JP2019159339A - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
JP2019159339A
JP2019159339A JP2019105600A JP2019105600A JP2019159339A JP 2019159339 A JP2019159339 A JP 2019159339A JP 2019105600 A JP2019105600 A JP 2019105600A JP 2019105600 A JP2019105600 A JP 2019105600A JP 2019159339 A JP2019159339 A JP 2019159339A
Authority
JP
Japan
Prior art keywords
conductive layer
layer
wiring
electrode
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2019105600A
Other languages
English (en)
Inventor
木村 肇
Hajime Kimura
肇 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2019159339A publication Critical patent/JP2019159339A/ja
Priority to JP2021107418A priority Critical patent/JP2021167962A/ja
Priority to JP2023000722A priority patent/JP2023052234A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/26Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • H01L29/458Ohmic electrodes on silicon for thin film silicon, e.g. source or drain electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78633Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device with a light shield
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Abstract

【課題】開口率の高い半導体装置を提供することを課題とする。または、開示する発明の一態様は、消費電力の低い半導体装置を提供することを課題とする。または、開示する発明の一態様は、配線抵抗の低い半導体装置を提供することを課題とする。【解決手段】絶縁面を有する基板と、基板上に設けられた透光性を有する第1の電極と、基板上に設けられた透光性を有する第2の電極と、第1の電極および第2の電極と電気的に接続するように設けられた透光性を有する半導体層と、第1の電極と電気的に接続された第1の配線と、少なくとも半導体層を覆うように設けられた絶縁層と、半導体層と重なる領域の絶縁層上に設けられた透光性を有する第3の電極と、第3の電極と電気的に接続された第2の配線と、を有する。【選択図】図1

Description

技術分野は、半導体装置、表示装置、発光装置、またはそれらの製造方法に関するもので
ある。特に、酸化物半導体を用いた薄膜トランジスタ(以下、TFTという)を有する半
導体装置に関する。
現在、液晶表示装置に代表される表示装置のスイッチング素子として、アモルファスシリ
コン等のシリコン層をチャネル層として用いた薄膜トランジスタ(TFT)が広く用いら
れている。アモルファスシリコンを用いた薄膜トランジスタは、電界効果移動度が低いも
ののガラス基板の大面積化に対応することができるという利点を有している。
また、近年、半導体特性を示す金属酸化物を用いて薄膜トランジスタを作製し、電子デバ
イスや光デバイスに応用する技術が注目されている。例えば、金属酸化物の中で、酸化タ
ングステン、酸化錫、酸化インジウム、酸化亜鉛などは半導体特性を示すことが知られて
いる。このような金属酸化物で構成される透明半導体層をチャネル形成領域とする薄膜ト
ランジスタが開示されている(例えば、特許文献1参照)。
また、トランジスタのチャネル層を、透光性を有する酸化物半導体層で形成すると共に、
ゲート電極、ソース電極、ドレイン電極も透光性を有する透明導電膜で形成することによ
って、開口率を向上させる技術が検討されている(例えば、特許文献2参照)。
開口率を向上することにより、光利用効率が向上し、表示装置の省電力化及び小型化を達
成することが可能となる。その一方で、表示装置の大型化や、携帯機器への応用化の観点
からは、開口率の向上と共にさらなる消費電力の低減が求められている。
なお、電気光学素子の透明電極に対する金属補助配線の配線方法として、透明電極の上下
どちらかで、透明電極と導通がとれるように金属補助配線と透明電極が重なるように配線
されるものが知られている(例えば、特許文献3参照)。
なお、アクティブマトリクス基板に設けられる付加容量電極をITO、SnO等の透明
導電膜からなるものとし、付加容量用電極の電気抵抗を小さくするため、金属膜から成る
補助配線を付加容量用電極に接して設ける構成が知られている(例えば、特許文献4参照
)。
なお、非晶質酸化物半導体膜を用いた電界効果型トランジスタにおいて、ゲート電極、ソ
−ス電極及びドレイン電極の各電極を形成する材料は、インジウム錫酸化物(ITO),
インジウム亜鉛酸化物,ZnO,SnOなどの透明電極や、Al,Ag,Cr,Ni,
Mo,Au,Ti,Taなどの金属電極、または、これらを含む合金の金属電極などを用
いることができ、それらを2層以上積層して接触抵抗を低減し、または、界面強度を向上
させてもよいことは知られている(例えば、特許文献5参照)。
なお、アモルファス酸化物半導体を用いるトランジスタのソース電極、ドレイン電極およ
びゲート電極、補助容量電極の材料として、インジウム(In)、アルミ(Al)、金(
Au)、銀(Ag)等の金属や、酸化インジウム(In)、酸化スズ(SnO
、酸化亜鉛(ZnO)、酸化カドミウム(CdO)、酸化インジウムカドミウム(CdI
)、酸化カドミウムスズ(CdSnO)、酸化亜鉛スズ(ZnSnO
等の酸化物材料を用いることができ、ゲート電極、ソース電極及びドレイン電極の材料は
、全て同じでもよく、異なっても良いことが知られている(例えば、特許文献6、7参照
)。
特開2004−103957号公報 特開2007−81362号公報 特開平2−82221号公報 特開平2−310536号公報 特開2008−243928号公報 特開2007−109918号公報 特開2007−115807号公報
そこで、本明細書等(少なくとも、明細書、特許請求の範囲、および図面を含む)におい
て開示する発明の一態様は、開口率の高い半導体装置を提供することを課題とする。また
は、開示する発明の一態様は、消費電力の低い半導体装置を提供することを課題とする。
または、開示する発明の一態様は、配線抵抗の低い半導体装置を提供することを課題とす
る。または、開示する発明の一態様は、信号波形のなまりを低減する半導体装置を提供す
ることを課題とする。または、開示する発明の一態様は、導電率の高い配線を提供するこ
とを課題とする。または、開示する発明の一態様は、透過率の高い半導体装置を提供する
ことを課題とする。または、開示する発明の一態様は、大画面化された半導体装置を提供
することを課題とする。または、開示する発明の一態様は、プロセス工程数の増加を抑え
た半導体装置を提供することを課題とする。または、開示する発明の一態様は、コントラ
ストが向上した半導体装置を提供することを課題とする。または、開示する発明の一態様
は、レイアウトの自由度が高い半導体装置を提供することを課題とする。または、開示す
る発明の一態様は、S値(subthreshold swing value)の小さ
い半導体装置を提供することを課題とする。なお、これらの課題は、他の課題の存在を妨
げるものではない。また、開示する発明の一態様が、上記の課題の全てを解決する必要は
ないものとする。
本明細書等において開示する発明の一態様では、トランジスタを、透光性を有する材料を
用いて形成する。より詳細には、次の通りである。
本明細書等において開示する発明の一態様は、絶縁面を有する基板と、基板上に設けられ
た透光性を有する第1の電極(ソース電極)と、基板上に設けられた透光性を有する第2
の電極(ドレイン電極)と、第1の電極および第2の電極と電気的に接続するように設け
られた透光性を有する半導体層(半導体層)と、第1の電極と電気的に接続された第1の
配線(ソース配線)と、少なくとも半導体層を覆うように設けられた絶縁層(ゲート絶縁
層)と、半導体層と重なる領域の絶縁層上に設けられた透光性を有する第3の電極(ゲー
ト電極)と、第3の電極と電気的に接続された第2の配線(ゲート配線)と、を有するこ
とを特徴とする半導体装置である。
また、本明細書等において開示する発明の別の一態様は、絶縁面を有する基板上に、透光
性を有する第1の導電層と、第2の導電層とを積層して形成し、第2の導電層上に第1の
マスクを形成し、第1のマスクを用いて第1の導電層をエッチングして第1の電極および
第2の電極を形成すると共に、第2の導電層をエッチングして第3の導電層を形成し、第
1のマスクを後退させて、第2のマスクを形成し、第2のマスクを用いて第3の導電層を
エッチングして第1の配線を形成し、第1の電極および第2の電極と電気的に接続する透
光性を有する半導体層を形成し、半導体層を覆うように絶縁層を形成し、絶縁層上に、透
光性を有する第4の導電層と、第5の導電層とを積層して形成し、第5の導電層上に第3
のマスクを形成し、第3のマスクを用いて第4の導電層をエッチングして第3の電極を形
成すると共に、第5の導電層をエッチングして第6の導電層を形成し、第3のマスクを後
退させて、第4のマスクを形成し、第4のマスクを用いて第6の導電層をエッチングして
第2の配線を形成することを特徴とする半導体装置の作製方法である。
なお、上記において、第2の電極と電気的に接続された透光性を有する第4の電極(画素
電極)を設けても良い。また、絶縁層を介して第2の電極の一部と重なる領域に設けられ
、かつ第3の電極と同一層でなる第5の電極(容量電極)と、第5の電極と電気的に接続
され、かつ第2の配線と同一層でなる第3の配線(容量配線)と、を設けても良い。
また、上記において、半導体層は、インジウム、ガリウムおよび亜鉛を含む酸化物半導体
からなることが好ましい。また、第1の電極、第2の電極、および第3の電極は、インジ
ウム錫酸化物、酸化珪素を含むインジウム錫酸化物、有機インジウム、有機スズ、酸化亜
鉛、窒化チタン、酸化亜鉛を含むインジウム亜鉛酸化物、酸化亜鉛にガリウムを添加した
材料、酸化スズ、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むイ
ンジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム
錫酸化物、のいずれかからなることが好ましい。
また、上記において、第1の配線および第2の配線は、遮光性を有することが好ましい。
また、第1の配線と第2の配線との交差部分に、半導体層と同一層でなる層を設けること
が好ましい。これにより、配線が交差することに起因して生じる容量を低減することがで
きるため、信号波形のなまりを抑制することができる。特に、大型の半導体装置ではその
効果が著しい。
本明細書等において開示する発明に用いることができる酸化物半導体の一例としては、I
nMO(ZnO)(m>0)で表記されるものがある。ここで、Mは、ガリウム(G
a)、鉄(Fe)、ニッケル(Ni)、マンガン(Mn)及びコバルト(Co)から選ば
れた一の金属元素または複数の金属元素を示す。例えば、MとしてGaが選択される場合
には、Gaのみの場合の他に、GaとNiや、GaとFeなど、Ga以外の上記金属元素
が選択される場合を含む。また、上記酸化物半導体において、Mとして含まれる金属元素
の他に、不純物元素としてFe、Niその他の遷移金属元素、または該遷移金属の酸化物
が含まれているものがある。本明細書等においては、上記酸化物半導体のうち、Mとして
少なくともガリウムを含むものをIn−Ga−Zn−O系酸化物半導体と呼び、当該材料
を用いた薄膜をIn−Ga−Zn−O系非単結晶膜と呼ぶことがある。
さらに、上記において、多階調マスクを用いることにより、1枚のマスク(レチクル)で
、透光性を有する領域(透過率の高い領域)と、透光性を有しない領域(透過率の低い領
域)とを形成することができる。これにより、マスク数の増加を抑制できる。
なお、本明細書等において、半導体装置とは、半導体特性を利用することで機能し得る装
置全般を指し、半導体回路、表示装置、電気光学装置、発光表示装置、電子機器などは全
て半導体装置に含まれる。
また、本明細書等において表示装置とは、画像表示デバイス、発光デバイス、または光源
(照明装置含む)を指す。ここで、コネクター、例えば、FPC(Flexible p
rinted circuit)やTAB(Tape Automated Bondi
ng)テープ、TCP(Tape Carrier Package)などが取り付けら
れたモジュール、TABテープやTCPの先にプリント配線基板が設けられたモジュール
、表示素子にCOG(Chip On Glass)方式によりIC(集積回路)が直接
実装されたモジュールなどは全て表示装置に含まれる。
なお、スイッチは、様々な形態のものを用いることができる。例としては、電気的スイッ
チや機械的なスイッチなどがある。つまり、電流の流れを制御できるものであればよく、
特定のものに限定されない。例えば、スイッチとして、トランジスタ(例えば、バイポー
ラトランジスタ、MOSトランジスタなど)、ダイオード(例えば、PNダイオード、P
INダイオード、ショットキーダイオード、MIM(Metal Insulator
Metal)ダイオード、MIS(Metal Insulator Semicond
uctor)ダイオード、ダイオード接続のトランジスタなど)などを用いることが出来
る。または、これらを組み合わせた論理回路をスイッチとして用いることが出来る。
機械的なスイッチの例としては、デジタルマイクロミラーデバイス(DMD)のように、
MEMS(マイクロ・エレクトロ・メカニカル・システム)技術を用いたスイッチがある
。そのスイッチは、機械的に動かすことが出来る電極を有し、その電極が動くことによっ
て、導通と非導通とを制御して動作する。
スイッチとしてトランジスタを用いる場合、そのトランジスタは、単なるスイッチとして
動作するため、トランジスタの極性(導電型)は特に限定されない。ただし、オフ電流を
抑えたい場合、オフ電流が少ない方の極性のトランジスタを用いることが望ましい。オフ
電流が少ないトランジスタとしては、LDD領域を有するトランジスタやマルチゲート構
造を有するトランジスタ等がある。または、スイッチとして動作させるトランジスタのソ
ース端子の電位が、低電位側電源(Vss、GND、0Vなど)の電位に近い値で動作す
る場合はNチャネル型トランジスタを用いることが望ましい。反対に、ソース端子の電位
が、高電位側電源(Vddなど)の電位に近い値で動作する場合はPチャネル型トランジ
スタを用いることが望ましい。なぜなら、Nチャネル型トランジスタではソース端子が低
電位側電源の電位に近い値で動作するとき、Pチャネル型トランジスタではソース端子が
高電位側電源の電位に近い値で動作するとき、ゲートとソースの間の電圧の絶対値を大き
くできるため、スイッチとして、より正確な動作を行うことができるからである。さらに
、トランジスタがソースフォロワ動作をしてしまうことが少ないため、出力電圧の大きさ
が小さくなってしまうことが少ないからである。
なお、Nチャネル型トランジスタとPチャネル型トランジスタの両方を用いて、CMOS
型のスイッチをスイッチとして用いてもよい。CMOS型のスイッチにすると、Pチャネ
ル型トランジスタまたはNチャネル型トランジスタのどちらか一方のトランジスタが導通
すれば電流が流れるため、スイッチとして機能しやすくなる。例えば、スイッチへの入力
信号の電圧が高い場合でも、低い場合でも、適切に電圧を出力させることが出来る。さら
に、スイッチをオンまたはオフさせるための信号の電圧振幅値を小さくすることが出来る
ので、消費電力を小さくすることも出来る。
なお、スイッチとしてトランジスタを用いる場合、スイッチは、入力端子(ソース端子ま
たはドレイン端子の一方)と、出力端子(ソース端子またはドレイン端子の他方)と、導
通を制御する端子(ゲート端子)とを有している。一方、スイッチとしてダイオードを用
いる場合、スイッチは、導通を制御する端子を有していない場合がある。そのため、トラ
ンジスタよりもダイオードをスイッチとして用いた方が、端子を制御するための配線を少
なくすることが出来る。
なお、AとBとが接続されている、と明示的に記載する場合は、AとBとが電気的に接続
されている場合と、AとBとが機能的に接続されている場合と、AとBとが直接接続され
ている場合とを含むものとする。ここで、A、Bは、対象物(例えば、装置、素子、回路
、配線、電極、端子、導電膜、層、など)であるとする。したがって、所定の接続関係、
例えば、図または文章に示された接続関係に限定されず、図または文章に示された接続関
係以外のものも含むものとする。
例えば、AとBとが電気的に接続されている場合として、AとBとの電気的な接続を可能
とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイ
オードなど)が、AとBとの間に1個以上接続されていてもよい。あるいは、AとBとが
機能的に接続されている場合として、AとBとの機能的な接続を可能とする回路(例えば
、論理回路(インバータ、NAND回路、NOR回路など)、信号変換回路(DA変換回
路、AD変換回路、ガンマ補正回路など)、電位レベル変換回路(電源回路(昇圧回路、
降圧回路など)、信号の電位レベルを変えるレベルシフタ回路など)、電圧源、電流源、
切り替え回路、増幅回路(信号振幅または電流量などを大きく出来る回路、オペアンプ、
差動増幅回路、ソースフォロワ回路、バッファ回路など)、信号生成回路、記憶回路、制
御回路など)が、AとBとの間に1個以上接続されていてもよい。例えば、AとBとの間
に別の回路を挟んでいても、Aから出力された信号がBへ伝達される場合は、AとBとは
機能的に接続されているものとする。
なお、AとBとが電気的に接続されている、と明示的に記載する場合は、AとBとが電気
的に接続されている場合(つまり、AとBとの間に別の素子や別の回路を挟んで接続され
ている場合)と、AとBとが機能的に接続されている場合(つまり、AとBとの間に別の
回路を挟んで機能的に接続されている場合)と、AとBとが直接接続されている場合(つ
まり、AとBとの間に別の素子や別の回路を挟まずに接続されている場合)とを含むもの
とする。つまり、電気的に接続されている、と明示的に記載する場合は、単に、接続され
ている、とのみ明示的に記載されている場合と同じであるとする。
なお、表示素子、表示素子を有する装置である表示装置、発光素子、発光素子を有する装
置である発光装置は、様々な形態を用い、また、様々な素子を有することが出来る。例え
ば、表示素子、表示装置、発光素子または発光装置としては、EL(エレクトロルミネッ
センス)素子(有機物及び無機物を含むEL素子、有機EL素子、無機EL素子)、LE
D(白色LED、赤色LED、緑色LED、青色LEDなど)、トランジスタ(電流に応
じて発光するトランジスタ)、電子放出素子、液晶素子、電子インク、電気泳動素子、グ
レーティングライトバルブ(GLV)、プラズマディスプレイパネル(PDP)、デジタ
ルマイクロミラーデバイス(DMD)、圧電セラミックディスプレイ、カーボンナノチュ
ーブ、など、電気磁気的作用により、コントラスト、輝度、反射率、透過率などが変化す
る表示媒体を有することができる。なお、EL素子を用いた表示装置としてはELディス
プレイなど、電子放出素子を用いた表示装置としてはフィールドエミッションディスプレ
イ(FED)やSED方式平面型ディスプレイ(SED:Surface−conduc
tion Electron−emitter Disply)など、液晶素子を用いた
表示装置としては液晶ディスプレイ(透過型液晶ディスプレイ、半透過型液晶ディスプレ
イ、反射型液晶ディスプレイ、直視型液晶ディスプレイ、投射型液晶ディスプレイ)など
、電子インクや電気泳動素子を用いた表示装置としては電子ペーパーなどがある。
なお、EL素子とは、陽極と、陰極と、陽極と陰極との間に挟まれたEL層とを有する素
子である。なお、EL層としては、1重項励起子からの発光(蛍光)を利用するもの、3
重項励起子からの発光(燐光)を利用するもの、1重項励起子からの発光(蛍光)を利用
するものと3重項励起子からの発光(燐光)を利用するものとを含むもの、有機物によっ
て形成されたもの、無機物によって形成されたもの、有機物によって形成されたものと無
機物によって形成されたものとを含むもの、高分子の材料、低分子の材料、高分子の材料
と低分子の材料とを含むものなどを有することができる。ただし、これに限定されず、E
L素子として様々なものを有することができる。
なお、電子放出素子とは、陰極に高電界を集中して電子を引き出す素子である。例えば、
電子放出素子として、スピント型、カーボンナノチューブ(CNT)型、金属―絶縁体―
金属を積層したMIM(Metal−Insulator−Metal)型、金属―絶縁
体―半導体を積層したMIS(Metal−Insulator−Semiconduc
tor)型、MOS型、シリコン型、薄膜ダイオード型、ダイヤモンド型、表面伝導エミ
ッタSCD型、金属―絶縁体―半導体−金属型等の薄膜型、HEED型、EL型、ポーラ
スシリコン型、表面伝導(SCE)型などを有することができる。ただし、これに限定さ
れず、電子放出素子として様々なものを有することができる。
なお、液晶素子とは、液晶の光学的変調作用によって光の透過または非透過を制御する素
子であり、一対の電極、及び液晶により構成される。なお、液晶の光学的変調作用は、液
晶にかかる電界(横方向の電界、縦方向の電界又は斜め方向の電界を含む)によって制御
される。なお、液晶素子としては、ネマチック液晶、コレステリック液晶、スメクチック
液晶、ディスコチック液晶、サーモトロピック液晶、リオトロピック液晶、低分子液晶、
高分子液晶、高分子分散型液晶(PDLC)、強誘電液晶、反強誘電液晶、主鎖型液晶、
側鎖型高分子液晶、プラズマアドレス液晶(PALC)、バナナ型液晶などを挙げること
ができる。また、液晶の駆動方式としては、TN(Twisted Nematic)モ
ード、STN(Super Twisted Nematic)モード、IPS(In−
Plane−Switching)モード、FFS(Fringe Field Swi
tching)モード、MVA(Multi−domain Vertical Ali
gnment)モード、PVA(Patterned Vertical Alignm
ent)モード、ASV(Advanced Super View)モード、ASM(
Axially Symmetric aligned Micro−cell)モード
、OCB(Optically Compensated Birefringence
)モード、ECB(Electrically Controlled Birefri
ngence)モード、FLC(Ferroelectric Liquid Crys
tal)モード、AFLC(AntiFerroelectric Liquid Cr
ystal)モード、PDLC(Polymer Dispersed Liquid
Crystal)モード、ゲストホストモード、ブルー相(Blue Phase)モー
ドなどを用いることができる。ただし、これに限定されず、液晶素子及びその駆動方法と
して様々なものを用いることができる。
なお、電子ペーパーの表示方法としては、分子により表示されるもの(光学異方性、染料
分子配向など)、粒子により表示されるもの(電気泳動、粒子移動、粒子回転、相変化な
ど)、フィルムの一端が移動することにより表示されるもの、分子の発色/相変化により
表示されるもの、分子の光吸収により表示されるもの、電子とホールが結合して自発光に
より表示されるものなどのことをいう。例えば、電子ペーパーとして、マイクロカプセル
型電気泳動、水平移動型電気泳動、垂直移動型電気泳動、球状ツイストボール、磁気ツイ
ストボール、円柱ツイストボール方式、帯電トナー、電子粉流体、磁気泳動型、磁気感熱
式、エレクトロウェッテイング、光散乱(透明/白濁変化)、コレステリック液晶/光導
電層、コレステリック液晶、双安定性ネマチック液晶、強誘電性液晶、2色性色素・液晶
分散型、可動フィルム、ロイコ染料による発消色、フォトクロミック、エレクトロクロミ
ック、エレクトロデポジション、フレキシブル有機ELなどを用いることができる。ただ
し、これに限定されず、電子ペーパー及びその表示方法として様々なものを用いることが
できる。ここで、マイクロカプセル型電気泳動を用いることによって、電気泳動方式の欠
点である泳動粒子の凝集、沈殿を解決することができる。電子粉流体は、高速応答性、高
反射率、広視野角、低消費電力、メモリ性などのメリットを有する。
なお、プラズマディスプレイパネルは、電極を表面に形成した基板と、電極及び微小な溝
を表面に形成し且つ溝内に蛍光体層を形成した基板とを狭い間隔で対向させて、希ガスを
封入した構造を有する。あるいは、プラズマディスプレイパネルは、プラズマチューブを
上下からフィルム状の電極で挟み込んだ構造とすることも可能である。プラズマチューブ
とは、ガラスチューブ内に、放電ガス、RGBそれぞれの蛍光体などを封止したものであ
る。なお、電極間に電圧をかけることによって紫外線を発生させ、蛍光体を光らせること
で、表示を行うことができる。なお、プラズマディスプレイパネルとしては、DC型PD
P、AC型PDPでもよい。ここで、プラズマディスプレイパネルの駆動方法としては、
AWS(Address While Sustain)駆動、サブフレームをリセット
期間、アドレス期間、維持期間に分割するADS(Address Display S
eparated)駆動、CLEAR(HI‐CONTRAST&LOW ENERGY
ADDRESS&REDUCTION OF FALSE CONTOUR SEQU
ENCE)駆動、ALIS(Alternate Lighting of Surfa
ces)方式、TERES(Technology of Reciprocal Su
stainer)駆動などを用いることができる。ただし、これに限定されず、プラズマ
ディスプレイパネルの駆動方法として様々なものを用いることができる。
なお、光源を必要とする表示装置、例えば、液晶ディスプレイ(透過型液晶ディスプレイ
、半透過型液晶ディスプレイ、反射型液晶ディスプレイ、直視型液晶ディスプレイ、投射
型液晶ディスプレイ)、グレーティングライトバルブ(GLV)を用いた表示装置、デジ
タルマイクロミラーデバイス(DMD)を用いた表示装置などの光源としては、エレクト
ロルミネッセンス、冷陰極管、熱陰極管、LED、レーザー光源、水銀ランプなどを用い
ることができる。ただし、これに限定されず、光源して様々なものを用いることができる
なお、トランジスタとして、様々な形態のトランジスタを用いることが出来る。よって、
用いるトランジスタの種類に限定はない。例えば、非晶質シリコン、多結晶シリコン、微
結晶(マイクロクリスタル、ナノクリスタル、セミアモルファスとも言う)シリコンなど
に代表される非単結晶半導体膜を有する薄膜トランジスタ(TFT)などを用いることが
出来る。TFTを用いる場合、様々なメリットがある。例えば、単結晶シリコンの場合よ
りも低い温度で製造できるため、製造コストの削減、又は製造装置の大型化を図ることが
できる。製造装置を大きくできるため、大型基板上に製造できる。これにより、同時に複
数の表示装置を製造できるため、製造コストを抑制できる。さらに、製造温度が低いため
、耐熱性の低い基板を用いることができる。これにより、ガラス基板などの透光性を有す
る基板上にトランジスタを製造できる。そして、透光性を有する基板上のトランジスタを
用いて表示素子での光の透過を制御することが出来る。あるいは、トランジスタの膜厚が
小さいため、トランジスタを構成する膜の一部は、光を透過させることが出来る。そのた
め、開口率が向上させることができる。
なお、多結晶シリコンを製造するときに、触媒(ニッケルなど)を用いることにより、結
晶性をさらに向上させ、電気特性のよいトランジスタを製造することが可能となる。その
結果、ゲートドライバ回路(走査線駆動回路)やソースドライバ回路(信号線駆動回路)
、信号処理回路(信号生成回路、ガンマ補正回路、DA変換回路など)を基板上に一体形
成することが出来る。
なお、微結晶シリコンを製造するときに、触媒(ニッケルなど)を用いることにより、結
晶性をさらに向上させ、電気特性のよいトランジスタを製造することが可能となる。この
とき、レーザー照射を行うことなく、熱を加えるだけで、結晶性を向上させることも可能
である。その結果、ソースドライバ回路の一部(アナログスイッチなど)およびゲートド
ライバ回路(走査線駆動回路)を基板上に一体形成することが出来る。さらに、結晶化の
ためにレーザー照射を行わない場合は、シリコンの結晶性のムラを抑えることができる。
そのため、質の高い表示が可能である。
ただし、触媒(ニッケルなど)を用いずに、多結晶シリコンや微結晶シリコンを製造する
ことは可能である。
なお、シリコンの結晶性を、多結晶または微結晶などへと向上させることは、パネル全体
で行うことが望ましいが、それに限定されない。パネルの一部の領域のみにおいて、シリ
コンの結晶性を向上させてもよい。選択的に結晶性を向上させることは、レーザー光を選
択的に照射することなどにより可能である。例えば、画素以外の領域である周辺回路領域
にのみ、レーザー光を照射してもよい。または、ゲートドライバ回路、ソースドライバ回
路等の領域にのみ、レーザー光を照射してもよい。あるいは、ソースドライバ回路の一部
(例えば、アナログスイッチ)の領域にのみ、レーザー光を照射してもよい。その結果、
回路を高速に動作させる必要がある領域にのみ、シリコンの結晶性を向上させることがで
きる。画素領域は、高速に動作させる必要性が低いため、結晶性が向上されなくても、問
題なく画素回路を動作させることが出来る。結晶性を向上させる領域が少なくて済むため
、製造工程も短くすることが出来、スループットが向上し、製造コストを低減させること
が出来る。必要とされる製造装置の数も少なくて済むため、製造コストを低減させる(増
大させない)ことが出来る。
または、半導体基板やSOI基板などを用いてトランジスタを形成することが出来る。こ
れらにより、特性やサイズや形状などのバラツキが少なく、電流供給能力が高く、サイズ
の小さいトランジスタを製造することができる。これらのトランジスタを用いると、回路
の低消費電力化、又は回路の高集積化を図ることができる。
または、ZnO、a−InGaZnO、IZO、ITO、SnO、TiO、AlZnSn
O(AZTO)などの化合物半導体または酸化物半導体を有するトランジスタや、さらに
、これらの化合物半導体または酸化物半導体を薄膜化した薄膜トランジスタなどを用いる
ことが出来る。これらにより、製造温度を低くでき、例えば、室温でトランジスタを製造
することが可能となる。その結果、耐熱性の低い基板、例えばプラスチック基板やフィル
ム基板に直接トランジスタを形成することが出来る。なお、これらの化合物半導体または
酸化物半導体を、トランジスタのチャネル部分に用いるだけでなく、それ以外の用途で用
いることも出来る。例えば、これらの化合物半導体または酸化物半導体を抵抗素子、画素
電極、透光性を有する電極として用いることができる。さらに、それらをトランジスタと
同時に成膜又は形成できるため、コストを低減できる。また、SiGe、GaAs、など
の半導体を用いても良い。
または、インクジェットや印刷法を用いて形成したトランジスタなどを用いることが出来
る。これらにより、室温で製造、低真空度で製造、又は大型基板上に製造することができ
る。マスク(レチクル)を用いなくても製造することが可能となるため、トランジスタの
レイアウトを容易に変更することが出来る。さらに、レジストを用いる必要がないので、
材料費が安くなり、工程数を削減できる。さらに、必要な部分にのみ膜を付けるため、全
面に成膜した後でエッチングする、という製法よりも、材料が無駄にならず、低コストに
できる。
または、有機半導体やカーボンナノチューブを有するトランジスタ等を用いることができ
る。これらにより、曲げることが可能な基板上にトランジスタを形成することが出来る。
このような基板を用いた半導体装置は、衝撃に強くすることができる。
さらに、様々な構造のトランジスタを用いることができる。例えば、MOS型トランジス
タ、接合型トランジスタ、バイポーラトランジスタなどをトランジスタとして用いること
が出来る。MOS型トランジスタを用いることにより、トランジスタのサイズを小さくす
ることが出来る。よって、多数のトランジスタを搭載することができる。バイポーラトラ
ンジスタを用いることにより、大きな電流を流すことが出来る。よって、高速に回路を動
作させることができる。
なお、MOS型トランジスタ、バイポーラトランジスタなどを1つの基板に混在させて形
成してもよい。これにより、低消費電力、小型化、高速動作などを実現することが出来る
その他、様々なトランジスタを用いることができる。
なお、トランジスタは、様々な基板を用いて形成することが出来る。基板の種類は、特定
のものに限定されることはない。その基板としては、例えば、単結晶基板(例えばシリコ
ン基板)、SOI基板、ガラス基板、石英基板、プラスチック基板、金属基板、ステンレ
ス・スチル基板、ステンレス・スチル・ホイルを有する基板、タングステン基板、タング
ステン・ホイルを有する基板、可撓性基板などを用いることが出来る。ガラス基板の一例
としては、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラスなどがある。可撓性基
板の一例としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート
(PEN)、ポリエーテルサルフォン(PES)に代表されるプラスチック、又はアクリ
ル等の可撓性を有する合成樹脂などがある。他にも、貼り合わせフィルム(ポリプロピレ
ン、ポリエステル、ビニル、ポリフッ化ビニル、塩化ビニルなど)、繊維状の材料を含む
紙、基材フィルム(ポリエステル、ポリアミド、ポリイミド、無機蒸着フィルム、紙類等
)などがある。または、ある基板を用いてトランジスタを形成し、その後、別の基板にト
ランジスタを転置し、別の基板上にトランジスタを配置してもよい。トランジスタが転置
される基板としては、単結晶基板、SOI基板、ガラス基板、石英基板、プラスチック基
板、紙基板、セロファン基板、石材基板、木材基板、布基板(天然繊維(絹、綿、麻)、
合成繊維(ナイロン、ポリウレタン、ポリエステル)若しくは再生繊維(アセテート、キ
ュプラ、レーヨン、再生ポリエステル)などを含む)、皮革基板、ゴム基板、ステンレス
・スチル基板、ステンレス・スチル・ホイルを有する基板などを用いることができる。あ
るいは、人などの動物の皮膚(表皮、真皮)又は皮下組織を基板として用いてもよい。ま
たは、ある基板を用いてトランジスタを形成し、その基板を研磨して薄くしてもよい。研
磨される基板としては、単結晶基板、SOI基板、ガラス基板、石英基板、プラスチック
基板、ステンレス・スチル基板、ステンレス・スチル・ホイルを有する基板などを用いる
ことができる。これらの基板を用いることにより、特性のよいトランジスタの形成、消費
電力の小さいトランジスタの形成、壊れにくい装置の製造、耐熱性の付与、軽量化、又は
薄型化を図ることができる。
なお、トランジスタの構成は、様々な形態をとることができ、特定の構成に限定されない
。例えば、ゲート電極が2個以上のマルチゲート構造を適用することができる。マルチゲ
ート構造にすると、チャネル領域が直列に接続されるため、複数のトランジスタが直列に
接続された構成となる。マルチゲート構造により、オフ電流の低減、トランジスタの耐圧
向上(信頼性の向上)を図ることができる。あるいは、マルチゲート構造により、飽和領
域で動作する時に、ドレイン・ソース間電圧が変化しても、ドレイン・ソース間電流があ
まり変化せず、電圧・電流特性の傾きをフラットにすることができる。電圧・電流特性の
傾きがフラットである特性を利用すると、理想的な電流源回路や、非常に高い抵抗値をも
つ能動負荷を実現することが出来る。その結果、特性のよい差動回路やカレントミラー回
路を実現することが出来る。
別の例として、チャネルの上下にゲート電極が配置されている構造を適用することができ
る。チャネルの上下にゲート電極が配置されている構造にすることにより、チャネル領域
が増えるため、電流値の増加を図ることができる。または、チャネルの上下にゲート電極
が配置されている構造にすることにより、空乏層ができやすくなるため、S値の改善を図
ることができる。なお、チャネルの上下にゲート電極が配置される構成にすることにより
、複数のトランジスタが並列に接続されたような構成となる。
チャネル領域の上にゲート電極が配置されている構造、チャネル領域の下にゲート電極が
配置されている構造、正スタガ構造、逆スタガ構造、チャネル領域を複数の領域に分けた
構造、チャネル領域を並列に接続した構造、またはチャネル領域が直列に接続する構成も
適用できる。さらに、チャネル領域(もしくはその一部)にソース電極やドレイン電極が
重なっている構造も適用できる。チャネル領域(もしくはその一部)にソース電極やドレ
イン電極が重なる構造にすることによって、チャネル領域の一部に電荷が溜まることによ
り動作が不安定になることを防ぐことができる。あるいは、LDD領域を設けた構造を適
用できる。LDD領域を設けることにより、オフ電流の低減、又はトランジスタの耐圧向
上(信頼性の向上)を図ることができる。あるいは、LDD領域を設けることにより、飽
和領域で動作する時に、ドレイン・ソース間電圧が変化しても、ドレイン・ソース間電流
があまり変化せず、電圧・電流特性の傾きがフラットな特性にすることができる。
なお、トランジスタは、様々なタイプを用いることができ、様々な基板を用いて形成させ
ることができる。したがって、所定の機能を実現させるために必要な回路の全てを、同一
の基板に形成することも可能である。例えば、所定の機能を実現させるために必要な回路
の全てを、ガラス基板、プラスチック基板、単結晶基板、またはSOI基板などの様々な
基板を用いて形成することも可能である。所定の機能を実現させるために必要な回路の全
てが同じ基板を用いて形成されていることにより、部品点数の削減によるコストの低減、
又は回路部品との接続点数の低減による信頼性の向上を図ることができる。あるいは、所
定の機能を実現させるために必要な回路の一部が、ある基板に形成され、所定の機能を実
現させるために必要な回路の別の一部が、別の基板に形成されていることも可能である。
つまり、所定の機能を実現させるために必要な回路の全てが同じ基板を用いて形成されて
いなくてもよい。例えば、所定の機能を実現させるために必要な回路の一部は、ガラス基
板上にトランジスタにより形成され、所定の機能を実現させるために必要な回路の別の一
部は、単結晶基板に形成され、単結晶基板を用いて形成されたトランジスタで構成された
ICチップをCOG(Chip On Glass)でガラス基板に接続して、ガラス基
板上にそのICチップを配置することも可能である。あるいは、そのICチップをTAB
(Tape Automated Bonding)やプリント基板を用いてガラス基板
と接続することも可能である。このように、回路の一部が同じ基板に形成されていること
により、部品点数の削減によるコストの低減、又は回路部品との接続点数の低減による信
頼性の向上を図ることができる。あるいは、駆動電圧が高い部分及び駆動周波数が高い部
分の回路は、消費電力が大きくなってしまうので、そのような部分の回路は同じ基板に形
成せず、そのかわりに、例えば、単結晶基板にその部分の回路を形成して、その回路で構
成されたICチップを用いるようにすれば、消費電力の増加を防ぐことができる。
なお、一画素とは、明るさを制御できる要素一つ分を示すものとする。よって、一例とし
ては、一画素とは、一つの色要素を示すものとし、その色要素一つで明るさを表現する。
従って、そのときは、R(赤)G(緑)B(青)の色要素からなるカラー表示装置の場合
には、画像の最小単位は、Rの画素とGの画素とBの画素との三画素から構成されるもの
とする。なお、色要素は、三色に限定されず、三色以上を用いても良いし、RGB以外の
色を用いても良い。例えば、白色を加えて、RGBW(Wは白)としても可能である。あ
るいは、RGBに、例えば、イエロー、シアン、マゼンタ、エメラルドグリーン、朱色な
どを一色以上追加することも可能である。あるいは、例えば、RGBの中の少なくとも一
色に類似した色を、RGBに追加することも可能である。例えば、R、G、B1、B2と
してもよい。B1とB2とは、どちらも青色であるが、少し波長が異なっている。同様に
、R1、R2、G、Bとすることも可能である。このような色要素を用いることにより、
より実物に近い表示を行うことができる。このような色要素を用いることにより、消費電
力を低減することが出来る。別の例としては、一つの色要素について、複数の領域を用い
て明るさを制御する場合は、その領域一つ分を一画素とすることも可能である。よって、
一例として、面積階調を行う場合または副画素(サブ画素)を有している場合、一つの色
要素につき、明るさを制御する領域が複数あり、その全体で階調を表現するが、明るさを
制御する領域の一つ分を一画素とすることも可能である。よって、その場合は、一つの色
要素は、複数の画素で構成されることとなる。あるいは、明るさを制御する領域が一つの
色要素の中に複数あっても、それらをまとめて、一つの色要素を1画素としてもよい。よ
って、その場合は、一つの色要素は、一つの画素で構成されることとなる。あるいは、一
つの色要素について、複数の領域を用いて明るさを制御する場合、画素によって、表示に
寄与する領域の大きさが異なっている場合がある。あるいは、一つの色要素につき複数あ
る、明るさを制御する領域において、各々に供給する信号を僅かに異ならせるようにして
、視野角を広げるようにしてもよい。つまり、一つの色要素について、複数個ある領域が
各々有する画素電極の電位が、各々異なっていることも可能である。その結果、液晶分子
に加わる電圧が各画素電極によって各々異なる。よって、視野角を広くすることが出来る
なお、一画素(三色分)と明示的に記載する場合は、RとGとBの三画素分を一画素と考
える場合であるとする。一画素(一色分)と明示的に記載する場合は、一つの色要素につ
き、複数の領域がある場合、それらをまとめて一画素と考える場合であるとする。
なお、画素は、マトリクス状に配置(配列)されている場合がある。ここで、画素がマト
リクスに配置(配列)されているとは、縦方向もしくは横方向において、画素が直線上に
並んで配置されている場合、又はギザギザな線上に配置されている場合を含む。よって、
例えば三色の色要素(例えばRGB)でフルカラー表示を行う場合に、ストライプ配置さ
れている場合、又は三つの色要素のドットがデルタ配置されている場合も含む。さらに、
ベイヤー配置されている場合も含む。なお、色要素のドット毎にその表示領域の大きさが
異なっていてもよい。これにより、低消費電力化、又は表示素子の長寿命化を図ることが
できる。
なお、画素に能動素子を有するアクティブマトリクス方式、または、画素に能動素子を有
しないパッシブマトリクス方式を用いることが出来る。
アクティブマトリクス方式では、能動素子(アクティブ素子、非線形素子)として、トラ
ンジスタだけでなく、さまざまな能動素子(アクティブ素子、非線形素子)を用いること
が出来る。例えば、MIM(Metal Insulator Metal)やTFD(
Thin Film Diode)などを用いることも可能である。これらの素子は、製
造工程が少ないため、製造コストの低減、又は歩留まりの向上を図ることができる。さら
に、素子のサイズが小さいため、開口率を向上させることができ、低消費電力化や高輝度
化をはかることが出来る。
なお、アクティブマトリクス方式以外のものとして、能動素子(アクティブ素子、非線形
素子)を用いないパッシブマトリクス型を用いることも可能である。能動素子(アクティ
ブ素子、非線形素子)を用いないため、製造工程が少なく、製造コストの低減、又は歩留
まりの向上を図ることができる。能動素子(アクティブ素子、非線形素子)を用いないた
め、開口率を向上させることができ、低消費電力化や高輝度化をはかることが出来る。
なお、トランジスタとは、ゲートと、ドレインと、ソースとを含む少なくとも三つの端子
を有する素子であり、ドレイン領域とソース領域の間にチャネル領域を有しており、ドレ
イン領域とチャネル領域とソース領域とを介して電流を流すことが出来る。ここで、ソー
スとドレインとは、トランジスタの構造や動作条件等によって変わるため、いずれがソー
スまたはドレインであるかを限定することが困難である。そこで、ソース及びドレインと
して機能する領域を、ソースもしくはドレインと呼ばない場合がある。その場合、一例と
しては、それぞれを第1端子、第2端子と表記する場合がある。あるいは、それぞれを第
1電極、第2電極と表記する場合がある。あるいは、第1領域、第2領域と表記する場合
がある。
なお、トランジスタは、ベースとエミッタとコレクタとを含む少なくとも三つの端子を有
する素子であってもよい。この場合も同様に、エミッタとコレクタとを、第1端子、第2
端子などと表記する場合がある。
なお、ゲートとは、ゲート電極とゲート配線(ゲート線、ゲート信号線、走査線、走査信
号線等とも言う)とを含んだ全体、もしくは、それらの一部のことを言う。ゲート電極と
は、チャネル領域を形成する半導体と、ゲート絶縁膜を介してオーバーラップしている部
分の導電膜のことを言う。なお、ゲート電極の一部は、LDD(Lightly Dop
ed Drain)領域またはソース領域(またはドレイン領域)と、ゲート絶縁膜を介
してオーバーラップしている場合もある。ゲート配線とは、各トランジスタのゲート電極
の間を接続するための配線、各画素の有するゲート電極の間を接続するための配線、又は
ゲート電極と別の配線とを接続するための配線のことを言う。
ただし、ゲート電極としても機能し、ゲート配線としても機能するような部分(領域、導
電膜、配線など)も存在する。そのような部分(領域、導電膜、配線など)は、ゲート電
極と呼んでも良いし、ゲート配線と呼んでも良い。つまり、ゲート電極とゲート配線とが
、明確に区別できないような領域も存在する。例えば、延伸して配置されているゲート配
線の一部とチャネル領域がオーバーラップしている場合、その部分(領域、導電膜、配線
など)はゲート配線として機能しているが、ゲート電極としても機能していることになる
。よって、そのような部分(領域、導電膜、配線など)は、ゲート電極と呼んでも良いし
、ゲート配線と呼んでも良い。
なお、ゲート電極と同じ材料で形成され、ゲート電極と同じ島(アイランド)を形成して
つながっている部分(領域、導電膜、配線など)も、ゲート電極と呼んでも良い。同様に
、ゲート配線と同じ材料で形成され、ゲート配線と同じ島(アイランド)を形成してつな
がっている部分(領域、導電膜、配線など)も、ゲート配線と呼んでも良い。このような
部分(領域、導電膜、配線など)は、厳密な意味では、チャネル領域とオーバーラップし
ていない場合、又は別のゲート電極と接続させる機能を有していない場合がある。しかし
、製造時の仕様などの関係で、ゲート電極またはゲート配線と同じ材料で形成され、ゲー
ト電極またはゲート配線と同じ島(アイランド)を形成してつながっている部分(領域、
導電膜、配線など)がある。よって、そのような部分(領域、導電膜、配線など)もゲー
ト電極またはゲート配線と呼んでも良い。
なお、例えば、マルチゲートのトランジスタにおいて、1つのゲート電極と、別のゲート
電極とは、ゲート電極と同じ材料で形成された導電膜で接続される場合が多い。そのよう
な部分(領域、導電膜、配線など)は、ゲート電極とゲート電極とを接続させるための部
分(領域、導電膜、配線など)であるため、ゲート配線と呼んでも良いが、マルチゲート
のトランジスタを1つのトランジスタと見なすことも出来るため、ゲート電極と呼んでも
良い。つまり、ゲート電極またはゲート配線と同じ材料で形成され、ゲート電極またはゲ
ート配線と同じ島(アイランド)を形成してつながっている部分(領域、導電膜、配線な
ど)は、ゲート電極やゲート配線と呼んでも良い。さらに、例えば、ゲート電極とゲート
配線とを接続させている部分の導電膜であって、ゲート電極またはゲート配線とは異なる
材料で形成された導電膜も、ゲート電極と呼んでも良いし、ゲート配線と呼んでも良い。
なお、ゲート端子とは、ゲート電極の部分(領域、導電膜、配線など)または、ゲート電
極と電気的に接続されている部分(領域、導電膜、配線など)について、その一部分のこ
とを言う。
なお、ある配線を、ゲート配線、ゲート線、ゲート信号線、走査線、走査信号線などと呼
ぶ場合、その配線にトランジスタのゲートが接続されていない場合もある。この場合、ゲ
ート配線、ゲート線、ゲート信号線、走査線、走査信号線は、トランジスタのゲートと同
じ層で形成された配線、トランジスタのゲートと同じ材料で形成された配線またはトラン
ジスタのゲートと同時に成膜された配線を意味している場合がある。例としては、保持容
量用配線、電源線、基準電位供給配線などがある。
なお、ソースとは、ソース領域とソース電極とソース配線(ソース線、ソース信号線、デ
ータ線、データ信号線等とも言う)とを含んだ全体、もしくは、それらの一部のことを言
う。ソース領域とは、P型不純物(ボロンやガリウムなど)やN型不純物(リンやヒ素な
ど)が多く含まれる半導体領域のことを言う。従って、少しだけP型不純物やN型不純物
が含まれる領域、いわゆる、LDD(Lightly Doped Drain)領域は
、ソース領域には含まれない。ソース電極とは、ソース領域とは別の材料で形成され、ソ
ース領域と電気的に接続されて配置されている部分の導電層のことを言う。ただし、ソー
ス電極は、ソース領域も含んでソース電極と呼ぶこともある。ソース配線とは、各トラン
ジスタのソース電極の間を接続するための配線、各画素の有するソース電極の間を接続す
るための配線、又はソース電極と別の配線とを接続するための配線のことを言う。
しかしながら、ソース電極としても機能し、ソース配線としても機能するような部分(領
域、導電膜、配線など)も存在する。そのような部分(領域、導電膜、配線など)は、ソ
ース電極と呼んでも良いし、ソース配線と呼んでも良い。つまり、ソース電極とソース配
線とが、明確に区別できないような領域も存在する。例えば、延伸して配置されているソ
ース配線の一部とソース領域とがオーバーラップしている場合、その部分(領域、導電膜
、配線など)はソース配線として機能しているが、ソース電極としても機能していること
になる。よって、そのような部分(領域、導電膜、配線など)は、ソース電極と呼んでも
良いし、ソース配線と呼んでも良い。
なお、ソース電極と同じ材料で形成され、ソース電極と同じ島(アイランド)を形成して
つながっている部分(領域、導電膜、配線など)や、ソース電極とソース電極とを接続す
る部分(領域、導電膜、配線など)も、ソース電極と呼んでも良い。さらに、ソース領域
とオーバーラップしている部分も、ソース電極と呼んでも良い。同様に、ソース配線と同
じ材料で形成され、ソース配線と同じ島(アイランド)を形成してつながっている領域も
、ソース配線と呼んでも良い。このような部分(領域、導電膜、配線など)は、厳密な意
味では、別のソース電極と接続させる機能を有していない場合がある。しかし、製造時の
仕様などの関係で、ソース電極またはソース配線と同じ材料で形成され、ソース電極また
はソース配線とつながっている部分(領域、導電膜、配線など)がある。よって、そのよ
うな部分(領域、導電膜、配線など)もソース電極またはソース配線と呼んでも良い。
なお、例えば、ソース電極とソース配線とを接続させている部分の導電膜であって、ソー
ス電極またはソース配線とは異なる材料で形成された導電膜も、ソース電極と呼んでも良
いし、ソース配線と呼んでも良い。
なお、ソース端子とは、ソース領域や、ソース電極や、ソース電極と電気的に接続されて
いる部分(領域、導電膜、配線など)について、その一部分のことを言う。
なお、ある配線を、ソース配線、ソース線、ソース信号線、データ線、データ信号線など
と呼ぶ場合、その配線にトランジスタのソース(ドレイン)が接続されていない場合もあ
る。この場合、ソース配線、ソース線、ソース信号線、データ線、データ信号線は、トラ
ンジスタのソース(ドレイン)と同じ層で形成された配線、トランジスタのソース(ドレ
イン)と同じ材料で形成された配線またはトランジスタのソース(ドレイン)と同時に成
膜された配線を意味している場合がある。例としては、保持容量用配線、電源線、基準電
位供給配線などがある。
なお、ドレインについては、ソースと同様である。
なお、半導体装置とは半導体素子(トランジスタ、ダイオード、サイリスタなど)を含む
回路を有する装置のことをいう。さらに、半導体特性を利用することで機能しうる装置全
般を半導体装置と呼んでもよい。または、半導体材料を有する装置のことを半導体装置と
言う。
なお、表示装置とは、表示素子を有する装置のことを言う。なお、表示装置は、表示素子
を含む複数の画素を含んでいても良い。なお、表示装置は、複数の画素を駆動させる周辺
駆動回路を含んでいても良い。なお、複数の画素を駆動させる周辺駆動回路は、複数の画
素と同一基板上に形成されてもよい。なお、表示装置は、ワイヤボンディングやバンプな
どによって基板上に配置された周辺駆動回路、いわゆる、チップオングラス(COG)で
接続されたICチップ、または、TABなどで接続されたICチップを含んでいても良い
。なお、表示装置は、ICチップ、抵抗素子、容量素子、インダクタ、トランジスタなど
が取り付けられたフレキシブルプリントサーキット(FPC)を含んでもよい。なお、表
示装置は、フレキシブルプリントサーキット(FPC)などを介して接続され、ICチッ
プ、抵抗素子、容量素子、インダクタ、トランジスタなどが取り付けられたプリント配線
基板(PWB)を含んでいても良い。なお、表示装置は、偏光板または位相差板などの光
学シートを含んでいても良い。なお、表示装置は、照明装置、筐体、音声入出力装置、光
センサなどを含んでいても良い。
なお、照明装置は、バックライトユニット、導光板、プリズムシート、拡散シート、反射
シート、光源(LED、冷陰極管など)、冷却装置(水冷式、空冷式)などを有していて
も良い。
なお、発光装置とは、発光素子などを有している装置のことをいう。表示素子として発光
素子を有している場合は、発光装置は、表示装置の具体例の一つである。
なお、反射装置とは、光反射素子、光回折素子、光反射電極などを有している装置のこと
をいう。
なお、液晶表示装置とは、液晶素子を有している表示装置をいう。液晶表示装置には、直
視型、投写型、透過型、反射型、半透過型などがある。
なお、駆動装置とは、半導体素子、電気回路、電子回路を有する装置のことを言う。例え
ば、ソース信号線から画素内への信号の入力を制御するトランジスタ(選択用トランジス
タ、スイッチング用トランジスタなどと呼ぶことがある)、画素電極に電圧または電流を
供給するトランジスタ、発光素子に電圧または電流を供給するトランジスタなどは、駆動
装置の一例である。さらに、ゲート信号線に信号を供給する回路(ゲートドライバ、ゲー
ト線駆動回路などと呼ぶことがある)、ソース信号線に信号を供給する回路(ソースドラ
イバ、ソース線駆動回路などと呼ぶことがある)などは、駆動装置の一例である。
なお、表示装置、半導体装置、照明装置、冷却装置、発光装置、反射装置、駆動装置など
は、互いに重複して有している場合がある。例えば、表示装置が、半導体装置および発光
装置を有している場合がある。あるいは、半導体装置が、表示装置および駆動装置を有し
ている場合がある。
なお、Aの上にBが形成されている、あるいは、A上にBが形成されている、と明示的に
記載する場合は、Aの上にBが直接接して形成されていることに限定されない。直接接し
てはいない場合、つまり、AとBと間に別の対象物が介在する場合も含むものとする。こ
こで、A、Bは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、
など)であるとする。
従って例えば、層Aの上に(もしくは層A上に)、層Bが形成されている、と明示的に記
載されている場合は、層Aの上に直接接して層Bが形成されている場合と、層Aの上に直
接接して別の層(例えば層Cや層Dなど)が形成されていて、その上に直接接して層Bが
形成されている場合とを含むものとする。なお、別の層(例えば層Cや層Dなど)は、単
層でもよいし、複層でもよい。
さらに、Aの上方にBが形成されている、と明示的に記載されている場合についても同様
であり、Aの上にBが直接接していることに限定されず、AとBとの間に別の対象物が介
在する場合も含むものとする。従って例えば、層Aの上方に、層Bが形成されている、と
いう場合は、層Aの上に直接接して層Bが形成されている場合と、層Aの上に直接接して
別の層(例えば層Cや層Dなど)が形成されていて、その上に直接接して層Bが形成され
ている場合とを含むものとする。なお、別の層(例えば層Cや層Dなど)は、単層でもよ
いし、複層でもよい。
なお、Aの上にBが形成されている、A上にBが形成されている、又はAの上方にBが形
成されている、と明示的に記載する場合、斜め上にBが形成される場合も含むこととする
なお、Aの下にBが、あるいは、Aの下方にBが、の場合についても、同様である。
なお、明示的に単数として記載されているものについては、単数であることが望ましい。
ただし、これに限定されず、複数であることも可能である。同様に、明示的に複数として
記載されているものについては、複数であることが望ましい。ただし、これに限定されず
、単数であることも可能である。
なお、図において、大きさ、層の厚さ、又は領域は、明瞭化のために誇張されている場合
がある。よって、必ずしもそのスケールに限定されない。
なお、図は、理想的な例を模式的に示したものであり、図に示す形状又は値などに限定さ
れない。例えば、製造技術による形状のばらつき、誤差による形状のばらつき、ノイズに
よる信号、電圧、若しくは電流のばらつき、又は、タイミングのずれによる信号、電圧、
若しくは電流のばらつきなどを含むことが可能である。
なお、専門用語は、特定の実施の形態、又は実施例などを述べる目的で用いられる場合が
多く、これに限定されない。
なお、定義されていない文言(専門用語又は学術用語などの科学技術文言を含む)は、通
常の当業者が理解する一般的な意味と同等の意味として用いることが可能である。辞書等
により定義されている文言は、関連技術の背景と矛盾がないような意味に解釈されること
が好ましい。
なお、第1、第2、第3などの語句は、様々な要素、部材、領域、層、区域を他のものと
区別して記述するために用いられる。よって、第1、第2、第3などの語句は、要素、部
材、領域、層、区域などの数を限定するものではない。さらに、例えば、「第1の」を「
第2の」又は「第3の」などと置き換えることが可能である。
なお、「上に」、「上方に」、「下に」、「下方に」、「横に」、「右に」、「左に」、
「斜めに」、「奥に」、又は、「手前に」、などの空間的配置を示す語句は、ある要素又
は特徴と、他の要素又は特徴との関連を、図によって簡単に示すために用いられる場合が
多い。ただし、これに限定されず、これらの空間的配置を示す語句は、図に描く方向に加
えて、他の方向を含むことが可能である。例えば、Aの上にB、と明示的に示される場合
は、BがAの上にあることに限定されない。図中のデバイスは反転、又は180°回転す
ることが可能なので、BがAの下にあることを含むことが可能である。このように、「上
に」という語句は、「上に」の方向に加え、「下に」の方向を含むことが可能である。た
だし、これに限定されず、図中のデバイスは様々な方向に回転することが可能なので、「
上に」という語句は、「上に」、及び「下に」の方向に加え、「横に」、「右に」、「左
に」、「斜めに」、「奥に」、又は、「手前に」などの他の方向を含むことが可能である
本明細書等により開示される発明の一態様では、トランジスタおよび保持容量の少なくと
も一部に、透光性を有する材料を用いる。これにより、トランジスタや保持容量が存在す
る領域においても光を透過させることが可能になるため、開口率を向上させることができ
る。また、トランジスタと別の素子(例えば、別のトランジスタ)とを接続する配線、ま
たは容量素子と別の素子(例えば、別の容量素子)とを接続する配線を、抵抗率が低い(
導電率が高い)材料を用いて形成する場合には、信号波形のなまりを低減し、配線抵抗に
よる電圧降下を抑制することができる。これにより、半導体装置の消費電力を低減するこ
とができる。また、半導体装置の大型化(大画面化)が容易となる。
半導体装置の平面図および断面図である。 半導体装置の作製方法を説明する断面図である。 半導体装置の作製方法を説明する断面図である。 半導体装置の作製方法を説明する断面図である。 半導体装置の作製方法を説明する断面図である。 半導体装置の平面図および断面図である。 半導体装置の平面図および断面図である。 半導体装置の平面図および断面図である。 半導体装置の平面図および断面図である。 半導体装置の平面図および断面図である。 半導体装置の平面図および断面図である。 半導体装置の平面図および断面図である。 半導体装置の作製方法を説明する断面図である。 半導体装置の作製方法を説明する断面図である。 半導体装置の作製方法を説明する断面図である。 半導体装置の作製方法を説明する断面図である。 多階調マスクの構成を説明する断面図である。 半導体装置の平面図および断面図である。 半導体装置の平面図および断面図である。 半導体装置の平面図および断面図である。 半導体装置の平面図および断面図である。 半導体装置を説明する平面図および断面図である。 半導体装置を説明する図である。 半導体装置を説明する断面図である。 半導体装置を説明する断面図である。 半導体装置を説明する平面図および断面図である。 半導体装置を説明する図である。 半導体装置を説明する断面図である。 電子ペーパーの使用形態の例を説明する図である。 電子書籍の例を示す外観図である。 テレビジョン装置およびデジタルフォトフレームの例を示す外観図である。 遊技機の例を示す外観図である。 携帯電話機の例を示す外観図である。 半導体装置の作製方法を説明する断面図である。 半導体装置を説明する断面図である。 半導体装置の作製方法を説明する断面図である。 半導体装置を説明する平面図および断面図である。 半導体装置を説明する平面図および断面図である。 半導体装置を説明する図である。 半導体装置を説明する図である。 半導体装置を説明する図である。 半導体装置を説明する図である。 半導体装置を説明する図である。
以下、実施の形態について、図面を用いて詳細に説明する。但し、発明は以下に示す実施
の形態の記載内容に限定されず、本明細書等において開示する発明の趣旨から逸脱するこ
となく形態および詳細を様々に変更し得ることは当業者にとって自明である。また、異な
る実施の形態に係る構成は、適宜組み合わせて実施することが可能である。なお、以下に
説明する発明の構成において、同一部分または同様な機能を有する部分には同一の符号を
用い、その繰り返しの説明は省略する。
なお、ある一つの実施の形態の中で述べる内容(一部の内容でもよい)は、その実施の形
態で述べる別の内容(一部の内容でもよい)、及び/又は、一つ若しくは複数の別の実施
の形態で述べる内容(一部の内容でもよい)に対して、適用、組み合わせ、又は置き換え
などを行うことが出来る。
なお、実施の形態の中で述べる内容とは、各々の実施の形態において、様々な図を用いて
述べる内容、又は明細書に記載される文章を用いて述べる内容のことである。
なお、ある一つの実施の形態において述べる図(一部でもよい)は、その図の別の部分、
その実施の形態において述べる別の図(一部でもよい)、及び/又は、一つ若しくは複数
の別の実施の形態において述べる図(一部でもよい)に対して、組み合わせることにより
、さらに多くの図を構成させることが出来る。
なお、ある一つの実施の形態において述べる図または文章において、その一部分を取り出
して、発明の一態様を構成することは可能である。したがって、ある部分を述べる図また
は文章が記載されている場合、その一部分の図または文章を取り出した内容も、発明の一
態様として開示されているものであり、発明の一態様を構成することが可能であるものと
する。そのため、例えば、能動素子(トランジスタ、ダイオードなど)、配線、受動素子
(容量素子、抵抗素子など)、導電層、絶縁層、半導体層、有機材料、無機材料、部品、
基板、モジュール、装置、固体、液体、気体、動作方法、製造方法などが単数又は複数記
載された図面(断面図、平面図、回路図、ブロック図、フローチャート、工程図、斜視図
、立面図、配置図、タイミングチャート、構造図、模式図、グラフ、表、光路図、ベクト
ル図、状態図、波形図、写真、化学式など)または文章において、その一部分を取り出し
て、発明の一態様を構成することが可能であるものとする。
(実施の形態1)
本実施の形態では、半導体装置及びその作製方法について、図1乃至図11を用いて説明
する。
図1には、本実施の形態に係る半導体装置の構成の一例を示す。本実施の形態では、半導
体装置として、特に液晶表示装置について説明しているが、開示される発明はこれに限定
されない。エレクトロルミネッセンス表示装置(EL表示装置)や、電気泳動素子を用い
た表示装置(いわゆる電子ペーパー)などへの適用は、もとより可能である。また、表示
装置以外の他の半導体装置への適用も可能である。なお、図1(A)は平面図であり、図
1(B)は図1(A)のA−Bにおける断面図である。
図1(A)に示す半導体装置は、ソース配線として機能する導電層112と、導電層11
2と交差し、ゲート配線として機能する導電層132aおよび容量配線として機能する導
電層132bと、導電層132aと導電層112の交差部付近のトランジスタ150と、
導電層132bと電気的に接続された保持容量152と、を有する画素部を備えている(
図1(A)、図1(B)参照)。なお、本明細書等において、画素部とは、ゲート配線と
して機能する導電層およびソース配線として機能する導電層に囲まれた領域のことを指す
。また、図1(A)において、導電層112と、導電層132aおよび導電層132bと
は90°の角度で交差しているが、開示する発明は当該構成に限定されない。すなわち、
導電層112と、導電層132aおよび導電層132bとが90°以外の角度で交差して
いても良い。
トランジスタ150は、ソース電極として機能する導電層106aと、ドレイン電極とし
て機能する導電層106bと、半導体層118aと、ゲート絶縁層120と、ゲート電極
として機能する導電層126aと、で構成されるいわゆるトップゲート型のトランジスタ
である(図1(A)、図1(B)参照)。また、保持容量152は、導電層106bと、
ゲート絶縁層120と、導電層126bと、導電層140とで構成されている。より詳細
には、導電層106bと導電層126bとの間、および導電層126bと導電層140と
の間に容量が形成される。なお、トランジスタにおけるソース電極およびドレイン電極は
、キャリアの流れる方向によってその機能が入れ替わることがあるから、ソース電極およ
びドレイン電極の称呼は便宜的なものに過ぎない。つまり、各種導電層の機能が、上記称
呼に限定して解釈されるものではない。
ここで、トランジスタ150を構成する導電層106a、導電層106b、半導体層11
8a、導電層126a、および保持容量152を構成する導電層126bは、透光性を有
する材料で形成されている。これにより、画素の開口率向上が実現されている。
また、導電層106aと電気的に接続される導電層112、および導電層126aと電気
的に接続される導電層132aは、低抵抗材料で形成されている。このため、配線抵抗を
低減し、消費電力を低減することができる。また、導電層112および導電層132aは
遮光性を有する材料で形成されている。このため、画素間を遮光することができる。
なお、上記において透光性を有するとは、少なくとも、導電層112や導電層132aと
比較して、可視域(400nm〜800nm程度)における光の透過率が高いことを意味
する。
次に、半導体装置の作製方法の一例について説明する。
はじめに、絶縁面を有する基板100上に導電層102を形成する(図2(A1)、図2
(A2)参照)。
絶縁面を有する基板100としては、例えば、液晶表示装置などに使用される可視光透過
性を有するガラス基板を用いることができる。上記のガラス基板は無アルカリガラス基板
であることが好ましい。無アルカリガラス基板には、例えば、アルミノシリケートガラス
、アルミノホウケイ酸ガラス、バリウムホウケイ酸ガラスなどのガラス材料が用いられて
いる。他にも、絶縁面を有する基板100として、セラミック基板、石英基板、サファイ
ア基板などの絶縁体からなる絶縁性基板、珪素などの半導体材料からなる半導体基板の表
面を絶縁材料で被覆した基板、金属やステンレスなどの導電体からなる導電性基板の表面
を絶縁材料で被覆した基板、などを用いることができる。ポリエチレンテレフタレート(
PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)に
代表される可撓性を有する合成樹脂を用いても良い。
図示しないが、絶縁面を有する基板100上には下地膜を設けるとよい。下地膜は、基板
100からのアルカリ金属(Li、Cs、Na等)やアルカリ土類金属(Ca、Mg等)
、その他の不純物の拡散を防止する機能を有する。つまり、下地膜を設けることより、半
導体装置の信頼性向上という課題を解決することができる。下地膜は、窒化シリコン膜、
酸化シリコン膜、窒化酸化シリコン膜、酸化窒化シリコン膜、酸化アルミニウム膜、窒化
アルミニウム膜、酸化窒化アルミニウム膜、窒化酸化アルミニウム膜などから選ばれた一
または複数の絶縁層により形成することができる。例えば、基板側から窒化シリコン膜と
酸化シリコン膜を順に積層した構成とすると好ましい。窒化シリコン膜の不純物に対する
ブロッキング効果が高いためである。一方で、窒化シリコン膜が半導体と接する場合には
不具合が発生する可能性もあるため、半導体と接する膜として、酸化シリコン膜を形成す
るのがよい。
なお、本明細書等において、酸化窒化物とは、その組成において、窒素よりも酸素の含有
量(原子数)が多いものを示し、例えば、酸化窒化シリコンとは、酸素が50原子%以上
70原子%以下、窒素が0.5原子%以上15原子%以下、シリコンが25原子%以上3
5原子%以下、水素が0.1原子%以上10原子%以下の範囲で含まれるものをいう。ま
た、窒化酸化物とは、その組成において、酸素よりも窒素の含有量(原子数)が多いもの
を示し、例えば、窒化酸化シリコンとは、酸素が5原子%以上30原子%以下、窒素が2
0原子%以上55原子%以下、シリコンが25原子%以上35原子%以下、水素が10原
子%以上25原子%以下の範囲で含まれるものをいう。但し、上記範囲は、ラザフォード
後方散乱法(RBS:Rutherford Backscattering Spec
trometry)や、水素前方散乱法(HFS:Hydrogen Forward
Scattering)を用いて測定した場合のものである。また、構成元素の含有比率
の合計は100原子%を超えない。
導電層102は、インジウム錫酸化物(Indium Tin Oxide:ITO)、
酸化珪素を含むインジウム錫酸化物(ITSO)、有機インジウム、有機スズ、酸化亜鉛
(ZnO)、窒化チタン等の透光性(可視光透過性)を有する材料を用いて形成すると良
い。また、酸化亜鉛を含むインジウム亜鉛酸化物(Indium Zinc Oxide
:IZO)、酸化亜鉛にガリウム(Ga)を添加した材料、酸化スズ(SnO)、酸化
タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、
酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物などを用いて
もよい。導電層102は単層構造としても良いし、積層構造としても良いが、積層構造と
する場合には、光透過率が十分に高くなるように導電層102を形成することが望ましい
。なお、導電層102の作製方法としてはスパッタリング法を用いることが好ましいが、
これに限る必要はない。
次に、導電層102上にレジストマスク104aおよびレジストマスク104bを形成し
、当該レジストマスク104aおよびレジストマスク104bを用いて導電層102を選
択的にエッチングして、導電層106aおよび導電層106bを形成する(図2(B1)
、図2(B2)参照)。上記のエッチングとしては、ウエットエッチング、ドライエッチ
ングのいずれを用いても良い。なお、上記エッチングの後にはレジストマスク104a、
レジストマスク104bは除去する。導電層106aおよび導電層106bは、後に形成
される絶縁層などの被覆性を向上し、段切れを防止するために、その端部がテーパー形状
となるように形成することが好ましい。このように、導電層をテーパー形状となるように
形成することで、半導体装置の歩留まり向上という課題を解決することができる。
導電層106aはトランジスタのソース電極として、導電層106bはトランジスタのド
レイン電極および保持容量の電極(容量電極)として機能する。なお、各種導電層の機能
は、ソース電極またはドレイン電極の称呼に限定して解釈されるものではない。
次に、導電層106aおよび導電層106bを覆うように導電層108を形成する(図2
(C1)、図2(C2)参照)。なお、ここでは、導電層106aおよび導電層106b
を覆うように導電層108を形成するが、開示される発明はこれに限定されない。
導電層108は、アルミニウム(Al)、タングステン(W)、チタン(Ti)、タンタ
ル(Ta)、モリブデン(Mo)、ニッケル(Ni)、白金(Pt)、銅(Cu)、金(
Au)、銀(Ag)、マンガン(Mn)、ネオジム(Nd)、ニオブ(Nb)、クロム(
Cr)、セリウム(Ce)などの金属材料、またはこれらの金属材料を主成分とする合金
材料、またはこれらの金属材料を成分とする窒化物を用いて、単層構造または積層構造で
形成することができる。例えば、導電層108は、アルミニウムなどの抵抗が低い材料で
形成することが望ましい。
導電層106a上に導電層108を形成した場合、これらの導電層が反応してしまう場合
がある。例えば、導電層106aにITOを用い、導電層108にアルミニウムを用いた
場合、化学反応が生じ得る。このような反応を避けるために、導電層108を、高融点材
料と低抵抗材料との積層構造としても良い。より具体的には、例えば、導電層108の導
電層106aと接する領域を高融点材料で形成し、導電層108の導電層106aと接触
しない領域を低抵抗材料で形成すると好適である。
上記高融点材料としては、モリブデン、チタン、タングステン、タンタル、クロムなどが
挙げられる。低抵抗材料としては、アルミニウム、銅、銀などが挙げられる。
もちろん、導電層108を3層以上の積層構造としても良い。この場合、例えば、1層目
がモリブデン、2層目がアルミニウム、3層目がモリブデンの積層構造、または、1層目
がモリブデン、2層目がネオジムを微量に含むアルミニウム、3層目がモリブデンの積層
構造とすることができる。導電層108をこのような積層構造とすることにより、ヒロッ
クの発生を防止することができる。これにより、半導体装置の信頼性向上という課題を解
決することができる。
次に、導電層108上にレジストマスク110を形成し、当該レジストマスク110を用
いて導電層108を選択的にエッチングして、導電層112を形成する(図2(D1)、
図2(D2)参照)。なお、導電層112はソース配線としての機能を有する。また、導
電層112は遮光性を有する材料を用いて形成されているため、遮光機能を有する。レジ
ストマスク110は、導電層112の形成後に除去される。
なお、本実施の形態においては、導電層106aおよび導電層106bを形成した後、導
電層112を形成する工程について説明したが、開示される発明はこれに限定して解釈さ
れない。例えば、導電層106aおよび導電層106bと、導電層112の形成順序を入
れ替えても良い。つまり、ソース配線として機能する導電層112を形成した後に、ソー
ス電極として機能する導電層106aおよび導電層106bを形成することもできる(図
6(A)、図6(B)参照)。なお、図6においては、導電層126aおよび導電層12
6bと、導電層132aおよび導電層132bの形成順序は入れ替えていないが、導電層
126aおよび導電層126bと、導電層132aおよび導電層132bの形成順序を入
れ替えても良い。
また、導電層108をエッチングして導電層112を形成する際に、後にコンタクトホー
ルが形成される領域に導電層113を形成しても良い(図7(A)、図7(B)参照)。
このような構成を採用することで、コンタクトホールが形成される領域を遮光することが
できる。これにより、コンタクト領域における電極(画素電極)の表面凹凸による表示不
具合を低減できるため、コントラスト向上や、光漏れ低減といった効果が得られる。すな
わち、表示特性の向上という課題を解決することができる。なお、当該構成は液晶表示装
置において特に効果的であるが、他の半導体装置に適用しても良いことは言うまでもない
。この場合、遮光が必要な領域に導電層113を適宜形成すれば良い。
次に、少なくとも導電層106aおよび導電層106bを覆うように半導体層114を形
成する(図3(A1)、図3(A2)参照)。本実施の形態では、導電層106a、導電
層106b、導電層112を覆うように、基板100上に半導体層114を形成する。
半導体層114は、In−Ga−Zn−O系の酸化物半導体材料をはじめ、In−Sn−
Zn−O系、In−Al−Zn−O系、Sn−Ga−Zn−O系、Al−Ga−Zn−O
系、Sn−Al−Zn−O系、In−Zn−O系、Sn−Zn−O系、Al−Zn−O系
、Zn−O系など、各種の酸化物半導体材料を用いて形成することができる。また、その
他の材料を用いることも可能である。例えば、In−Ga−Zn−O系の酸化物半導体材
料による半導体層114は、In、Ga、Znを含む酸化物半導体ターゲット(In
:Ga:ZnO=1:1:1)を用いたスパッタ法で形成することができる。ス
パッタの条件は、例えば、基板100とターゲットとの距離を30mm〜500mm、圧
力を0.1Pa〜2.0Pa、直流(DC)電源を0.25kW〜5.0kW(直径8イ
ンチのターゲット使用時)、雰囲気をアルゴン雰囲気、酸素雰囲気、またはアルゴンと酸
素との混合雰囲気とすることができる。なお、半導体層114として、ZnO系非単結晶
膜を用いても良い。また、半導体層114の膜厚は、5nm〜200nm程度とすればよ
い。
上記のスパッタ法としては、スパッタ用電源に高周波電源を用いるRFスパッタ法や、D
Cスパッタ法、パルス的に直流バイアスを加えるパルスDCスパッタ法などを用いること
ができる。なお、パルス直流(DC)電源を用いると、ごみが軽減でき、膜厚分布も均一
となるため好ましい。この場合、半導体装置の歩留まり向上、信頼性向上といった課題を
解決することができる
また、材料の異なるターゲットを複数設置できる多元スパッタ装置を用いてもよい。多元
スパッタ装置では、同一チャンバーで異なる複数の膜を形成することも、同一チャンバー
で複数種類の材料を同時にスパッタして一の膜を形成することもできる。さらに、チャン
バー内部に磁界発生機構を備えたマグネトロンスパッタ装置を用いる方法(マグネトロン
スパッタ法)や、マイクロ波を用いて発生させたプラズマを用いるECRスパッタ法等を
用いてもよい。また、成膜中にターゲット物質とスパッタガス成分とを化学反応させてそ
れらの化合物を形成するリアクティブスパッタ法や、成膜中に基板にも電圧を印加するバ
イアススパッタ法等を用いてもよい。
なお、半導体層114を形成する前に、半導体層114の被形成面(例えば、導電層10
6aおよび導電層106bの表面、下地膜を形成した場合には下地膜の表面を含む)にプ
ラズマ処理を行ってもよい。プラズマ処理を行うことにより、被形成面に付着しているゴ
ミなどを除去することができる。また、上述のプラズマ処理を行った後、大気に曝すこと
なく半導体層114を形成することにより、導電層106aおよび導電層106bと、半
導体層114との電気的接続を良好に行うことができる。つまり、半導体装置の歩留まり
向上、信頼性向上といった課題を解決することが可能である。
なお、本実施の形態においては、半導体層114として酸化物半導体材料を用いる場合に
ついて説明しているが、開示する発明の一態様はこれに限定されない。酸化物半導体材料
以外の半導体材料、化合物半導体材料等であっても、厚みを小さくすることにより、透光
性を確保できる場合がある。このため、酸化物半導体材料に代えて、他の半導体材料を用
いても良い。上記他の半導体材料の一例としては、シリコンやガリウム、ガリウムヒ素な
どの各種無機半導体材料、カーボンナノチューブなどの有機半導体材料、これらの混合材
料などを挙げることができる。これらの材料を、単結晶、多結晶、微結晶(マイクロクリ
スタル、ナノクリスタルを含む)、非晶質といった各種態様で用いて半導体層114とす
れば良い。
次に、半導体層114上にレジストマスク116aおよびレジストマスク116bを形成
し、当該レジストマスク116aおよびレジストマスク116bを用いて半導体層114
を選択的にエッチングして、半導体層118aおよび半導体層118bを形成する(図3
(B1)、図3(B2)参照)。半導体層118aおよび半導体層118bは島状に形成
される。ここで、半導体層118aはトランジスタの活性層となる。また、半導体層11
8bは、配線間に生じる寄生容量を緩和する役割を果たす。なお、本実施の形態において
は、半導体層118bを形成する場合について説明しているが、半導体層118bは必須
の構成要素ではない。
また、上記のレジストマスクはスピンコート法などの方法を用いて形成しても良いが、液
滴的吐出法やスクリーン印刷法などを用いる場合には、レジストマスクを選択的に形成す
ることができる。この場合、生産性向上という課題を解決することが可能である。
半導体層114のエッチングの方法としては、ウエットエッチングまたはドライエッチン
グを用いることができる。ここでは、酢酸と硝酸と燐酸との混合液を用いたウエットエッ
チングにより、半導体層114の不要な部分を除去して、半導体層118aおよび半導体
層118bを形成する。なお、上記エッチングの後にはレジストマスク116aおよびレ
ジストマスク116bは除去する。上記のウエットエッチングに用いることができるエッ
チャント(エッチング液)は半導体層114をエッチングできるものであればよく、上述
したものに限られない。
ドライエッチングを行う場合は、例えば、塩素を含有するガス、または塩素を含有するガ
スに酸素が添加されたガスを用いると良い。塩素と酸素を含有するガスを用いることで、
導電層や下地膜と、半導体層114とのエッチング選択比がとりやすくなるためである。
ドライエッチングに用いるエッチング装置としては、反応性イオンエッチング法(RIE
法)を用いたエッチング装置や、ECR(Electron Cyclotron Re
sonance)やICP(Inductively Coupled Plasma)
などの高密度プラズマ源を用いたドライエッチング装置を用いることができる。また、I
CPエッチング装置と比べて広い面積に渡って一様な放電が得られるECCP(Enha
nced Capacitively Coupled Plasma)モードのエッチ
ング装置を用いても良い。ECCPモードのエッチング装置であれば、基板として第10
世代以降の基板を用いるような場合においても対応が容易である。
なお、本実施の形態において示すように、トランジスタのソース電極として機能する導電
層106a、および、トランジスタのドレイン電極として機能する導電層106b上に半
導体層118aを形成する場合には、半導体層118aの薄膜化が容易である。半導体層
118aが導電層106aおよび導電層106b上に存在する場合には、逆の場合とは異
なり、導電層をエッチングする際のオーバーエッチングによる半導体層118aの消失の
問題が生じないためである。このように、半導体層118aの薄膜化が実現されることで
、電圧印加時の空乏化が容易になり、S値を小さくすることができる。また、オフ電流を
小さくすることも可能である。つまり、半導体装置の高性能化という課題を解決すること
が可能である。なお、半導体層118aは、ソース配線として機能する導電層112や、
ソース電極として機能する導電層106a、ゲート配線として機能する導電層132a、
ゲート電極として機能する導電層126aなどと比較して薄く形成されることが好適であ
る。
その後、200℃〜600℃、代表的には300℃〜500℃の熱処理を行うと良い。こ
こでは、窒素雰囲気下で350℃、1時間の熱処理を行う。この熱処理により半導体層1
18aおよび半導体層118bの半導体特性を向上させることができる。なお、上記熱処
理のタイミングは、半導体層118aおよび半導体層118bの形成後であれば特に限定
されない。
なお、本実施の形態においては、導電層106aおよび導電層106bを形成した後、導
電層112を形成し、その後、半導体層118aを形成する工程について説明したが、開
示される発明はこれに限定して解釈されない。例えば、導電層106aおよび導電層10
6bを形成した後、半導体層118aを形成し、その後、導電層112を形成する工程を
採用しても良い(図8(A)、図8(B)参照)。この場合、半導体層118aとのコン
タクト抵抗を低減することができるという効果がある。
なお、導電層106aおよび導電層106bは、導電層112と比較して薄く形成すると
良い。導電層106aおよび導電層106bを薄く形成することにより、抵抗は高くなる
が、透過率を一層向上させることができるため有利である。もちろん、開示する発明の一
態様をこれに限定して解釈する必要はない。
次に、半導体層118aおよび半導体層118bを覆うように、ゲート絶縁層120を形
成する(図3(C1)、図3(C2)参照)。
ゲート絶縁層120は、酸化シリコン膜、酸化窒化シリコン膜、窒化シリコン膜、窒化酸
化シリコン膜、酸化アルミニウム膜、窒化アルミニウム膜、酸化窒化アルミニウム膜、窒
化酸化アルミニウム膜、または酸化タンタル膜の単層構造または積層構造とすることがで
きる。例えば、スパッタ法やCVD法などを用いて、50nm以上250nm以下の厚さ
で形成すれば良い。ここでは、ゲート絶縁層120として、スパッタ法を用いて、酸化シ
リコン膜を100nmの厚さで形成する。なお、ゲート絶縁層120は、透光性を有して
いることが好ましい。
次に、ゲート絶縁層120上に、導電層122を形成する(図3(D1)、図3(D2)
参照)。導電層122は、導電層102と同様の材料、作製方法により形成することがで
きる。導電層122の詳細については、導電層102に係る説明を参照することができる
から、ここでは省略する。なお、導電層122は透光性を有することが望ましい。
なお、導電層102と導電層122とを同じ材料を用いて形成する場合には、材料および
製造装置を共有することが容易になるため、低コスト化、スループットの向上などに寄与
する。もちろん、同じ材料を用いて導電層102および導電層122を形成することは、
必須の要件ではない。
次に、導電層122上にレジストマスク124aおよびレジストマスク124bを形成し
、当該レジストマスク124aおよびレジストマスク124bを用いて導電層122を選
択的にエッチングして、導電層126aおよび導電層126bを形成する(図4(A1)
、図4(A2)参照)。上記のエッチングとしては、ウエットエッチング、ドライエッチ
ングのいずれを用いても良い。なお、上記エッチングの後にはレジストマスク124a、
レジストマスク124bは除去する。導電層126aはトランジスタのゲート電極として
、導電層126bは保持容量の電極(容量電極)として機能する。
なお、導電層106bと導電層126bとが重畳する領域の面積は適宜変更することがで
きる。本実施の形態において示すように、導電層106bと導電層126bとは透光性を
有する材料を用いて形成されているため、重畳する領域の面積を増大させて容量値を増加
させる場合であっても、開口率を低下させずに済むという利点がある。つまり、容量値の
増加という課題を、開口率の低下を伴わずに解決することができる。
また、本実施の形態においては、ソース電極として機能する導電層106aおよびドレイ
ン電極として機能する導電層106bと、ゲート電極として機能する導電層126aの一
部が重畳するように導電層106a、導電層106b、導電層126aを形成しているが
、半導体層118aの一部の導電性を高めることができる場合には、導電層106aまた
は導電層106bと、導電層126aとを重畳させない構成としても良い(図9(A)、
図9(B)参照)。この場合、少なくとも導電層106aまたは導電層106bと、導電
層126aとが重畳しない領域160の導電性を高めることになる。図9中において、領
域160は、半導体層118aの導電層106aと隣接する領域または導電層106bと
隣接する領域にあたる。なお、領域160は、導電層126aと重畳しても良いし、重畳
しなくとも良い。また、領域160は、導電層106aまたは導電層106bと重畳する
領域であることが好ましいが、この限りではない。
半導体層118aに酸化物半導体材料を用いる場合において、領域160の導電性を高め
る方法としては、例えば、水素を選択的に添加する方法がある。半導体層として酸化物半
導体材料を用いない場合には、その材料にあわせて導電性を高める方法を選択すればよい
。例えば、シリコン系の材料を用いて半導体層118aを形成する場合には、リンやボロ
ンなど、所定の導電性を付与する不純物元素を添加すればよい。
このように、導電層106aまたは導電層106bと、導電層126aとを重畳させない
構成とすることにより、導電層106a(または導電層106b)と導電層126aとの
重畳に起因する寄生容量を低減することができる。つまり、半導体装置の特性向上という
課題を解決することができる。
なお、上記水素の添加は、半導体層114の形成後、半導体層118aの形成後、絶縁層
120の形成後、導電層126aの形成後など、各種工程後のいずれかに行うことができ
る。例えば、半導体層118の形成後に水素を添加する場合には、半導体層118a上に
選択的にレジストマスク170を形成して(図34(A)参照)、水素190を添加する
ことにより(図34(B)参照)、領域160を形成することができる(図34(C)参
照)。この場合、半導体装置の構成を図35(A)や図35(B)のようにすることも可
能である。領域160では導電性が高められており、別途導電層106bなどを設ける必
要性が低下するためである。ここで、図35(A)は導電層106bを設けない構成を、
図35(B)は導電層106aおよび導電層106bを設けない構成を示している。なお
、導電層126aを形成した後に水素を添加する場合には、導電層126aをマスクとし
て、自己整合的に水素を添加することが可能である。
次に、導電層126aおよび導電層126bを覆うように、導電層128を形成する(図
4(B1)、図4(B2)参照)。導電層128は、導電層108と同様の材料、作製方
法により形成することができる。導電層128の詳細については、導電層108に係る説
明を参照することができるから、ここでは省略する。この場合にも、導電層108と導電
層128とを同じ材料を用いて形成することにより、低コスト化、スループットの向上な
どが実現されるため好ましい。
次に、導電層128上にレジストマスク130を形成し、当該レジストマスク130を用
いて導電層128を選択的にエッチングして、導電層132aおよび導電層132bを形
成する(図4(C1)、図4(C2)参照、導電層132bについては図1(A)参照)
。なお、導電層132aはゲート配線として、導電層132bは容量配線として機能する
。また、導電層132aは遮光性を有する材料を用いて形成されているため、遮光機能を
有する。レジストマスク130は、導電層132aおよび導電層132bの形成後に除去
される。
なお、本実施の形態においては、導電層126aおよび導電層126bを形成した後、導
電層132aおよび導電層132bを形成する工程について説明したが、開示される発明
はこれに限定して解釈されない。例えば、導電層126aおよび導電層126bと、導電
層132aおよび導電層132bの形成順序を入れ替えても良い。つまり、ゲート配線と
して機能する導電層132aおよび容量配線として機能する導電層132bを形成した後
に、ゲート電極として機能する導電層126aおよび保持容量の電極として機能する導電
層126bを形成することもできる(図10(A)、図10(B)参照)。なお、図10
においては、導電層106aおよび導電層106bと、導電層112の形成順序は入れ替
えていないが、導電層106aおよび導電層106bと、導電層112の形成順序を入れ
替えても良い。
なお、導電層126aおよび導電層126bは、導電層132aなどと比較して薄く形成
すると良い。導電層126aおよび導電層126bを薄く形成することにより、抵抗は高
くなるが、透過率を一層向上させることができるため有利である。もちろん、開示する発
明の一態様をこれに限定して解釈する必要はない。
また、導電層126b上に残存するように導電層132bを形成しても良い(図11(A
)、図11(B)参照)。このように、導電層132bを形成することにより、容量配線
の配線抵抗を低減することができる。なお、導電層126b上における導電層132bの
幅は、導電層126bと比較して十分に小さくすることが好ましい。このように導電層1
32bを形成することにより、容量配線の配線抵抗を低減するという課題を、実質的な開
口率の低下なしに解決することができる。
次に、ゲート絶縁層120、導電層126a、導電層126b、導電層132a、導電層
132bを覆うように絶縁層134を形成する(図4(D1)、図4(D2)参照)。絶
縁層134の表面は、後の電極(画素電極)の被形成面となるため、平坦に形成すること
が好ましい。特に、開示する発明の一態様においては、透光性を有する材料を用いて各種
素子を形成することが可能であるため、これらの素子が形成されている領域をも表示領域
(開口領域)として利用することができる。したがって、素子や配線に起因する凹凸を緩
和するように絶縁層134を形成することは極めて有益である。
絶縁層134は、酸化シリコン、窒化シリコン、酸化窒化シリコン、窒化酸化シリコン等
の酸素または窒素を含有する材料からなる絶縁膜、DLC(ダイヤモンドライクカーボン
)等の炭素を含む膜、エポキシ、ポリイミド、ポリアミド、ポリビニルフェノール、ベン
ゾシクロブテン、アクリル等の有機材料またはシロキサン樹脂等のシロキサン材料からな
る膜、などの単層構造または積層構造とすることができる。例えば、窒化シリコンを有す
る膜は、不純物をブロッキングする効果が高いため、素子の信頼性向上に好適である。ま
た、有機材料を有する膜は、凹凸を緩和する機能が高いため、素子の特性向上に好適であ
る。なお、絶縁層134を、窒化珪素を有する膜と、有機材料を有する膜との積層構造と
する場合には、図中下側(素子に近い側)に窒化珪素を有する膜を配置し、上側(画素電
極の被形成面側)に有機材料を有する膜を配置することが好適である。絶縁層134は、
十分な透光性を有していることが好ましい。
なお、絶縁層134を絶縁層134aと絶縁層134bの二層構造とする場合には(図3
6(A)参照)、絶縁層134bの導電層126bと重畳する領域をエッチングにより除
去することで(図36(B)参照)、導電層126bと、後に形成される導電層140と
の間に形成される容量の容量値を増加させることが可能である(図36(C)参照)。な
お、開示する発明の一態様は上記に限定されず、絶縁層134を三層以上の多層構造とし
ても良い。
カラーフィルタとしての機能を有するように絶縁層134を形成しても良い。このように
、素子を形成する基板にカラーフィルタを形成することにより、対向基板などを貼り合わ
せる際の位置合わせが容易となる。もちろん、絶縁層134にカラーフィルタとしての機
能を有せしめることに限定されず、別途カラーフィルタとして機能する層を基板100上
に形成しても良い。なお、開示する発明の一態様では、遮光性を有する材料を用いてソー
ス配線やゲート配線などを形成している。これにより、ブラックマスク(ブラックマトリ
クス)を別途形成することなく、画素間を遮光することができる。つまり、ブラックマス
クを別途形成する場合と比較して、工程を簡略化しつつ、高性能な半導体装置を提供する
ことができる。もちろん、開示する発明の一態様をこれに限定して解釈する必要はなく、
別途ブラックマスクを形成しても良い。
なお、絶縁層134が無くとも大きな不都合が生じない場合には、絶縁層134を形成し
ない構成とすることができる。この場合、工程を簡略化することができるというメリット
がある。
その後、絶縁層134に導電層106bに達するコンタクトホール136を形成し、導電
層106bの表面の一部を露出させる(図5(A1)、図5(A2)参照)。
そして、絶縁層134を覆うように、導電層138を形成する(図5(B1)、図5(B
2)参照)。絶縁層134にはコンタクトホールが形成されているため、導電層106b
と導電層138とは電気的に接続されることになる。
導電層138は、導電層102や導電層122と同様の材料、作製方法により形成するこ
とができる。導電層138の詳細については、導電層102や導電層122に係る説明を
参照することができるから、ここでは省略する。なお、導電層138は透光性を有するこ
とが望ましい。この場合にも、導電層102や導電層122と導電層138とを同じ材料
を用いて形成することにより、低コスト化、スループットの向上などが実現されるため好
ましい。
次に、導電層138上にレジストマスクを形成し、当該レジストマスクを用いて導電層1
38を選択的にエッチングして、導電層140を形成する(図5(C1)、図5(C2)
参照)。ここで、導電層140は、画素電極としての機能を有する。
なお、導電層140は、その端部が、導電層112または導電層132aと重なるように
形成することが好ましい。このように導電層140を形成することで、画素の開口率を最
大化すると共に不要な光漏れなどを抑制することが可能となる。これにより、コントラス
トが向上するという効果が得られる。つまり、表示装置の特性向上という課題を解決する
ことができる。
図中には示さないが、導電層138から形成される導電層を用いて、ソース配線、ソース
電極、ゲート配線、ゲート電極、容量配線、容量電極、などを互いに接続させることがで
きる。つまり、導電層138から形成される導電層を、各種配線として機能させることが
可能である。
以上により、透光性を有するトランジスタ150および透光性を有する保持容量152を
備えた半導体装置を作製することができる(図5(C1)、図5(C2)参照)。
このように、透光性を有する材料を用いてトランジスタ150および保持容量152を形
成することにより、ソース電極やドレイン電極、ゲート電極などが形成された領域におい
ても光を透過させることができるため、画素の開口率を向上させることができる。また、
ソース配線やゲート配線、容量配線として機能する導電層を、低抵抗材料を用いて形成す
ることにより、配線抵抗を低減し、消費電力を低減することができる。また、信号の波形
のなまりを低減し、配線抵抗に起因する電圧降下を抑制することができる。さらに、遮光
性を有する材料を用いてソース配線やゲート配線などを形成することにより、ブラックマ
スク(ブラックマトリクス)を別途形成することなく、画素間を遮光することができる。
つまり、ブラックマスクを別途形成する場合と比較して、工程を簡略化しつつ、高性能な
半導体装置を提供することができる。
また、透光性を有する材料を用いて容量電極を形成することにより、容量電極の面積を十
分に大きくすることができる。つまり、保持容量の容量値を十分に大きくすることが可能
である。これにより、画素電極の電位保持特性が向上し、表示品質が向上する。また、フ
ィードスルー電位を小さくすることができる。また、クロストークを低減することができ
る。また、ちらつきを低減することができる。
また、透光性を有する材料を用いてトランジスタ150を形成するため、トランジスタ1
50におけるチャネル長(L)やチャネル幅(W)の設計の自由度が極めて高い(レイア
ウトの自由度が高い)。これは、開口率がチャネル長やチャネル幅の影響を受けないため
である。なお、駆動回路などの透光性が不要な対象に対して上記素子を用いる場合には、
透光性を有しない材料を用いて形成しても良い。この場合、画素部に用いる素子と、それ
以外の領域(例えば駆動回路)に用いる素子とを作り分けることができる。
図37および図38に、半導体装置の別の構成例を示す。図37は、ソース配線として機
能する導電層112が、ソース電極としての機能を備え、ゲート配線として機能する導電
層132aが、ゲート電極としての機能を備えた一例である。ここで、導電層112およ
び導電層132aは導電性の高い材料を用いて形成することができる。一方で、ドレイン
電極として機能する導電層106bは、透光性を有する材料を用いて形成されることが好
ましい。なお、容量配線として機能する導電層180は、導電性の高い材料を用いて形成
しても良いし、透光性を有する材料を用いて形成しても良い。図38は、ゲート電極とし
て機能する導電層126aが、保持容量の一方の電極としての機能を備えた一例である。
すなわち、前段または後段のゲート配線として機能する導電層(導電層132aに対応)
が容量配線としての機能を備えていることになる。ここで、導電層106aまたは導電層
106bと同じ工程で形成される導電層182は、保持容量の他方の電極としての機能を
備えている。導電層182は、画素部と重畳する領域に形成されるから、透光性を有する
材料を用いて形成されることが好ましい。
なお、トランジスタにおけるチャネル長(L)やチャネル幅(W)は、導電層132aな
どの幅より大きいものとすることが可能である。これは、半導体層118aが光透過性を
有する材料で形成されているため、開口率が半導体層118aの大きさに依存しないこと
による。ただし、開示する発明の一態様がこれに限定して解釈されるものではない。トラ
ンジスタは並列または直列に複数配置しても良い。これにより、トランジスタ数を増加さ
せることができる。
本実施の形態は、他の実施の形態と適宜組み合わせて用いることができる。
(実施の形態2)
本実施の形態では、半導体装置の作製方法の他の一例について、図12乃至図16を用い
て説明する。なお、本実施の形態に係る半導体装置の作製方法は、多くの部分で実施の形
態1に係る作製方法と共通している。したがって、以下においては、重複する構成、重複
する符号などの説明は省略する。
図12に、本実施の形態に係る半導体装置の構成の一例を示す。図12に係る構成では、
遮光性を有する導電層(例えば、導電層112、導電層132a、導電層132bなど)
の下層には、透光性を有する導電層(例えば、導電層106a、導電層126a、導電層
126bなど)が存在している(図12(A)、図12(B)参照)。なお、図12(A
)は平面図であり、図12(B)は図12(A)のA−Bにおける断面図である。
次に、半導体装置の作製方法の一例について説明する。
はじめに、絶縁面を有する基板100上に導電層102および導電層108を順に積層し
て形成する(図13(A1)、図13(A2)参照)。絶縁面を有する基板100、導電
層102、導電層108の詳細については実施の形態1を参照することができる。
図示しないが、絶縁面を有する基板100上には下地膜を設けるとよい。下地膜の詳細に
ついても実施の形態1を参照することができる。なお、開示する発明の一態様は下地膜を
設けることに限定されない。
次に、導電層108上にレジストマスク105aおよびレジストマスク105bを形成し
、当該レジストマスク105aおよびレジストマスク105bを用いて導電層102およ
び導電層108を選択的にエッチングして、導電層106a、導電層106b、導電層1
09a、導電層109bを形成する(図13(B1)、図13(B2)参照)。
本実施の形態に係る半導体装置の作製方法と、実施の形態1に係る半導体装置の作製方法
との相違点の一は、導電層102および導電層108のエッチング工程にある。本実施の
形態においては、エッチング工程において用いるレジストマスク105aおよびレジスト
マスク105bを、多階調マスクを用いて形成している。
多階調マスクとは、多段階の光量で露光を行うことが可能なマスクである。多階調マスク
を用いることで、例えば、露光、半露光、未露光といった3段階の光量で露光を行うこと
ができる。つまり、多階調マスクを用いることにより、一度の露光及び現像で、複数(代
表的には二種類)の厚さを有するレジストマスクを形成することができる。そのため、多
階調マスクを用いることで、フォトマスクの使用数を削減することができる。
代表的な多階調マスクとしては、グレートーンマスクやハーフトーンマスクがある。グレ
ートーンマスクは、透光性を有する基板上に遮光性を有する材料層により形成された遮光
部と、該遮光性を有する材料層に設けられたスリット部で構成される。スリット部は露光
に用いる光の解像度限界以下の間隔で設けられたスリット(ドットやメッシュなどを含む
)を有することで、光の透過率を制御する機能を有する。なお、スリット部に設けられる
スリットは周期的なものであってもよいし、非周期的なものであってもよい。ハーフトー
ンマスクは、透光性を有する基板上に遮光性を有する材料層により形成された遮光部と、
所定の透光性を有する材料層により形成された半透過部で構成される。半透過部は、その
材料層の材質や厚さに応じた光の透過率を有する。半透過部における透過率は、概ね10
%〜70%の範囲となっている。
図17に、代表的な多階調マスクの断面を示す。図17(A1)は、グレートーンマスク
400を示しており、図17(B1)は、ハーフトーンマスク410を示している。
図17(A1)に示すグレートーンマスク400は、透光性を有する基板401に遮光性
を有する材料層により形成された遮光部402、および遮光性を有する材料層のパターン
により形成されたスリット部403で構成されている。
スリット部403は、露光に用いる光の解像度限界以下の間隔で設けられたスリットを有
する。透光性を有する基板401としては、石英等を用いることができる。遮光部402
およびスリット部403を構成する遮光層は、金属膜を用いて形成すればよく、好ましく
はクロム又は酸化クロム等により形成される。図17(A1)に示すグレートーンマスク
400に光を照射する場合には、図17(A2)に示される透過率が得られる。
図17(B1)に示すハーフトーンマスク410は、透光性を有する基板411上に遮光
性を有する材料層により形成された遮光部412、および所定の透光性を有する材料層に
より形成された半透過部413で構成されている。
半透過部413は、MoSiN、MoSi、MoSiO、MoSiON、CrSi等の材
料層を用いて形成することができる。遮光部412は、グレートーンマスクの遮光部と同
様の材料を用いて形成すればよい。なお、図17(B1)において、遮光部412は、所
定の透光性を有する材料層と、遮光性を有する材料層の積層構造で形成されている。図1
7(B1)に示すハーフトーンマスク410に光を照射する場合には、図17(B2)に
示される透過率が得られる。
上記のような多階調マスクを用いて、露光および現像を行うことで、膜厚の異なる領域を
有するレジストマスク105aを形成することができる。
導電層102および導電層108のエッチングには、ウエットエッチング、ドライエッチ
ングのいずれを用いても良い。ただし、この段階においては、導電層102および導電層
108が共にエッチングされることが必要である。当該エッチングにより、トランジスタ
のソース電極として機能する導電層106aと、トランジスタのドレイン電極および保持
容量の電極として機能する導電層106bの形状が確定する。
次に、レジストマスク105aを後退させてレジストマスク111を形成すると共に、レ
ジストマスク105bを除去し、レジストマスク111を用いて導電層109aを選択的
にエッチングして導電層112を形成し、あわせて導電層109bを除去する(図13(
C1)、図13(C2)参照)。レジストマスク105aを後退させる手段(およびレジ
ストマスク105bを除去する手段)としては、例えば、酸素プラズマを用いたアッシン
グ処理などがあるが、上記手段はこれに限定する必要はない。
導電層109aのエッチングおよび導電層109bの除去には、ウエットエッチング、ド
ライエッチングのいずれを用いても良い。ただし、この段階においては、導電層106a
(導電層106b)と、導電層109a(導電層109b)との選択比が取れる条件でエ
ッチングを行う。つまり、当該エッチングによって導電層106aおよび導電層106b
の形状が大きく変化しないことが重要になる。当該エッチングにより、トランジスタのソ
ース配線として機能する導電層112の形状が確定する。ここで、導電層112は遮光性
を有する材料を用いて形成されているため、遮光機能を有する。
なお、上記エッチングの後にはレジストマスク111は除去する。上記の各種導電層は、
後に形成される絶縁層などの被覆性を向上し、段切れを防止するために、その端部がテー
パー形状となるように形成することが好ましい。このように、導電層をテーパー形状とな
るように形成することで、半導体装置の歩留まり向上という課題を解決することができる
。ひいては、半導体装置の製造コスト抑制につながる。
また、導電層109aをエッチングして導電層112を形成する際に、後にコンタクトホ
ールが形成される領域に導電層を形成しても良い(実施の形態1における図7(A)、図
7(B)に対応)。このような構成を採用することで、コンタクトホールが形成される領
域を遮光することができる。これにより、コンタクト領域における電極(画素電極)の表
面凹凸による表示不具合を低減できるため、コントラストが向上する。つまり、表示特性
の向上という課題を解決することができる。なお、当該構成は液晶表示装置において特に
効果的であるが、他の半導体装置に適用しても良いことは言うまでもない。この場合、遮
光が必要な領域に導電層を適宜形成すれば良い。
次に、少なくとも導電層106aおよび導電層106bを覆うように半導体層114を形
成する(図13(D1)、図13(D2)参照)。本実施の形態では、導電層106a、
導電層106b、導電層112を覆うように、基板100上に半導体層114を形成する
。半導体層114の詳細については実施の形態1を参照することができる。
なお、半導体層114を形成する前に、半導体層114の被形成面(例えば、導電層10
6aおよび導電層106bの表面、下地膜を形成した場合には下地膜の表面を含む)にプ
ラズマ処理を行ってもよい。プラズマ処理を行うことにより、被形成面に付着しているゴ
ミなどを除去することができる。また、上述のプラズマ処理を行った後、大気に曝すこと
なく半導体層114を形成することにより、導電層106aおよび導電層106bと、半
導体層114との電気的接続を良好に行うことができる。つまり、半導体装置の歩留まり
向上、信頼性向上といった課題を解決することが可能である。
次に、半導体層114上にレジストマスク116aおよびレジストマスク116bを形成
し、当該レジストマスク116aおよびレジストマスク116bを用いて半導体層114
を選択的にエッチングして、半導体層118aおよび半導体層118bを形成する(図1
4(A1)、図14(A2)参照)。該工程の詳細についても実施の形態1を参照するこ
とができる。
その後、200℃〜600℃、代表的には300℃〜500℃の熱処理を行うと良い。こ
こでは、窒素雰囲気下で350℃、1時間の熱処理を行う。この熱処理により半導体層1
18aおよび半導体層118bの半導体特性を向上させることができる。なお、上記熱処
理のタイミングは、半導体層118aおよび半導体層118bの形成後であれば特に限定
されない。
次に、半導体層118aおよび半導体層118bを覆うように、ゲート絶縁層120を形
成する(図14(B1)、図14(B2)参照)。ゲート絶縁層120の詳細については
、実施の形態1を参照することができる。
次に、ゲート絶縁層120上に、導電層122および導電層128を順に積層して形成す
る(図14(C1)、図14(C2)参照)。導電層122、導電層128の詳細につい
ては実施の形態1を参照することができる。
図示しないが、絶縁面を有する基板100上には下地膜を設けるとよい。下地膜の詳細に
ついても実施の形態1を参照することができる。
次に、導電層128上にレジストマスク117aおよびレジストマスク117bを形成し
、当該レジストマスク117aおよびレジストマスク117bを用いて導電層122およ
び導電層128を選択的にエッチングして、導電層126a、導電層126b、導電層1
29a、導電層129bを形成する(図15(A1)、図15(A2)参照)。
本実施の形態に係る半導体装置の作製方法と、実施の形態1に係る半導体装置の作製方法
との相違点の一は、導電層122および導電層128のエッチング工程にある。本実施の
形態においては、エッチング工程において用いるレジストマスク117aおよびレジスト
マスク117bを、多階調マスクを用いて形成している。多階調マスクその他の詳細につ
いては、レジストマスク105aおよびレジストマスク105bに係る記載を参照すれば
よい。
多階調マスクを用いて露光および現像を行うことで、膜厚の異なる領域を有するレジスト
マスク117aを形成することができる。
導電層122および導電層128のエッチングには、ウエットエッチング、ドライエッチ
ングのいずれを用いても良い。ただし、この段階においては、導電層122および導電層
128が共にエッチングされることが必要である。当該エッチングにより、トランジスタ
のゲート電極として機能する導電層126a、および保持容量の電極として機能する導電
層126bの形状が確定する。
次に、レジストマスク117aを後退させてレジストマスク131を形成すると共に、レ
ジストマスク117bを除去し、レジストマスク131を用いて導電層129aを選択的
にエッチングして導電層132aおよび導電層132bを形成し、あわせて導電層129
bを除去する(図15(B1)、図15(B2)参照、導電層132bについては図12
(A)参照)。レジストマスク117aを後退させる手段(およびレジストマスク117
bを除去する手段)や、導電層129aのエッチング(導電層129bの除去)の詳細に
ついては、レジストマスク105aを後退させる手段(およびレジストマスク105bを
除去する手段)や、導電層109aのエッチング(導電層109bの除去)の記載を参照
することができる。なお、この段階においては、導電層126a(導電層126b)と、
導電層129a(導電層129b)との選択比が取れる条件でエッチングを行う。つまり
、当該エッチングによって導電層126aおよび導電層126bの形状が大きく変化しな
いことが重要になる。当該エッチングにより、トランジスタのゲート配線として機能する
導電層132aおよび保持容量の配線として機能する導電層132bの形状が確定する。
ここで、導電層132aは遮光性を有する材料を用いて形成されているため、遮光機能を
有する。
なお、上記エッチングの後にはレジストマスク131は除去する。上記の各種導電層は、
後に形成される絶縁層などの被覆性を向上し、段切れを防止するために、その端部がテー
パー形状となるように形成することが好ましい。このように、導電層をテーパー形状とな
るように形成することで、半導体装置の歩留まり向上という課題を解決することができる
なお、導電層106bと導電層126bとが重畳する領域の面積は適宜変更することがで
きる。本実施の形態において示すように、導電層106bと導電層126bとは透光性を
有する材料を用いて形成されているため、重畳する領域の面積を増大させて容量値を増加
させる場合であっても、開口率を低下させずに済むという利点がある。つまり、容量値の
増加という課題を、開口率の低下を伴わずに解決することができる。
また、本実施の形態においては、ソース電極として機能する導電層106aおよびドレイ
ン電極として機能する導電層106bと、ゲート電極として機能する導電層126aの一
部が重畳するように導電層106a、導電層106b、導電層126aを形成しているが
、半導体層118aの一部の導電性を高めることができる場合には、導電層106aまた
は導電層106bと、導電層126aとを重畳させない構成としても良い(実施の形態1
における図9(A)、図9(B)に対応)。詳細については実施の形態1を参照すること
ができる。このように、導電層106aまたは導電層106bと、導電層126aとを重
畳させない構成とすることにより、導電層106a(または導電層106b)と導電層1
26aとの重畳に起因する寄生容量を低減することができる。つまり、半導体装置の特性
向上という課題を解決することができる。
また、導電層126b上に残存するように導電層132bを形成しても良い(実施の形態
1における図11(A)、図11(B)に対応)。このように、導電層132bを形成す
ることにより、容量配線の配線抵抗を低減することができる。なお、導電層126b上に
おける導電層132bの幅は、導電層126bと比較して十分に小さくすることが好まし
い。このように導電層132bを形成することにより、容量配線の配線抵抗を低減すると
いう課題を、実質的な開口率の低下なしに解決することができる。
次に、ゲート絶縁層120、導電層126a、導電層126b、導電層132a、導電層
132bを覆うように絶縁層134を形成する(図15(C1)、図15(C2)参照)
。絶縁層134の詳細については実施の形態1を参照することができる。
なお、絶縁層134が無くとも大きな不都合が生じない場合には、絶縁層134を形成し
ない構成とすることができる。この場合、工程を簡略化することができるというメリット
がある。
その後、絶縁層134に導電層106bに達するコンタクトホール136を形成し、導電
層106bの表面の一部を露出させる(図16(A1)、図16(A2)参照)。
そして、絶縁層134を覆うように、導電層138を形成する(図16(B1)、図16
(B2)参照)。絶縁層134にはコンタクトホールが形成されているため、導電層10
6bと導電層138とは電気的に接続されることになる。導電層138の詳細については
実施の形態1を参照することができる。
次に、導電層138上にレジストマスクを形成し、当該レジストマスクを用いて導電層1
38を選択的にエッチングして、導電層140を形成する(図16(C1)、図16(C
2)参照)。ここで、導電層140は、画素電極としての機能を有する。導電層140そ
の他の詳細についても実施の形態1を参照することができる。
以上により、透光性を有するトランジスタ150および透光性を有する保持容量152を
備えた半導体装置を作製することができる(図16(C1)、図16(C2)参照)。
なお、本実施の形態においては、多階調マスクを用いて各種配線や電極を形成しているが
、開示する発明の一態様はこれに限定して解釈されない。導電層106aや導電層112
の形成工程、または導電層126aや導電層132aの形成工程のいずれか一方のみを、
多階調マスクを用いる方法で行っても良い。
本実施の形態では、多階調マスクを用いてレジストマスクを形成し、エッチングを行って
いる。このため、フォトマスクの使用数を抑え、工程数を減少させることができる。つま
り、半導体装置の製造コストを抑制するという課題を解決することが可能である。
本実施の形態は、他の実施の形態と適宜組み合わせて用いることができる。
(実施の形態3)
本実施の形態では、半導体装置の他の例について、図18乃至図21を用いて説明する。
なお、本実施の形態に係る半導体装置は、多くの部分で実施の形態1に係る半導体装置と
共通している。したがって、以下においては、重複する構成、重複する符号などの説明は
省略する。
図18は、本実施の形態に係る半導体装置の構成の一例である。当該構成は、特に、エレ
クトロルミネッセンス表示装置(EL表示装置)に用いるのに好適であるが、開示される
発明はこれに限定されない。なお、図18(A)は平面図であり、図18(B)は図18
(A)のE−Fにおける断面図である。
図18(A)に示す半導体装置は、ソース配線として機能する導電層112と、導電層1
12と同様にして形成された電源配線として機能する導電層162と、導電層112およ
び導電層162と交差し、ゲート配線として機能する導電層132aと、導電層132a
と導電層112の交差部付近のトランジスタ150と、導電層162と電気的に接続され
たトランジスタ154と、導電層162と電気的に接続された保持容量156と、を有す
る画素部を備えている(図18(A)、図18(B)参照)。なお、図18(A)におい
て、導電層112および導電層162と、導電層132aとは90°の角度で交差してい
るが、開示する発明は当該構成に限定されない。
トランジスタ150は、ソース電極として機能する導電層106aと、ドレイン電極とし
て機能する導電層106bと、半導体層118aと、ゲート絶縁層120と、ゲート電極
として機能する導電層126aと、で構成されるいわゆるトップゲート型のトランジスタ
である(図18(A)、図18(B)参照)。同様に、トランジスタ154は、ソース電
極として機能する導電層106cと、ドレイン電極として機能する導電層106dと、半
導体層118cと、ゲート絶縁層120と、ゲート電極として機能する導電層126cと
、で構成される。また、保持容量156は、導電層106eと、ゲート絶縁層120と、
導電層126cと、で構成されている。なお、上記においても、ソース電極およびドレイ
ン電極の称呼は便宜的なものに過ぎない。
ここで、導電層112と導電層106aは電気的に接続されており、導電層106bと導
電層126cとは、接続部158において、導電層142を介して電気的に接続されてい
る(図18(A)、図18(B)参照)。また、導電層162と導電層106cは電気的
に接続されており、導電層106dと導電層140は電気的に接続されており、導電層1
62と導電層106eは電気的に接続されている。なお、画素電極として機能する導電層
140と導電層142とは同一の工程で作製することができる。また、導電層106dと
導電層140とを接続するためのコンタクトホール、導電層106bと導電層142とを
接続するためのコンタクトホール、導電層126cと導電層142とを接続するためのコ
ンタクトホールは、同一の工程で作製することができる。
トランジスタ150を構成する導電層106a、導電層106b、半導体層118a、導
電層126a、トランジスタ154を構成する導電層106c、導電層106d、半導体
層118c、導電層126c、および保持容量156を構成する導電層106eは、透光
性を有する材料で形成されている。これにより、画素の開口率向上が実現されている。
また、導電層112、導電層132a、および導電層162は、低抵抗材料で形成されて
いる。このため、配線抵抗を低減し、消費電力を低減することができる。また、導電層1
12、導電層132a、および導電層162は、遮光性を有する材料で形成されている。
このため、画素間を遮光することができる。
なお、上記においては、一つの画素に二つのトランジスタを有する場合について説明して
いるが、開示される発明はこれに限定されない。一つの画素に三つ以上のトランジスタを
設けることもできる。
図19は、本実施の形態に係る半導体装置の構成の他の一例である。当該構成は、特に、
エレクトロルミネッセンス表示装置(EL表示装置)に用いるのに好適であるが、開示さ
れる発明はこれに限定されない。なお、図19(A)は平面図であり、図19(B)は図
19(A)のE−Fにおける断面図である。
図19に示される構成は、基本的には、図18に示される構成と同様である。図18に示
される構成との相違点は接続部158にあり、図18では、導電層106bと導電層12
6cが導電層142を介して接続されているのに対して、図19では、導電層106bと
導電層126cが直接接続されている(図19(A)、図19(B)参照)。この場合、
導電層142が不要となるため、画素電極として機能する導電層140をより大きくする
ことが可能であり、図18に示される構成と比較して開口率を向上させることができる。
なお、導電層106bと導電層126cとの電気的接続を実現するためには、導電層12
6cの形成前に、ゲート絶縁層120に対してコンタクトホールを形成しておく必要があ
る。
図20は、本実施の形態に係る半導体装置の構成の他の一例である。当該構成は、表示装
置に用いるのに好適であるが、開示される発明はこれに限定されない。なお、図20(A
)は平面図であり、図20(B)は図20(A)のA−Bにおける断面図である。
図20に示される構成は、基本的には、図1に示される構成と同様である。図1に示され
る構成との相違点は、ソース電極として機能する導電層106aとドレイン電極として機
能する導電層106bの形状にある。より具体的には、図20に示される構成において、
チャネル形成領域の形状がU字型となるように導電層106aと導電層106bが形成さ
れている(図20(A)、図20(B)参照)。これにより、同じ面積のトランジスタを
形成する場合でも、チャネル幅(W)を大きくすることが可能である。なお、チャネル形
成領域の形状はU字型に限定されず、求められるチャネル幅に応じて適宜その形状を変更
することができる。
図21は、本実施の形態に係る半導体装置の構成の他の一例である。当該構成は、表示装
置に用いるのに好適であるが、開示される発明はこれに限定されない。なお、図21(A
)は平面図であり、図21(B)は図21(A)のA−Bにおける断面図である。
図21に示される構成は、図1に示される構成と類似している。図1に示される構成との
相違点は、ゲート配線として機能する導電層132aがゲート電極としても機能する点に
ある(図21(A)、図21(B)参照)。つまり、図21においては、導電層126a
に対応する導電層が存在しない。導電層132aは低抵抗材料を用いて形成することがで
きるから、ゲート電極として導電層126a(透光性材料を用いた導電層)を用いる場合
と比較して、半導体層118aに対する電界を一様なものとすることができる。このため
、トランジスタ150の素子特性を向上させることができる。
なお、図21においては、導電層126aを設けない構成を採用しているが、開示される
発明はこれに限定されない。導電層132aと電気的に接続された導電層126aを設け
ても良い。また、図21においては導電層106aを形成しているが、導電層106aを
設けずに、導電層106aの機能を導電層112に兼ねさせても良い。これは、ソース電
極の機能を有する導電層が、ゲート配線として機能する導電層の下部に形成されることに
なるため、透光性を有する材料を用いてソース電極として機能する導電層を形成する必要
性が低下することによる。この場合、少なくとも導電層106bと、導電層126bとを
、透光性を有する材料によって形成すればよい。
また、本実施の形態に係る構成を、多階調マスクを用いる場合に採用することができるの
はいうまでもない。多階調マスクを用いる場合には、導電層126aが導電層132aの
下部に形成される。
本実施の形態は、他の実施の形態と適宜組み合わせて用いることができる。
(実施の形態4)
本実施の形態では、薄膜トランジスタを作製し、該薄膜トランジスタを、画素部や周辺回
路部(駆動回路など)に用いて表示機能を有する半導体装置(表示装置)を作製する場合
について説明する。周辺回路部の一部または全部を、画素部と同じ基板上に一体形成する
ことにより、システムオンパネルを形成することができる。
表示装置は表示素子を含む。表示素子としては液晶素子(液晶表示素子ともいう)や、発
光素子(発光表示素子ともいう)などを用いることができる。発光素子は、電流または電
圧によって輝度が制御される素子をその範疇に含んでおり、具体的には無機EL(Ele
ctro Luminescence)、有機EL等が含まれる。また、電子インクなど
、電気的作用によりコントラストが変化する表示媒体を適用しても良い。
また、表示装置は、表示素子が封止された状態にあるパネルと、該パネルにコントローラ
を含むIC等を実装した状態にあるモジュールとを含む。さらに、表示装置を構成する素
子基板は、電流を表示素子に供給するための手段を各画素に備える。素子基板は、具体的
には、表示素子の画素電極が形成された状態であっても良いし、画素電極となる導電層の
成膜後、エッチング前の状態であっても良い。
以下、本実施の形態では、液晶表示装置の一例について示す。図22は、第1の基板40
01上に形成された薄膜トランジスタ4010、薄膜トランジスタ4011および液晶素
子4013を、第2の基板4006とシール材4005によって封止した、パネルの平面
図および断面図である。ここで、図22(A1)および図22(A2)は平面図を示し、
図22(B)は、図22(A1)および図22(A2)のM−Nにおける断面図に相当す
る。
第1の基板4001上に設けられた画素部4002および走査線駆動回路4004を囲む
ようにして、シール材4005が設けられている。また、画素部4002と走査線駆動回
路4004の上に、第2の基板4006が設けられている。つまり、画素部4002と走
査線駆動回路4004は、第1の基板4001とシール材4005と第2の基板4006
とによって、液晶層4008と共に封止されている。また、第1の基板4001上のシー
ル材4005によって囲まれる領域とは異なる領域に、別途用意された基板上に単結晶半
導体または多結晶半導体で形成された信号線駆動回路4003が実装されている。
なお、別途形成した駆動回路の接続方法は、特に限定されるものではなく、COG法、ワ
イヤボンディング法、TAB法などを適宜用いることができる。図22(A1)は、CO
G法により信号線駆動回路4003を実装する例であり、図22(A2)は、TAB法に
より信号線駆動回路4003を実装する例である。
また、第1の基板4001上に設けられた画素部4002と走査線駆動回路4004は、
薄膜トランジスタを複数有しており、図22(B)では、画素部4002に含まれる薄膜
トランジスタ4010と、走査線駆動回路4004に含まれる薄膜トランジスタ4011
を例示している。薄膜トランジスタ4010、薄膜トランジスタ4011上には絶縁層4
020が設けられている。
薄膜トランジスタ4010、薄膜トランジスタ4011には、先の実施の形態などに示す
トランジスタを適用することができる。なお、本実施の形態において、薄膜トランジスタ
4010、薄膜トランジスタ4011はnチャネル型トランジスタとした。
また、液晶素子4013が有する画素電極層4030は、薄膜トランジスタ4010と電
気的に接続されている。そして、液晶素子4013の対向電極層4031は第2の基板4
006上に形成されている。上記の画素電極層4030と対向電極層4031、液晶層4
008により、液晶素子4013が形成される。なお、画素電極層4030、対向電極層
4031には、それぞれ配向膜として機能する絶縁層4032、絶縁層4033が設けら
れ、画素電極層4030および対向電極層4031は、これらを介して液晶層4008を
挟持している。
なお、第1の基板4001、第2の基板4006としては、ガラス、金属(代表的にはス
テンレス)、セラミックス、プラスチックなどを用いることができる。プラスチックとし
ては、FRP(Fiberglass−Reinforced Plastics)基板
、PVF(ポリビニルフルオライド)フィルム、ポリエステルフィルム、アクリル樹脂フ
ィルムなどを用いることができる。また、アルミニウム箔をPVFフィルムやポリエステ
ルフィルムで挟んだ構造のシートを用いることもできる。
また、画素電極層4030と対向電極層4031との間の距離(セルギャップ)を制御す
るために、柱状のスペーサ4035が設けられている。柱状のスペーサ4035は絶縁膜
を選択的にエッチングすることで得られる。なお、柱状のスペーサに代えて球状のスペー
サを用いていても良い。また、対向電極層4031は、薄膜トランジスタ4010と同一
基板上に設けられる共通電位線と電気的に接続される。例えば、一対の基板間に配置され
る導電性粒子を介して、対向電極層4031と共通電位線とを電気的に接続することがで
きる。なお、導電性粒子はシール材4005に含有させると良い。
また、配向膜が不要なブルー相を示す液晶を用いてもよい。ブルー相は液晶相の一つであ
り、昇温によってコレステリック相から等方相へ転移する直前に発現する相である。ブル
ー相は狭い温度範囲でしか発現しないため、5重量%以上のカイラル剤を混合させた液晶
組成物を用いると良い。これにより、温度範囲を改善することができる。ブルー相を示す
液晶とカイラル剤とを含む液晶組成物は、応答時間が10μs〜100μsと短く、光学
的等方性を有するため配向処理が不要であり、視野角依存性が小さい、といった特徴を有
している。
なお、本実施の形態では透過型液晶表示装置の一例を示しているが、これに限定されず、
反射型液晶表示装置としても良いし、半透過型液晶表示装置としても良い。
また、本実施の形態で示す液晶表示装置では、基板の外側(視認側)に偏光板を設け、内
側に着色層、および表示素子に用いる電極層を設ける例について示すが、偏光板は基板の
内側に設けてもよい。また、偏光板と着色層の積層構造も本実施の形態に限定されず、偏
光板及び着色層の材料や作製工程条件によって適宜設定すればよい。また、遮光膜として
、ブラックマスク(ブラックマトリクス)を設けてもよい。
また、本実施の形態では、薄膜トランジスタの表面凹凸を低減するため、先の実施の形態
で得られた薄膜トランジスタを絶縁層4020で覆う構成を採用しているが、開示される
発明はこれに限定されない。
絶縁層4020としては、ポリイミド、アクリル、ベンゾシクロブテン、ポリアミド、エ
ポキシ等の、耐熱性を有する有機材料を用いることができる。また上記有機材料の他に、
低誘電率材料(low−k材料)、シロキサン系樹脂、PSG(リンガラス)、BPSG
(リンボロンガラス)等を用いることができる。なお、これらの材料で形成される絶縁膜
を複数積層させて、絶縁層4020を形成してもよい。
ここで、シロキサン系樹脂とは、シロキサン系材料を出発材料として形成されたSi−O
−Si結合を含む樹脂に相当する。置換基としては、有機基(例えばアルキル基やアリー
ル基)やフルオロ基を用いても良い。また、有機基はフルオロ基を有していても良い。
絶縁層4020の形成方法は、特に限定されず、その材料に応じて、スパッタ法、SOG
法、スピンコート、ディップ、スプレー塗布、液滴吐出法(インクジェット法、スクリー
ン印刷、オフセット印刷等)、ドクターナイフ、ロールコーター、カーテンコーター、ナ
イフコーター等を用いることができる。
画素電極層4030、対向電極層4031は、酸化タングステンを含むインジウム酸化物
、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、
酸化チタンを含むインジウム錫酸化物、インジウム錫酸化物(ITOともいう)、インジ
ウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光性を有する導電性
材料を用いることができる。
また、画素電極層4030、対向電極層4031に、導電性高分子(導電性ポリマーとも
いう)を含む導電性組成物を用いても良い。導電性組成物を用いて形成した画素電極は、
シート抵抗が1.0×10Ω/sq.以下、波長550nmにおける透光率が70%以
上であることが好ましい。また、導電性組成物に含まれる導電性高分子の抵抗率は0.1
Ω・cm以下であることが好ましい。
導電性高分子としては、いわゆるπ電子共役系導電性高分子が用いることができる。例え
ば、ポリアニリンまたはその誘導体、ポリピロールまたはその誘導体、ポリチオフェンま
たはその誘導体、若しくはこれらの2種以上の共重合体などがあげられる。
信号線駆動回路4003、走査線駆動回路4004、画素部4002などに与えられる各
種信号は、FPC4018から供給されている。
また、接続端子電極4015は、液晶素子4013が有する画素電極層4030と同じ導
電膜から形成され、端子電極4016は、薄膜トランジスタ4010、薄膜トランジスタ
4011のソース電極層及びドレイン電極層と同じ導電膜で形成されている。
接続端子電極4015は、FPC4018が有する端子と、異方性導電膜4019を介し
て電気的に接続されている。
なお、図22においては、信号線駆動回路4003を別途形成し、第1の基板4001に
実装する例を示しているが、本実施の形態はこの構成に限定されない。走査線駆動回路を
別途形成して実装しても良いし、信号線駆動回路の一部または走査線駆動回路の一部のみ
を別途形成して実装しても良い。
図23は、半導体装置の一形態に相当する液晶表示モジュールに、TFT基板2600を
用いる例を示している。
図23では、TFT基板2600と対向基板2601がシール材2602により固着され
、その間にTFT等を含む素子層2603、配向膜や液晶を含む液晶層2604、着色層
2605などが設けられることにより表示領域が形成されている。着色層2605はカラ
ー表示を行う場合に必要であり、RGB方式の場合には、赤、緑、青の各色に対応した着
色層が、各画素に対応して設けられている。TFT基板2600と対向基板2601の外
側には偏光板2606、偏光板2607、拡散板2613が配設されている。また、光源
は冷陰極管2610と反射板2611により構成されている。回路基板2612は、フレ
キシブル配線基板2609によりTFT基板2600の配線回路部2608と接続され、
これによって、コントロール回路や電源回路などの外部回路が液晶モジュールに組みこま
れる。また、偏光板と液晶層との間には、位相差板を設けても良い。
液晶の駆動方式としては、TN(Twisted Nematic)モード、IPS(I
n−Plane−Switching)モード、FFS(Fringe Field S
witching)モード、MVA(Multi−domain Vertical A
lignment)モード、PVA(Patterned Vertical Alig
nment)モード、ASM(Axially Symmetric aligned
Micro−cell)モード、OCB(Optical Compensated B
irefringence)モード、FLC(Ferroelectric Liqui
d Crystal)モード、AFLC(AntiFerroelectric Liq
uid Crystal)モードなどを用いることができる。
以上の工程により、高性能な液晶表示装置を作製することができる。本実施の形態は、他
の実施の形態と適宜組み合わせて用いることができる。
(実施の形態5)
本実施の形態では、図24を参照して半導体装置の一例であるアクティブマトリクス型の
電子ペーパーについて説明する。半導体装置に用いられる薄膜トランジスタ650は、先
の実施の形態で示す薄膜トランジスタと同様に作製することができる。
図24に示す電子ペーパーは、ツイストボール表示方式を用いたものの一例である。ツイ
ストボール表示方式とは、白と黒に塗り分けられた球形粒子を第1の電極層及び第2の電
極層の間に配置し、第1の電極層及び第2の電極層に電位差を生じさせることによって、
球形粒子の向きを制御して、表示を行う方法である。
基板600上に設けられた薄膜トランジスタ650は開示する発明の薄膜トランジスタで
あり、半導体層が、その上方のゲート電極層と、その下方のソース電極層またはドレイン
電極層とによって挟まれた構造を有している。なお、ソース電極層またはドレイン電極層
は、絶縁層に形成されたコンタクトホールを介して、第1の電極層660と電気的に接続
している。基板602には第2の電極層670が設けられており、第1の電極層660と
第2の電極層670との間には、黒色領域680a及び白色領域680bを有する球形粒
子680が設けられている。また、球形粒子680の周囲は樹脂等の充填材682で満た
されている(図24参照)。図24において、第1の電極層660が画素電極に相当し、
第2の電極層670が共通電極に相当する。第2の電極層670は、薄膜トランジスタ6
50と同一基板上に設けられる共通電位線と電気的に接続される。
ツイストボールの代わりに、電気泳動表示素子を用いることも可能である。その場合、例
えば、透明な液体と、正に帯電した白い微粒子と負に帯電した黒い微粒子とを封入した直
径10μm〜200μm程度のマイクロカプセルを用いる。第1の電極層と第2の電極層
によって電場が与えられると、白い微粒子と黒い微粒子が互いに逆方向に移動し、白また
は黒が表示される。電気泳動表示素子は液晶表示素子に比べて反射率が高いため、補助ラ
イトが不要であり、また、明るさが十分ではない場所であっても表示部を認識することが
可能である。また、表示部に電源が供給されない場合であっても、一度表示した像を保持
することが可能であるという利点を有している。
以上のように、開示する発明を用いることで高性能な電子ペーパーを作製することができ
る。なお、本実施の形態は、他の実施の形態と適宜組み合わせて用いることができる。
(実施の形態6)
本実施の形態では、半導体装置として発光表示装置の例を示す。表示装置の有する表示素
子としては、ここではエレクトロルミネッセンスを利用する発光素子を用いて示す。エレ
クトロルミネッセンスを利用する発光素子は、発光材料が有機化合物であるか、無機化合
物であるかによって区別され、一般的に、前者は有機EL素子、後者は無機EL素子と呼
ばれている。
有機EL素子は、発光素子に電圧を印加することにより、一対の電極から電子および正孔
がそれぞれ発光性の有機化合物を含む層に注入され、電流が流れる。そして、それらキャ
リア(電子および正孔)が再結合することにより発光する。このようなメカニズムから、
該発光素子は、電流励起型の発光素子と呼ばれる。
無機EL素子は、その素子構成により、分散型無機EL素子と薄膜型無機EL素子とに分
類される。分散型無機EL素子は、発光材料の粒子をバインダ中に分散させた発光層を有
するものであり、発光メカニズムはドナー準位とアクセプター準位を利用するドナー−ア
クセプター再結合型発光である。薄膜型無機EL素子は、発光層を誘電体層で挟み込み、
さらにそれを電極で挟んだ構造であり、発光メカニズムは金属イオンの内殻電子遷移を利
用する局在型発光である。なお、ここでは、発光素子として有機EL素子を用いて説明す
る。
発光素子の構成について、図25を用いて説明する。ここでは、駆動用TFTがn型の場
合を例に挙げて、画素の断面構造について説明する。図25(A)、図25(B)、図2
5(C)の半導体装置に用いられるTFT701、TFT711、TFT721は、先の
実施の形態で示す薄膜トランジスタと同様に作製することができる。
発光素子は、光を取り出すために、陽極または陰極の少なくとも一方が透明になっている
。ここで、透明とは、少なくとも発光波長における透過率が十分に高いことを意味する。
光の取り出し方式としては、基板上に薄膜トランジスタ及び発光素子を形成し、該基板と
は反対側の面から光を取り出す上面射出方式(上面取り出し方式)や、基板側の面から光
を取り出す下面射出方式(下面取り出し方式)、基板側およびその反対側の面から光を取
り出す両面射出方式(両面取り出し方式)などがある。
上面射出方式の発光素子について図25(A)を参照して説明する。
図25(A)は、発光素子702から発せられる光が陽極705側に抜ける場合の、画素
の断面図を示している。ここでは、駆動用TFT701と電気的に接続された透光性を有
する導電層707上に、発光素子702が形成されており、陰極703上に発光層704
、陽極705が順に積層されている。陰極703としては、仕事関数が小さく、光を反射
する導電膜を用いることができる。例えば、Ca、Al、MgAg、AlLi等の材料を
用いて陰極703を形成することが望ましい。発光層704は、単層で構成されていても
、複数の層が積層されるように構成されていても良い。複数の層で構成されている場合、
陰極703上に電子注入層、電子輸送層、発光層、ホール輸送層、ホール注入層の順に積
層すると良いが、もちろん、これらの層を全て設ける必要はない。陽極705は光を透過
する導電性材料を用いて形成する。例えば、酸化タングステンを含むインジウム酸化物、
酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸
化チタンを含むインジウム錫酸化物、インジウム錫酸化物(ITOともいう)、インジウ
ム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光性を有する導電性材
料を用いれば良い。
陰極703及び陽極705で発光層704を挟んだ構造を、発光素子702と呼ぶことが
できる。図25(A)に示した画素の場合、発光素子702から発せられる光は、矢印で
示すように陽極705側に射出される。発光素子702の構造は、マイクロキャビティ構
造としても良い。これにより、取り出し波長を選択することが可能となるため、色純度を
向上させることができる。なお、この場合には、取り出し波長にあわせて発光素子702
を構成する各層の厚みを設定することになる。また、所定の反射率を有する材料を用いて
電極を形成すると良い。
陽極705の上には、窒化シリコン、酸化シリコンなどを含む絶縁層を形成しても良い。
これにより、発光素子の劣化を抑制することができる。
次に、下面射出方式の発光素子について図25(B)を参照して説明する。
図25(B)は、発光素子712から発せられる光が陰極713側に抜ける場合の、画素
の断面図を示している。ここでは、駆動用TFT711と電気的に接続された透光性を有
する導電層717上に、発光素子712の陰極713が形成されており、陰極713上に
発光層714、陽極715が順に積層されている。なお、陽極715が透光性を有する場
合、該陽極715上を覆うように遮光膜716を設けても良い。陰極713は、図25(
A)の場合と同様に、仕事関数が小さい導電性材料を用いることができる。ただしその膜
厚は、光を透過する程度(好ましくは、5nm〜30nm程度)とする。例えば20nm
程度の膜厚を有するアルミニウム膜を、陰極713として用いることができる。発光層7
14は、図25(A)と同様に、単層で構成されていても、複数の層が積層されるように
構成されていても良い。陽極715は、光を透過する必要はないが、図25(A)と同様
に、透光性を有する導電性材料を用いて形成しても良い。遮光膜716には、光を反射す
る金属等を用いることができるが、これに限定されない。なお、遮光膜716に反射機能
を有せしめることにより、光の取り出し効率を向上させることが可能である。
陰極713及び陽極715で、発光層714を挟んだ構造を発光素子712と呼ぶことが
できる。図25(B)に示した画素の場合、発光素子712から発せられる光は、矢印で
示すように陰極713側に射出される。発光素子712の構造は、マイクロキャビティ構
造としても良い。また、陽極715の上には絶縁層を形成しても良い。
次に、両面射出方式の発光素子について、図25(C)を参照して説明する。
図25(C)は、駆動用TFT721と電気的に接続された透光性を有する導電層727
上に、発光素子722の陰極723が形成されており、陰極723上に発光層724、陽
極725が順に積層されている。陰極723は、図25(A)の場合と同様に、仕事関数
が小さい導電性材料を用いることができる。ただしその膜厚は、光を透過する程度とする
。例えば20nmの膜厚を有するアルミニウム膜を、陰極723として用いることができ
る。発光層724は、図25(A)と同様に、単層で構成されていても、複数の層が積層
されるように構成されていても良い。陽極725は、図25(A)と同様に、透光性を有
する導電性材料を用いて形成することができる。
陰極723と、発光層724と、陽極725とが重なった構造を発光素子722と呼ぶこ
とができる。図25(C)に示した画素の場合、発光素子722から発せられる光は、矢
印で示すように陽極725側と陰極723側の両方に射出される。発光素子722の構造
は、マイクロキャビティ構造としても良い。また、陽極725の上には絶縁層を形成して
も良い。
なお、ここでは、発光素子として有機EL素子について述べたが、発光素子として無機E
L素子を設けることも可能である。また、ここでは、発光素子の駆動を制御する薄膜トラ
ンジスタ(駆動用TFT)と発光素子が電気的に接続されている例を示したが、駆動用T
FTと発光素子との間に電流制御用TFTが接続されている構成であってもよい。
なお、本実施の形態で示す半導体装置は、図25に示した構成に限定されるものではなく
、各種の変形が可能である。
次に、半導体装置の一形態に相当する発光表示パネル(発光パネルともいう)の外観及び
断面について、図26を参照して説明する。図26は、第1の基板4501上に形成され
た薄膜トランジスタ4509、薄膜トランジスタ4510および発光素子4511を、第
2の基板4506とシール材4505によって封止したパネルの平面図および断面図であ
る。ここで、図26(A)は平面図を示し、図26(B)は、図26(A)のH−Iにお
ける断面図に相当する。
第1の基板4501上に設けられた画素部4502、信号線駆動回路4503a、信号線
駆動回路4503b、走査線駆動回路4504a、走査線駆動回路4504bを囲むよう
にして、シール材4505が設けられている。また、画素部4502、信号線駆動回路4
503a、信号線駆動回路4503b、走査線駆動回路4504a、走査線駆動回路45
04bの上に第2の基板4506が設けられている。つまり、画素部4502、信号線駆
動回路4503a、信号線駆動回路4503b、走査線駆動回路4504a、走査線駆動
回路4504bは、第1の基板4501とシール材4505と第2の基板4506とによ
って、充填材4507と共に密封されている。このように、気密性が高く、脱ガスの少な
い保護フィルム(貼り合わせフィルム、紫外線硬化樹脂フィルム等)やカバー材などを用
いてパッケージング(封入)することが好ましい。
また、第1の基板4501上に設けられた画素部4502、信号線駆動回路4503a、
信号線駆動回路4503b、走査線駆動回路4504a、走査線駆動回路4504bは、
薄膜トランジスタを複数有しており、図26(B)では、画素部4502に含まれる薄膜
トランジスタ4510と、信号線駆動回路4503aに含まれる薄膜トランジスタ450
9を例示している。
薄膜トランジスタ4509、薄膜トランジスタ4510は、先の実施の形態において示し
たトランジスタを適用することができる。なお、本実施の形態において、薄膜トランジス
タ4509、薄膜トランジスタ4510はnチャネル型トランジスタである。
また、4511は発光素子に相当し、発光素子4511が有する画素電極である第1の電
極層4517は、薄膜トランジスタ4510のソース電極層またはドレイン電極層と電気
的に接続されている。なお、発光素子4511の構成は、第1の電極層4517、第2の
電極4512、電界発光層4513、第3の電極層4514の積層構造であるが、本実施
の形態に示した構成に限定されない。発光素子4511から取り出す光の方向などに合わ
せて、上記構成は適宜変更することができる。
隔壁4520は、有機樹脂膜、無機絶縁膜、有機ポリシロキサンなどを用いて形成する。
特に、感光性を有する材料を用いて第1の電極層4517上に開口部を形成し、その開口
部の側壁が、連続した曲率を持つ傾斜面となるようにすることが好ましい。
電界発光層4513は、単層で構成されていても、複数の層が積層されるように構成され
ていても良い。
発光素子4511に酸素、水素、水、二酸化炭素等が侵入しないように、第3の電極層4
514及び隔壁4520上に保護膜を形成してもよい。保護膜としては、窒化珪素膜、窒
化酸化珪素膜、DLC膜等を形成することができる。
また、信号線駆動回路4503a、信号線駆動回路4503b、走査線駆動回路4504
a、走査線駆動回路4504b、画素部4502などに与えられる各種信号は、FPC4
518a、FPC4518bから供給されている。
本実施の形態では、接続端子電極4515が、発光素子4511の第1の電極層4517
と同じ導電膜から形成され、端子電極4516は、薄膜トランジスタ4509や薄膜トラ
ンジスタ4510のソース電極層及びドレイン電極層と同じ導電膜から形成される例につ
いて示している。
接続端子電極4515は、FPC4518aが有する端子と、異方性導電膜4519を介
して電気的に接続されている。
発光素子4511からの光の取り出し方向に位置する基板は、透光性を有さなければなら
ない。透光性を有する基板としては、ガラス板、プラスチック板、ポリエステルフィルム
、アクリルフィルムなどがある。
充填材4507としては、窒素やアルゴンなどの不活性な気体の他に、紫外線硬化樹脂や
熱硬化樹脂などを用いることができる。例えば、PVC(ポリビニルクロライド)、アク
リル、ポリイミド、エポキシ樹脂、シリコーン樹脂、PVB(ポリビニルブチラル)、E
VA(エチレンビニルアセテート)などを用いることができる。本実施の形態では、充填
材として窒素を用いる例について示している。
必要であれば、発光素子の射出面に偏光板、円偏光板(楕円偏光板を含む)、位相差板(
λ/4板、λ/2板)、カラーフィルタなどの光学フィルムを設けてもよい。また、表面
には反射防止処理を施しても良い。例えば、表面の凹凸により反射光を拡散し、映り込み
を低減できるアンチグレア処理を施すことができる。
信号線駆動回路4503a、信号線駆動回路4503b、走査線駆動回路4504a、走
査線駆動回路4504bは、別途用意された基板上の単結晶半導体または多結晶半導体に
よって形成されていても良い。また、信号線駆動回路のみ、若しくはその一部、または走
査線駆動回路のみ、若しくはその一部のみを別途形成して実装しても良く、本実施の形態
は図26の構成に限定されない。
以上の工程により、高性能な発光表示装置(表示パネル)を作製することができる。
次に、デジタル時間階調駆動を適用可能な画素構成およびその動作について説明する。図
39は、デジタル時間階調駆動を適用可能な画素構成の例を示す図である。ここでは、酸
化物半導体層(In−Ga−Zn−O系非単結晶膜)をチャネル形成領域に用いるnチャ
ネル型のトランジスタを1つの画素に2つ用いる例を示す。
図39(A)において、画素6400は、スイッチング用トランジスタ6401、駆動用
トランジスタ6402、発光素子6404および容量素子6403を有している。スイッ
チング用トランジスタ6401はゲートが走査線6406に接続され、第1電極(ソース
電極及びドレイン電極の一方)が信号線6405に接続され、第2電極(ソース電極及び
ドレイン電極の他方)が駆動用トランジスタ6402のゲートに接続されている。駆動用
トランジスタ6402は、ゲートが容量素子6403を介して電源線6407に接続され
、第1電極が電源線6407に接続され、第2電極が発光素子6404の第1電極(画素
電極)に接続されている。発光素子6404の第2電極は共通電極6408に相当する。
なお、発光素子6404の第2電極(共通電極6408側)と第1電極(電源線6407
側)の電位の関係は、どちらが高電位となるように設定されても良い。発光表示装置では
、高電位と低電位との電位差を発光素子6404に印加し、それによって生じる電流で発
光素子6404を発光させるため、高電位と低電位との電位差が発光素子6404のしき
い値電圧以上となるように、それぞれの電位を設定すれば良い。
なお、容量素子6403は駆動用トランジスタ6402のゲート容量を代用して省略する
ことも可能である。駆動用トランジスタ6402のゲート容量は、チャネル領域とゲート
電極との間で容量が形成されるものであってもよい。
ここで、電圧入力電圧駆動方式の場合には、駆動用トランジスタ6402のゲートには、
駆動用トランジスタ6402がオン状態またはオフ状態となるようなビデオ信号を入力す
る。つまり、駆動用トランジスタ6402は線形領域で動作させる。
また、入力信号を異ならせることで、図39(A)と同じ画素構成を用いてアナログ階調
駆動が可能である。例えば、ビデオ信号をアナログとすることで、発光素子6404にビ
デオ信号に応じた電流を流し、アナログ階調駆動を行うことができる。ビデオ信号は駆動
用トランジスタ6402が飽和領域で動作するような信号とすることが好ましい。
また、電源線6407の電位は、パルス状に変化するものであっても良い。この場合、図
39(B)のような構成を採用すると好ましい。
また、図39(A)の構成において、ある画素の発光素子6404の第2電極の電位は、
他の画素の第2電極の電位と共通にすることが多いが(共通電極6408の電位)、陰極
を画素ごとにパターニングして、各々駆動トランジスタと接続させる構成としても良い。
なお、開示する発明の一態様は、図39に示す画素構成に限定して解釈されない。例えば
、図39に示す画素に新たにスイッチ、抵抗素子、容量素子、トランジスタ、論理回路な
どを追加してもよい。
なお、本実施の形態は、他の実施の形態と適宜組み合わせて用いることができる。
(実施の形態7)
本実施の形態では、表示装置において、同一基板上に少なくとも駆動回路の一部と、画素
部に配置する薄膜トランジスタを作製する例について以下に説明する。
表示装置の一例であるアクティブマトリクス型表示装置のブロック図の一例を図27(A
)に示す。図27(A)に示す表示装置は、基板5300上に表示素子を備えた画素を複
数有する画素部5301と、各画素を選択する走査線駆動回路5302と、選択された画
素へのビデオ信号の入力を制御する信号線駆動回路5303とを有する。
表示装置の一例であるアクティブマトリクス型表示装置のブロック図の別の一例を図27
(B)に示す。図27(B)に示す表示装置は、基板5400上に表示素子を備えた画素
を複数有する画素部5401と、各画素を選択する第1の走査線駆動回路5402及び第
2の走査線駆動回路5404と、選択された画素へのビデオ信号の入力を制御する信号線
駆動回路5403とを有する。
図27(B)に示す表示装置の画素に入力されるビデオ信号をデジタル形式とする場合、
画素の輝度はトランジスタのオンとオフの切り替えによって制御される。この場合、例え
ば、面積階調法または時間階調法を用いて表示を行うことができる。面積階調法は、1画
素を複数の副画素に分割し、各副画素を独立に駆動させることによって、階調表示を行う
駆動法である。また、時間階調法は、1フレーム期間を複数のサブフレーム期間に分割す
る等の方法により、トランジスタがオン状態となる期間(またはオフ状態となる期間)を
制御することによって、階調表示を行う駆動法である。なお、発光素子は、液晶素子など
に比べて応答速度が高いので、時間階調法に適している。
図27(B)に示す表示装置は、一つの画素に二つのスイッチング用TFTを配置する場
合であって、一方のスイッチング用TFTのゲート配線である第1の走査線に入力される
信号を第1走査線駆動回路5402で生成し、他方のスイッチング用TFTのゲート配線
である第2の走査線に入力される信号を第2の走査線駆動回路5404で生成する例であ
る。なお、開示する発明の一態様はこれに限定されず、第1の走査線に入力される信号と
、第2の走査線に入力される信号とを、共に1つの走査線駆動回路で生成する構成として
も良い。また、例えば、1つの画素が有するスイッチング用TFTの数によっては、スイ
ッチング素子の動作を制御するために用いられる走査線の数が増加することもあるが、こ
の場合においても、複数の走査線に入力される信号を全て1つの走査線駆動回路で生成し
ても良いし、複数の走査線駆動回路で生成しても良い。
表示装置の画素部に配置する薄膜トランジスタは、先の実施の形態に従って形成すること
ができる。また、駆動回路に用いる薄膜トランジスタの一部または全部を、画素部の薄膜
トランジスタと同一基板上に形成することができる。
なお、保護回路やゲートドライバ、ソースドライバなどの周辺駆動回路部分では、透光性
を有するトランジスタを形成する必要がない。このため、画素部分では光を透過させて、
周辺駆動回路部分では、光を透過させない構成としても良い。
図28に、上記薄膜トランジスタを示す。図28(A)は、多階調マスクを用いずに形成
した場合、図28(B)は、多階調マスクを用いて形成した場合である。図中、左側は駆
動回路部のトランジスタを表しており、右側は画素部のトランジスタを表している。
多階調マスクを用いずに上記駆動回路部の薄膜トランジスタを形成する場合は、ゲート配
線として機能する導電層132aを形成する際に、ゲート電極として機能する導電層28
00を形成し、ソース配線として機能する導電層112を形成する際に、ソース電極(ま
たはドレイン電極)として機能する導電層2802a、導電層2802bを形成する(図
28(A)、図1等参照)。この場合、画素部のトランジスタにおける、ゲート電極とし
て機能する導電層126aや、ソース電極として機能する導電層106a、ドレイン電極
として機能する導電層106bに対応する層を設ける必要はないが、開示する発明の一態
様はこれに限定されない。なお、ソース配線とソース電極(ドレイン配線とドレイン電極
)は一体に形成しても良い。本明細書中において、配線と電極の区別は便宜的なものにす
ぎないから、構造上可能な場合には、配線と電極を一体に形成しても良いし、分離して形
成しても良い。
多階調マスクを用いて上記の薄膜トランジスタを形成する場合には、配線または電極は、
透光性を有する材料を用いて形成される導電層と、低抵抗材料を用いて形成される導電層
との積層構造となる。例えば、ゲート電極は、透光性を有する材料を用いて形成される導
電層2810と、低抵抗材料を用いて形成される導電層2812との積層構造となる(図
28(B)参照)。また、ソース電極またはドレイン電極は、透光性を有する材料を用い
て形成される導電層2814a(または導電層2814b)と、低抵抗材料を用いて形成
される導電層2816a(または導電層2816b)との積層構造となる(図28(B)
参照)。なお、低抵抗材料は遮光性を伴うことが多いため、形成される薄膜トランジスタ
は光を透過しない構成となるが、完全な遮光性(例えば、光の透過率が10%以下)を有
している必要はない。
このように、周辺回路部分に光を透過させない構成の薄膜トランジスタを形成することに
より、電極等に起因する抵抗を低減して薄膜トランジスタの特性を向上させることができ
る。これにより、画素部において開口率を向上させつつ、周辺回路の性能を向上させた半
導体装置を提供することができる。つまり、半導体装置の特性向上という課題を解決する
ことができる。
本実施の形態は、他の実施の形態と適宜組み合わせて用いることができる。
(実施の形態8)
半導体装置は、電子ペーパーとして適用することができる。電子ペーパーは、情報を表示
する、あらゆる分野の電子機器に用いることが可能である。例えば、電子ペーパーを、電
子書籍(電子ブック)、ポスター、電車などの乗り物の車内広告、クレジットカード等の
各種カードにおける表示部分などに適用することができる。電子機器の一例を図29、図
30に示す。
図29(A)は、電子ペーパーで作られたポスター2631を示している。広告媒体が紙
の印刷物である場合には、広告の交換は人手によって行われるが、電子ペーパーを用いれ
ば短時間で広告の表示を変えることができる。また、表示も崩れることなく安定した画像
が得られる。なお、ポスターは無線で情報を送受信できる構成としてもよい。
また、図29(B)は、電車などの乗り物の車内広告2632を示している。広告媒体が
紙の印刷物である場合には、広告の交換は人手によって行われるが、電子ペーパーを用い
れば人手を多くかけることなく短時間で広告の表示を変えることができる。また表示も崩
れることなく安定した画像が得られる。なお、ポスターは無線で情報を送受信できる構成
としてもよい。
また、図30は、電子書籍2700の一例を示している。例えば、電子書籍2700は、
筐体2701および筐体2703の2つの筐体で構成されている。筐体2701および筐
体2703は、軸部2711により一体とされており、該軸部2711を軸として開閉動
作を行うことができる。このような構成により、紙の書籍のような動作を行うことが可能
となる。
筐体2701には表示部2705が組み込まれ、筐体2703には表示部2707が組み
込まれている。表示部2705および表示部2707は、続き画面を表示する構成として
もよいし、異なる画面を表示する構成としてもよい。異なる画面を表示する構成とするこ
とで、例えば右側の表示部(図30では表示部2705)に文章を表示し、左側の表示部
(図30では表示部2707)に画像を表示することができる。
また、図30では、筐体2701に操作部などを備えた例を示している。例えば、筐体2
701において、電源2721、操作キー2723、スピーカ2725などを備えている
。操作キー2723により、頁を送ることができる。なお、筐体の表示部と同一面にキー
ボードやポインティングディバイスなどを備える構成としてもよい。また、筐体の裏面や
側面に、外部接続用端子(イヤホン端子、USB端子、またはACアダプタおよびUSB
ケーブルなどの各種ケーブルと接続可能な端子など)、記録媒体挿入部などを備える構成
としてもよい。さらに、電子書籍2700は、電子辞書としての機能を持たせた構成とし
てもよい。
また、電子書籍2700は、無線で情報を送受信できる構成としてもよい。無線により、
電子書籍サーバから、所望の書籍データなどを購入し、ダウンロードする構成とすること
も可能である。
本実施の形態は、他の実施の形態と適宜組み合わせて用いることができる。
(実施の形態9)
本実施の形態においては、液晶表示装置に適用できる画素の構成及び画素の動作について
説明する。なお、本実施の形態における液晶素子の動作モードとして、TN(Twist
ed Nematic)モード、IPS(In−Plane−Switching)モー
ド、FFS(Fringe Field Switching)モード、MVA(Mul
ti−domain Vertical Alignment)モード、PVA(Pat
terned Vertical Alignment)モード、ASM(Axiall
y Symmetric aligned Micro−cell)モード、OCB(O
ptically Compensated Birefringence)モード、F
LC(Ferroelectric Liquid Crystal)モード、AFLC
(AntiFerroelectric Liquid Crystal)などを用いる
ことができる。
図40(A)は、液晶表示装置に適用できる画素構成の一例を示す図である。画素508
0は、トランジスタ5081、液晶素子5082及び容量素子5083を有している。ト
ランジスタ5081のゲートは配線5085と電気的に接続される。トランジスタ508
1の第1端子は配線5084と電気的に接続される。トランジスタ5081の第2端子は
液晶素子5082の第1端子と電気的に接続される。液晶素子5082の第2端子は配線
5087と電気的に接続される。容量素子5083の第1端子は液晶素子5082の第1
端子と電気的に接続される。容量素子5083の第2端子は配線5086と電気的に接続
される。なお、トランジスタの第1端子とは、ソースまたはドレインのいずれか一方であ
り、トランジスタの第2端子とは、ソースまたはドレインの他方のことである。つまり、
トランジスタの第1端子がソースである場合は、トランジスタの第2端子はドレインとな
る。同様に、トランジスタの第1端子がドレインである場合は、トランジスタの第2端子
はソースとなる。
配線5084は信号線として機能させることができる。信号線は、画素の外部から入力さ
れた信号電圧を画素5080に伝達するための配線である。配線5085は走査線として
機能させることができる。走査線は、トランジスタ5081のオンオフを制御するための
配線である。配線5086は容量線として機能させることができる。容量線は、容量素子
5083の第2端子に所定の電圧を加えるための配線である。トランジスタ5081は、
スイッチとして機能させることができる。容量素子5083は、保持容量として機能させ
ることができる。保持容量は、スイッチがオフの状態においても、信号電圧が液晶素子5
082に加わり続けるようにするための容量素子である。配線5087は、対向電極とし
て機能させることができる。対向電極は、液晶素子5082の第2端子に所定の電圧を加
えるための配線である。なお、それぞれの配線が持つことのできる機能はこれに限定され
ず、様々な機能を有することが出来る。例えば、容量線に加える電圧を変化させることで
、液晶素子に加えられる電圧を調整することもできる。なお、トランジスタ5081はス
イッチとして機能すればよいため、トランジスタ5081の極性はPチャネル型でもよい
し、Nチャネル型でもよい。
図40(B)は、液晶表示装置に適用できる画素構成の一例を示す図である。図40(B
)に示す画素構成例は、図40(A)に示す画素構成例と比較して、配線5087が省略
され、かつ、液晶素子5082の第2端子と容量素子5083の第2端子とが電気的に接
続されている点が異なっている以外は、図40(A)に示す画素構成例と同様な構成であ
るとしている。図40(B)に示す画素構成例は、特に、液晶素子が横電界モード(IP
Sモード、FFSモードを含む)である場合に適用できる。なぜならば、液晶素子が横電
界モードである場合、液晶素子5082の第2端子および容量素子5083の第2端子を
同一な基板上に形成させることができるため、液晶素子5082の第2端子と容量素子5
083の第2端子とを電気的に接続させることが容易であるからである。図40(B)に
示すような画素構成とすることで、配線5087を省略できるので、製造工程を簡略なも
のとすることができ、製造コストを低減できる。
図40(A)または図40(B)に示す画素構成は、マトリクス状に複数配置されること
ができる。こうすることで、液晶表示装置の表示部が形成され、様々な画像を表示するこ
とができる。図40(C)は、図40(A)に示す画素構成がマトリクス状に複数配置さ
れている場合の回路構成を示す図である。図40(C)に示す回路構成は、表示部が有す
る複数の画素のうち、4つの画素を抜き出して示した図である。そして、i列j行(i,
jは自然数)に位置する画素を、画素5080_i,jと表記し、画素5080_i,j
には、配線5084_i、配線5085_j、配線5086_jが、それぞれ電気的に接
続される。同様に、画素5080_i+1,jについては、配線5084_i+1、配線
5085_j、配線5086_jと電気的に接続される。同様に、画素5080_i,j
+1については、配線5084_i、配線5085_j+1、配線5086_j+1と電
気的に接続される。同様に、画素5080_i+1,j+1については、配線5084_
i+1、配線5085_j+1、配線5086_j+1と電気的に接続される。なお、各
配線は、同じ列または行に属する複数の画素によって共有されることができる。なお、図
40(C)に示す画素構成において配線5087は対向電極であり、対向電極は全ての画
素において共通であることから、配線5087については自然数iまたはjによる表記は
行なわないこととする。なお、図40(B)に示す画素構成を用いることも可能であるた
め、配線5087が記載されている構成であっても配線5087は必須ではなく、他の配
線と共有されること等によって省略されることができる。
図40(C)に示す画素構成は、様々な方法によって駆動されることができる。特に、交
流駆動と呼ばれる方法によって駆動されることによって、液晶素子の劣化(焼き付き)を
抑制することができる。図40(D)は、交流駆動の1つである、ドット反転駆動が行な
われる場合の、図40(C)に示す画素構成における各配線に加えられる電圧のタイミン
グチャートを表す図である。ドット反転駆動が行なわれることによって、交流駆動が行な
われる場合に視認されるフリッカ(ちらつき)を抑制することができる。
図40(C)に示す画素構成において、配線5085_jと電気的に接続されている画素
におけるスイッチは、1フレーム期間中の第jゲート選択期間において選択状態(オン状
態)となり、それ以外の期間では非選択状態(オフ状態)となる。そして、第jゲート選
択期間の後に、第j+1ゲート選択期間が設けられる。このように順次走査が行なわれる
ことで、1フレーム期間内に全ての画素が順番に選択状態となる。図40(D)に示すタ
イミングチャートでは、電圧が高い状態(ハイレベル)となることで、当該画素における
スイッチが選択状態となり、電圧が低い状態(ローレベル)となることで非選択状態とな
る。なお、これは各画素におけるトランジスタがNチャネル型の場合であり、Pチャネル
型のトランジスタが用いられる場合、電圧と選択状態の関係は、Nチャネル型の場合とは
逆となる。
図40(D)に示すタイミングチャートでは、第kフレーム(kは自然数)における第j
ゲート選択期間において、信号線として用いる配線5084_iに正の信号電圧が加えら
れ、配線5084_i+1に負の信号電圧が加えられる。そして、第kフレームにおける
第j+1ゲート選択期間において、配線5084_iに負の信号電圧が加えられ、配線5
084_i+1に正の信号電圧が加えられる。その後も、それぞれの信号線は、ゲート選
択期間ごとに極性が反転した信号が交互に加えられる。その結果、第kフレームにおいて
は、画素5080_i,jには正の信号電圧、画素5080_i+1,jには負の信号電
圧、画素5080_i,j+1には負の信号電圧、画素5080_i+1,j+1には正
の信号電圧が、それぞれ加えられることとなる。そして、第k+1フレームにおいては、
それぞれの画素において、第kフレームにおいて書き込まれた信号電圧とは逆の極性の信
号電圧が書き込まれる。その結果、第k+1フレームにおいては、画素5080_i,j
には負の信号電圧、画素5080_i+1,jには正の信号電圧、画素5080_i,j
+1には正の信号電圧、画素5080_i+1,j+1には負の信号電圧が、それぞれ加
えられることとなる。このように、同じフレームにおいては隣接する画素同士で異なる極
性の信号電圧が加えられ、さらに、それぞれの画素においては1フレームごとに信号電圧
の極性が反転される駆動方法が、ドット反転駆動である。ドット反転駆動によって、液晶
素子の劣化を抑制しつつ、表示される画像全体または一部が均一である場合に視認される
フリッカを低減することができる。なお、配線5086_j、配線5086_j+1を含
む全ての配線5086に加えられる電圧は、一定の電圧とされることができる。なお、配
線5084のタイミングチャートにおける信号電圧の表記は極性のみとなっているが、実
際は、表示された極性において様々な信号電圧の値をとり得る。なお、ここでは1ドット
(1画素)毎に極性を反転させる場合について述べたが、これに限定されず、複数の画素
毎に極性を反転させることもできる。例えば、2ゲート選択期間毎に書き込む信号電圧の
極性を反転させることで、信号電圧の書き込みにかかる消費電力を低減させることができ
る。他にも、1列毎に極性を反転させること(ソースライン反転)もできるし、1行ごと
に極性を反転させること(ゲートライン反転)もできる。
なお、画素5080における容量素子5083の第2端子には、1フレーム期間において
一定の電圧が加えられていれば良い。ここで、走査線として用いる配線5085に加えら
れる電圧は1フレーム期間の大半においてローレベルであり、ほぼ一定の電圧が加えられ
ていることから、画素5080における容量素子5083の第2端子の接続先は、配線5
085でも良い。図40(E)は、液晶表示装置に適用できる画素構成の一例を示す図で
ある。図40(E)に示す画素構成は、図40(C)に示す画素構成と比較すると、配線
5086が省略され、かつ、画素5080内の容量素子5083の第2端子と、一つ前の
行における配線5085とが電気的に接続されていることを特徴としている。具体的には
、図40(E)に表記されている範囲においては、画素5080_i,j+1および画素
5080_i+1,j+1における容量素子5083の第2端子は、配線5085_jと
電気的に接続される。このように、画素5080内の容量素子5083の第2端子と、一
つ前の行における配線5085とを電気的に接続させることで、配線5086を省略する
ことができるので、画素の開口率を向上できる。なお、容量素子5083の第2端子の接
続先は、一つ前の行における配線5085ではなく、他の行における配線5085でも良
い。なお、図40(E)に示す画素構成の駆動方法は、図40(C)に示す画素構成の駆
動方法と同様のものを用いることができる。
なお、容量素子5083および容量素子5083の第2端子に電気的に接続される配線を
用いて、信号線として用いる配線5084に加える電圧を小さくすることができる。この
ときの画素構成および駆動方法について、図40(F)および図40(G)を用いて説明
する。図40(F)に示す画素構成は、図40(A)に示す画素構成と比較して、配線5
086を1画素列あたり2本とし、かつ、画素5080における容量素子5083の第2
端子との電気的な接続を、隣接する画素で交互に行なうことを特徴としている。なお、2
本とした配線5086は、それぞれ配線5086−1および配線5086−2と呼ぶこと
とする。具体的には、図40(F)に表記されている範囲においては、画素5080_i
,jにおける容量素子5083の第2端子は、配線5086−1_jと電気的に接続され
、画素5080_i+1,jにおける容量素子5083の第2端子は、配線5086−2
_jと電気的に接続され、画素5080_i,j+1における容量素子5083の第2端
子は、配線5086−2_j+1と電気的に接続され、画素5080_i+1,j+1に
おける容量素子5083の第2端子は、配線5086−1_j+1と電気的に接続される
そして、例えば、図40(G)に示すように、第kフレームにおいて画素5080_i,
jに正の極性の信号電圧が書き込まれる場合、配線5086−1_jは、第jゲート選択
期間においてはローレベルとさせ、第jゲート選択期間の終了後、ハイレベルに変化させ
る。そして、1フレーム期間中はそのままハイレベルを維持し、第k+1フレームにおけ
る第jゲート選択期間に負の極性の信号電圧が書き込まれた後、ローレベルに変化させる
。このように、正の極性の信号電圧が画素に書き込まれた後に、容量素子5083の第2
端子に電気的に接続される配線の電圧を正の方向に変化させることで、液晶素子に加えら
れる電圧を正の方向に所定の量だけ変化させることができる。すなわち、その分画素に書
き込む信号電圧を小さくすることができるため、信号書き込みにかかる消費電力を低減さ
せることができる。なお、第jゲート選択期間に負の極性の信号電圧が書き込まれる場合
は、負の極性の信号電圧が画素に書き込まれた後に、容量素子5083の第2端子に電気
的に接続される配線の電圧を負の方向に変化させることで、液晶素子に加えられる電圧を
負の方向に所定の量だけ変化させることができるので、正の極性の場合と同様に、画素に
書き込む信号電圧を小さくすることができる。つまり、容量素子5083の第2端子に電
気的に接続される配線は、同じフレームの同じ行において、正の極性の信号電圧が加えら
れる画素と、負の極性の信号電圧が加えられる画素とで、それぞれ異なる配線であること
が好ましい。図40(F)は、第kフレームにおいて正の極性の信号電圧が書き込まれる
画素には配線5086−1が電気的に接続され、第kフレームにおいて負の極性の信号電
圧が書き込まれる画素には配線5086−2が電気的に接続される例である。ただし、こ
れは一例であり、例えば、正の極性の信号電圧が書き込まれる画素と負の極性の信号電圧
が書き込まれる画素が2画素毎に現れるような駆動方法の場合は、配線5086−1およ
び配線5086−2の電気的接続もそれに合わせて、2画素毎に交互に行なわれることが
好ましい。さらに言えば、1行全ての画素で同じ極性の信号電圧が書き込まれる場合(ゲ
ートライン反転)も考えられるが、その場合は、配線5086は1行あたり1本でよい。
つまり、図40(C)に示す画素構成においても、図40(F)および図40(G)を用
いて説明したような、画素に書き込む信号電圧を小さくする駆動方法を用いることができ
る。
次に、液晶素子が、MVAモードまたはPVAモード等に代表される、垂直配向(VA)
モードである場合に特に好ましい画素構成およびその駆動方法について述べる。VAモー
ドは、製造時にラビング工程が不要、黒表示時の光漏れが少ない、駆動電圧が低い等の優
れた特徴を有するが、画面を斜めから見たときに画質が劣化してしまう(視野角が狭い)
という問題点も有する。VAモードの視野角を広くするには、図41(A)および図41
(B)に示すように、1画素に複数の副画素(サブピクセル)を有する画素構成とするこ
とが有効である。図41(A)および図41(B)に示す画素構成は、画素5080が2
つの副画素(副画素5080−1,副画素5080−2)を含む場合の一例を表すもので
ある。なお、1つの画素における副画素の数は2つに限定されず、様々な数の副画素を用
いることができる。副画素の数が大きいほど、より視野角を広くすることができる。複数
の副画素は互いに同一の回路構成とすることができ、ここでは、全ての副画素が図40(
A)に示す回路構成と同様であるとして説明する。なお、第1の副画素5080−1は、
トランジスタ5081−1、液晶素子5082−1、容量素子5083−1を有するもの
とし、それぞれの接続関係は図40(A)に示す回路構成に準じることとする。同様に、
第2の副画素5080−2は、トランジスタ5081−2、液晶素子5082−2、容量
素子5083−2を有するものとし、それぞれの接続関係は図40(A)に示す回路構成
に準じることとする。
図41(A)に示す画素構成は、1画素を構成する2つの副画素に対し、走査線として用
いる配線5085を2本(配線5085−1,配線5085−2)有し、信号線として用
いる配線5084を1本有し、容量線として用いる配線5086を1本有する構成を表す
ものである。このように、信号線および容量線を2つの副画素で共用することにより、開
口率を向上させることができ、さらに、信号線駆動回路を簡単なものとすることができる
ので製造コストが低減でき、かつ、液晶パネルと駆動回路ICの接続点数を低減できるの
で、歩留まりを向上できる。図41(B)に示す画素構成は、1画素を構成する2つの副
画素に対し、走査線として用いる配線5085を1本有し、信号線として用いる配線50
84を2本(配線5084−1,配線5084−2)有し、容量線として用いる配線50
86を1本有する構成を表すものである。このように、走査線および容量線を2つの副画
素で共用することにより、開口率を向上させることができ、さらに、全体の走査線本数を
低減できるので、高精細な液晶パネルにおいても1つあたりのゲート線選択期間を十分に
長くすることができ、それぞれの画素に適切な信号電圧を書き込むことができる。
図41(C)および図41(D)は、図41(B)に示す画素構成において、液晶素子を
画素電極の形状に置き換えた上で、各素子の電気的接続状態を模式的に表した例である。
図41(C)および図41(D)において、電極5088−1は第1の画素電極を表し、
電極5088−2は第2の画素電極を表すものとする。図41(C)において、第1画素
電極5088−1は、図41(B)における液晶素子5082−1の第1端子に相当し、
第2画素電極5088−2は、図41(B)における液晶素子5082−2の第1端子に
相当する。すなわち、第1画素電極5088−1は、トランジスタ5081−1のソース
またはドレインの一方と電気的に接続され、第2画素電極5088−2は、トランジスタ
5081−2のソースまたはドレインの一方と電気的に接続される。一方、図41(D)
においては、画素電極とトランジスタの接続関係を逆にする。すなわち、第1画素電極5
088−1は、トランジスタ5081−2のソースまたはドレインの一方と電気的に接続
され、第2画素電極5088−2は、トランジスタ5081−1のソースまたはドレイン
の一方と電気的に接続されるものとする。
図41(C)および図41(D)で示したような画素構成を、マトリクス状に交互に配置
することで、特別な効果を得ることができる。このような画素構成およびその駆動方法の
一例を、図41(E)および図41(F)に示す。図41(E)に示す画素構成は、画素
5080_i,jおよび画素5080_i+1,j+1に相当する部分を図41(C)に
示す構成とし、画素5080_i+1,jおよび画素5080_i,j+1に相当する部
分を図41(D)に示す構成としたものである。この構成において、図41(F)に示す
タイミングチャートのように駆動すると、第kフレームの第jゲート選択期間において、
画素5080_i,jの第1画素電極および画素5080_i+1,jの第2画素電極に
正の極性の信号電圧が書き込まれ、画素5080_i,jの第2画素電極および画素50
80_i+1,jの第1画素電極に負の極性の信号電圧が書き込まれる。さらに、第kフ
レームの第j+1ゲート選択期間において、画素5080_i,j+1の第2画素電極お
よび画素5080_i+1,j+1の第1画素電極に正の極性の信号電圧が書き込まれ、
画素5080_i,j+1の第1画素電極および画素5080_i+1,j+1の第2画
素電極に負の極性の信号電圧が書き込まれる。第k+1フレームにおいては、各画素にお
いて信号電圧の極性が反転される。こうすることによって、副画素を含む画素構成におい
てドット反転駆動に相当する駆動を実現しつつ、信号線に加えられる電圧の極性を1フレ
ーム期間内で同一なものとすることができるので、画素の信号電圧書込みにかかる消費電
力を大幅に低減することができる。なお、配線5086_j、配線5086_j+1を含
む全ての配線5086に加えられる電圧は、一定の電圧とされることができる。
さらに、図41(G)および図41(H)に示す画素構成およびその駆動方法によって、
画素に書き込まれる信号電圧の大きさを小さくすることができる。これは、それぞれの画
素が有する複数の副画素に電気的に接続される容量線を、副画素毎に異ならせるものであ
る。すなわち、図41(G)および図41(H)に示す画素構成およびその駆動方法によ
って、同一のフレーム内で同一の極性が書き込まれる副画素については、同一行内で容量
線を共通とし、同一のフレーム内で異なる極性が書き込まれる副画素については、同一行
内で容量線を異ならせる。そして、各行の書き込みが終了した時点で、それぞれの容量線
の電圧を、正の極性の信号電圧が書き込まれた副画素では正の方向、負の極性の信号電圧
が書き込まれた副画素では負の方向に変化させることで、画素に書き込まれる信号電圧の
大きさを小さくすることができる。具体的には、容量線として用いる配線5086を各行
で2本(配線5086−1,配線5086−2)とし、画素5080_i,jの第1画素
電極と、配線5086−1_jとが、容量素子を介して電気的に接続され、画素5080
_i,jの第2画素電極と、配線5086−2_jとが、容量素子を介して電気的に接続
され、画素5080_i+1,jの第1画素電極と、配線5086−2_jとが、容量素
子を介して電気的に接続され、画素5080_i+1,jの第2画素電極と、配線508
6−1_jとが、容量素子を介して電気的に接続され、画素5080_i,j+1の第1
画素電極と、配線5086−2_j+1とが、容量素子を介して電気的に接続され、画素
5080_i,j+1の第2画素電極と、配線5086−1_j+1とが、容量素子を介
して電気的に接続され、画素5080_i+1,j+1の第1画素電極と、配線5086
−1_j+1とが、容量素子を介して電気的に接続され、画素5080_i+1,j+1
の第2画素電極と、配線5086−2_j+1とが、容量素子を介して電気的に接続され
る。ただし、これは一例であり、例えば、正の極性の信号電圧が書き込まれる画素と負の
極性の信号電圧が書き込まれる画素が2画素毎に現れるような駆動方法の場合は、配線5
086−1および配線5086−2の電気的接続もそれに合わせて、2画素毎に交互に行
なわれることが好ましい。さらに言えば、1行全ての画素で同じ極性の信号電圧が書き込
まれる場合(ゲートライン反転)も考えられるが、その場合は、配線5086は1行あた
り1本でよい。つまり、図41(E)に示す画素構成においても、図41(G)および図
41(H)を用いて説明したような、画素に書き込む信号電圧を小さくする駆動方法を用
いることができる。
(実施の形態10)
次に、表示装置の別の構成例およびその駆動方法について説明する。本実施の形態におい
ては、信号書込みに対する輝度の応答が遅い(応答時間が長い)表示素子を用いた表示装
置の場合について述べる。本実施の形態においては、応答時間が長い表示素子として液晶
素子を例として説明するが、本実施の形態における表示素子はこれに限定されず、信号書
込みに対する輝度の応答が遅い様々な表示素子を用いることができる。
一般的な液晶表示装置の場合、信号書込みに対する輝度の応答が遅く、液晶素子に信号電
圧を加え続けた場合でも、応答が完了するまで1フレーム期間以上の時間がかかることが
ある。このような表示素子で動画を表示しても、動画を忠実に再現することはできない。
さらに、アクティブマトリクス駆動の場合、一つの液晶素子に対する信号書込みの時間は
、通常、信号書込み周期(1フレーム期間または1サブフレーム期間)を走査線数で割っ
た時間(1走査線選択期間)に過ぎず、液晶素子はこのわずかな時間内に応答しきれない
ことが多い。したがって、液晶素子の応答の大半は、信号書込みが行われない期間で行わ
れることになる。ここで、液晶素子の誘電率は、当該液晶素子の透過率に従って変化する
が、信号書込みが行われない期間において液晶素子が応答するということは、液晶素子の
外部と電荷のやり取りが行われない状態(定電荷状態)で液晶素子の誘電率が変化するこ
とを意味する。つまり、(電荷)=(容量)・(電圧)の式において、電荷が一定の状態
で容量が変化することになるため、液晶素子に加わる電圧は、液晶素子の応答にしたがっ
て、信号書込み時の電圧から変化してしまうことになる。したがって、信号書込みに対す
る輝度の応答が遅い液晶素子をアクティブマトリクスで駆動する場合、液晶素子に加わる
電圧は、信号書込み時の電圧に原理的に到達し得ない。
本実施の形態における表示装置は、表示素子を信号書込み周期内に所望の輝度まで応答さ
せるために、信号書込み時の信号レベルを予め補正されたもの(補正信号)とすることで
、上記の問題点を解決することができる。さらに、液晶素子の応答時間は信号レベルが大
きいほど短くなるので、補正信号を書き込むことによって、液晶素子の応答時間を短くす
ることもできる。このような補正信号を加える駆動方法は、オーバードライブとも呼ばれ
る。本実施の形態におけるオーバードライブは、信号書込み周期が、表示装置に入力され
る画像信号の周期(入力画像信号周期Tin)よりも短い場合であっても、信号書込み周
期に合わせて信号レベルが補正されることで、信号書込み周期内に表示素子を所望の輝度
まで応答させることができる。信号書込み周期が、入力画像信号周期Tinよりも短い場
合とは、例えば、1つの元画像を複数のサブ画像に分割し、当該複数のサブ画像を1フレ
ーム期間内に順次表示させる場合が挙げられる。
次に、アクティブマトリクス駆動の表示装置において信号書込み時の信号レベルを補正す
る方法の例について、図42(A)および(B)を参照して説明する。図42(A)は、
横軸を時間、縦軸を信号書込み時の信号レベルとし、ある1つの表示素子における信号書
込み時の信号レベルの時間変化を模式的に表したグラフである。図42(B)は、横軸を
時間、縦軸を表示レベルとし、ある1つの表示素子における表示レベルの時間変化を模式
的に表したグラフである。なお、表示素子が液晶素子の場合は、信号書込み時の信号レベ
ルは電圧、表示レベルは液晶素子の透過率とすることができる。これ以降は、図42(A
)の縦軸は電圧、図42(B)の縦軸は透過率であるとして説明する。なお、本実施の形
態におけるオーバードライブは、信号レベルが電圧以外(デューティー比、電流等)であ
る場合も含む。なお、本実施の形態におけるオーバードライブは、表示レベルが透過率以
外(輝度、電流等)である場合も含む。なお、液晶素子には、電圧が0である時に黒表示
となるノーマリーブラック型(例:VAモード、IPSモード等)と、電圧が0である時
に白表示となるノーマリーホワイト型(例:TNモード、OCBモード等)があるが、図
42(B)に示すグラフはどちらにも対応しており、ノーマリーブラック型の場合はグラ
フの上方へ行くほど透過率が大きいものとし、ノーマリーホワイト型の場合はグラフの下
方へ行くほど透過率が大きいものとすればよい。すなわち、本実施の形態における液晶モ
ードは、ノーマリーブラック型でも良いし、ノーマリーホワイト型でも良い。なお、時間
軸には信号書込みタイミングが点線で示されており、信号書込みが行われてから次の信号
書込みが行われるまでの期間を、保持期間Fと呼ぶこととする。本実施形態においては
、iは整数であり、それぞれの保持期間を表すインデックスであるとする。図42(A)
および(B)においては、iは0から2までとして示しているが、iはこれ以外の整数も
取り得る(0から2以外については図示しない)。なお、保持期間Fにおいて、画像信
号に対応する輝度を実現する透過率をTとし、定常状態において透過率Tを与える電
圧をVとする。なお、図42(A)中の破線5101は、オーバードライブを行わない
場合の液晶素子にかかる電圧の時間変化を表し、実線5102は、本実施の形態における
オーバードライブを行う場合の液晶素子にかかる電圧の時間変化を表している。同様に、
図42(B)中の破線5103は、オーバードライブを行わない場合の液晶素子の透過率
の時間変化を表し、実線5104は、本実施の形態におけるオーバードライブを行う場合
の液晶素子の透過率の時間変化を表している。なお、保持期間Fの末尾における、所望
の透過率Tと実際の透過率との差を、誤差αと表記することとする。
図42(A)に示すグラフにおいて、保持期間Fにおいては破線5101と実線510
2ともに所望の電圧Vが加えられており、図42(B)に示すグラフにおいても、破線
5103と実線5104ともに所望の透過率Tが得られているものとする。そして、オ
ーバードライブが行われない場合、破線5101に示すように、保持期間Fの初頭にお
いて所望の電圧Vが液晶素子に加えられるが、既に述べたように信号が書込まれる期間
は保持期間に比べて極めて短く、保持期間のうちの大半の期間は定電荷状態となるため、
保持期間において液晶素子にかかる電圧は透過率の変化とともに変化していき、保持期間
の末尾においては所望の電圧Vと大きく異なった電圧となってしまう。このとき、
図42(B)に示すグラフにおける破線5103も、所望の透過率Tと大きく異なった
ものとなってしまう。そのため、画像信号に忠実な表示を行うことができず、画質が低下
してしまう。一方、本実施の形態におけるオーバードライブが行われる場合、実線510
2に示すように、保持期間Fの初頭において、所望の電圧Vよりも大きな電圧V´
が液晶素子に加えられるようにする。つまり、保持期間Fにおいて徐々に液晶素子にか
かる電圧が変化することを見越して、保持期間Fの末尾において液晶素子にかかる電圧
が所望の電圧V近傍の電圧となるように、保持期間Fの初頭において所望の電圧V
から補正された電圧V´を液晶素子に加えることで、正確に所望の電圧Vを液晶素子
にかけることが可能となる。このとき、図42(B)に示すグラフにおける実線5104
に示すように、保持期間Fの末尾において所望の透過率Tが得られる。すなわち、保
持期間のうちの大半の期間において定電荷状態となるにも関わらず、信号書込み周期内で
の液晶素子の応答を実現できる。次に、保持期間Fにおいては、所望の電圧VがV
よりも小さい場合を示しているが、この場合も保持期間Fと同様に、保持期間Fにお
いて徐々に液晶素子にかかる電圧が変化することを見越して、保持期間Fの末尾におい
て液晶素子にかかる電圧が所望の電圧V近傍の電圧となるように、保持期間Fの初頭
において所望の電圧Vから補正された電圧V´を液晶素子に加えればよい。こうする
ことで、図42(B)に示すグラフにおける実線5104に示すように、保持期間F
末尾において所望の透過率Tが得られる。なお、保持期間Fのように、VがVi−
と比べて大きくなる場合は、補正された電圧V´は所望の電圧Vよりも大きくなる
ように補正されることが好ましい。さらに、保持期間Fのように、VがVi−1と比
べて小さくなる場合は、補正された電圧V´は所望の電圧Vよりも小さくなるように
補正されることが好ましい。なお、具体的な補正値については、予め液晶素子の応答特性
を測定することで導出することができる。装置に実装する方法としては、補正式を定式化
して論理回路に組み込む方法、補正値をルックアップテーブルとしてメモリに保存してお
き、必要に応じて補正値を読み出す方法、等を用いることができる。
なお、本実施の形態におけるオーバードライブを、実際に装置として実現する場合には、
様々な制約が存在する。例えば、電圧の補正は、ソースドライバの定格電圧の範囲内で行
われなければならない。すなわち、所望の電圧が元々大きな値であって、理想的な補正電
圧がソースドライバの定格電圧を超えてしまう場合は、補正しきれないこととなる。この
ような場合の問題点について、図42(C)および(D)を参照して説明する。図42(
C)は、図42(A)と同じく、横軸を時間、縦軸を電圧とし、ある1つの液晶素子にお
ける電圧の時間変化を実線5105として模式的に表したグラフである。図42(D)は
、図42(B)と同じく、横軸を時間、縦軸を透過率とし、ある1つの液晶素子における
透過率の時間変化を実線5106として模式的に表したグラフである。なお、その他の表
記方法については図42(A)および(B)と同様であるため、説明を省略する。図42
(C)および(D)は、保持期間Fにおける所望の透過率Tを実現するための補正電
圧V´がソースドライバの定格電圧を超えてしまうため、V´=Vとせざるを得な
くなり、十分な補正ができない状態を表している。このとき、保持期間Fの末尾におけ
る透過率は、所望の透過率Tと誤差αだけ、ずれた値となってしまう。ただし、誤差
αが大きくなるのは、所望の電圧が元々大きな値であるときに限られるため、誤差α
の発生による画質低下自体は許容範囲内である場合も多い。しかしながら、誤差αが大
きくなることによって、電圧補正のアルゴリズム内の誤差も大きくなってしまう。つまり
、電圧補正のアルゴリズムにおいて、保持期間の末尾に所望の透過率が得られていると仮
定している場合、実際は誤差αが大きくなっているのにも関わらず、誤差αが小さい
として電圧の補正を行うため、次の保持期間Fにおける補正に誤差が含まれることとな
り、その結果、誤差αまでも大きくなってしまう。さらに、誤差αが大きくなれば、
その次の誤差αがさらに大きくなってしまうというように、誤差が連鎖的に大きくなっ
ていき、結果的に画質低下が著しいものとなってしまう。本実施の形態におけるオーバー
ドライブにおいては、このように誤差が連鎖的に大きくなってしまうことを抑制するため
、保持期間Fにおいて補正電圧V´がソースドライバの定格電圧を超えるとき、保持
期間Fの末尾における誤差αを推定し、当該誤差αの大きさを考慮して、保持期間
i+1における補正電圧を調整できる。こうすることで、誤差αが大きくなってしま
っても、それが誤差αi+1に与える影響を最小限にすることができるため、誤差が連鎖
的に大きくなってしまうことを抑制できる。本実施の形態におけるオーバードライブにお
いて、誤差αを最小限にする例について、図42(E)および(F)を参照して説明す
る。図42(E)に示すグラフは、図42(C)に示すグラフの補正電圧V´をさらに
調整し、補正電圧V´´とした場合の電圧の時間変化を、実線5107として表してい
る。図42(F)に示すグラフは、図42(E)に示すグラフによって電圧の補正がなさ
れた場合の透過率の時間変化を表している。図42(D)に示すグラフにおける実線51
06では、補正電圧V´によって過剰補正(誤差が大きい状況での補正をいう)が発生
しているが、図42(F)に示すグラフにおける実線5108では、誤差αを考慮して
調整された補正電圧V´´によって過剰補正を抑制し、誤差αを最小限にしている。
なお、具体的な補正値については、予め液晶素子の応答特性を測定することで導出するこ
とができる。装置に実装する方法としては、補正式を定式化して論理回路に組み込む方法
、補正値をルックアップテーブルとしてメモリに保存しておき、必要に応じて補正値を読
み出す方法、等を用いることができる。そして、これらの方法を、補正電圧V´を計算
する部分とは別に追加する、または補正電圧V´を計算する部分に組み込むことができ
る。なお、誤差αi―1を考慮して調整された補正電圧V´´の補正量(所望の電圧V
との差)は、V´の補正量よりも小さいものとすることが好ましい。つまり、|V
´´−V|<|V´−V|とすることが好ましい。
なお、理想的な補正電圧がソースドライバの定格電圧を超えてしまうことによる誤差α
は、信号書込み周期が短いほど大きくなる。なぜならば、信号書込み周期が短いほど液晶
素子の応答時間も短くする必要があり、その結果、より大きな補正電圧が必要となるため
である。さらに、必要とされる補正電圧が大きくなった結果、補正電圧がソースドライバ
の定格電圧を超えてしまう頻度も大きくなるため、大きな誤差αが発生する頻度も大き
くなる。したがって、本実施の形態におけるオーバードライブは、信号書込み周期が短い
場合ほど有効であるといえる。具体的には、1つの元画像を複数のサブ画像に分割し、当
該複数のサブ画像を1フレーム期間内に順次表示させる場合、複数の画像から画像に含ま
れる動きを検出して、当該複数の画像の中間状態の画像を生成し、当該複数の画像の間に
挿入して駆動する(いわゆる動き補償倍速駆動)場合、またはこれらを組み合わせる場合
、等の駆動方法が行われる場合に、本実施の形態におけるオーバードライブが用いられる
ことは、格段の効果を奏することになる。
なお、ソースドライバの定格電圧は、上述した上限の他に、下限も存在する。例えば、電
圧0よりも小さい電圧が加えられない場合が挙げられる。このとき、上述した上限の場合
の同様に、理想的な補正電圧が加えられないこととなるため、誤差αが大きくなってし
まう。しかしながら、この場合でも、上述した方法と同様に、保持期間Fの末尾におけ
る誤差αを推定し、当該誤差αの大きさを考慮して、保持期間Fi+1における補正
電圧を調整することができる。なお、ソースドライバの定格電圧として電圧0よりも小さ
い電圧(負の電圧)を加えることができる場合は、補正電圧として液晶素子に負の電圧を
加えても良い。こうすることで、定電荷状態による電位の変動を見越して、保持期間F
の末尾において液晶素子にかかる電圧が所望の電圧V近傍の電圧となるように調整でき
る。
なお、液晶素子の劣化を抑制するため、液晶素子に加える電圧の極性を定期的に反転させ
る、いわゆる反転駆動を、オーバードライブと組み合わせて実施することができる。すな
わち、本実施の形態におけるオーバードライブは、反転駆動と同時に行われる場合も含む
。例えば、信号書込み周期が入力画像信号周期Tinの1/2である場合に、極性を反転
させる周期と入力画像信号周期Tinとが同程度であると、正極性の信号の書込みと負極
性の信号の書込みが、2回毎に交互に行われることになる。このように、極性を反転させ
る周期を信号書込み周期よりも長くすることで、画素の充放電の頻度を低減できるので、
消費電力を低減できる。ただし、極性を反転させる周期をあまり長くすると、極性の違い
による輝度差がフリッカとして認識される不具合が生じることがあるため、極性を反転さ
せる周期は入力画像信号周期Tinと同程度か短いことが好ましい。
(実施の形態11)
次に、表示装置の別の構成例およびその駆動方法について説明する。本実施の形態におい
ては、表示装置の外部から入力される画像(入力画像)の動きを補間する画像を、複数の
入力画像を基にして表示装置の内部で生成し、当該生成された画像(生成画像)と、入力
画像とを順次表示させる方法について説明する。なお、生成画像を、入力画像の動きを補
間するような画像とすることで、動画の動きを滑らかにすることができ、さらに、ホール
ド駆動による残像等によって動画の品質が低下する問題を改善できる。ここで、動画の補
間について、以下に説明する。動画の表示は、理想的には、個々の画素の輝度をリアルタ
イムに制御することで実現されるものであるが、画素のリアルタイム個別制御は、制御回
路の数が膨大なものとなる問題、配線スペースの問題、および入力画像のデータ量が膨大
なものとなる問題等が存在し、実現が困難である。したがって、表示装置による動画の表
示は、複数の静止画を一定の周期で順次表示することで、表示が動画に見えるようにして
行なわれている。この周期(本実施の形態においては入力画像信号周期と呼び、Tin
表す)は規格化されており、例として、NTSC規格では1/60秒、PAL規格では1
/50秒である。この程度の周期でも、インパルス型表示装置であるCRTにおいては動
画表示に問題は起こらなかった。しかし、ホールド型表示装置においては、これらの規格
に準じた動画をそのまま表示すると、ホールド型であることに起因する残像等により表示
が不鮮明となる不具合(ホールドぼけ:hold blur)が発生してしまう。ホール
ドぼけは、人間の目の追従による無意識的な動きの補間と、ホールド型の表示との不一致
(discrepancy)で認識されるものであるので、従来の規格よりも入力画像信
号周期を短くする(画素のリアルタイム個別制御に近づける)ことで低減させることがで
きるが、入力画像信号周期を短くすることは規格の変更を伴い、さらに、データ量も増大
することになるので、困難である。しかしながら、規格化された入力画像信号を基にして
、入力画像の動きを補間するような画像を表示装置内部で生成し、当該生成画像によって
入力画像を補間して表示することで、規格の変更またはデータ量の増大なしに、ホールド
ぼけを低減できる。このように、入力画像信号を基にして表示装置内部で画像信号を生成
し、入力画像の動きを補間することを、動画の補間と呼ぶこととする。
本実施の形態における動画の補間方法によって、動画ぼけを低減させることができる。本
実施の形態における動画の補間方法は、画像生成方法と画像表示方法に分けることができ
る。そして、特定のパターンの動きについては別の画像生成方法および/または画像表示
方法を用いることで、効果的に動画ぼけを低減させることができる。図43(A)および
(B)は、本実施の形態における動画の補間方法の一例を説明するための模式図である。
図43(A)および(B)において、横軸は時間であり、横方向の位置によって、それぞ
れの画像が扱われるタイミングを表している。「入力」と記された部分は、入力画像信号
が入力されるタイミングを表している。ここでは、時間的に隣接する2つの画像として、
画像5121および画像5122に着目している。入力画像は、周期Tinの間隔で入力
される。なお、周期Tin1つ分の長さを、1フレームもしくは1フレーム期間と記すこ
とがある。「生成」と記された部分は、入力画像信号から新しく画像が生成されるタイミ
ングを表している。ここでは、画像5121および画像5122を基にして生成される生
成画像である、画像5123に着目している。「表示」と記された部分は、表示装置に画
像が表示されるタイミングを表している。なお、着目している画像以外の画像については
破線で記しているのみであるが、着目している画像と同様に扱うことによって、本実施の
形態における動画の補間方法の一例を実現できる。
本実施の形態における動画の補間方法の一例は、図43(A)に示されるように、時間的
に隣接した2つの入力画像を基にして生成された生成画像を、当該2つの入力画像が表示
されるタイミングの間隙に表示させることで、動画の補間を行うことができる。このとき
、表示画像の表示周期は、入力画像の入力周期の1/2とされることが好ましい。ただし
、これに限定されず、様々な表示周期とすることができる。例えば、表示周期を入力周期
の1/2より短くすることで、動画をより滑らかに表示できる。または、表示周期を入力
周期の1/2より長くすることで、消費電力を低減できる。なお、ここでは、時間的に隣
接した2つの入力画像を基にして画像を生成しているが、基にする入力画像は2つに限定
されず、様々な数を用いることができる。例えば、時間的に隣接した3つ(3つ以上でも
良い)の入力画像を基にして画像を生成すれば、2つの入力画像を基にする場合よりも、
精度の良い生成画像を得ることができる。なお、画像5121の表示タイミングを、画像
5122の入力タイミングと同時刻、すなわち入力タイミングに対する表示タイミングを
1フレーム遅れとしているが、本実施の形態における動画の補間方法における表示タイミ
ングはこれに限定されず、様々な表示タイミングを用いることができる。例えば、入力タ
イミングに対する表示タイミングを1フレーム以上遅らせることができる。こうすること
で、生成画像である画像5123の表示タイミングを遅くすることができるので、画像5
123の生成にかかる時間に余裕を持たせることができ、消費電力および製造コストの低
減につながる。なお、入力タイミングに対する表示タイミングをあまりに遅くすると、入
力画像を保持しておく期間が長くなり、保持にかかるメモリ容量が増大してしまうので、
入力タイミングに対する表示タイミングは、1フレーム遅れから2フレーム遅れ程度が好
ましい。
ここで、画像5121および画像5122を基にして生成される画像5123の、具体的
な生成方法の一例について説明する。動画を補間するためには入力画像の動きを検出する
必要があるが、本実施の形態においては、入力画像の動きの検出のために、ブロックマッ
チング法と呼ばれる方法を用いることができる。ただし、これに限定されず、様々な方法
(画像データの差分をとる方法、フーリエ変換を利用する方法等)を用いることができる
。ブロックマッチング法においては、まず、入力画像1枚分の画像データ(ここでは画像
5121の画像データ)を、データ記憶手段(半導体メモリ、RAM等の記憶回路等)に
記憶させる。そして、次のフレームにおける画像(ここでは画像5122)を、複数の領
域に分割する。なお、分割された領域は、図43(A)のように、同じ形状の矩形とする
ことができるが、これに限定されず、様々なもの(画像によって形状または大きさを変え
る等)とすることができる。その後、分割された領域毎に、データ記憶手段に記憶させた
前のフレームの画像データ(ここでは画像5121の画像データ)とデータの比較を行い
、画像データが似ている領域を探索する。図43(A)の例においては、画像5122に
おける領域5124とデータが似ている領域を画像5121の中から探索し、領域512
6が探索されたものとしている。なお、画像5121の中を探索するとき、探索範囲は限
定されることが好ましい。図43(A)の例においては、探索範囲として、領域5124
の面積の4倍程度の大きさである、領域5125を設定している。なお、探索範囲をこれ
より大きくすることで、動きの速い動画においても検出精度を高くすることができる。た
だし、あまりに広く探索を行なうと探索時間が膨大なものとなってしまい、動きの検出の
実現が困難となるため、領域5125は、領域5124の面積の2倍から6倍程度の大き
さであることが好ましい。その後、探索された領域5126と、画像5122における領
域5124との位置の違いを、動きベクトル5127として求める。動きベクトル512
7は領域5124における画像データの1フレーム期間の動きを表すものである。そして
、動きの中間状態を表す画像を生成するため、動きベクトルの向きはそのままで大きさを
変えた画像生成用ベクトル5128を作り、画像5121における領域5126に含まれ
る画像データを、画像生成用ベクトル5128に従って移動させることで、画像5123
における領域5129内の画像データを形成させる。これらの一連の処理を、画像512
2における全ての領域について行なうことで、画像5123が生成されることができる。
そして、入力画像5121、生成画像5123、入力画像5122を順次表示することで
、動画を補間することができる。なお、画像中の物体5130は、画像5121および画
像5122において位置が異なっている(つまり動いている)が、生成された画像512
3は、画像5121および画像5122における物体の中間点となっている。このような
画像を表示することで、動画の動きを滑らかにすることができ、残像等による動画の不鮮
明さを改善できる。
なお、画像生成用ベクトル5128の大きさは、画像5123の表示タイミングに従って
決められることができる。図43(A)の例においては、画像5123の表示タイミング
は画像5121および画像5122の表示タイミングの中間点(1/2)としているため
、画像生成用ベクトル5128の大きさは動きベクトル5127の1/2としているが、
他にも、例えば、表示タイミングが1/3の時点であれば、大きさを1/3とし、表示タ
イミングが2/3の時点であれば、大きさを2/3とすることができる。
なお、このように、様々な動きベクトルを持った複数の領域をそれぞれ動かして新しい画
像を作る場合は、移動先の領域内に他の領域が既に移動している部分(重複)や、どこの
領域からも移動されてこない部分(空白)が生じることもある。これらの部分については
、データを補正することができる。重複部分の補正方法としては、例えば、重複データの
平均をとる方法、動きベクトルの方向等で優先度をつけておき、優先度の高いデータを生
成画像内のデータとする方法、色(または明るさ)はどちらかを優先させるが明るさ(ま
たは色)は平均をとる方法、等を用いることができる。空白部分の補正方法としては、画
像5121または画像5122の当該位置における画像データをそのまま生成画像内のデ
ータとする方法、画像5121または画像5122の当該位置における画像データの平均
をとる方法、等を用いることができる。そして、生成された画像5123を、画像生成用
ベクトル5128の大きさに従ったタイミングで表示させることで、動画の動きを滑らか
にすることができ、さらに、ホールド駆動による残像等によって動画の品質が低下する問
題を改善できる。
本実施の形態における動画の補間方法の他の例は、図43(B)に示されるように、時間
的に隣接した2つの入力画像を基にして生成された生成画像を、当該2つの入力画像が表
示されるタイミングの間隙に表示させる際に、それぞれの表示画像をさらに複数のサブ画
像に分割して表示することで、動画の補間を行うことができる。この場合、画像表示周期
が短くなることによる利点だけでなく、暗い画像が定期的に表示される(表示方法がイン
パルス型に近づく)ことによる利点も得ることができる。つまり、画像表示周期が画像入
力周期に比べて1/2の長さにするだけの場合よりも、残像等による動画の不鮮明さをさ
らに改善できる。図43(B)の例においては、「入力」および「生成」については図4
3(A)の例と同様な処理を行なうことができるので、説明を省略する。図43(B)の
例における「表示」は、1つの入力画像または/および生成画像を複数のサブ画像に分割
して表示を行うことができる。具体的には、図43(B)に示すように、画像5121を
サブ画像5121aおよび5121bに分割して順次表示することで、人間の目には画像
5121が表示されたように知覚させ、画像5123をサブ画像5123aおよび512
3bに分割して順次表示することで、人間の目には画像5123が表示されたように知覚
させ、画像5122をサブ画像5122aおよび5122bに分割して順次表示すること
で、人間の目には画像5122が表示されたように知覚させる。すなわち、人間の目に知
覚される画像としては図43(A)の例と同様なものとしつつ、表示方法をインパルス型
に近づけることができるので、残像等による動画の不鮮明さをさらに改善できる。なお、
サブ画像の分割数は、図43(B)においては2つとしているが、これに限定されず様々
な分割数を用いることができる。なお、サブ画像が表示されるタイミングは、図43(B
)においては等間隔(1/2)としているが、これに限定されず様々な表示タイミングを
用いることができる。例えば、暗いサブ画像(5121b、5122b、5123b)の
表示タイミングを早くする(具体的には、1/4から1/2のタイミング)ことで、表示
方法をよりインパルス型に近づけることができるため、残像等による動画の不鮮明さをさ
らに改善できる。または、暗いサブ画像の表示タイミングを遅くする(具体的には、1/
2から3/4のタイミング)ことで、明るい画像の表示期間を長くすることができるので
、表示効率を高めることができ、消費電力を低減できる。
本実施の形態における動画の補間方法の他の例は、画像内で動いている物体の形状を検出
し、動いている物体の形状によって異なる処理を行なう例である。図43(C)に示す例
は、図43(B)の例と同様に表示のタイミングを表しているが、表示されている内容が
、動く文字(スクロールテキスト、字幕、テロップ等とも呼ばれる)である場合を示して
いる。なお、「入力」および「生成」については、図43(B)と同様としても良いため
、図示していない。ホールド駆動における動画の不鮮明さは、動いているものの性質によ
って程度が異なることがある。特に、文字が動いている場合に顕著に認識されることが多
い。なぜならば、動く文字を読む際にはどうしても視線を文字に追従させてしまうので、
ホールドぼけが発生しやすくなるためである。さらに、文字は輪郭がはっきりしているこ
とが多いため、ホールドぼけによる不鮮明さがさらに強調されてしまうこともある。すな
わち、画像内を動く物体が文字かどうかを判別し、文字である場合はさらに特別な処理を
行なうことは、ホールドぼけの低減のためには有効である。具体的には、画像内を動いて
いる物体に対し、輪郭検出または/およびパターン検出等を行なって、当該物体が文字で
あると判断された場合は、同じ画像から分割されたサブ画像同士であっても動き補間を行
い、動きの中間状態を表示するようにして、動きを滑らかにすることができる。当該物体
が文字ではないと判断された場合は、図43(B)に示すように、同じ画像から分割され
たサブ画像であれば動いている物体の位置は変えずに表示することができる。図43(C
)の例では、文字であると判断された領域5131が、上方向に動いている場合を示して
いるが、画像5121aと画像5121bとで、領域5131の位置を異ならせている。
画像5123aと画像5123b、画像5122aと画像5122bについても同様であ
る。こうすることで、ホールドぼけが特に認識されやすい動く文字については、通常の動
き補償倍速駆動よりもさらに動きを滑らかにすることができるので、残像等による動画の
不鮮明さをさらに改善できる。
(実施の形態12)
半導体装置は、さまざまな電子機器(遊技機も含む)に適用することができる。電子機器
としては、例えば、テレビジョン装置(テレビ、またはテレビジョン受信機ともいう)、
コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォト
フレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報
端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。
図31(A)は、テレビジョン装置9600の一例を示している。テレビジョン装置96
00は、筐体9601に表示部9603が組み込まれている。表示部9603により、映
像を表示することが可能である。また、ここでは、スタンド9605により筐体9601
を支持した構成を示している。
テレビジョン装置9600の操作は、筐体9601が備える操作スイッチや、別体のリモ
コン操作機9610により行うことができる。リモコン操作機9610が備える操作キー
9609により、チャンネルや音量の操作を行うことができ、表示部9603に表示され
る映像を操作することができる。また、リモコン操作機9610に、当該リモコン操作機
9610から出力する情報を表示する表示部9607を設ける構成としてもよい。
なお、テレビジョン装置9600は、受信機やモデムなどを備えた構成とする。受信機に
より一般のテレビ放送の受信を行うことができ、さらにモデムを介して有線または無線に
よる通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向
(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
図31(B)は、デジタルフォトフレーム9700の一例を示している。例えば、デジタ
ルフォトフレーム9700は、筐体9701に表示部9703が組み込まれている。表示
部9703は、各種画像を表示することが可能であり、例えばデジタルカメラなどで撮影
した画像データを表示させることで、通常の写真立てと同様に機能させることができる。
なお、デジタルフォトフレーム9700は、操作部、外部接続用端子(USB端子、US
Bケーブルなどの各種ケーブルと接続可能な端子など)、記録媒体挿入部などを備える構
成とする。これらの構成は、表示部と同一面に組み込まれていてもよいが、側面や裏面に
備えるとデザイン性が向上するため好ましい。例えば、デジタルフォトフレームの記録媒
体挿入部に、デジタルカメラで撮影した画像データを記憶したメモリを挿入して画像デー
タを取り込み、取り込んだ画像データを表示部9703に表示させることができる。
また、デジタルフォトフレーム9700は、無線で情報を送受信できる構成としてもよい
。無線により、所望の画像データを取り込み、表示させる構成とすることもできる。
図32(A)は携帯型遊技機であり、筐体9881と筐体9891の2つの筐体で構成さ
れており、連結部9893により、開閉可能に連結されている。筐体9881には表示部
9882が組み込まれ、筐体9891には表示部9883が組み込まれている。また、図
32(A)に示す携帯型遊技機は、その他、スピーカ部9884、記録媒体挿入部988
6、LEDランプ9890、入力手段(操作キー9885、接続端子9887、センサ9
888(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、
化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振
動、においまたは赤外線を測定する機能を含むもの)、マイクロフォン9889)等を備
えている。もちろん、携帯型遊技機の構成は上述のものに限定されず、少なくとも半導体
装置を備えた構成であればよく、その他付属設備が適宜設けられた構成とすることができ
る。図32(A)に示す携帯型遊技機は、記録媒体に記録されているプログラムまたはデ
ータを読み出して表示部に表示する機能や、他の携帯型遊技機と無線通信を行って情報を
共有する機能を有する。なお、図32(A)に示す携帯型遊技機が有する機能はこれに限
定されず、様々な機能を有することができる。
図32(B)は大型遊技機であるスロットマシン9900の一例を示している。スロット
マシン9900は、筐体9901に表示部9903が組み込まれている。また、スロット
マシン9900は、その他、スタートレバーやストップスイッチなどの操作手段、コイン
投入口、スピーカなどを備えている。もちろん、スロットマシン9900の構成は上述の
ものに限定されず、少なくとも半導体装置を備えた構成であればよく、その他付属設備が
適宜設けられた構成とすることができる。
図33(A)は、携帯電話機1000の一例を示している。携帯電話機1000は、筐体
1001に組み込まれた表示部1002の他、操作ボタン1003、外部接続ポート10
04、スピーカ1005、マイク1006などを備えている。
図33(A)に示す携帯電話機1000は、表示部1002を指などで触れることで、情
報を入力することができる。また、電話を掛ける、或いはメールを打つなどの操作は、表
示部1002を指などで触れることにより行うことができる。
表示部1002の画面は主として3つのモードがある。第1は、画像の表示を主とする表
示モードであり、第2は、文字等の情報の入力を主とする入力モードである。第3は表示
モードと入力モードの2つのモードが混合した表示+入力モードである。
例えば、電話を掛ける、或いはメールを作成する場合は、表示部1002を文字の入力を
主とする文字入力モードとし、画面に表示させた文字の入力操作を行えばよい。この場合
、表示部1002の画面のほとんどにキーボードまたは番号ボタンを表示させることが好
ましい。
また、携帯電話機1000内部に、ジャイロ、加速度センサ等の傾きを検出するセンサを
有する検出装置を設けることで、携帯電話機1000の向き(縦か横か)を判断して、表
示部1002の画面表示を自動的に切り替えるようにすることができる。
また、画面モードの切り替えは、表示部1002を触れること、または筐体1001の操
作ボタン1003の操作により行われる。また、表示部1002に表示される画像の種類
によって切り替えるようにすることもできる。例えば、表示部に表示する画像信号が動画
のデータであれば表示モード、テキストデータであれば入力モードに切り替える。
また、入力モードにおいて、表示部1002の光センサで検出される信号を検知し、表示
部1002のタッチ操作による入力が一定期間ない場合には、画面のモードを入力モード
から表示モードに切り替えるように制御してもよい。
表示部1002は、イメージセンサとして機能させることもできる。例えば、表示部10
02に掌や指を触れることで、掌紋、指紋等を撮像することで、本人認証を行うことがで
きる。また、表示部に近赤外光を発光するバックライトまたは近赤外光を発光するセンシ
ング用光源を用いれば、指静脈、掌静脈などを撮像することもできる。
図33(B)も携帯電話機の一例である。図33(B)の携帯電話機は、筐体9411に
、表示部9412、及び操作ボタン9413を含む表示装置9410と、筐体9401に
操作ボタン9402、外部入力端子9403、マイク9404、スピーカ9405、及び
着信時に発光する発光部9406を含む通信装置9400とを有しており、表示機能を有
する表示装置9410は電話機能を有する通信装置9400と矢印の2方向に脱着可能で
ある。よって、表示装置9410と通信装置9400の短軸同士を取り付けることも、表
示装置9410と通信装置9400の長軸同士を取り付けることもできる。また、表示機
能のみを必要とする場合、通信装置9400より表示装置9410を取り外し、表示装置
9410を単独で用いることもできる。通信装置9400と表示装置9410とは無線通
信または有線通信により画像または入力情報を授受することができ、それぞれ充電可能な
バッテリーを有する。
なお、本実施の形態は、他の実施の形態と適宜組み合わせて用いることができる。
100 基板
102 導電層
104a レジストマスク
104b レジストマスク
105a レジストマスク
105b レジストマスク
106a 導電層
106b 導電層
106c 導電層
106d 導電層
106e 導電層
108 導電層
109a 導電層
109b 導電層
110 レジストマスク
111 レジストマスク
112 導電層
113 導電層
114 半導体層
116a レジストマスク
116b レジストマスク
117a レジストマスク
117b レジストマスク
118 半導体層
118a 半導体層
118b 半導体層
118c 半導体層
120 絶縁層
122 導電層
124a レジストマスク
124b レジストマスク
126a 導電層
126b 導電層
126c 導電層
128 導電層
129a 導電層
129b 導電層
130 レジストマスク
131 レジストマスク
132a 導電層
132b 導電層
134 絶縁層
134a 絶縁層
134b 絶縁層
136 コンタクトホール
138 導電層
140 導電層
142 導電層
150 トランジスタ
152 保持容量
154 トランジスタ
156 保持容量
158 接続部
160 領域
162 導電層
170 レジストマスク
180 導電層
182 導電層
190 水素
400 グレートーンマスク
401 基板
402 遮光部
403 スリット部
410 ハーフトーンマスク
411 基板
412 遮光部
413 半透過部
600 基板
602 基板
650 薄膜トランジスタ
660 電極層
670 電極層
680 球形粒子
680a 黒色領域
680b 白色領域
682 充填材
701 TFT
702 発光素子
703 陰極
704 発光層
705 陽極
707 導電層
711 TFT
712 発光素子
713 陰極
714 発光層
715 陽極
716 遮光膜
717 導電層
721 TFT
722 発光素子
723 陰極
724 発光層
725 陽極
727 導電層
1000 携帯電話機
1001 筐体
1002 表示部
1003 操作ボタン
1004 外部接続ポート
1005 スピーカ
1006 マイク
2600 TFT基板
2601 対向基板
2602 シール材
2603 素子層
2604 液晶層
2605 着色層
2606 偏光板
2607 偏光板
2608 配線回路部
2609 フレキシブル配線基板
2610 冷陰極管
2611 反射板
2612 回路基板
2613 拡散板
2631 ポスター
2632 車内広告
2700 電子書籍
2701 筐体
2703 筐体
2705 表示部
2707 表示部
2711 軸部
2721 電源
2723 操作キー
2725 スピーカ
2800 導電層
2802a 導電層
2802b 導電層
2810 導電層
2812 導電層
2814a 導電層
2814b 導電層
2816a 導電層
2816b 導電層
4001 基板
4002 画素部
4003 信号線駆動回路
4004 走査線駆動回路
4005 シール材
4006 基板
4008 液晶層
4010 薄膜トランジスタ
4011 薄膜トランジスタ
4013 液晶素子
4015 接続端子電極
4016 端子電極
4018 FPC
4019 異方性導電膜
4020 絶縁層
4030 画素電極層
4031 対向電極層
4032 絶縁層
4033 絶縁層
4035 スペーサ
4501 基板
4502 画素部
4503a 信号線駆動回路
4503b 信号線駆動回路
4504a 走査線駆動回路
4504b 走査線駆動回路
4505 シール材
4506 基板
4507 充填材
4509 薄膜トランジスタ
4510 薄膜トランジスタ
4511 発光素子
4512 電極
4513 電界発光層
4514 電極層
4515 接続端子電極
4516 端子電極
4517 電極層
4518a FPC
4518b FPC
4519 異方性導電膜
4520 隔壁
5080 画素
5081 トランジスタ
5082 液晶素子
5083 容量素子
5084 配線
5085 配線
5086 配線
5087 配線
5088 電極
5101 破線
5102 実線
5103 破線
5104 実線
5105 実線
5106 実線
5107 実線
5108 実線
5121 画像
5121a 画像
5121b 画像
5122 画像
5122a 画像
5122b 画像
5123 画像
5123a 画像
5123b 画像
5124 領域
5125 領域
5126 領域
5127 ベクトル
5128 画像生成用ベクトル
5129 領域
5130 物体
5131 領域
5300 基板
5301 画素部
5302 走査線駆動回路
5303 信号線駆動回路
5400 基板
5401 画素部
5402 走査線駆動回路
5403 信号線駆動回路
5404 走査線駆動回路
6400 画素
6401 スイッチング用トランジスタ
6402 駆動用トランジスタ
6403 容量素子
6404 発光素子
6405 信号線
6406 走査線
6407 電源線
6408 共通電極
9400 通信装置
9401 筐体
9402 操作ボタン
9403 外部入力端子
9404 マイク
9405 スピーカ
9406 発光部
9410 表示装置
9411 筐体
9412 表示部
9413 操作ボタン
9600 テレビジョン装置
9601 筐体
9603 表示部
9605 スタンド
9607 表示部
9609 操作キー
9610 リモコン操作機
9700 デジタルフォトフレーム
9701 筐体
9703 表示部
9881 筐体
9882 表示部
9883 表示部
9884 スピーカ部
9885 操作キー
9886 記録媒体挿入部
9887 接続端子
9888 センサ
9889 マイクロフォン
9890 LEDランプ
9891 筐体
9893 連結部
9900 スロットマシン
9901 筐体
9903 表示部

Claims (3)

  1. 画素電極と、
    前記画素電極と接する領域を有する第1の導電層と、
    前記第1の導電層と接する領域を有する第2の導電層と、
    前記第2の導電層と重なる領域を有する第1の酸化物半導体層と、
    前記第1の導電層と接する領域を有する第2の酸化物半導体層と、
    前記第2の酸化物半導体層と重なる領域を有し、且つ前記第2の導電層と同じ材料を有するゲート電極と、を有し、
    前記第2の酸化物半導体層は、前記第1の導電層と同じ材料を有する第1のソース配線と電気的に接続され、
    平面視において、前記第1の導電層、前記第2の導電層、前記第1の酸化物半導体層、前記第2の酸化物半導体層、及び前記ゲート電極の各々は、前記第1のソース配線、前記第1のソース配線に隣接する第2のソース配線、第1のゲート配線、及び前記第1のゲート配線に隣接する第2のゲート配線に囲まれた領域に重なる領域を有し、
    前記画素電極は、前記第1のソース配線と重なる領域と、前記第1のゲート配線と重なる領域と、前記第1の導電層と重なる領域と、前記第2の導電層と重なる領域と、前記第1の酸化物半導体層と重なる領域と、前記第2の酸化物半導体層と重なる領域と、前記ゲート電極と重なる領域とを有する、表示装置。
  2. 画素電極と、
    前記画素電極と接する領域を有する第1の導電層と、
    前記第1の導電層と接する領域を有する第2の導電層と、
    前記第2の導電層と重なる領域を有する第1の酸化物半導体層と、
    前記第1の導電層と接する領域を有する第2の酸化物半導体層と、
    前記第2の酸化物半導体層と重なる領域を有し、且つ前記第2の導電層と同じ材料を有するゲート電極と、
    前記第2の導電層と重なる領域を有する第3の導電層と、を有し、
    前記第2の酸化物半導体層は、前記第1の導電層及び前記第3の導電層と同じ材料を有する第1のソース配線と電気的に接続され、
    平面視において、前記第1の導電層、前記第2の導電層、前記第1の酸化物半導体層、前記第2の酸化物半導体層、前記ゲート電極、及び前記第3の導電層の各々は、前記第1のソース配線、前記第1のソース配線に隣接する第2のソース配線、第1のゲート配線、及び前記第1のゲート配線に隣接する第2のゲート配線に囲まれた領域に重なる領域を有し、
    前記画素電極は、前記第1のソース配線と重なる領域と、前記第1のゲート配線と重なる領域と、前記第1の導電層と重なる領域と、前記第2の導電層と重なる領域と、前記第1の酸化物半導体層と重なる領域と、前記第2の酸化物半導体層と重なる領域と、前記ゲート電極と重なる領域とを有する、表示装置。
  3. 請求項1又は2において、
    前記第1の酸化物半導体層及び前記第2の酸化物半導体層の各々は、In、Ga、及びZnを有する、表示装置。
JP2019105600A 2009-03-05 2019-06-05 表示装置 Withdrawn JP2019159339A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021107418A JP2021167962A (ja) 2009-03-05 2021-06-29 半導体装置
JP2023000722A JP2023052234A (ja) 2009-03-05 2023-01-05 El表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009051857 2009-03-05
JP2009051857 2009-03-05

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017097942A Division JP6538106B2 (ja) 2009-03-05 2017-05-17 半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021107418A Division JP2021167962A (ja) 2009-03-05 2021-06-29 半導体装置

Publications (1)

Publication Number Publication Date
JP2019159339A true JP2019159339A (ja) 2019-09-19

Family

ID=42677431

Family Applications (6)

Application Number Title Priority Date Filing Date
JP2010044930A Active JP5706092B2 (ja) 2009-03-05 2010-03-02 半導体装置
JP2015036246A Expired - Fee Related JP6147785B2 (ja) 2009-03-05 2015-02-26 半導体装置の作製方法
JP2017097942A Active JP6538106B2 (ja) 2009-03-05 2017-05-17 半導体装置
JP2019105600A Withdrawn JP2019159339A (ja) 2009-03-05 2019-06-05 表示装置
JP2021107418A Withdrawn JP2021167962A (ja) 2009-03-05 2021-06-29 半導体装置
JP2023000722A Pending JP2023052234A (ja) 2009-03-05 2023-01-05 El表示装置

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2010044930A Active JP5706092B2 (ja) 2009-03-05 2010-03-02 半導体装置
JP2015036246A Expired - Fee Related JP6147785B2 (ja) 2009-03-05 2015-02-26 半導体装置の作製方法
JP2017097942A Active JP6538106B2 (ja) 2009-03-05 2017-05-17 半導体装置

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2021107418A Withdrawn JP2021167962A (ja) 2009-03-05 2021-06-29 半導体装置
JP2023000722A Pending JP2023052234A (ja) 2009-03-05 2023-01-05 El表示装置

Country Status (5)

Country Link
US (7) US8461582B2 (ja)
JP (6) JP5706092B2 (ja)
KR (2) KR101689629B1 (ja)
CN (1) CN101826534B (ja)
TW (1) TWI570936B (ja)

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4258544B2 (ja) * 2006-10-16 2009-04-30 セイコーエプソン株式会社 液滴吐出装置および電気光学装置の製造方法
US20100224878A1 (en) 2009-03-05 2010-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8461582B2 (en) * 2009-03-05 2013-06-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
CN105810752B (zh) 2010-04-02 2019-11-19 株式会社半导体能源研究所 半导体装置
WO2011125455A1 (en) * 2010-04-09 2011-10-13 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor memory device
US8988762B2 (en) * 2010-07-12 2015-03-24 Lg Display Co., Ltd. Electrophoretic display device and method for manufacturing the same
TWI691960B (zh) * 2010-10-05 2020-04-21 日商半導體能源研究所股份有限公司 半導體記憶體裝置及其驅動方法
JP5877992B2 (ja) * 2010-10-25 2016-03-08 株式会社半導体エネルギー研究所 表示装置
US8730416B2 (en) * 2010-12-17 2014-05-20 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
CN103250256B (zh) 2010-12-17 2017-04-19 株式会社半导体能源研究所 氧化物材料及半导体器件
JP2012151453A (ja) * 2010-12-28 2012-08-09 Semiconductor Energy Lab Co Ltd 半導体装置および半導体装置の駆動方法
TWI535032B (zh) 2011-01-12 2016-05-21 半導體能源研究所股份有限公司 半導體裝置的製造方法
JP5888990B2 (ja) * 2011-01-12 2016-03-22 株式会社半導体エネルギー研究所 半導体装置の作製方法
US8921948B2 (en) 2011-01-12 2014-12-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8536571B2 (en) 2011-01-12 2013-09-17 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
JP5982125B2 (ja) * 2011-01-12 2016-08-31 株式会社半導体エネルギー研究所 半導体装置の作製方法
US8643007B2 (en) * 2011-02-23 2014-02-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9691772B2 (en) * 2011-03-03 2017-06-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device including memory cell which includes transistor and capacitor
US8772849B2 (en) * 2011-03-10 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
JP2012209543A (ja) 2011-03-11 2012-10-25 Semiconductor Energy Lab Co Ltd 半導体装置
JP5253686B2 (ja) * 2011-03-30 2013-07-31 シャープ株式会社 アクティブマトリクス基板、表示装置、およびアクティブマトリクス基板の製造方法
CN102768989A (zh) * 2011-05-06 2012-11-07 京东方科技集团股份有限公司 一种薄膜晶体管阵列基板结构及制造方法
JP6110075B2 (ja) * 2011-05-13 2017-04-05 株式会社半導体エネルギー研究所 表示装置
US9466618B2 (en) * 2011-05-13 2016-10-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including two thin film transistors and method of manufacturing the same
FR2976127B1 (fr) * 2011-06-01 2014-01-10 Commissariat Energie Atomique Composant organique a electrodes ayant un agencement et une forme ameliores
CN102655095B (zh) * 2011-06-01 2014-10-15 京东方科技集团股份有限公司 薄膜晶体管及阵列基板的制造方法
TWI467755B (zh) * 2011-07-19 2015-01-01 Innolux Corp 有機電激發光顯示裝置
US9012993B2 (en) * 2011-07-22 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2013026053A1 (en) 2011-08-18 2013-02-21 Lynk Labs, Inc. Devices and systems having ac led circuits and methods of driving the same
JP2013045971A (ja) * 2011-08-25 2013-03-04 Sony Corp 薄膜トランジスタおよびその製造方法、ならびに電子機器
WO2013042562A1 (en) * 2011-09-22 2013-03-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI544263B (zh) 2011-11-02 2016-08-01 元太科技工業股份有限公司 陣列基板及其製造方法
CN102629585B (zh) * 2011-11-17 2014-07-23 京东方科技集团股份有限公司 一种显示装置、薄膜晶体管、阵列基板及其制造方法
JP6059968B2 (ja) 2011-11-25 2017-01-11 株式会社半導体エネルギー研究所 半導体装置、及び液晶表示装置
JP6111398B2 (ja) * 2011-12-20 2017-04-12 株式会社Joled 表示装置および電子機器
CN102709237B (zh) * 2012-03-05 2014-06-25 京东方科技集团股份有限公司 薄膜场效应晶体管阵列基板及其制造方法、电子器件
US20130240875A1 (en) * 2012-03-14 2013-09-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9478045B1 (en) 2012-03-21 2016-10-25 Amazon Technologies, Inc. Vibration sensing and canceling for displays
US9053564B1 (en) * 2012-03-21 2015-06-09 Amazon Technologies, Inc. Vibration sensing and canceling electronics
KR101904211B1 (ko) * 2012-05-30 2018-10-05 삼성디스플레이 주식회사 액정 표시 장치 및 그 제조 방법
JP5950743B2 (ja) * 2012-07-30 2016-07-13 東京応化工業株式会社 有機半導体素子及び有機半導体素子の製造方法
TWI611511B (zh) * 2012-08-31 2018-01-11 半導體能源研究所股份有限公司 半導體裝置
TWI644437B (zh) 2012-09-14 2018-12-11 半導體能源研究所股份有限公司 半導體裝置及其製造方法
US9265458B2 (en) 2012-12-04 2016-02-23 Sync-Think, Inc. Application of smooth pursuit cognitive testing paradigms to clinical drug development
US20160190181A1 (en) * 2012-12-10 2016-06-30 Sharp Kabushiki Kaisha Semiconductor device and production method therefor
KR20140081413A (ko) 2012-12-21 2014-07-01 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 그 제조 방법
KR102206412B1 (ko) 2012-12-27 2021-01-22 엘지디스플레이 주식회사 박막 트랜지스터, 박막 트랜지스터 제조 방법 및 박막 트랜지스터를 포함하는 표시 장치
US8981374B2 (en) * 2013-01-30 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9857687B2 (en) * 2013-02-28 2018-01-02 Tokai Shinei Electronics Inidustry Co., Ltd Method of manufacturing substrate and substrate and mask film
US9380976B2 (en) 2013-03-11 2016-07-05 Sync-Think, Inc. Optical neuroinformatics
GB2516034A (en) * 2013-07-08 2015-01-14 Plastic Logic Ltd Radiation imaging
CN104347641B (zh) * 2013-08-05 2018-02-06 瀚宇彩晶股份有限公司 薄膜晶体管阵列基板
US9172352B2 (en) * 2013-08-19 2015-10-27 Harris Corporation Integrated microelectromechanical system devices and methods for making the same
US9691910B2 (en) * 2013-08-19 2017-06-27 Idemitsu Kosan Co., Ltd. Oxide semiconductor substrate and schottky barrier diode
CN111129039B (zh) 2013-12-27 2024-04-16 株式会社半导体能源研究所 发光装置
US10322481B2 (en) * 2014-03-06 2019-06-18 Infineon Technologies Ag Support structure and method of forming a support structure
US9297998B2 (en) * 2014-03-28 2016-03-29 Amazon Technologies, Inc. Electrode of an electrowetting device
CN104157608B (zh) * 2014-08-20 2017-02-15 深圳市华星光电技术有限公司 Tft基板的制作方法及其结构
US20160155849A1 (en) * 2014-12-02 2016-06-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing semiconductor device, module, and electronic device
KR20160114510A (ko) * 2015-03-24 2016-10-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 터치 패널
KR102402605B1 (ko) * 2015-07-28 2022-05-27 삼성디스플레이 주식회사 유기 발광 표시 장치
CN106409919A (zh) 2015-07-30 2017-02-15 株式会社半导体能源研究所 半导体装置以及包括该半导体装置的显示装置
CN105093751B (zh) 2015-08-18 2018-09-11 京东方科技集团股份有限公司 预防esd的goa布局设计
DE102015120156B4 (de) * 2015-11-20 2019-07-04 Semikron Elektronik Gmbh & Co. Kg Vorrichtung zur materialschlüssigen Verbindung von Verbindungspartnern eines Leistungselekronik-Bauteils und Verwendung einer solchen Vorrichtung
KR102486877B1 (ko) * 2016-04-28 2023-01-11 삼성디스플레이 주식회사 디스플레이 장치
WO2018087631A1 (en) 2016-11-09 2018-05-17 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, electronic device, and method for manufacturing the display device
US10756118B2 (en) 2016-11-30 2020-08-25 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
KR102562001B1 (ko) * 2017-01-13 2023-08-02 삼성전자주식회사 발광 장치를 포함하는 전자 장치
JP6844845B2 (ja) 2017-05-31 2021-03-17 三国電子有限会社 表示装置
EP3441826B1 (fr) * 2017-08-09 2020-06-03 The Swatch Group Research and Development Ltd Capsule liquide a proprietes thermochromique et photochromique
US10269830B1 (en) * 2017-11-27 2019-04-23 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Flexible array substrate and manufacturing method thereof
CN108055436A (zh) * 2017-12-25 2018-05-18 北京中兑志远科技发展有限公司 一种用于物联网的图像处理系统
CN108389833B (zh) * 2018-03-26 2021-01-29 京东方科技集团股份有限公司 显示基板及其制造方法和显示装置
KR20200139701A (ko) 2018-03-30 2020-12-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
WO2019225410A1 (ja) * 2018-05-23 2019-11-28 三菱電機株式会社 光電変換素子及び受光ユニット
CN110911382B (zh) * 2018-09-14 2021-06-25 群创光电股份有限公司 天线装置
CN112740309B (zh) * 2018-09-21 2022-09-06 夏普株式会社 显示装置
JP7246681B2 (ja) 2018-09-26 2023-03-28 三国電子有限会社 トランジスタ及びトランジスタの製造方法、並びにトランジスタを含む表示装置
CN111125979B (zh) * 2018-10-29 2023-04-14 瑞昱半导体股份有限公司 驱动电路
KR102586145B1 (ko) * 2018-12-10 2023-10-05 엘지디스플레이 주식회사 박막 트랜지스터 어레이 기판 및 이를 포함하는 전자장치
JP7190740B2 (ja) 2019-02-22 2022-12-16 三国電子有限会社 エレクトロルミネセンス素子を有する表示装置
US11476282B2 (en) * 2019-08-09 2022-10-18 Sharp Kabushiki Kaisha Active matrix substrate and method for manufacturing same
CN112906442A (zh) * 2019-12-04 2021-06-04 茂丞科技股份有限公司 晶圆级超声波装置及其制造方法
JP7444436B2 (ja) 2020-02-05 2024-03-06 三国電子有限会社 液晶表示装置
WO2022088078A1 (zh) * 2020-10-30 2022-05-05 京东方科技集团股份有限公司 显示基板、显示面板及显示装置
CN115236910B (zh) * 2022-09-23 2023-01-31 惠科股份有限公司 显示面板及显示装置

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527266A (ja) * 1990-11-09 1993-02-05 Seiko Epson Corp アクテイブマトリツクス基板
JPH10153801A (ja) * 1990-04-11 1998-06-09 Seiko Epson Corp 液晶パネルの製造方法
JP2000206566A (ja) * 1999-01-18 2000-07-28 Toshiba Corp 薄膜半導体装置
JP2003078145A (ja) * 1992-11-04 2003-03-14 Seiko Epson Corp アクティブマトリックス基板とその製造方法
US20050139836A1 (en) * 2003-12-29 2005-06-30 Lg.Philips Lcd Co., Ltd. Method for fabricating liquid crystal display device using two masks
JP2006173580A (ja) * 2004-11-10 2006-06-29 Canon Inc 電界効果型トランジスタ
JP2006269469A (ja) * 2005-03-22 2006-10-05 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
JP2007073311A (ja) * 2005-09-06 2007-03-22 Canon Inc 発光素子
JP2007101896A (ja) * 2005-10-04 2007-04-19 Lg Philips Lcd Co Ltd 液晶表示装置および液晶表示装置の製造方法
US20070108446A1 (en) * 2005-11-15 2007-05-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2007142196A (ja) * 2005-11-18 2007-06-07 Idemitsu Kosan Co Ltd 半導体薄膜、及びその製造方法、並びに薄膜トランジスタ
JP2007165861A (ja) * 2005-11-15 2007-06-28 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP2007171977A (ja) * 1998-12-28 2007-07-05 Semiconductor Energy Lab Co Ltd 表示装置
US20080002124A1 (en) * 2006-06-29 2008-01-03 Lg.Philips Lcd Co., Ltd. Liquid crystal display device and method for fabricating the same
US20080012011A1 (en) * 2006-07-11 2008-01-17 Keun-Kyu Song Thin film transistor array panel and method of manufacture
JP2008172243A (ja) * 2007-01-09 2008-07-24 Korea Electronics Telecommun 原子層蒸着法を利用したp型ZnO半導体膜の製造方法及びその製造方法で製造されたZnO半導体膜を含む薄膜トランジスタ
WO2008114588A1 (ja) * 2007-03-20 2008-09-25 Idemitsu Kosan Co., Ltd. スパッタリングターゲット、酸化物半導体膜及び半導体デバイス
JP2008227442A (ja) * 2007-02-13 2008-09-25 Mitsubishi Electric Corp 薄膜トランジスタアレイ基板、その製造方法、及び表示装置
JP2008243928A (ja) * 2007-03-26 2008-10-09 Idemitsu Kosan Co Ltd 非晶質酸化物半導体薄膜、その製造方法、薄膜トランジスタの製造方法、電界効果型トランジスタ、発光装置、表示装置及びスパッタリングターゲット
JP2009031784A (ja) * 2007-06-29 2009-02-12 Semiconductor Energy Lab Co Ltd 表示装置およびその作製方法

Family Cites Families (183)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0282221A (ja) 1988-09-20 1990-03-22 Seiko Epson Corp 電気光学素子の配線方法
JPH02193121A (ja) * 1989-01-21 1990-07-30 Sumitomo Metal Ind Ltd 薄膜トランジスタパネル
JPH07113728B2 (ja) 1989-05-26 1995-12-06 シャープ株式会社 アクティブマトリクス基板
US5162901A (en) 1989-05-26 1992-11-10 Sharp Kabushiki Kaisha Active-matrix display device with added capacitance electrode wire and secondary wire connected thereto
EP0445535B1 (en) * 1990-02-06 1995-02-01 Sel Semiconductor Energy Laboratory Co., Ltd. Method of forming an oxide film
JP2585118B2 (ja) 1990-02-06 1997-02-26 株式会社半導体エネルギー研究所 薄膜トランジスタの作製方法
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JPH0695142A (ja) 1992-09-10 1994-04-08 Rohm Co Ltd 液晶表示装置
JPH0792491A (ja) 1993-09-21 1995-04-07 Matsushita Electric Ind Co Ltd アクティブマトリクス表示装置用薄膜トランジスタ基板
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
JPH11505377A (ja) 1995-08-03 1999-05-18 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 半導体装置
US5847410A (en) 1995-11-24 1998-12-08 Semiconductor Energy Laboratory Co. Semiconductor electro-optical device
JP3625598B2 (ja) * 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JP3222762B2 (ja) 1996-04-26 2001-10-29 シャープ株式会社 アクティブマトリクス基板およびその製造方法
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000058839A (ja) * 1998-08-05 2000-02-25 Semiconductor Energy Lab Co Ltd 半導体素子からなる半導体回路を備えた半導体装置およびその作製方法
US6246070B1 (en) * 1998-08-21 2001-06-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device provided with semiconductor circuit made of semiconductor element and method of fabricating the same
JP2000150861A (ja) * 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) * 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
US6469317B1 (en) 1998-12-18 2002-10-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US6597348B1 (en) 1998-12-28 2003-07-22 Semiconductor Energy Laboratory Co., Ltd. Information-processing device
JP2000206556A (ja) 1999-01-12 2000-07-28 Matsushita Electric Ind Co Ltd 液晶表示装置
KR100382817B1 (ko) * 1999-01-20 2003-05-09 엘지.필립스 엘시디 주식회사 생체감지패턴 및 이를 이용한 박막트랜지스터형 광센서
JP3916823B2 (ja) 1999-04-07 2007-05-23 シャープ株式会社 アクティブマトリクス基板およびその製造方法、並びにフラットパネル型イメージセンサ
US6524876B1 (en) 1999-04-08 2003-02-25 Samsung Electronics Co., Ltd. Thin film transistor array panels for a liquid crystal display and a method for manufacturing the same
TW444257B (en) 1999-04-12 2001-07-01 Semiconductor Energy Lab Semiconductor device and method for fabricating the same
JP3796070B2 (ja) 1999-07-21 2006-07-12 シャープ株式会社 液晶表示装置
TW460731B (en) * 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
TW513753B (en) * 2000-03-27 2002-12-11 Semiconductor Energy Lab Semiconductor display device and manufacturing method thereof
JP4588167B2 (ja) * 2000-05-12 2010-11-24 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
US6734924B2 (en) * 2000-09-08 2004-05-11 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
KR20020038482A (ko) * 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP4954366B2 (ja) 2000-11-28 2012-06-13 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP3997731B2 (ja) * 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP4306142B2 (ja) * 2001-04-24 2009-07-29 株式会社日立製作所 画像表示装置及びその製造方法
JP4090716B2 (ja) * 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
WO2003040441A1 (en) * 2001-11-05 2003-05-15 Japan Science And Technology Agency Natural superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4083486B2 (ja) * 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
KR100892945B1 (ko) * 2002-02-22 2009-04-09 삼성전자주식회사 액티브 매트릭스형 유기전계발광 표시장치 및 그 제조방법
US7049190B2 (en) * 2002-03-15 2006-05-23 Sanyo Electric Co., Ltd. Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device
JP3933591B2 (ja) * 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) * 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP4085170B2 (ja) 2002-06-06 2008-05-14 株式会社 日立ディスプレイズ 液晶表示装置
JP2004022625A (ja) * 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) * 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) * 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
CN1453840A (zh) * 2003-05-16 2003-11-05 山东大学 一种p型氧化锌薄膜的制备方法
US7172813B2 (en) * 2003-05-20 2007-02-06 Burgener Ii Robert H Zinc oxide crystal growth substrate
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) * 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
JP3923462B2 (ja) * 2003-10-02 2007-05-30 株式会社半導体エネルギー研究所 薄膜トランジスタの作製方法
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7282782B2 (en) * 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
KR20070116889A (ko) 2004-03-12 2007-12-11 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 아몰퍼스 산화물 박막의 기상성막방법
US7145174B2 (en) * 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US7521368B2 (en) 2004-05-07 2009-04-21 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8378930B2 (en) 2004-05-28 2013-02-19 Sony Corporation Pixel circuit and display device having symmetric pixel circuits and shared voltage lines
US7211825B2 (en) * 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006024610A (ja) * 2004-07-06 2006-01-26 Sony Corp 薄膜トランジスタおよび表示装置
US7648861B2 (en) 2004-08-03 2010-01-19 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a semiconductor device including separately forming a second semiconductor film containing an impurity element over the first semiconductor region
KR101056013B1 (ko) * 2004-08-03 2011-08-10 엘지디스플레이 주식회사 액정표시장치용 어레이기판 제조방법
JP4906029B2 (ja) 2004-08-20 2012-03-28 株式会社半導体エネルギー研究所 表示装置の作製方法
JP2006100760A (ja) * 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7859606B2 (en) 2004-09-15 2010-12-28 Semiconductor Energy Laboratory Co. Ltd. Semiconductor device
JP4974500B2 (ja) * 2004-09-15 2012-07-11 株式会社半導体エネルギー研究所 半導体装置、モジュール及び電子機器
US7285501B2 (en) * 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) * 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
US7453065B2 (en) * 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
CN101057333B (zh) * 2004-11-10 2011-11-16 佳能株式会社 发光器件
US7829444B2 (en) * 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
US7791072B2 (en) * 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
US7863611B2 (en) * 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
BRPI0517568B8 (pt) * 2004-11-10 2022-03-03 Canon Kk Transistor de efeito de campo
KR101054344B1 (ko) * 2004-11-17 2011-08-04 삼성전자주식회사 박막 트랜지스터 표시판 및 그 제조 방법
US8003449B2 (en) * 2004-11-26 2011-08-23 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device having a reverse staggered thin film transistor
US20060134882A1 (en) * 2004-12-22 2006-06-22 Chartered Semiconductor Manufacturing Ltd. Method to improve device isolation via fabrication of deeper shallow trench isolation regions
US7579224B2 (en) * 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI569441B (zh) * 2005-01-28 2017-02-01 半導體能源研究所股份有限公司 半導體裝置,電子裝置,和半導體裝置的製造方法
TWI562380B (en) * 2005-01-28 2016-12-11 Semiconductor Energy Lab Co Ltd Semiconductor device, electronic device, and method of manufacturing semiconductor device
US7858451B2 (en) * 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) * 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) * 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
KR20060097381A (ko) * 2005-03-09 2006-09-14 삼성전자주식회사 박막 트랜지스터 기판 및 이의 제조 방법
US8681077B2 (en) * 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
US7544967B2 (en) 2005-03-28 2009-06-09 Massachusetts Institute Of Technology Low voltage flexible organic/transparent transistor for selective gas sensing, photodetecting and CMOS device applications
US7645478B2 (en) * 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
JP4999351B2 (ja) 2005-04-20 2012-08-15 株式会社半導体エネルギー研究所 半導体装置及び表示装置
US8300031B2 (en) * 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
US7652291B2 (en) 2005-05-28 2010-01-26 Samsung Mobile Display Co., Ltd. Flat panel display
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7402506B2 (en) * 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) * 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) * 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
EP1758072A3 (en) 2005-08-24 2007-05-02 Semiconductor Energy Laboratory Co., Ltd. Display device and driving method thereof
JP2007086762A (ja) 2005-08-24 2007-04-05 Semiconductor Energy Lab Co Ltd 表示装置及びその駆動方法
JP4280736B2 (ja) * 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP5116225B2 (ja) * 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
KR100729043B1 (ko) 2005-09-14 2007-06-14 삼성에스디아이 주식회사 투명 박막 트랜지스터 및 그의 제조방법
EP3614442A3 (en) 2005-09-29 2020-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having oxide semiconductor layer and manufactoring method thereof
JP5078246B2 (ja) 2005-09-29 2012-11-21 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
JP5064747B2 (ja) 2005-09-29 2012-10-31 株式会社半導体エネルギー研究所 半導体装置、電気泳動表示装置、表示モジュール、電子機器、及び半導体装置の作製方法
EP1770676B1 (en) 2005-09-30 2017-05-03 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
JP2007109918A (ja) 2005-10-14 2007-04-26 Toppan Printing Co Ltd トランジスタおよびその製造方法
JP5105811B2 (ja) 2005-10-14 2012-12-26 株式会社半導体エネルギー研究所 表示装置
US7601566B2 (en) 2005-10-18 2009-10-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2007115807A (ja) 2005-10-19 2007-05-10 Toppan Printing Co Ltd トランジスタ
JP5037808B2 (ja) * 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
JP2007123700A (ja) 2005-10-31 2007-05-17 Toppan Printing Co Ltd 酸化物半導体のパターニング方法と薄膜トランジスタの製造方法
US7821613B2 (en) 2005-12-28 2010-10-26 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
TWI292281B (en) * 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) * 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) * 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) * 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) * 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
JP5110803B2 (ja) * 2006-03-17 2012-12-26 キヤノン株式会社 酸化物膜をチャネルに用いた電界効果型トランジスタ及びその製造方法
US20070215945A1 (en) 2006-03-20 2007-09-20 Canon Kabushiki Kaisha Light control device and display
KR20070101595A (ko) * 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
JP2007286150A (ja) 2006-04-13 2007-11-01 Idemitsu Kosan Co Ltd 電気光学装置、並びに、電流制御用tft基板及びその製造方法
US20070252928A1 (en) * 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP5135709B2 (ja) 2006-04-28 2013-02-06 凸版印刷株式会社 薄膜トランジスタ及びその製造方法
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
TWI303888B (en) * 2006-07-21 2008-12-01 Au Optronics Corp Ltps-lcd structure and method for manufacturing the same
JP4609797B2 (ja) * 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4999400B2 (ja) * 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP5127183B2 (ja) * 2006-08-23 2013-01-23 キヤノン株式会社 アモルファス酸化物半導体膜を用いた薄膜トランジスタの製造方法
JP2008060201A (ja) * 2006-08-30 2008-03-13 Seiko Epson Corp 半導体装置の製造方法、薄膜トランジスタとその製造方法、電気光学装置とその製造方法、及び電子機器
TWI309889B (en) * 2006-09-01 2009-05-11 Au Optronics Corp Liquid crystal display structure and method for manufacturing the same
JP4332545B2 (ja) * 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP5164357B2 (ja) * 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
JP4274219B2 (ja) * 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
US7622371B2 (en) * 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US8497494B2 (en) * 2006-11-24 2013-07-30 Lg Display Co., Ltd. Thin film transistor and array substrate for liquid crystal display device comprising organic insulating material
US7772021B2 (en) * 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) * 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
US7968884B2 (en) * 2006-12-05 2011-06-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR100793105B1 (ko) 2006-12-07 2008-01-10 엘지전자 주식회사 박막트랜지스터 및 박막트랜지스터를 포함한평판표시소자와 그 제조방법
KR101303578B1 (ko) * 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) * 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
EP1950804A2 (en) * 2007-01-26 2008-07-30 Samsung Electronics Co., Ltd. Display device and manufacturing method of the same
US20080191211A1 (en) 2007-02-13 2008-08-14 Mitsubishi Electric Corporation Thin film transistor array substrate, method of manufacturing the same, and display device
KR101410926B1 (ko) * 2007-02-16 2014-06-24 삼성전자주식회사 박막 트랜지스터 및 그 제조방법
KR100858088B1 (ko) * 2007-02-28 2008-09-10 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법
KR100851215B1 (ko) * 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
US7795613B2 (en) * 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) * 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) * 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) * 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
WO2008133345A1 (en) * 2007-04-25 2008-11-06 Canon Kabushiki Kaisha Oxynitride semiconductor
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
KR101415561B1 (ko) 2007-06-14 2014-08-07 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 그의 제조 방법
TWI353063B (en) * 2007-07-27 2011-11-21 Au Optronics Corp Photo detector and method for fabricating the same
JP2009033004A (ja) 2007-07-30 2009-02-12 Fujifilm Corp 薄膜素子とその製造方法、半導体装置
JP5215158B2 (ja) * 2007-12-17 2013-06-19 富士フイルム株式会社 無機結晶性配向膜及びその製造方法、半導体デバイス
US9041202B2 (en) 2008-05-16 2015-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
US8004871B2 (en) * 2008-05-26 2011-08-23 Panasonic Corporation Semiconductor memory device including FET memory elements
TWI469354B (zh) * 2008-07-31 2015-01-11 Semiconductor Energy Lab 半導體裝置及其製造方法
JP4623179B2 (ja) * 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
JP5451280B2 (ja) * 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
EP2184783B1 (en) * 2008-11-07 2012-10-03 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device and method for manufacturing the same
JP5491833B2 (ja) * 2008-12-05 2014-05-14 株式会社半導体エネルギー研究所 半導体装置
US20100224880A1 (en) * 2009-03-05 2010-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20100224878A1 (en) * 2009-03-05 2010-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8461582B2 (en) * 2009-03-05 2013-06-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR102435377B1 (ko) * 2009-06-30 2022-08-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
US9142568B2 (en) * 2010-09-10 2015-09-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting display device
US8797487B2 (en) * 2010-09-10 2014-08-05 Semiconductor Energy Laboratory Co., Ltd. Transistor, liquid crystal display device, and manufacturing method thereof

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10153801A (ja) * 1990-04-11 1998-06-09 Seiko Epson Corp 液晶パネルの製造方法
JPH0527266A (ja) * 1990-11-09 1993-02-05 Seiko Epson Corp アクテイブマトリツクス基板
JP2003078145A (ja) * 1992-11-04 2003-03-14 Seiko Epson Corp アクティブマトリックス基板とその製造方法
JP2007171977A (ja) * 1998-12-28 2007-07-05 Semiconductor Energy Lab Co Ltd 表示装置
JP2000206566A (ja) * 1999-01-18 2000-07-28 Toshiba Corp 薄膜半導体装置
US20050139836A1 (en) * 2003-12-29 2005-06-30 Lg.Philips Lcd Co., Ltd. Method for fabricating liquid crystal display device using two masks
JP2006173580A (ja) * 2004-11-10 2006-06-29 Canon Inc 電界効果型トランジスタ
JP2006269469A (ja) * 2005-03-22 2006-10-05 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
JP2007073311A (ja) * 2005-09-06 2007-03-22 Canon Inc 発光素子
JP2007101896A (ja) * 2005-10-04 2007-04-19 Lg Philips Lcd Co Ltd 液晶表示装置および液晶表示装置の製造方法
US20070108446A1 (en) * 2005-11-15 2007-05-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2007165861A (ja) * 2005-11-15 2007-06-28 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP2007142196A (ja) * 2005-11-18 2007-06-07 Idemitsu Kosan Co Ltd 半導体薄膜、及びその製造方法、並びに薄膜トランジスタ
US20080002124A1 (en) * 2006-06-29 2008-01-03 Lg.Philips Lcd Co., Ltd. Liquid crystal display device and method for fabricating the same
US20080012011A1 (en) * 2006-07-11 2008-01-17 Keun-Kyu Song Thin film transistor array panel and method of manufacture
JP2008172243A (ja) * 2007-01-09 2008-07-24 Korea Electronics Telecommun 原子層蒸着法を利用したp型ZnO半導体膜の製造方法及びその製造方法で製造されたZnO半導体膜を含む薄膜トランジスタ
JP2008227442A (ja) * 2007-02-13 2008-09-25 Mitsubishi Electric Corp 薄膜トランジスタアレイ基板、その製造方法、及び表示装置
WO2008114588A1 (ja) * 2007-03-20 2008-09-25 Idemitsu Kosan Co., Ltd. スパッタリングターゲット、酸化物半導体膜及び半導体デバイス
JP2008243928A (ja) * 2007-03-26 2008-10-09 Idemitsu Kosan Co Ltd 非晶質酸化物半導体薄膜、その製造方法、薄膜トランジスタの製造方法、電界効果型トランジスタ、発光装置、表示装置及びスパッタリングターゲット
JP2009031784A (ja) * 2007-06-29 2009-02-12 Semiconductor Energy Lab Co Ltd 表示装置およびその作製方法

Also Published As

Publication number Publication date
JP6147785B2 (ja) 2017-06-14
KR101689629B1 (ko) 2016-12-26
JP2010232645A (ja) 2010-10-14
US8461582B2 (en) 2013-06-11
US20210074833A1 (en) 2021-03-11
JP2023052234A (ja) 2023-04-11
KR20100100671A (ko) 2010-09-15
JP5706092B2 (ja) 2015-04-22
JP2017188691A (ja) 2017-10-12
US20190312133A1 (en) 2019-10-10
US9941393B2 (en) 2018-04-10
US8759206B2 (en) 2014-06-24
JP2021167962A (ja) 2021-10-21
US20130260509A1 (en) 2013-10-03
US11955537B2 (en) 2024-04-09
US20180197976A1 (en) 2018-07-12
CN101826534B (zh) 2014-12-17
KR20150056508A (ko) 2015-05-26
KR101763663B1 (ko) 2017-08-01
TWI570936B (zh) 2017-02-11
US20140291676A1 (en) 2014-10-02
TW201104871A (en) 2011-02-01
US10326008B2 (en) 2019-06-18
US20100224872A1 (en) 2010-09-09
US10686061B2 (en) 2020-06-16
CN101826534A (zh) 2010-09-08
JP2015135977A (ja) 2015-07-27
JP6538106B2 (ja) 2019-07-03
US20220416060A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
JP6147785B2 (ja) 半導体装置の作製方法
JP6580806B1 (ja) 表示装置
JP6345896B1 (ja) 半導体装置
JP5951730B2 (ja) 表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210629

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210629

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20210630