small amount of electric power, it is weak against moisture and a non-light emitting portion is formed due to moisture absorption, so that it is preferably sealed with a sealing member.
  • Examples of the sealing means applied for sealing the organic EL element 10 of the present invention include a method of adhering the sealing member, the counter electrode 5 and the transparent substrate 11 with an adhesive.
  • a sealing member it should just be arrange
  • the transparency and electrical insulation of the sealing member are not particularly limited.
  • Specific examples include a glass plate, a polymer plate / film, and a metal plate / film.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum. .
  • sandblasting, chemical etching, or the like is used for processing the sealing member into a concave shape.
  • the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 ml / (m 2 / 24h) or less, and was measured by a method according to JIS K 7129-1992.
  • water vapor permeability 25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)%) is preferably at 1 ⁇ 10 -3 g / (m 2 / 24h) or less.
  • the adhesive examples include photocuring and thermosetting adhesives having reactive vinyl groups such as acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to.
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • the organic EL element 10 may be deteriorated by heat treatment, a material that can be adhesively cured from room temperature to 80 ° C. or lower is preferable. Further, a desiccant may be dispersed in the adhesive. Application
  • coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
  • the counter electrode 5 and the light emitting functional layer 3 are coated on the counter electrode 5 on the side facing the transparent substrate 11, and an inorganic or organic layer is formed in contact with the transparent substrate 11, thereby sealing.
  • the material for forming the sealing film may be any material having a function of suppressing entry of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • the sealing film it is preferable to have a laminated structure of an inorganic layer and a layer made of an organic material, like the above-described barrier film.
  • the method for forming these films is not particularly limited. For example, vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma A polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • a gap between the sealing member and the display area of the organic EL element 10 is injected with a gas phase using an inert gas such as nitrogen or argon, or a liquid phase using an inert liquid such as fluorinated hydrocarbon or silicon oil. It is preferable. Further, the gap between the sealing member and the display area of the organic EL element 10 can be evacuated.
  • a hygroscopic compound can be enclosed in the gap between the sealing member and the display area of the organic EL element 10.
  • Examples of the hygroscopic compound include metal oxides such as sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, and aluminum oxide, sulfates such as sodium sulfate, calcium sulfate, magnesium sulfate, and cobalt sulfate, calcium chloride, Metal halides such as magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide, barium perchlorate, and perchloric acids such as magnesium perchlorate Can be mentioned.
  • Anhydrous salts are preferably used as sulfates, metal halides and perchloric acids.
  • a protective film or a protective plate may be provided outside the sealing film or sealing film for sealing the organic EL element 10 in order to increase the mechanical strength of the element.
  • the mechanical strength is not necessarily high, and thus a protective film or a protective plate is preferably provided.
  • a material that can be used as the protective film or the protective plate for example, a glass plate, a polymer plate / film, a metal plate / film, or the like can be used in the same manner as the sealing member described above.
  • As the protective film or protective plate it is preferable to use a polymer film that can be reduced in weight and thickness.
  • the organic EL element 10 may have another configuration for improving the light extraction efficiency of the organic EL element 10 in addition to the above-described scattering layer 1a.
  • the organic EL element emits light inside a layer having a refractive index higher than that of air (within a refractive index of about 1.6 to 2.1).
  • a layer having a refractive index higher than that of air within a refractive index of about 1.6 to 2.1.
  • light incident on the interface of each layer such as a transparent electrode, a light-emitting layer, and a transparent substrate at an angle ⁇ greater than the critical angle causes total reflection and is difficult to extract outside the device.
  • the light that has undergone total reflection between the respective layers is guided through the transparent electrode 2 and the light emitting layer, and as a result, the light escapes in the element side direction. For this reason, it is known that the organic EL element can extract only a part of the light generated in the light emitting layer to the outside of the organic EL element.
  • a method for improving the light extraction efficiency of the organic EL element for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (for example, US Pat. No. 4,774,435) Further, a method for improving the efficiency by giving the substrate a light condensing property (for example, JP-A-63-314795), a method for forming a reflective surface on the side surface of the element (for example, JP-A-1-220394) ), A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the substrate and the light emitter (for example, Japanese Patent Application Laid-Open No. 62-172691), between the substrate and the light emitter.
  • a method of introducing a flat layer having a low refractive index for example, Japanese Patent Laid-Open No. 2001-202827, forming a diffraction grating between the substrate, the transparent electrode layer, and the light emitting layer (including between the substrate and the outside) how to JP-A-11-283751 Publication), and the like.
  • the above-mentioned methods can be used in combination.
  • a method of introducing a flat layer having a lower refractive index than that of the transparent substrate 11 between the transparent substrate 11 and the organic layer 1b or a method of forming a diffraction grating between layers can be suitably used.
  • high brightness and durability can be further improved by combining these means.
  • the organic EL element 10 when a medium having a low refractive index is formed between the transparent electrode 2 and the transparent substrate 11 with a thickness longer than the wavelength of transmitted light, the lower the refractive index of the medium, the higher the output from the transparent electrode 2. The extraction efficiency of the incoming light is increased.
  • the low refractive index layer formed of a low refractive index medium examples include airgel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally in the range of about 1.5 to 1.7, the refractive index of the low refractive index layer is preferably about 1.5 or less, and more preferably 1.35 or less. Is preferred.
  • the thickness of the low refractive index layer is at least twice the wavelength of light transmitted through the medium. This is because, when the thickness of the low refractive index layer is about the wavelength of light, the electromagnetic wave oozed out by evanescent enters the layer adjacent to the light extraction surface side of the low refractive index layer, and the effect of the low refractive index layer is reduced. Because it fades.
  • the method of introducing a diffraction grating into an interface that causes total reflection or in any medium has a feature that the effect of improving the light extraction efficiency is high.
  • This method utilizes the property that the direction of light can be changed to a specific direction different from refraction by so-called Bragg diffraction, such as first-order diffraction or second-order diffraction.
  • a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction or a diffraction grating having a two-dimensional periodic refractive index can be applied.
  • the position where the diffraction grating is introduced may be in any layer or in a medium such as a transparent substrate or a transparent electrode, and is preferably in the vicinity of the light emitting functional layer where light is generated.
  • the period of the diffraction grating is preferably in the range of about 1/2 to 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction gratings is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.
  • the organic EL element 10 is provided with a microlens array or a so-called condensing sheet, for example, on the light extraction surface 11a side of the transparent substrate 11, so It is possible to increase the brightness in a specific direction by focusing in the direction.
  • a light diffusing plate / film may be used in combination with the light collecting sheet.
  • a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • a quadrangular pyramid having a side of 30 ⁇ m and an apex angle of 90 degrees is arranged two-dimensionally on the light extraction surface 11 a side of the transparent substrate 11.
  • One side is preferably within a range of 10 to 100 ⁇ m. If it becomes smaller than this, the effect of diffraction will generate
  • the condensing sheet for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device can be used.
  • a sheet for example, a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used.
  • BEF brightness enhancement film
  • a prism sheet for example, a shape in which a stripe having a triangular cross section with a vertex angle of 90 degrees and a pitch of 50 ⁇ m is formed on a base material, a shape with a rounded vertex angle, a shape in which the pitch is randomly changed, and other Shapes can be used.
  • the organic EL element 10 can be applied to electronic devices such as display devices, displays, and various light emission sources.
  • Examples of light-emitting light sources include lighting devices such as home lighting and interior lighting, backlights for clocks and liquid crystals, signboard advertisements, traffic lights, optical storage media and other light sources, light sources for electrophotographic copying machines, and light sources for optical communication processors. Examples include, but are not limited to, a light source of an optical sensor. In particular, it can be effectively used as a backlight of a liquid crystal display device and an illumination light source.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like as necessary during film formation.
  • a metal mask an ink jet printing method, or the like as necessary during film formation.
  • the transparent electrode 2 and the counter electrode 5 may be patterned, these electrodes and the light emitting layer 3a may be patterned, or the whole element layer may be patterned.
  • a conventionally known method can be used.
  • the organic EL element used in the lighting device may be designed such that the organic EL element having the above-described configuration has a resonator structure.
  • Examples of the purpose of use of the organic EL element configured as a resonator structure include, but are not limited to, a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processor, a light source of an optical sensor, and the like. .
  • the material used for the organic EL element can be applied to an organic EL element that emits substantially white light (also referred to as a white organic EL element).
  • a plurality of light emitting materials can simultaneously emit a plurality of light emission colors to obtain white light emission by color mixing.
  • the combination of a plurality of emission colors may include three emission maximum wavelengths of the three primary colors of red, green and blue, or two using the complementary colors such as blue and yellow, blue green and orange. The thing containing the light emission maximum wavelength may be used.
  • the combination of luminescent materials for obtaining multiple luminescent colors is a combination of multiple phosphorescent or fluorescent materials that emit light, fluorescent materials or phosphorescent materials, and light from the luminescent materials. Any combination with a pigment material that emits light as light may be used, but in a white organic EL element, a combination of a plurality of light-emitting dopants may be used.
  • Such a white organic EL element is different from a configuration in which organic EL elements emitting each color are individually arranged in parallel to obtain white light emission, and the organic EL element itself emits white light. For this reason, a mask is not required for film formation of most layers constituting the element, and for example, an electrode film can be formed on one side by vapor deposition, casting, spin coating, ink jet, printing, etc., and productivity is improved. To do.
  • the light emitting material used for the light emitting layer of such a white organic EL element is not particularly limited.
  • the light emitting material is adapted to a wavelength range corresponding to CF (color filter) characteristics. Any one of the metal complexes according to the present invention and known light-emitting materials may be selected and combined for whitening.
  • the white organic EL element described above it is possible to produce a lighting device that emits substantially white light.
  • the lighting device can be used as a lighting device having a large light emitting surface by using, for example, a plurality of organic EL elements.
  • the light emitting surface is enlarged by arranging a plurality of light emitting panels provided with organic EL elements on the support substrate (that is, tiling).
  • the support substrate may also serve as a sealing member, and each light emitting panel is tiled in a state where the organic EL element is sandwiched between the support substrate and the transparent substrate of the light emitting panel.
  • An adhesive may be filled between the support substrate and the transparent substrate, thereby sealing the organic EL element. Note that the terminals of the transparent electrode and the counter electrode are exposed around the light emitting panel.
  • the center of each light emitting panel is a light emitting region, and a non-light emitting region is generated between the light emitting panels.
  • a light extraction member for increasing the amount of light extracted from the non-light emitting area may be provided in the non-light emitting area of the light extraction surface.
  • a light collecting sheet or a light diffusion sheet can be used as the light extraction member.
  • the light extraction efficiency is improved by providing the scattering layer 1 a on the transparent substrate 11.
  • the uneven surface of the scattering layer 1a can be smoothed.
  • the metal movement prevention layer 1c of 1 nm or less is provided on the organic layer 1b whose surface is smoothed and the transparent electrode 2 composed of silver or an alloy containing silver as a main component is formed, the metal movement prevention The interaction between the layer 1c and the silver in the transparent electrode 2 is obtained, and a transparent electrode having a uniform thickness can be formed though it is thin.
  • the metal migration preventing layer 1c is not 1 nm or less, it does not become a complete continuous film. Therefore, the organic layer 1b and the transparent electrode 2 can be formed adjacent to each other in a discontinuous portion. Therefore, the uniformity of the transparent electrode 2 can be further enhanced by the synergistic effect of the organic layer 1b and the metal migration preventing layer 1c on the transparent electrode 2 without inhibiting the interaction between the organic layer 1b and the transparent electrode 2. This can further improve the smoothness of the electrode surface.
  • the organic EL element 10 of this invention is the structure by which the light emission functional layer 3 was provided on the transparent electrode 2, and since the smoothness of the surface of the transparent electrode 2 improves as mentioned above, the rectification in an element is carried out. It is possible to suppress a reduction in the ratio and occurrence of leakage.
  • the organic EL element 10 of the present invention has reduced rectification ratio and leak generation due to insufficient smoothness of the electrode surface, and is reliable while improving light extraction efficiency. The improvement is achieved.
  • FIG. 7 is a schematic cross-sectional view illustrating a configuration of an organic EL element including a smooth layer according to the second embodiment of the present invention.
  • the organic EL element 20 of the second embodiment has the same configuration as that of the above-described first embodiment except that a smoothing layer 1d is further provided between the scattering layer 1a and the organic layer 1b. For this reason, description is abbreviate
  • the smooth layer 1d is composed of a layer medium and fine particles contained in the layer medium.
  • the scattering layer 1a is a mixed scattering layer having fine particles
  • the fine particles contained in the resin material (binder) that is the layer medium are particles smaller than the fine particles contained in the mixed scattering layer.
  • the scattering layer 1a is a shape control scattering layer having a concavo-convex structure
  • the particles are smaller than the width and height of the concavo-convex recesses of the shape control scattering layer.
  • the smooth layer 1d is preferably a high refractive index layer having a refractive index of 1.7 or more and less than 2.5 at a wavelength of 550 nm.
  • the smooth layer 1d may be formed of a single material as long as the refractive index is 1.7 or more and less than 2.5, or a mixture of two or more compounds to have a refractive index of 1.7 or more and 2. Less than 5 layers may be formed.
  • the concept of the refractive index when forming with a mixture is the same as that of the scattering layer 1a.
  • the refractive index of the scattering layer 1a and the smooth layer 1d is in the range of 1.7 or more and less than 2.5, respectively, it is difficult to measure the refractive index of each layer individually. Since there are many cases, the measured value of the refractive index measured collectively for the scattering layer 1a and the smoothing layer 1d only needs to satisfy the above range.
  • the smooth layer 1d has a flatness that allows the organic layer 1b to be satisfactorily formed thereon, and the surface property is such that the average surface roughness Ra is less than 100 nm, preferably less than 30 nm, particularly preferably less than 10 nm. Most preferably, it is less than 5 nm.
  • the average surface roughness Ra refers to an average surface roughness Ra at 10 ⁇ m measured by atomic force microscopy (AFM).
  • Examples of the layer medium used for the smooth layer 1d include the same resin material (binder) as that of the scattering layer 1a.
  • the fine particles contained in the smooth layer 1d are preferably metal oxide fine particles (inorganic particles) of a fine particle high refractive index material.
  • metal oxide fine particles inorganic particles
  • it is used in the form of a fine particle sol. Is preferred.
  • the lower limit of the refractive index of the metal oxide fine particles (inorganic particles) contained in the smooth layer 1d having a high refractive index is preferably 1.7 or more, more preferably 1.85 or more in the bulk state. 2.0 or more is more preferable, and 2.5 or more is particularly preferable.
  • the upper limit of the refractive index of the metal oxide fine particles is preferably 3.0 or less. If the refractive index of the metal oxide fine particles is lower than 1.7, the difference in refractive index from the binder becomes small, so that the amount of scattering is reduced and the effect of improving the light extraction efficiency may not be obtained. On the other hand, if the refractive index of the metal oxide fine particles is higher than 3.0, multiple scattering in the film increases and transparency is lowered, which is not preferable.
  • the lower limit of the particle size of the metal oxide fine particles (inorganic particles) contained in the smooth layer 1d having a high refractive index is usually preferably 4 nm or more, more preferably 5 nm or more, and more preferably 6 nm or more. Further preferred.
  • the upper limit of the particle size of the metal oxide fine particles is preferably 70 nm or less, more preferably 60 nm or less, and further preferably 50 nm or less.
  • the particle size distribution is not limited and may be wide or narrow and may have a plurality of distributions.
  • the scattering layer 1a is composed of a mixed scattering layer containing two or more kinds of compounds
  • the surface is uneven depending on the average particle size of the particles contained in the scattering layer 1a.
  • the particle size of the metal oxide fine particles contained in the smooth layer 1d is appropriately set so that the average surface roughness Ra of the scattering layer 1a is in the above-described range.
  • metal oxide fine particles in smooth layer 1d As a minimum of content of metal oxide fine particles in smooth layer 1d, it is preferred that it is 70 mass% or more to the whole mass, it is more preferred that it is 80 mass% or more, and it is 85 mass% or more. Is more preferable. Moreover, as an upper limit of content of metal oxide microparticles
  • the content of the metal oxide fine particles is 70% by mass or more, it becomes easy to adjust the refractive index of the smooth layer 1d to a desired value, for example, 1.7 or more. Moreover, when the content is 95% by mass or less, the smooth layer 1d can be applied smoothly, and the bending resistance can be maintained without deteriorating the brittleness of the film after drying.
  • the metal oxide fine particles contained in the smooth layer 1d are more preferably TiO 2 (titanium dioxide sol) from the viewpoint of stability. Further, among TiO 2 , rutile type is particularly lower than anatase type, so that the weather resistance of the smooth layer 1 d and the adjacent layer is high, and the refractive index is high, which is preferable.
  • Examples of methods for preparing a titanium dioxide sol that can be used in the present invention include JP-A 63-17221, JP-A 7-819, JP-A 9-165218, and JP-A 11-43327. Can be referred to.
  • the preferred primary particle diameter of the titanium dioxide fine particles is in the range of 5 to 15 nm, more preferably in the range of 6 to 10 nm.
  • Such an organic EL element 20 has a configuration in which the smooth layer 1d is sandwiched between the scattering layer 1a and the organic layer 1b, so that in addition to the effects of the first embodiment, the uneven surface of the scattering layer 1a is further increased. Smoothness can be achieved, the uniformity of the transparent electrode 2 provided on the top can be further increased, and the smoothness of the electrode surface is further improved.
  • the organic EL element 20 of the present embodiment also has a configuration in which the light emitting functional layer 3 is provided on the transparent electrode 2, and the smoothness of the surface of the transparent electrode 2 is further improved as described above. The reduction of the rectification ratio and the occurrence of leakage can be suppressed.
  • the organic EL element 20 of the present invention the decrease in the rectification ratio and the occurrence of leakage due to insufficient smoothness of the electrode surface are suppressed, and the light extraction efficiency is improved. Reliability is improved.
  • the transparent electrode 2 is formed on a transparent substrate 11 (hereinafter referred to as PET substrate 11) made of polyethylene terephthalate (PET), and the light emitting functional layer 3 and the counter electrode are formed on the transparent electrode 2.
  • PET substrate 11 made of polyethylene terephthalate (PET)
  • PET polyethylene terephthalate
  • an organic EL element of Sample 101 was produced by solid sealing with a sealing member.
  • the heating boat containing the host material H4 represented by the following structural formula and the heating boat containing the phosphorescent compound Ir-4 represented by the following structural formula were respectively energized independently, and the host material H4 and phosphorescent light emission were emitted.
  • the light emitting layer 32 made of the photosensitive compound Ir-4 was formed on the hole transport / injection layer 31.
  • the film thickness was 30 nm.
  • a heating boat containing BAlq represented by the following structural formula as a hole blocking material was energized and heated to form a hole blocking layer 33 made of BAlq on the light emitting layer 32.
  • the deposition rate was 0.1 nm / second to 0.2 nm / second, and the film thickness was 10 nm.
  • the PET substrate 11 on which the light emitting functional layer 3 is formed is transferred into a vacuum chamber of a vacuum vapor deposition apparatus, and the inside of the vacuum chamber is depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then the aluminum attached in the vacuum chamber is made.
  • the heated boat was energized and heated.
  • the counter electrode 5 made of aluminum having a film thickness of 100 nm was formed at a deposition rate of 0.3 nm / second.
  • the counter electrode 5 is used as a cathode.
  • the organic EL element is covered with a sealing material made of a glass substrate having a thickness of 300 ⁇ m, and an adhesive (seal) is interposed between the sealing material and the PET substrate 11 in a state of surrounding the organic EL element.
  • a sealing material made of a glass substrate having a thickness of 300 ⁇ m
  • an adhesive is interposed between the sealing material and the PET substrate 11 in a state of surrounding the organic EL element.
  • an epoxy photocurable adhesive (Luxtrac LC0629B manufactured by Toagosei Co., Ltd.) was used.
  • the adhesive filled between the sealing material and the PET substrate 11 was irradiated with UV light from the side of the sealing material made of a glass substrate, and the adhesive was cured to seal the organic EL element.
  • the organic EL element In the formation of the organic EL element, a vapor deposition mask is used to form each layer, and the central 4.5 cm ⁇ 4.5 cm of the 5 cm ⁇ 5 cm PET substrate is used as the light emitting region, and the width of the entire periphery of the light emitting region is 0.00 mm. A non-light-emitting region B of 25 cm was provided. Further, the transparent electrode 2 serving as the anode and the counter electrode 5 serving as the cathode are insulated from each other by the hole transport / injection layer 31 to the electron transport / injection layer 34, and a terminal portion is drawn to the periphery of the PET substrate 11. The shape was formed. Through the above steps, an organic EL element of Sample 101 was produced.
  • the dispersion liquid 1 constituting the scattering layer 1a is spin-coated by spin coating (500 rpm, 30 seconds), then simply dried (80 ° C., 2 minutes), and further baked (120 ° C., 60 And a scattering layer 1a having a thickness of 700 nm was formed.
  • the dispersion 1 has a solid content ratio of TiO 2 particles (JR600A manufactured by Teika Co., Ltd.) having a refractive index of 2.4 and an average particle diameter of 0.25 ⁇ m and a resin solution (ED230AL (organic inorganic hybrid resin) manufactured by APM).
  • the formulation was designed at a ratio of 10 ml so that the solvent ratio of 70 vol% / 30 vol%, the solvent ratio of n-propyl acetate and cyclohexanone was 10 wt% / 90 wt%, and the solid content concentration was 15 wt%.
  • the above TiO 2 particles and the above solvent are mixed and cooled at room temperature, and then placed in an ultrasonic disperser (UH-50 manufactured by SMT Co.) with a microchip step (MS-3 manufactured by SMT Co., Ltd., 3 mm ⁇ ). Dispersion was added for 10 minutes under standard conditions to prepare a TiO 2 dispersion. Next, while stirring the TiO 2 dispersion at 100 rpm, the resin solution was mixed and added little by little. After the addition was completed, the stirring speed was increased to 500 rpm and mixed for 10 minutes to obtain a scattering layer preparation. Then, the obtained scattering layer preparation was filtered with a hydrophobic PVDF 0.45 ⁇ m filter (manufactured by Whatman) to obtain the desired dispersion 1.
  • the transparent electrode 2 made of silver (Ag) was formed by first fixing the PET substrate 11 formed up to the scattering layer 1a to a substrate holder of a commercially available vacuum deposition apparatus. Moreover, silver (Ag) was put into the resistance heating boat made from tungsten, and it attached in the vacuum chamber of a vacuum evaporation system.
  • a transparent electrode 2 made of silver having a film thickness of 10 nm was formed at a deposition rate of 0.1 nm / second to 0.2 nm / second.
  • the PET substrate 11 formed up to the scattering layer 1a was attached in a vacuum chamber of a sputtering apparatus. Then, after reducing the vacuum chamber to 4 ⁇ 10 ⁇ 4 Pa, a voltage is applied to the MoO 3 target previously installed in the vacuum layer to prevent metal migration of MoO 3 having a thickness of 0.5 nm on the scattering layer 1a. Layer 1c was formed.
  • the PET substrate 11 formed up to the scattering layer 1a was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
  • the compound No. 1 previously shown in the structural formula as the nitrogen-containing compound I constituting the organic layer 1b. 1 was placed in a resistance heating boat made of tantalum. These substrate holders and resistance heating boats were attached to a vacuum chamber of a vacuum deposition apparatus.
  • Compound No. No. 1 having a film thickness of 10 nm on the scattering layer 1a at a deposition rate of 0.1 nm / sec to 0.2 nm / sec. 1 was formed.
  • the dispersion liquid 2 constituting the smooth layer 1d is spin-coated by spin coating (500 rpm, 30 seconds) and then simply dried (80 ° C., 2 minutes). Baking (120 ° C., 30 minutes) was performed to form a smooth layer 1d having a thickness of 500 nm.
  • the solid content ratio of the nano TiO 2 dispersion having an average particle size of 0.02 ⁇ m (HDT-760T manufactured by Teika Co., Ltd.) and the resin solution (ED230AL (organic / inorganic hybrid resin) manufactured by APM) is 45 vol%.
  • the formulation was designed at a ratio of 10 ml so that the solvent ratio of / 55 vol%, n-propyl acetate, cyclohexanone and toluene was 20 wt% / 30 wt% / 50 wt% and the solid content concentration was 20 wt%.
  • the nano TiO 2 dispersion and the solvent are mixed, and the resin solution is mixed and added little by little while stirring at 100 rpm. After the addition is completed, the stirring speed is increased to 500 rpm and mixed for 10 minutes. A smooth layer coating solution was obtained. Then, it filtered with the hydrophobic PVDF 0.45 micrometer filter (made by Whatman), and obtained the target dispersion 2.
  • the organic EL element 30 of the sample 133 was produced in the same procedure as the sample 132 except that the metal migration preventing layer 1c was composed of palladium (Pd).
  • the front luminance of the organic EL elements of Samples 101 to 133 was measured using a spectral radiance meter CS-2000 (manufactured by Konica Minolta), and the power efficiency at a front luminance of 1000 cd / m 2 was evaluated. did. Note that the power efficiency was evaluated as a relative value with the power efficiency of the sample 101 as 100.
  • the rectification ratio is determined by measuring the forward voltage flowing through each organic EL element at 500 ⁇ A / cm 2 at room temperature and the current value of the reverse voltage three times, calculating the rectification ratio from the average value, and calculating the logarithm value. The value taken by (Log) is shown. The higher the rectification ratio, the better the leak characteristics. The results are also shown in Table 2 below.
  • the organic EL elements of Samples 106 to 129 in which a scattering layer, an organic layer, a metal movement prevention layer, a transparent electrode, a light emitting functional layer, and a counter electrode are provided in this order on a transparent substrate are as follows. Compared with 105 organic EL elements, good results were obtained in both power efficiency and rectification ratio. In addition, the organic EL elements of Samples 130 to 133 further provided with a smooth layer obtained better results in both power efficiency and rectification ratio than Samples 101 to 105.
  • FIG. 9 shows that the effective unshared electron pair content [n / M] is 2.0 ⁇ 10 ⁇ 3 ⁇ [n / M] ⁇ 1.9 ⁇ 10 ⁇ 2
  • a transparent electrode made of silver (Ag) having a film thickness of 6 nm is formed on the upper part of the organic layer using No. 20
  • the effective unshared electron pair content [n / M] of the compound constituting the organic layer is The graph which plotted the value of the sheet resistance measured about the transparent electrode is shown.
  • the uniformity of the transparent electrode can be improved and the surface of the electrode can be smoothed. It was confirmed that the property was improved.
  • the sample 106 having the organic layer obtained better results in both power efficiency and rectification ratio. Therefore, an organic layer composed of a compound having an effective unshared electron pair content [n / M] of 2.0 ⁇ 10 ⁇ 3 ⁇ [n / M] as described in Table 1 above. It has been confirmed that the inclusion improves the uniformity and smoothness of the transparent electrode. In other words, by having the organic layer, the transparent electrode is formed by growth of a single-layer growth type (Frank-van der Merwe: FM type), and the uniformity and smoothness of the transparent electrode are improved. For this reason, it is possible to configure an organic EL element in which a reduction in rectification ratio and occurrence of leakage are suppressed and reliability is improved.
  • FM type single-layer growth type
  • the organic EL elements of the samples 106 to 115 having different materials constituting the metal movement preventing layer are power efficient. Good results were obtained for both rectification ratios. Therefore, it is confirmed that the metal migration preventing layer is made of a material (MoO 3 , Pd, etc.) having high affinity with silver (Ag) constituting the transparent electrode, thereby improving the uniformity and smoothness of the transparent electrode. It was done. For this reason, the organic EL element with which the improvement of reliability was achieved can be comprised.
  • the sample 130 provided with the smooth layer obtained good results in the rectification ratio. Therefore, it was confirmed that the reliability can be improved by providing a smooth layer between the scattering layer and the organic layer.
  • the organic EL element using the transparent electrode of the present invention improves both power efficiency and rectification ratio.

Abstract

 本発明の有機エレクトロルミネッセンス素子は、透明基板と、銀もしくは銀を主成分とする合金で構成され透明基板の一主面上に設けられた透明電極と、有機材料で構成された発光層を有し透明電極を介して透明基板の一主面上に設けられた発光機能層と、発光機能層を介して透明基板の一主面上に設けられた対向電極とを有する。また、透明基板と透明電極との間に、透明基板側から散乱層と、有機層と、MoO、Pd、Fe、Mn、Ga、Ge、In、Ni、Coのうち少なくとも1種を含有し、膜厚1nm以下となるように構成された金属移動防止層とをこの順に積層した構成をさらに有する。

Description

有機エレクトロルミネッセンス素子
 本発明は、透明電極を用いた有機エレクトロルミネッセンス素子に関する。
 有機エレクトロルミネッセンス素子(以下、「有機EL素子」ともいう)は、陽極と陰極の間を、有機発光物質が含有された有機薄膜層(単層部又は多層部)で構成する薄膜型の全固体素子である。この様な有機EL素子に電圧を印加すると、有機薄膜層に陰極から電子が、陽極から正孔が注入され、これらが発光層(有機発光物質含有層)において再結合して励起子が生じる。有機EL素子はこれら励起子からの光の放出(蛍光・リン光)を利用した発光素子であり、次世代の平面ディスプレイや照明として期待されている技術である。
 さらに、蛍光発光を利用する有機EL素子に比べ、原理的に約4倍の発光効率が実現可能である励起三重項からのリン光発光を利用する有機EL素子がプリンストン大学から報告されて以来、室温でリン光を示す材料の開発を始めとし、発光素子の層構成や電極の研究開発が世界中で行われている。
 このように、リン光発光方式は非常にポテンシャルの高い方式であるが、リン光発光を利用する有機ELデバイスにおいては、蛍光発光を利用するそれとは大きく異なり、発光中心の位置をコントロールする方法、とりわけ発光層の内部で再結合を行い、いかに発光を安定に行わせることができるかが、素子の効率・寿命を捕らえる上で重要な技術的課題となっている。
 そこで近年は発光層に隣接する形で、発光層の陽極側に位置する正孔輸送層や、発光層の陰極側に位置する電子輸送層等を備えた多層積層型の素子が良く知られている。また、発光層には発光ドーパントとしてのリン光発光性化合物とホスト化合物とを用いた混合層が多く用いられている。
 一方、材料の観点からは素子性能向上に対する新規材料創出の期待が大きい。
 また、このような有機EL素子の発光層で生じた発光光は陽極又は陰極を透過して外部に取り出される。このため、陽極又は陰極のうちの少なくとも一方は透明電極として構成される。
 透明電極としては、酸化インジウムスズ(SnO-In:Indium Tin Oxide:ITO)等の酸化物半導体系の材料が一般的に用いられているが、ITOと銀とを積層して低抵抗化を狙った検討もなされている(例えば下記特許文献1参照)。しかしながら、ITOはレアメタルのインジウムを使用しているため、材料コストが高く、また抵抗を下げるために成膜後に300℃程度でアニール処理する必要があるが、樹脂基板には不適である。また、有機EL素子の電極として使用した場合には、電極の表面平滑性が不十分であり、研磨等の処理が必要である。そこで、電気伝導率の高い銀等の金属材料を薄膜化した構成や、銀にアルミニウムを混ぜることにより銀単独よりも薄い膜厚で導電性を確保する構成(例えば下記特許文献2参照)が提案されている。
 また、透明電極として、窒素化合物を用いて構成された有機層に銀等の金属材料を隣接して設けることで銀等を薄膜化した構成、及びこの透明電極を電子デバイスに用いた構成(例えば下記特許文献3参照)が提案されている。
特開2002-15623号公報 特開2009-151963号公報 国際公開第2013/073356号
 しかしながら、電気伝導率の高い銀やアルミニウムを用いて構成された透明電極であっても、該透明電極の表面平滑性が不十分である。また、有機層に銀等の金属材料を隣接して設けることにより銀等を薄膜化した構成の透明電極であっても、該透明電極を有機EL素子のボトムエミッション型に使用した場合には、透明電極の表面の平滑性が不十分なために、整流比の低下やリーク発生などの問題が生じることが確認された。したがって、このような有機エレクトロルミネッセンス素子においては、透明電極の平滑性に起因する整流比の低下やリーク発生等を抑制し、信頼性の向上が求められている。
 そこで本発明は、光の取り出し効率の向上を図りつつも信頼性の向上が図られた有機エレクトロルミネッセンス素子を提供するものである。
 本発明に係る上記課題は、以下の手段により解決される。
 本発明の有機エレクトロルミネッセンス素子は、透明基板と、銀もしくは銀を主成分とする合金で構成され透明基板の一主面上に設けられた透明電極と、有機材料で構成された発光層を有し透明電極を介して透明基板の一主面上に設けられた発光機能層と、発光機能層を介して透明基板の一主面上に設けられた対向電極とを有する。また、透明基板と透明電極との間に、透明基板側から散乱層と、有機層と、MoO、Pd、Fe、Mn、Ga、Ge、In、Ni、Coのうち少なくとも1種を含有し、膜厚1nm以下となるように構成された金属移動防止層とをこの順に積層した構成をさらに有する。
 本発明の有機エレクトロルミネッセンス素子によれば、透明基板上に散乱層を設けることにより、透明電極を通過して透明基板側から取り出される光の取り出し効率が向上する。
 また、散乱層上に有機層が設けられることにより、散乱層の凹凸面を平滑にすることができる。さらに、表面が平滑化された有機層上に1nm以下の金属移動防止層が設けられ、銀もしくは銀を主成分とする合金で構成された透明電極が形成されるため、金属移動防止層と透明電極における銀との相互作用が得られ、薄いながらも均一な厚さの透明電極を形成できる。
 ここで、金属移動防止層は、1nm以下であることにより有機層と透明電極との相互作用を阻害することもない。したがって、有機層と金属移動防止層との透明電極に対する相乗的な作用効果により透明電極の均一性をより高めることができ、電極表面の平滑性がさらに向上する。
 そして特に、本発明の有機エレクトロルミネッセンス素子は、透明電極上に発光機能層が設けられた構成であり、上述したように透明電極の表面の平滑性が向上するため、素子内の整流比の低下やリーク発生等を抑制することができる。
 したがって、本発明の有機エレクトロルミネッセンス素子は、電極表面の平滑性が不十分であることによる整流比の低下やリーク発生等が抑制されたものとなり、光の取り出し効率の向上を図りつつも信頼性の向上が図られたものとなる。
 本発明によれば、光の取り出し効率の向上を図りつつも信頼性の向上が図られた有機エレクトロルミネッセンス素子を提供することができる。
第1実施形態の有機エレクトロルミネッセンス素子の構成を示す断面模式図である。 窒素原子の結合様式を説明するためのTBACとIr(ppy)の構造式を示す図である。 ピリジン環の構造式と分子軌道を示す図である。 ピロール環の構造式と分子軌道を示す図である。 イミダゾール環の構造式と分子軌道を示す図である。 δ-カルボリン環の構造式と分子軌道を示す図である。 第2実施形態の平滑層を備えた有機エレクトロルミネッセンス素子の構成を示す断面模式図である。 実施例で作製した有機エレクトロルミネッセンス素子を説明する断面構成図である。 有機層の有効非共有電子対含有率[n/M]と、有機層に積層された透明電極のシート抵抗との関係を示すグラフである。
 以下、本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。
1.第1実施形態:有機エレクトロルミネッセンス素子
2.第2実施形態:平滑層を備えた有機エレクトロルミネッセンス素子
≪1.第1実施形態:有機エレクトロルミネッセンス素子≫
 本発明の有機エレクトロルミネッセンス素子(以下、有機EL素子と記す)の具体的な実施の形態について説明する。図1は、本発明の第1実施形態に係る有機EL素子の構成を示す断面模式図である。本実施形態においては、ボトムエミッション構造の有機EL素子10の構成を説明する。
 この図に示すように、有機EL素子10は、得られた発光光hを透明基板11側から取り出す、いわゆるボトムエミッション型の構成である。有機EL素子10は、透明基板11の上部に、銀もしくは銀を主成分とする合金で構成された透明電極2を備えており、この上部に発光機能層3と、対向電極5とを積層している。発光機能層3は、少なくとも有機材料で構成された発光層3aを有する。また、有機EL素子10は、透明基板11と透明電極2との間に、透明基板11側から順に散乱層1aと、有機層1bと、金属移動防止層1cとを積層した構成をさらに有する。
 したがって、有機EL素子10は、透明基板11上に、散乱層1aと、有機層1bと、金属移動防止層1cと、透明電極2と、発光機能層3と、対向電極5がこの順に積層された構成である。
 以下に、このような積層構造の有機EL素子10について、透明基板11、散乱層1a、有機層1b、金属移動防止層1c、透明電極2、発光機能層3、対向電極5の順に詳細な構成を説明する。尚、本発明の透明電極2の透明とは波長550nmでの光透過率が50%以上であることをいう。
<透明基板11>
 透明基板11は、光透過性を有する基板材料で構成されたもので、例えばガラス、石英、透明樹脂フィルム等を挙げることができるが、これらに限定されない。また特に好ましい透明基板11としては、有機EL素子10にフレキシブル性を与えることが可能な樹脂フィルムである。
 ガラスとしては、例えば、シリカガラス、ソーダ石灰シリカガラス、鉛ガラス、ホウケイ酸塩ガラス、無アルカリガラス等が挙げられる。これらのガラス材料の表面には、散乱層1aとの密着性、耐久性、平滑性の観点から、必要に応じて、研磨等の物理的処理を施したり、無機物または有機物からなる被膜や、これらの被膜を組み合わせたハイブリッド被膜が形成される。
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル及びポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)等といったシクロオレフィン系樹脂等を用いることができる。
 樹脂フィルムの表面には、無機物、有機物の被膜またはその両者のハイブリッド被膜等によるバリア膜が形成されていてもよい。バリア膜は、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m2・24h)以下のバリア性フィルムであることが好ましい。更には、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、10-3ml/(m2・24h・atm)以下、水蒸気透過度が、10-5g/(m2・24h)以下の高バリア性フィルムであることが好ましい。
 以上のようなバリア性フィルムを形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよい。例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に、当該バリア性フィルムの脆弱性を改良するために、これら無機層と有機材料からなる層(有機層)の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
 バリア性フィルムの形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載の大気圧プラズマ重合法によるものが特に好ましい。
<散乱層1a>
 散乱層1aは、透明基板11と透明電極2との間に設けられた層であって、透明基板11の一主面上に設けられている。この散乱層1aは、発光光hの光取り出し効率を向上させる層であって、可視光に対する透過率が50%以上であることが好ましく、55%以上であることがより好ましく、60%以上であることが特に好ましい。
 また、散乱層1aは、波長550nmにおける屈折率が1.7以上2.5未満の範囲内の高屈折率層であることが好ましい。散乱層1aの屈折率を1.7以上とすることにより、有機EL素子10の発光層3a内に閉じ込められる導波モード光や、陰極から反射されるプラズモンモード光等のような特異な光学モードの光を取り出すことができる。一方、プラズモンモードの最も高次側のモードであっても屈折率2.5以上の領域の光は略存在せず、これ以上の屈折率としても取り出せる光の量が増えることはないため、屈折率は2.5未満であればよい。
 このような散乱層1aは、屈折率1.7以上2.5未満を有する単独の素材で層を形成してもよいし、2種類以上の素材を混合することで屈折率1.7以上2.5未満の層を形成してもよい。このような混合系の場合、散乱層1aの屈折率は、各々の素材固有の屈折率に混合比率を乗じた合算値により算出される計算屈折率でも代用可能である。また、この場合、各々の素材の屈折率は、1.7未満もしくは2.5以上であってもよいし、混合した場合には、層全体の屈折率として1.7以上2.5未満を満たしていればよい。
 また、本発明の散乱層1aは、樹脂と粒子との混合物による屈折率差を利用した混合散乱層としてもよいし、凹凸構造等の形状制御により形成された形状制御散乱層としてもよい。以下、散乱層1aについて、(1.1)混合散乱層、(1.2)形状制御散乱層の順に詳細な説明をする。
[1.1 混合散乱層(散乱層1a)]
 本発明の散乱層1aにおいて、光を回折もしくは拡散させる層(混合散乱層)を用いて構成する場合について説明する。
 本発明の混合散乱層は、透明基板11と透明電極2との間に設けられた層であって、特に透明基板11上の最表面に設けられることが好ましい。また、混合散乱層は、層媒体と該層媒体に含有される粒子とから構成されている。層媒体である樹脂材料(バインダー)と含有される粒子との屈折率差は、粒子の方が屈折率は大きく、0.03以上であり、好ましくは0.1以上であり、より好ましくは0.2以上であり、特に好ましくは0.3以上である。層媒体と粒子との屈折率差が0.03以上であれば、層媒体と粒子との界面で散乱効果が発生する。屈折率差が大きいほど、界面での屈折が大きくなり、散乱効果が向上するため好ましい。
 混合散乱層は、上記のように、層媒体と粒子との屈折率の違いにより光を拡散させる層である。そのため、含有される粒子としては、可視光域のMie散乱を生じさせる領域以上の粒径を有する透明な粒子であることが好ましく、その平均粒径は0.2μm以上であることが好ましい。
 一方、粒径がより大きい場合、粒子を含有した混合散乱層の粗さを平坦化する必要があるため、工程の負荷、層の光の吸収の観点で不利な点がある。このため、平均粒径の上限としては、好ましくは10μm未満、より好ましくは5μm未満、特に好ましくは3μm未満、最も好ましくは1μm未満である。
 ここで、高屈折率粒子の平均粒径は、たとえば、日機装社製ナノトラックUPA-EX150といった動的光散乱法を利用した装置や、電子顕微鏡写真の画像処理により測定することができる。
 このような粒子としては、特に制限はなく、目的に応じて適宜選択することができ、有機微粒子であっても、無機微粒子であってもよいが、中でも高屈折率を有する無機微粒子であることが好ましい。
 高屈折率を有する有機微粒子としては、たとえば、ポリメチルメタクリレートビーズ、アクリル-スチレン共重合体ビーズ、メラミンビーズ、ポリカーボネートビーズ、スチレンビーズ、架橋ポリスチレンビーズ、ポリ塩化ビニルビーズ、ベンゾグアナミン-メラミンホルムアルデヒドビーズ等が挙げられる。
 高屈折率を有する無機微粒子としては、たとえば、ジルコニウム、チタン、アルミニウム、インジウム、亜鉛、錫、アンチモン等の中から選ばれる少なくとも1つの酸化物からなる無機酸化物粒子が挙げられる。無機酸化物粒子としては、具体的には、ZrO、TiO、BaTiO、Al、In、ZnO、SnO、Sb、ITO、SiO、ZrSiO、ゼオライト等が挙げられ、中でも、TiO、BaTiO、ZrO、ZnO、SnOが好ましく、TiOが最も好ましい。また、TiOの中でも、アナターゼ型よりルチル型の方が、触媒活性が低いため高屈折率層や隣接した層の耐候性が高くなり、さらに屈折率が高いことから好ましい。
 また、これらの粒子は、高屈折率の混合散乱層に含有させるために、後述の層媒体を分散液とした場合の分散性や安定性向上の観点から、表面処理を施したものを用いるか、あるいは表面処理を施さないものを用いるかを選択することができる。
 表面処理を行う場合、表面処理の具体的な材料としては、酸化ケイ素や酸化ジルコニウム等の異種無機酸化物、水酸化アルミニウム等の金属水酸化物、オルガノシロキサン、ステアリン酸等の有機酸等が挙げられる。これら表面処理材は、1種を単独で用いてもよく、複数種を組み合わせて用いてもよい。中でも、分散液の安定性の観点から、表面処理材としては、異種無機酸化物および/または金属水酸化物が好ましく、金属水酸化物がより好ましい。
 無機酸化物粒子が、表面処理材で表面被覆処理されている場合、その被覆量(一般的に、この被覆量は、粒子の質量に対する当該粒子の表面に用いた表面処理材の質量割合で示される。)は、0.01~99質量%であることが好ましい。また、特に0.1~10質量%であることがより好ましい。本発明においては、0.1質量%以上であることにより、表面処理による分散性や安定性の向上効果を十分に得ることができ、また、10質量%以下であることにより、混合散乱層の屈折率低下を避けることができる。
 その他、高屈折率材料として、国際公開第2009/014707号や米国特許第6608439号明細書等に記載の量子ドットも好適に用いることができる。
 上記高屈折率粒子は、その屈折率が1.7以上であり、1.85以上が好ましく、2.0以上が特に好ましい。屈折率が1.7未満であると、バインダーとの屈折率差が小さくなるため散乱量が減少し、光取り出し効率の向上効果が得られないことがある。
 一方で、高屈折率粒子の屈折率の上限は3.0未満である。上記範囲内において、バインダーとの屈折率差が大きければ十分な散乱量を得ることができ、光取り出し効率の向上効果が得られる。
 上記高屈折率粒子の配置は、粒子が混合散乱層(散乱層1a)と有機層1bとの界面に接触または近接するように粒子1層の厚みで配置されるのが好ましい。これにより、有機層1b内で全反射が起きたときに混合散乱層に染み出してくるエバネッセント光を高屈折率粒子で散乱させることができ、光取り出し効率が向上する。尚、本実施形態においては、混合散乱層に隣接する層を有機層1bとしたが、これに限らず他の層が隣接しても同様の効果がある。
 また、高屈折率粒子がその平均粒径を超える範囲(たとえば、混合散乱層の膜厚が高屈折率粒子の平均粒径の1.3倍)で存在する場合、粒子が散乱層1aの界面から遠く離れた位置に存在するため、エバネッセント光を散乱させることがなく、光取り出し効率の向上に寄与しない。また、粒子の分布厚みが増えると、塗布の均一性もしくは界面平滑性の低下、または反射散乱光の増加による表示性能低下といった問題が生じる可能性がある。
 高屈折率粒子の混合散乱層における含有量は、体積充填率で、1.0~70%の範囲内であることが好ましく、5~50%の範囲内であることがより好ましい。これにより、混合散乱層と有機層1bの界面に屈折率分布の粗密を作ることができ、光散乱量を増加させて光取り出し効率を向上させることができる。
 混合散乱層の形成方法としては、たとえば、層媒体が樹脂材料の場合、媒体となる樹脂材料(ポリマー)溶液(溶媒としては、粒子の溶解しないものを用いる。)に上記粒子を分散し、透明基板11上に塗布することで形成する。
 これらの粒子は、実際には、多分散粒子であることや規則的に配置することが難しいことから、局部的には回折効果を有するものの、多くの部分は拡散により光の方向を変化させ光取り出し効率を向上させる。
 本発明のバインダーとしては、公知の樹脂(バインダー)が特に制限なく使用可能であり、たとえば、アクリル酸エステル、メタクリル酸エステル、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリアリレート、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ナイロン(Ny)、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド等の樹脂フィルム、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルム(製品名Sila-DEC、チッソ株式会社製)、パーフルオロアルキル基含有シラン化合物(たとえば、(ヘプタデカフルオロ-1,1,2,2-テトラデシル)トリエトキシシラン)の他、含フッ素モノマーと架橋性基付与のためのモノマーを構成単位とする含フッ素共重合体等が挙げられる。これら樹脂は、二種以上混合して使用することができる。これらの中でも、有機無機ハイブリッド構造を有するものが好ましい。
 また、以下の親水性樹脂を使うことも可能である。親水性樹脂としては水溶性の樹脂、水分散性の樹脂、コロイド分散樹脂またはそれらの混合物が挙げられる。親水性樹脂としては、アクリル系、ポリエステル系、ポリアミド系、ポリウレタン系、フッ素系等の樹脂が挙げられ、たとえば、ポリビニルアルコール、ゼラチン、ポリエチレンオキサイド、ポリビニルピロリドン、カゼイン、澱粉、寒天、カラギーナン、ポリアクリル酸、ポリメタクリル酸、ポリアクリルアミド、ポリメタクリルアミド、ポリスチレンスルホン酸、セルロース、ヒドロキシルエチルセルロース、カルボキシルメチルセルロース、ヒドロキシルエチルセルロース、デキストラン、デキストリン、プルラン、水溶性ポリビニルブチラール等のポリマーを挙げることができるが、これらの中でも、ポリビニルアルコールが好ましい。
 バインダー樹脂として用いられるポリマーは、1種類を単独で用いてもよいし、必要に応じて2種類以上を混合して使用してもよい。
 また、同様に、従来公知の樹脂粒子(エマルジョン)等も好適に使用可能である。
 また、バインダーとしては、主として紫外線・電子線によって硬化する樹脂、すなわち、電離放射線硬化型樹脂に熱可塑性樹脂と溶剤とを混合したものや熱硬化型樹脂も好適に使用できる。
 このようなバインダー樹脂としては、飽和炭化水素またはポリエーテルを主鎖として有するポリマーであることが好ましく、飽和炭化水素を主鎖として有するポリマーであることがより好ましい。
 また、バインダーは架橋していることが好ましい。飽和炭化水素を主鎖として有するポリマーは、エチレン性不飽和モノマーの重合反応により得ることが好ましい。架橋しているバインダーを得るためには、2つ以上のエチレン性不飽和基を有するモノマーを用いることが好ましい。
 また、本発明では、特定の雰囲気下で紫外線照射によって、金属酸化物、金属窒化物または金属酸化窒化物を形成し得る化合物が特に好適に使用される。本発明に適する化合物としては、特開平8-112879号公報に記載されている比較的低温で改質処理され得る化合物が好ましい。
 具体的には、Si-O-Si結合を有するポリシロキサン(ポリシルセスキオキサンを含む)、Si-N-Si結合を有するポリシラザン、Si-O-Si結合とSi-N-Si結合の両方を含むポリシロキサザン等を挙げることができる。これらは、2種以上を混合して使用することができる。また、異なる化合物を逐次積層したり、同時積層したりしても使用可能である。
(ポリシロキサン)
 本発明で用いられるポリシロキサンとしては、一般構造単位としての〔(R01SiO1/2〕、〔(R01SiO〕、〔(R01)SiO3/2〕および〔SiO〕を含むことができる。ここで、R01は、水素原子、1~20の炭素原子を含むアルキル基(たとえば、メチル、エチル、プロピル等)、アリール基(たとえば、フェニル等)、不飽和アルキル基(たとえば、ビニル等)からなる群より独立して選択される。特定のポリシロキサン基の例としては、〔PhSiO3/2〕、〔MeSiO3/2〕、〔HSiO3/2〕、〔MePhSiO〕、〔PhSiO〕、〔PhViSiO〕、〔ViSiO3/2〕(Viはビニル基を表す。)、〔MeHSiO〕、〔MeViSiO〕、〔MeSiO〕、〔MeSiO1/2〕等が挙げられる。また、ポリシロキサンの混合物やコポリマーも使用可能である。
(ポリシルセスキオキサン)
 本発明においては、上述のポリシロキサンの中でもポリシルセスキオキサンを用いることが好ましい。ポリシルセスキオキサンは、シルセスキオキサンを構造単位に含む化合物である。「シルセスキオキサン」とは、〔(R02)SiO3/2〕で表される化合物であり、通常、(R02)SiX(R02は、水素原子、アルキル基、アルケニル基、アリール基、アラアルキル基等であり、Xは、ハロゲン、アルコキシ基等である。)型化合物が加水分解-重縮合して合成されるポリシロキサンである。ポリシルセスキオキサンの分子配列の形状としては、代表的には無定形構造、ラダー状構造、籠型構造、その部分開裂構造体(籠型構造からケイ素原子が一原子欠けた構造や籠型構造のケイ素-酸素結合が一部切断された構造)等が知られている。
 これらのポリシルセスキオキサンの中でも、いわゆる水素シルセスキオキサンポリマーを用いることが好ましい。水素シルセスキオキサンポリマーとしては、HSi(OH)〔O(R03)〕z/2で表されるヒドリドシロキサンポリマーが挙げられる。各々のR03は、有機基または置換された有機基であり、酸素原子によってケイ素に結合した場合、加水分解性置換基を形成する。x=0~2、y=0~2、z=1~3、x+y+z=3である。R03としては、アルキル基(たとえば、メチル、エチル、プロピル、ブチル等)、アリール基(たとえば、フェニル等)、アルケニル基(たとえば、アリル、ビニル等)が挙げられる。これらの樹脂は、完全に縮合され(HSiO3/2、あるいは部分的にのみ加水分解され(すなわち、一部のSi-OR03を含む)および/または部分的に縮合される(すなわち、一部のSi-OHを含む)ことができる。
(ポリシラザン)
 本発明で用いられるポリシラザンとは、ケイ素-窒素結合を持つポリマーで、Si-N、Si-H、N-H等からなるSiO、Siおよび両方の中間固溶体SiO(x:0.1~1.9、y:0.1~1.3)等の無機前駆体ポリマーである。
 本発明に好ましく用いられるポリシラザンとしては、下記一般式(I)で表される。
Figure JPOXMLDOC01-appb-C000014
 一般式(I)中、R001,R002およびR003は、各々水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基またはアルコキシ基を表す。
 本発明では、緻密性の観点から、R001,R002およびR003のすべてが水素原子であるパーヒドロポリシラザンが特に好ましい。
 バインダーとしての電離放射線硬化型樹脂組成物の硬化方法としては、電離放射線硬化型樹脂組成物の通常の硬化方法、すなわち、電子線または紫外線の照射によって硬化することができる。
 たとえば、電子線硬化の場合には、コックロフワルトン型、バンデグラフ型、共振変圧型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の各種電子線加速器から放出される10~1000keV、好ましくは30~300keVのエネルギーを有する電子線等が使用され、紫外線硬化の場合には、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプ等の光線から発する紫外線等が利用できる。
(エキシマランプを有する真空紫外線照射装置)
 本発明にかかる好ましい紫外線照射装置としては、具体的には、100~230nmの真空紫外線を発する希ガスエキシマランプが挙げられる。
 Xe,Kr,Ar,Ne等の希ガスの原子は、化学的に結合して分子を作らないため、不活性ガスと呼ばれる。しかし、放電などによりエネルギーを得た希ガスの原子(励起原子)は、他の原子と結合して分子を作ることができる。
 たとえば、希ガスがXe(キセノン)の場合には、下記反応式で示されるように、励起されたエキシマ分子であるXe2*が基底状態に遷移するときに、172nmのエキシマ光を発光する。
 e+Xe→Xe
 Xe+2Xe→Xe2*+Xe
 Xe2*→Xe+Xe+hν(172nm)
 エキシマランプの特徴としては、放射が一つの波長に集中し、必要な光以外がほとんど放射されないので効率が高いことが挙げられる。また、余分な光が放射されないので、対象物の温度を比較的低く保つことができる。さらには、始動・再始動に時間を要さないので、瞬時の点灯点滅が可能である。
 エキシマ光を効率よく照射する光源としては、誘電体バリア放電ランプが挙げられる。
 誘電体バリア放電ランプの構成としては、電極間に誘電体を介して放電を起こすものであり、一般的には、誘電体からなる放電容器とその外部とに少なくとも一方の電極が配置されていればよい。誘電体バリア放電ランプとして、たとえば、石英ガラスで構成された太い管と細い管とからなる二重円筒状の放電容器中にキセノン等の希ガスが封入され、該放電容器の外部に網状の第1の電極を設け、内管の内側に他の電極を設けたものがある。誘電体バリア放電ランプは、電極間に高周波電圧等を加えることによって放電容器内部に誘電体バリア放電を発生させ、該放電により生成されたキセノン等のエキシマ分子が解離する際にエキシマ光を発生させる。
 エキシマランプは、光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、温度上昇の要因となる波長の長い光は発せず、紫外線領域の単一波長でエネルギーを照射するため、照射光自体による照射対象物の温度上昇を抑えられる特徴を持っている。
[1.2 形状制御散乱層(散乱層1a)]
 次に、本発明の散乱層1aにおいて、光を回折もしくは拡散させる層(形状制御散乱層)を用いて構成する場合について説明する。
 本発明の形状制御散乱層は、透明基板11と透明電極2との間に設けられた層であって、全反射界面に設けられることが好ましく、全反射の強度の大きな屈折率の異なる層の界面に設けられることが好ましい。全反射界面とは、屈折率差が0.05以上の界面をいい、より効果が大きいのは屈折率差0.1以上、特に効果が大きいのは屈折率差0.15以上の界面である。
 したがって、この様な界面が複数ある場合には、その複数個所に形状制御散乱層を設けることが好ましい態様である。また、形状制御散乱層は、透明基板11に最も近い場所に設けることが好ましい態様である。
 また、本発明の形状制御散乱層は、光を回折もしくは拡散させる凹凸構造を有して構成され、透明基板11上の最表面に設けられる。これにより、該形状制御散乱層上に、たとえば、有機層1b、金属移動防止層1c、透明電極(陽極)2、発光層を含む発光機能層3各層、対向電極5等がこの順に形成された有機EL素子を作製した場合、発光層から放射される光のうち、透明基板11と有機層1bとの界面における全反射を防止することができ、発光効率を向上させることができる。
 光を回折させる凹凸構造は、図示を省略するが、一定のピッチ(周期)を有する凹凸状の構造からなるものである。
 可視光の取り出し効率を向上させるためには、可視光の媒質中での光の波長400~750nmの範囲内の光を回折させるための回折格子であることが必要である。回折格子への光の入射角と出射角、回折格子間隔(凹凸配列の周期)、光の波長、媒体の屈折率、回折次数等の間には、一定の関係があり、可視光およびその近傍の波長領域の光を回折させるため、本発明においては、凹凸配列のピッチは、取り出し効率が向上する波長に対応して、150~3000nmの範囲内にある一定値をもつ必要がある。
 回折格子として作用する凹凸構造は、たとえば、特開平11-283751号公報、特開2003-115377号公報等に記載されている。ストライプ状の回折格子は、ストライプに平行な方向に対しては回折効果がないため、2次元的にどの方向からも均一に回折格子としての作用するものが好ましい。たとえば、透明基板11表面あるいは表示面の法線方向から見た形状として、所定の形状を有する凹部と凸部とが規則的に所定の間隔で形成されているものが好ましい。
 凹部を構成する孔の形状としては、たとえば、円形、三角形、四角形、多角形等が挙げられるが特に限定されるものではない。その孔の内径は(同面積の円を想定して)、75~1500nmの範囲内であることが好ましい。
 また、凹部(窪み)の平面方向から見た断面形状としては、半球状、矩形状、かまぼこ状、ピラミッド状等が挙げられるが特に限定されるものではない。この凹部の深さは、50~1600nmの範囲内であることが好ましく、50~1200nmの範囲内であることがより好ましい。凹部の深さが50nm以上であることにより、形状制御散乱層による回折あるいは散乱する効果が十分に得られる。一方で、凹部の深さが1600nm以下であることにより表示素子としての平滑性を損なうことなく回折あるいは散乱する効果を十分に得られる。
 また、回折格子とするために、これらの凹部の配列は、正方形のラチス状(正方格子状)、ハニカムラチス状等、2次元的に規則的に配列が繰り返されることが好ましい。
 また、突起である場合(凸型)、突起の形状は上記凹部の形状と同様であり、たとえば、凸部が柱状突起である場合、表面の法線方向から見た形状としては、円形、三角形、四角形、多角形のいずれであってもよい。突起の高さやピッチ(周期)は、上述の孔を形成した場合と同様である。すなわち、これらの凹凸の形状は、全く逆に、凸部が上記凹部の値を有するように形成されてもよい。
 このような凹凸構造を有する形状制御散乱層を、たとえば、透明基板11の表面に形成することで、透明基板11側から発光を取り出す際に、凹凸構造のピッチ(周期)に対応した波長の光の取り出し効率を向上させることができる。
 これらの回折格子を形成する方法としては、たとえば、樹脂材料膜上に形成しようとする場合には、インプリント手法等がある。インプリント手法を用いた場合には、たとえば、ポリマー膜としてポリメチルメタクリレート(PMMA)等の熱可塑性樹脂を透明基板上に成膜した後、凹凸が設けられた金型で熱可塑性樹脂を加熱、加圧し、金型の凹凸形状を転写することで、所望の凹凸構造を形成することができる。
 また、その他の形成方法として、透明基板11上に紫外線硬化樹脂を塗布した後、凹凸が設けられた金型を密着させて紫外線を照射し、光重合により硬化して金型の凹凸形状を転写するといった手法を用いることもできる。
 また、透明基板11を上記樹脂材料で形成した場合には、直接透明基板に凹凸構造を形成してもよい。
 また、透明基板11上に酸化ケイ素等の無機酸化物で構成されたバリア層が形成されている場合には、反応性イオンエッチング等を用いて、バリア層に凹凸構造を形成することができる。
 そして酸化ケイ素等の無機酸化物で構成されたバリア膜が形成されている場合には、ゾルゲル手法を用いてゲル状の膜を作成した後、ゲル状膜に凹凸が設けられた金型を押し当てたまま加熱することで、バリア膜に凹凸構造を形成することができる。
 一方で、光を拡散させる凹凸構造とは、光の回折や屈折、反射により光を拡散させる構造であり、たとえば、平均ピッチ(周期)が0.3~20μmの範囲内であり、平均高さがピッチの1/5~1/3程度である100~7000nmの範囲内であるような波型形状等がある。全反射または対向電極5による反射によって発光層3a内部を伝播する光を拡散して取り出す光量が、直接外部に出射される光量と比較して充分な量とするには、少なくとも100nm以上の高さであることが好ましい。また、波型形状のピッチ(周期)は長すぎると散乱現象が生じる前に発光層3aで光が吸収され、平均高さがあまり大きくなると上部に設けられる発光層3aの成膜が困難になるので、望ましくない。
<有機層1b>
 有機層1bは、透明基板11と透明電極2との間に設けられた層であって、散乱層1aを介して透明基板11の一主面上に設けられている。このような有機層1bは、ルイス塩基を含む層であり、ルイス塩基を有する化合物、すなわち非共有電子対を持っている原子を含む化合物を用いて構成されている。このようなルイス塩基を有する化合物としては、窒素含有化合物または硫黄含有化合物が例示される。
 一例として有機層1bは、窒素含有化合物および硫黄含有化合物の少なくとも一方または両方を用いて構成された層であり、それぞれ複数種類の化合物を含有していても良い。また、有機層1bを構成する化合物は、窒素原子(N)と硫黄原子(S)の両方を含有した化合物であっても良い。
 以上のような有機層1bを透明電極2の下層に形成することで、銀を主成分とする透明電極2は、有機層1bを構成する窒素原子又は硫黄原子との相互作用により、隣接界面においての銀の拡散距離が減少して凝集が抑えられたものとなる。これにより、一般的には核成長型(Volumer-Weber:VW型)での膜成長により島状に孤立し易い銀薄膜が、単層成長型(Frank-van der Merwe:FM型)の膜成長によって成膜されるようになる。したがって、透明電極2の均一性を高めることができ、電極表面の平滑性を向上させることができる。
 さらに、有機層1bを散乱層1a上に形成することにより、散乱層1aの凹凸面を平滑にすることができる。
 次に、有機層1bを構成する化合物の詳細を、窒素含有化合物I、窒素含有化合物II、窒素含有化合物III、硫黄含有化合物、および有機層1bの成膜方法の順に説明する。
[窒素含有化合物I]
 有機層1bを構成する窒素含有化合物Iは、窒素原子(N)を含んだ化合物であれば良いが、特に非共有電子対を有する窒素原子を含む有機化合物であることが好ましい。
 そして特に、有機層1bを構成する窒素含有化合物は、このような化合物に含有される窒素原子及び窒素原子のうち、特に透明電極2を構成する主材料である銀と安定的に結合する窒素原子又は硫黄原子の非共有電子対を[有効非共有電子対]とし、この[有効非共有電子対]の含有率が所定範囲であることを特徴としている。
 ここで[有効非共有電子対]とは、化合物に含有される窒素原子が有する非共有電子対のうち、芳香族性に関与せずかつ金属に配位していない非共有電子対である。ここでの芳香族性とは、π電子を持つ原子が環状に並んだ不飽和環状構造を言い、いわゆる「ヒュッケル則」に従う芳香族性であって、環上のπ電子系に含まれる電子の数が「4n+2」(n=0、または自然数)個であることを条件としている。
 以上のような[有効非共有電子対]は、その非共有電子対を備えた窒素原子自体が、芳香環を構成するヘテロ原子であるか否かにかかわらず、窒素原子が有する非共有電子対が芳香族性と関与しているか否かによって選択される。例えば、ある窒素原子が芳香環を構成するヘテロ原子であっても、その窒素原子の非共有電子対が芳香族性に必須要素として直接的に関与しない非共有電子対、すなわち共役不飽和環構造(芳香環)上の非局在化したπ電子系に芳香族性発現のために必須のものとして関与していない非共有電子対であれば、その非共有電子対は[有効非共有電子対]の一つとしてカウントされる。これに対して、ある窒素原子が芳香環を構成するヘテロ原子でない場合であっても、その窒素原子の非共有電子対が芳香族性に関与していれば、その窒素原子の非共有電子対は[有効非共有電子対]としてカウントされることはない。尚、各化合物において、上述した[有効非共有電子対]の数nは、[有効非共有電子対]を有する窒素原子の数と一致する。
 次に、上述した[有効非共有電子対]について、具体例を挙げて詳細に説明する。
 窒素原子は、第15族元素であり、最外殻に5個の電子を有する。このうち3個の不対電子は他の原子との共有結合に用いられ、残りの2個は一対の非共有電子対となる。このため、通常、窒素原子の結合本数は3本である。
 例えば、窒素原子を有する基として、アミノ基(-NR)、アミド基(-C(=O)NR)、ニトロ基(-NO)、シアノ基(-CN)、ジアゾ基(-N)、アジド基(-N)、ウレア結合(-NRC=ONR-)、イソチオシアネート基(-N=C=S)、チオアミド基(-C(=S)NR)などが挙げられる。尚、R,Rは、それぞれ水素原子(H)または置換基である。これらの基を構成する窒素原子の非共有電子対は、芳香族性に関与せずかつ金属に配位していないため、[有効非共有電子対]に該当する。このうち、ニトロ基(-NO)の窒素原子が有する非共有電子対は、酸素原子との共鳴構造に利用されているものの、以降の実施例で示すように良好な効果が得られていることから、芳香族性に関与せずかつ金属に配位していない[有効非共有電子対]として窒素上に存在すると考えられる。
 また、窒素原子は、非共有電子対を利用することで4本目の結合を作り出すこともできる。この場合の一例として、図2を用いて説明する。図2は、テトラブチルアンモニウムクロライド(TBAC)の構造式と、トリス(2-フェニルピリジン)イリジウム(III)[Ir(ppy)]の構造式である。
 このうち、TBACは、四つのブチル基のうちの1つが窒素原子とイオン結合しており、対イオンとして塩化物イオンを有する第四級アンモニウム塩である。この場合、窒素原子の非共有電子対を構成する電子のうちの1つは、ブチル基とのイオン結合に供与される。このため、TBACの窒素原子は、そもそも非共有電子対が存在していないと同等になる。したがって、TBACを構成する窒素原子の非共有電子対は、芳香族性に関与せずかつ金属に配位していない[有効非共有電子対]には該当しない。
 また、Ir(ppy)は、イリジウム原子と窒素原子とが配位結合している中性の金属錯体である。このIr(ppy)を構成する窒素原子の非共有電子対は、イリジウム原子に配位していて、配位結合に利用されている。したがって、Ir(ppy)を構成する窒素原子の非共有電子対も、芳香族性に関与せずかつ金属に配位していない[有効非共有電子対]には該当しない。
 また、窒素原子は、芳香環を構成することのできるヘテロ原子として一般的であり、芳香族性の発現に寄与することができる。この「含窒素芳香環」としては、たとえば、ピリジン環、ピラジン環、ピリミジン環、トリアジン環、ピロール環、イミダゾール環、ピラゾール環、トリアゾール環、テトラゾール環等が挙げられる。
 図3は、以上に例示した基のうちの一つであるピリジン環の構造式と分子軌道を示す図である。図3に示すとおり、ピリジン環は、6員環状に並んだ共役(共鳴)不飽和環構造において、非局在化したπ電子の数が6個であるため、4n+2(n=0または自然数)のヒュッケル則を満たす。6員環内の窒素原子は、-CH=を置換したものであるため、1個の不対電子を6π電子系に動員するのみで、非共有電子対は芳香族性発現のために必須のものとして関与していない。
 したがって、ピリジン環を構成する窒素原子の非共有電子対は、芳香族性に関与せずかつ金属に配位していない[有効非共有電子対]に該当する。
 図4は、ピロール環の構造式と分子軌道を示す図である。図4に示すとおり、ピロール環は、5員環を構成する炭素原子のうちの一つが窒素原子に置換された構造であるが、やはりπ電子の数は6個であり、ヒュッケル則を満たした含窒素芳香環である。ピロール環の窒素原子は、水素原子とも結合しているため、非共有電子対が6π電子系に動員される。
 したがって、ピロール環の窒素原子は、非共有電子対を有するものの、この非共有電子対は、芳香族性発現のために必須のものとして利用されているため、芳香族性に関与せずかつ金属に配位していない[有効非共有電子対]には該当しない。
 図5は、イミダゾール環の構造式と分子軌道を示す図である。図5に示すとおり、イミダゾール環は、二つの窒素原子N,Nが、5員環内の1、3位に置換した構造を有しており、やはりπ電子数が6個の含窒素芳香環である。このうち一つの窒素原子Nは、1個の不対電子のみを6π電子系に動員し、非共有電子対を芳香族性発現のために利用していないピリジン環型の窒素原子であり、この窒素原子Nの非共有電子対は、[有効非共有電子対]に該当する。これに対して、他方の窒素原子Nは、非共有電子対を6π電子系に動員しているピロール環型の窒素原子であるため、この窒素原子Nの非共有電子対は、[有効非共有電子対]に該当しない。
 したがって、イミダゾール環においては、これを構成する二つの窒素原子N,Nのうちの一つの窒素原子Nの非共有電子対のみが、[有効非共有電子対]に該当する。
 以上のような「含窒素芳香環」の窒素原子における非共有電子対の選別は、含窒素芳香環骨格を有する縮合環化合物の場合も同様に適用される。
 図6は、δ-カルボリン環の構造式と分子軌道を示す図である。図6に示すとおり、δ-カルボリン環は、含窒素芳香環骨格を有する縮合環化合物であり、ベンゼン環骨格、ピロール環骨格、およびピリジン環骨格がこの順に縮合したアザカルバゾール化合物である。このうち、ピリジン環の窒素原子Nは1個の不対電子のみをπ電子系に動員し、ピロール環の窒素原子Nは非共有電子対をπ電子系に動員しており、環を形成している炭素原子からの11個のπ電子とともに、全体のπ電子数が14個の芳香環となっている。
 したがって、δ-カルボリン環の二つの窒素原子N,Nのうち、ピリジン環を構成する窒素原子Nの非共有電子対は[有効非共有電子対]に該当するが、ピロール環を構成する窒素原子Nの非共有電子対は、[有効非共有電子対]に該当しない。
 このように、縮合環化合物を構成する窒素原子の非共有電子対は、縮合環化合物を構成するピリジン環やピロール環等の単環化合物中の結合と同様に、縮合環化合物中の結合に関与する。
 そして以上説明した[有効非共有電子対]は、透明電極2の主成分である銀と強い相互作用を発現するために重要である。そのような[有効非共有電子対]を有する窒素原子は、安定性、耐久性の観点から、含窒素芳香環中の窒素原子であることが好ましい。したがって、有機層1cに含有される化合物は、[有効非共有電子対]を持つ窒素原子をヘテロ原子とした芳香族複素環を有することが好ましい。
 特に本実施形態においては、このような化合物の分子量Mに対する[有効非共有電子対]の数nを、例えば有効非共有電子対含有率[n/M]と定義する。そして有機層1bは、この[n/M]が、2.0×10-3≦[n/M]となるように選択された化合物を用いて構成されているところが特徴的である。また有機層1bは、以上のように定義される有効非共有電子対含有率[n/M]が、3.9×10-3≦[n/M]の範囲であれば好ましく、6.5×10-3≦[n/M]の範囲であればさらに好ましい。
 また有機層1bは、有効非共有電子対含有率[n/M]が上述した所定範囲である窒素含有化合物を用いて構成されていれば良く、このような化合物のみで構成されていても良く、またこのような化合物と他の化合物とを混合して用いて構成されていても良い。他の化合物は、窒素原子が含有されていてもいなくても良く、さらに有効非共有電子対含有率[n/M]が上述した所定範囲でなくても良い。
 有機層1bが、複数の化合物を用いて構成されている場合、例えば化合物の混合比に基づき、これらの化合物を混合した混合化合物の分子量Mを求め、この分子量Mに対しての[有効非共有電子対]の合計の数nを、有効非共有電子対含有率[n/M]の平均値として求め、この値が上述した所定範囲であることが好ましい。つまり有機層1b自体の有効非共有電子対含有率[n/M]が所定範囲であることが好ましい。
 尚、有機層1bが、複数の化合物を用いて構成されている場合であって、膜厚方向に化合物の混合比(含有比)が異なる構成であれば、透明電極2が設けられる側の有機層1bの表面における有効非共有電子対含有率[n/M]が所定範囲であれば良い。
 以下に、有機層1bを構成する窒素含有化合物として、上述した有効非共有電子対含有率[n/M]が2.0×10-3≦[n/M]を満たす窒素含有化合物の具体例(No.1~No.48)を示す。各窒素含有化合物No.1~No.48には、[有効非共有電子対]を有する窒素原子に対して○を付した。また、下記表1には、これらの窒素含有化合物No.1~No.48の分子量M、[有効非共有電子対]の数n、および有効非共有電子対含有率[n/M]を示す。下記窒素含有化合物No.33の銅フタロシアニンにおいては、窒素原子が有する非共有電子対のうち銅に配位していない非共有電子対が[有効非共有電子対]としてカウントされる。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-T000021
 尚、上記表1には、これらの例示した窒素含有化合物が、以降に説明する他の窒素化合物IIを表す一般式(1)~(8a)にも属する場合の該当一般式を示した。
[窒素含有化合物II]
 有機層1bを構成する他の窒素含有化合物IIとしては、以上のような有効非共有電子対含有率[n/M]が上述した所定範囲である窒素含有化合物Iに限定されず、他の窒素含有化合物を用いても良い。有機層1bに用いられる他の窒素含有化合物は、有効非共有電子対含有率[n/M]が上述した所定範囲で有る無しにかかわらず、窒素原子を含有する化合物が好ましく用いられる。中でも上述した[有効非共有電子対]を有する窒素原子を含有する化合物が特に好ましく用いられる。また、この有機層1bに用いられる他の窒素含有化合物は、この有機層1bが適用される電子デバイスごとに必要とされる性質を有する化合物が用いられる。例えば、この有機層1bが、有機EL素子の透明電極2の下地として用いられる場合、その成膜性の観点から、次に説明する一般式(1)~(8a)で表される構造を有する窒素含有化合物IIが用いられる。
 これらの一般式(1)~(8a)他で示される構造を有する窒素含有化合物IIの中には、上述した有効非共有電子対含有率[n/M]の範囲に当てはまる窒素含有化合物Iも含まれ、このような窒素含有化合物であれば単独で有機層1bを構成する窒素含有化合物として用いることができる(上記表1参照)。一方、下記一般式(1)~(8a)で示される構造を有する化合物が、上述した有効非共有電子対含有率[n/M]の範囲に当てはまらない窒素含有化合物であれば、有効非共有電子対含有率[n/M]が上述した範囲の窒素含有化合物と混合することで有機層1bを構成する窒素含有化合物として用いることが好ましい。
Figure JPOXMLDOC01-appb-C000022
 上記一般式(1)中におけるX11は、-N(R11)-または-O-を表す。また一般式(1)中におけるE101~E108は、各々-C(R12)=または-N=を表す。E101~E108のうち少なくとも1つは-N=である。上記R11およびR12は、それぞれが水素原子(H)または置換基を表す。
 この置換基の例としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(上記カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す)、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基またはヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基、ピペリジル基(ピペリジニル基ともいう)、2,2,6,6-テトラメチルピペリジニル基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、リン酸エステル基(例えば、ジヘキシルホスホリル基等)、亜リン酸エステル基(例えばジフェニルホスフィニル基等)、ホスホノ基等が挙げられる。
 これらの置換基の一部は、上記の置換基によってさらに置換されていてもよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。これらの置換基は、化合物と銀(Ag)との相互作用を阻害することのないものが好ましく用いられ、さらには上述した有効非共有電子対を有する窒素原子を有するものが特に好ましく適用される。尚、以上の置換基に関する記述は、以降に説明する一般式(2)~(8a)の説明において示される置換基に対して同様に適用される。
 以上のような一般式(1)で表される構造を有する窒素含有化合物は、化合物中の窒素原子と、透明電極2を構成する銀との間で強力な相互作用を発現できるため好ましい。
Figure JPOXMLDOC01-appb-C000023
 上記一般式(1a)で示される構造を有する窒素含有化合物は、上記一般式(1)で示される構造を有する窒素含有化合物の一形態であり、一般式(1)におけるX11を-N(R11)-とした窒素含有化合物である。また、より好ましい形態としては、一般式(1a)中におけるE101~E108において、E101~E104のうち1つが-N=、E105~E108のうち1つが-N=である。このような窒素含有化合物であれば、上記相互作用をより強力に発現できるため、好ましい。
Figure JPOXMLDOC01-appb-C000024
 上記一般式(1a-1)で示される構造を有する窒素含有化合物は、上記一般式(1a)で示される構造を有する窒素含有化合物の一形態であり、一般式(1a)におけるE104を-N=とした窒素含有化合物である。このような窒素含有化合物であれば、より効果的に上記相互作用を発現できるため、好ましい。
Figure JPOXMLDOC01-appb-C000025
 上記一般式(1a-2)で示される構造を有する窒素含有化合物は、上記一般式(1a)で示される構造を有する窒素含有化合物の他の一形態であり、一般式(1a)におけるE103およびE106を-N=とした窒素含有化合物である。このような窒素含有化合物は、窒素原子の数が多いことから、より強力に上記相互作用を発現できるため、好ましい。
Figure JPOXMLDOC01-appb-C000026
 上記一般式(1b)で示される構造を有する窒素含有化合物は、上記一般式(1)で示される構造を有する窒素含有化合物の他の一形態であり、一般式(1)におけるX11を-O-とし、E104を-N=とした窒素含有化合物である。このような化合物であれば、より効果的に上記相互作用を発現できるため、好ましい。
 さらに、以下の一般式(2)~(8a)で表される構造を有する化合物であれば、より効果的に上記相互作用を発現できるため、好ましい。
Figure JPOXMLDOC01-appb-C000027
 上記一般式(2)は、一般式(1)の一形態でもある。上記一般式(2)の式中、Y21は、アリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基を表す。E201~E216、E221~E238は、各々-C(R21)=または-N=を表す。R21は水素原子(H)または置換基を表す。ただし、E221~E229の少なくとも1つ、およびE230~E238の少なくとも1つは-N=を表す。k21およびk22は0~4の整数を表すが、k21+k22は2以上の整数である。
 一般式(2)において、Y21で表されるアリーレン基としては、例えば、o-フェニレン基、p-フェニレン基、ナフタレンジイル基、アントラセンジイル基、ナフタセンジイル基、ピレンジイル基、ナフチルナフタレンジイル基、ビフェニルジイル基(例えば、[1,1’-ビフェニル]-4,4’-ジイル基、3,3’-ビフェニルジイル基、3,6-ビフェニルジイル基等)、テルフェニルジイル基、クアテルフェニルジイル基、キンクフェニルジイル基、セキシフェニルジイル基、セプチフェニルジイル基、オクチフェニルジイル基、ノビフェニルジイル基、デシフェニルジイル基等が例示される。
 また一般式(2)において、Y21で表されるヘテロアリーレン基としては、例えば、カルバゾール環、カルボリン環、ジアザカルバゾール環(モノアザカルボリン環ともいい、カルボリン環を構成する炭素原子のひとつが窒素原子で置き換わった構成の環構成を示す)、トリアゾール環、ピロール環、ピリジン環、ピラジン環、キノキサリン環、チオフェン環、オキサジアゾール環、ジベンゾフラン環、ジベンゾチオフェン環、インドール環からなる群から導出される2価の基等が例示される。
 Y21で表されるアリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基の好ましい態様としては、ヘテロアリーレン基の中でも、3環以上の環が縮合してなる縮合芳香族複素環から導出される基を含むことが好ましく、また、当該3環以上の環が縮合してなる縮合芳香族複素環から導出される基としては、ジベンゾフラン環から導出される基またはジベンゾチオフェン環から導出される基が好ましい。
 一般式(2)において、E201~E216、E221~E238で各々表される-C(R21)=のR21が置換基である場合、その置換基の例としては、一般式(1)のR11,R12として例示した置換基が同様に適用される。
 一般式(2)において、E201~E208のうちの6つ以上、およびE209~E216のうちの6つ以上が、各々-C(R21)=で表されることが好ましい。
 一般式(2)において、E225~E229の少なくとも1つ、およびE234~E238の少なくとも1つが-N=を表すことが好ましい。
 さらには、一般式(2)において、E225~E229のいずれか1つ、およびE234~E238のいずれか1つが-N=を表すことが好ましい。
 また、一般式(2)において、E221~E224およびE230~E233が、各々-C(R21)=で表されることが好ましい態様として挙げられる。
 さらに、一般式(2)で表される構造を有する窒素含有化合物において、E203が-C(R21)=で表され、かつR21が連結部位を表すことが好ましく、さらに、E211も同時に-C(R21)=で表され、かつR21が連結部位を表すことが好ましい。
 さらに、E225及びE234が-N=で表されることが好ましく、E221~E224およびE230~E233が、各々-C(R21)=で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000028
 上記一般式(3)は、一般式(1a-2)の一形態でもある。上記一般式(3)の式中、E301~E312は、各々-C(R31)=を表し、R31は水素原子(H)または置換基を表す。また、Y31は、アリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基を表す。
 上記一般式(3)において、E301~E312で各々表される-C(R31)=のR31が置換基である場合、その置換基の例としては、一般式(1)のR11,R12として例示した置換基が同様に適用される。
 また一般式(3)において、Y31で表されるアリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基の好ましい態様としては、一般式(2)のY21と同様のものが挙げられる。
Figure JPOXMLDOC01-appb-C000029
 上記一般式(4)は、一般式(1a-1)の一形態でもある。上記一般式(4)の式中、E401~E414は、各々-C(R41)=を表し、R41は水素原子(H)または置換基を表す。またAr41は、置換あるいは無置換の、芳香族炭化水素環あるいは芳香族複素環を表す。さらにk41は3以上の整数を表す。
 上記一般式(4)において、E401~E414で各々表される-C(R41)=のR41が置換基である場合、その置換基の例としては、一般式(1)のR11,R12として例示した置換基が同様に適用される。
 また一般式(4)において、Ar41が芳香族炭化水素環を表す場合、この芳香族炭化水素環としては、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。これらの環は、さらに一般式(1)のR11,R12として例示した置換基を有しても良い。
 また一般式(4)において、Ar41が芳香族複素環を表す場合、この芳香族複素環としては、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、カルバゾール環、アザカルバゾール環等が挙げられる。尚、アザカルバゾール環とは、カルバゾール環を構成するベンゼン環の炭素原子が1つ以上窒素原子で置き換わったものを示す。これらの環は、さらに一般式(1)において、R11,R12として例示した置換基を有しても良い。
Figure JPOXMLDOC01-appb-C000030
 上記一般式(5)の式中、R51は置換基を表す。E501,E502、E511~E515、E521~E525は、各々-C(R52)=または-N=を表す。E503~E505は、各々-C(R52)=を表す。R52は、水素原子(H)または置換基を表す。E501およびE502のうちの少なくとも1つは-N=であり、E511~E515のうちの少なくとも1つは-N=であり、E521~E525のうちの少なくとも1つは-N=である。
 上記一般式(5)において、R51が表す置換基およびR52が置換基を表す場合、これらの置換基の例としては、一般式(1)のR11,R12として例示した置換基が同様に適用される。
Figure JPOXMLDOC01-appb-C000031
 上記一般式(6)の式中、E601~E612は、各々-C(R61)=または-N=を表し、R61は水素原子(H)または置換基を表す。またAr61は、置換あるいは無置換の、芳香族炭化水素環あるいは芳香族複素環を表す。
 上記一般式(6)において、E601~E612で各々表される-C(R61)=のR61が置換基である場合、その置換基の例としては、一般式(1)のR11,R12として例示した置換基が同様に適用される。
 また一般式(6)において、Ar61が表す、置換あるいは無置換の、芳香族炭化水素環あるいは芳香族複素環は、一般式(4)のAr41と同様のものが挙げられる。
Figure JPOXMLDOC01-appb-C000032
 上記一般式(7)の式中、R71~R73は、各々水素原子(H)又は置換基を表し、Ar71は、芳香族炭化水素環基あるいは芳香族複素環基を表す。
 また一般式(7)において、R71~R73がそれぞれ置換基である場合、その置換基の例としては、一般式(1)のR11,R12として例示した置換基が同様に適用される。
 また一般式(7)において、Ar71が表す、芳香族炭化水素環あるいは芳香族複素環は、一般式(4)のAr41と同様のものが挙げられる。
Figure JPOXMLDOC01-appb-C000033
 上記一般式(8)は、一般式(7)の一形態でもある。上記一般式(8)の式中、R81~R86は、各々水素原子(H)又は置換基を表す。E801~E803は、各々-C(R87)=または-N=を表し、R87は水素原子(H)または置換基を表す。Ar81は、芳香族炭化水素環基又は芳香族複素環基を表す。
 また一般式(8)において、R81~R87がそれぞれ置換基である場合、その置換基の例としては、一般式(1)のR11,R12として例示した置換基が同様に適用される。
 また一般式(8)において、Ar81が表す、芳香族炭化水素環あるいは芳香族複素環は、一般式(4)のAr41と同様のものが挙げられる。
Figure JPOXMLDOC01-appb-C000034
 上記一般式(8a)で示される構造を有する窒素含有化合物は、上記一般式(8)で示される窒素含有化合物の一形態であり、一般式(8)におけるAr81がカルバゾール誘導体である。上記一般式(8a)の式中、E804~E811は、各々-C(R88)=または-N=を表し、R88は水素原子(H)または置換基を表す。E808~E811のうち少なくとも一つは-N=であり、E804~E807、E808~E811は、各々互いに結合して新たな環を形成してもよい。
 また一般式(8a)において、R88が置換基である場合、その置換基の例としては、一般式(1)のR11,R12として例示した置換基が同様に適用される。
 また、上記一般式(1)~(8)においては、有機層1b上に設けられる金属移動防止層1cとともに、透明電極2の均一性を高め、平滑性を高める観点から、一般式(1a)、(1a-2)、(3)、(7)、(8)、(8a)で示される窒素含有化合物が好ましい。
[窒素含有化合物III]
 また有機層1bを構成するさらに他の窒素含有化合物IIIとして、以上のような一般式(1)~(8a)の他、下記に具体例を示す窒素含有化合物1~166が例示される。これらの窒素含有化合物は、成膜性に優れた材料である。またこれらの窒素含有化合物は、有機EL素子10における電子輸送層または電子注入層を構成する材料としても用いることができるのである。尚、これらの窒素含有化合物1~166の中には、上述した有効非共有電子対含有率[n/M]の範囲に当てはまる窒素含有化合物も含まれ、このような窒素含有化合物であれば単独で有機層1bを構成する窒素含有化合物として用いることができる。さらに、これらの窒素含有化合物1~166の中には、上述した一般式(1)~(8a)に当てはまる窒素含有化合物もある。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
[窒素含有化合物の合成例]
 以下に代表的な窒素含有化合物の合成例として、窒素含有化合物5の具体的な合成例を示すが、これに限定されない。
Figure JPOXMLDOC01-appb-C000070
 工程1:(中間体1の合成)
 窒素雰囲気下、2,8-ジブロモジベンゾフラン(1.0モル)、カルバゾール(2.0モル)、銅粉末(3.0モル)、炭酸カリウム(1.5モル)を、DMAc(ジメチルアセトアミド)300ml中で混合し、130℃で24時間撹拌した。これによって得た反応液を室温まで冷却後、トルエン1Lを加え、蒸留水で3回洗浄し、減圧雰囲気下において洗浄物から溶媒を留去し、その残渣をシリカゲルフラッシュクロマトグラフィー(n-ヘプタン:トルエン=4:1~3:1)にて精製し、中間体1を収率85%で得た。
 工程2:(中間体2の合成)
 室温、大気下で中間体1(0.5モル)をDMF(ジメチルホルムアミド)100mlに溶解し、NBS(N-ブロモコハク酸イミド)(2.0モル)を加え、一晩室温で撹拌した。得られた沈殿を濾過し、メタノールで洗浄し、中間体2を収率92%で得た。
 工程3:(窒素含有化合物5の合成)
 窒素雰囲気下、中間体2(0.25モル)、2-フェニルピリジン(1.0モル)、ルテニウム錯体[(η-C)RuCl(0.05モル)、トリフェニルホスフィン(0.2モル)、炭酸カリウム(12モル)を、NMP(N-メチル-2-ピロリドン)3L中で混合し、140℃で一晩撹拌した。
 反応液を室温まで冷却後、ジクロロメタン5Lを加え、反応液を濾過した。次いで減圧雰囲気下(800Pa、80℃)において濾液から溶媒を留去し、その残渣をシリカゲルフラッシュクロマトグラフィー(CHCl:EtN=20:1~10:1)にて精製した。
 減圧雰囲気下において、精製物から溶媒を留去した後、その残渣をジクロロメタンに再び溶解し、水で3回洗浄した。洗浄によって得られた物質を無水硫酸マグネシウムで乾燥させ、減圧雰囲気下において乾燥後の物質から溶媒を留去することにより、窒素含有化合物5を収率68%で得た。
[硫黄含有化合物]
 有機層1bを構成する硫黄含有化合物は、硫黄(S)を含んだ化合物であればよいが、特に非共有電子対を有する硫黄原子を含む有機化合物であり、2価の硫黄原子を有する下記一般式(9)、一般式(10)、一般式(11)、または一般式(12)で表される。
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
 上記一般式(9)において、R91及びR92は、各々置換基を表す。R91およびR92で表される置換基としては、置換または無置換の炭化水素基が挙げられる。これらの炭化水素基では、酸素原子、窒素原子、リン原子を含んでも良い。
 R91及びR92で表される置換または無置換の炭化水素基としては、アルキル基又はアリール基が挙げられる。アルキル基としては、例えば、メチル、エチル、プロピル、i-プロピル、ブチル、t-ブチル、ペンチル、シクロペンチル、ヘキシル、シクロヘキシル、オクチル、ドデシル、ヒドロキシエチル、メトキシエチル、トリフルオロメチル、又はベンジル等の各基が挙げられる。アリール基としては、例えば、フェニル基、またはナフチル基等が挙げられる。
 上述した炭化水素基の何れかの部位に対してさらに置換可能な他の基としては、一般式(1)のR11,R12として例示した置換基が同様に適用される。
 上記一般式(10)において、R93及びR94は、置換基を表す。
 R93及びR94で表される置換基としては、R91及びR92と同様の置換基が挙げられる。
 上記一般式(11)において、R95は、置換基を表す。
 R95で表される置換基としては、R91及びR92と同様の置換基が挙げられる。
 上記一般式(12)において、R96は、置換基を表す。
 R96で表される置換基としては、R91及びR92と同様の置換基が挙げられる。
 以下に、本発明の有機層1bに適用可能な硫黄原子を含有する硫黄含有化合物の具体例を挙げるが、これらの例示した化合物に限定されるものではない。
 また、一般式(9)で表される硫黄含有化合物の具体例としては、下記1-1~1-9が挙げられる。
Figure JPOXMLDOC01-appb-C000075
 また、一般式(10)で表される硫黄含有化合物の具体例としては、下記2-1~2-11が挙げられる。
Figure JPOXMLDOC01-appb-C000076
 また、一般式(11)で表される硫黄含有化合物の具体例としては、下記3-1~3-23が挙げられる。
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
 また、一般式(12)で表される硫黄含有化合物の具体例としては、下記4-1が挙げられる。
Figure JPOXMLDOC01-appb-C000079
 尚、有機層1bを構成する硫黄含有化合物は、以上に例示した化合物の他、窒素含有化合物と同様に、有効非共有電子対含有率[n/M]が、2.0×10-3≦[n/M]となるように選択された化合物であっても良く、3.9×10-3≦[n/M]の範囲であれば好ましく、6.5×10-3≦[n/M]の範囲であればさらに好ましい。
 ここで言う有効非共有電子対含有率[n/M]とは、窒素含有化合物Iにおいての定義と同様である。すなわち、硫黄含有化合物に含有される硫黄原子のうち、特に透明電極2を構成する主材料である銀と安定的に結合する硫黄原子の非共有電子対を[有効非共有電子対]とした場合、この化合物の分子量Mに対する[有効非共有電子対]の数nである。また。有機層1bは、それ自体の有効非共有電子対含有率[n/M]が所定範囲であることが好ましく、透明電極2と接する側の有機層1bの表面層における有効非共有電子対含有率[n/M]が所定範囲であれば良いことも、窒素含有化合物を用いた場合と同様である。
[有機層1bの成膜方法]
 以上のような有機層1bの成膜方法としては、塗布法、インクジェット法、コーティング法、ディップ法などのウェットプロセスを用いる方法や、蒸着法(抵抗加熱法、EB法など)、スパッタ法、CVD法などのドライプロセスを用いる方法などが挙げられる。なかでも蒸着法が好ましく適用される。
 特に、複数の化合物を用いて有機層1bを成膜する場合であれば、複数の蒸着源から複数の化合物を同時に供給する共蒸着が適用される。また化合物として高分子材料を用いる場合であれば、塗布法が好ましく適用される。この場合、化合物を溶媒に溶解させた塗布液を用いる。化合物を溶解させる溶媒が限定されることはない。さらに、複数の化合物を用いて有機層1bを成膜する場合であれば、複数の化合物を溶解させることが可能な溶媒を用いて塗布液を作製すれば良い。
<金属移動防止層1c>
 金属移動防止層1cは、有機層1bと透明電極2との間に挟持されている層である。また、本例において、金属移動防止層1cは、有機層1b上を表面拡散し難い材料で形成された層である。
 銀もしくは銀を主成分とする合金で構成された透明電極2の膜形成においては、膜形成面に付着したAg原子が表面拡散しながら、ある大きさの塊(核)を生成する。そして、この塊(核)の周囲に沿うように、初期の薄膜成長が進む。このため、形成初期の膜では、塊同士の間に隙間があり、導通しない。この状態からさらに塊が成長し、厚みが15μm程度になると、塊同士の一部が繋がり、かろうじて導通する。しかし、膜の表面がいまだ平滑ではなく、プラズモン吸収が生じやすい。また、有機EL素子に適用した場合には、透明電極の平滑性に起因する整流比の低下やリーク発生等が発生しやすい。
 これに対し、予め透明基板11上に有機層1bと金属移動防止層1cとをこの順に形成すると、透明電極2を構成するAg等の金属材料が、有機層1bや金属移動防止層1c上を移動し難くなる。
 このような金属移動防止層1cは、有機層1b上を表面拡散し難い材料であって、その成長核同士の間隔を、直接有機層1b上にAg原子等が表面拡散して形成される塊同士の間隔よりも、狭くすることができる材料で形成されていることとする。これにより、上記材料の成長核を起点としてAg等の金属材料で構成された層が成長すると、厚みが薄くても平坦な層となりやすい。つまり、厚みが薄くても導通が得られ、さらにプラズモン吸収の生じ難い透明電極2を形成することができる。
 このような材料としては、金属又は金属酸化物で構成された材料が挙げられ、例えば、モリブデン(Mo)単体、モリブデン酸化物(MoO,MoO)、パラジウム(Pd)、鉄(Fe)、マンガン(Mn)、ガリウム(Ga)、ゲルマニウム(Ge)、インジウム(In)、銅(Cu)、ニッケル(Ni)、コバルト(Co)等の少なくともいずれかを含む材料が挙げられる。金属移動防止層1cは、これらの材料のうち1種のみを用いてもよく、2種を組み合わせて用いてもよい。
 中でも、透明電極2の均一性、及び平滑性を高める観点から、モリブデン酸化物(MoO)、パラジウム(Pd)であることが好ましい。
 金属移動防止層1cは、有機層1b上で表面拡散し難く、かつ透明電極2を構成するAg等の金属材料と、親和性が高い必要がある。
 また、緻密で細かい成長核が得られることが好ましい。例えば、イオンアシスト蒸着(IAD:Ion Assisted Deposition)等の、アシストを用いて成長する層を細かく砕きながら形成することで、所望の金属移動防止層1c(成長核)を得ることができる。
 また、金属移動防止層1cの平均厚みは1nm以下であることが好ましく、より好ましくは0.5nm以下である。また、単原子層であってもよい。金属移動防止層1cの平均厚みは、形成速度及び形成時間により調整する。
 一般的に金属又は金属酸化物を含む材料の薄膜成長は、“nucleation and growth”型の膜成長、すなわち、形成された島状同士が合体して成膜される。そして特に、形成された膜の膜厚が1nm以下においては、完全な連続膜とはならず、少なくとも一部が接触するように膜形成されていることが報告されている(http://hdl.handle.net/11094/2289,p.39-44)。
 このため、金属移動防止層1cは、平均厚みを1nm以下とすることにより、完全な連続膜とはならず、上記島状同士の少なくとも一部が接触するように膜形成される。そして、金属移動防止層1cの非連続の部分が有機層1b及び透明電極2の接触する部分となる。これにより、金属移動防止層1cと透明電極2における銀との相互作用だけでなく、有機層1bと透明電極2との相互作用を図ることが可能となる。したがって、有機層1bと金属移動防止層1cとの透明電極2に対する相乗的な作用効果により、透明電極2の均一性をより高めることができ、電極表面の平滑性をさらに向上させることができる。
 また、金属移動防止層1cは、この形状に限られることなく、連続した均質な膜であってもよく、金属移動防止層1cを構成する材料の原子又は分子が互いに離間して分散された状態で付着している、いわゆる島状構造であってもよい。この場合、好ましくは、原子又は分子が互いに離間して付着している状態である。
 さらに、金属移動防止層1cは、上記材料のみによる単独層として形成されていてもよく、上記材料と透明電極2を構成するAg等の金属材料とが混在して形成された層としてもよい。
 成長核の厚みを1nm以下で形成する場合は、スパッタ法又は蒸着法を用いて形成することができる。或いは、十分な厚さの金属移動防止層1cを形成し、この層をドライエッチングして、厚み1nm以下の成長核を残存させる方法により形成することができる。
 スパッタ法としては、例えば、イオンビームスパッタ法や、マグネトロンスパッタ法、反応性スパッタ法、2極スパッタ法、バイアススパッタ法等を用いることができる。スパッタ時間は、形成する金属移動防止層1c(成長核)の平均厚み、及び、形成速度に合わせて適宜選択する。スパッタ形成速度は、好ましくは0.1~15Å/秒であり、より好ましくは0.1~7Å/秒である。
 一方、蒸着法としては、例えば、真空蒸着法、電子線蒸着法、イオンプレーティング法、イオンビーム蒸着法等を用いることができる。蒸着時間は、形成する金属移動防止層1c(成長核)及び、形成速度に合わせて適宜選択される。蒸着速度は、好ましくは0.1~15Å/秒であり、より好ましくは0.1~7Å/秒である。
 また、有機層1b上に十分な厚さの金属移動防止層1cを形成した後、この層を所望の厚みまでドライエッチングする方法では、金属移動防止層1cの形成方法は特に制限されない。例えば、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等の気相成膜法や、メッキ法等の湿式成膜法を用いることができる。
 金属移動防止層1cのドライエッチング方法としては、エッチングガスやイオン、ラジカル等の物理的な衝突を伴うエッチング方法をいい、化学的な反応のみによってエッチングを行う反応性ガスエッチング等は含まない。このような物理的な衝突を伴うエッチング方法であれば特に制限されず、例えば、イオンビームエッチング、逆スパッタエッチング、プラズマエッチング等を用いることができる。
 特にエッチング後の金属移動防止層1cに所望の非連続の部分又は凹凸を形成しやすいとの観点から、イオンビームエッチングが特に好ましい。
 金属移動防止層1cが厚すぎると、成長核を形成しても、薄くかつ平滑な透明電極2が得られ難い。さらに、この成長核を起点に形成される透明電極2が厚くなる。金属移動防止層1c(成長核)の平均厚みは、金属移動防止層1cの厚みと、金属移動防止層1cのエッチング厚みとの差から求める。金属移動防止層1cのエッチング厚みは、エッチングレートとエッチング時間との積である。エッチングレートは、別途ガラス基板上に作製した厚み50nmの金属移動防止層1cを同条件でエッチングし、エッチング後の光の透過率がガラス基板と同等になる(大凡厚み0nm)までの時間から求める。金属移動防止層1c(成長核)の平均厚みは、ドライエッチングする時間で調整する。
<透明電極2>
 透明電極2は、有機EL素子10の陽極又は陰極を構成する電極であって、銀もしくは銀を主成分とする合金を用いて構成される。また、発光機能層3で生じた発光光hを取り出す側(光取り出し面11a側)に設けられた電極であって、金属移動防止層1cを介して透明基板11の一主面上に設けられた電極である。
 透明電極2を構成する銀(Ag)を主成分とする合金としては、銀を50質量%以上含む合金であることが好ましい。透明電極2を構成する銀(Ag)を主成分とする合金は、一例として銀マグネシウム(AgMg)、銀銅(AgCu)、銀パラジウム(AgPd)、銀パラジウム銅(AgPdCu)、銀インジウム(AgIn)、銀アルミニウム(AgAl)、銀モリブデン(AgMo)などが挙げられる。
 以上のような透明電極2は、銀または銀を主成分とした合金の層が、必要に応じて複数の層に分けて積層された構成であっても良い。
 さらにこの透明電極2は、膜厚が4~12nmの範囲にあることが好ましい。膜厚が12nm以下であることにより、層の吸収成分または反射成分が低く抑えられ、透明電極2の光透過率が維持されるため好ましい。また、膜厚が4nm以上であることにより、層の導電性も確保される。
[透明電極2の成膜方法]
 以上のような透明電極2の成膜方法としては、塗布法、インクジェット法、コーティング法、ディップ法などのウェットプロセスを用いる方法や、蒸着法(抵抗加熱、EB法など)、スパッタ法、CVD法などのドライプロセスを用いる方法などが挙げられる。
 例えば、スパッタ法を適用した透明電極2の成膜であれば、銀を主成分とした合金のスパッタターゲット用意し、このスパッタゲートを用いたスパッタ法を用いた成膜を行う。上述した合金の全ての場合において、スパッタ法を適用した透明電極2の成膜が行われるが、特に銀銅(AgCu)、銀パラジウム(AgPd)、または銀パラジウム銅(AgPdCu)、または銀モリブデン(AgMo)を成膜する場合に好ましい。
 また、銀アルミニウム(AgAl)、銀マグネシウム(AgMg)、銀インジウム(AgIn)を成膜する場合であれば、蒸着法を適用した透明電極2の成膜も行われる。蒸着法の場合、合金成分と銀(Ag)とを共蒸着する。この際、合金成分の蒸着速度と銀(Ag)の蒸着速度とをそれぞれ調整することにより、主材料である銀(Ag)に対する合金成分の添加濃度を調整した蒸着成膜を行う。
 また透明電極2は、金属移動防止層1c上に成膜されることにより、成膜後の高温アニール処理等がなくても十分に導電性を有することを特徴とするが、必要に応じて、成膜後に高温アニール処理等を行ったものであっても良い。
<発光機能層3>
 発光機能層3は、透明電極2と対向電極5との間に挟持された層であって、透明電極2及び対向電極5とともに有機EL素子10を構成している。この発光機能層3は、一般的な有機EL素子における発光機能層の層構造であって良く、有機材料で構成された発光層3aを有することが必須である。
<有機EL素子の構成層>
 以下、本発明の有機EL素子10における代表的な構成としては、以下の構成を挙げるげることができるが、これらに限定されるものではない。
(1)陽極/発光層/陰極
(2)陽極/発光層/電子輸送層/陰極
(3)陽極/正孔輸送層/発光層/陰極
(4)陽極/正孔輸送層/発光層/電子輸送層/陰極
(5)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(6)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
(7)陽極/正孔注入層/正孔輸送層/(電子阻止層/)発光層/(正孔阻止層/)電子輸送層/電子注入層/陰極
 上記の中で(7)の構成が好ましく用いられるが、これに限定されるものではない。
 上記構成において発光層は、単層または複数層で構成される。発光層が複数の場合は各発光層の間に非発光性の中間層を設けてもよい。また、必要に応じて、発光層と陰極との間に正孔阻止層(正孔障壁層ともいう)や電子注入層(陰極バッファー層ともいう)を設けてもよく、また、発光層と陽極との間に電子阻止層(電子障壁層ともいう)や正孔注入層(陽極バッファー層ともいう)を設けてもよい。
 電子輸送層は、電子を輸送する機能を有する層であり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。また、正孔輸送層は、正孔を輸送する機能を有する層であり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。
 また、電子輸送層及び正孔輸送層は、複数層で構成されていてもよい。
(タンデム構造)
 また、有機EL素子10は、少なくとも1層の発光層を含む発光ユニットを複数積層した、いわゆるタンデム構造の素子であってもよい。
 発光ユニットとは、上記有機EL素子10の構成において、発光性を有する発光機能層3に該当する。発光ユニットとしては、例えば、上記の代表的な素子構成で挙げた(1)~(7)の構成から陽極及び陰極を除いた構成である。
 タンデム構造の代表的な素子構成としては、例えば以下の構成を挙げることができる。
 (1.1)陽極/第1発光ユニット/中間層/第2発光ユニット/陰極
 (2.2)陽極/第1発光ユニット/中間層/第2発光ユニット/中間層/第3発光ユニット/陰極
 ここで、上記第1発光ユニット、第2発光ユニットおよび第3発光ユニットは全て同じであっても、異なっていてもよい。また2つの発光ユニットが同じであり、残る1つが異なっていてもよい。
 また、複数の発光ユニットは直接積層されていても、中間層を介して積層されていてもよく、中間層は、一般的に中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、陽極側の隣接層に電子を、陰極側の隣接層に正孔を供給する機能を持った層であれば、公知の材料構成を用いることができる。
 中間層に用いられる材料としては、例えば、ITO(インジウム・錫酸化物)、IZO(インジウム・亜鉛酸化物)、ZnO、TiN、ZrN、HfN、TiO、VO、CuI、InN、GaN、CuAlO、CuGaO、SrCu、LaB、RuO、Al等の導電性無機化合物層や、Au/Bi等の2層膜や、SnO/Ag/SnO、ZnO/Ag/ZnO、Bi/Au/Bi、TiO/TiN/TiO、TiO/ZrN/TiO等の多層膜、またC60等のフラーレン類、オリゴチオフェン等の導電性有機物層、金属フタロシアニン類、無金属フタロシアニン類、金属ポルフィリン類、無金属ポルフィリン類等の導電性有機化合物層等が挙げられるが、本発明はこれらに限定されない。
 発光ユニット内の好ましい構成としては、例えば上記の代表的な素子構成で挙げた(1)~(7)の構成が挙げられるが、本発明はこれらに限定されない。
 タンデム型有機EL素子の具体例としては、例えば、米国特許第6,337,492号、米国特許第7,420,203号、米国特許第7,473,923号、米国特許第6,872,472号、米国特許第6,107,734号、米国特許第6,337,492号、国際公開第2005/009087号、特開2006-228712号、特開2006-24791号、特開2006-49393号、特開2006-49394号、特開2006-49396号、特開2011-96679号、特開2005-340187号、特許第4711424号、特許第3496681号、特許第3884564号、特許第4213169号、特開2010-192719号、特開2009-076929号、特開2008-078414号、特開2007-059848号、特開2003-272860号、特開2003-045676号、国際公開第2005/094130号等に記載の素子構成や構成材料等が挙げられるが、本発明はこれらに限定されない。
 以下、本発明の有機EL素子を構成する各層について説明する。
[発光層3a]
 本発明に用いられる発光層3aは、発光材料として例えば燐光発光化合物が含有されている。
 この発光層3aは、陰極側から注入された電子と、陽極側から注入された正孔とが再結合して発光する層であり、発光する部分は発光層3aの層内であっても発光層3aにおける隣接する層との界面であってもよい。
 このような発光層3aとしては、含まれる発光材料が発光要件を満たしていれば、その構成には特に制限はない。また、同一の発光スペクトルや発光極大波長を有する層が複数層あってもよい。この場合、各発光層3a間には非発光性の中間層(図示せず)を有していることが好ましい。
 発光層3aの膜厚の総和は1~100nmの範囲にあることが好ましく、さらに好ましくは、より低い駆動電圧を得ることができることから1~30nmである。尚、発光層3aの膜厚の総和とは、発光層3a間に非発光性の中間層が存在する場合には、当該中間層も含む膜厚である。
 複数層を積層した構成の発光層3aの場合、個々の発光層の膜厚としては、1~50nmの範囲に調整することが好ましく、さらに好ましくは1~20nmの範囲に調整することがより好ましい。積層された複数の発光層が、青、緑、赤のそれぞれの発光色に対応する場合、青、緑、赤の各発光層の膜厚の関係については、特に制限はない。
 以上のような発光層3aは、後述する発光材料やホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜形成方法により成膜して形成することができる。
 また発光層3aは、複数の発光材料を混合してもよく、また燐光発光材料と蛍光発光材料(蛍光ドーパント、蛍光性化合物ともいう)を同一発光層3a中に混合して用いてもよい。
 発光層3aの構成として、ホスト化合物(発光ホストともいう)、発光材料(発光ドーパント化合物、ゲスト材料ともいう)を含有し、発光材料より発光させることが好ましい。
(ホスト化合物)
 発光層3aに含有されるホスト化合物としては、室温(25℃)における燐光発光の燐光量子収率が0.1未満の化合物が好ましい。さらに好ましくは燐光量子収率が0.01未満である。また、発光層3aに含有される化合物の中で、その層中での体積比が50%以上であることが好ましい。
 ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、または複数種用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子10を高効率化することができる。また、後述する発光材料を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。
 用いられるホスト化合物としては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもよい。
 公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、発光の長波長化を防ぎ、かつ高Tg(ガラス転移温度)化合物が好ましい。ここでいうガラス転移点(Tg)とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS-K-7121に準拠した方法により求められる値である。
 有機EL素子10に適用可能なホスト化合物の具体例としては、特開2013-4245の段落[0163]~[0178]に記載の化合物H1~H79を例示することができる。特開2013-4245の段落[0163]~[0178]に記載の化合物H1~H79を本願明細書に組み込む。
 また、その他の公知のホスト化合物の具体例としては、以下の文献に記載されている化合物を用いることもできる。例えば、特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等が挙げられる。
(発光材料)
 本発明で用いることのできる発光材料としては、燐光発光性化合物(燐光性化合物、燐光発光材料ともいう)が挙げられる。
 燐光発光性化合物とは、励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にて燐光発光する化合物であり、燐光量子収率が25℃において0.01以上の化合物であると定義されるが、好ましい燐光量子収率は0.1以上である。
 上記燐光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中での燐光量子収率は種々の溶媒を用いて測定できるが、本発明において燐光発光性化合物を用いる場合、任意の溶媒のいずれかにおいて上記燐光量子収率(0.01以上)が達成されればよい。
 燐光発光性化合物の発光の原理としては2種挙げられる。一つは、キャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーを燐光発光性化合物に移動させることで燐光発光性化合物からの発光を得るというエネルギー移動型であり、もう一つは、燐光発光性化合物がキャリアトラップとなり、燐光発光性化合物上でキャリアの再結合が起こり燐光発光性化合物からの発光が得られるというキャリアトラップ型である。いずれの場合においても、燐光発光性化合物の励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件となる。
 燐光発光性化合物は、一般的な有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができるが、好ましくは元素の周期表で8~10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。
 本発明においては、少なくとも一つの発光層3aに2種以上の燐光発光性化合物を含有していてもよく、発光層3aにおける燐光発光性化合物の濃度比が発光層3aの厚さ方向で変化していてもよい。
 燐光発光性化合物は好ましくは発光層3aの総量に対し0.1体積%以上30体積%未満である。
 本発明に適用可能な燐光発光性化合物としては、特開2013-4245の段落[0185]~[0244]に記載の一般式(4)、一般式(5)、一般式(6)で表される化合物、及び、例示化合物を好ましく挙げることができる。また、その他の例示化合物として、Ir-46、Ir-47、Ir-48を以下に示す。特開2013-4245の段落[0185]~[0244]に記載の一般式(4)、一般式(5)、一般式(6)で表される化合物、及び、例示化合物(Pt-1~Pt-3、Os-1、Ir-1~Ir-45)を本願明細書に組み込む。
Figure JPOXMLDOC01-appb-C000080
 尚、これらの燐光発光性化合物(燐光発光性の金属錯体ともいう)は、発光層3aに発光ドーパントとして含有されることが好ましい態様であるが、発光層3a以外の各機能層に含有されていてもよい。
 また、燐光発光性化合物は、発光層3aに使用される公知のものの中から適宜選択して用いることができる。
 上記の燐光発光性化合物(燐光発光性金属錯体等ともいう)は、例えば、Organic Letters誌、vol.3、No.16、2579~2581頁(2001)、Inorganic Chemistry,第30巻、第8号、1685~1687頁(1991年)、J.Am.Chem.Soc.,123巻、4304頁(2001年)、Inorganic Chemistry,第40巻、第7号、1704~1711頁(2001年)、Inorganic Chemistry,第41巻、第12号、3055~3066頁(2002年)、New Journal of Chemistry.,第26巻、1171頁(2002年)、European Journal of Organic Chemistry,第4巻、695~709頁(2004年)、さらにこれらの文献中に記載の参考文献等の方法を適用することにより合成できる。
(蛍光発光材料)
 蛍光発光材料としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、または希土類錯体系蛍光体等が挙げられる。
[電子輸送層]
 有機EL素子10に用いる電子輸送とは、電子を輸送する機能を有する材料からなり、陰極より注入された電子を発光層3aに伝達する機能を有する。
 電子輸送材料は単独で用いてもよく、また複数種を併用して用いてもよい。電子輸送層の総厚については特に制限はないが、通常は2nm~5μmの範囲であり、より好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。
 また、有機EL素子10においては発光層3aで生じた光を電極から取り出す際、発光層3aから直接取り出される光と、光を取り出す電極と対極に位置する電極によって反射されてから取り出される光とが干渉を起こすことが知られている。光が陰極で反射される場合は、電子輸送層の総膜厚を数nm~数μmの間で適宜調整することにより、この干渉効果を効率的に利用することが可能である。
 一方で、電子輸送層の膜厚を厚くすると電圧が上昇しやすくなるため、特に膜厚が厚い場合においては、電子輸送層の電子移動度は10-5cm2/Vs以上であることが好ましい。
 電子輸送層に用いられる材料(以下、電子輸送材料という)としては、電子の注入性または輸送性、正孔の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。
 例えば、含窒素芳香族複素環誘導体、芳香族炭化水素環誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、シロール誘導体等が挙げられる。
 上記含窒素芳香族複素環誘導体としては、カルバゾール誘導体、アザカルバゾール誘導体(カルバゾール環を構成する炭素原子の1つ以上が窒素原子に置換)、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピリダジン誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、フェナントロリン誘導体、アザトリフェニレン誘導体、オキサゾール誘導体、チアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体等が挙げられる。
 芳香族炭化水素環誘導体としては、ナフタレン誘導体、アントラセン誘導体、トリフェニレン等が挙げられる。
 また、配位子にキノリノール骨格やジベンゾキノリノール骨格を有する金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。
 その他、メタルフリーもしくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。
 また、これらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 有機EL素子10では、ゲスト材料として電子輸送層にドープ材をゲスト材料としてドープして、n性の高い(電子リッチ)電子輸送層を形成してもよい。ドープ材としては、金属錯体やハロゲン化金属など金属化合物等のn型ドーパントが挙げられる。このような構成の電子輸送層の具体例としては、例えば、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等の文献に記載されたものが挙げられる。
 有機EL素子10に用いられる、公知の好ましい電子輸送材料の具体例としては、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。
 米国特許第6528187号、米国特許第7230107号、米国特許公開第20050025993号、米国特許公開第20040036077号、米国特許公開第20090115316号、米国特許公開第20090101870号、米国特許公開第20090179554号、国際公開第2003060956号、国際公開第2008132085号、Appl. Phys. Lett. 75, 4 (1999)、Appl. Phys. Lett. 79, 449 (2001)、Appl. Phys. Lett. 81, 162 (2002)、Appl. Phys. Lett. 81, 162 (2002)、Appl. Phys. Lett. 79, 156 (2001)、米国特許第7964293号 、米国特許公開第2009030202号 、国際公開第2004080975号 、国際公開第2004063159号、国際公開第2005085387号、国際公開第2006067931号、国際公開第2007086552号、国際公開第2008114690号、国際公開第2009069442号 、国際公開第2009066779号、国際公開第2009054253号、国際公開第2011086935号、国際公開第2010150593号、国際公開第2010047707号、EP2311826号、特開2010-251675号、特開2009-209133号、特開2009-124114号、特開2008-277810号、特開2006-156445号、特開2005-340122号、特開2003-45662号 、特開2003-31367号、特開2003-282270号、国際公開第2012115034号等である。
 より好ましい電子輸送材料としては、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、トリアジン誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、カルバゾール誘導体、アザカルバゾール誘導体、ベンズイミダゾール誘導体が挙げられる。
 尚、電子輸送材料は単独で用いてもよく、また複数種を併用して用いてもよい。
[正孔阻止層]
 正孔阻止層は、広い意味では電子輸送層の機能を有する層である。好ましくは、電子を輸送する機能を有しつつ、正孔を輸送する能力が小さい材料からなる。電子を輸送しつつ正孔を阻止することで、電子と正孔の再結合確率を向上させることができる。
 また、上述の電子輸送層の構成を、必要に応じて正孔阻止層として用いることができる。
 有機EL素子10に設ける正孔阻止層は、発光層3aの陰極側に隣接して設けられることが好ましい。
 有機EL素子10において、正孔阻止層の厚さは、好ましくは3~100nmの範囲であり、さらに好ましくは5~30nmの範囲である。
 正孔阻止層に用いられる材料としては、上述の電子輸送層に用いられる材料が好ましく用いられ、また、上述のホスト化合物として用いられる材料も正孔阻止層に好ましく用いられる。
[電子注入層]
 電子注入層(「陰極バッファー層」ともいう)は、駆動電圧低下や発光輝度向上のために陰極と発光層との間に設けられる層である。電子注入層の一例は、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に記載されている。
 有機EL素子10において、電子注入層は必要に応じて設けられ、上述のように陰極と発光層との間、又は、陰極と電子輸送層との間に設けられる。
 電子注入層はごく薄い膜であることが好ましく、素材にもよるがその膜厚は0.1nm~5nmの範囲が好ましい。また構成材料が断続的に存在する不均一な膜であってもよい。
 電子注入層は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されている。電子注入層に好ましく用いられる材料の具体例としては、ストロンチウムやアルミニウム等に代表される金属、フッ化リチウム、フッ化ナトリウム、フッ化カリウム等に代表されるアルカリ金属化合物、フッ化マグネシウム、フッ化カルシウム等に代表されるアルカリ土類金属化合物、酸化アルミニウムに代表される金属酸化物、リチウム8-ヒドロキシキノレート(Liq)等に代表される金属錯体等が挙げられる。また、上述の電子輸送材料を用いることも可能である。
 また、上記の電子注入層に用いられる材料は単独で用いてもよく、複数種を併用して用いてもよい。
[正孔輸送層]
 正孔輸送層は、正孔を輸送する機能を有する材料からなる。正孔輸送層は、陽極より注入された正孔を発光層3aに伝達する機能を有する層である。
 有機EL素子10において、正孔輸送層の総膜厚に特に制限はないが、通常は5nm~5μmの範囲であり、より好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。
 正孔輸送層に用いられる材料(以下、正孔輸送材料という)は、正孔の注入性または輸送性、電子の障壁性のいずれかを有していればよい。正孔輸送材料は、従来公知の化合物の中から任意のものを選択して用いることができる。正孔輸送材料は単独で用いてもよく、また複数種を併用して用いてもよい。
 正孔輸送材料は、例えば、ポルフィリン誘導体、フタロシアニン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリアリールアルカン誘導体、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、イソインドール誘導体、アントラセンやナフタレン等のアセン系誘導体、フルオレン誘導体、フルオレノン誘導体、ポリビニルカルバゾール、芳香族アミンを主鎖若しくは側鎖に導入した高分子材料又はオリゴマー、ポリシラン、導電性ポリマー又はオリゴマー(例えばPEDOT:PSS、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。
 トリアリールアミン誘導体としては、α-NPDに代表されるベンジジン型や、MTDATAに代表されるスターバースト型、トリアリールアミン連結コア部にフルオレンやアントラセンを有する化合物等が挙げられる。
 また、特表2003-519432号公報や特開2006-135145号公報等に記載されているヘキサアザトリフェニレン誘導体も正孔輸送材料として用いることができる。
 さらに、不純物をドープしたp性の高い正孔輸送層を用いることもできる。例えば、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載された構成を正孔輸送層に適用することもできる。
 また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、所謂p型正孔輸送材料やp型-Si、p型-SiC等の無機化合物を用いることもできる。さらにIr(ppy)に代表されるような中心金属にIrやPtを有するオルトメタル化有機金属錯体も好ましく用いられる。
 正孔輸送材料としては、上記のものを使用することができるが、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、アザトリフェニレン誘導体、有機金属錯体、芳香族アミンを主鎖若しくは側鎖に導入した高分子材料又はオリゴマー等が好ましく用いられる。
 有機EL素子10に用いられる正孔輸送材料の具体例としては、上記で挙げた文献の他、以下の文献に記載の化合物等が挙げられるが、これらに限定されない。
 Appl. Phys. Lett. 69, 2160 (1996)、J. Lμmin. 72-74, 985 (1997)、Appl. Phys. Lett. 78, 673 (2001)、Appl. Phys. Lett. 90, 183503 (2007)、Appl. Phys. Lett. 90,183503 (2007)、Appl. Phys. Lett. 51, 913 (1987)、Synth. Met. 87, 171 (1997)、Synth. Met. 91, 209 (1997)、Synth. Met. 111,421 (2000)、SID SymposiμmDigest, 37,923 (2006)、J. Mater. Chern. 3, 319 (1993)、Adv. Mater. 6, 677 (1994)、Chern. Mater. 15,3148 (2003)、米国特許公開第20030162053号、米国特許公開第20020158242号、米国特許公開第20060240279号、米国特許公開第20080220265号、米国特許第5061569号、国際公開第2007002683号、国際公開第2009018009号、EP650955、米国特許公開第20080124572号、米国特許公開第20070278938号、米国特許公開第20080106190号、米国特許公開第20080018221号、国際公開第2012115034号、特表2003-519432号公報、特開2006-135145号、米国特許出願番号13/585981号である。
 正孔輸送材料は単独で用いてもよく、また複数種を併用して用いてもよい。
[電子阻止層]
 電子阻止層は、広い意味では正孔輸送層の機能を有する層である。好ましくは、正孔を輸送する機能を有しつつ電子を輸送する能力が小さい材料からなる。電子阻止層は、正孔を輸送しつつ電子を阻止することで、電子と正孔の再結合確率を向上させることができる。
 また、上述の正孔輸送層の構成を必要に応じて、有機EL素子10の電子阻止層として用いることができる。有機EL素子10に設ける電子阻止層は、発光層3aの陽極側に隣接して設けられることが好ましい。
 電子阻止層の厚さとしては、好ましくは3~100nmの範囲であり、更に好ましくは5~30nmの範囲である。
 電子阻止層に用いられる材料としては、上述の正孔輸送層に用いられる材料が好ましく用いることができる。また、上述のホスト化合物として用いられる材料も、電子阻止層として好ましく用いることができる。
[正孔注入層]
 正孔注入層(「陽極バッファー層」ともいう)は、駆動電圧低下や発光輝度向上のために陽極と発光層との間に設けられる層である。正孔注入層の一例は、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に記載されている。
 正孔注入層は必要に応じて設けられ、上述のように陽極と発光層3aとの間、又は、陽極と正孔輸送層との間に設けられる。
 正孔注入層は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されている。
 正孔注入層に用いられる材料は、例えば上述の正孔輸送層に用いられる材料等が挙げられる。中でも、銅フタロシアニンに代表されるフタロシアニン誘導体、特表2003-519432や特開2006-135145等に記載されているようなヘキサアザトリフェニレン誘導体、酸化バナジウムに代表される金属酸化物、アモルファスカーボン、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子、トリス(2-フェニルピリジン)イリジウム錯体等に代表されるオルトメタル化錯体、トリアリールアミン誘導体等が好ましい。
 上述の正孔注入層に用いられる材料は単独で用いてもよく、また複数種を併用して用いてもよい。
[含有物]
 有機EL素子10を構成する発光機能層3は、更に他の含有物を含んでもよい。
 含有物としては、例えば臭素、ヨウ素及び塩素等のハロゲン元素やハロゲン化化合物、Pd、Ca、Na等のアルカリ金属やアルカリ土類金属、遷移金属の化合物や錯体、塩等が挙げられる。
 含有物の含有量は、任意に決定することができるが、含有される層の全質量%に対して1000ppm以下であることが好ましく、より好ましくは500ppm以下であり、さらに好ましくは50ppm以下である。
 ただし、電子や正孔の輸送性を向上させる目的や、励起子のエネルギー移動を有利にするための目的などによってはこの範囲内ではない。
[発光機能層の形成方法]
 有機EL素子10の発光機能層(正孔注入層、正孔輸送層、発光層3a、正孔阻止層、電子輸送層、電子注入層等)の形成方法について説明する。
 発光機能層3の形成方法は、特に制限はなく、従来公知の例えば真空蒸着法、湿式法(ウェットプロセス)等により形成することができる。
 湿式法としては、スピンコート法、キャスト法、インクジェット法、印刷法、ダイコート法、ブレードコート法、ロールコート法、スプレーコート法、カーテンコート法、LB法(ラングミュア-ブロジェット法)等がある。均質な薄膜が得られやすく、且つ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法等のロール・ツー・ロール方式に適性の高い方法が好ましい。
 湿式法において、発光機能層の材料を溶解又は分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。
 また、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。
 発光機能層3を構成する各層の形成に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50℃~450℃、真空度10-6Pa~10-2Pa、蒸着速度0.01nm/秒~50nm/秒、基板温度-50℃~300℃、膜厚0.1nm~5μm、好ましくは5nm~200nmの範囲で適宜選ぶことが望ましい。
 有機EL素子10の形成は、一回の真空引きで一貫して発光機能層3から対向電極5まで作製するのが好ましいが、途中で取り出して異なる製膜法を施しても構わない。その際は作業を乾燥不活性ガス雰囲気下で行うことが好ましい。
 また、層毎に異なる形成方法を適用してもよい。
<対向電極5>
 対向電極5は、有機EL素子10の陽極又は陰極を構成する電極であって、発光機能層3を介して透明基板11の一主面上に設けられた電極である。この対向電極5は、有機EL素子10の発光機能層3に対して、透明電極2が陽極であれば陰極として用いられ、透明電極2が陰極であれば陽極として用いられる。このため、少なくとも発光機能層3に接する側の界面層が、陰極または陽極として適する材料で構成されていることとする。
 このような対向電極5は、例えば発光機能層3の発光層3aで生じた発光光hを、透明基板11の光取り出し面11a側に反射させる反射電極として構成されている。また対向電極5は、可視光に対して透過性を有していても良く、この場合には、対向電極5側からも発光光hを取り出すことが可能になる。
 ここで上述した対向電極5を構成する陽極および陰極は、以下のようであることとする。
[陽極]
 有機EL素子10における陽極としては、仕事関数の大きい(4eV以上、好ましくは4.5V以上)金属、合金、電気伝導性化合物、及び、これらの混合物からなる電極物質が用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等の非晶質で透明導電膜を作製可能な材料を用いてもよい。
 陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成し、フォトリソグラフィー法で所望の形状のパターンを形成する。或いは、パターン精度をあまり必要としない(100μm以上程度)場合は、上記電極物質を蒸着法又はスパッタリング法で形成する際に、所望の形状のマスクを介してパターン形成してもよい。
 あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等の湿式成膜法を用いることもできる。また、陽極としてのシート抵抗は数百Ω/sq.以下が好ましい。
 陽極の厚さは、材料にもよるが、通常10nm~1μm、好ましくは10nm~200nmの範囲で透過性または反射性を考慮して選ばれる。
[陰極]
 陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物、及び、これらの混合物からなる電極物質が用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、アルミニウム、希土類金属等が挙げられる。
 これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属と、この電子注入性金属よりも仕事関数の値が大きく安定な第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
 陰極は、上記電極物質を蒸着やスパッタリング等の方法を用いて、作製することができる。また、陰極のシート抵抗は、数百Ω/sq.以下が好ましい。
 陰極の厚さは、材料にもよるが、通常10nm~5μm、好ましくは50nm~200nmの範囲で透過性または反射性を考慮して選ばれる。
(外部取り出し効率)
 室温における有機EL素子10の発光の外部取り出し効率は、1%以上であることが好ましく、5%以上であるとより好ましい。
 ここで、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。
 また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子10からの発光色を蛍光体により多色へ変換する色変換フィルターを併用してもよい。
[封止]
 有機EL素子10は少ない電力で良好に発光するものの、水分に弱く、水分吸水により非発光部ができてしまうため、封止部材により封止することが好ましい。
 本発明の有機EL素子10の封止に適用される封止手段としては、例えば、封止部材と、対向電極5及び透明基板11とを接着剤で接着する方法を挙げることができる。封止部材としては、有機EL素子10の表示領域を覆うように配置されていればよく、凹板状でも、平板状でもよい。また、封止部材の透明性、電気絶縁性は特に限定されない。
 具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。また、金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウムおよびタンタルからなる群から選ばれる一種以上の金属または合金からなるものが挙げられる。
 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
 有機EL素子10の薄膜化のためには、ポリマーフィルム、金属フィルムを使用することが好ましい。さらに、ポリマーフィルムはJIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m2/24h)以下、JIS K 7129-1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、相対湿度(90±2)%)が、1×10-3g/(m2/24h)以下であることが好ましい。
 接着剤としては、例えば、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化型及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
 なお、有機EL素子10が熱処理により劣化する場合があるので、室温から80℃以下までに接着硬化できるものが好ましい。また、接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
 また、透明基板11と対向する側の対向電極5上に、この対向電極5と発光機能層3とを被覆し、透明基板11と接する形で無機物、有機物の層を形成することで、封止膜とすることもできる。この場合、封止膜を形成する材料としては、水分や酸素等素子等の浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。
 さらに、封止膜の脆弱性を改良するために、上述のバリア膜と同様に、無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ-イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。
 封止部材と有機EL素子10の表示領域との間隙には、窒素、アルゴン等の不活性気体による気相、又は、フッ化炭化水素、シリコンオイルのような不活性液体による液相を注入することが好ましい。また、封止部材と有機EL素子10の表示領域との間隙を、真空とすることも可能である。
 さらに、封止部材と有機EL素子10の表示領域との間隙の内部に、吸湿性化合物を封入することもできる。
 吸湿性化合物としては、例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等の金属酸化物、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等の硫酸塩、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等の金属ハロゲン化物、過塩素酸バリウム、及び、過塩素酸マグネシウム等の過塩素酸類等が挙げられる。硫酸塩、金属ハロゲン化物及び過塩素酸類としては無水塩が好適に用いられる。
[保護膜、保護板]
 有機EL素子10を封止する封止膜又は封止用フィルムの外側には、素子の機械的強度を高めるために、保護膜又は保護板を設けてもよい。特に、封止膜により有機EL素子10の封止が行われている場合には、機械的強度が必ずしも高くないため、保護膜又は保護板を設けることが好ましい。保護膜又は保護板として使用することが可能な材料は、例えば、上述の封止部材と同様に、ガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができる。保護膜又は保護板としては、軽量化及び薄膜化が可能なポリマーフィルムを用いることが好ましい。
[光取り出し向上技術]
 有機EL素子10は、上述の散乱層1aに加えて、有機EL素子10の光の取り出しの効率を向上させるための他の構成を有していてもよい。
 有機EL素子は、空気よりも屈折率の高い層(屈折率1.6~2.1程度の範囲内)の内部で発光する。ここで、例えば透明電極や発光層、透明基板等の各層の界面に、臨界角以上の角度θで入射する光は、全反射を起こすため素子外部に取り出すことが難しい。また各層間で全反射を起こした光は、透明電極2や発光層を導波し、結果として光が素子側方向に逃げてしまう。このため、有機EL素子は、発光層で発生した光の一部しか、有機EL素子の外部に取り出せないことが知られている。
 有機EL素子の光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(例えば、米国特許第4774435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(例えば、特開昭63-314795号公報)、素子の側面等に反射面を形成する方法(例えば、特開平1-220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(例えば、特開昭62-172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(例えば、特開2001-202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11-283751号公報)等が挙げられる。
 有機EL素子10においては、上述の方法を組み合わせて用いることができる。特に、透明基板11と有機層1bの間に透明基板11よりも低屈折率を持つ平坦層を導入する方法、或いは、層間に回折格子を形成する方法を好適に用いることができる。
 有機EL素子10においては、これらの手段を組み合わせることにより、更に高輝度及び耐久性を向上することができる。
 有機EL素子10において、透明電極2と透明基板11の間に、透過する光の波長よりも長い厚さで低屈折率の媒質を形成すると、この媒質の屈折率が低いほど透明電極2から出てきた光の外部への取り出し効率が高くなる。
 低屈折率媒質で形成された低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマーなどが挙げられる。透明基板の屈折率は一般に1.5~1.7程度の範囲内であるため、低屈折率層の屈折率は、およそ1.5以下であることが好ましく、さらに1.35以下であることが好ましい。
 また、低屈折率層の厚さは、媒質中を透過する光の波長の2倍以上となることが望ましい。これは、低屈折率層の厚さを光の波長程度とした場合、低屈折率層の光取り出し面側に隣接する層内にエバネッセントで染み出した電磁波が入り込み、低屈折率層の効果が薄れるからである。
 全反射を起こす界面、又はいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は、回折格子が1次の回折や、2次の回折といった、いわゆるブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用する。回折格子を層間や媒質中に導入することで、層間での全反射等による光を回折させ、発光層から発生した光を外に取り出すことができる。
 導入する回折格子としては、ある方向にのみ周期的な屈折率分布を持っている一般的な一次元回折格子、及び、二次元的な周期屈折率を持っている回折格子のいずれも適用できる。
 特に、発光層で発光する光はあらゆる方向にランダムに発生するため、二次元的な周期屈折率を持っている回折格子を導入することにより、あらゆる方向にランダムに発生する光を回折することができる。このため、二次元的な周期屈折率を持つ回折格子を有機EL素子に導入することにより、屈折率分布を二次元的な分布にでき、あらゆる方向に進む光が回折されて、光の取り出し効率が向上する。
 回折格子を導入する位置は、いずれかの層間、又は、透明基板や透明電極等の媒質中でもよく、光が発生する場所である発光機能層の近傍が望ましい。このとき、回折格子の周期は、媒質中の光の波長の約1/2~3倍程度の範囲内が好ましい。回折格子の配列は、正方形のラチス状、三角形のラチス状、ハニカムラチス状など、二次元的に配列が繰り返されることが好ましい。
[集光シート]
 有機EL素子10は、上述の散乱層1aに加えて、透明基板11の光取り出し面11a側に、例えばマイクロレンズアレイや、所謂集光シート設けることにより、特定方向、例えば素子発光面に対し正面方向に集光して、特定方向上の輝度を高めることができる。
 また、有機EL素子10からの光放射角を制御するために光拡散板・フィルムを、集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)などを用いることができる。
 マイクロレンズアレイの例としては、透明基板11の光取り出し面11a側に一辺30μm、頂角が90度となるような四角錐を二次元に配列する。一辺は10~100μmの範囲内が好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚さが厚くなり好ましくない。
 集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているシートを用いることが可能である。このようなシートとしては、例えば、住友スリーエム社製輝度上昇フィルム(BEF)等を用いることができる。プリズムシートとしては、例えば基材に頂角90度、ピッチ50μmの断面三角形状のストライプが形成された形状、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、及び、その他の形状を用いることができる。
[用途]
 有機EL素子10は、表示デバイス、ディスプレイ、各種発光光源などの電子機器に適用することができる。
 発光光源としては、例えば、家庭用照明や車内照明等の照明装置、時計や液晶用バックライト、看板広告、信号機、光記憶媒体等の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではない。特に、液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
 有機EL素子10においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、透明電極2及び対向電極5のみをパターニングしてもよく、これらの電極と発光層3aをパターニングしてもよく、又は、素子全層をパターニングしてもよい。素子の作製においては、従来公知の方法を用いることができる。
(照明装置)
 照明装置に用いる有機EL素子は、上述した構成の有機EL素子に共振器構造を持たせた設計としてもよい。共振器構造として構成された有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより上記用途に使用してもよい。
 尚、有機EL素子に用いられる材料は、実質的に白色の発光を生じる有機EL素子(白色有機EL素子ともいう)に適用できる。例えば、複数の発光材料により複数の発光色を同時に発光させて混色により白色発光を得ることもできる。複数の発光色の組み合わせとしては、赤色、緑色、青色の3原色の3つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した2つの発光極大波長を含有したものでもよい。
 また、複数の発光色を得るための発光材料の組み合わせは、複数のリン光または蛍光で発光する材料を複数組み合わせたもの、蛍光またはリン光で発光する発光材料と、発光材料からの光を励起光として発光する色素材料との組み合わせたもののいずれでもよいが、白色有機EL素子においては、発光ドーパントを複数組み合わせて混合したものでもよい。
 このような白色有機EL素子は、各色発光の有機EL素子をアレー状に個別に並列配置して白色発光を得る構成と異なり、有機EL素子自体が白色を発光する。このため、素子を構成するほとんどの層の成膜にマスクを必要とせず、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で例えば電極膜を形成でき、生産性も向上する。
 またこのような白色有機EL素子の発光層に用いる発光材料としては、特に制限はなく、例えば液晶表示素子におけるバックライトであれば、CF(カラーフィルター)特性に対応した波長範囲に適合するように、本発明に係る金属錯体、また公知の発光材料の中から任意のものを選択して組み合わせて白色化すればよい。
 以上に説明した白色有機EL素子を用いれば、実質的に白色の発光を生じる照明装置を作製することが可能である。
 また照明装置は、例えば有機EL素子を複数用いることにより、発光面を大面積化した照明装置としても用いることができる。この場合、有機EL素子を設けた複数の発光パネルを、支持基板上に複数配列する(すなわちタイリングする)ことによって発光面を大面積化する。支持基板は、封止部材を兼ねるものであっても良く、この支持基板と、発光パネルの透明基板との間に有機EL素子を挟持する状態で各発光パネルをタイリングする。支持基板と透明基板との間には接着剤を充填し、これによって有機EL素子を封止しても良い。尚、発光パネルの周囲には、透明電極および対向電極の端子を露出させておく。
 このような構成の照明装置では、各発光パネルの中央が発光領域となり、発光パネル間には非発光領域が発生する。このため、非発光領域からの光取り出し量を増加させるための光取り出し部材を、光取り出し面の非発光領域に設けても良い。光取り出し部材としては、集光シートや光拡散シートを用いることができる。
<効果>
 本発明の有機EL素子10によれば、透明基板11上に散乱層1aを設けることにより、光の取り出し効率が向上する。
 また、散乱層1a上に有機層1bが設けられることにより、散乱層1aの凹凸面を平滑にすることができる。
 また、表面が平滑化された有機層1b上に1nm以下の金属移動防止層1cが設けられ、銀もしくは銀を主成分とする合金で構成された透明電極2が形成されるため、金属移動防止層1cと透明電極2における銀との相互作用が得られ、薄いながらも均一な厚さの透明電極を形成できる。
 さらに、金属移動防止層1cは、1nm以下であることにより完全な連続膜とはならないため、非連続の部分において有機層1b及び透明電極2を隣接するように形成することができる。したがって、有機層1bと透明電極2の相互作用を阻害することなく、有機層1bと金属移動防止層1cとの透明電極2に対する相乗的な作用効果により透明電極2の均一性をより高めることができ、電極表面の平滑性がさらに向上する。
 そして特に、本発明の有機EL素子10は、透明電極2上に発光機能層3が設けられた構成であり、上述したように透明電極2の表面の平滑性が向上するため、素子内の整流比の低下やリーク発生等を抑制することができる。
 したがって、本発明の有機EL素子10は、電極表面の平滑性が不十分であることによる整流比の低下やリーク発生等が抑制されたものとなり、光の取り出し効率の向上を図りつつも信頼性の向上が図られたものとなる。
≪2.第2実施形態:平滑層を備えた有機エレクトロルミネッセンス素子≫
 次に、有機EL素子の第2実施形態について説明する。図7は、本発明の第2実施形態に係る平滑層を備えた有機EL素子の構成を示す断面模式図である。尚、第2実施形態の有機EL素子20において、散乱層1aと有機層1bとの間にさらに平滑層1dを設けた構成以外は、上述の第1実施形態と同様の構成である。このため、上述の第1実施形態と同様の構成については、説明を省略する。
<平滑層1d>
 平滑層1dは、層媒体と該層媒体に含有される微粒子とから構成されている。ここで、層媒体である樹脂材料(バインダー)に含有される微粒子は、散乱層1aが微粒子を有する混合散乱層である場合には、混合散乱層に含有される微粒子よりも小さい粒子とする。また、散乱層1aが、凹凸構造を有する形状制御散乱層である場合には、形状制御散乱層が有する凹凸形状の凹部の幅及び高さよりも小さい粒子とする。
 平滑層1dは、波長550nmにおける屈折率が1.7以上2.5未満の高屈折率層であることが好ましい。平滑層1dは、屈折率が1.7以上2.5未満であれば、単独の素材で形成されていてもよいし、2種類以上の化合物を混合して屈折率が1.7以上2.5未満の層を形成してもよい。混合物で形成する際の屈折率の考え方は、上記散乱層1aの場合と同様である。尚、ここでは、散乱層1a及び平滑層1dの屈折率が、それぞれ1.7以上2.5未満の範囲内であることが好ましいが、各層の屈折率を個別に測定することは困難である場合が多いことから、散乱層1a及び平滑層1dをまとめて測定した屈折率の測定値が上記範囲を満たしていればよい。
 平滑層1dは、この上に有機層1bを良好に形成させる平坦性を有することが重要であり、その表面性は平均面粗さRaが100nm未満、好ましくは30nm未満、特に好ましくは10nm未満、最も好ましくは5nm未満である。なお、本発明において、平均面粗さRaとは、原子間力顕微鏡法(Atomic Force Microscopy;AFM)にて測定された、10μmにおける平均面粗さRaを言う。
 平滑層1dに用いられる層媒体としては、散乱層1aと同様の樹脂材料(バインダー)が挙げられる。
 平滑層1dに含有される微粒子は、微粒子高屈折率材料の金属酸化物微粒子(無機粒子)であることが好ましく、特に平滑層1dの透明性を確保するために、微粒子ゾルの形態で用いることが好ましい。
 高屈折率の平滑層1dに含まれる金属酸化物微粒子(無機粒子)の屈折率の下限としては、バルクの状態で1.7以上であることが好ましく、1.85以上であることがより好ましく、2.0以上であることがさらに好ましく、2.5以上であることが特に好ましい。また、金属酸化物微粒子の屈折率の上限としては、3.0以下であることが好ましい。金属酸化物微粒子の屈折率が1.7より低いとバインダーとの屈折率差が小さくなるため散乱量が減少し、光取り出し効率の向上効果が得られないことがある。一方で、金属酸化物微粒子の屈折率が3.0より高いと膜中での多重散乱が増加し、透明性が低下するため好ましくない。
 高屈折率の平滑層1dに含まれる金属酸化物微粒子(無機粒子)の粒径の下限としては、通常4nm以上であることが好ましく、5nm以上であることがより好ましく、6nm以上であることがさらに好ましい。また、金属酸化物微粒子の粒径の上限としては、70nm以下であることが好ましく、60nm以下であることがより好ましく、50nm以下であることがさらに好ましい。
 金属酸化物微粒子の粒径が4nm以上であることにより、この微粒子が凝集することなく平滑層1dの透明性を保つことができる。また、微粒子の表面積が大きくなりすぎることによる触媒活性を抑えることができる。これにより隣接した層を劣化させることなく表面を平坦化することが可能となる。
 また、その粒径が70nm以下であることにより、平滑層1dの透明性に影響することなく散乱層1aの表面を平坦化することが可能となる。本発明の効果を損なわない限り、粒径の分布は制限されず、広くても狭くても複数の分布を持っていてもよい。
 また、散乱層1aが2種類以上の化合物を含有する混合散乱層を用いて構成される場合には、散乱層1aに含有される粒子の平均粒径の大きさによって表面に凹凸が生じる。平滑層1dに含まれる金属酸化物微粒子の粒径は、この散乱層1aの平均面粗さRaが上述した範囲となるように適宜設定することとする。
 平滑層1dにおける金属酸化物微粒子の含有量の下限としては、全体質量に対して、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、85質量%以上であることがさらに好ましい。また、金属酸化物微粒子の含有量の上限としては、97質量%以下であることが好ましく、95質量%以下であることがより好ましい。
 金属酸化物微粒子の含有量が70質量%以上であることにより、平滑層1dの屈折率を、例えば1.7以上というように所望の値に調整することが容易となる。また、その含有量が95質量%以下であることにより、平滑層1dの塗布を円滑に行うことができ、乾燥後の膜の脆性悪化を伴うことなく、耐屈曲性を保つことができる。
 平滑層1dに含有される金属酸化物微粒子としては、安定性の観点から、TiO(二酸化チタンゾル)であることがより好ましい。また、TiOの中でも、特にアナターゼ型よりルチル型の方が触媒活性は低いため、平滑層1dや隣接した層の耐候性が高くなり、さらに屈折率が高いことから好ましい。
 本発明で用いることのできる二酸化チタンゾルの調製方法としては、たとえば、特開昭63-17221号公報、特開平7-819号公報、特開平9-165218号公報、特開平11-43327号公報等を参照することができる。
 二酸化チタン微粒子の好ましい一次粒子径は、5~15nmの範囲内であり、より好ましくは6~10nmの範囲内である。
<効果>
 このような有機EL素子20は、散乱層1aと有機層1bとの間に平滑層1dを挟持した構成であることにより、第1実施形態の効果に加えて、散乱層1aの凹凸面をさらに平滑にすることができ、上部に設けられる透明電極2の均一性をより高めることができ、電極表面の平滑性がさらに向上する。
 また、本実施形態の有機EL素子20においても、透明電極2上に発光機能層3が設けられた構成であり、上述したように透明電極2の表面の平滑性がさらに向上するため、素子内の整流比の低下やリーク発生等を抑制することができる。
 したがって、本発明の有機EL素子20によれば、電極表面の平滑性が不十分であることによる整流比の低下やリーク発生等が抑制されたものとなり、光の取り出し効率の向上を図りつつも信頼性の向上が図られたものとなる。
 以下、実施例に基づいて本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。
≪ボトムエミッション型の有機EL素子の作製≫
 試料101~133の各有機EL素子を、発光領域の面積が5cm×5cmとなるように作製した。下記表2には試料101~133の各有機EL素子における各層の構成を示す。図8及び下記表2を参照し、作製手順を説明する。
<試料101の作製手順>
 試料101の作製において、まず、ポリエチレンテレフタレート(PET)製の透明基板11(以下、PET基板11と記す)上に透明電極2を形成し、この透明電極2上に発光機能層3と、対向電極5を形成した後、封止部材により固体封止し、試料101の有機EL素子を作製した。
[透明電極2の作製]
 先ず、PET基板11上に、スパッタ法により膜厚150nmのITO膜を形成した。これにより、ITO膜による透明電極2を作製した。
[発光機能層3の作製]
(正孔輸送・注入層31)
 正孔輸送注入材料として下記構造式に示すα-NPDが入った加熱ボートに通電して加熱し、α-NPDよりなる正孔注入層と正孔輸送層とを兼ねた正孔輸送・注入層31を、透明電極2上に成膜した。この際、蒸着速度0.1nm/秒~0.2nm/秒、膜厚20nmとした。
Figure JPOXMLDOC01-appb-C000081
(発光層32)
 次に、下記構造式に示すホスト材料H4の入った加熱ボートと、下記構造式に示す燐光発光性化合物Ir-4の入った加熱ボートとを、それぞれ独立に通電し、ホスト材料H4と燐光発光性化合物Ir-4とよりなる発光層32を、正孔輸送・注入層31上に成膜した。この際、蒸着速度がホスト材料H4:燐光発光性化合物Ir-4=100:6となるように、加熱ボートの通電を調節した。また膜厚30nmとした。
Figure JPOXMLDOC01-appb-C000082
(正孔阻止層33)
 次いで、正孔阻止材料として下記構造式に示すBAlqが入った加熱ボートに通電して加熱し、BAlqよりなる正孔阻止層33を、発光層32上に成膜した。この際、蒸着速度0.1nm/秒~0.2nm/秒、膜厚10nmとした。
Figure JPOXMLDOC01-appb-C000083
(電子輸送・注入層34)
 その後、電子輸送材料として、先に有機層を構成する窒素含有化合物として構造式を示した化合物10の入った加熱ボートと、フッ化カリウムの入った加熱ボートとを、それぞれ独立に通電し、化合物10とフッ化カリウムとよりなる電子注入層と電子輸送層とを兼ねた電子輸送・注入層34を、正孔阻止層33上に成膜した。この際、蒸着速度が化合物10:フッ化カリウム=75:25になるように、加熱ボートの通電を調節した。また膜厚30nmとした。
[対向電極5の作製]
 次いで、発光機能層3が形成されたPET基板11を、真空蒸着装置の真空槽内に移送し、真空槽内を4×10-4Paまで減圧した後、真空槽内に取り付けられたアルミニウムの入った加熱ボートを通電して加熱した。これにより、蒸着速度0.3nm/秒で膜厚100nmのアルミニウムからなる対向電極5を形成した。この対向電極5は、カソードとして用いられる。
(素子の封止)
 その後、図示を省略するが、有機EL素子を、厚さ300μmのガラス基板からなる封止材で覆い、有機EL素子を囲む状態で、封止材とPET基板11との間に接着剤(シール材)を充填した。接着剤としては、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を用いた。封止材とPET基板11との間に充填した接着剤に対して、ガラス基板からなる封止材側からUV光を照射し、接着剤を硬化させて有機EL素子を封止した。
 尚、有機EL素子の形成においては、各層の形成に蒸着マスクを使用し、5cm×5cmのPET基板における中央の4.5cm×4.5cmを発光領域とし、発光領域の全周に幅0.25cmの非発光領域B設けた。また、アノードである透明電極2と、カソードである対向電極5とは、正孔輸送・注入層31~電子輸送・注入層34によって絶縁された状態で、PET基板11の周縁に端子部分を引き出された形状で形成した。
 以上の工程により、試料101の有機EL素子を作製した。
<試料102の作製手順>
 試料101の作製で説明した手順において、透明電極2の形成の前に散乱層1aを形成する工程を追加した。
[散乱層1aの作製]
 PET基板11上に、散乱層1aを構成する分散液1をスピン塗布(500rpm、30秒)にて回転塗布した後、簡易乾燥(80℃、2分)し、さらに、ベーク(120℃、60分)して、膜厚700nmからなる散乱層1aを形成した。
(分散液1の作製方法)
 分散液1として、屈折率2.4、平均粒径0.25μmのTiO粒子(テイカ(株)製 JR600A)と樹脂溶液(APM社製 ED230AL(有機無機ハイブリッド樹脂))との固形分比率が70vol%/30vol%、n-プロピルアセテートとシクロヘキサノンとの溶媒比が10wt%/90wt%、固形分濃度が15wt%となるように、10ml量の比率で処方設計した。
 具体的には、上記TiO粒子と上記溶媒とを混合し、常温で冷却しながら、超音波分散機(エスエムテー社製 UH-50)に、マイクロチップステップ(エスエムテー社製 MS-3 3mmφ)の標準条件で10分間分散を加え、TiOの分散液を作製した。
 次いで、TiO分散液を100rpmで攪拌しながら、上記樹脂溶液を少量ずつ混合添加し、添加完了後、500rpmまで攪拌速度を上げ、10分間混合し、散乱層調液を得た。
 その後、得られた散乱層調液を、疎水性PVDF 0.45μmフィルター(ワットマン社製)にて濾過し、目的の分散液1を得た。
<試料103の作製手順>
 透明電極2を銀(Ag)で構成した以外は、上記試料102と同様の手順で、試料103の有機EL素子を作製した。ただし、銀(Ag)で構成された透明電極2の膜厚は10nmとした。
 この際、銀(Ag)からなる透明電極2の形成は、先ず散乱層1aまで形成したPET基板11を、市販の真空蒸着装置の基板ホルダーに固定した。また、タングステン製の抵抗加熱ボートに銀(Ag)を入れ、真空蒸着装置の真空槽内に取り付けた。
 次に、真空槽を4×10-4Paまで減圧した後、銀の入った加熱ボートを通電して加熱した。これにより、蒸着速度0.1nm/秒~0.2nm/秒で膜厚10nmの銀からなる透明電極2を形成した。
<試料104の作製手順>
 試料103の作製で説明した手順において、散乱層1aの形成と透明電極2の形成との間に金属移動防止層1cを形成する工程を追加した。
[金属移動防止層1cの作製]
 散乱層1aまで形成したPET基板11を、スパッタリング装置の真空槽内に取り付けた。そして真空槽を4×10-4Paまで減圧した後、予め真空層内に取り付けたMoOのターゲットに電圧を印加し、散乱層1a上に膜厚0.5nmのMoOからなる金属移動防止層1cを形成した。
<試料105の作製手順>
 試料104の作製で説明した手順において、散乱層1aの形成と金属移動防止層1cの形成との間に蒸着法による有機層1bの形成を追加した。ただし、金属移動防止層1cは、金(Au)で形成した。
[有機層1bの作製]
 散乱層1aまで形成したPET基板11を、市販の真空蒸着装置の基板ホルダーに固定した。また、先に有機層1bを構成する窒素含有化合物Iとして構造式を示した化合物No.1をタンタル製の抵抗加熱ボートに入れた。これらの基板ホルダーと抵抗加熱ボートとを真空蒸着装置の真空槽に取り付けた。
 次に、真空槽を4×10-4Paまで減圧した後、化合物No.1の入った加熱ボートに通電して加熱し、蒸着速度0.1nm/秒~0.2nm/秒で散乱層1a上に膜厚10nmの化合物No.1からなる有機層1bを形成した。
<試料106~115の作製手順>
 金属移動防止層1cを下記表2に示す各材料で構成した以外は、上記試料105と同様の手順で、試料106~115の有機EL素子を作製した。
<試料116~129の作製手順>
 有機層1bを下記表2に示す各化合物で構成した以外は、上記試料106と同様の手順で、試料116~129の有機EL素子を作製した。
<試料130~132の作製手順>
 試料116の作製で説明した手順において、散乱層1aの形成と有機層1bの形成との間に平滑層1dを形成する工程を追加した。ただし、銀(Ag)で構成された透明電極2は、それぞれ膜厚10nm、8nm、6nmで形成した。
[平滑層1dの作製]
 散乱層1aまで形成したPET基板11上に、平滑層1dを構成する分散液2をスピン塗布(500rpm、30秒)にて回転塗布した後、簡易乾燥(80℃、2分)し、さらに、ベーク(120℃、30分)して、膜厚500nmからなる平滑層1dを形成した。
(分散液2の作製方法)
 分散液2として、平均粒径0.02μmのナノTiO分散液(テイカ(株)製 HDT-760T)と樹脂溶液(APM社製 ED230AL(有機無機ハイブリッド樹脂))との固形分比率が45vol%/55vol%、n-プロピルアセテートとシクロヘキサノンとトルエンとの溶媒比が20wt%/30wt%/50wt%、固形分濃度が20wt%となるように、10ml量の比率で処方設計した。
 具体的には、上記ナノTiO分散液と上記溶媒を混合し、100rpmで攪拌しながら、上記樹脂溶液を少量ずつ混合添加し、添加完了後、500rpmまで攪拌速度を上げ、10分間混合し、平滑層塗布液を得た。
 その後、疎水性PVDF 0.45μmフィルター(ワットマン社製)にて濾過し、目的の分散液2を得た。
<試料133の作製手順>
 金属移動防止層1cをパラジウム(Pd)で構成した以外は、上記試料132と同様の手順で、試料133の有機EL素子30を作製した。
<実施例の各試料の評価>
 上記で作製した試料101~133の各有機EL素子について、(1)電力効率、及び(2)整流比を測定した。
 (1)電力効率は、分光放射輝度計CS-2000(コニカミノルタ社製)を用いて、試料101~133の有機EL素子の正面輝度を測定し、正面輝度1000cd/m2における電力効率を評価した。なお、電力効率の評価は、試料101の電力効率を100として相対値で評価した。
 (2)整流比は、各有機EL素子を室温下、500μA/cm2で流れる順電圧とその逆電圧による電流値を3回測定し、その平均値より整流比を算出し、その値を対数(Log)でとった値を示す。整流比が高いほどリーク特性に優れていることを表す。この結果を下記表2に合わせて示す。
Figure JPOXMLDOC01-appb-T000084
<実施例の評価結果>
 表2から明らかなように、透明基板上に散乱層、有機層、金属移動防止層、透明電極、発光機能層、対向電極をこの順に設けた試料106~129の有機EL素子は、試料101~105の有機EL素子と比較して、電力効率、整流比ともに良好な結果が得られた。また、平滑層をさらに設けた試料130~133の有機EL素子は、試料101~105と比較して、電力効率、整流比ともにさらに良好な結果が得られた。
 ここで、図9には、有効非共有電子対含有率[n/M]が、2.0×10-3≦[n/M]≦1.9×10-2である化合物No.1~No.20を用いた有機層の上部に、膜厚6nmの銀(Ag)からなる透明電極を形成した場合について、有機層を構成する化合物の有効非共有電子対含有率[n/M]と、透明電極について測定されたシート抵抗の値をプロットしたグラフを示す。
 図9のグラフから、有効非共有電子対含有率[n/M]が2.0×10-3≦[n/M]≦1.9×10-2の範囲では、有効非共有電子対含有率[n/M]の値が大きいほど、透明電極のシート抵抗が低くなる傾向が見られた。そして有効非共有電子対含有率[n/M]=3.9×10-3を境にして、3.9×10-3≦[n/M]の範囲であれば、飛躍的にシート抵抗を低下させる効果が得られることが確認された。以上より、2.0×10-3≦[n/M]である化合物で構成された有機層上に透明電極を形成することにより、透明電極の均一性を高めることができ、電極表面の平滑性が向上されることが確認された。
 そして、有機層が設けられていない試料104とこれを有する試料106の各有機EL素子を比較すると、有機層を有する試料106は、電力効率、整流比ともにさらに良好な結果が得られた。従って、上記表1に記載されているような、有効非共有電子対含有率[n/M]が2.0×10-3≦[n/M]の化合物を用いて構成された有機層を有することにより、透明電極の均一性、平滑性を高めることが確認された。つまり、有機層を有することにより、透明電極が単層成長型(Frank-van der Merwe:FM型)の成長によって形成され、透明電極の均一性、平滑性が向上する。このため、整流比の低下やリーク発生が抑制され、信頼性の向上が図られた有機EL素子を構成することができる。
 また、有機層を構成する材料が異なる試料116~129の各有機EL素子を比較すると、それぞれ同等の良好な結果が得られた。
 金属移動防止層を構成する材料が異なる試料106~115の各有機EL素子を比較すると、MoO、Pdで構成された金属移動防止層を有する試料106及び107の各有機EL素子は、電力効率、整流比ともに良好な結果が得られた。したがって、金属移動防止層は、透明電極を構成する銀(Ag)と親和性が高い材料(MoO、Pd等)で構成されることにより、透明電極の均一性、平滑性を高めることが確認された。このため、信頼性の向上が図られた有機EL素子を構成することができる。
 層構成の異なる試料116と130を比較すると、平滑層が設けられた試料130は、整流比において良好な結果が得られた。したがって、散乱層と有機層との間に平滑層を設けることにより、信頼性の向上が図られることが確認された。
 透明電極の膜厚が異なる試料130~132を比較すると、透明電極の膜厚が小さくなるほど、電力効率において良好な結果が得られた。また、試料132の金属移動防止層をパラジウム(Pd)で構成した試料133においても同様に良好な結果が得られた。
 以上より、本発明構成の透明電極を用いた有機EL素子は、電力効率、整流比ともに向上することが確認された。
 10,20,30…有機EL素子、11…透明基板(PET基板)、11a…光取りだし面、1a…散乱層、1b…有機層、1c…金属移動防止層、1d…平滑層、2…透明電極、3…発光機能層、31…正孔輸送・注入層、3a、32…発光層、33…正孔阻止層、34…電子輸送・注入層

Claims (19)

  1.  透明基板と、
     銀もしくは銀を主成分とする合金で構成され前記透明基板の一主面上に設けられた透明電極と、
     有機材料で構成された発光層を有し前記透明電極を介して前記透明基板の一主面上に設けられた発光機能層と、
     前記発光機能層を介して前記透明基板の一主面上に設けられた対向電極とを有し、
     前記透明基板と前記透明電極との間に、
     該透明基板側から
     散乱層と、
     有機層と、
     MoO、Pd、Fe、Mn、Ga、Ge、In、Ni、Coのうち少なくとも1種を含有し、膜厚1nm以下となるように構成された金属移動防止層とをこの順に積層した構成をさらに有する
     有機エレクトロルミネッセンス素子。
  2.  前記金属移動防止層は、MoO、Pdのうち少なくとも1種を含有する
     請求項1に記載の有機エレクトロルミネッセンス素子。
  3.  前記散乱層と前記有機層との間に挟持された平滑層を有する
     請求項1又は2に記載の有機エレクトロルミネッセンス素子。
  4.  前記有機層は、ルイス塩基を有する化合物を用いて構成される
     請求項1~3のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  5.  前記有機層は、窒素原子(N)および硫黄原子(S)の少なくとも一方を含んだ化合物を用いて構成され、
     前記化合物は、当該化合物に含まれる窒素原子(N)および硫黄原子(S)が有する非共有電子対のうち芳香族性に関与せずかつ金属に配位していない非共有電子対の数をn、分子量をMとした場合の有効非共有電子対含有率[n/M]が、2.0×10-3≦[n/M]となる
     請求項1~4のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  6.  前記化合物における前記有効非共有電子対含有率[n/M]が、3.9×10-3≦[n/M]である
     請求項5に記載の有機エレクトロルミネッセンス素子。
  7.  前記有機層は、下記一般式(1)で表される構造を有する化合物を含有する
     請求項1~6のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001
    [ただし一般式(1)中において、
     X11は、-N(R11)-または-O-を表し、
     E101~E108は、各々-C(R12)=または-N=を表し、E101~E108のうち少なくとも一つは-N=であり、
     前記R11および前記R12は、それぞれが水素原子(H)または置換基を表す。]
  8.  前記有機層は、前記一般式(1)におけるX11を-N(R11)-とした下記一般式(1a)で表される構造を有する化合物を含有する
     請求項7に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000002
  9.  前記有機層は、前記一般式(1a)におけるE104を-N=とした下記一般式(1a-1)で表される構造を有する化合物を含有する
     請求項8に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000003
  10.  前記有機層は、前記一般式(1a)におけるE103およびE106を-N=とした下記一般式(1a-2)で表される構造を有する化合物を含有する
     請求項8記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000004
  11.  前記有機層は、前記一般式(1)におけるX11を-O-とし、E104を-N=とした下記一般式(1b)で表される構造を有する化合物を含有する
     請求項7に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000005
  12.  前記有機層は、下記一般式(2)で表される構造を有する化合物を含有する
     請求項1~6のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000006
    [ただし一般式(2)中、
     Y21は、アリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基を表し、
     E201~E216、E221~E238は、各々-C(R21)=または-N=を表し、
     前記R21は、水素原子(H)または置換基を表し、
     E221~E229の少なくとも1つおよびE230~E238の少なくとも1つは-N=であり、
     k21およびk22は、0~4の整数を表すが、k21+k22は2以上の整数である。]
  13.  前記有機層は、下記一般式(3)で表される構造を有する化合物を含有する
     請求項1~6のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000007
    [ただし一般式(3)中、
     E301~E312は、各々-C(R31)=を表し、
     前記R31は水素原子(H)または置換基を表し、
     Y31は、アリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基を表す。]
  14.  前記有機層は、下記一般式(4)で表される構造を有する化合物を含有する
     請求項1~6のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000008
    [ただし一般式(4)中、
     E401~E414は、各々-C(R41)=を表し、
     前記R41は水素原子(H)または置換基を表し、
     Ar41は、置換あるいは無置換の、芳香族炭化水素環あるいは芳香族複素環を表し、
     k41は3以上の整数を表す。]
  15.  前記有機層は、下記一般式(5)で表される構造を有する化合物を含有する
     請求項1~6のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000009
    [ただし一般式(5)中、
     R51は置換基を表し、
     E501,E502、E511~E515、E521~E525は、各々-C(R52)=または-N=を表し、
     E503~E505は、各々-C(R52)=を表し、
     前記R52は、水素原子(H)または置換基を表し、
     E501およびE502のうち少なくとも1つは-N=であり、
     E511~E515のうち少なくとも1つは-N=であり、
     E521~E525のうち少なくとも1つは-N=である。]
  16.  前記有機層は、下記一般式(6)で表される構造を有する化合物を含有する
     請求項1~6のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000010
    [ただし一般式(6)中、
     E601~E612は、各々-C(R61)=または-N=を表し、
     前記R61は水素原子(H)または置換基を表し、
     Ar61は、置換あるいは無置換の、芳香族炭化水素環あるいは芳香族複素環を表す。]
  17.  前記有機層は、下記一般式(7)で表される構造を有する化合物を含有する
     請求項1~6のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000011
    〔ただし一般式(7)中、
     R71~R73は、各々水素原子(H)又は置換基を表し、
     Ar71は、芳香族炭化水素環基あるいは芳香族複素環基を表す。〕
  18.  前記有機層は、下記一般式(8)で表される構造を有する化合物を含有する
     請求項1~6のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000012
    〔ただし一般式(8)中、
     R81~R86は、各々水素原子(H)又は置換基を表し、
     E801~E803は、各々-C(R87)=または-N=を表し、
     前記R87は、水素原子(H)または置換基を表し、
     Ar81は、芳香族炭化水素環基又は芳香族複素環基を表す。〕
  19.  前記有機層は、下記一般式(8a)で表される構造を有する化合物を含有する
     請求項18に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000013
    〔ただし一般式(8a)中において、
     E804~E811は、各々-C(R88)=または-N=を表し、
     前記R88は、それぞれが水素原子(H)または置換基と表し、
     E808~E811のうち少なくとも一つは-N=であり、
     E804~E807、E808~E811は、各々互いに結合して新たな環を形成してもよい。〕
PCT/JP2014/067717 2013-08-01 2014-07-02 有機エレクトロルミネッセンス素子 WO2015015993A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015529471A JPWO2015015993A1 (ja) 2013-08-01 2014-07-02 有機エレクトロルミネッセンス素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013160802 2013-08-01
JP2013-160802 2013-08-01

Publications (1)

Publication Number Publication Date
WO2015015993A1 true WO2015015993A1 (ja) 2015-02-05

Family

ID=52431533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067717 WO2015015993A1 (ja) 2013-08-01 2014-07-02 有機エレクトロルミネッセンス素子

Country Status (2)

Country Link
JP (1) JPWO2015015993A1 (ja)
WO (1) WO2015015993A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147481A1 (ja) * 2015-03-13 2016-09-22 コニカミノルタ株式会社 透明電極、透明電極の製造方法及び有機エレクトロルミネッセンス素子
US11046658B2 (en) 2018-07-02 2021-06-29 Incyte Corporation Aminopyrazine derivatives as PI3K-γ inhibitors
US11926616B2 (en) 2018-03-08 2024-03-12 Incyte Corporation Aminopyrazine diol compounds as PI3K-γ inhibitors

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09291355A (ja) * 1996-04-26 1997-11-11 Asahi Glass Co Ltd 透明導電膜付き基体及びその製造方法
JP2008171637A (ja) * 2007-01-10 2008-07-24 Fuji Electric Holdings Co Ltd 透明導電膜積層体、該透明導電膜積層体を用いた有機el素子、並びに、これらの製造方法
JP2011077028A (ja) * 2009-09-04 2011-04-14 Hitachi Displays Ltd 有機el表示装置
WO2012007575A1 (en) * 2010-07-16 2012-01-19 Agc Glass Europe Transluscent conductive substrate for organic light emitting devices
WO2013073356A1 (ja) * 2011-11-17 2013-05-23 コニカミノルタ株式会社 透明電極、および電子デバイス
WO2013099867A1 (ja) * 2011-12-27 2013-07-04 コニカミノルタ株式会社 透明電極、電子デバイス、有機電界発光素子、および有機電界発光素子の製造方法
WO2013105569A1 (ja) * 2012-01-10 2013-07-18 コニカミノルタ株式会社 透明電極、電子デバイス及び有機エレクトロルミネッセンス素子
WO2014097901A1 (ja) * 2012-12-18 2014-06-26 コニカミノルタ株式会社 有機発光素子
WO2014129381A1 (ja) * 2013-02-21 2014-08-28 コニカミノルタ株式会社 透明電極、電子デバイス、および有機電界発光素子

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09291355A (ja) * 1996-04-26 1997-11-11 Asahi Glass Co Ltd 透明導電膜付き基体及びその製造方法
JP2008171637A (ja) * 2007-01-10 2008-07-24 Fuji Electric Holdings Co Ltd 透明導電膜積層体、該透明導電膜積層体を用いた有機el素子、並びに、これらの製造方法
JP2011077028A (ja) * 2009-09-04 2011-04-14 Hitachi Displays Ltd 有機el表示装置
WO2012007575A1 (en) * 2010-07-16 2012-01-19 Agc Glass Europe Transluscent conductive substrate for organic light emitting devices
WO2013073356A1 (ja) * 2011-11-17 2013-05-23 コニカミノルタ株式会社 透明電極、および電子デバイス
WO2013099867A1 (ja) * 2011-12-27 2013-07-04 コニカミノルタ株式会社 透明電極、電子デバイス、有機電界発光素子、および有機電界発光素子の製造方法
WO2013105569A1 (ja) * 2012-01-10 2013-07-18 コニカミノルタ株式会社 透明電極、電子デバイス及び有機エレクトロルミネッセンス素子
WO2014097901A1 (ja) * 2012-12-18 2014-06-26 コニカミノルタ株式会社 有機発光素子
WO2014129381A1 (ja) * 2013-02-21 2014-08-28 コニカミノルタ株式会社 透明電極、電子デバイス、および有機電界発光素子

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147481A1 (ja) * 2015-03-13 2016-09-22 コニカミノルタ株式会社 透明電極、透明電極の製造方法及び有機エレクトロルミネッセンス素子
JPWO2016147481A1 (ja) * 2015-03-13 2018-01-25 コニカミノルタ株式会社 透明電極、透明電極の製造方法及び有機エレクトロルミネッセンス素子
US11926616B2 (en) 2018-03-08 2024-03-12 Incyte Corporation Aminopyrazine diol compounds as PI3K-γ inhibitors
US11046658B2 (en) 2018-07-02 2021-06-29 Incyte Corporation Aminopyrazine derivatives as PI3K-γ inhibitors

Also Published As

Publication number Publication date
JPWO2015015993A1 (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
KR102148745B1 (ko) 박막 및 유기 일렉트로루미네센스 소자
JP6384327B2 (ja) 有機発光素子
JP6287854B2 (ja) 透明電極、電子デバイス、および有機電界発光素子
JP5943005B2 (ja) 透明電極、電子デバイス、有機電界発光素子、および有機電界発光素子の製造方法
JP6217642B2 (ja) 透明電極、電子デバイス、および透明電極の製造方法
JP2014017077A (ja) 有機電界発光体
WO2013141057A1 (ja) 有機電界発光素子
JP6314838B2 (ja) 透明電極、電子デバイス、および有機電界発光素子
JP6241189B2 (ja) 透明電極、透明電極の製造方法、電子デバイス及び有機エレクトロルミネッセンス素子
WO2014188913A1 (ja) 透明電極、及び、電子デバイス
JP2015060728A (ja) 透明電極、及び、有機エレクトロルミネッセンス素子
WO2018173600A1 (ja) 有機エレクトロルミネッセンス素子
JP6304229B2 (ja) 透明電極、電子デバイス、および有機電界発光素子
WO2015015993A1 (ja) 有機エレクトロルミネッセンス素子
JP6241281B2 (ja) 透明電極および電子デバイス
WO2015125581A1 (ja) 有機電界発光素子
JP6277581B2 (ja) 有機エレクトロルミネッセンス素子
JP6314839B2 (ja) 透明電極、電子デバイス、および有機電界発光素子
WO2014175181A1 (ja) 透明導電体、及び、電子デバイス
JPWO2014175451A1 (ja) 透明導電体、及び、電子デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832375

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015529471

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14832375

Country of ref document: EP

Kind code of ref document: A1