JP2017513520A - メトトレキサートによる選択と組み合わせたSleeping Beautyトランスポゾンによる遺伝子改変T細胞の製造 - Google Patents

メトトレキサートによる選択と組み合わせたSleeping Beautyトランスポゾンによる遺伝子改変T細胞の製造 Download PDF

Info

Publication number
JP2017513520A
JP2017513520A JP2017504604A JP2017504604A JP2017513520A JP 2017513520 A JP2017513520 A JP 2017513520A JP 2017504604 A JP2017504604 A JP 2017504604A JP 2017504604 A JP2017504604 A JP 2017504604A JP 2017513520 A JP2017513520 A JP 2017513520A
Authority
JP
Japan
Prior art keywords
sequence
selection
concentration range
cells
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017504604A
Other languages
English (en)
Other versions
JP2017513520A5 (ja
JP6788573B6 (ja
JP6788573B2 (ja
Inventor
ジェンセン,マイケル,シー.
プン,スージー
カチェロフスキー,ナタリー
Original Assignee
シアトル チルドレンズ ホスピタル, ディービーエー シアトル チルドレンズ リサーチ インスティテュート
シアトル チルドレンズ ホスピタル, ディービーエー シアトル チルドレンズ リサーチ インスティテュート
ユニヴァーシティ オブ ワシントン
ユニヴァーシティ オブ ワシントン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54288361&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2017513520(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by シアトル チルドレンズ ホスピタル, ディービーエー シアトル チルドレンズ リサーチ インスティテュート, シアトル チルドレンズ ホスピタル, ディービーエー シアトル チルドレンズ リサーチ インスティテュート, ユニヴァーシティ オブ ワシントン, ユニヴァーシティ オブ ワシントン filed Critical シアトル チルドレンズ ホスピタル, ディービーエー シアトル チルドレンズ リサーチ インスティテュート
Publication of JP2017513520A publication Critical patent/JP2017513520A/ja
Publication of JP2017513520A5 publication Critical patent/JP2017513520A5/ja
Application granted granted Critical
Publication of JP6788573B2 publication Critical patent/JP6788573B2/ja
Publication of JP6788573B6 publication Critical patent/JP6788573B6/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/177Receptors; Cell surface antigens; Cell surface determinants
    • A61K38/1774Immunoglobulin superfamily (e.g. CD2, CD4, CD8, ICAM molecules, B7 molecules, Fc-receptors, MHC-molecules)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/177Receptors; Cell surface antigens; Cell surface determinants
    • A61K38/179Receptors; Cell surface antigens; Cell surface determinants for growth factors; for growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/177Receptors; Cell surface antigens; Cell surface determinants
    • A61K38/1793Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/463Cellular immunotherapy characterised by recombinant expression
    • A61K39/4631Chimeric Antigen Receptors [CAR]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464402Receptors, cell surface antigens or cell surface determinants
    • A61K39/464411Immunoglobulin superfamily
    • A61K39/464412CD19 or B4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/70517CD8
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/70521CD28, CD152
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70578NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/71Receptors; Cell surface antigens; Cell surface determinants for growth factors; for growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/715Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
    • C07K14/7151Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons for tumor necrosis factor [TNF], for lymphotoxin [LT]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2818Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • C12N5/0638Cytotoxic T lymphocytes [CTL] or lymphokine activated killer cells [LAK]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/10Protein-tyrosine kinases (2.7.10)
    • C12Y207/10001Receptor protein-tyrosine kinase (2.7.10.1)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K2035/124Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells the cells being hematopoietic, bone marrow derived or blood cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5156Animal cells expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5158Antigen-pulsed cells, e.g. T-cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/572Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 cytotoxic response
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/10Immunoglobulins specific features characterized by their source of isolation or production
    • C07K2317/14Specific host cells or culture conditions, e.g. components, pH or temperature
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/524CH2 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/526CH3 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/53Hinge
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/03Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/33Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/90Vectors containing a transposable element
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2820/00Vectors comprising a special origin of replication system
    • C12N2820/002Vectors comprising a special origin of replication system inducible or controllable

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Toxicology (AREA)
  • Mycology (AREA)
  • Oncology (AREA)
  • Virology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Endocrinology (AREA)
  • Neurology (AREA)

Abstract

本明細書に記載の本発明の態様は、対象におけるウイルス感染細胞またはがん細胞を治療、抑制、緩和および/または排除する方法であって、ウイルス感染細胞またはがん細胞により提示された分子に結合する受容体を有する遺伝子改変ヒトT細胞を使用することによる方法を包含し、前記遺伝子改変T細胞は、MTXの濃度を高めた二段階でのMTX選択を利用して単離される。

Description

関連出願の相互参照
本願は、2014年10月2日に出願された米国仮特許出願62/058,973号、2014年4月10日に出願された米国仮特許出願61/977,751号、2014年4月30日に出願された米国仮特許出願61/986,479号、2014年12月9日に出願された米国仮特許出願62/089,730号、2014年12月11日に出願された米国仮特許出願62/090845号、および2014年12月5日に出願された米国仮特許出願62/088,363号に係る優先権を主張するものである。前記出願の開示は、参照によりその全体が明示的に本明細書に組み込まれる。
配列、配列表またはコンピュータープログラムにより作成した配列に関する情報
本願は電子形式の配列表とともに出願されたものである。この配列表は、SCRI.077PR.TXTのファイル名で2015年3月20日に作成された4kbのファイルとして提供されたものである。この電子形式の配列表に記載された情報は、参照によりその全体が本明細書に組み込まれる。
本明細書に記載の本発明の態様は、対象におけるウイルス感染細胞またはがん細胞を治療、抑制、緩和および/または排除する方法であって、ウイルス感染細胞またはがん細胞により提示された分子に結合する受容体を有する遺伝子改変ヒトT細胞を使用することによる方法を包含する。
遺伝子改変ヒトT細胞は、がん免疫療法およびウイルス療法に対する有望な治療経路である。キメラ抗原受容体を発現するT細胞を別の遺伝子と組み合わせることによってT細胞の増殖、生存または腫瘍へのホーミングが増強されたT細胞は、改善された有効性を発揮しうるが、これには、複数の遺伝子を安定して移入することが必要とされる。したがって、マルチプレックス遺伝子改変細胞の生産効率を上昇することができる方法が必要とされている。T細胞の効率的で安定な形質導入は、ヌクレオフェクションにより導入されたミニサークル(minicircle)内のSleeping Beautyトランスポゾンシステムを使用して達成可能である。代謝抑制に抵抗性のあるジヒドロ葉酸還元酵素の変異体(DHFRdm)を発現する形質導入細胞をメトトレキサート(MTX)により迅速に選択することも可能である。
本明細書において、複数の導入遺伝子を発現するT細胞の選択的増幅するアプローチを開示する。このT細胞は、ウイルス感染細胞またはがん細胞により提示される分子に特異的な複数の受容体またはキメラ受容体をコードする複数の導入遺伝子を発現することが好ましい。いくつかの実施形態において、形質転換T細胞は、MTXの濃度を高めた選択圧下における二段階でのMTX選択によって選択される。
一実施形態において、
オリゴヌクレオチドに核酸を安定に挿入するための遺伝子送達ポリヌクレオチドであって、
該遺伝子送達ポリヌクレオチド内において、挿入される該核酸が逆方向末端反復遺伝子配列に挟まれていること、
該遺伝子送達ポリヌクレオチドが選択可能であること、
該遺伝子送達ポリヌクレオチドが、第1〜第7の配列を含み、
第1の配列が、第1の逆方向末端反復遺伝子配列を含み、
第2の配列が、第2の逆方向末端反復遺伝子配列を含み、
第3の配列が、プロモーター領域配列を含み、
第4の配列が、タンパク質をコードする少なくとも1つの遺伝子またはmRNAにより転写される配列をコードする少なくとも1つの遺伝子を含む最適化された配列であり、
第5の配列が、ジヒドロ葉酸還元酵素の二重変異体をコードする少なくとも1つの選択マーカーカセットを含む最適化された配列であり、該ジヒドロ葉酸還元酵素の二重変異体のメトトレキサートに対する親和性が15,000分の1または約15,000分の1に低減されており、メトトレキサートを用いて、前記遺伝子送達ポリヌクレオチドによって形質導入された細胞の選択を行うことによって、前記少なくとも1つの遺伝子を発現する細胞の割合を増加させることができ、
第6の配列が、第1の付着部位(attP)を含み、
第7の配列が、第2の付着部位(attB)を含むこと、ならびに
第1の配列、第2の配列、第3の配列、第4の配列、第5の配列、第6の配列および第7の配列がそれぞれ5’末端および3’末端を有し、第1の逆方向末端反復遺伝子配列を含む第1の配列の3’末端が、第3の配列の5’末端に隣接し、第3の配列の3’末端が、第4の配列の5’末端に隣接し、第4の配列の3’末端が、第5の配列の5’末端に隣接し、第5の配列の3’末端が、第2の逆方向末端反復を含む第2の配列の5’末端に隣接していること
を特徴とする遺伝子送達ポリヌクレオチドが提供される。
いくつかの実施形態において、ヒトの前記ジヒドロ葉酸還元酵素の二重変異体をコードする遺伝子は、
ATGGTTGGTTCGCTAAACTGCATCGTCGCTGTGTCCCAGAACATGGGCATCGGCAAGAACGGGGACTTCCCCTGGCCACCGCTCAGGAATGAATCCAGATATTTCCAGAGAATGACCACAACCTCTTCAGTAGAAGGTAAACAGAATCTGGTGATTATGGGTAAGAAGACCTGGTTCTCCATTCCTGAGAAGAATCGACCTTTAAAGGGTAGAATTAATTTAGTTCTCAGCAGAGAACTCAAGGAACCTCCACAAGGAGCTCATTTTCTTTCCAGAAGTCTAGATGATGCCTTAAAACTTACTGAACAACCAGAATTAGCAAATAAAGTAGACATGGTCTGGATAGTTGGTGGCAGTTCTGTTTATAAGGAAGCCATGAATCACCCAGGCCATCTTAAACTATTTGTGACAAGGATCATGCAAGACTTTGAAAGTGACACGTTTTTTCCAGAAATTGATTTGGAGAAATATAAACTTCTGCCAGAATACCCAGGTGTTCTCTCTGATGTCCAGGAGGAGAAAGGCATTAAGTACAAATTTGAAGTATATGAGAAGAATGATTAA(配列番号2)で表されるDNA配列を含む。
いくつかの実施形態においては、ヒトの前記ジヒドロ葉酸還元酵素の二重変異体は、
MVGSLNCIVA VSQNMGIGKN GDFPWPPLRN ESRYFQRMTT TSSVEGKQNL VIMGKKTWFS IPEKNRPLKG RINLVLSREL KEPPQGAHFL SRSLDDALKL TEQPELANKV DMVWIVGGSS VYKEAMNHPG HLKLFVTRIM QDFESDTFFP EIDLEKYKLL PEYPGVLSDV QEEKGIKYKF EVYEKND(配列番号3)で表されるタンパク質配列を含む。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは環状である。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは少なくとも1kb〜5kbである。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドはミニサークル(minicircle)である。いくつかの実施形態においては、前記プロモーター領域は、EF1プロモーター配列を含む。いくつかの実施形態においては、前記第4の配列は、タンパク質をコードする遺伝子を1つ、2つ、3つ、4つまたは5つ含む。いくつかの実施形態においては、前記第4の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第4の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記第4の配列は、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記第4の配列は、同じエピトープに特異的な複数の抗体結合ドメインなどの、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記関連する複数のタンパク質は、同じエピトープに特異的な複数の抗体結合ドメインを含む。いくつかの実施形態においては、前記第5の配列は、ヒトにおける発現および/または該配列中の総GC/AT比の低下を目的としてコドン最適化されている。いくつかの好ましい実施形態においては、前記第5の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記タンパク質は治療用タンパク質である。いくつかの実施形態においては、前記最適化されたコドンおよび/またはコンセンサス配列は、複数の関連配列において利用されている配列および/または核酸塩基の可変性を比較することによって作製される。いくつかの実施形態においては、前記タンパク質は、抗体またはその一部を含み、該抗体またはその一部はヒト化されていてもよい。いくつかの実施形態においては、前記ジヒドロ葉酸還元酵素の二重変異体は、L22FおよびF31Sのアミノ酸変異を含む。いくつかの実施形態においては、前記T細胞はT細胞前駆細胞である。いくつかの実施形態においては、前記T細胞前駆細胞は造血幹細胞である。
いくつかの実施形態においては、
養子T細胞免疫療法のための遺伝子改変マルチプレックスT細胞を製造する方法であって、
遺伝子送達ポリヌクレオチドを提供すること、
T細胞に前記遺伝子送達ポリヌクレオチドを導入すること、
Sleeping Beautyトランスポゼースをコードするベクターを提供すること、
Sleeping Beautyトランスポゼースをコードする前記ベクターを前記T細胞に導入すること、
第1の濃度域の選択試薬を加えることを含む1回目の選択と、第1の濃度域よりも高くかつ第1の濃度域の少なくとも1.5倍以上である第2の濃度域の該選択試薬を加えることを含む2回目の選択とを含む操作によって、前記遺伝子送達ポリヌクレオチドを含む前記細胞を選択すること、ならびに
選択圧下において表現型を発現する前記T細胞を単離すること
を含む方法が提供される。
いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは、第1〜第7の配列を含み、
第1の配列が、第1の逆方向末端反復遺伝子配列を含み、
第2の配列が、第2の逆方向末端反復遺伝子配列を含み、
第3の配列が、プロモーター領域配列を含み、
第4の配列が、タンパク質をコードする少なくとも1つの遺伝子を含む最適化された配列であり、
第5の配列が、ジヒドロ葉酸還元酵素の二重変異体をコードする少なくとも1つの選択マーカーカセットを含む最適化された配列であり、該ジヒドロ葉酸還元酵素の二重変異体のメトトレキサートに対する親和性が15,000分の1または約15,000分の1に低減されており、メトトレキサートを選択メカニズムとして用いることによって、前記遺伝子送達ポリヌクレオチドによって形質導入された細胞を選択的に増殖させることができ、
第6の配列が、第1の付着部位(attP)を含み、
第7の配列が、第2の付着部位(attB)を含むこと、ならびに
第1の配列、第2の配列、第3の配列、第4の配列、第5の配列、第6の配列および第7の配列がそれぞれ5’末端および3’末端を有し、第1の逆方向末端反復遺伝子配列を含む第1の配列の3’末端が、第3の配列の5’末端に隣接し、第3の配列の3’末端が、第4の配列の5’末端に隣接し、第4の配列の3’末端が、第5の配列の5’末端に隣接し、第5の配列の3’末端が、第2の逆方向末端反復を含む第2の配列の5’末端に隣接していることを特徴とする。
いくつかの実施形態において、ヒトの前記ジヒドロ葉酸還元酵素の二重変異体をコードする遺伝子は、
ATGGTTGGTTCGCTAAACTGCATCGTCGCTGTGTCCCAGAACATGGGCATCGGCAAGAACGGGGACTTCCCCTGGCCACCGCTCAGGAATGAATCCAGATATTTCCAGAGAATGACCACAACCTCTTCAGTAGAAGGTAAACAGAATCTGGTGATTATGGGTAAGAAGACCTGGTTCTCCATTCCTGAGAAGAATCGACCTTTAAAGGGTAGAATTAATTTAGTTCTCAGCAGAGAACTCAAGGAACCTCCACAAGGAGCTCATTTTCTTTCCAGAAGTCTAGATGATGCCTTAAAACTTACTGAACAACCAGAATTAGCAAATAAAGTAGACATGGTCTGGATAGTTGGTGGCAGTTCTGTTTATAAGGAAGCCATGAATCACCCAGGCCATCTTAAACTATTTGTGACAAGGATCATGCAAGACTTTGAAAGTGACACGTTTTTTCCAGAAATTGATTTGGAGAAATATAAACTTCTGCCAGAATACCCAGGTGTTCTCTCTGATGTCCAGGAGGAGAAAGGCATTAAGTACAAATTTGAAGTATATGAGAAGAATGATTAA(配列番号2)で表されるDNA配列を含む。
いくつかの実施形態においては、ヒトの前記ジヒドロ葉酸還元酵素の二重変異体は、
MVGSLNCIVA VSQNMGIGKN GDFPWPPLRN ESRYFQRMTT TSSVEGKQNL VIMGKKTWFS IPEKNRPLKG RINLVLSREL KEPPQGAHFL SRSLDDALKL TEQPELANKV DMVWIVGGSS VYKEAMNHPG HLKLFVTRIM QDFESDTFFP EIDLEKYKLL PEYPGVLSDV QEEKGIKYKF EVYEKND(配列番号3)で表されるタンパク質配列を含む。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは環状である。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは少なくとも1kb〜5kbである。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドはミニサークル(minicircle)である。いくつかの実施形態においては、前記プロモーター領域は、EF1プロモーター配列を含む。いくつかの実施形態においては、前記第4の配列は、タンパク質をコードする遺伝子を1つ、2つ、3つ、4つまたは5つ含む。いくつかの実施形態においては、前記第4の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第4の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記第4の配列は、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記第4の配列は、同じエピトープに特異的な複数の抗体結合ドメインなどの、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記関連する複数のタンパク質は、同じエピトープに特異的な複数の抗体結合ドメインを含む。いくつかの実施形態においては、前記第5の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第5の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記タンパク質は治療用タンパク質である。いくつかの実施形態においては、前記最適化されたコドンおよび/またはコンセンサス配列は、複数の関連配列において利用されている配列および/または核酸塩基の可変性を比較することによって作製される。いくつかの実施形態においては、前記タンパク質は、抗体またはその一部を含み、該抗体またはその一部はヒト化されていてもよい。いくつかの実施形態においては、前記ジヒドロ葉酸還元酵素の二重変異体は、L22FおよびF31Sのアミノ酸変異を含む。いくつかの実施形態においては、前記ジヒドロ葉酸還元酵素の二重変異体は、L22FおよびF31Sのアミノ酸変異を含む。いくつかの実施形態においては、前記導入をエレクトロポレーションによって行う。いくつかの実施形態においては、前記選択を、選択マーカーカセットを使用して選択圧を高めることによって行う。いくつかの実施形態においては、前記選択試薬は選択剤を含む。いくつかの実施形態においては、前記選択剤はメトトレキサートである。いくつかの実施形態においては、前記第1の濃度域が少なくとも50nM〜100nMであり、前記第2の濃度域が少なくとも75nM〜150nMである。いくつかの実施形態においては、前記第1濃度は、50nM、60nM、70nM、80nM、90nMもしくは100nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、75nM、80nM、90nM、100nM、110nM、120nM、130nM、140nMもしくは150nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記第1の濃度域は少なくとも75nM〜150nMであり、前記第2の濃度域は少なくとも112.5nM〜225nMである。いくつかの実施形態においては、前記第1濃度は、75nM、85nM、95nM、105nM、115nM、125nM、135nM、145nMもしくは150nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、112nM、122nM、132nM、142nM、152nM、162nM、172nM、182nM、192nM、202nM、212nMもしくは225nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記第1の濃度域は少なくとも300nM〜675nMであり、前記第1の濃度域は少なくとも450nM〜1012nMである。いくつかの実施形態においては、前記第1濃度は、300nM、350nM、400nM、450nM、500nM、550nM、600nM、650nMもしくは675nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、450nM、500nM、550nM、600nM、650nM、700nM、750nM、800nM、850nM、900nM、1000nMもしくは1012nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記1回目の選択は、前記2回目の選択を行う前に、2日、3日、4日、5日、6日または7日にわたって前記T細胞を前記選択剤に暴露することを含む。いくつかの実施形態においては、前記2回目の選択は、前記T細胞を単離する前に、少なくとも2日、3日、4日、5日、6日、7日、8日、9日、10日、11日、12日、13日もしくは14日にわたって、またはこれらの時間点のいずれか2つによって定義される範囲にある任意の時間にわたって、前記T細胞を前記選択剤に暴露することを含む。いくつかの実施形態においては、前記T細胞はT細胞前駆細胞である。いくつかの実施形態においては、前記T細胞前駆細胞は造血幹細胞である。
いくつかの実施形態においては、T細胞におけるタンパク質の産生を増加させる方法であって、
ポリヌクレオチドを提供すること、
細胞に前記ポリヌクレオチドを導入すること、
Sleeping Beautyトランスポゼースをコードするベクターを提供すること、
Sleeping Beautyトランスポゼースをコードする前記ベクターを前記T細胞に導入すること、
第1の濃度域の選択試薬を加えることを含む1回目の選択と、第1の濃度域よりも高くかつ第1の濃度域の少なくとも1.5倍以上である第2の濃度域の該選択試薬を加えることを含む2回目の選択とを含む操作によって、前記遺伝子送達ポリヌクレオチドを含む前記細胞を選択すること、ならびに
選択圧下において表現型を発現する前記細胞を単離すること
を含む方法が提供される。
いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは、第1〜第7の配列を含み、
第1の配列が、第1の逆方向末端反復遺伝子配列を含み、
第2の配列が、第2の逆方向末端反復遺伝子配列を含み、
第3の配列が、プロモーター領域配列を含み、
第4の配列が、タンパク質をコードする少なくとも1つの遺伝子を含む最適化された配列であり、
第5の配列が、ジヒドロ葉酸還元酵素の二重変異体をコードする少なくとも1つの選択マーカーカセットを含む最適化された配列であり、該ジヒドロ葉酸還元酵素の二重変異体のメトトレキサートに対する親和性が15,000分の1または約15,000分の1に低減されており、メトトレキサートを選択メカニズムとして用いることによって、前記遺伝子送達ポリヌクレオチドによって形質導入された細胞を選択的に増殖させることができ、
第6の配列が、第1の付着部位(attP)を含み、
第7の配列が、第2の付着部位(attB)を含むこと、ならびに
第1の配列、第2の配列、第3の配列、第4の配列、第5の配列、第6の配列および第7の配列がそれぞれ5’末端および3’末端を有し、
第1の逆方向末端反復遺伝子配列を含む第1の配列の3’末端が、第3の配列の5’末端に隣接し、第3の配列の3’末端が、第4の配列の5’末端に隣接し、第4の配列の3’末端が、第5の配列の5’末端に隣接し、第5の配列の3’末端が、第2の逆方向末端反復を含む第2の配列の5’末端に隣接していることを特徴とする。
いくつかの実施形態において、ヒトの前記ジヒドロ葉酸還元酵素の二重変異体をコードする遺伝子は、
ATGGTTGGTTCGCTAAACTGCATCGTCGCTGTGTCCCAGAACATGGGCATCGGCAAGAACGGGGACTTCCCCTGGCCACCGCTCAGGAATGAATCCAGATATTTCCAGAGAATGACCACAACCTCTTCAGTAGAAGGTAAACAGAATCTGGTGATTATGGGTAAGAAGACCTGGTTCTCCATTCCTGAGAAGAATCGACCTTTAAAGGGTAGAATTAATTTAGTTCTCAGCAGAGAACTCAAGGAACCTCCACAAGGAGCTCATTTTCTTTCCAGAAGTCTAGATGATGCCTTAAAACTTACTGAACAACCAGAATTAGCAAATAAAGTAGACATGGTCTGGATAGTTGGTGGCAGTTCTGTTTATAAGGAAGCCATGAATCACCCAGGCCATCTTAAACTATTTGTGACAAGGATCATGCAAGACTTTGAAAGTGACACGTTTTTTCCAGAAATTGATTTGGAGAAATATAAACTTCTGCCAGAATACCCAGGTGTTCTCTCTGATGTCCAGGAGGAGAAAGGCATTAAGTACAAATTTGAAGTATATGAGAAGAATGATTAA(配列番号2)で表されるDNA配列を含む。
いくつかの実施形態においては、ヒトの前記ジヒドロ葉酸還元酵素の二重変異体は、
MVGSLNCIVA VSQNMGIGKN GDFPWPPLRN ESRYFQRMTT TSSVEGKQNL VIMGKKTWFS IPEKNRPLKG RINLVLSREL KEPPQGAHFL SRSLDDALKL TEQPELANKV DMVWIVGGSS VYKEAMNHPG HLKLFVTRIM QDFESDTFFP EIDLEKYKLL PEYPGVLSDV QEEKGIKYKF EVYEKND(配列番号3)で表されるタンパク質配列を含む。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは環状である。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは少なくとも1kb〜5kbである。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドはミニサークル(minicircle)である。いくつかの実施形態においては、前記プロモーター領域は、EF1プロモーター配列を含む。いくつかの実施形態においては、前記第4の配列は、タンパク質をコードする遺伝子を1つ、2つ、3つ、4つまたは5つ含む。いくつかの実施形態においては、前記第4の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第4の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記第4の配列は、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記第4の配列は、同じエピトープに特異的な複数の抗体結合ドメインなどの、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記関連する複数のタンパク質は、同じエピトープに特異的な複数の抗体結合ドメインを含む。いくつかの実施形態においては、前記第5の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第5の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記タンパク質は治療用タンパク質である。いくつかの実施形態においては、前記最適化されたコドンおよび/またはコンセンサス配列は、複数の関連配列において利用されている配列および/または核酸塩基の可変性を比較することによって作製される。いくつかの実施形態においては、前記タンパク質は、抗体またはその一部を含み、該抗体またはその一部はヒト化されていてもよい。いくつかの実施形態においては、前記ジヒドロ葉酸還元酵素の二重変異体は、L22FおよびF31Sのアミノ酸変異を含む。いくつかの実施形態においては、前記ジヒドロ葉酸還元酵素の二重変異体は、L22FおよびF31Sのアミノ酸変異を含む。いくつかの実施形態においては、前記導入をエレクトロポレーションによって行う。いくつかの実施形態においては、前記選択を、選択マーカーカセットを使用して選択圧を高めることによって行う。いくつかの実施形態においては、前記選択試薬は選択剤を含む。いくつかの実施形態においては、前記選択剤はメトトレキサートである。いくつかの実施形態においては、前記第1の濃度域が少なくとも50nM〜100nMであり、前記第2の濃度域が少なくとも75nM〜150nMである。いくつかの実施形態においては、前記第1濃度は、50nM、60nM、70nM、80nM、90nMもしくは100nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、75nM、80nM、90nM、100nM、110nM、120nM、130nM、140nMもしくは150nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記第1の濃度域は少なくとも75nM〜150nMであり、前記第2の濃度域は少なくとも112.5nM〜225nMである。いくつかの実施形態においては、前記第1濃度は、75nM、85nM、95nM、105nM、115nM、125nM、135nM、145nMもしくは150nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、112nM、122nM、132nM、142nM、152nM、162nM、172nM、182nM、192nM、202nM、212nMもしくは225nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記第1の濃度域は少なくとも300nM〜675nMであり、前記第1の濃度域は少なくとも450nM〜1012nMである。いくつかの実施形態においては、前記第1濃度は、300nM、350nM、400nM、450nM、500nM、550nM、600nM、650nMもしくは675nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、450nM、500nM、550nM、600nM、650nM、700nM、750nM、800nM、850nM、900nM、1000nMもしくは1012nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記1回目の選択は、前記2回目の選択を行う前に、2日、3日、4日、5日、6日または7日にわたって前記T細胞を前記選択剤に暴露することを含む。いくつかの実施形態においては、前記2回目の選択は、前記T細胞を単離する前に、少なくとも2日、3日、4日、5日、6日、7日、8日、9日、10日、11日、12日、13日もしくは14日にわたって、またはこれらの時間点のいずれか2つによって定義される範囲にある任意の時間にわたって、前記T細胞を前記選択剤に暴露することを含む。いくつかの実施形態においては、前記T細胞はT細胞前駆細胞である。いくつかの実施形態においては、前記T細胞前駆細胞は造血幹細胞である。
いくつかの実施形態においては、前記方法のいずれかによって製造された、養子T細胞免疫療法のための遺伝子改変マルチプレックスT細胞が提供される。
いくつかの実施形態においては、養子T細胞免疫療法のための前記遺伝子改変マルチプレックスT細胞の製造方法は、
遺伝子送達ポリヌクレオチドを提供すること、
T細胞に前記遺伝子送達ポリヌクレオチドを導入すること、
Sleeping Beautyトランスポゼースをコードするベクターを提供すること、
Sleeping Beautyトランスポゼースをコードする前記ベクターを前記T細胞に導入すること、
第1の濃度域の選択試薬を加えることを含む1回目の選択と、第1の濃度域よりも高くかつ第1の濃度域の少なくとも1.5倍以上である第2の濃度域の該選択試薬を加えることを含む2回目の選択とを含む操作によって、前記遺伝子送達ポリヌクレオチドを含む前記細胞を選択すること、ならびに
選択圧下において表現型を発現する前記T細胞を単離することを含む。
いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは、第1〜第7の配列を含み、
第1の配列が、第1の逆方向末端反復遺伝子配列を含み、
第2の配列が、第2の逆方向末端反復遺伝子配列を含み、
第3の配列が、プロモーター領域配列を含み、
第4の配列が、タンパク質をコードする少なくとも1つの遺伝子を含む最適化された配列であり、
第5の配列が、ジヒドロ葉酸還元酵素の二重変異体をコードする少なくとも1つの選択マーカーカセットを含む最適化された配列であり、該ジヒドロ葉酸還元酵素の二重変異体のメトトレキサートに対する親和性が15,000分の1または約15,000分の1に低減されており、メトトレキサートを選択メカニズムとして用いることによって、前記遺伝子送達ポリヌクレオチドによって形質導入された細胞を選択的に増殖させることができ、
第6の配列が、第1の付着部位(attP)を含み、
第7の配列が、第2の付着部位(attB)を含むこと、ならびに
第1の配列、第2の配列、第3の配列、第4の配列、第5の配列、第6の配列および第7の配列がそれぞれ5’末端および3’末端を有し、
第1の逆方向末端反復遺伝子配列を含む第1の配列の3’末端が、第3の配列の5’末端に隣接し、第3の配列の3’末端が、第4の配列の5’末端に隣接し、第4の配列の3’末端が、第5の配列の5’末端に隣接し、第5の配列の3’末端が、第2の逆方向末端反復を含む第2の配列の5’末端に隣接していることを特徴とする。
いくつかの実施形態において、ヒトの前記ジヒドロ葉酸還元酵素の二重変異体をコードする遺伝子は、
ATGGTTGGTTCGCTAAACTGCATCGTCGCTGTGTCCCAGAACATGGGCATCGGCAAGAACGGGGACTTCCCCTGGCCACCGCTCAGGAATGAATCCAGATATTTCCAGAGAATGACCACAACCTCTTCAGTAGAAGGTAAACAGAATCTGGTGATTATGGGTAAGAAGACCTGGTTCTCCATTCCTGAGAAGAATCGACCTTTAAAGGGTAGAATTAATTTAGTTCTCAGCAGAGAACTCAAGGAACCTCCACAAGGAGCTCATTTTCTTTCCAGAAGTCTAGATGATGCCTTAAAACTTACTGAACAACCAGAATTAGCAAATAAAGTAGACATGGTCTGGATAGTTGGTGGCAGTTCTGTTTATAAGGAAGCCATGAATCACCCAGGCCATCTTAAACTATTTGTGACAAGGATCATGCAAGACTTTGAAAGTGACACGTTTTTTCCAGAAATTGATTTGGAGAAATATAAACTTCTGCCAGAATACCCAGGTGTTCTCTCTGATGTCCAGGAGGAGAAAGGCATTAAGTACAAATTTGAAGTATATGAGAAGAATGATTAA(配列番号2)で表されるDNA配列を含む。
いくつかの実施形態においては、ヒトの前記ジヒドロ葉酸還元酵素の二重変異体は、
MVGSLNCIVA VSQNMGIGKN GDFPWPPLRN ESRYFQRMTT TSSVEGKQNL VIMGKKTWFS IPEKNRPLKG RINLVLSREL KEPPQGAHFL SRSLDDALKL TEQPELANKV DMVWIVGGSS VYKEAMNHPG HLKLFVTRIM QDFESDTFFP EIDLEKYKLL PEYPGVLSDV QEEKGIKYKF EVYEKND(配列番号3)で表されるタンパク質配列を含む。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは環状である。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは少なくとも1kb〜5kbである。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドはミニサークル(minicircle)である。いくつかの実施形態においては、前記プロモーター領域は、EF1プロモーター配列を含む。いくつかの実施形態においては、前記第4の配列は、タンパク質をコードする遺伝子を1つ、2つ、3つ、4つまたは5つ含む。いくつかの実施形態においては、前記第4の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第4の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記第4の配列は、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記第4の配列は、同じエピトープに特異的な複数の抗体結合ドメインなどの、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記関連する複数のタンパク質は、同じエピトープに特異的な複数の抗体結合ドメインを含む。いくつかの実施形態においては、前記第5の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第5の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記タンパク質は治療用タンパク質である。いくつかの実施形態においては、前記最適化されたコドンおよび/またはコンセンサス配列は、複数の関連配列において利用されている配列および/または核酸塩基の可変性を比較することによって作製される。いくつかの実施形態においては、前記タンパク質は、抗体またはその一部を含み、該抗体またはその一部はヒト化されていてもよい。いくつかの実施形態においては、前記ジヒドロ葉酸還元酵素の二重変異体は、L22FおよびF31Sのアミノ酸変異を含む。いくつかの実施形態においては、前記ジヒドロ葉酸還元酵素の二重変異体は、L22FおよびF31Sのアミノ酸変異を含む。いくつかの実施形態においては、前記導入をエレクトロポレーションによって行う。いくつかの実施形態においては、前記選択を、選択マーカーカセットを使用して選択圧を高めることによって行う。いくつかの実施形態においては、前記選択試薬は選択剤を含む。いくつかの実施形態においては、前記選択剤はメトトレキサートである。いくつかの実施形態においては、前記第1の濃度域が少なくとも50nM〜100nMであり、前記第2の濃度域が少なくとも75nM〜150nMである。いくつかの実施形態においては、前記第1濃度は、50nM、60nM、70nM、80nM、90nMもしくは100nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、75nM、80nM、90nM、100nM、110nM、120nM、130nM、140nMもしくは150nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記第1の濃度域は少なくとも75nM〜150nMであり、前記第2の濃度域は少なくとも112.5nM〜225nMである。いくつかの実施形態においては、前記第1濃度は、75nM、85nM、95nM、105nM、115nM、125nM、135nM、145nMもしくは150nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、112nM、122nM、132nM、142nM、152nM、162nM、172nM、182nM、192nM、202nM、212nMもしくは225nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記第1の濃度域は少なくとも300nM〜675nMであり、前記第1の濃度域は少なくとも450nM〜1012nMである。いくつかの実施形態においては、前記第1濃度は、300nM、350nM、400nM、450nM、500nM、550nM、600nM、650nMもしくは675nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、450nM、500nM、550nM、600nM、650nM、700nM、750nM、800nM、850nM、900nM、1000nMもしくは1012nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記1回目の選択は、前記2回目の選択を行う前に、2日、3日、4日、5日、6日または7日にわたって前記T細胞を前記選択剤に暴露することを含む。いくつかの実施形態においては、前記2回目の選択は、前記T細胞を単離する前に、少なくとも2日、3日、4日、5日、6日、7日、8日、9日、10日、11日、12日、13日もしくは14日にわたって、またはこれらの時間点のいずれか2つによって定義される範囲にある任意の時間にわたって、前記T細胞を前記選択剤に暴露することを含む。
いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは、第1〜第7の配列を含み、
第1の配列が、第1の逆方向末端反復遺伝子配列を含み、
第2の配列が、第2の逆方向末端反復遺伝子配列を含み、
第3の配列が、プロモーター領域配列を含み、
第4の配列が、タンパク質をコードする少なくとも1つの遺伝子を含む最適化された配列であり、
第5の配列が、ジヒドロ葉酸還元酵素の二重変異体をコードする少なくとも1つの選択マーカーカセットを含む最適化された配列であり、該ジヒドロ葉酸還元酵素の二重変異体のメトトレキサートに対する親和性が15,000分の1または約15,000分の1に低減されており、メトトレキサートを選択メカニズムとして用いることによって、前記遺伝子送達ポリヌクレオチドによって形質導入された細胞を選択的に増殖させることができ、
第6の配列が、第1の付着部位(attP)を含み、
第7の配列が、第2の付着部位(attB)を含むこと、ならびに
第1の配列、第2の配列、第3の配列、第4の配列、第5の配列、第6の配列および第7の配列がそれぞれ5’末端および3’末端を有し、第1の逆方向末端反復遺伝子配列を含む第1の配列の3’末端が、第3の配列の5’末端に隣接し、第3の配列の3’末端が、第4の配列の5’末端に隣接し、第4の配列の3’末端が、第5の配列の5’末端に隣接し、第5の配列の3’末端が、第2の逆方向末端反復を含む第2の配列の5’末端に隣接していることを特徴とする。
いくつかの実施形態において、ヒトの前記ジヒドロ葉酸還元酵素の二重変異体をコードする遺伝子は、
ATGGTTGGTTCGCTAAACTGCATCGTCGCTGTGTCCCAGAACATGGGCATCGGCAAGAACGGGGACTTCCCCTGGCCACCGCTCAGGAATGAATCCAGATATTTCCAGAGAATGACCACAACCTCTTCAGTAGAAGGTAAACAGAATCTGGTGATTATGGGTAAGAAGACCTGGTTCTCCATTCCTGAGAAGAATCGACCTTTAAAGGGTAGAATTAATTTAGTTCTCAGCAGAGAACTCAAGGAACCTCCACAAGGAGCTCATTTTCTTTCCAGAAGTCTAGATGATGCCTTAAAACTTACTGAACAACCAGAATTAGCAAATAAAGTAGACATGGTCTGGATAGTTGGTGGCAGTTCTGTTTATAAGGAAGCCATGAATCACCCAGGCCATCTTAAACTATTTGTGACAAGGATCATGCAAGACTTTGAAAGTGACACGTTTTTTCCAGAAATTGATTTGGAGAAATATAAACTTCTGCCAGAATACCCAGGTGTTCTCTCTGATGTCCAGGAGGAGAAAGGCATTAAGTACAAATTTGAAGTATATGAGAAGAATGATTAA(配列番号2)で表されるDNA配列を含む。
いくつかの実施形態においては、ヒトの前記ジヒドロ葉酸還元酵素の二重変異体は、
MVGSLNCIVA VSQNMGIGKN GDFPWPPLRN ESRYFQRMTT TSSVEGKQNL VIMGKKTWFS IPEKNRPLKG RINLVLSREL KEPPQGAHFL SRSLDDALKL TEQPELANKV DMVWIVGGSS VYKEAMNHPG HLKLFVTRIM QDFESDTFFP EIDLEKYKLL PEYPGVLSDV QEEKGIKYKF EVYEKND(配列番号3)で表されるタンパク質配列を含む。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは環状である。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは少なくとも1kb〜5kbである。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドはミニサークル(minicircle)である。いくつかの実施形態においては、前記プロモーター領域は、EF1プロモーター配列を含む。いくつかの実施形態においては、前記第4の配列は、タンパク質をコードする遺伝子を1つ、2つ、3つ、4つまたは5つ含む。いくつかの実施形態においては、前記第4の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第4の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記第4の配列は、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記第4の配列は、同じエピトープに特異的な複数の抗体結合ドメインなどの、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記関連する複数のタンパク質は、同じエピトープに特異的な複数の抗体結合ドメインを含む。いくつかの実施形態においては、前記第5の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第5の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記タンパク質は治療用タンパク質である。いくつかの実施形態においては、前記最適化されたコドンおよび/またはコンセンサス配列は、複数の関連配列において利用されている配列および/または核酸塩基の可変性を比較することによって作製される。いくつかの実施形態においては、前記タンパク質は、抗体またはその一部を含み、該抗体またはその一部はヒト化されていてもよい。いくつかの実施形態においては、前記ジヒドロ葉酸還元酵素の二重変異体は、L22FおよびF31Sのアミノ酸変異を含む。いくつかの実施形態においては、前記導入をエレクトロポレーションによって行う。いくつかの実施形態においては、前記選択を、選択マーカーカセットを使用して選択圧を高めることによって行う。いくつかの実施形態においては、前記選択試薬は選択剤を含む。いくつかの実施形態においては、前記選択剤はメトトレキサートである。いくつかの実施形態においては、前記第1の濃度域が少なくとも50nM〜100nMであり、前記第2の濃度域が少なくとも75nM〜150nMである。いくつかの実施形態においては、前記第1濃度は、50nM、60nM、70nM、80nM、90nMもしくは100nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、75nM、80nM、90nM、100nM、110nM、120nM、130nM、140nMもしくは150nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記第1の濃度域は少なくとも75nM〜150nMであり、前記第2の濃度域は少なくとも112.5nM〜225nMである。いくつかの実施形態においては、前記第1濃度は、75nM、85nM、95nM、105nM、115nM、125nM、135nM、145nMもしくは150nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、112nM、122nM、132nM、142nM、152nM、162nM、172nM、182nM、192nM、202nM、212nMもしくは225nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記第1の濃度域は少なくとも300nM〜675nMであり、前記第1の濃度域は少なくとも450nM〜1012nMである。いくつかの実施形態においては、前記第1濃度は、300nM、350nM、400nM、450nM、500nM、550nM、600nM、650nMもしくは675nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、450nM、500nM、550nM、600nM、650nM、700nM、750nM、800nM、850nM、900nM、1000nMもしくは1012nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記1回目の選択は、前記2回目の選択を行う前に、2日、3日、4日、5日、6日または7日にわたって前記T細胞を前記選択剤に暴露することを含む。いくつかの実施形態においては、前記2回目の選択は、前記T細胞を単離する前に、少なくとも2日、3日、4日、5日、6日、7日、8日、9日、10日、11日、12日、13日もしくは14日にわたって、またはこれらの時間点のいずれか2つによって定義される範囲にある任意の時間にわたって、前記T細胞を前記選択剤に暴露することを含む。いくつかの実施形態においては、前記T細胞はT細胞前駆細胞である。いくつかの実施形態においては、前記T細胞前駆細胞は造血幹細胞である。
いくつかの実施形態においては、対象におけるがんまたは疾患を治療、抑制または緩和する方法であって、以下の方法によって製造された遺伝子組換えまたは遺伝子改変マルチプレックスT細胞を対象に投与することを含む方法が提供される。
いくつかの実施形態においては、養子T細胞免疫療法のための前記遺伝子改変マルチプレックスT細胞の製造方法は、
遺伝子送達ポリヌクレオチドを提供すること、
T細胞に前記遺伝子送達ポリヌクレオチドを導入すること、
Sleeping Beautyトランスポゼースをコードするベクターを提供すること、
Sleeping Beautyトランスポゼースをコードする前記ベクターを前記T細胞に導入すること、
第1の濃度域の選択試薬を加えることを含む1回目の選択と、第1の濃度域よりも高くかつ第1の濃度域の少なくとも1.5倍以上である第2の濃度域の該選択試薬を加えることを含む2回目の選択とを含む操作によって、前記遺伝子送達ポリヌクレオチドを含む前記細胞を選択すること、ならびに
選択圧下において表現型を発現する前記T細胞を単離することを含む。
いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは、第1〜第7の配列を含み、
第1の配列が、第1の逆方向末端反復遺伝子配列を含み、
第2の配列が、第2の逆方向末端反復遺伝子配列を含み、
第3の配列が、プロモーター領域配列を含み、
第4の配列が、タンパク質をコードする少なくとも1つの遺伝子を含む最適化された配列であり、
第5の配列が、ジヒドロ葉酸還元酵素の二重変異体をコードする少なくとも1つの選択マーカーカセットを含む最適化された配列であり、該ジヒドロ葉酸還元酵素の二重変異体のメトトレキサートに対する親和性が15,000分の1または約15,000分の1に低減されており、メトトレキサートを選択メカニズムとして用いることによって、前記遺伝子送達ポリヌクレオチドによって形質導入された細胞を選択的に増殖させることができ、
第6の配列が、第1の付着部位(attP)を含み、
第7の配列が、第2の付着部位(attB)を含むこと、ならびに
第1の配列、第2の配列、第3の配列、第4の配列、第5の配列、第6の配列および第7の配列がそれぞれ5’末端および3’末端を有し、第1の逆方向末端反復遺伝子配列を含む第1の配列の3’末端が、第3の配列の5’末端に隣接し、第3の配列の3’末端が、第4の配列の5’末端に隣接し、第4の配列の3’末端が、第5の配列の5’末端に隣接し、第5の配列の3’末端が、第2の逆方向末端反復を含む第2の配列の5’末端に隣接していることを特徴とする。
いくつかの実施形態において、ヒトの前記ジヒドロ葉酸還元酵素の二重変異体をコードする遺伝子は、
ATGGTTGGTTCGCTAAACTGCATCGTCGCTGTGTCCCAGAACATGGGCATCGGCAAGAACGGGGACTTCCCCTGGCCACCGCTCAGGAATGAATCCAGATATTTCCAGAGAATGACCACAACCTCTTCAGTAGAAGGTAAACAGAATCTGGTGATTATGGGTAAGAAGACCTGGTTCTCCATTCCTGAGAAGAATCGACCTTTAAAGGGTAGAATTAATTTAGTTCTCAGCAGAGAACTCAAGGAACCTCCACAAGGAGCTCATTTTCTTTCCAGAAGTCTAGATGATGCCTTAAAACTTACTGAACAACCAGAATTAGCAAATAAAGTAGACATGGTCTGGATAGTTGGTGGCAGTTCTGTTTATAAGGAAGCCATGAATCACCCAGGCCATCTTAAACTATTTGTGACAAGGATCATGCAAGACTTTGAAAGTGACACGTTTTTTCCAGAAATTGATTTGGAGAAATATAAACTTCTGCCAGAATACCCAGGTGTTCTCTCTGATGTCCAGGAGGAGAAAGGCATTAAGTACAAATTTGAAGTATATGAGAAGAATGATTAA(配列番号2)で表されるDNA配列を含む。
いくつかの実施形態においては、ヒトの前記ジヒドロ葉酸還元酵素の二重変異体は、
MVGSLNCIVA VSQNMGIGKN GDFPWPPLRN ESRYFQRMTT TSSVEGKQNL VIMGKKTWFS IPEKNRPLKG RINLVLSREL KEPPQGAHFL SRSLDDALKL TEQPELANKV DMVWIVGGSS VYKEAMNHPG HLKLFVTRIM QDFESDTFFP EIDLEKYKLL PEYPGVLSDV QEEKGIKYKF EVYEKND(配列番号3)で表されるタンパク質配列を含む。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは環状である。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドはミニサークル(minicircle)である。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは少なくとも1kb〜5kbである。いくつかの実施形態においては、前記プロモーター領域は、EF1プロモーター配列を含む。いくつかの実施形態においては、前記第4の配列は、タンパク質をコードする遺伝子を1つ、2つ、3つ、4つまたは5つ含む。いくつかの実施形態においては、前記第4の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第4の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記第4の配列は、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記第4の配列は、同じエピトープに特異的な複数の抗体結合ドメインなどの、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記関連する複数のタンパク質は、同じエピトープに特異的な複数の抗体結合ドメインを含む。いくつかの実施形態においては、前記第5の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第5の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記タンパク質は治療用タンパク質である。いくつかの実施形態においては、前記最適化されたコドンおよび/またはコンセンサス配列は、複数の関連配列において利用されている配列および/または核酸塩基の可変性を比較することによって作製される。いくつかの実施形態においては、前記タンパク質は、抗体またはその一部を含み、該抗体またはその一部はヒト化されていてもよい。いくつかの実施形態においては、前記ジヒドロ葉酸還元酵素の二重変異体は、L22FおよびF31Sのアミノ酸変異を含む。いくつかの実施形態においては、前記ジヒドロ葉酸還元酵素の二重変異体は、L22FおよびF31Sのアミノ酸変異を含む。いくつかの実施形態においては、前記T細胞はT細胞前駆細胞である。いくつかの実施形態においては、前記T細胞前駆細胞は造血幹細胞である。いくつかの実施形態においては、前記導入をエレクトロポレーションによって行う。いくつかの実施形態においては、前記選択を、選択マーカーカセットを使用して選択圧を高めることによって行う。いくつかの実施形態においては、前記選択試薬は選択剤を含む。いくつかの実施形態においては、前記選択剤はメトトレキサートである。いくつかの実施形態においては、前記第1の濃度域が少なくとも50nM〜100nMであり、前記第2の濃度域が少なくとも75nM〜150nMである。いくつかの実施形態においては、前記第1濃度は、50nM、60nM、70nM、80nM、90nMもしくは100nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、75nM、80nM、90nM、100nM、110nM、120nM、130nM、140nMもしくは150nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記第1の濃度域は少なくとも75nM〜150nMであり、前記第2の濃度域は少なくとも112.5nM〜225nMである。いくつかの実施形態においては、前記第1濃度は、75nM、85nM、95nM、105nM、115nM、125nM、135nM、145nMもしくは150nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、112nM、122nM、132nM、142nM、152nM、162nM、172nM、182nM、192nM、202nM、212nMもしくは225nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記第1の濃度域は少なくとも300nM〜675nMであり、前記第1の濃度域は少なくとも450nM〜1012nMである。いくつかの実施形態においては、前記第1濃度は、300nM、350nM、400nM、450nM、500nM、550nM、600nM、650nMもしくは675nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、450nM、500nM、550nM、600nM、650nM、700nM、750nM、800nM、850nM、900nM、1000nMもしくは1012nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記1回目の選択は、前記2回目の選択を行う前に、2日、3日、4日、5日、6日または7日にわたって前記T細胞を前記選択剤に暴露することを含む。いくつかの実施形態においては、前記2回目の選択は、前記T細胞を単離する前に、少なくとも2日、3日、4日、5日、6日、7日、8日、9日、10日、11日、12日、13日もしくは14日にわたって、またはこれらの時間点のいずれか2つによって定義される範囲にある任意の時間にわたって、前記T細胞を前記選択剤に暴露することを含む。いくつかの実施形態においては、前記対象はヒトである。
いくつかの実施形態においては、養子T細胞免疫療法のための遺伝子改変マルチプレックスT細胞を製造する方法であって、
遺伝子送達ポリヌクレオチドを提供すること、
T細胞に前記遺伝子送達ポリヌクレオチドを導入すること、
Sleeping Beautyトランスポゼースをコードするベクターを提供すること、
Sleeping Beautyトランスポゼースをコードする前記ベクターを前記T細胞に導入すること、
第1の濃度域の選択試薬を加えることを含む1回目の選択と、第1の濃度域よりも高くかつ第1の濃度域の少なくとも1.5倍以上である第2の濃度域の該選択試薬を加えることを含む2回目の選択とを含む操作によって、前記遺伝子送達ポリヌクレオチドを含む前記細胞を選択すること、ならびに
選択圧下において表現型を発現する前記T細胞を単離することを含む方法が提供される。
いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは、第1〜第7の配列を含み、
第1の配列が、第1の逆方向末端反復遺伝子配列を含み、
第2の配列が、第2の逆方向末端反復遺伝子配列を含み、
第3の配列が、プロモーター領域配列を含み、
第4の配列が、タンパク質をコードする少なくとも1つの遺伝子を含む最適化された配列であり、
第5の配列が、ジヒドロ葉酸還元酵素の二重変異体をコードする少なくとも1つの選択マーカーカセットを含む最適化された配列であり、該ジヒドロ葉酸還元酵素の二重変異体のメトトレキサートに対する親和性が15,000分の1または約15,000分の1に低減されており、メトトレキサートを選択メカニズムとして用いることによって、前記遺伝子送達ポリヌクレオチドによって形質導入された細胞を選択的に増殖させることができ、
第6の配列が、第1の付着部位(attP)を含み、
第7の配列が、第2の付着部位(attB)を含むこと、ならびに
第1の配列、第2の配列、第3の配列、第4の配列、第5の配列、第6の配列および第7の配列がそれぞれ5’末端および3’末端を有し、第1の逆方向末端反復遺伝子配列を含む第1の配列の3’末端が、第3の配列の5’末端に隣接し、第3の配列の3’末端が、第4の配列の5’末端に隣接し、第4の配列の3’末端が、第5の配列の5’末端に隣接し、第5の配列の3’末端が、第2の逆方向末端反復を含む第2の配列の5’末端に隣接していることを特徴とする。
いくつかの実施形態において、ヒトの前記ジヒドロ葉酸還元酵素の二重変異体をコードする遺伝子は、
ATGGTTGGTTCGCTAAACTGCATCGTCGCTGTGTCCCAGAACATGGGCATCGGCAAGAACGGGGACTTCCCCTGGCCACCGCTCAGGAATGAATCCAGATATTTCCAGAGAATGACCACAACCTCTTCAGTAGAAGGTAAACAGAATCTGGTGATTATGGGTAAGAAGACCTGGTTCTCCATTCCTGAGAAGAATCGACCTTTAAAGGGTAGAATTAATTTAGTTCTCAGCAGAGAACTCAAGGAACCTCCACAAGGAGCTCATTTTCTTTCCAGAAGTCTAGATGATGCCTTAAAACTTACTGAACAACCAGAATTAGCAAATAAAGTAGACATGGTCTGGATAGTTGGTGGCAGTTCTGTTTATAAGGAAGCCATGAATCACCCAGGCCATCTTAAACTATTTGTGACAAGGATCATGCAAGACTTTGAAAGTGACACGTTTTTTCCAGAAATTGATTTGGAGAAATATAAACTTCTGCCAGAATACCCAGGTGTTCTCTCTGATGTCCAGGAGGAGAAAGGCATTAAGTACAAATTTGAAGTATATGAGAAGAATGATTAA(配列番号2)で表されるDNA配列を含む。
いくつかの実施形態においては、ヒトの前記ジヒドロ葉酸還元酵素の二重変異体は、
MVGSLNCIVA VSQNMGIGKN GDFPWPPLRN ESRYFQRMTT TSSVEGKQNL VIMGKKTWFS IPEKNRPLKG RINLVLSREL KEPPQGAHFL SRSLDDALKL TEQPELANKV DMVWIVGGSS VYKEAMNHPG HLKLFVTRIM QDFESDTFFP EIDLEKYKLL PEYPGVLSDV QEEKGIKYKF EVYEKND(配列番号3)で表されるタンパク質配列を含む。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは環状である。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは少なくとも1kb〜5kbである。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドはミニサークル(minicircle)である。いくつかの実施形態においては、前記プロモーター領域は、EF1プロモーター配列を含む。いくつかの実施形態においては、前記第4の配列は、タンパク質をコードする遺伝子を1つ、2つ、3つ、4つまたは5つ含む。いくつかの実施形態においては、前記第4の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第4の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記第4の配列は、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記第4の配列は、同じエピトープに特異的な複数の抗体結合ドメインなどの、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記関連する複数のタンパク質は、同じエピトープに特異的な複数の抗体結合ドメインを含む。いくつかの実施形態においては、前記第5の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第5の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記タンパク質は治療用タンパク質である。いくつかの実施形態においては、前記最適化されたコドンおよび/またはコンセンサス配列は、複数の関連配列において利用されている配列および/または核酸塩基の可変性を比較することによって作製される。いくつかの実施形態においては、前記タンパク質は、抗体またはその一部を含み、該抗体またはその一部はヒト化されていてもよい。いくつかの実施形態においては、前記ジヒドロ葉酸還元酵素の二重変異体は、L22FおよびF31Sのアミノ酸変異を含む。いくつかの実施形態においては、前記ジヒドロ葉酸還元酵素の二重変異体は、L22FおよびF31Sのアミノ酸変異を含む。いくつかの実施形態においては、前記導入をエレクトロポレーションによって行う。いくつかの実施形態においては、前記選択を、選択マーカーカセットを使用して選択圧を高めることによって行う。いくつかの実施形態においては、前記選択試薬は選択剤を含む。いくつかの実施形態においては、前記選択剤はメトトレキサートである。いくつかの実施形態においては、前記第1の濃度域が少なくとも50nM〜100nMであり、前記第2の濃度域が少なくとも75nM〜150nMである。いくつかの実施形態においては、前記第1濃度は、50nM、60nM、70nM、80nM、90nMもしくは100nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、75nM、80nM、90nM、100nM、110nM、120nM、130nM、140nMもしくは150nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記第1の濃度域は少なくとも75nM〜150nMであり、前記第2の濃度域は少なくとも112.5nM〜225nMである。いくつかの実施形態においては、前記第1濃度は、75nM、85nM、95nM、105nM、115nM、125nM、135nM、145nMもしくは150nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、112nM、122nM、132nM、142nM、152nM、162nM、172nM、182nM、192nM、202nM、212nMもしくは225nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記第1の濃度域は少なくとも300nM〜675nMであり、前記第1の濃度域は少なくとも450nM〜1012nMである。いくつかの実施形態においては、前記第1濃度は、300nM、350nM、400nM、450nM、500nM、550nM、600nM、650nMもしくは675nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、450nM、500nM、550nM、600nM、650nM、700nM、750nM、800nM、850nM、900nM、1000nMもしくは1012nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記1回目の選択は、前記2回目の選択を行う前に、2日、3日、4日、5日、6日または7日にわたって前記T細胞を前記選択剤に暴露することを含む。いくつかの実施形態においては、前記2回目の選択は、前記T細胞を単離する前に、少なくとも2日、3日、4日、5日、6日、7日、8日、9日、10日、11日、12日、13日もしくは14日にわたって、またはこれらの時間点のいずれか2つによって定義される範囲にある任意の時間にわたって、前記T細胞を前記選択剤に暴露することを含む。いくつかの実施形態においては、前記T細胞はT細胞前駆細胞を含む。いくつかの実施形態においては、前記T細胞前駆細胞は造血幹細胞である。
いくつかの実施形態においては、養子T細胞免疫療法のための遺伝子改変細胞を製造する方法であって、
遺伝子送達ポリヌクレオチドを提供すること、
T細胞前駆細胞に前記遺伝子送達ポリヌクレオチドを導入すること、
Sleeping Beautyトランスポゼースをコードするベクターを提供すること、
Sleeping Beautyトランスポゼースをコードする前記ベクターを前記T細胞前駆細胞に導入すること、
第1の濃度域の選択試薬を加えることを含む1回目の選択と、第1の濃度域よりも高くかつ第1の濃度域の少なくとも1.5倍以上である第2の濃度域の該選択試薬を加えることを含む2回目の選択とを含む操作によって、前記遺伝子送達ポリヌクレオチドを含む前記T細胞前駆細胞を選択すること、ならびに
選択圧下において表現型を発現する前記T細胞前駆細胞を単離することを含む方法が提供される。
いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは、オリゴヌクレオチドに核酸を安定に挿入するための前記遺伝子送達ポリヌクレオチドであって、
該遺伝子送達ポリヌクレオチド内において、挿入される該核酸が逆方向末端反復遺伝子配列に挟まれていること、
該遺伝子送達ポリヌクレオチドが選択可能であること、
該遺伝子送達ポリヌクレオチドが、第1〜第7の配列を含み、
第1の配列が、第1の逆方向末端反復遺伝子配列を含み、
第2の配列が、第2の逆方向末端反復遺伝子配列を含み、
第3の配列が、プロモーター領域配列を含み、
第4の配列が、タンパク質をコードする少なくとも1つの遺伝子またはmRNAにより転写される配列をコードする少なくとも1つの遺伝子を含む最適化された配列であり、
第5の配列が、ジヒドロ葉酸還元酵素の二重変異体をコードする少なくとも1つの選択マーカーカセットを含む最適化された配列であり、該ジヒドロ葉酸還元酵素の二重変異体のメトトレキサートに対する親和性が15,000分の1または約15,000分の1に低減されており、メトトレキサートを用いて、前記遺伝子送達ポリヌクレオチドによって形質導入された細胞の選択を行うことによって、前記少なくとも1つの遺伝子を発現する細胞の割合を増加させることができ、
第6の配列が、第1の付着部位(attP)を含み、
第7の配列が、第2の付着部位(attB)を含むこと、ならびに
第1の配列、第2の配列、第3の配列、第4の配列、第5の配列、第6の配列および第7の配列がそれぞれ5’末端および3’末端を有し、第1の逆方向末端反復遺伝子配列を含む第1の配列の3’末端が、第3の配列の5’末端に隣接し、第3の配列の3’末端が、第4の配列の5’末端に隣接し、第4の配列の3’末端が、第5の配列の5’末端に隣接し、第5の配列の3’末端が、第2の逆方向末端反復を含む第2の配列の5’末端に隣接していることを特徴とする。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは環状である。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは少なくとも1kb〜5kbである。いくつかの実施形態においては、前記プロモーター領域は、EF1プロモーター配列を含む。いくつかの実施形態においては、前記第4の配列は、タンパク質をコードする遺伝子を1つ、2つ、3つ、4つまたは5つ含む。いくつかの実施形態においては、前記第4の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第4の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記第4の配列は、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記第4の配列は、同じエピトープに特異的な複数の抗体結合ドメインなどの、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記関連する複数のタンパク質は、同じエピトープに特異的な複数の抗体結合ドメインを含む。いくつかの実施形態においては、前記第5の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第5の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記最適化されたコドンおよび/またはコンセンサス配列は、複数の関連配列において利用されている配列および/または核酸塩基の可変性を比較することによって作製される。いくつかの実施形態においては、前記タンパク質は治療用タンパク質である。いくつかの実施形態においては、前記タンパク質は、抗体またはその一部を含み、該抗体またはその一部はヒト化されていてもよい。いくつかの実施形態においては、前記ジヒドロ葉酸還元酵素の二重変異体は、L22FおよびF31Sのアミノ酸変異を含む。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドはミニサークル(minicircle)である。いくつかの実施形態においては、前記導入をエレクトロポレーションによって行う。いくつかの実施形態においては、前記選択を、選択マーカーカセットを使用して選択圧を高めることによって行う。いくつかの実施形態においては、前記選択試薬は選択剤を含む。いくつかの実施形態においては、前記選択剤はメトトレキサートである。いくつかの実施形態においては、前記第1の濃度域が少なくとも50nM〜100nMであり、前記第2の濃度域が少なくとも75nM〜150nMである。いくつかの実施形態においては、前記第1の濃度域は少なくとも75nM〜150nMであり、前記第2の濃度域は少なくとも112.5nM〜225nMである。いくつかの実施形態においては、前記第1の濃度域は少なくとも300nM〜675nMであり、前記第1の濃度域は少なくとも450nM〜1012nMである。いくつかの実施形態においては、前記1回目の選択は、前記2回目の選択を行う前に、2日、3日、4日、5日、6日または7日にわたって前記T細胞を前記選択剤に暴露することを含む。いくつかの実施形態においては、前記2回目の選択は、前記T細胞を単離する前に、少なくとも2日、3日、4日、5日、6日、7日、8日、9日、10日、11日、12日、13日もしくは14日にわたって、またはこれらの時間点のいずれか2つによって定義される範囲にある任意の時間にわたって、前記T細胞を前記選択剤に暴露することを含む。いくつかの実施形態においては、前記T細胞前駆細胞は造血幹細胞である。
いくつかの実施形態においては、T細胞前駆細胞におけるタンパク質の産生を増加させる方法であって、
ポリヌクレオチドを提供すること、
細胞に前記ポリヌクレオチドを導入すること、
Sleeping Beautyトランスポゼースをコードするベクターを提供すること、
Sleeping Beautyトランスポゼースをコードする前記ベクターを前記T細胞前駆細胞に導入すること、
第1の濃度域の選択試薬を加えることを含む1回目の選択と、第1の濃度域よりも高くかつ第1の濃度域の少なくとも1.5倍以上である第2の濃度域の該選択試薬を加えることを含む2回目の選択とを含む操作によって、前記遺伝子送達ポリヌクレオチドを含む前記T細胞前駆細胞を選択すること、ならびに
選択圧下において表現型を発現する前記T細胞前駆細胞を単離すること
を含む方法が提供される。
いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは、オリゴヌクレオチドに核酸を安定に挿入するための前記遺伝子送達ポリヌクレオチドであって、
該遺伝子送達ポリヌクレオチド内において、挿入される該核酸が逆方向末端反復遺伝子配列に挟まれていること、
該遺伝子送達ポリヌクレオチドが選択可能であること、
該遺伝子送達ポリヌクレオチドが、第1〜第7の配列を含み、
第1の配列が、第1の逆方向末端反復遺伝子配列を含み、
第2の配列が、第2の逆方向末端反復遺伝子配列を含み、
第3の配列が、プロモーター領域配列を含み、
第4の配列が、タンパク質をコードする少なくとも1つの遺伝子またはmRNAにより転写される配列をコードする少なくとも1つの遺伝子を含む最適化された配列であり、
第5の配列が、ジヒドロ葉酸還元酵素の二重変異体をコードする少なくとも1つの選択マーカーカセットを含む最適化された配列であり、該ジヒドロ葉酸還元酵素の二重変異体のメトトレキサートに対する親和性が15,000分の1または約15,000分の1に低減されており、メトトレキサートを用いて、前記遺伝子送達ポリヌクレオチドによって形質導入された細胞の選択を行うことによって、前記少なくとも1つの遺伝子を発現する細胞の割合を増加させることができ、
第6の配列が、第1の付着部位(attP)を含み、
第7の配列が、第2の付着部位(attB)を含むこと、ならびに
第1の配列、第2の配列、第3の配列、第4の配列、第5の配列、第6の配列および第7の配列がそれぞれ5’末端および3’末端を有し、第1の逆方向末端反復遺伝子配列を含む第1の配列の3’末端が、第3の配列の5’末端に隣接し、第3の配列の3’末端が、第4の配列の5’末端に隣接し、第4の配列の3’末端が、第5の配列の5’末端に隣接し、第5の配列の3’末端が、第2の逆方向末端反復を含む第2の配列の5’末端に隣接していることを特徴とする。
いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは環状である。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは少なくとも1kb〜5kbである。いくつかの実施形態においては、前記プロモーター領域は、EF1プロモーター配列を含む。いくつかの実施形態においては、前記第4の配列は、タンパク質をコードする遺伝子を1つ、2つ、3つ、4つまたは5つ含む。いくつかの実施形態においては、前記第4の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第4の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記第4の配列は、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記第4の配列は、同じエピトープに特異的な複数の抗体結合ドメインなどの、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記関連する複数のタンパク質は、同じエピトープに特異的な複数の抗体結合ドメインを含む。いくつかの実施形態においては、前記第5の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第5の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記最適化されたコドンおよび/またはコンセンサス配列は、複数の関連配列において利用されている配列および/または核酸塩基の可変性を比較することによって作製される。いくつかの実施形態においては、前記タンパク質は治療用タンパク質である。いくつかの実施形態においては、前記タンパク質は、抗体またはその一部を含み、該抗体またはその一部はヒト化されていてもよい。いくつかの実施形態においては、前記ジヒドロ葉酸還元酵素の二重変異体は、L22FおよびF31Sのアミノ酸変異を含む。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドはミニサークル(minicircle)である。いくつかの実施形態においては、前記導入をエレクトロポレーションによって行う。いくつかの実施形態においては、前記選択を、選択マーカーカセットを使用して選択圧を高めることによって行う。いくつかの実施形態においては、前記選択試薬は選択剤を含む。いくつかの実施形態においては、前記選択剤はメトトレキサートである。
いくつかの実施形態においては、前記第1の濃度域は少なくとも50nM〜100nMであり、前記第2の濃度域は少なくとも75nM〜150nMである。いくつかの実施形態においては、前記第1の濃度域は少なくとも75nM〜150nMであり、前記第2の濃度域は少なくとも112.5nM〜225nMである。いくつかの実施形態においては、前記第1の濃度域は少なくとも300nM〜675nMであり、前記第2の濃度域は少なくとも450nM〜1012nMである。いくつかの実施形態においては、前記1回目の選択は、前記2回目の選択を行う前に、2日、3日、4日、5日、6日または7日にわたって前記細胞を前記選択剤に暴露することを含む。いくつかの実施形態においては、前記2回目の選択は、前記細胞を単離する前に、少なくとも2日、3日、4日、5日、6日または7日にわたって前記細胞を前記選択剤に暴露することを含む。いくつかの実施形態においては、前記T細胞前駆細胞は造血幹細胞である。
遺伝子送達ミニサークルを産生するプラスミドであるMC_T3/FP-DHFRdmの全体の概略図を示す。Sleeping BeautyトランスポゾンのT3世代を含むミニサークルは、EF1aプロモーターと、蛍光タンパク質(FP;maxGFP、mCherryまたは青色蛍光タンパク質(BFP))およびThosea asignaウイルス2Aペプチド(T2A)およびメトトレキサート(MTX)非感受性のジヒドロ葉酸還元酵素(DHFRdm)の二重変異体からなる融合体とを、逆方向末端反復配列(ITR、矢印で示す)の間に含む。attB部位とattP部位との間の組換え体はミニサークルを製造し、残りの細菌性骨格は酵素的に分解される。
トランスポゾン:トランスポゼースのDNA比の最適化を示す一連の棒グラフを示す。2μgのMC_T3/eGFP-T2A-DHFRdm DNA(トランスポゾン)と、段階的に濃度を上げたMC_SB100X(トランスポゼース)DNA(0.5μg、1μg、2μg、4μg、8μg)とを使用して、H9細胞をヌクレオフェクトした。ヌクレオフェクションの24時間後(縞模様の棒)および7日後(黒色の棒)にフローサイトメトリーを実施し、一過性トランスフェクション効率および安定なトランスフェクション効率を評価した。棒の上に示した数字は、一過性のGFP発現に対する安定なGFP発現のパーセンテージとして算出された組み込み効率を示す。
選択工程におけるMTX濃度の影響を示す一連の棒グラフを示す。T3/GFP-T2A-DHFRdmトランスポゾンDNAで安定にトランスフェクトされたH9細胞集団を、濃度を段階的に上げたMTX(0nM、50nM、100nMおよび200nM)の存在下において、3日間(白色の棒)、5日間(横縞)、7日間(縦縞)および10日間(黒色の棒)培養した後、フローサイトメトリーで分析した。図3のパネルAは、GFP/PIのパーセンテージを示し、図3のパネルBは平均GFP相対蛍光単位(RFU)を示す。
MTX除去後の導入遺伝子の持続性を示す一連の棒グラフを示す。T3/GFP-T2A-DHFRdmトランスポゾンで安定にトランスフェクトされたH9細胞集団をフローサイトメトリーで分析した結果を示す。まず、このH9細胞集団を様々な濃度のMTX(50nM、100nMおよび200nM)を添加した培地中で2週間培養し(黒色の棒)、その後MTXによる選択を中止し、様々な時点(1週間後(横縞)、2週後(縦縞)、3週後(格子模様の棒)および4週後(白色の棒))においてデータを収集した。図4のパネルAはGFP/PIのパーセンテージを示し、図4のパネルBは平均GFP相対蛍光単位(RFU)を示す。
ヒト半数体ゲノム当たりのトランスポゾンのコピー数を示す。様々な濃度のMTX(50nM、100nMおよび200nM)による選択を行う前および行った後に、T3/GFP-T2A-DHFRdmトランスポゾンDNAが安定にトランスフェクトされたH9細胞集団からゲノムDNAを単離した。トランスポゾンの平均コピー数を定量的PCRにより決定した。「ゴールドスタンダード」クローンは限界希釈法により作製した。「ソーティング」した集団は、元のH9集団(トランスポゾンの組み込み率:8%)をソーティングすることによって、GFP陽性細胞が100%を占める集団として作製した。枠で囲まれた棒グラフ上のアスタリスク()は、スチューデントのt検定によって、200nMのMTXにより選択された集団とソーティングされた集団との間に有意差が見られたことを示す(P=0.04)。
トランスポゾンの組み込み数の分布を示す。200nMのMTXを用いた選択によって、T3/GFP-T2A-DHFRdmトランスポゾンが組み込まれた細胞が100%を占めるH9集団を調製し、このH9集団から60個のクローンを限界希釈法により単離した。ゲノムDNAを単離し、相対的RT−qPCRによりトランスポゾンのコピー数を測定した。測定値は最も近い整数値に丸めた(たとえば、0.5〜1.5は1で示した)。N=60で行い、平均±標準偏差=1.78±0.69であった。得られたデータから、組み込みが起こった確率および標準誤差を算出した(挿入図)。
トランスポゾンの多重化の分析結果を表す一連の円グラフを示す。パネルA〜Cは、異なる蛍光タンパク質(FP)を含むトランスポゾンを含む3種のミニサークル(MC_T3/GFP-T2A-DHFRdm、 MC_T3/BFP-T2A-DHFRdm、MC_T3/mCherry-T2A-DHFRdm)それぞれ2μgと、MC_SB100X DNA 6μgとでヌクレオフェクトしたH9細胞集団を、様々な時点においてフローサイトメトリーで分析した結果を示す。(パネルA)トランスフェクションの24時間後(一過性発現)、(パネルB)1週間後(安定な組み込み)および(パネルC)200nMのMTXによる選択の1週間後をそれぞれ示す。
1種のFPの発現、2種のFPの発現および3種のFPの発現を選択することによって、その分布を分析した結果を示す棒グラフを示す。3種のトランスポゾンが安定にトランスフェクトされたH9細胞集団を200nMのMTXにより1週間かけて選択し、次いで、500nMおよび1000nMに濃度を高めたMTXに暴露させた。
MTXによる選択後、Sleeping Beautyを用いたトランスポゾンDNAのリンパ球における安定な発現についてフロー分析した結果の一例を示す。新たに解凍したPBMCに、ミニサークルGFP(mcGFP)DNA(MC_T3/GFP-T2A-DHFRdm)および Sleeping BeautyトランスポゼースDNA(MC_SB100X)をエレクトロポレーションによって導入した。次いで、CD3およびCD28に結合することによってT細胞を選択的に活性化するMiltenyi Transactビーズを使用して、前記PBMCを刺激した。エレクトロポレーションの1週間後、25nM、50nMおよび100nMのMTXを使用して、PBMC試料を12日間かけて選択した(図では50nMを示す)。パネルA、BおよびCは、リンパ球(A)、単一細胞(B)および生細胞(C)の逐次選択をそれぞれ示す。パネルDにおいては、CD8集団およびCD8集団の両方においてGFPの高レベル発現が示された。このドナーに関しては、刺激後のリンパ球の大部分がCD8T細胞であったことに留意されたい。
Sleeping Beautyを用いたトランスポゾンDNAのリンパ球における初期発現のヒストグラムを示す。mcGFP DNA単独(10μg)、mcGFP:MC_SB100X=2:1としてのmcGFP(10μg)およびMC_SB100X DNA(5μg)、mcGFP:MC_SB100X=1:1としてのmcGFP(10μg)およびMC_SB100X DNA(10μg)、pMAXGFP(10μg)対照、またはDNAを含まない対照のいずれかでPBMCをトランスフェクトした。パネルAは、初期エレクトロポレーション効率の一例として、Transactビーズを加えなかった、トランスフェクションの2日後の細胞の結果を示す。パネルBにおいて、Transactビーズに暴露させた5日後の細胞の結果を示す。5日目までにmcGFP DNAレベルは対照レベル付近まで低下したが、トランスポゼースを共トランスフェクトした細胞では、mcGFPは上昇したまま維持された。
MTXを添加する一週間前における、トランスフェクトされたリンパ球のGFPトランスポゾンDNAの発現量および細胞増殖レベルを示す。mcGFP DNA単独、mcGFP:MC_SB100X=2:1のmcGFPおよびMC_SB100X DNA、mcGFP:MC_SB100X=1:1のmcGFPおよびMC_SB100X DNA、pMAXGFP対照(10μg)またはDNAを含まない対照のいずれかでPBMCをトランスフェクトした。パネルAは、2日目〜7日目においてGFPの発現レベルが低下したことを示す。パネルBは、0日目にMiltenyi Transactビーズで処理したトランスフェクト細胞試料の0日目〜7日目の生細胞量を示す。パネルCは、Transactビーズ非存在下での、トランスフェクト細胞試料の0日目〜7日目の生細胞量を示す。図に示すように、Miltenyi Transactビーズの存在下での、mcGFP DNAをトランスフェクトした細胞ではゆっくりとした増殖が見られる。
MTXによる選択を行った1週間後に、Sleeping Beautyを用いたトランスポゾンDNAがT細胞において安定に発現されていることを示す。トランスポゾンDNAおよびSleeping BeautyトランスポゼースDNAのトランスフェクションによってGFPを発現するように改変されたT細胞のGFPの産生および増殖を調査したフローサイトメトリーの散布図を示す。パネルA、B、EおよびFは、リンパ球を同定するための散布図を示し、パネルC、D、GおよびHはCD8およびGFPの発現を示す。パネルA〜Dは、100nMのMTXで処理した細胞のフローサイトメトリー分析を示す。パネルE〜Hは、MTXで処理しなかった細胞のフローサイトメトリー分析を示す。パネルA、C、EおよびGは、mcGFPを単独でトランスフェクトした試料を示す。パネルB、D、FおよびHは、mcGFPおよびMC_SB100X(Sleeping Beautyトランスポゼース)DNAを2:1でトランスフェクトした細胞のフローサイトメトリーの結果を示す。パネルDに示すように、GFP遺伝子が細胞内ゲノムに安定して挿入されるようにmcGFPおよびSB100Xで共トランスフェクトしたT細胞(CD8およびCD8)においては、100nMのMTXの存在下で約95%の細胞が安定してGFPを発現し、一方、MTXの非存在下では、わずか約23%の細胞死しかGFPを発現しなかった。
MTXによる選択を行った14日後における、トランスポゾンをトランスフェクトしたリンパ球の増殖およびGFP/CD8の発現を示す。DNAをトランスフェクトしなかった細胞試料(対照)、mcGFPを単独でトランスフェクトした細胞試料、mcGFP:MC_SB100X=2:1のmcGFPおよびMC_SB100X DNAをトランスフェクトした細胞試料、またはmcGFP:MC_SB100X=1:1のmcGFPおよびMC_SB100X DNAをトランスフェクトした細胞試料を調製した。1週間後、これらの細胞を、0nMのMTX(対照)、25nMのMTX、50nMのMTXまたは100nMのMTXを使用して選択した。第1の欄、第3の欄、第5の欄および第7の欄に示したリンパ球ウィンドウは、高濃度のMTXの存在下では、安定にトランスフェクトされた細胞のみが生存可能であることを示している。第2の欄、第4の欄、第6の欄および第8の欄においては、GFPおよびCD8を検出することによって単一の生リンパ球をゲーティングした。mcGFPを単独でトランスフェクトした細胞試料では、GFPの発現は経時的に消失する(第2欄)。しかし、mcGFPおよびMC_SB100Xの両方がトランスフェクトされた細胞は、MTXによる選択を行った後でも(>90%)、MTXによる選択を行う前であっても(約20%)、GFPを安定に発現する(第4欄および第6欄)。図に示すように、mcGFPおよびMC_SB100X DNAがトランスフェクトされた試料においては、50nMおよび100nMの濃度のMTXによって有効に選択を行うことができ、mcGFPとMC_SB100Xとの比率が2:1であっても1:1であっても有意差は見られなかった。リンパ球の大部分がCD8T細胞であることには留意されたい。
MTXによる選択を行った19日後における、トランスポゾンをトランスフェクトした細胞のリンパ球ウィンドウおよびGFP/CD8の発現を示す。DNAをトランスフェクトしなかった細胞試料(対照)、mcGFPを単独でトランスフェクトした細胞試料、mcGFP:MC_SB100X=2:1のmcGFPおよびMC_SB100X DNAをトランスフェクトした細胞試料、またはmcGFP:MC_SB100X=1:1のmcGFPおよびMC_SB100X DNAをトランスフェクトした細胞試料を調製した。これらの細胞を、0nMのMTX(対照)、25nMのMTX、50nMのMTXまたは100nMのMTXを使用して選択した。第1の欄、第3の欄、第5の欄および第7の欄に示したリンパ球ウィンドウは、MTXの存在下では、安定にトランスフェクトされた細胞のみが生存可能であることを示している。第2の欄、第4の欄、第6の欄および第8の欄においては、GFPおよびCD8を検出することによって単一の生リンパ球をゲーティングした。mcGFPを単独でトランスフェクトした細胞試料では、GFPの発現は経時的に消失する(第2欄)。しかし、mcGFPおよびMC_SB100Xの両方がトランスフェクトされた細胞は、MTXによる選択を行った後でも(>90%)、MTXによる選択を行う前であっても(約20%)、GFPを安定に発現する(第4欄および第6欄)。図に示すように、mcGFPおよびMC_SB100X DNAがトランスフェクトされた試料においては、50nMおよび100nMの濃度のMTXによって有効に選択を行うことができたが、25nMでは有効性はわずかに低かった。また、mcGFPとMC_SB100Xとの比率が2:1であっても1:1であっても有効に選択された。
トランスポゾンDNAを安定に発現し、MTXにより選択された細胞の生細胞数を示す。トランスフェクションの7日後、14日後および19日後にトリパンブルー染色による細胞カウントを行った。DNAをトランスフェクトしなかったPBMC試料(対照)、mcGFPを単独でトランスフェクトしたPBMC試料、mcGFP:MC_SB100X=2:1のmcGFPおよびMC_SB100X DNAをトランスフェクトしたPBMC試料、またはmcGFP:MC_SB100X=1:1のmcGFPおよびMC_SB100X DNAをトランスフェクトしたPBMC試料を調製した。7日目に、これらの細胞を、0nMのMTX(対照)、25nMのMTX、50nMのMTXまたは100nMのMTXを使用して選択した。パネルAは、MTXの非存在下での生細胞数を示す。パネルBは、100nMのMTXに暴露させた後の生細胞数を示す。パネルCは、50nMのMTXに暴露させた後の生細胞数を示す。パネルDは、25nMのMTXに暴露させた後の生細胞数を示す。MTXは、葉酸の代謝を抑制することによって細胞の増殖を遅延させるため、MTX抵抗性遺伝子(DHFRdm)を共発現するmcGFPトランスポゾンとSleeping BeautyトランスポゼースをコードするMC_SB100Xプラスミドとをトランスフェクトさせた細胞のみが、組み込まれたトランスポゾンDNAを安定に発現したことから、高濃度のMTXの存在下で増殖可能であった。
MTXによる選択下において、GFPトランスポゾンDNAおよびSleeping Beautyトランスポゼースを安定して発現するリンパ球によるGFPの発現を分析した結果を示す。mcGFPを単独でトランスフェクトしたPBMC試料、mcGFP:MC_SB100X=2:1のmcGFPおよびMC_SB100XをトランスフェクトしたPBMC試料、mcGFP:MC_SB100X=1:1のmcGFPおよびMC_SB100XをトランスフェクトしたPBMC試料、pMAXGFP(10μg)をトランスフェクトしたPBMC試料、DNAをトランスフェクトしなかったPBMC試料(対照)を調製した。トランスフェクションの7日後に細胞をMTXに暴露させ、単一の生リンパ球におけるGFP発現を測定した。パネルAは、MTXの非存在下における、2日目、5日目、7日目、14日目および19日目のGFPの発現レベルを示す。パネルBは、0nM、25nM、50nMおよび100nMの濃度のMTXによる選択下での、mcGFPが単独でトランスフェクトされたリンパ球の7日目、14日目および19日目におけるGFPの発現レベルを示す。パネルCは、0nM、25nM、50nMおよび100nMのMTXによる選択下での、mcGFP:MC_SB100X=2:1のmcGFPおよびMC_SB100XがトランスフェクトされたT細胞におけるGFPの発現を示す。パネルDは、0nM、25nM、50nMおよび100nMの濃度のMTXによる選択制御下での、mcGFP:MC_SB100X=1:1のmcGFPおよびMC_SB100XがトランスフェクトされたT細胞におけるGFPの発現を示す。図に示すように、mcGFPおよびMC_SB100Xを2:1でトランスフェクトさせても1:1でトランスフェクトさせても同様の結果が得られ、MTXによる選択の1週間後には、25nMにおいてはGFPの発現レベルは約75%に達し、50nMおよび100nMにおいてはGFPの発現レベルは約90%に達した。さらに、50nMのMTXによる処理と100nMのMTXによる処理との間のGFPの発現の差はごくわずかであった。
Sleeping Beautyトランスポゾン(ミニサークル構築物)を示す。本明細書に記載の実施形態のいくつかのために設計された、いくつかのsleeping beauty構築物の概略図である。
GFPの発現のための遺伝子を含むSleeping Beautyトランスポゾンがトランスフェクトされた細胞のいくつかの散布図を示す。トランスフェクションの14日後の細胞を示す。GFPをコードする遺伝子を含むトランスポゾンまたはSB100Xをエレクトロポレーションにより細胞に導入した。
Sleeping BeautyトランスポゾンおよびMTX(GFPトランスポゾン)を示す。図に示すように、mcGFPプラスミドと、GFPの発現のための遺伝子を含むSleeping Beautyトランスポゾンとを様々な比率で細胞にトランスフェクトした(McGFP:SB=1:1および2:1)。図に示すように、MTXを添加しなかった場合、18日後のGFP発現は低値を示した。Sleeping Beautyトランスポゾンを用いた場合、MTXの存在下でGFPの発現が増加することが示されている。
Sleeping Beautyトランスポゾン(ミニサークル構築物)を示す。本明細書に記載の実施形態のいくつかのために設計された、いくつかのsleeping beauty構築物の概略図である。
Sleeping BeautyトランスポゾンおよびMTX(GFPトランスポゾン−SB100X DNAおよびRNA)を示す。GFP、CARもしくはGFP/mCherry/BFPをコードする遺伝子を含むトランスポゾンまたはSB100X(DNAまたはRNA)エレクトロポレーションにより細胞に導入した。
Sleeping BeautyトランスポゾンおよびMTX(GFPトランスポゾン−SB100X DNAおよびRNA)を示す。GFP遺伝子を含むトランスポゾンがトランスフェクトされた細胞の散布図のいくつかを示す。細胞試料のいくつかに、GFPの発現のための遺伝子を含むDNA(2.5μgもしくは5μg)、mcGFP単独、またはRNA(1μgもしくは3μg)をトランスフェクトした。試料を分けて、0μM、50μMおよび100μMの様々な濃度のMTXの影響下で培養した。
Sleeping BeautyトランスポゾンおよびMTX(GFPトランスポゾン−SB100X DNAおよびRNA)を示す。左上のパネルに示したように、GFPの発現のための遺伝子を含むSleeping Beautyトランスポゾンを様々な濃度で細胞にトランスフェクトした。その後、トランスフェクションの7日後にMTXを添加した。図に示すように、50μg〜100μgでトランスフェクトされた細胞は、7日目〜14日目にGFPを発現可能である。
MTXの存在下でGFPを発現するDNAおよびRNAを示す。図に示すように、mcGFP、GFP:SBおよびGFP:SB RNAがトランスフェクトされた細胞を培養し、トランスフェクションの7日後にMTXに暴露させた。対照として、MTXに暴露させず細胞を14日間培養した(左上のパネル)。
GFP:SBがトランスフェクトされた細胞におけるGFPの発現を示す。左のパネルに示すように、様々な濃度のGFP:SB(2.5μg、5μg)を細胞にトランスフェクトし、様々な濃度のMTX(50μMおよび100μM)に暴露させた。図に示すように、5μgのGFP:SBをトランスフェクトした場合、MTXの存在下において細胞はGFPを発現可能であり、MTXの濃度としては50μMが最も適していた。RNAを使用してこの実験をさらに実施したが、前記タンパク質を発現させるにはDNAを使用する方が高効率である。
Sleeping Beautyトランスポゾン(ミニサークル構築物)を示す。本明細書に記載の実施形態のいくつかのために設計された、いくつかのsleeping beauty構築物の概略図である。
CD19 CARの発現を示す。CD19 CARをコードする遺伝子を含むSleeping Beauty構築物を構築した(SB:CD19 CAR)。DNA(2.5μgまたは5μg)またはRNA(1μgまたは3μg)のいずれかを細胞にトランスフェクトした。図に示すように、いずれの濃度のDNAまたはRNAであっても、DNAまたはRNAがトランスフェクトされた細胞は、50μMのMTXの存在下でCD19 CARを発現可能であった。1μgのRNAがトランスフェクトされた細胞でも、100μMのMTXの存在下でCD19 CARを発現可能であった。
CD19 CARの発現を示す。CD19 CARをコードする遺伝子を含むSleeping Beauty構築物を構築した(SB:CD19 CAR)。DNA(2.5μgまたは5μg)またはRNA(1μgまたは3μg)のいずれかを細胞にトランスフェクトした。細胞を培養し、トランスフェクションの7日後にMTXに暴露させた。CD19 CARは、EGFRtタグをさらに含んでいた。図に示すように、タグの検出はCD19 CARの発現と相関する。MTXに暴露させ後、CAR19をコードする遺伝子を含むSleeping Beauty構築物を含むDNAがトランスフェクトされた細胞、およびCAR19をコードする遺伝子を含むSleeping Beauty構築物を含むRNAがトランスフェクトされた細胞において、タグが検出された。
Sleeping BeautyトランスポゾンおよびMTX(CD19 CAR)、CD8細胞の増殖ならびにCD19 CARの発現を示す。CD19 CARをコードする遺伝子を含むSleeping Beauty構築物を構築した(SB:CD19 CAR)。DNA(2.5μgまたは5μg)またはRNA(1μgまたは3μg)のいずれかを細胞にトランスフェクトした。細胞を培養し、トランスフェクションの7日後にMTXに暴露させた。図に示すように、CD8細胞は低濃度のDNAがトランスフェクトされた場合において増殖可能であった。これに対して、RNAを使用した場合、濃度が高いほど発現量は多くなったが、濃度が低いほど細胞の初期増殖が多いことが分かった。
Sleeping Beautyトランスポゾン(ミニサークル構築物)を示す。本明細書に記載の実施形態のいくつかのために設計された、いくつかのsleeping beauty構築物の概略図である。
Sleeping BeautyトランスポゾンおよびMTX(マルチプレックス3FP)を示す。DNAまたはmcFPをエレクトロポレーションによって細胞に導入し、MTXの存在下で細胞を培養した。その後、散布図に示したように、mCherry、BFPおよび/またはGFPの発現について細胞を分析した。
Sleeping BeautyトランスポゾンおよびMTX(マルチプレックス3FP)を示す。
Sleeping Beautyトランスポゾン(ミニサークル構築物)を示す。本明細書に記載の実施形態のいくつかのために設計された、いくつかのsleeping beauty構築物の概略図である。
図に示すように、Sleeping Beautyトランスポゾンを含むDNAをエレクトロポレーションにより細胞に導入し、2回目の選択において様々な濃度のMTXに暴露させた。
Sleeping Beautyトランスポゾンを含むDNAをエレクトロポレーションにより導入した細胞における、様々な濃度のMTX(2nM、100nM、250nMおよび500nM)の存在下でのマーカータンパク質の発現を示す。
Sleeping Beautyトランスポゾン(ミニサークル構築物)を示す。本明細書に記載の実施形態のいくつかのために設計された、いくつかのsleeping beauty構築物の概略図である。
下記の用語の定義は、本発明の態様または実施形態の理解を容易にするために提供される。
本明細書に記載の「1つの(aまたはan)」は、1または1以上を意味しうる。
本明細書において「約」は、特定の値が、値を決定するために用いられる方法に本質的に付随する誤差の変動または複数の実験間の変動を含むことを示す。
本明細書に記載の「核酸」または「核酸分子」は、ポリヌクレオチドを指し、たとえば、デオキシリボ核酸(DNA)またはリボ核酸(RNA)、オリゴヌクレオチド、ポリメラーゼ連鎖反応(PCR)により作製されたフラグメント、ならびにライゲーション、切断、エンドヌクレアーゼ作用およびエキソヌクレアーゼ作用のいずれかにより作製されたフラグメントなどが挙げられる。核酸分子は、天然のヌクレオチドモノマー(DNAおよびRNAなど)、または天然に存在するヌクレオチドの類似体(たとえば、天然に存在するヌクレオチドのエナンチオマー)からなるモノマー、またはこれらの組み合わせから構成されうる。改変ヌクレオチドは、糖部分および/またはピリミジン塩基部分もしくはプリン塩基部分に改変を有していてもよい。糖部分の改変としては、たとえば、ハロゲン、アルキル基、アミンおよびアジド基による1つ以上のヒドロキシル基の置換が挙げられ、あるいは、糖部分はエーテル化またはエステル化されてもよい。さらに、糖部分全体が、立体構造的に類似の構造や電子的に類似の構造と置換されていてもよく、このような構造として、たとえば、アザ糖および炭素環式糖類似体が挙げられる。改変された塩基部分としては、アルキル化プリンおよびアルキル化ピリミジン、アシル化プリンおよびアシル化ピリミジン、ならびにその他の公知の複素環置換が挙げられる。核酸モノマーは、ホスホジエステル結合またはこれと似た結合により連結することができる。ホスホジエステル結合と似た結合としては、ホスホロチオエート結合、ホスホロジチオエート結合、ホスホロセレノエート結合、ホスホロジセレノエート結合、ホスホロアニロチオエート(phosphoroanilothioate)結合、ホスホロアニリデート(phosphoranilidate)結合、ホスホロアミデート結合などが挙げられる。「核酸分子」は、いわゆる「ペプチド核酸」も包含し、これは、天然の核酸塩基または改変された核酸塩基が付加されたポリアミド骨格を含む。核酸は、一本鎖であっても二本鎖であってもよい。本明細書に記載のいくつかの実施形態においては、遺伝子に核酸を安定に挿入するための遺伝子送達ポリヌクレオチドが提供される。「オリゴヌクレオチド」という用語は核酸と同じ意味で使用可能であり、DNAもしくはRNAと呼ぶことができる。オリゴヌクレオチドは、二本鎖であっても一本鎖であってもよい。
「遺伝子」は、生物の遺伝の分子単位であり、生物において特定の機能を有するポリペプチドまたはRNA鎖をコードする、ある程度の長さのデオキシリボ核酸(DNA)およびリボ核酸(RNA)である。また、遺伝子は、生物のゲノムにおいてその位置が特定可能な領域でありうる。本明細書のいくつかの実施形態においては、遺伝子に核酸を安定に挿入するための遺伝子送達ポリヌクレオチドであって、該遺伝子送達ポリヌクレオチド内において、挿入される該核酸が逆方向末端反復遺伝子配列に挟まれていること、該遺伝子送達ポリヌクレオチドが選択可能であることを特徴とする遺伝子送達ポリヌクレオチドが提供される。
「染色体」は、DNA、タンパク質およびRNAからなるひとまとまりの組織化されたクロマチン、すなわち細胞内に見られる巨大分子の複合体である。いくつかの実施形態においては、遺伝子に核酸を安定に挿入するための遺伝子送達ポリヌクレオチドであって、該遺伝子送達ポリヌクレオチド内において、挿入される該核酸が逆方向末端反復遺伝子配列に挟まれていること、該遺伝子送達ポリヌクレオチドが選択可能であることを特徴とする遺伝子送達ポリヌクレオチドが提供される。いくつかの実施形態においては、前記核酸は染色体の遺伝子に挿入される。
「プロモーター」は、構造遺伝子の転写を誘導するヌクレオチド配列である。いくつかの実施形態において、プロモーターは遺伝子の5’末端の非コード領域に位置し、構造遺伝子の転写開始点の近傍にある。転写開始において機能するプロモーター配列の要素は、コンセンサスヌクレオチド配列により特徴付けられることが多い。プロモーター配列の要素としては、RNAポリメラーゼ結合部位、TATA配列、CAAT配列、分化特異的要素(DSE;McGehee et al., Mol. Endocrinol. 7:551 (1993);参照によりその全体が組み込まれる)、環状AMP応答要素(CRE)、血清応答要素(SRE;Treisman, Seminars in Cancer Biol. 1:47 (1990);参照によりその全体が組み込まれる)、グルココルチコイド応答要素(GRE)、および転写因子に対する結合部位が挙げられ、該転写因子としては、たとえば、CRE/ATF(O'Reilly et al., J. Biol. Chem. 267:19938 (1992);参照によりその全体が組み込まれる)、AP2(Ye et al., J. Biol. Chem. 269:25728 (1994);参照によりその全体が組み込まれる)、SP1、cAMP応答要素結合タンパク質(CREB;Loeken, Gene Expr. 3:253 (1993); 参照によりその全体が組み込まれる)および8量体因子(概要は、Watson et al., eds., Molecular Biology of the Gene, 4th ed.(The Benjamin/Cummings Publishing Company, Inc. 1987;参照によりその全体が組み込まれる)およびLemaigre and Rousseau, Biochem. J. 303:1 (1994)(参照によりその全体が組み込まれる)を参照されたい)が挙げられる。本明細書において、プロモーターは、構成的に活性プロモーター、抑制可能なプロモーター、および誘導可能なプロモーターのいずれであってもよい。プロモーターが誘導可能なプロモーターである場合、転写率は誘導剤に応答して上昇する。対照的に、プロモーターが構成的プロモーターである場合、転写率は誘導剤による調節を受けない。抑制可能なプロモーターも公知である。いくつかの実施形態において、遺伝子送達ポリヌクレオチドが提供される。いくつかの実施形態において、前記遺伝子送達ポリヌクレオチドはプロモーター配列を含む。
「選択マーカーカセット」は、人為的な選択のための特性を付与するために、ベクターまたは細胞に導入される遺伝子である。選択マーカーカセットは、スクリーニング可能なマーカーであってもよく、このような選択マーカーカセットを使用することによって、研究者が望ましい細胞と望ましくない細胞とを識別すること、または特定の種類の細胞を濃縮することが可能となる。いくつかの実施形態においては、遺伝子送達ポリヌクレオチドが提供される。いくつかの実施形態において、前記遺伝子送達ポリヌクレオチドは選択マーカーカセットを含む。
本明細書に記載の「ジヒドロ葉酸還元酵素」すなわちDHFRは、NADPHを電子ドナーとして使用して、ジヒドロ葉酸をテトラヒドロ葉酸に還元する酵素であり、このテトラヒドロ葉酸は、C転移反応に使用されるテトラヒドロ葉酸由来の補因子に変換されうる。本明細書の実施形態のいくつかにおいては、遺伝子送達ポリヌクレオチドが提供される。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは、ジヒドロ葉酸還元酵素の二重変異体をコードする少なくとも1つの選択マーカーカセットを含む。
本明細書に記載の「メトトレキサート」(MTX)は、代謝拮抗薬および葉酸代謝拮抗薬であり、葉酸の代謝を抑制することによって作用する。いくつかの実施形態においては、養子T細胞免疫療法のための遺伝子改変マルチプレックスT細胞を製造する方法が提供される。最も広い解釈では、該方法は、
本明細書に記載の実施形態のいずれかに記載の遺伝子送達ポリヌクレオチドを提供すること、
T細胞に前記遺伝子送達ポリヌクレオチドを導入すること、
Sleeping Beautyトランスポゼースをコードするベクターを提供すること、
Sleeping Beautyトランスポゼースをコードする前記ベクターを前記T細胞に導入すること、
第1の濃度域の選択試薬を加えることを含む1回目の選択と、第1の濃度域よりも高くかつ第1の濃度域の少なくとも1.5倍以上である第2の濃度域の同じ選択試薬を加えることを含む2回目の選択とを含む操作によって、前記遺伝子送達ポリヌクレオチドを含む前記細胞を選択すること、ならびに
該試薬による選択圧下において表現型を発現する前記T細胞を単離することを含むことができる。
本明細書に記載の実施形態のいくつかにおいては、前記選択試薬は選択剤を含む。いくつかの実施形態においては、前記選択試薬はMTXである。
「逆方向反復配列」すなわちIRは、その下流に逆向きの相補配列を持つヌクレオチド配列である。逆方向反復配列は、種々の重要な生物学的機能を有しうる。この逆方向反復配列によってトランスポゾンの境界が決まり、自己相補塩基対の形成が可能な領域(単一の配列内において塩基対を形成しうる複数の領域)を示す。これらの特性は、ゲノムの不安定化において重要な役割を果たし、細胞の進化、遺伝的多様性ならびに突然変異や疾患にも寄与する。いくつかの実施形態においては、遺伝子送達ポリヌクレオチドが提供される。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは、第1の逆方向末端反復遺伝子配列および第2の逆方向末端反復遺伝子配列を含む。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは、2つの逆方向反復配列の間に配置されたSleeping Beautyトランスポゾンを含む。
Sleeping beautyトランスポゼースは、Sleeping BeautyトランスポゾンのIRに存在する特異的結合部位に結合する。IR(逆方向反復配列)の配列は、cagttgaagtcggaagtttacatacacttaagttggagtcattaaaactcgtttttcaactacTccacaaatttcttgttaacaaacaatagttttggcaagtcagttaggacatctactttgtgcatgacacaagtcatttttccaacaattgtttacagacagattatttcacttataattcactgtatcacaattccagtgggtcagaagtttacatacactaagttgactgtgcctttaaacagcttggaaaattccagaaaatgatgtcatggctttagaagcttctgatagactaattgacatcatttgagtcaattggaggtgtacctgtggatgtatttcaagg(配列番号1)で表される。
「ポリペプチド」は、ペプチド結合により連結されたアミノ酸残基のポリマーであり、天然に産生されたものでも合成されたものであってもよい。アミノ酸残基の数が約10個未満のポリペプチドは一般に「ペプチド」と称される。
「タンパク質」は、1つ以上のポリペプチド鎖を含む巨大分子である。タンパク質は、糖鎖などの非ペプチド成分をさらに含んでいてもよい。タンパク質への糖鎖やその他の非ペプチド性置換基の付加は、該タンパク質を産生する細胞によってなされてもよく、細胞種によっても左右される。本明細書においてタンパク質は、そのアミノ酸配列骨格で定義され、糖鎖などの置換基については規定されないが、このような置換基はタンパク質中に存在していてもよい。いくつかの実施形態においては、遺伝子に核酸を安定に挿入するための遺伝子送達ポリヌクレオチドであって、該遺伝子送達ポリヌクレオチド内において、挿入される該核酸が逆方向末端反復遺伝子配列に挟まれていること、該遺伝子送達ポリヌクレオチドが選択可能であることを特徴とする遺伝子送達ポリヌクレオチドが提供される。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは、少なくとも1つのタンパク質をコードする配列をさらに含む。
本明細書に記載の「抗体」は、免疫系で機能する形質細胞により産生され、細菌やウイルスなどの外来物を特定しそれを中和する役割を果たす大きなY字型タンパク質を指す。抗体タンパク質は4つのポリペプチド鎖、すなわち、ジスルフィド結合により連結された同一の重鎖2本と同一の軽鎖2本とを含むことができる。それぞれの重鎖および軽鎖は、免疫グロブリンドメインと呼ばれる構造ドメインから構成される。これらのドメインは約70〜110個のアミノ酸を含むことができ、そのサイズおよび機能に従って様々なカテゴリーに分類される。いくつかの実施形態においては、遺伝子に核酸を安定に挿入するための遺伝子送達ポリヌクレオチドであって、該遺伝子送達ポリヌクレオチド内において、挿入される該核酸が逆方向末端反復遺伝子配列に挟まれていること、該遺伝子送達ポリヌクレオチドが選択可能であることを特徴とする遺伝子送達ポリヌクレオチドが提供される。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは、少なくとも1つのタンパク質をコードする配列をさらに含む。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは、抗体またはその一部をコードする配列を含むことができ、該抗体またはその一部はヒト化されていてもよい。
「キメラ抗原受容体」(CAR)は、キメラT細胞受容体としても知られており、人工のT細胞受容体である遺伝子改変受容体を指し、エフェクター免疫細胞に任意の特異性を付与することができる。このような受容体を使用することによって、モノクローナル抗体の特異性をT細胞に移植することができ、たとえば、レトロウイルスベクターを利用して、この受容体のコード配列をT細胞に移入することよって前記移植を達成することができる。CARの構造は、CD3ζ膜貫通ドメインおよび細胞内ドメインに融合された、モノクローナル抗体由来の一本鎖可変フラグメント(scFv)を含んでいてもよい。このような分子は、scFvによる標的の認識に応答してζシグナルの伝達を誘導する。いくつかの実施形態においては、遺伝子に核酸を安定に挿入するための遺伝子送達ポリヌクレオチドであって、該遺伝子送達ポリヌクレオチド内において、挿入される該核酸が逆方向末端反復遺伝子配列に挟まれていること、該遺伝子送達ポリヌクレオチドが選択可能であることを特徴とする遺伝子送達ポリヌクレオチドを使用する。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは、少なくとも1つのタンパク質をコードする配列をさらに含む。いくつかの実施形態においては、前記タンパク質はキメラ抗原受容体である。キメラ受容体は、人工T細胞受容体、キメラT細胞受容体、キメラ免疫受容体、およびキメラ抗原受容体(CAR)とも呼ぶことができる。CARは、任意の特異性を免疫受容体細胞に付与することが可能な遺伝子改変受容体である。研究者によっては、キメラ抗原受容体(CAR)は、抗体または抗体フラグメント、スペーサー、シグナル伝達ドメインおよび膜貫通領域を含む場合があると考えられている。しかしながら、CARの様々な成分すなわちドメイン(たとえばエピトープ結合領域(たとえば、抗体フラグメント、scFvまたはそれらの一部)、スペーサー、膜貫通ドメインおよび/またはシグナル伝達ドメインなど)は改変されており、この改変によって驚くべき効果が得られたことから、本明細書のいくつかの実施形態においてCARの成分はそれぞれ独立した特徴を有する。CARが様々な特徴を有することから、たとえば、特定のエピトープに対しての結合親和性がさらに強くなることがある。
人工のT細胞受容体すなわちCARは、養子細胞移入と呼ばれる技術を使用して、がんまたはウイルス感染症の治療法として使用できる。T細胞を患者から採取し、がん細胞、ウイルスまたはウイルス感染細胞に提示される分子に特異的な受容体を発現するように該T細胞を改変する。この遺伝子改変T細胞は、がん細胞もしくはウイルス感染細胞を認識してこれらを殺傷する能力またはウイルスの排除を促進できる能力を有し、このようにして作製された遺伝子改変T細胞を前記患者に再度導入する。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは、キメラ抗原受容体をコードする配列を含むことができる。いくつかの実施形態においては、養子T細胞免疫療法のための遺伝子改変マルチプレックスT細胞を製造する方法が提供される。最も広い解釈では、該方法は、
本明細書に記載の実施形態のいずれかに記載の遺伝子送達ポリヌクレオチドを提供すること、T細胞に前記遺伝子送達ポリヌクレオチドを導入すること、
Sleeping Beautyトランスポゼースをコードするベクターを提供すること、
Sleeping Beautyトランスポゼースをコードする前記ベクターを前記T細胞に導入すること、
第1の濃度域の選択試薬を加えることを含む1回目の選択と、第1の濃度域の少なくとも1.5倍以上である第2の濃度域の該選択試薬を加えることを含む2回目の選択とを含む操作によって、前記遺伝子送達ポリヌクレオチドを含む前記細胞を選択すること、ならびに
選択圧下において表現型を発現する前記T細胞を単離することを含むことができる。いくつかの実施形態においては、前記選択試薬はMTXである。
効果的な免疫応答を惹起するには、T細胞を共刺激することが望ましく、このような免疫応答はリンパ球が活性化されたときに起こる。共刺激シグナルは抗原非特異的であり、抗原を有する細胞の膜に発現された共刺激分子とT細胞とが相互作用することによって発生する。共刺激分子としては、CD28、CD80およびCD86が挙げられるが、これらに限定されない。いくつかの実施形態においては、養子T細胞免疫療法のための遺伝子改変マルチプレックスT細胞を製造する方法が提供される。いくつかの実施形態においては、前記T細胞は、キメラ抗原受容体を有するT細胞である。いくつかの実施形態においては、キメラ抗原受容体を有する前記T細胞は、共刺激リガンドを発現するように遺伝子改変されている。いくつかの実施形態においては、対象においてがんまたはウイルス感染症を治療、抑制または緩和する方法が提供される。最も広義では、前記方法は、本明細書に記載の実施形態のいずれかに記載のT細胞を対象に投与することを含むことができる。遺伝子改変T細胞を使用して、がんまたはウイルス疾患を治療、抑制または緩和することが好ましく、該遺伝子改変T細胞は、ウイルスまたはがん細胞により提示される分子に特異的な受容体またはキメラ受容体をコードする複数の導入遺伝子を発現するように形質転換されたT細胞を選択的増幅させること、およびMTXの濃度を高めた選択圧下における二段階でのMTX選択によって、前記形質転換T細胞を選択することによって得られる。
前記実施形態のいくつかにおいて、前記対象は家畜や愛玩動物などの動物であり、別の実施形態において前記対象はヒトである。前記実施形態のいくつかにおいては、キメラ抗原を有する前記T細胞は、共刺激分子を発現するように遺伝子改変されている。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは、少なくとも1つの共刺激分子をコードする配列を含む。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは環状である。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは少なくとも1kb〜6kbである。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドはミニサークル(minicircle)である。
本明細書に記載の「T細胞前駆細胞」は、胸腺へと遊走して、T細胞前駆細胞となり得るリンパ球前駆細胞を指し、T細胞前駆細胞はT細胞受容体を発現しない。すべてのT細胞は、骨髄中の造血幹細胞に由来する。造血幹細胞由来の造血前駆細胞(リンパ球系前駆細胞)は胸腺に移行し、細胞分裂により増殖し、未熟な胸腺細胞の大集団を作り出す。最も初期の胸腺細胞はCD4もCD8も発現せず、したがって、ダブルネガティブ(CD4CD8)細胞に分類される。これらは成長により発達し、ダブルポジティブ胸腺細胞(CD4CD8)となり、最終的にシングルポジティブ(CD4CD8またはCD4CD8)胸腺細胞に成熟して、その後、胸腺から末梢組織に放出される。
胸腺細胞の約98%は、胸腺での発達過程においてポジティブ選択およびネガティブ選択により選抜されずに死滅し、残りの2%が生存して胸腺を去り、成熟した免疫担当T細胞になる。
T細胞前駆細胞は、ダブルネガティブ(DN)段階においては主に機能的β鎖を産生し、ダブルポジティブ(DP)段階では主に機能的α鎖を産生し、その結果、最終的に機能性αβ T細胞受容体を産生する。4つのDN段階(DN1、DN2、DN3およびDN4)を経て胸腺細胞が発達するに従って、T細胞はインバリアントα鎖を発現するが、β鎖の遺伝子は再編成される。再編成されたβ鎖がインバリアントα鎖と対を為すことに成功した場合、β鎖の再編成を止めるシグナルが産生され(さらに、もう一方のアレルが抑制され)、細胞の増殖が起こる。これらのシグナルが産生されるには、この前駆TCRが細胞表面上に発現されていなければならないが、これらのシグナル自体は前駆TCRに結合するリガンドに依存する。このように発達した胸腺細胞はその後、CD4およびCD8の両方を発現し、α鎖が選択されるダブルポジティブ(DP)段階を経る。再編成β鎖がシグナル伝達を全くもたらさない場合(たとえば、インバリアントα鎖との対合ができなかった結果)、この細胞は無視され(シグナル伝達を受けることなく)、死滅すると考えられている。
本明細書に記載の「造血幹細胞」または「HSC」は、骨髄系細胞に分化しうる前駆細胞であり、該骨髄系細胞としては、たとえば、マクロファージ、単球、マクロファージ、好中球、好塩基球、好酸球、赤血球、巨核球/血小板、樹状細胞およびリンパ系細胞(たとえば、T細胞、B細胞、NK細胞など)が挙げられる。HSCは3種の幹細胞が存在する異種細胞集団であり、これらの幹細胞は血液中のリンパ系子孫細胞と骨髄系子孫細胞との比(L/M)により識別される。
いくつかの実施形態においては、養子T細胞免疫療法のための遺伝子改変マルチプレックスT細胞を製造する方法であって、
遺伝子送達ポリヌクレオチドを提供すること、
T細胞に前記遺伝子送達ポリヌクレオチドを導入すること、
Sleeping Beautyトランスポゼースをコードするベクターを提供すること、
Sleeping Beautyトランスポゼースをコードする前記ベクターを前記T細胞に導入すること、
第1の濃度域の選択試薬を加えることを含む1回目の選択と、第1の濃度域よりも高くかつ第1の濃度域の少なくとも1.5倍以上である第2の濃度域の該選択試薬を加えることを含む2回目の選択とを含む操作によって、前記遺伝子送達ポリヌクレオチドを含む前記細胞を選択すること、ならびに
選択圧下において表現型を発現する前記T細胞を単離することを含む方法が提供される。
いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは、第1〜第7の配列を含み、
第1の配列が、第1の逆方向末端反復遺伝子配列を含み、
第2の配列が、第2の逆方向末端反復遺伝子配列を含み、
第3の配列が、プロモーター領域配列を含み、
第4の配列が、タンパク質をコードする少なくとも1つの遺伝子を含む最適化された配列であり、
第5の配列が、ジヒドロ葉酸還元酵素の二重変異体をコードする少なくとも1つの選択マーカーカセットを含む最適化された配列であり、該ジヒドロ葉酸還元酵素の二重変異体のメトトレキサートに対する親和性が15,000分の1または約15,000分の1に低減されており、メトトレキサートを選択メカニズムとして用いることによって、前記遺伝子送達ポリヌクレオチドによって形質導入された細胞を選択的に増殖させることができ、
第6の配列が、第1の付着部位(attP)を含み、
第7の配列が、第2の付着部位(attB)を含むこと、ならびに
第1の配列、第2の配列、第3の配列、第4の配列、第5の配列、第6の配列および第7の配列がそれぞれ5’末端および3’末端を有し、第1の逆方向末端反復遺伝子配列を含む第1の配列の3’末端が、第3の配列の5’末端に隣接し、第3の配列の3’末端が、第4の配列の5’末端に隣接し、第4の配列の3’末端が、第5の配列の5’末端に隣接し、第5の配列の3’末端が、第2の逆方向末端反復を含む第2の配列の5’末端に隣接していることを特徴とする。
いくつかの実施形態において、ヒトの前記ジヒドロ葉酸還元酵素の二重変異体をコードする遺伝子は、
ATGGTTGGTTCGCTAAACTGCATCGTCGCTGTGTCCCAGAACATGGGCATCGGCAAGAACGGGGACTTCCCCTGGCCACCGCTCAGGAATGAATCCAGATATTTCCAGAGAATGACCACAACCTCTTCAGTAGAAGGTAAACAGAATCTGGTGATTATGGGTAAGAAGACCTGGTTCTCCATTCCTGAGAAGAATCGACCTTTAAAGGGTAGAATTAATTTAGTTCTCAGCAGAGAACTCAAGGAACCTCCACAAGGAGCTCATTTTCTTTCCAGAAGTCTAGATGATGCCTTAAAACTTACTGAACAACCAGAATTAGCAAATAAAGTAGACATGGTCTGGATAGTTGGTGGCAGTTCTGTTTATAAGGAAGCCATGAATCACCCAGGCCATCTTAAACTATTTGTGACAAGGATCATGCAAGACTTTGAAAGTGACACGTTTTTTCCAGAAATTGATTTGGAGAAATATAAACTTCTGCCAGAATACCCAGGTGTTCTCTCTGATGTCCAGGAGGAGAAAGGCATTAAGTACAAATTTGAAGTATATGAGAAGAATGATTAA(配列番号2)で表されるDNA配列を含む。
いくつかの実施形態においては、ヒトの前記ジヒドロ葉酸還元酵素の二重変異体は、
MVGSLNCIVA VSQNMGIGKN GDFPWPPLRN ESRYFQRMTT TSSVEGKQNL VIMGKKTWFS IPEKNRPLKG RINLVLSREL KEPPQGAHFL SRSLDDALKL TEQPELANKV DMVWIVGGSS VYKEAMNHPG HLKLFVTRIM QDFESDTFFP EIDLEKYKLL PEYPGVLSDV QEEKGIKYKF EVYEKND(配列番号3)で表されるタンパク質配列を含む。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは環状である。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは少なくとも1kb〜5kbである。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドはミニサークル(minicircle)である。いくつかの実施形態においては、前記プロモーター領域は、EF1プロモーター配列を含む。いくつかの実施形態においては、前記第4の配列は、タンパク質をコードする遺伝子を1つ、2つ、3つ、4つまたは5つ含む。いくつかの実施形態においては、前記第4の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第4の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記第4の配列は、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記第4の配列は、同じエピトープに特異的な複数の抗体結合ドメインなどの、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記関連する複数のタンパク質は、同じエピトープに特異的な複数の抗体結合ドメインを含む。いくつかの実施形態においては、前記第5の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第5の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記タンパク質は治療用タンパク質である。いくつかの実施形態においては、前記最適化されたコドンおよび/またはコンセンサス配列は、複数の関連配列において利用されている配列および/または核酸塩基の可変性を比較することによって作製される。いくつかの実施形態においては、前記タンパク質は、抗体またはその一部を含み、該抗体またはその一部はヒト化されていてもよい。いくつかの実施形態においては、前記ジヒドロ葉酸還元酵素の二重変異体は、L22FおよびF31Sのアミノ酸変異を含む。いくつかの実施形態においては、前記ジヒドロ葉酸還元酵素の二重変異体は、L22FおよびF31Sのアミノ酸変異を含む。いくつかの実施形態においては、前記導入をエレクトロポレーションによって行う。いくつかの実施形態においては、前記選択を、選択マーカーカセットを使用して選択圧を高めることによって行う。いくつかの実施形態においては、前記選択試薬は選択剤を含む。いくつかの実施形態においては、前記選択剤はメトトレキサートである。いくつかの実施形態においては、前記第1の濃度域が少なくとも50nM〜100nMであり、前記第2の濃度域が少なくとも75nM〜150nMである。いくつかの実施形態においては、前記第1濃度は、50nM、60nM、70nM、80nM、90nMもしくは100nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、75nM、80nM、90nM、100nM、110nM、120nM、130nM、140nMもしくは150nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記第1の濃度域は少なくとも75nM〜150nMであり、前記第2の濃度域は少なくとも112.5nM〜225nMである。いくつかの実施形態においては、前記第1濃度は、75nM、85nM、95nM、105nM、115nM、125nM、135nM、145nMもしくは150nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、112nM、122nM、132nM、142nM、152nM、162nM、172nM、182nM、192nM、202nM、212nMもしくは225nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記第1の濃度域は少なくとも300nM〜675nMであり、前記第1の濃度域は少なくとも450nM〜1012nMである。いくつかの実施形態においては、前記第1濃度は、300nM、350nM、400nM、450nM、500nM、550nM、600nM、650nMもしくは675nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、450nM、500nM、550nM、600nM、650nM、700nM、750nM、800nM、850nM、900nM、1000nMもしくは1012nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記1回目の選択は、前記2回目の選択を行う前に、2日、3日、4日、5日、6日または7日にわたって前記T細胞を前記選択剤に暴露することを含む。いくつかの実施形態においては、前記2回目の選択は、前記T細胞を単離する前に、少なくとも2日、3日、4日、5日、6日、7日、8日、9日、10日、11日、12日、13日もしくは14日にわたって、またはこれらの時間点のいずれか2つによって定義される範囲にある任意の時間にわたって、前記T細胞を前記選択剤に暴露することを含む。いくつかの実施形態においては、前記T細胞はT細胞前駆細胞を含む。いくつかの実施形態においては、前記T細胞前駆細胞は造血幹細胞である。
いくつかの実施形態においては、養子T細胞免疫療法のための遺伝子改変細胞を製造する方法であって、
遺伝子送達ポリヌクレオチドを提供すること、
T細胞前駆細胞に前記遺伝子送達ポリヌクレオチドを導入すること、
Sleeping Beautyトランスポゼースをコードするベクターを提供すること、
Sleeping Beautyトランスポゼースをコードする前記ベクターを前記T細胞前駆細胞に導入すること、
第1の濃度域の選択試薬を加えることを含む1回目の選択と、第1の濃度域よりも高くかつ第1の濃度域の少なくとも1.5倍以上である第2の濃度域の該選択試薬を加えることを含む2回目の選択とを含む操作によって、前記遺伝子送達ポリヌクレオチドを含む前記T細胞前駆細胞を選択すること、ならびに
選択圧下において表現型を発現する前記T細胞前駆細胞を単離することを含む方法が提供される。
いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは、オリゴヌクレオチドに核酸を安定に挿入するための前記遺伝子送達ポリヌクレオチドであって、
該遺伝子送達ポリヌクレオチド内において、挿入される該核酸が逆方向末端反復遺伝子配列に挟まれていること、
該遺伝子送達ポリヌクレオチドが選択可能であること、
該遺伝子送達ポリヌクレオチドが、第1〜第7の配列を含み、
第1の配列が、第1の逆方向末端反復遺伝子配列を含み、
第2の配列が、第2の逆方向末端反復遺伝子配列を含み、
第3の配列が、プロモーター領域配列を含み、
第4の配列が、タンパク質をコードする少なくとも1つの遺伝子またはmRNAにより転写される配列をコードする少なくとも1つの遺伝子を含む最適化された配列であり、
第5の配列が、ジヒドロ葉酸還元酵素の二重変異体をコードする少なくとも1つの選択マーカーカセットを含む最適化された配列であり、該ジヒドロ葉酸還元酵素の二重変異体のメトトレキサートに対する親和性が15,000分の1または約15,000分の1に低減されており、メトトレキサートを用いて、前記遺伝子送達ポリヌクレオチドによって形質導入された細胞の選択を行うことによって、前記少なくとも1つの遺伝子を発現する細胞の割合を増加させることができ、
第6の配列が、第1の付着部位(attP)を含み、
第7の配列が、第2の付着部位(attB)を含むこと、ならびに
第1の配列、第2の配列、第3の配列、第4の配列、第5の配列、第6の配列および第7の配列がそれぞれ5’末端および3’末端を有し、第1の逆方向末端反復遺伝子配列を含む第1の配列の3’末端が、第3の配列の5’末端に隣接し、第3の配列の3’末端が、第4の配列の5’末端に隣接し、第4の配列の3’末端が、第5の配列の5’末端に隣接し、第5の配列の3’末端が、第2の逆方向末端反復を含む第2の配列の5’末端に隣接していることを特徴とする。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは環状である。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは少なくとも1kb〜5kbである。いくつかの実施形態においては、前記プロモーター領域は、EF1プロモーター配列を含む。いくつかの実施形態においては、前記第4の配列は、タンパク質をコードする遺伝子を1つ、2つ、3つ、4つまたは5つ含む。いくつかの実施形態においては、前記第4の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第4の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記第4の配列は、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記第4の配列は、同じエピトープに特異的な複数の抗体結合ドメインなどの、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記関連する複数のタンパク質は、同じエピトープに特異的な複数の抗体結合ドメインを含む。いくつかの実施形態においては、前記第5の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第5の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記最適化されたコドンおよび/またはコンセンサス配列は、複数の関連配列において利用されている配列および/または核酸塩基の可変性を比較することによって作製される。いくつかの実施形態においては、前記タンパク質は治療用タンパク質である。いくつかの実施形態においては、前記タンパク質は、抗体またはその一部を含み、該抗体またはその一部はヒト化されていてもよい。いくつかの実施形態においては、前記ジヒドロ葉酸還元酵素の二重変異体は、L22FおよびF31Sのアミノ酸変異を含む。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドはミニサークル(minicircle)である。いくつかの実施形態においては、前記導入をエレクトロポレーションによって行う。いくつかの実施形態においては、前記選択を、選択マーカーカセットを使用して選択圧を高めることによって行う。いくつかの実施形態においては、前記選択試薬は選択剤を含む。いくつかの実施形態においては、前記選択剤はメトトレキサートである。いくつかの実施形態においては、前記第1の濃度域が少なくとも50nM〜100nMであり、前記第2の濃度域が少なくとも75nM〜150nMである。いくつかの実施形態においては、前記第1の濃度域は少なくとも75nM〜150nMであり、前記第2の濃度域は少なくとも112.5nM〜225nMである。いくつかの実施形態においては、前記第1の濃度域は少なくとも300nM〜675nMであり、前記第1の濃度域は少なくとも450nM〜1012nMである。いくつかの実施形態においては、前記1回目の選択は、前記2回目の選択を行う前に、2日、3日、4日、5日、6日または7日にわたって前記T細胞を前記選択剤に暴露することを含む。いくつかの実施形態においては、前記2回目の選択は、前記T細胞を単離する前に、少なくとも2日、3日、4日、5日、6日、7日、8日、9日、10日、11日、12日、13日もしくは14日にわたって、またはこれらの時間点のいずれか2つによって定義される範囲にある任意の時間にわたって、前記T細胞を前記選択剤に暴露することを含む。いくつかの実施形態においては、前記T細胞前駆細胞は造血幹細胞である。
いくつかの実施形態においては、T細胞前駆細胞におけるタンパク質の産生を増加させる方法であって、
ポリヌクレオチドを提供すること、
細胞に前記ポリヌクレオチドを導入すること、
Sleeping Beautyトランスポゼースをコードするベクターを提供すること、
Sleeping Beautyトランスポゼースをコードする前記ベクターを前記T細胞前駆細胞に導入すること、
第1の濃度域の選択試薬を加えることを含む1回目の選択と、第1の濃度域よりも高くかつ第1の濃度域の少なくとも1.5倍以上である第2の濃度域の該選択試薬を加えることを含む2回目の選択とを含む操作によって、前記遺伝子送達ポリヌクレオチドを含む前記T細胞前駆細胞を選択すること、ならびに
選択圧下において表現型を発現する前記T細胞前駆細胞を単離することを含む方法が提供される。
いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは、オリゴヌクレオチドに核酸を安定に挿入するための前記遺伝子送達ポリヌクレオチドであって、
該遺伝子送達ポリヌクレオチド内において、挿入される該核酸が逆方向末端反復遺伝子配列に挟まれていること、
該遺伝子送達ポリヌクレオチドが選択可能であること、
該遺伝子送達ポリヌクレオチドが、第1〜第7の配列を含み、
第1の配列が、第1の逆方向末端反復遺伝子配列を含み、
第2の配列が、第2の逆方向末端反復遺伝子配列を含み、
第3の配列が、プロモーター領域配列を含み、
第4の配列が、タンパク質をコードする少なくとも1つの遺伝子またはmRNAにより転写される配列をコードする少なくとも1つの遺伝子を含む最適化された配列であり、
第5の配列が、ジヒドロ葉酸還元酵素の二重変異体をコードする少なくとも1つの選択マーカーカセットを含む最適化された配列であり、該ジヒドロ葉酸還元酵素の二重変異体のメトトレキサートに対する親和性が15,000分の1または約15,000分の1に低減されており、メトトレキサートを用いて、前記遺伝子送達ポリヌクレオチドによって形質導入された細胞の選択を行うことによって、前記少なくとも1つの遺伝子を発現する細胞の割合を増加させることができ、
第6の配列が、第1の付着部位(attP)を含み、
第7の配列が、第2の付着部位(attB)を含むこと、ならびに
第1の配列、第2の配列、第3の配列、第4の配列、第5の配列、第6の配列および第7の配列がそれぞれ5’末端および3’末端を有し、第1の逆方向末端反復遺伝子配列を含む第1の配列の3’末端が、第3の配列の5’末端に隣接し、第3の配列の3’末端が、第4の配列の5’末端に隣接し、第4の配列の3’末端が、第5の配列の5’末端に隣接し、第5の配列の3’末端が、第2の逆方向末端反復を含む第2の配列の5’末端に隣接していることを特徴とする。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは環状である。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは少なくとも1kb〜5kbである。いくつかの実施形態においては、前記プロモーター領域は、EF1プロモーター配列を含む。いくつかの実施形態においては、前記第4の配列は、タンパク質をコードする遺伝子を1つ、2つ、3つ、4つまたは5つ含む。いくつかの実施形態においては、前記第4の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第4の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記第4の配列は、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記第4の配列は、同じエピトープに特異的な複数の抗体結合ドメインなどの、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記関連する複数のタンパク質は、同じエピトープに特異的な複数の抗体結合ドメインを含む。いくつかの実施形態においては、前記第5の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第5の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記最適化されたコドンおよび/またはコンセンサス配列は、複数の関連配列において利用されている配列および/または核酸塩基の可変性を比較することによって作製される。いくつかの実施形態においては、前記タンパク質は治療用タンパク質である。いくつかの実施形態においては、前記タンパク質は、抗体またはその一部を含み、該抗体またはその一部はヒト化されていてもよい。いくつかの実施形態においては、前記ジヒドロ葉酸還元酵素の二重変異体は、L22FおよびF31Sのアミノ酸変異を含む。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドはミニサークル(minicircle)である。いくつかの実施形態においては、前記導入をエレクトロポレーションによって行う。いくつかの実施形態においては、前記選択を、選択マーカーカセットを使用して選択圧を高めることによって行う。いくつかの実施形態においては、前記選択試薬は選択剤を含む。いくつかの実施形態においては、前記選択剤はメトトレキサートである。
いくつかの実施形態においては、前記第1の濃度域は少なくとも50nM〜100nMであり、前記第2の濃度域は少なくとも75nM〜150nMである。いくつかの実施形態においては、前記第1の濃度域は少なくとも75nM〜150nMであり、前記第2の濃度域は少なくとも112.5nM〜225nMである。いくつかの実施形態においては、前記第1の濃度域は少なくとも300nM〜675nMであり、前記第2の濃度域は少なくとも450nM〜1012nMである。いくつかの実施形態においては、前記1回目の選択は、前記2回目の選択を行う前に、2日、3日、4日、5日、6日または7日にわたって前記細胞を前記選択剤に暴露することを含む。いくつかの実施形態においては、前記2回目の選択は、前記細胞を単離する前に、少なくとも2日、3日、4日、5日、6日または7日にわたって前記細胞を前記選択剤に暴露することを含む。いくつかの実施形態においては、前記T細胞前駆細胞は造血幹細胞である。
宿主に由来しないDNA分子によりコードされるペプチドまたはポリペプチドは、「異種」のペプチドまたはポリペプチドである。
「組み込まれた遺伝子要素」は、人為的操作により宿主細胞に導入されることによって、該宿主細胞の染色体に組み込まれたDNAのセグメントである。本発明のいくつかの実施形態において、組み込まれた遺伝子要素は、エレクトロポレーションやその他の技術により宿主細胞内に導入されたミニサークル(minicircle)に由来する。組み込まれた遺伝子要素は、導入された宿主細胞からその子孫に継代される。いくつかの実施形態において、組み込まれた遺伝子要素は、環状の遺伝子送達ポリヌクレオチドにより宿主細胞の染色体に組み込まれる。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは少なくとも1kb〜6kbである。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドはミニサークル(minicircle)である。
「クローニングベクター」すなわちベクターは、ミニサークル、プラスミド、コスミド、プラストームなどの核酸分子、または宿主細胞において自己複製する能力を有するバクテリオファージである。クローニングベクターは、通常、ベクターの本質的な生物学的機能を喪失することなく制御された方法で核酸分子の挿入を可能にする1個または数個の制限エンドヌクレアーゼ認識部位と、該クローニングベクターによって形質導入された細胞の同定および選択における使用に適したマーカー遺伝子をコードするヌクレオチド配列とを含有する。マーカー遺伝子は、通常、テトラサイクリン抵抗性またはアンピシリン抵抗性を提供する遺伝子を含むが、いくつかの実施形態においては、メトトレキサート抵抗性遺伝子を含むこともできる。
「発現ベクター」は、宿主細胞において発現される遺伝子をコードする核酸分子である。通常、発現ベクターは、転写プロモーター、遺伝子および転写ターミネーターを含む。遺伝子発現は、通常、プロモーターの制御下に置かれ、プロモーターの制御下に置かれた遺伝子はプロモーターに「作動可能に連結されている」と言われる。同様に、調節因子がコアプロモーターの活性を調節する場合、調節因子とコアプロモーターは作動可能に連結されている。いくつかの実施形態において、発現ベクターが提供される。いくつかの実施形態においては、該発現ベクターはトランスポゼースをコードする。いくつかの実施形態においては、前記トランスポゼースはSleeping Beautyトランスポゼースである。いくつかの実施形態においては、発現ベクターは環状である。いくつかの実施形態においては、前記発現ベクターは少なくとも1kb〜6kbである。いくつかの実施形態において、前記発現ベクターはミニサークル(minicircle)である。
本明細書に記載の「ミニサークル」は、原核生物ベクターの構成要素を全く含まない小型の環状プラスミド誘導体である。ミニサークルは、発現ベクターとして機能することができ、哺乳動物細胞の遺伝子を改変するための導入遺伝子担体として用いられ、細菌性DNA配列を含有しないことから、異物として認識されることが少なく、破壊されにくいという利点を有する。したがって、典型的な導入遺伝子送達方法では、外来DNAを含有するプラスミドを使用する。ミニサークルのサイズが小さいほど、クローニング能力が向上し、細胞への送達がさらに容易になる。本発明をなんら限定するものではないが、ミニサークルの調製は、親プラスミド(真核生物由来のインサートを含む細菌性プラスミド)を大腸菌において製造する工程と、この工程の終了後、該細菌において部位特異的リコンビナーゼを誘導する工程とを含む、2工程の方法で行うことができる。これら工程の後、前記インサートの両端にある2つのリコンビナーゼ標的配列を介して、原核生物ベクター由来の構成要素を切り出し、得られたミニサークル(レシピエント細胞を非常に有効に改変できる媒体)およびミニプラスミドをキャピラリーゲル電気泳動(CGE)により回収する。
精製されたミニサークルは、トランスフェクション、エレクトロポレーションまたは当業者に知られているその他の方法により、レシピエント細胞に移入可能である。従来のミニサークルは複製起点を欠いているため、標的細胞内で自己複製できず、コードされた遺伝子は細胞が分裂すると消失する(このことは、持続性発現を必要とする用途であるか、あるいは一過性発現を必要とする用途であるかによって、有利とも不利ともなりうる)。いくつかの実施形態においては、遺伝子に核酸を安定に挿入するための遺伝子送達ポリヌクレオチドであって、該遺伝子送達ポリヌクレオチド内において、挿入される該核酸が逆方向末端反復遺伝子配列に挟まれていること、該遺伝子送達ポリヌクレオチドが選択可能であることを特徴とする遺伝子送達ポリヌクレオチドを使用する。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドはミニサークル(minicircle)である。
本明細書に記載の「ヌクレオフェクション(nucleofection)」は、単一または複数の外因性核酸を宿主細胞に導入する方法を指し、これはエレクトロポレーションによって行われる。いくつかの実施形態においては、養子T細胞免疫療法のための遺伝子改変マルチプレックスT細胞を製造する方法が提供される。最も広い解釈では、該方法は、
本明細書に記載の実施形態のいずれかに記載の遺伝子送達ポリヌクレオチドを提供すること、
T細胞に前記遺伝子送達ポリヌクレオチドを導入すること、
第1の濃度域の選択試薬を加えることを含む1回目の選択と、第1の濃度域よりも高くかつ第1の濃度域の少なくとも1.5倍以上である第2の濃度域の該選択試薬を加えることを含む2回目の選択とを含む操作によって、前記遺伝子送達ポリヌクレオチドを含む前記細胞を選択すること、ならびに
選択圧下において表現型を発現する前記T細胞を単離することを含むことができる。いくつかの実施形態においては、前記選択試薬はMTXである。いくつかの実施形態においては、T細胞への前記遺伝子送達ポリヌクレオチドの導入は、エレクトロポレーションによって行うことができる。
本明細書に記載の「宿主細胞」は、1つ以上のヌクレアーゼ(たとえばエンドヌクレアーゼ、末端プロセシング酵素);ならびに/または本発明の実施形態に包含される、エンドヌクレアーゼ/末端プロセシング酵素との融合タンパク質、もしくは1以上のヌクレアーゼ(たとえば、エンドヌクレアーゼ、末端プロセシング酵素)および/もしくはエンドヌクレアーゼ/末端プロセシング酵素との融合タンパク質の複製および/または転写のみもしくは転写と翻訳の両方(発現)を補助する前記融合タンパク質をコードするベクターを含有する細胞である。
いくつかの実施形態においては、養子T細胞免疫療法のための遺伝子改変マルチプレックスT細胞を製造する方法が提供される。いくつかの実施形態においては、該方法は、
本明細書に記載の実施形態のいずれかに記載の遺伝子送達ポリヌクレオチドを提供すること、
T細胞に前記遺伝子送達ポリヌクレオチドを導入すること、
Sleeping Beautyトランスポゼースをコードするベクターを提供すること、
Sleeping Beautyトランスポゼースをコードする前記ベクターを前記T細胞に導入すること、
第1の濃度域の選択試薬を加えることを含む1回目の選択と、第1の濃度域よりも高くかつ第1の濃度域の少なくとも1.5倍以上である第2の濃度域の該選択試薬を加えることを含む2回目の選択とを含む操作によって、前記遺伝子送達ポリヌクレオチドを含む前記細胞を選択すること、ならびに
選択圧下において表現型を発現する前記T細胞を単離することを含むことができる。いくつかの実施形態においては、前記選択試薬はMTXである。
本明細書に記載の「転移因子」(TE)、すなわちトランスポゾンまたはレトロトランスポゾンは、ゲノム内で自体を移動できるDNA配列を指し、場合によっては、突然変異を作製または復帰でき、細胞のゲノムサイズを変化させることができる。転移は多くの場合、TEの重複をもたらす。TEは、真核生物細胞においてC値の大部分を占めることがある。本明細書に記載の「C値」は、真核生物の二倍体の体細胞中におけるDNA量の半量を含む半数体核に含有されるDNA量(ピコグラム)を指す。場合によっては、「C値」および「ゲノムサイズ」という用語は同じ意味で使用されるが、倍数体において、C値は同じ核内に含有される2つ以上のゲノムに相当する。固有の遺伝子システムを有するオキシトリカ属(Oxytricha)においては、TEは発達に重要な役割を果たす。さらに、TEは生物内でDNAを改変する手段として、研究者にとって非常に有用である。いくつかの実施形態においては、遺伝子に核酸を安定に挿入するための遺伝子送達ポリヌクレオチドであって、該遺伝子送達ポリヌクレオチド内において、挿入される該核酸が逆方向末端反復遺伝子配列に挟まれていること、該遺伝子送達ポリヌクレオチドが選択可能であることを特徴とする遺伝子送達ポリヌクレオチドが提供される。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドはトランスポゾンを含む。
本明細書に記載の「Sleeping Beautyトランスポゾンシステム」は、Sleeping Beauty(SB)トランスポゼースおよびトランスポゾンにより構成され、特定のDNA配列を脊椎動物のゲノムに挿入するために1997年に設計された。DNAトランスポゾンは、カット&ペーストによって特定のDNA配列を1つのDNA部位から別のDNA部位へと簡便に転移させることができる。転移は正確に行うことができ、定義されたDNAセグメントを1つのDNA分子から切り取り、同じまたは別のDNA分子もしくはゲノムの別の部位へと移動させることができる。
SBトランスポゼースは、レシピエントのDNA配列中のTAジヌクレオチド塩基対にトランスポゾンを挿入することができる。挿入部位は、同じDNA分子の他の部位であってもよく、別のDNA分子(または染色体)であってもよい。ヒトを含む哺乳動物のゲノムにおいては、およそ2億個のTA部位が存在する。これらのTA挿入部位は、トランスポゾンを組み込む過程において複製される。TA配列のこのような複製は、転移されたことを証明するものであり、いくつかの実験においては転移機序を確認するために使用される。トランスポゼースはトランスポゾン内にコードされていてもよく、あるいは別の供給源から提供されてもよく、この場合、トランスポゾンは非自律型要素である。
いくつかの実施形態においては、遺伝子に核酸を安定に挿入するための遺伝子送達ポリヌクレオチドであって、該遺伝子送達ポリヌクレオチド内において、挿入される該核酸が逆方向末端反復遺伝子配列に挟まれていること、該遺伝子送達ポリヌクレオチドが選択可能であることを特徴とする遺伝子送達ポリヌクレオチドが提供される。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドはトランスポゾンを含む。いくつかの実施形態においては、前記トランスポゾンはSleeping Beautyトランスポゾンである。いくつかの実施形態においては、前記挿入される核酸は、逆方向末端反復遺伝子配列に挟まれたSleeping Beautyトランスポゾンである。
いくつかの実施形態においては、核酸を安定に挿入するための前記遺伝子送達ポリヌクレオチドはミニサークル(minicircle)である。いくつかの実施形態においては、核酸を安定に挿入するための前記遺伝子送達ポリヌクレオチドはSleeping Beautyトランスポゾンを含む。いくつかの実施形態においては、遺伝子改変マルチプレックスT細胞の製造方法が提供される。いくつかの実施形態においては、前記方法は、細胞にSleeping Beautyトランスポゼースを送達することを含む。いくつかの実施形態においては、T細胞におけるタンパク質の産生を増加させる方法が提供される。いくつかの実施形態においては、前記方法は、Sleeping Beautyトランスポゼースをコードするベクターを提供することを含む。いくつかの実施形態においては、前記方法は、Sleeping Beautyトランスポゼースをコードするベクターを細胞に送達することを含む。
本明細書に記載の「コドン最適化」は、所望の細胞においてタンパク質の発現効率を最大化できることが知られているコドンへと、特定のコドンを変更する設計工程を指す。いくつかの実施形態においては、コドンの最適化が述べられており、コドンの最適化は、タンパク質の収率の増加に最適化された合成遺伝子転写産物を作製するための、当業者に公知のアルゴリズムを使用することによって実施できる。コドン最適化のためのアルゴリズムを含むプログラムは当業者に公知である。このようなプログラムとしては、たとえば、OptimumGeneTMアルゴリズム、GeneGPS(登録商標)アルゴリズムなどが挙げられる。さらに、コドンが最適化された合成配列は、たとえば、Integrated DNA Technologies社および他のDNAシークエンシングサービスから市販品として入手できる。いくつかの実施形態においては、遺伝子に核酸を安定に挿入するための遺伝子送達ポリヌクレオチドであって、該遺伝子送達ポリヌクレオチド内において、挿入される該核酸が逆方向末端反復遺伝子配列に挟まれていること、該遺伝子送達ポリヌクレオチドが選択可能であることを特徴とする遺伝子送達ポリヌクレオチドが提供される。いくつかの実施形態においては、遺伝子転写産物全長をコードする遺伝子がヒトにおける発現を目的としてコドン最適化されている遺伝子送達ポリヌクレオチドが提供される。いくつかの実施形態においては、前記遺伝子は、特にヒト細胞におけるタンパク質の発現が最大となる選択されたコドンを有するように最適化されており、このように選択されたコドンによって、T細胞におけるタンパク質またはCARの濃度を増加させることができる。
コドンを最適化することによって、ポリヌクレオチドの二次構造の形成を低下させることもできる。いくつかの実施形態において、コドンを最適化することによって、総GC/AT比を低下させることもできる。コドンの最適化を厳密に行うと、望ましくない二次構造が形成されたり、二次構造が形成されうる望ましくないGC含量となる場合がある。二次構造はそれ自体が転写効率に影響を与える。コドン使用の最適化を行った後にGeneOptimizerなどのプログラムを使用することによって、二次構造の形成を回避したり、GC含量を最適化したりすることができる。このようなさらなるプログラムは、最初のコドン最適化を行った後にさらに最適化を実施したり、トラブルシューティングを行うために使用することができ、それによって、1回目の最適化の後で起こりうる二次構造の形成を制限することができる。最適化のためのその他のプログラムは当業者に公知である。いくつかの実施形態においては、遺伝子に核酸を安定に挿入するための遺伝子送達ポリヌクレオチドであって、該遺伝子送達ポリヌクレオチド内において、挿入される該核酸が逆方向末端反復遺伝子配列に挟まれていること、該遺伝子送達ポリヌクレオチドが選択可能であることを特徴とする遺伝子送達ポリヌクレオチドが提供される。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは、ヒトにおける発現および/または二次構造の除去および/または総GC/AT比の低下を目的としてコドン最適化された配列を含む。いくつかの実施形態においては、前記配列は二次構造の除去を目的として最適化されている。いくつかの実施形態においては、前記配列は、総GC/AT比が低下するように最適化されている。
いくつかの実施形態においては、養子T細胞免疫療法のための遺伝子改変マルチプレックスT細胞を製造する方法が提供される。最も広い解釈では、該方法は、本明細書に記載の実施形態のいずれかに記載の遺伝子送達ポリヌクレオチドを提供すること、T細胞に前記遺伝子送達ポリヌクレオチドを導入すること、Sleeping Beautyトランスポゼースをコードするベクターを提供すること、Sleeping Beautyトランスポゼースをコードする前記ベクターを前記T細胞に導入すること、第1の濃度域の選択試薬を加えることを含む1回目の選択と、第1の濃度域よりも高くかつ第1の濃度域の少なくとも1.5倍以上である第2の濃度域の該選択試薬を加えることを含む2回目の選択とを含む操作によって、前記遺伝子送達ポリヌクレオチドを含む前記細胞を選択すること、ならびに選択圧下において表現型を発現する前記T細胞を単離することを含むことができる。いくつかの実施形態においては、前記選択試薬はMTXである。
がんまたはウイルス疾患のための養子免疫療法
がんに対する養子免疫療法は、患者自身の腫瘍特異的T細胞を患者に移入し、悪性細胞の破壊を容易にすることを前提とする。T細胞は、腫瘍特異的抗原を認識して、がん細胞に対して細胞傷害活性を発揮するように遺伝子改変することができる。がんに対する養子免疫療法は、患者のT細胞を単離し、次いでキメラ抗原受容体(CAR)を発現させることによって、腫瘍認識能力を導入する方法であり、キメラ抗原受容体(CAR)とは、膜貫通セグメントを介して細胞内シグナル伝達ドメインに連結された細胞外腫瘍結合ドメインを含む膜タンパク質である。「養子免疫療法」すなわち「T細胞養子移入」は、T細胞に基づく細胞傷害性応答を利用して、がん細胞または特定の細胞標的を攻撃することを指す。患者のがんに対する天然の反応性または遺伝子改変された反応性を有するT細胞はインビトロで作製可能であり、その後、このようなT細胞による治療を必要とする対象に移入することによって戻される。本発明をなんら限定するものではないが、養子移入の一例においては、がんまたはウイルス疾患を有する対象からT細胞を取り出し、がん細胞またはウイルスに存在するバイオマーカーに特異的な受容体を発現するようにT細胞を遺伝子改変し、該遺伝子改変T細胞を移入により対象に戻し、前記遺伝子改変T細胞にがん細胞またはウイルスもしくはウイルス感染細胞を攻撃させることによって達成することができる。いくつかの実施形態においては、養子T細胞免疫療法のための遺伝子改変マルチプレックスT細胞を製造する方法が提供される。いくつかの実施形態においては、悪性細胞を標的としてこれを破壊する方法が提供される。いくつかの実施形態においては、対象においてがんまたはウイルス疾患を治療、抑制または緩和する方法が提供される。いくつかの実施形態においては、対象においてがんまたはウイルス疾患を治療、抑制または緩和する前記方法は、養子T細胞免疫療法のための遺伝子改変マルチプレックスT細胞を該対象に投与することを含む。いくつかの実施形態においては、前記対象はヒトである。
さらなる遺伝子の同時に組み込むことによって、CAR発現T細胞の抗腫瘍活性または抗ウイルス活性をさらに高めることができる。広範囲なT細胞の活性化には、最初にCARにより腫瘍またはウイルスを認識し、シグナル伝達を開始することに加えて、共刺激分子とサイトカイン受容体とが結合することが必要とされ、このような共刺激分子とサイトカイン受容体との結合は、腫瘍またはウイルス感染症を有する対象の免疫抑制環境では存在しないと考えられる。腫瘍における免疫抑制性環境に対処することを目的として、たとえば、遺伝子改変されたCAR発現T細胞において共刺激リガンド(CD80および4−1BBLなど)を発現させると、腫瘍細胞における共刺激リガンドの発現と比較して、自己共刺激作用によりT細胞の増殖が増強されうる。T細胞免疫療法における別の課題は、患者への移入後の細胞の生存である。抗アポトーシスタンパク質を発現誘導すると、インビボにおいてT細胞の生存を改善するためことが報告されている。腫瘍へのホーミングおよび浸潤は、遺伝子改変T細胞にケモカイン受容体を導入することによって増強することができ、このアプローチは、通常はT細胞により認識されないケモカインを発現する腫瘍に対して特に有用であると考えられる。さらに、免疫抑制性の腫瘍微小環境または免疫低下状態のウイルス感染対象において良好な耐性を示すように、サイトカイン発現を誘導することなどによってT細胞を遺伝子改変することができる。したがって、複数の導入遺伝子を発現する遺伝子改変T細胞を迅速に製造する方法は、T細胞免疫療法の臨床適用にとって重要であり、かつ利点である。いくつかの実施形態においては、養子T細胞免疫療法のための遺伝子改変マルチプレックスT細胞を製造する方法が提供される。いくつかの実施形態においては、前記T細胞はキメラ抗原受容体を発現する。いくつかの実施形態においては、キメラ抗原受容体を発現するT細胞は、共刺激リガンドを発現するように遺伝子改変される。いくつかの実施形態においては、前記キメラ抗原受容体を発現するT細胞は、共刺激リガンドを発現する。いくつかの実施形態においては、前記共刺激リガンドはCD80である。いくつかの実施形態においては、前記共刺激リガンドは4−1BBLである。
養子細胞移入は、免疫由来細胞である細胞が同じ患者に戻される移入、または別のレシピエント宿主への移入を指す。養子移入のための免疫細胞を単離するには、抗凝血剤を含有するチューブに血液を採取し、典型的には密度勾配遠心分離によりPBM(バフィーコート)細胞を単離することによって行うことができる。T細胞に基づく療法においては、インターロイキン−2の免疫調節作用に大きく依存した細胞培養法を使用してT細胞をインビトロで増殖させることができ、多数のT細胞を活性化した状態で静脈内投与することによって患者に戻すことができる。抗CD3抗体を使用して、培養におけるT細胞の増殖を促進することができる。インターロイキン−21の研究では、インビトロで調製されたT細胞に基づく治療法の有効性の増強において、インターロイキン−21が重要な役目を果たしうることが示されている。養子細胞移入に使用される細胞を使用し、組換えDNA技術を利用して遺伝子改変リンパ球を送達することによって、様々な目的を達成することができる。本明細書に記載の実施形態のいくつかにおいて、養子細胞移入を使用して、CAR発現リンパ球を対象に移入することができる。
いくつかの実施形態においては、CAR発現リンパ球は、養子T細胞免疫療法のための遺伝子改変マルチプレックスT細胞の製造方法において宿主細胞として使用される。いくつかの実施形態においては、該方法は、
本明細書に記載の実施形態に記載の遺伝子送達ポリヌクレオチドを提供すること、
T細胞に前記遺伝子送達ポリヌクレオチドを導入すること、
Sleeping Beautyトランスポゼースをコードするベクターを提供すること、
Sleeping Beautyトランスポゼースをコードする前記ベクターを前記T細胞に導入すること、
第1の濃度域の選択試薬を加えることを含む1回目の選択と、第1の濃度域よりも高くかつ第1の濃度域の少なくとも1.5倍以上である第2の濃度域の該選択試薬を加えることを含む2回目の選択とを含む操作によって、前記遺伝子送達ポリヌクレオチドを含む前記細胞を選択すること、ならびに
選択圧下において表現型を発現する前記T細胞を単離することを含む。
いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは、共刺激リガンドをコードする配列を含む。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは、キメラ抗原受容体をコードする配列を含む。いくつかの実施形態においては、前記T細胞はCARを発現する。本明細書に記載の実施形態において、前記CAR発現リンパ球は、Sleeping Beautyトランスポゾンを含むミニサークルによって遺伝子改変されている。いくつかの実施形態においては、前記選択試薬はMTXである。
一例として、遺伝子改変T細胞は、たとえば腫瘍やウイルス抗原などを認識するような特異性が付与されたT細胞受容体(TCR)遺伝子の複製物を含む移入ウイルスを患者の細胞に感染させることによって作製することができるが、遺伝子改変T細胞の作製方法はこれに限定されない。この移入ウイルスは導入された細胞内で自己複製できないものの、ヒトゲノムには組み込まれることが重要である。これは、新しく導入されたTCR遺伝子はT細胞において安定した状態を保つことができるという点で利点がある。患者自身のT細胞をこれらの移入ウイルスに暴露させた後、非特異的に増殖させるか、あるいは前記遺伝子改変TCRを使用して刺激する。次いで、該T細胞を移入することにより患者に戻すと、腫瘍、ウイルスまたはウイルス感染細胞に対する免疫応答が即座に惹起される。遺伝子改変T細胞による養子細胞移入の使用は、様々ながんやウイルス感染症を治療するためのアプローチとして新規かつ有望である。いくつかの実施形態においては、がんのための養子免疫療法を実施する方法が提供される。いくつかの実施形態においては、ウイルス感染症のための養子免疫療法を実施する方法が提供される。
ウイルスベクターを使用することによって遺伝子改変T細胞を作製する方法には、いくつかの欠点がある。T細胞の遺伝子改変は、通常、γ−レトロウイルスまたはレンチウイルスを使用して行われる。この方法は効果的である反面、製造コストがかかること、遺伝子をパッケージングする能力に限界があること、および潜在的な安全性が懸念されることなどの欠点がある。Sleeping Beauty(SB)やPiggyBacなどのトランスポゾンシステムを含むプラスミドは、ウイルスを使用せずに遺伝子をT細胞に安定に導入するためアプローチを提供する。近年、PiggyBacシステムを使用して複数のトランスポゾンを送達することによって、複数の目的の導入遺伝子を発現する安定にトランスフェクトされた哺乳動物細胞が作製された。まずは哺乳動物細胞における使用のためにIvicsおよび共同研究者によって再び使われ始めたSBシステムは、T細胞免疫療法の臨床試験における遺伝子送達法として使用されてきた。SBによる遺伝子組み込みによる転写単位およびそれらの調節配列に対する選択性は、γ−レトロウイルスやレンチウイルスベクターよりも弱く、したがって、これらのウイルスよりも安全であると考えられる。本明細書に記載の実施形態のいくつかにおいては、Sleeping Beautyシステムを含むミニサークルによる遺伝子改変が実施される。本明細書に記載の実施形態のいくつかにおいては、PiggyBacシステムを含むミニサークルによる遺伝子改変が実施される。本明細書に記載の実施形態のいくつかにおいては、Sleeping Beautyシステムを含むミニサークルによる遺伝子改変が実施される。
ミニサークルは、トランスフェクションプラットフォームとして特に魅力的であり、それには3つの理由がある。第1の理由としては、エレクトロポレーションを使用したミニサークルによるトランスフェクション効率は、プラスミド類似体のトランスフェクション効率よりも高いことが挙げられる。第2の理由としては、2つのトランスポゾン末端の間の距離はトランスポゼース効率に影響を与えることが示されているが、ミニサークルは、この2つのトランスポゾン末端の間の距離がプラスミド類似体よりも近いことから、トランスフェクション効率が高いことが挙げられる。第3の理由としては、ヌクレオフェクション後の細胞生存率は構築物のサイズが大きくなるに従って低下するため、ミニサークルのサイズはプラスミド類似体よりも小さいことから、プラスミド類似体よりも有利であることが挙げられる。トランスポゾンの効率をさらに向上させるためには、Izsvakらにより開発された最適化SB100X高活性トランスポゼース(Nature Genet. 2009, 41, 753-761;参照によりその全体が本明細書に組み込まれる)と、Yantらにより開発されたT3世代のSB(Mol. Cell. Biol. 2004, 24, 9239-9247;参照によりその全体が本明細書に組み込まれる)とを組み合わせて使用することができる。本明細書に記載の実施形態のいくつかにおいては、養子細胞移入のための遺伝子改変T細胞の製造方法が実施される。いくつかの実施形態においては、前記方法は、T細胞にミニサークルを導入することを含む。いくつかの実施形態においては、前記導入は、エレクトロポレーションによる送達を含む。
T細胞免疫療法における別の課題は、患者への移入後の細胞の生存である。抗アポトーシスタンパク質を発現誘導すると、インビボにおいてT細胞の生存を改善するためことが報告されている。腫瘍へのホーミングおよび浸潤は、遺伝子改変T細胞にケモカイン受容体を導入することによって増強され、このアプローチは、通常はT細胞により認識されないケモカインを発現する腫瘍に対して特に有用であると考えられる。さらに、免疫抑制性の腫瘍微小環境において良好な耐性を示すように、サイトカイン発現を誘導することなどによってT細胞を遺伝子改変することができる。したがって、複数の導入遺伝子を発現する遺伝子改変T細胞を迅速に製造する方法は、T細胞免疫療法の臨床適用にとって重要であり、かつ利点である。本明細書に記載の実施形態のいくつかにおいては、同時に組み込むためのさらなる遺伝子を同時に組み込むことによって、CAR発現T細胞の抗腫瘍活性をさらに増強する方法が実施される。いくつかの実施形態においては、前記さらなる遺伝子は共刺激リガンドをコードする。いくつかの実施形態においては、前記共刺激リガンドはCD80である。いくつかの実施形態においては、前記共刺激リガンドは4−1BBLである。いくつかの実施形態においては、前記さらなる遺伝子は抗アポトーシスタンパク質をコードする。いくつかの実施形態においては、前記さらなる遺伝子はケモカイン受容体をコードする。
いくつかの実施形態においては、養子T細胞免疫療法のための遺伝子改変マルチプレックスT細胞を製造する方法が提供される。最も広い解釈では、該方法は、
本明細書に記載の実施形態のいずれかに記載の遺伝子送達ポリヌクレオチドを提供すること、
T細胞に前記遺伝子送達ポリヌクレオチドを導入すること、
Sleeping Beautyトランスポゼースをコードするベクターを提供すること、
Sleeping Beautyトランスポゼースをコードする前記ベクターを前記T細胞に導入すること、
第1の濃度域の選択試薬を加えることを含む1回目の選択と、第1の濃度域よりも高くかつ第1の濃度域の少なくとも1.5倍以上である第2の濃度域の該選択試薬を加えることを含む2回目の選択とを含む操作によって、前記遺伝子送達ポリヌクレオチドを含む前記細胞を選択すること、ならびに
選択圧下において表現型を発現する前記T細胞を単離することを含むことができる。いくつかの実施形態においては、前記T細胞は、キメラ抗原受容体(CAR)発現T細胞である。いくつかの実施形態においては、前記選択試薬はMTXである。
いくつかの実施形態においては、T細胞におけるタンパク質の産生を増加させる方法が提供される。最も広い解釈では、該方法は、
本明細書に記載の実施形態のいずれかに記載の遺伝子送達ポリヌクレオチドを提供すること、
T細胞に前記遺伝子送達ポリヌクレオチドを導入すること、
Sleeping Beautyトランスポゼースをコードするベクターを提供すること、
Sleeping Beautyトランスポゼースをコードする前記ベクターを前記T細胞に導入すること、
第1の濃度域の選択試薬を加えることを含む1回目の選択と、第1の濃度域よりも高くかつ第1の濃度域の少なくとも1.5倍以上である第2の濃度域の該選択試薬を加えることを含む2回目の選択とを含む操作によって、前記遺伝子送達ポリヌクレオチドを含む前記細胞を選択すること、ならびに
選択圧下において表現型を発現する前記T細胞を単離することを含むことができる。いくつかの実施形態においては、前記選択試薬はMTXである。いくつかの実施形態においては、前記T細胞は、キメラ抗原受容体(CAR)発現T細胞である。
本明細書に記載のように、前記システムの一実施形態は、遺伝子改変された非ウイルス性遺伝子送達システムを含み、このシステムの3つの重要として、
(1)安定な遺伝子発現のためのSleeping Beautyトランスポゾンシステム、
(2)トランスフェクションを増強するためのミニサークル、および
(3)選択機序としてのヒトジヒドロ葉酸還元酵素の二重変異体(DHFRdm)
が挙げられる(図1)。
ミニサークルは、トランスフェクションプラットフォームとして特に魅力的であり、それには3つの理由がある。第1の理由としては、エレクトロポレーションを使用したミニサークルによるトランスフェクション効率は、プラスミド類似体のトランスフェクション効率よりも高いことが挙げられる。第2の理由としては、2つのトランスポゾン末端の間の距離はトランスポゼース効率に影響を与えることが示されているが、ミニサークルは、この2つのトランスポゾン末端の間の距離がプラスミド類似体よりも近いことから、トランスフェクション効率が高いことが挙げられる。第3の理由としては、ヌクレオフェクション後の細胞生存率は構築物のサイズが大きくなるに従って低下するため、ミニサークルのサイズはプラスミド類似体よりも小さいことから、プラスミド類似体よりも望ましいことが挙げられる。トランスポゾンの効率をさらに向上させるために、Izsvakらにより開発された最適化SB100X高活性トランスポゼース(Nature Genet. 2009, 41, 753-761;参照によりその全体が本明細書に組み込まれる)と、Yantらにより開発されたT3世代のSBトランスポゾン(Mol. Cell. Biol. 2004, 24, 9239-9247;参照によりその全体が本明細書に組み込まれる)とを組み合わせて使用した。本明細書に記載の実施形態のいくつかにおいては、T細胞の遺伝子改変は、ミニサークルを使用して行われる。いくつかの実施形態においては、前記ミニサークルはトランスポゾンを含む。いくつかの実施形態においては、前記トランスポゾンはSleeping Beautyトランスポゾンを含む。いくつかの実施形態においては、最適化SB100X高活性トランスポゼースを、T3世代のSBトランスポゾンと組み合わせて使用する。
さらに、遺伝子改変T細胞の迅速な選択のための選択機序を使用することもできる。ヒトジヒドロ葉酸還元酵素の二重変異体(DHFRdm、アミノ酸変異L22FおよびF31Sを有する)は、メトトレキサートに対する親和性が15,000分の1に低減されている。メトトレキサートは、DHFRの強力な阻害剤であり、チミジル酸合成およびプリン合成を阻害する。T細胞においてDHFRdmを発現させると、増殖能力、T細胞マーカーの発現または細胞溶解能力を損なうことなく、MTXに対する耐性を付与することができる。この選択システムのさらなる利点としては、臨床グレードのMTXを利用可能であること、遺伝毒性薬剤を使用する必要がないこと、およびDHFRdmの遺伝子サイズが小さいこと(561bp)が挙げられる。したがって、MTXは、SBによって形質導入された細胞を選択的に増幅する選択機序として使用することができる。いくつかの実施形態において、前記ミニサークルは、ヒトのジヒドロ葉酸還元酵素の二重変異体をコードする遺伝子配列を含む。いくつかの実施形態においては、遺伝子改変されたT細胞を迅速に選択するための選択方法が提供される。いくつかの実施形態においては、前記選択方法は、遺伝子改変T細胞と臨床用メトトレキサートとを接触させることを含む。いくつかの実施形態においては、前記T細胞は、ヒトのジヒドロ葉酸還元酵素の二重変異体をコードする配列を含むミニサークルを含む。いくつかの実施形態においては、前記ヒトのジヒドロ葉酸還元酵素の二重変異体は、メトトレキサートに対する特異性が15,000分の1または約15,000分の1に低減されている。いくつかの実施形態においては、メトトレキサートと前記T細胞とを接触させることによって、前記ヒトのジヒドロ葉酸還元酵素の二重変異体をコードする配列を含むミニサークルで形質導入された細胞を選択的に増殖させることができる。いくつかの実施形態において、ヒトの前記ジヒドロ葉酸還元酵素の二重変異体をコードする遺伝子は、
ATGGTTGGTTCGCTAAACTGCATCGTCGCTGTGTCCCAGAACATGGGCATCGGCAAGAACGGGGACTTCCCCTGGCCACCGCTCAGGAATGAATCCAGATATTTCCAGAGAATGACCACAACCTCTTCAGTAGAAGGTAAACAGAATCTGGTGATTATGGGTAAGAAGACCTGGTTCTCCATTCCTGAGAAGAATCGACCTTTAAAGGGTAGAATTAATTTAGTTCTCAGCAGAGAACTCAAGGAACCTCCACAAGGAGCTCATTTTCTTTCCAGAAGTCTAGATGATGCCTTAAAACTTACTGAACAACCAGAATTAGCAAATAAAGTAGACATGGTCTGGATAGTTGGTGGCAGTTCTGTTTATAAGGAAGCCATGAATCACCCAGGCCATCTTAAACTATTTGTGACAAGGATCATGCAAGACTTTGAAAGTGACACGTTTTTTCCAGAAATTGATTTGGAGAAATATAAACTTCTGCCAGAATACCCAGGTGTTCTCTCTGATGTCCAGGAGGAGAAAGGCATTAAGTACAAATTTGAAGTATATGAGAAGAATGATTAA(配列番号2)で表されるDNA配列を含む。
いくつかの実施形態においては、ヒトの前記ジヒドロ葉酸還元酵素の二重変異体は、
MVGSLNCIVA VSQNMGIGKN GDFPWPPLRN ESRYFQRMTT TSSVEGKQNL VIMGKKTWFS IPEKNRPLKG RINLVLSREL KEPPQGAHFL SRSLDDALKL TEQPELANKV DMVWIVGGSS VYKEAMNHPG HLKLFVTRIM QDFESDTFFP EIDLEKYKLL PEYPGVLSDV QEEKGIKYKF EVYEKND(配列番号3)で表されるタンパク質配列を含む。
SBトランスポゾンを含有するミニサークルを用いたマルチプレックス送達を利用して、最大で3つの導入遺伝子をH9 T細胞株に安定に移入させ、次いでメトトレキサート(MTX)による選択を行うことができる。MTXによる選択圧を高めることによって、より多くの遺伝子が組み込まれた細胞を選択的に得ることができる。2回連続してMTXによる選択を行う2段階選択方法を使用することによって、50%の細胞が3種の導入遺伝子産物を発現している細胞集団を得ることができる。いくつかの実施形態においては、細胞株に導入遺伝子を安定に移入する方法が提供される。いくつかの実施形態においては、細胞株にミニサークルを導入する方法が提供される。いくつかの実施形態においては、前記ミニサークルはSleeping Beautyトランスポゾンを含む。いくつかの実施形態においては、前記方法は、メトトレキサートによる選択圧を高めることをさらに含み、メトトレキサートによる選択圧を高める該工程は、該細胞株と濃度を高めたメトトレキサートとを接触させることを含む。いくつかの実施形態においては、2回目のメトトレキサートによる選択が行われる。
さらなる実施形態
いくつかの実施形態においては、遺伝子に核酸を安定に挿入するための遺伝子送達ポリヌクレオチドであって、該遺伝子送達ポリヌクレオチド内において、挿入される該核酸が逆方向末端反復遺伝子配列に挟まれていること、該遺伝子送達ポリヌクレオチドが選択可能であることを特徴とする遺伝子送達ポリヌクレオチドが提供される。
最も広い解釈では、前記遺伝子送達ポリヌクレオチドは、第1〜第7の配列を含み、
第1の配列が、第1の逆方向末端反復遺伝子配列を含み、
第2の配列が、第2の逆方向末端反復遺伝子配列を含み、
第3の配列が、プロモーター領域配列を含み、
第4の配列が、タンパク質をコードする少なくとも1つの遺伝子を含む最適化された配列であり、
第5の配列が、ジヒドロ葉酸還元酵素の二重変異体をコードする少なくとも1つの選択マーカーカセットを含む最適化された配列であり、該ジヒドロ葉酸還元酵素の二重変異体のメトトレキサートに対する親和性が15,000分の1または約15,000分の1に低減されており、メトトレキサートを選択メカニズムとして用いることによって、前記遺伝子送達ポリヌクレオチドによって形質導入された細胞を選択的に増殖させることができ、
第6の配列が、第1の付着部位(attP)を含み、
第7の配列が、第2の付着部位(attB)を含むこと、ならびに
第1の配列、第2の配列、第3の配列、第4の配列、第5の配列、第6の配列および第7の配列がそれぞれ5’末端および3’末端を有し、第1の逆方向末端反復遺伝子配列を含む第1の配列の3’末端が、第3の配列の5’末端に隣接し、第3の配列の3’末端が、第4の配列の5’末端に隣接し、第4の配列の3’末端が、第5の配列の5’末端に隣接し、第5の配列の3’末端が、第2の逆方向末端反復を含む第2の配列の5’末端に隣接していることを特徴とする。
いくつかの実施形態において、ヒトの前記ジヒドロ葉酸還元酵素の二重変異体をコードする遺伝子は、
ATGGTTGGTTCGCTAAACTGCATCGTCGCTGTGTCCCAGAACATGGGCATCGGCAAGAACGGGGACTTCCCCTGGCCACCGCTCAGGAATGAATCCAGATATTTCCAGAGAATGACCACAACCTCTTCAGTAGAAGGTAAACAGAATCTGGTGATTATGGGTAAGAAGACCTGGTTCTCCATTCCTGAGAAGAATCGACCTTTAAAGGGTAGAATTAATTTAGTTCTCAGCAGAGAACTCAAGGAACCTCCACAAGGAGCTCATTTTCTTTCCAGAAGTCTAGATGATGCCTTAAAACTTACTGAACAACCAGAATTAGCAAATAAAGTAGACATGGTCTGGATAGTTGGTGGCAGTTCTGTTTATAAGGAAGCCATGAATCACCCAGGCCATCTTAAACTATTTGTGACAAGGATCATGCAAGACTTTGAAAGTGACACGTTTTTTCCAGAAATTGATTTGGAGAAATATAAACTTCTGCCAGAATACCCAGGTGTTCTCTCTGATGTCCAGGAGGAGAAAGGCATTAAGTACAAATTTGAAGTATATGAGAAGAATGATTAA(配列番号2)で表されるDNA配列を含む。
いくつかの実施形態においては、ヒトの前記ジヒドロ葉酸還元酵素の二重変異体は、
MVGSLNCIVA VSQNMGIGKN GDFPWPPLRN ESRYFQRMTT TSSVEGKQNL VIMGKKTWFS IPEKNRPLKG RINLVLSREL KEPPQGAHFL SRSLDDALKL TEQPELANKV DMVWIVGGSS VYKEAMNHPG HLKLFVTRIM QDFESDTFFP EIDLEKYKLL PEYPGVLSDV QEEKGIKYKF EVYEKND(配列番号3)で表されるタンパク質配列を含む。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは環状である。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは少なくとも1kb〜6kbである。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドはミニサークル(minicircle)である。いくつかの実施形態においては、前記プロモーター領域は、EF1プロモーター配列を含む。いくつかの実施形態においては、前記第4の配列は、タンパク質をコードする遺伝子を1つ、2つ、3つ、4つまたは5つ含む。いくつかの実施形態においては、前記第4の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第4の配列は、同じエピトープに特異的な複数の抗体結合ドメインなどの、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記第5の配列は、前記第4の配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記最適化されたコドンおよび/またはコンセンサス配列は、複数の関連配列において利用されている配列および/または核酸塩基の可変性を比較することによって作製される。いくつかの実施形態においては、前記タンパク質は治療用タンパク質である。いくつかの実施形態においては、前記タンパク質は、抗体またはその一部を含む。いくつかの実施形態においては、前記ジヒドロ葉酸還元酵素の二重変異体は、L22FおよびF31Sのアミノ酸変異を含む。いくつかの実施形態においては、前記ミニサークルは、前記ジヒドロ葉酸還元酵素の二重変異体をコードする配列を含み、該配列は、
ATGGTTGGTTCGCTAAACTGCATCGTCGCTGTGTCCCAGAACATGGGCATCGGCAAGAACGGGGACTTCCCCTGGCCACCGCTCAGGAATGAATCCAGATATTTCCAGAGAATGACCACAACCTCTTCAGTAGAAGGTAAACAGAATCTGGTGATTATGGGTAAGAAGACCTGGTTCTCCATTCCTGAGAAGAATCGACCTTTAAAGGGTAGAATTAATTTAGTTCTCAGCAGAGAACTCAAGGAACCTCCACAAGGAGCTCATTTTCTTTCCAGAAGTCTAGATGATGCCTTAAAACTTACTGAACAACCAGAATTAGCAAATAAAGTAGACATGGTCTGGATAGTTGGTGGCAGTTCTGTTTATAAGGAAGCCATGAATCACCCAGGCCATCTTAAACTATTTGTGACAAGGATCATGCAAGACTTTGAAAGTGACACGTTTTTTCCAGAAATTGATTTGGAGAAATATAAACTTCTGCCAGAATACCCAGGTGTTCTCTCTGATGTCCAGGAGGAGAAAGGCATTAAGTACAAATTTGAAGTATATGAGAAGAATGATTAA(配列番号2)で表されるDNA配列を含む。いくつかの実施形態においては、前記ジヒドロ葉酸還元酵素の二重変異体は、
MVGSLNCIVA VSQNMGIGKN GDFPWPPLRN ESRYFQRMTT TSSVEGKQNL VIMGKKTWFS IPEKNRPLKG RINLVLSREL KEPPQGAHFL SRSLDDALKL TEQPELANKV DMVWIVGGSS VYKEAMNHPG HLKLFVTRIM QDFESDTFFP EIDLEKYKLL PEYPGVLSDV QEEKGIKYKF EVYEKND(配列番号3)で表されるタンパク質配列を含む。
いくつかの実施形態においては、養子T細胞免疫療法のための遺伝子改変マルチプレックスT細胞を製造する方法が提供される。最も広い解釈では、該方法は、
本明細書に記載の実施形態のいずれかに記載の遺伝子送達ポリヌクレオチドを提供すること、
T細胞に前記遺伝子送達ポリヌクレオチドを導入すること、
Sleeping Beautyトランスポゼースをコードするベクターを提供すること、
Sleeping Beautyトランスポゼースをコードする前記ベクターを前記T細胞に導入すること、
第1の濃度域の選択試薬を加えることを含む1回目の選択と、第1の濃度域よりも高くかつ第1の濃度域の少なくとも1.5倍以上である第2の濃度域の該選択試薬を加えることを含む2回目の選択とを含む操作によって、前記遺伝子送達ポリヌクレオチドを含む前記細胞を選択すること、ならびに
選択圧下において表現型を発現する前記T細胞を単離することを含むことができる。
いくつかの実施形態においては、前記導入をエレクトロポレーションによって行う。いくつかの実施形態においては、前記選択を、選択マーカーカセットを使用して選択圧を高めることによって行う。いくつかの実施形態においては、前記選択試薬は選択剤を含む。
いくつかの実施形態においては、前記選択剤はメトトレキサートである。いくつかの実施形態においては、前記第1の濃度域が少なくとも50nM〜100nMであり、前記第2の濃度域が少なくとも75nM〜150nMである。いくつかの実施形態においては、前記第1濃度は、50nM、60nM、70nM、80nM、90nMもしくは100nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、75nM、80nM、90nM、100nM、110nM、120nM、130nM、140nMもしくは150nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記第1の濃度域は少なくとも75nM〜150nMであり、前記第2の濃度域は少なくとも112.5nM〜225nMである。いくつかの実施形態においては、前記第1濃度は、75nM、85nM、95nM、105nM、115nM、125nM、135nM、145nMもしくは150nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、112nM、122nM、132nM、142nM、152nM、162nM、172nM、182nM、192nM、202nM、212nMもしくは225nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記第1の濃度域は少なくとも300nM〜675nMであり、前記第1の濃度域は少なくとも450nM〜1012nMである。いくつかの実施形態においては、前記第1濃度は、300nM、350nM、400nM、450nM、500nM、550nM、600nM、650nMもしくは675nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、450nM、500nM、550nM、600nM、650nM、700nM、750nM、800nM、850nM、900nM、1000nMもしくは1012nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記1回目の選択は、前記2回目の選択を行う前に、2日、3日、4日、5日、6日または7日にわたって前記T細胞を前記選択剤に暴露することを含む。いくつかの実施形態においては、前記2回目の選択は、前記T細胞を単離する前に、少なくとも2日、3日、4日、5日、6日または7日にわたって前記T細胞を前記選択剤に暴露することを含む。
いくつかの実施形態においては、細胞におけるタンパク質の産生を増加させる方法が提供される。最も広い解釈では、該方法は、
本明細書に記載の実施形態のいずれかに記載の遺伝子送達ポリヌクレオチドを提供すること、
T細胞に前記遺伝子送達ポリヌクレオチドを導入すること、
Sleeping Beautyトランスポゼースをコードするベクターを提供すること、
Sleeping Beautyトランスポゼースをコードする前記ベクターを前記T細胞に導入すること、
第1の濃度域の選択試薬を加えることを含む1回目の選択と、第1の濃度域よりも高くかつ第1の濃度域の少なくとも1.5倍以上である第2の濃度域の該選択試薬を加えることを含む2回目の選択とを含む操作によって、前記遺伝子送達ポリヌクレオチドを含む前記細胞を選択すること、ならびに
選択圧下において表現型を発現する前記T細胞を単離することを含むことができる。
いくつかの実施形態においては、前記導入をエレクトロポレーションによって行う。いくつかの実施形態においては、前記選択を、選択マーカーカセットを使用して選択圧を高めることによって行う。いくつかの実施形態においては、前記選択試薬は選択剤を含む。いくつかの実施形態においては、前記選択剤はメトトレキサートである。いくつかの実施形態においては、前記低濃度域すなわち第1の濃度域は少なくとも50nM〜100nMであり、前記高濃度域すなわち第2の濃度域は少なくとも75nM〜150nMである。いくつかの実施形態においては、前記低濃度域すなわち第1の濃度域は少なくとも75nM〜150nMであり、前記高濃度域すなわち第2の濃度域は少なくとも112.5nM〜225nMである。いくつかの実施形態においては、前記低濃度域すなわち第1の濃度域は少なくとも300nM〜675nMであり、前記高濃度域すなわち第2の濃度域は少なくとも450nM〜1012nMである。いくつかの実施形態においては、前記1回目の選択は、前記2回目の選択を行う前に、2日、3日、4日、5日、6日または7日にわたって前記T細胞を前記選択剤に暴露することを含む。いくつかの実施形態においては、前記2回目の選択は、前記T細胞を単離する前に、少なくとも2日、3日、4日、5日、6日または7日にわたって前記T細胞を前記選択剤に暴露することを含む。
いくつかの実施形態においては、前記方法のいずれかによって製造された、養子T細胞免疫療法のための遺伝子改変マルチプレックスT細胞が提供される。
いくつかの実施形態においては、養子T細胞免疫療法のための前記遺伝子改変マルチプレックスT細胞の製造方法は、
遺伝子送達ポリヌクレオチドを提供すること、
T細胞に前記遺伝子送達ポリヌクレオチドを導入すること、
Sleeping Beautyトランスポゼースをコードするベクターを提供すること、
Sleeping Beautyトランスポゼースをコードする前記ベクターを前記T細胞に導入すること、
第1の濃度域の選択試薬を加えることを含む1回目の選択と、第1の濃度域よりも高くかつ第1の濃度域の少なくとも1.5倍以上である第2の濃度域の該選択試薬を加えることを含む2回目の選択とを含む操作によって、前記遺伝子送達ポリヌクレオチドを含む前記細胞を選択すること、ならびに
選択圧下において表現型を発現する前記T細胞を単離することを含む。
いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは、第1〜第7の配列を含み、
第1の配列が、第1の逆方向末端反復遺伝子配列を含み、
第2の配列が、第2の逆方向末端反復遺伝子配列を含み、
第3の配列が、プロモーター領域配列を含み、
第4の配列が、タンパク質をコードする少なくとも1つの遺伝子を含む最適化された配列であり、
第5の配列が、ジヒドロ葉酸還元酵素の二重変異体をコードする少なくとも1つの選択マーカーカセットを含む最適化された配列であり、該ジヒドロ葉酸還元酵素の二重変異体のメトトレキサートに対する親和性が15,000分の1または約15,000分の1に低減されており、メトトレキサートを選択メカニズムとして用いることによって、前記遺伝子送達ポリヌクレオチドによって形質導入された細胞を選択的に増殖させることができ、
第6の配列が、第1の付着部位(attP)を含み、
第7の配列が、第2の付着部位(attB)を含むこと、ならびに
第1の配列、第2の配列、第3の配列、第4の配列、第5の配列、第6の配列および第7の配列がそれぞれ5’末端および3’末端を有し、第1の逆方向末端反復遺伝子配列を含む第1の配列の3’末端が、第3の配列の5’末端に隣接し、第3の配列の3’末端が、第4の配列の5’末端に隣接し、第4の配列の3’末端が、第5の配列の5’末端に隣接し、第5の配列の3’末端が、第2の逆方向末端反復を含む第2の配列の5’末端に隣接していることを特徴とする。
いくつかの実施形態において、ヒトの前記ジヒドロ葉酸還元酵素の二重変異体をコードする遺伝子は、
ATGGTTGGTTCGCTAAACTGCATCGTCGCTGTGTCCCAGAACATGGGCATCGGCAAGAACGGGGACTTCCCCTGGCCACCGCTCAGGAATGAATCCAGATATTTCCAGAGAATGACCACAACCTCTTCAGTAGAAGGTAAACAGAATCTGGTGATTATGGGTAAGAAGACCTGGTTCTCCATTCCTGAGAAGAATCGACCTTTAAAGGGTAGAATTAATTTAGTTCTCAGCAGAGAACTCAAGGAACCTCCACAAGGAGCTCATTTTCTTTCCAGAAGTCTAGATGATGCCTTAAAACTTACTGAACAACCAGAATTAGCAAATAAAGTAGACATGGTCTGGATAGTTGGTGGCAGTTCTGTTTATAAGGAAGCCATGAATCACCCAGGCCATCTTAAACTATTTGTGACAAGGATCATGCAAGACTTTGAAAGTGACACGTTTTTTCCAGAAATTGATTTGGAGAAATATAAACTTCTGCCAGAATACCCAGGTGTTCTCTCTGATGTCCAGGAGGAGAAAGGCATTAAGTACAAATTTGAAGTATATGAGAAGAATGATTAA(配列番号2)で表されるDNA配列を含む。
いくつかの実施形態においては、ヒトの前記ジヒドロ葉酸還元酵素の二重変異体は、
MVGSLNCIVA VSQNMGIGKN GDFPWPPLRN ESRYFQRMTT TSSVEGKQNL VIMGKKTWFS IPEKNRPLKG RINLVLSREL KEPPQGAHFL SRSLDDALKL TEQPELANKV DMVWIVGGSS VYKEAMNHPG HLKLFVTRIM QDFESDTFFP EIDLEKYKLL PEYPGVLSDV QEEKGIKYKF EVYEKND(配列番号3)で表されるタンパク質配列を含む。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは環状である。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは少なくとも1kb〜5kbである。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドはミニサークル(minicircle)である。いくつかの実施形態においては、前記プロモーター領域は、EF1プロモーター配列を含む。いくつかの実施形態においては、前記第4の配列は、タンパク質をコードする遺伝子を1つ、2つ、3つ、4つまたは5つ含む。いくつかの実施形態においては、前記第4の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第4の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記第4の配列は、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記第4の配列は、同じエピトープに特異的な複数の抗体結合ドメインなどの、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記関連する複数のタンパク質は、同じエピトープに特異的な複数の抗体結合ドメインを含む。いくつかの実施形態においては、前記第5の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第5の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記タンパク質は治療用タンパク質である。いくつかの実施形態においては、前記最適化されたコドンおよび/またはコンセンサス配列は、複数の関連配列において利用されている配列および/または核酸塩基の可変性を比較することによって作製される。いくつかの実施形態においては、前記タンパク質は、抗体またはその一部を含み、該抗体またはその一部はヒト化されていてもよい。いくつかの実施形態においては、前記ジヒドロ葉酸還元酵素の二重変異体は、L22FおよびF31Sのアミノ酸変異を含む。いくつかの実施形態においては、前記ジヒドロ葉酸還元酵素の二重変異体は、L22FおよびF31Sのアミノ酸変異を含む。いくつかの実施形態においては、前記導入をエレクトロポレーションによって行う。いくつかの実施形態においては、前記選択を、選択マーカーカセットを使用して選択圧を高めることによって行う。いくつかの実施形態においては、前記選択試薬は選択剤を含む。いくつかの実施形態においては、前記選択剤はメトトレキサートである。いくつかの実施形態においては、前記第1の濃度域が少なくとも50nM〜100nMであり、前記第2の濃度域が少なくとも75nM〜150nMである。いくつかの実施形態においては、前記第1濃度は、50nM、60nM、70nM、80nM、90nMもしくは100nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、75nM、80nM、90nM、100nM、110nM、120nM、130nM、140nMもしくは150nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記第1の濃度域は少なくとも75nM〜150nMであり、前記第2の濃度域は少なくとも112.5nM〜225nMである。いくつかの実施形態においては、前記第1濃度は、75nM、85nM、95nM、105nM、115nM、125nM、135nM、145nMもしくは150nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、112nM、122nM、132nM、142nM、152nM、162nM、172nM、182nM、192nM、202nM、212nMもしくは225nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記第1の濃度域は少なくとも300nM〜675nMであり、前記第1の濃度域は少なくとも450nM〜1012nMである。いくつかの実施形態においては、前記第1濃度は、300nM、350nM、400nM、450nM、500nM、550nM、600nM、650nMもしくは675nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、450nM、500nM、550nM、600nM、650nM、700nM、750nM、800nM、850nM、900nM、1000nMもしくは1012nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記1回目の選択は、前記2回目の選択を行う前に、2日、3日、4日、5日、6日または7日にわたって前記T細胞を前記選択剤に暴露することを含む。いくつかの実施形態においては、前記2回目の選択は、前記T細胞を単離する前に、少なくとも2日、3日、4日、5日、6日、7日、8日、9日、10日、11日、12日、13日もしくは14日にわたって、またはこれらの時間点のいずれか2つによって定義される範囲にある任意の時間にわたって、前記T細胞を前記選択剤に暴露することを含む。
いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは、第1〜第7の配列を含み、
第1の配列が、第1の逆方向末端反復遺伝子配列を含み、
第2の配列が、第2の逆方向末端反復遺伝子配列を含み、
第3の配列が、プロモーター領域配列を含み、
第4の配列が、タンパク質をコードする少なくとも1つの遺伝子を含む最適化された配列であり、
第5の配列が、ジヒドロ葉酸還元酵素の二重変異体をコードする少なくとも1つの選択マーカーカセットを含む最適化された配列であり、該ジヒドロ葉酸還元酵素の二重変異体のメトトレキサートに対する親和性が15,000分の1または約15,000分の1に低減されており、メトトレキサートを選択メカニズムとして用いることによって、前記遺伝子送達ポリヌクレオチドによって形質導入された細胞を選択的に増殖させることができ、
第6の配列が、第1の付着部位(attP)を含み、
第7の配列が、第2の付着部位(attB)を含むこと、ならびに
第1の配列、第2の配列、第3の配列、第4の配列、第5の配列、第6の配列および第7の配列がそれぞれ5’末端および3’末端を有し、第1の逆方向末端反復遺伝子配列を含む第1の配列の3’末端が、第3の配列の5’末端に隣接し、第3の配列の3’末端が、第4の配列の5’末端に隣接し、第4の配列の3’末端が、第5の配列の5’末端に隣接し、第5の配列の3’末端が、第2の逆方向末端反復を含む第2の配列の5’末端に隣接していることを特徴とする。
いくつかの実施形態において、ヒトの前記ジヒドロ葉酸還元酵素の二重変異体をコードする遺伝子は、
ATGGTTGGTTCGCTAAACTGCATCGTCGCTGTGTCCCAGAACATGGGCATCGGCAAGAACGGGGACTTCCCCTGGCCACCGCTCAGGAATGAATCCAGATATTTCCAGAGAATGACCACAACCTCTTCAGTAGAAGGTAAACAGAATCTGGTGATTATGGGTAAGAAGACCTGGTTCTCCATTCCTGAGAAGAATCGACCTTTAAAGGGTAGAATTAATTTAGTTCTCAGCAGAGAACTCAAGGAACCTCCACAAGGAGCTCATTTTCTTTCCAGAAGTCTAGATGATGCCTTAAAACTTACTGAACAACCAGAATTAGCAAATAAAGTAGACATGGTCTGGATAGTTGGTGGCAGTTCTGTTTATAAGGAAGCCATGAATCACCCAGGCCATCTTAAACTATTTGTGACAAGGATCATGCAAGACTTTGAAAGTGACACGTTTTTTCCAGAAATTGATTTGGAGAAATATAAACTTCTGCCAGAATACCCAGGTGTTCTCTCTGATGTCCAGGAGGAGAAAGGCATTAAGTACAAATTTGAAGTATATGAGAAGAATGATTAA(配列番号2)で表されるDNA配列を含む。
いくつかの実施形態においては、ヒトの前記ジヒドロ葉酸還元酵素の二重変異体は、
MVGSLNCIVA VSQNMGIGKN GDFPWPPLRN ESRYFQRMTT TSSVEGKQNL VIMGKKTWFS IPEKNRPLKG RINLVLSREL KEPPQGAHFL SRSLDDALKL TEQPELANKV DMVWIVGGSS VYKEAMNHPG HLKLFVTRIM QDFESDTFFP EIDLEKYKLL PEYPGVLSDV QEEKGIKYKF EVYEKND(配列番号3)で表されるタンパク質配列を含む。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは環状である。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは少なくとも1kb〜5kbである。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドはミニサークル(minicircle)である。いくつかの実施形態においては、前記プロモーター領域は、EF1プロモーター配列を含む。いくつかの実施形態においては、前記第4の配列は、タンパク質をコードする遺伝子を1つ、2つ、3つ、4つまたは5つ含む。いくつかの実施形態においては、前記第4の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第4の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記第4の配列は、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記第4の配列は、同じエピトープに特異的な複数の抗体結合ドメインなどの、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記関連する複数のタンパク質は、同じエピトープに特異的な複数の抗体結合ドメインを含む。いくつかの実施形態においては、前記第5の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第5の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記タンパク質は治療用タンパク質である。いくつかの実施形態においては、前記最適化されたコドンおよび/またはコンセンサス配列は、複数の関連配列において利用されている配列および/または核酸塩基の可変性を比較することによって作製される。いくつかの実施形態においては、前記タンパク質は、抗体またはその一部を含み、該抗体またはその一部はヒト化されていてもよい。いくつかの実施形態においては、前記ジヒドロ葉酸還元酵素の二重変異体は、L22FおよびF31Sのアミノ酸変異を含む。いくつかの実施形態においては、前記導入をエレクトロポレーションによって行う。いくつかの実施形態においては、前記選択を、選択マーカーカセットを使用して選択圧を高めることによって行う。いくつかの実施形態においては、前記選択試薬は選択剤を含む。いくつかの実施形態においては、前記選択剤はメトトレキサートである。いくつかの実施形態においては、前記第1の濃度域が少なくとも50nM〜100nMであり、前記第2の濃度域が少なくとも75nM〜150nMである。いくつかの実施形態においては、前記第1濃度は、50nM、60nM、70nM、80nM、90nMもしくは100nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、75nM、80nM、90nM、100nM、110nM、120nM、130nM、140nMもしくは150nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記第1の濃度域は少なくとも75nM〜150nMであり、前記第2の濃度域は少なくとも112.5nM〜225nMである。いくつかの実施形態においては、前記第1濃度は、75nM、85nM、95nM、105nM、115nM、125nM、135nM、145nMもしくは150nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、112nM、122nM、132nM、142nM、152nM、162nM、172nM、182nM、192nM、202nM、212nMもしくは225nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記第1の濃度域は少なくとも300nM〜675nMであり、前記第1の濃度域は少なくとも450nM〜1012nMである。いくつかの実施形態においては、前記第1濃度は、300nM、350nM、400nM、450nM、500nM、550nM、600nM、650nMもしくは675nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、450nM、500nM、550nM、600nM、650nM、700nM、750nM、800nM、850nM、900nM、1000nMもしくは1012nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記1回目の選択は、前記2回目の選択を行う前に、2日、3日、4日、5日、6日または7日にわたって前記T細胞を前記選択剤に暴露することを含む。いくつかの実施形態においては、前記2回目の選択は、前記T細胞を単離する前に、少なくとも2日、3日、4日、5日、6日、7日、8日、9日、10日、11日、12日、13日もしくは14日にわたって、またはこれらの時間点のいずれか2つによって定義される範囲にある任意の時間にわたって、前記T細胞を前記選択剤に暴露することを含む。
いくつかの実施形態においては、対象におけるがんまたは疾患を治療、抑制または緩和する方法であって、以下に記載の遺伝子組換えまたは遺伝子改変マルチプレックスT細胞を対象に投与することを含む方法が提供される。
いくつかの実施形態においては、養子T細胞免疫療法のための前記遺伝子改変マルチプレックスT細胞の製造方法は、
遺伝子送達ポリヌクレオチドを提供すること、
T細胞に前記遺伝子送達ポリヌクレオチドを導入すること、
Sleeping Beautyトランスポゼースをコードするベクターを提供すること、
Sleeping Beautyトランスポゼースをコードする前記ベクターを前記T細胞に導入すること、
第1の濃度域の選択試薬を加えることを含む1回目の選択と、第1の濃度域よりも高くかつ第1の濃度域の少なくとも1.5倍以上である第2の濃度域の該選択試薬を加えることを含む2回目の選択とを含む操作によって、前記遺伝子送達ポリヌクレオチドを含む前記細胞を選択すること、ならびに
選択圧下において表現型を発現する前記T細胞を単離することを含む。
いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは、第1〜第7の配列を含み、
第1の配列が、第1の逆方向末端反復遺伝子配列を含み、
第2の配列が、第2の逆方向末端反復遺伝子配列を含み、
第3の配列が、プロモーター領域配列を含み、
第4の配列が、タンパク質をコードする少なくとも1つの遺伝子を含む、ヒトにおける発現を目的としてコドン最適化された配列であり、
第5の配列が、ジヒドロ葉酸還元酵素の二重変異体をコードする少なくとも1つの選択マーカーカセットを含む、ヒトにおける発現を目的としてコドン最適化された配列であり、該ジヒドロ葉酸還元酵素の二重変異体のメトトレキサートに対する親和性が15,000分の1または約15,000分の1に低減されており、メトトレキサートを選択メカニズムとして用いることによって、前記遺伝子送達ポリヌクレオチドによって形質導入された細胞を選択的に増殖させることができ、
第6の配列が、第1の付着部位(attP)を含み、
第7の配列が、第2の付着部位(attB)を含むこと、ならびに
第1の配列、第2の配列、第3の配列、第4の配列、第5の配列、第6の配列および第7の配列がそれぞれ5’末端および3’末端を有し、第1の逆方向末端反復遺伝子配列を含む第1の配列の3’末端が、第3の配列の5’末端に隣接し、第3の配列の3’末端が、第4の配列の5’末端に隣接し、第4の配列の3’末端が、第5の配列の5’末端に隣接し、第5の配列の3’末端が、第2の逆方向末端反復を含む第2の配列の5’末端に隣接していることを特徴とする。
いくつかの実施形態において、ヒトの前記ジヒドロ葉酸還元酵素の二重変異体をコードする遺伝子は、
ATGGTTGGTTCGCTAAACTGCATCGTCGCTGTGTCCCAGAACATGGGCATCGGCAAGAACGGGGACTTCCCCTGGCCACCGCTCAGGAATGAATCCAGATATTTCCAGAGAATGACCACAACCTCTTCAGTAGAAGGTAAACAGAATCTGGTGATTATGGGTAAGAAGACCTGGTTCTCCATTCCTGAGAAGAATCGACCTTTAAAGGGTAGAATTAATTTAGTTCTCAGCAGAGAACTCAAGGAACCTCCACAAGGAGCTCATTTTCTTTCCAGAAGTCTAGATGATGCCTTAAAACTTACTGAACAACCAGAATTAGCAAATAAAGTAGACATGGTCTGGATAGTTGGTGGCAGTTCTGTTTATAAGGAAGCCATGAATCACCCAGGCCATCTTAAACTATTTGTGACAAGGATCATGCAAGACTTTGAAAGTGACACGTTTTTTCCAGAAATTGATTTGGAGAAATATAAACTTCTGCCAGAATACCCAGGTGTTCTCTCTGATGTCCAGGAGGAGAAAGGCATTAAGTACAAATTTGAAGTATATGAGAAGAATGATTAA(配列番号2)で表されるDNA配列を含む。
いくつかの実施形態においては、ヒトの前記ジヒドロ葉酸還元酵素の二重変異体は、
MVGSLNCIVA VSQNMGIGKN GDFPWPPLRN ESRYFQRMTT TSSVEGKQNL VIMGKKTWFS IPEKNRPLKG RINLVLSREL KEPPQGAHFL SRSLDDALKL TEQPELANKV DMVWIVGGSS VYKEAMNHPG HLKLFVTRIM QDFESDTFFP EIDLEKYKLL PEYPGVLSDV QEEKGIKYKF EVYEKND(配列番号3)で表されるタンパク質配列を含む。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは環状である。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドはミニサークル(minicircle)である。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは少なくとも1kb〜5kbである。いくつかの実施形態においては、前記プロモーター領域は、EF1プロモーター配列を含む。いくつかの実施形態においては、前記第4の配列は、タンパク質をコードする遺伝子を1つ、2つ、3つ、4つまたは5つ含む。いくつかの実施形態においては、前記第4の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第4の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記第4の配列は、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記第4の配列は、同じエピトープに特異的な複数の抗体結合ドメインなどの、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記関連する複数のタンパク質は、同じエピトープに特異的な複数の抗体結合ドメインを含む。いくつかの実施形態においては、前記第5の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第5の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記タンパク質は治療用タンパク質である。いくつかの実施形態においては、前記最適化されたコドンおよび/またはコンセンサス配列は、複数の関連配列において利用されている配列および/または核酸塩基の可変性を比較することによって作製される。いくつかの実施形態においては、前記タンパク質は、抗体またはその一部を含み、該抗体またはその一部はヒト化されていてもよい。いくつかの実施形態においては、前記ジヒドロ葉酸還元酵素の二重変異体は、L22FおよびF31Sのアミノ酸変異を含む。いくつかの実施形態においては、前記ジヒドロ葉酸還元酵素の二重変異体は、L22FおよびF31Sのアミノ酸変異を含む。いくつかの実施形態においては、前記導入をエレクトロポレーションによって行う。いくつかの実施形態においては、前記選択を、選択マーカーカセットを使用して選択圧を高めることによって行う。いくつかの実施形態においては、前記選択試薬は選択剤を含む。いくつかの実施形態においては、前記選択剤はメトトレキサートである。いくつかの実施形態においては、前記第1の濃度域が少なくとも50nM〜100nMであり、前記第2の濃度域が少なくとも75nM〜150nMである。いくつかの実施形態においては、前記第1濃度は、50nM、60nM、70nM、80nM、90nMもしくは100nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、75nM、80nM、90nM、100nM、110nM、120nM、130nM、140nMもしくは150nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記第1の濃度域は少なくとも75nM〜150nMであり、前記第2の濃度域は少なくとも112.5nM〜225nMである。いくつかの実施形態においては、前記第1濃度は、75nM、85nM、95nM、105nM、115nM、125nM、135nM、145nMもしくは150nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、112nM、122nM、132nM、142nM、152nM、162nM、172nM、182nM、192nM、202nM、212nMもしくは225nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記第1の濃度域は少なくとも300nM〜675nMであり、前記第1の濃度域は少なくとも450nM〜1012nMである。いくつかの実施形態においては、前記第1濃度は、300nM、350nM、400nM、450nM、500nM、550nM、600nM、650nMもしくは675nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、450nM、500nM、550nM、600nM、650nM、700nM、750nM、800nM、850nM、900nM、1000nMもしくは1012nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記1回目の選択は、前記2回目の選択を行う前に、2日、3日、4日、5日、6日または7日にわたって前記T細胞を前記選択剤に暴露することを含む。いくつかの実施形態においては、前記2回目の選択は、前記T細胞を単離する前に、少なくとも2日、3日、4日、5日、6日、7日、8日、9日、10日、11日、12日、13日もしくは14日にわたって、またはこれらの時間点のいずれか2つによって定義される範囲にある任意の時間にわたって、前記T細胞を前記選択剤に暴露することを含む。いくつかの実施形態においては、前記対象はヒトである。
材料および方法のいくつかを、以下により詳細に記載する。
プラスミド
pMC_T3/eGFP_IRES_FGFR(Nucleic Acids Research, 2012, 1-10 doi:10.1093/nar/gks213、参照によりその全体が本明細書に組み込まれる)を骨格として使用し、GFP-T2A-DHFRdmカセットを作製するための過去に報告されているクローニング戦略(Cold Spring Harbor Protoc; 2012; doi:10.1101/pdb.ip067876)を実行して、EF1aプロモーター、maxGFP遺伝子、Thosea asignaウイルス2Aペプチド(T2A)およびメトトレキサート(MTX)に非感受性のジヒドロ葉酸還元酵素の二重変異体(DHFRdm)を含有するT3 SBトランスポゾンカセットを含むpMC_T3/GFP-T2A-DHFRdmミニサークル(MC)プラスミドを構築した。MaxGFP(Lonza)およびpEGFRt-T2A-IMPDHdm-T2A-DHFRdm(Michael Jensenのご厚意により提供された)プラスミドを、PCRの鋳型として使用した。蛍光タンパク質をコードする遺伝子を交換するために、BmtI部位およびBamHI部位を導入した。プラスミドMC_SB100Xは過去に報告されている(Nucleic Acids Research, 2012, 1-10 doi:10.1093/nar/gks213、本明細書にその全体が組み込まれる)。ミニサークルDNAベクター技術に関するSystem Biosciences社のユーザーマニュアルに従って、ミニサークルを作製し、次いで精製した。得られたプラスミドはいずれも、エンドトキシン非存在下においてEndofree Plasmid Kit(Qiagen)を使用することによって増幅させた。
H9の培養およびトランスフェクション
H9細胞を、10%FBSを含むDMEMにおいて培養した。H9細胞に対して最適化されたヌクレオフェクションプロトコル(Lonza)に従った(プログラムX-001、Nucleofector Kit V)。1回のヌクレオフェクション当たり、1×10個の細胞と様々な量のMC DNAとを使用した。ヌクレオフェクションの後、細胞を1週間培養することによって安定にトランスフェクションさせた。MTX選択を行うため、様々な濃度のMTXを添加した10%FBS含有DMEMにおいて細胞を培養した。
フローサイトメトリー分析
生細胞は、ヨウ化プロピジウムをフローサイトメトリーバッファーに2μg/mlの濃度で加え、ヨウ化プロピジウムの排除に基づいて選択した。フローサイトメトリー分析は、MACSQuant Analyzer(Miltenyi Biotec)およびLSRII(BD Biosciences)を使用して実施した。収集したデータはFlowJoソフトウェアを用いて分析した。適切な陰性対照(ヨウ化プロピジウムで染色した非トランスフェクションH9細胞およびヨウ化プロピジウムで染色をした非トランスフェクションH9細胞、ならびにGFP、BFPおよびmCherryをそれぞれコードする単一の遺伝子でトランスフェクトされた細胞)を、コンペンセーションおよびゲーティングのために使用した。Becton Dickinson FACSAria IIを細胞のソーティングに使用した。フローサイトメトリー作業の一部は、UW Immunology Flow Cytometry Facilityにおいて実施した。
トランスポゾンコピー数の決定
製造業者の取り扱い説明書(Qiagen)に従ってPuregene Kit Aを使用することによってゲノムDNAを抽出し、Universal SYBR Green Supermix(BioRad)を使用した7300 Real-Time PCR System(Applied Biosystems)においてqPCRを行った。Primer3ソフトウェアを使用してqPCRのためのプライマーを設計し、maxGFPフォワードプライマー:5’-ACAAGATCATCCGCAGCAAC-3’(配列番号4);リバースプライマー:5’-TTGAAGTGCATGTGGCTGTC-3’(配列番号5);GAPDHフォワードプライマー:5’-ACAACTTTGGTATCGTGGAAGG-3’(配列番号6);GAPDHリバースプライマー:5’-GCCATCACGCCACAGTTTC-3(配列番号7)を得た。MaxGFPプライマーはトランスポゾン中のmaxGFPに特異的である。標準曲線は、単一のトランスポゾンが挿入されたH9クローンを限界希釈法により得た後(「ゴールドスタンダード(最も有用であると広く認められている方法)」)、該H9クローンのゲノムDNAを使用して作製した。コピー数は、ΔΔCT法(Schmittgen,T.D. and Livak,K.J. (2008)、その全体が本明細書に組み込まれる)を使用して算出した。
Sleeping Beautyトランスポゾンシステム(SBTS)の組み込み数の分布の評価
10%FBS添加DMEMを含む96ウェルプレートに、放射線を照射した(5000R)H9フィーダー細胞を5,000個/ウェルで播種するとともに、200nMのMTXにより選択したT3/GFP-T2A-DHFRdmトランスフェクトH9細胞集団を0.5個/ウェルの濃度で播種した。プレートを2〜3週間インキュベートし、その後、クローン集団をより大きなウェルのプレートに移動し、増殖させた。GFPの発現をフローサイトメトリーにより確認した。60個のクローンから個別に得たDNAを使用して相対的RT-qPCR分析を行い、トランスポゾンのコピー数を測定した。
H9細胞への安定な遺伝子移入の最適化
遺伝子移入研究では、いずれにおいても、細菌性プラスミド配列が除去されたミニサークル構築物を使用した。ミニサークルは、Kayらおよび共同研究者による過去の報告に従って作製することができる(Chen, Z. Y.; He, C. Y.; Ehrhardt, A.; Kay, M. A. Molecular Therapy 2003, 8, 495-500およびKay, M. A.; He, C. Y.; Chen, Z. Y. Nat. Biotechnol. 2010, 28, 1287-U96;参照によりそれらの全体が本明細書に組み込まれる)。EF1αプロモーターの制御下において異なる蛍光タンパク質(maxGFP、mCherryまたはBFP)を発現するトランスポゾンを含有する3種のリポーターミニサークルを構築した。MTXに対する代謝抵抗性を付与するジヒドロ葉酸還元酵素の二重変異体(DHFRdm)を選択遺伝子としてT2A配列の下流のフレームにクローニングした。また、SB100Xトランスポゼース遺伝子を別のミニサークル構築物として調製し、トランスポゾンミサークルとともに共送達した。
トランスポゾンには4つのトランスポゼース結合部位が存在する(逆方向末端反復配列1つ当たり2つのトランスポゼース結合部位が存在する)。結合したトランスポゼースは互いに相互作用し、2つのトランスポゾン末端を近接させることが提案された。トランスポゼースが過剰発現すると、遊離のトランスポゼースと結合したトランスポゼースとの相互作用によって、トランスポゾン末端同士の近接が妨げられ、転移が抑制されると仮定されてきた。したがって、トランスポゾン遺伝子とトランスポゼース遺伝子を別々の構築物として送達するための、トランスポゾンとトランスポゼースの最適な比率を決定することが必要であった。抑制現象の報告にはばらつきが見られている。
maxGFPを発現する前記リポーターミニサークルを使用して様々なトランスポゾン/トランスポゼース比でヌクレオフェクションを行った24時間後および安定な転移がなされた後(ヌクレオフェクションの7日後)に、一過性トランスフェクションの効率をフローサイトメトリーにより評価した。トランスポゾン:トランスポゼース比の最適化を示した図2を参照されたい。H9 T細胞をトランスフェクションのテストベッドとして使用した。初期のトランスフェクション効率は、47.5%±2.2%〜66.9%±4.5%であり、トランスポゼースミニサークルの量が増えるに従って上昇した。トランスポゼースの非存在下では、ヌクレオフェクション7日後に安定なトランスフェクションは最小となった(<1%)。GFP細胞のパーセンテージは、トランスポゾン/トランスポゼース比の増加に伴って上昇し、1:4の比率において39.2%±3.0%に達し、これは、一過性に組み込まれた初期の集団の組換え効率が58.6%であったことを反映している。これより高い比率については、細胞生存率が低下するため、試験しなかった。過剰発現による抑制効果は、この試験で使用したトランスポゾン/トランスポゼース比の範囲においては観察されなかった。したがって、これら結果を元に、この最適化されたトランスポゾン/トランスポゼース比である1:4を使用して形質導入実験を実施した。
遺伝子改変細胞のメトトレキサートによる選択
MTXの濃度を上げるとDHFRdmの発現に対する選択圧を高めることができることから、段階的に濃度を上げたMTXを使用することによって、多重組み込みが生じた細胞を選択することができると仮定した。したがって、T3/maxGFP-T2A-DHRFdmトランスポゾンによって安定に形質導入された細胞を、段階的に濃度を上げたMTX(50〜200nM)の存在下で培養し、10日間にわたってフローサイトメトリーを行うことによりGFPの発現を評価した。選択におけるメトトレキサート(MTX)濃度の効果を示した図3を参照されたい。3日間にわたってMTXによる選択を行うことよって評価した初期の選択効率は、MTXの濃度の上昇に従って低下した(図3、パネルA)。しかし、7日間にわたる選択では、すべての条件下において、GFP細胞が全体の94%を上回る集団が得られた。GFP細胞の平均GFP蛍光強度は選択圧の上昇に伴って増加し(図3、パネルB)、200nMのMTXにより選択された細胞の平均蛍光強度は、選択を行わなかった細胞の6.4倍であり、50nMのMTXにより選択された細胞の3.3倍であった。図に示すように、GFP細胞における平均GFP発現量とMTX濃度との間に正の相関が見られたことから、MTX濃度を高めることによってDHFRdmの発現が多い細胞が選択できることが示唆され、すなわち多重組み込みが生じた細胞を選択できることが示唆された。
2週間のMTX処理により選択された遺伝子増幅細胞集団は、MTXの除去後、最長4週間にわたって導入遺伝子の発現の大部分を維持した。メトトレキサート(MTX)を除去した後の導入遺伝子の持続性を示した図4を参照されたい。MTXを除去後、4週間にわたって、すべての集団においてGFP集団が全体の90%を上回って維持されたが(図4、パネルA)、200nMのMTXにより選択された細胞では、GFP集団が全体を占める割合が最も高かった(97%)。これは、多重組み込みが生じた細胞が選択されたためだと考えられる。MTXを除去した4週後における各集団の平均GFP発現量は、200nM、100nMまたは50nMのMTXによる選択を行った集団において、それぞれ21%、27%または28%低下した(図4、パネルB)。このような平均GFP発現量の低下は、選択圧の非存在下において、プロモーターが抑制されたか、あるいはGFPの発現が低い細胞が選択的に増殖したためだと考えられる。
組み込み数の分布の分析
MTXによる選択圧を高めることによって、多重組み込みを生じた細胞を選択することができるという仮説を評価するため、GFPプライマーを用いたRT-qPCRを使用して、MTXにより選択された細胞集団中のトランスポゾンのコピー数の平均値を測定した。まず、単一コピーのトランスポゾンが組み込まれた「ゴールドスタンダード」クローンを限界希釈法により作製した。MTXによる選択を行う前の安定に形質導入された元の集団における平均組み込み数を、細胞ソーティングにより得られたGFP細胞のRT-qPCR分析により決定した。選択圧の上昇に伴ってトランスポゾンの平均コピー数が増加する傾向が観察された。ヒト半数体ゲノム当たりのトランスポゾンのコピー数を示した図5Aを参照されたい。MTXによる選択を行う前のGFP細胞における平均組み込み数は1.1±0.02であったのに対して、200nMのMTXにより選択された細胞における平均組み込み数は2.1±0.45であった。RT-qPCRを3回行い、ソーティングされた集団から得た単一の生物学的複製のデータ、およびMTXにより選択された集団から得た3つの生物学的複製のデータを示した。統計的差異はスチューデントのt検定により評価した。
次いで、200nMのMTXにより選択された細胞における組み込み数の分布を分析した。限界希釈法により60個のクローンを作製し、フローサイトメトリーによりGFPの発現を確認し、ゲノムDNAを単離し、半数体ゲノム当たりのGFP遺伝子数をRT-PCRにより分析した。組み込み数の分布を図5Bに示す。大部分のクローン(約65%)はGFPを複数コピー含んでいた。平均組み込み数は1.8であり、これは、200nMのMTXにより選択された細胞集団におけるトランスポゾンの平均コピー数とよく相関している(図5A)。
マルチプレックス遺伝子の組み込みの評価
200nMのMTXの選択圧下で増殖させた形質導入細胞集団の大部分は複数コピーのトランスポゾンを含んでいたことが示されたことから、マルチプレックス遺伝子の組み込みをこれらの条件下で評価した。トランスポゾンカセット中に3種のリポーター遺伝子(maxGFP、mCherryおよびBFP)を別々に含有する3種のミニサークルおよびSB100XトランスポゼースミニサークルをH9細胞にヌクレオフェクトした。次いで、安定に形質導入された細胞を200nMの濃度において7日間かけて選択し、細胞集団をフローサイトメトリー分析で評価した。図6を参照されたい。図6は、異なる蛍光タンパク質を含むトランスポゾンを有する3種のミニサークル(MC_T3/GFP-T2A-DHFRdm、MC_T3/BFP-T2A-DHFRdm、MC_T3/mCherry-T2A-DHFRdm)それぞれ2μgと、MC_SB100X DNA 6μgとでヌクレオフェクトしたH9細胞集団を、トランスフェクション後の様々な時点においてフローサイトメトリーで分析した結果を示す。ヌクレオフェクションの24時間後に評価した初期のトランスフェクション効率は68%であった(図6パネルA)。安定に形質導入された集団は37±1.4%であり、組み込み効率が54%であったことを示している。この集団のうち、19±0.6%は、2種または3種の蛍光タンパク質を発現した。安定に形質導入された細胞を200nMのMTXの存在下で1週間培養し、その後分析した。この選択された集団のうち、23±1.0%は3種すべてのリポータータンパク質を発現した(図6、パネルA)。3種の導入遺伝子を発現する細胞集団をさらに増加させるため、200nMのMTXにより選択された細胞を、MTXの濃度を高めた第2の選択工程に供した。図7を参照されたい。図7は、3種のトランスポゾンが安定にトランスフェクトされたH9細胞集団を200nMのMTXにより1週間かけて選択し、次いで、500nMおよび1000nMに濃度を高めたMTXに暴露させた結果を示す棒グラフを示している。図に示すように、500nMまたは1000nMのMTXとともに細胞をさらに1週間培養すると、3種の導入遺伝子を発現する細胞集団が増加した(それぞれ、38.5±1.0%および53.1±0.3%となった)。2回目の選択によって、細胞生存率は約70%に回復し、これはDHFRdm遺伝子を過剰発現する細胞がさらに選択されたことによる。
メトトレキサートによる選択下での、Sleeping Beautyを用いたトランスポゾンDNAのT細胞における安定な発現
AmaxaTM NucleofectorTMテクノロジーを使用して、新しく解凍した末梢血単核細胞(PBMC)へエレクトロポレーションを行った。この細胞に、10μgのミニサークルGFP(MC_T3/GFP-T2A-DHFRdm)と、様々な量のSB100X高活性トランスポゼース(0μg、5μgまたは10μg)とをトランスフェクトした。対照細胞は、ミニサークルではないpMAXGFPベクター(10μg)をトランスフェクトするか、あるいはDNAによるトランスフェクトを行わなかった。トランスフェクションの4〜6時間後、IL−2およびIL−15の存在下において、前記細胞をMiltenyi Transactビーズにより刺激した。次いで、前記細胞を400,000個/ウェルとなるように96ウェルU底プレートに分注した。トランスフェクションの7日後に、前記細胞を0nM、25nM、50nMまたは100nMのメトトレキサートで処理した。2日目、5日目、7日目、14日目および19日目に前記細胞を採取し、トリパンブルー染色でカウントし、染色し、分析した。
ミニサークルをトランスフェクトさせたGFP発現リンパ球のフローサイトメトリー分析の一例を示す図8を参照されたい。リンパ球ウィンドウ(パネルA)由来の単一細胞(パネルB)の生存率をInvitrogen社のLIVE/DEAD red stainを用いて分析した(パネルC)。次いで、生リンパ球のCD8の発現およびGFPの発現を分析した(パネルD)。図8パネルDに示すように、50nMのメトトレキサートによる選択後、リンパ球の大部分はCD8であり、GFPを発現した。
1週間経過後の、Sleeping Beautyを用いたトランスポゾンDNAのT細胞における安定な発現
MTXによる選択を行う一週間前のミニサークルDNAの発現を評価するため、pMAXGFPでトランスフェクトした細胞、GFPトランスポゾン:SB100X=1:1でトランスフェクトした細胞、GFPトランスポゾン:SB100X=1:2でトランスフェクトした細胞、mcGFP単独でトランスフェクトした細胞、またはDNAをトランスフェクトしなかった対照細胞をフローサイトメトリーで分析し比較した。エレクトロポレーションの2日後(Transactビーズなし)および5日後(Transactビーズあり)における細胞に対して行ったFACSアッセイの結果を示す図9を参照されたい。図に示すように、MTXの非存在下ではGFPの発現が経時的に消失する。しかし、SB100Xトランスポゼースが共トランスフェクトされた場合においてのみ、GFPトランスポゾンDNAをトランスフェクトした細胞においてGFPの発現が維持されている。
2日目〜7日目のGFPの発現レベルおよび細胞増殖を示したグラフを示す図10を参照されたい。図10のパネルAに示すように、GFPの発現量(%)は経時的に低下している(pMAXGFP(10μg)、mcGFP:MC_SB100X=1:1およびmcGFP:MC_SB100X=2:1)。Transactビーズの存在下では生細胞は徐々に増加しているが(パネルB)、Transactビーズの非存在下では増加せず(パネルC)、細胞の増殖にとってTransactビーズが重要であることを示している。
7日間および12日間にわたるMTXによる細胞選択
1週間後、トランスフェクトされた細胞試料を、様々な濃度のMTX(25nM、50nMまたは100nM)に暴露させ、ミニサークルトランスポゾンを発現する細胞を濃縮した。トランスポゼースが組み込まれたことによって、DHFRdm MTX抵抗性遺伝子およびGFPを安定に発現する細胞は、濃度を高めたMTXの存在下でも生存するはずだと考えられる。100nMのメトトレキサートで7日間処理した後のトランスフェクト細胞のFACSアッセイの結果を示す図11を参照されたい。100nMのMTXで処理した細胞においては、トランスポゾンおよびトランスポゼースDNAの両方をトランスフェクトした細胞のみがGFPを発現した。図に示すように、mcGFP:MC_SB100X=2:1でトランスフェクトした細胞、およびmcGFP:MC_SB100X=1:1でトランスフェクトした細胞のいずれにおいても、100nMのMTXで7日間処理することによってGFPの発現を有効に選択できた。
7日間および12日間にわたってメトトレキサートで処理したトランスフェクト細胞のFACSアッセイの結果を示す図12および図13を参照されたい。生リンパ球の散布図および生リンパ球におけるCD8/GFPの発現について条件ごとに示している。リンパ球におけるGFPの発現量(%)を図12の各枠に示す。
図12においてに示すように、0nMのMTXで7日間処理した細胞においては、約25%の細胞がGFPの発現を示し、25nMのMTXで7日間処理した細胞では、75%の細胞がGFPの発現を示している。対照的に、50nMまたは100nMのMTXで処理した細胞では、少なくとも90%の細胞がGFPを発現している。図に示すように、mcGFP:MC_SB100X=2:1およびmcGFP:MC_SB100X=1:1のいずれにおいても、50nMおよび100nMの濃度のMTXで選択することによって、GFP発現細胞を有効に濃縮できた。予想されたように、SBトランスポゼースの非存在下およびDNAをトランスフェクトしなかった対照において、GFPの発現は確認できなかった。CD8リンパ球およびCD8リンパ球において、GFPの発現には差がないことには留意されたい。
メトトレキサートによる選択下での、Sleeping Beautyを用いたトランスポゾンDNAのT細胞における安定な発現−細胞数のカウント
次いで、MTXによる選択下でトランスポゾンDNAを安定に発現するPBMCの細胞増殖を評価した。Transactビーズによる刺激およびIL−2およびIL−15の存在下において増殖させているため、1週目までに見られる生存細胞の大部分はT細胞であることに留意されたい。図14に示すように、0nM、25nM、50nMおよび100nMのメトトレキサートで処理した後の生細胞数を、7日後、14日後および19日後(MTXによる処理を行った後0日目、7日目および12日目)にトリパンブルー染色によりカウントした。対照(0nMのMTX)においては、すべてのDNA条件下において生細胞数は経時的に増加した。しかし、MTXの存在下では、GFPおよびDHFRdm抵抗性遺伝子を共発現するミニサークルトランスポゾンとSBトランスポゼースとをトランスフェクトされた細胞だけが細胞分裂を行うことができ、これは、SBがこのトランスポゾンの安定な発現に必要であることを示している。
メトトレキサートによる選択下での、Sleeping Beautyを用いたトランスポゾンDNAのT細胞における安定な発現−GFPの発現
MTXによる選択を行う際の、Sleeping Beautyを用いたトランスポゾンDNAのT細胞における安定な発現を評価するため、このトランスフェクト細胞におけるGFPの発現を19日間にわたって測定した。図14を参照されたい。図14は、トランスポゾンDNAおよびSleeping BeautyがトランスフェクトされたT細胞において、7日目に開始したメトトレキサートによる選択(0nM、25nM、50nMおよび100nM)を行った後にGFPの発現が経時的に増加することを示している。メトトレキサートによる選択を行わなかった対照においては、mcGFPおよびSBがトランスフェクトされた細胞におけるGFPの発現は、2日目から5日目、7日目、14日目および19日目にわたって、約20%に維持されており、そのうち、mcGFPが単独でトランスフェクトされた対照およびpMAXGFPがトランスフェクトされた対照においては、GFPの発現は徐々に低下している。MTXによる選択の存在下では、GFPの発現は経時的に増加し、50nMおよび100nMのMTXによる選択においてGFPの発現は最も高くなった。図に示すように、mcGFPとMC_SB100Xとの比率が1:1であっても2:1であっても差は見られなかった。さらに、50nMのMTXに暴露させた細胞と100nMのMTXに暴露された細胞においても、平均蛍光強度の差はごくわずかであった。mcGFPを単独でトランスフェクトさせた場合における、MTXの存在下でのGFPの低レベル発現(約20%)は、独立したトランスポゾンが安定に組み込まれたためと考えられ、この条件下における細胞の絶対数は、図14に示したように非常に少ないものとなっている。
一実施形態において、遺伝子に核酸を安定に挿入するための遺伝子送達ポリヌクレオチドであって、
該遺伝子送達ポリヌクレオチド内において、挿入される該核酸が逆方向末端反復遺伝子配列に挟まれていること、
該遺伝子送達ポリヌクレオチドが選択可能であること、
該遺伝子送達ポリヌクレオチドが、第1〜第7の配列を含み、
第1の配列が、第1の逆方向末端反復遺伝子配列を含み、
第2の配列が、第2の逆方向末端反復遺伝子配列を含み、
第3の配列が、プロモーター領域配列を含み、
第4の配列が、タンパク質をコードする少なくとも1つの遺伝子を含む最適化された配列であり、
第5の配列が、ジヒドロ葉酸還元酵素の二重変異体をコードする少なくとも1つの選択マーカーカセットを含む最適化された配列であり、該ジヒドロ葉酸還元酵素の二重変異体のメトトレキサートに対する親和性が15,000分の1または約15,000分の1に低減されており、メトトレキサートを選択メカニズムとして用いることによって、前記遺伝子送達ポリヌクレオチドによって形質導入された細胞を選択的に増殖させることができ、
第6の配列が、第1の付着部位(attP)を含み、
第7の配列が、第2の付着部位(attB)を含むこと、ならびに
第1の配列、第2の配列、第3の配列、第4の配列、第5の配列、第6の配列および第7の配列がそれぞれ5’末端および3’末端を有し、第1の逆方向末端反復遺伝子配列を含む第1の配列の3’末端が、第3の配列の5’末端に隣接し、第3の配列の3’末端が、第4の配列の5’末端に隣接し、第4の配列の3’末端が、第5の配列の5’末端に隣接し、第5の配列の3’末端が、第2の逆方向末端反復を含む第2の配列の5’末端に隣接していることを特徴とする遺伝子送達ポリヌクレオチドが提供される。
いくつかの実施形態において、ヒトの前記ジヒドロ葉酸還元酵素の二重変異体をコードする遺伝子は、
ATGGTTGGTTCGCTAAACTGCATCGTCGCTGTGTCCCAGAACATGGGCATCGGCAAGAACGGGGACTTCCCCTGGCCACCGCTCAGGAATGAATCCAGATATTTCCAGAGAATGACCACAACCTCTTCAGTAGAAGGTAAACAGAATCTGGTGATTATGGGTAAGAAGACCTGGTTCTCCATTCCTGAGAAGAATCGACCTTTAAAGGGTAGAATTAATTTAGTTCTCAGCAGAGAACTCAAGGAACCTCCACAAGGAGCTCATTTTCTTTCCAGAAGTCTAGATGATGCCTTAAAACTTACTGAACAACCAGAATTAGCAAATAAAGTAGACATGGTCTGGATAGTTGGTGGCAGTTCTGTTTATAAGGAAGCCATGAATCACCCAGGCCATCTTAAACTATTTGTGACAAGGATCATGCAAGACTTTGAAAGTGACACGTTTTTTCCAGAAATTGATTTGGAGAAATATAAACTTCTGCCAGAATACCCAGGTGTTCTCTCTGATGTCCAGGAGGAGAAAGGCATTAAGTACAAATTTGAAGTATATGAGAAGAATGATTAA(配列番号2)で表されるDNA配列を含む。
いくつかの実施形態においては、ヒトの前記ジヒドロ葉酸還元酵素の二重変異体は、
MVGSLNCIVA VSQNMGIGKN GDFPWPPLRN ESRYFQRMTT TSSVEGKQNL VIMGKKTWFS IPEKNRPLKG RINLVLSREL KEPPQGAHFL SRSLDDALKL TEQPELANKV DMVWIVGGSS VYKEAMNHPG HLKLFVTRIM QDFESDTFFP EIDLEKYKLL PEYPGVLSDV QEEKGIKYKF EVYEKND(配列番号3)で表されるタンパク質配列を含む。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは環状である。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは少なくとも1kb〜5kbである。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドはミニサークル(minicircle)である。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドはミニサークル(minicircle)である。いくつかの実施形態においては、前記プロモーター領域は、EF1プロモーター配列を含む。いくつかの実施形態においては、前記第4の配列は、タンパク質をコードする遺伝子を1つ、2つ、3つ、4つまたは5つ含む。いくつかの実施形態においては、前記第4の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第4の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記第4の配列は、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記第4の配列は、同じエピトープに特異的な複数の抗体結合ドメインなどの、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記関連する複数のタンパク質は、同じエピトープに特異的な複数の抗体結合ドメインを含む。いくつかの実施形態においては、前記第5の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第5の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記タンパク質は治療用タンパク質である。いくつかの実施形態においては、前記最適化されたコドンおよび/またはコンセンサス配列は、複数の関連配列において利用されている配列および/または核酸塩基の可変性を比較することによって作製される。いくつかの実施形態においては、前記タンパク質は、抗体またはその一部を含み、該抗体またはその一部はヒト化されていてもよい。いくつかの実施形態においては、前記ジヒドロ葉酸還元酵素の二重変異体は、L22FおよびF31Sのアミノ酸変異を含む。
いくつかの実施形態においては、養子T細胞免疫療法のための遺伝子改変マルチプレックスT細胞を製造する方法であって、
本明細書に記載の遺伝子送達ポリヌクレオチドを提供すること、
T細胞に前記遺伝子送達ポリヌクレオチドを導入すること、
Sleeping Beautyトランスポゼースをコードするベクターを提供すること、
Sleeping Beautyトランスポゼースをコードする前記ベクターを前記T細胞に導入すること、
第1の濃度域の選択試薬を加えることを含む1回目の選択と、第1の濃度域よりも高くかつ第1の濃度域の少なくとも1.5倍以上である第2の濃度域の該選択試薬を加えることを含む2回目の選択とを含む操作によって、前記遺伝子送達ポリヌクレオチドを含む前記細胞を選択すること、ならびに
選択圧下において表現型を発現する前記T細胞を単離することを含む方法が提供される。
いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは、第1〜第7の配列を含み、
第1の配列が、第1の逆方向末端反復遺伝子配列を含み、
第2の配列が、第2の逆方向末端反復遺伝子配列を含み、
第3の配列が、プロモーター領域配列を含み、
第4の配列が、タンパク質をコードする少なくとも1つの遺伝子を含む最適化された配列であり、
第5の配列が、ジヒドロ葉酸還元酵素の二重変異体をコードする少なくとも1つの選択マーカーカセットを含む最適化された配列であり、該ジヒドロ葉酸還元酵素の二重変異体のメトトレキサートに対する親和性が15,000分の1または約15,000分の1に低減されており、メトトレキサートを選択メカニズムとして用いることによって、前記遺伝子送達ポリヌクレオチドによって形質導入された細胞を選択的に増殖させることができ、
第6の配列が、第1の付着部位(attP)を含み、
第7の配列が、第2の付着部位(attB)を含むこと、ならびに
第1の配列、第2の配列、第3の配列、第4の配列、第5の配列、第6の配列および第7の配列がそれぞれ5’末端および3’末端を有し、第1の逆方向末端反復遺伝子配列を含む第1の配列の3’末端が、第3の配列の5’末端に隣接し、第3の配列の3’末端が、第4の配列の5’末端に隣接し、第4の配列の3’末端が、第5の配列の5’末端に隣接し、第5の配列の3’末端が、第2の逆方向末端反復を含む第2の配列の5’末端に隣接していることを特徴とする。
いくつかの実施形態において、ヒトの前記ジヒドロ葉酸還元酵素の二重変異体をコードする遺伝子は、
ATGGTTGGTTCGCTAAACTGCATCGTCGCTGTGTCCCAGAACATGGGCATCGGCAAGAACGGGGACTTCCCCTGGCCACCGCTCAGGAATGAATCCAGATATTTCCAGAGAATGACCACAACCTCTTCAGTAGAAGGTAAACAGAATCTGGTGATTATGGGTAAGAAGACCTGGTTCTCCATTCCTGAGAAGAATCGACCTTTAAAGGGTAGAATTAATTTAGTTCTCAGCAGAGAACTCAAGGAACCTCCACAAGGAGCTCATTTTCTTTCCAGAAGTCTAGATGATGCCTTAAAACTTACTGAACAACCAGAATTAGCAAATAAAGTAGACATGGTCTGGATAGTTGGTGGCAGTTCTGTTTATAAGGAAGCCATGAATCACCCAGGCCATCTTAAACTATTTGTGACAAGGATCATGCAAGACTTTGAAAGTGACACGTTTTTTCCAGAAATTGATTTGGAGAAATATAAACTTCTGCCAGAATACCCAGGTGTTCTCTCTGATGTCCAGGAGGAGAAAGGCATTAAGTACAAATTTGAAGTATATGAGAAGAATGATTAA(配列番号2)で表されるDNA配列を含む。
いくつかの実施形態においては、ヒトの前記ジヒドロ葉酸還元酵素の二重変異体は、
MVGSLNCIVA VSQNMGIGKN GDFPWPPLRN ESRYFQRMTT TSSVEGKQNL VIMGKKTWFS IPEKNRPLKG RINLVLSREL KEPPQGAHFL SRSLDDALKL TEQPELANKV DMVWIVGGSS VYKEAMNHPG HLKLFVTRIM QDFESDTFFP EIDLEKYKLL PEYPGVLSDV QEEKGIKYKF EVYEKND(配列番号3)で表されるタンパク質配列を含む。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは環状である。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは少なくとも1kb〜5kbである。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドはミニサークル(minicircle)である。いくつかの実施形態においては、前記プロモーター領域は、EF1プロモーター配列を含む。いくつかの実施形態においては、前記第4の配列は、タンパク質をコードする遺伝子を1つ、2つ、3つ、4つまたは5つ含む。いくつかの実施形態においては、前記第4の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第4の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記第4の配列は、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記第4の配列は、同じエピトープに特異的な複数の抗体結合ドメインなどの、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記関連する複数のタンパク質は、同じエピトープに特異的な複数の抗体結合ドメインを含む。いくつかの実施形態においては、前記第5の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第5の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記タンパク質は治療用タンパク質である。いくつかの実施形態においては、前記最適化されたコドンおよび/またはコンセンサス配列は、複数の関連配列において利用されている配列および/または核酸塩基の可変性を比較することによって作製される。いくつかの実施形態においては、前記タンパク質は、抗体またはその一部を含み、該抗体またはその一部はヒト化されていてもよい。いくつかの実施形態においては、前記ジヒドロ葉酸還元酵素の二重変異体は、L22FおよびF31Sのアミノ酸変異を含む。いくつかの実施形態においては、前記導入をエレクトロポレーションによって行う。いくつかの実施形態においては、前記選択を、選択マーカーカセットを使用して選択圧を高めることによって行う。いくつかの実施形態においては、前記選択試薬は選択剤を含む。いくつかの実施形態においては、前記選択剤はメトトレキサートである。いくつかの実施形態においては、前記第1の濃度域が少なくとも50nM〜100nMであり、前記第2の濃度域が少なくとも75nM〜150nMである。いくつかの実施形態においては、前記第1濃度は、50nM、60nM、70nM、80nM、90nMもしくは100nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、75nM、80nM、90nM、100nM、110nM、120nM、130nM、140nMもしくは150nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記第1の濃度域は少なくとも75nM〜150nMであり、前記第2の濃度域は少なくとも112.5nM〜225nMである。いくつかの実施形態においては、前記第1濃度は、75nM、85nM、95nM、105nM、115nM、125nM、135nM、145nMもしくは150nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、112nM、122nM、132nM、142nM、152nM、162nM、172nM、182nM、192nM、202nM、212nMもしくは225nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記第1の濃度域は少なくとも300nM〜675nMであり、前記第1の濃度域は少なくとも450nM〜1012nMである。いくつかの実施形態においては、前記第1濃度は、300nM、350nM、400nM、450nM、500nM、550nM、600nM、650nMもしくは675nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、450nM、500nM、550nM、600nM、650nM、700nM、750nM、800nM、850nM、900nM、1000nMもしくは1012nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記1回目の選択は、前記2回目の選択を行う前に、2日、3日、4日、5日、6日または7日にわたって前記T細胞を前記選択剤に暴露することを含む。いくつかの実施形態においては、前記2回目の選択は、前記T細胞を単離する前に、少なくとも2日、3日、4日、5日、6日、7日、8日、9日、10日、11日、12日、13日もしくは14日にわたって、またはこれらの時間点のいずれか2つによって定義される範囲にある任意の時間にわたって、前記T細胞を前記選択剤に暴露することを含む。
いくつかの実施形態においては、T細胞におけるタンパク質の産生を増加させる方法であって、
本明細書に記載のポリヌクレオチドを提供すること、
細胞に前記ポリヌクレオチドを導入すること、
Sleeping Beautyトランスポゼースをコードするベクターを提供すること、
Sleeping Beautyトランスポゼースをコードする前記ベクターを前記T細胞に導入すること、
第1の濃度域の選択試薬を加えることを含む1回目の選択と、第1の濃度域よりも高くかつ第1の濃度域の少なくとも1.5倍以上である第2の濃度域の該選択試薬を加えることを含む2回目の選択とを含む操作によって、前記遺伝子送達ポリヌクレオチドを含む前記細胞を選択すること、ならびに
選択圧下において表現型を発現する前記細胞を単離すること
を含む方法が提供される。
いくつかの実施形態においては、前記導入をエレクトロポレーションによって行う。いくつかの実施形態においては、前記選択を、選択マーカーカセットを使用して選択圧を高めることによって行う。いくつかの実施形態においては、前記選択試薬は選択剤を含む。いくつかの実施形態においては、前記選択剤はメトトレキサートである。いくつかの実施形態においては、前記第1の濃度域が少なくとも50nM〜100nMであり、前記第2の濃度域が少なくとも75nM〜150nMである。いくつかの実施形態においては、前記第1濃度は、50nM、60nM、70nM、80nM、90nMもしくは100nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、75nM、80nM、90nM、100nM、110nM、120nM、130nM、140nMもしくは150nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記第1の濃度域は少なくとも75nM〜150nMであり、前記第2の濃度域は少なくとも112.5nM〜225nMである。いくつかの実施形態においては、前記第1濃度は、75nM、85nM、95nM、105nM、115nM、125nM、135nM、145nMもしくは150nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、112nM、122nM、132nM、142nM、152nM、162nM、172nM、182nM、192nM、202nM、212nMもしくは225nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記第1の濃度域は少なくとも300nM〜675nMであり、前記第1の濃度域は少なくとも450nM〜1012nMである。いくつかの実施形態においては、前記第1濃度は、300nM、350nM、400nM、450nM、500nM、550nM、600nM、650nMもしくは675nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、450nM、500nM、550nM、600nM、650nM、700nM、750nM、800nM、850nM、900nM、1000nMもしくは1012nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記1回目の選択は、前記2回目の選択を行う前に、2日、3日、4日、5日、6日または7日にわたって前記T細胞を前記選択剤に暴露することを含む。いくつかの実施形態においては、前記2回目の選択は、前記T細胞を単離する前に、少なくとも2日、3日、4日、5日、6日、7日、8日、9日、10日、11日、12日、13日もしくは14日にわたって、またはこれらの時間点のいずれか2つによって定義される範囲にある任意の時間にわたって、前記T細胞を前記選択剤に暴露することを含む。
いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは、第1〜第7の配列を含み、
第1の配列が、第1の逆方向末端反復遺伝子配列を含み、
第2の配列が、第2の逆方向末端反復遺伝子配列を含み、
第3の配列が、プロモーター領域配列を含み、
第4の配列が、タンパク質をコードする少なくとも1つの遺伝子を含む最適化された配列であり、
第5の配列が、ジヒドロ葉酸還元酵素の二重変異体をコードする少なくとも1つの選択マーカーカセットを含む最適化された配列であり、該ジヒドロ葉酸還元酵素の二重変異体のメトトレキサートに対する親和性が15,000分の1または約15,000分の1に低減されており、メトトレキサートを選択メカニズムとして用いることによって、前記遺伝子送達ポリヌクレオチドによって形質導入された細胞を選択的に増殖させることができ、
第6の配列が、第1の付着部位(attP)を含み、
第7の配列が、第2の付着部位(attB)を含むこと、ならびに
第1の配列、第2の配列、第3の配列、第4の配列、第5の配列、第6の配列および第7の配列がそれぞれ5’末端および3’末端を有し、第1の逆方向末端反復遺伝子配列を含む第1の配列の3’末端が、第3の配列の5’末端に隣接し、第3の配列の3’末端が、第4の配列の5’末端に隣接し、第4の配列の3’末端が、第5の配列の5’末端に隣接し、第5の配列の3’末端が、第2の逆方向末端反復を含む第2の配列の5’末端に隣接していることを特徴とする。
いくつかの実施形態において、ヒトの前記ジヒドロ葉酸還元酵素の二重変異体をコードする遺伝子は、
ATGGTTGGTTCGCTAAACTGCATCGTCGCTGTGTCCCAGAACATGGGCATCGGCAAGAACGGGGACTTCCCCTGGCCACCGCTCAGGAATGAATCCAGATATTTCCAGAGAATGACCACAACCTCTTCAGTAGAAGGTAAACAGAATCTGGTGATTATGGGTAAGAAGACCTGGTTCTCCATTCCTGAGAAGAATCGACCTTTAAAGGGTAGAATTAATTTAGTTCTCAGCAGAGAACTCAAGGAACCTCCACAAGGAGCTCATTTTCTTTCCAGAAGTCTAGATGATGCCTTAAAACTTACTGAACAACCAGAATTAGCAAATAAAGTAGACATGGTCTGGATAGTTGGTGGCAGTTCTGTTTATAAGGAAGCCATGAATCACCCAGGCCATCTTAAACTATTTGTGACAAGGATCATGCAAGACTTTGAAAGTGACACGTTTTTTCCAGAAATTGATTTGGAGAAATATAAACTTCTGCCAGAATACCCAGGTGTTCTCTCTGATGTCCAGGAGGAGAAAGGCATTAAGTACAAATTTGAAGTATATGAGAAGAATGATTAA(配列番号2)で表されるDNA配列を含む。
いくつかの実施形態においては、ヒトの前記ジヒドロ葉酸還元酵素の二重変異体は、
MVGSLNCIVA VSQNMGIGKN GDFPWPPLRN ESRYFQRMTT TSSVEGKQNL VIMGKKTWFS IPEKNRPLKG RINLVLSREL KEPPQGAHFL SRSLDDALKL TEQPELANKV DMVWIVGGSS VYKEAMNHPG HLKLFVTRIM QDFESDTFFP EIDLEKYKLL PEYPGVLSDV QEEKGIKYKF EVYEKND(配列番号3)で表されるタンパク質配列を含む。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは環状である。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドは少なくとも1kb〜5kbである。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドはミニサークル(minicircle)である。いくつかの実施形態においては、前記遺伝子送達ポリヌクレオチドはミニサークル(minicircle)である。いくつかの実施形態においては、前記プロモーター領域は、EF1プロモーター配列を含む。いくつかの実施形態においては、前記第4の配列は、タンパク質をコードする遺伝子を1つ、2つ、3つ、4つまたは5つ含む。いくつかの実施形態においては、前記第4の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第4の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記第4の配列は、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記第4の配列は、同じエピトープに特異的な複数の抗体結合ドメインなどの、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である。いくつかの実施形態においては、前記関連する複数のタンパク質は、同じエピトープに特異的な複数の抗体結合ドメインを含む。いくつかの実施形態においては、前記第5の配列は、該配列中の総GC/AT比が低下するようにコドンが最適化されている。いくつかの実施形態においては、前記第5の配列は、ヒトにおける発現を目的としたコドン最適化によって最適化されている。いくつかの実施形態においては、前記最適化されたコドンおよび/またはコンセンサス配列は、複数の関連配列において利用されている配列および/または核酸塩基の可変性を比較することによって作製される。いくつかの実施形態においては、前記タンパク質は、抗体またはその一部を含み、該抗体またはその一部はヒト化されていてもよい。いくつかの実施形態においては、前記ジヒドロ葉酸還元酵素の二重変異体は、L22FおよびF31Sのアミノ酸変異を含む。いくつかの実施形態においては、前記導入をエレクトロポレーションによって行う。いくつかの実施形態においては、前記選択を、選択マーカーカセットを使用して選択圧を高めることによって行う。いくつかの実施形態においては、前記選択試薬は選択剤を含む。いくつかの実施形態においては、前記選択剤はメトトレキサートである。いくつかの実施形態においては、前記第1の濃度域が少なくとも50nM〜100nMであり、前記第2の濃度域が少なくとも75nM〜150nMである。いくつかの実施形態においては、前記第1濃度は、50nM、60nM、70nM、80nM、90nMもしくは100nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、75nM、80nM、90nM、100nM、110nM、120nM、130nM、140nMもしくは150nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記第1の濃度域は少なくとも75nM〜150nMであり、前記第2の濃度域は少なくとも112.5nM〜225nMである。いくつかの実施形態においては、前記第1濃度は、75nM、85nM、95nM、105nM、115nM、125nM、135nM、145nMもしくは150nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、112nM、122nM、132nM、142nM、152nM、162nM、172nM、182nM、192nM、202nM、212nMもしくは225nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記第1の濃度域は少なくとも300nM〜675nMであり、前記第1の濃度域は少なくとも450nM〜1012nMである。いくつかの実施形態においては、前記第1濃度は、300nM、350nM、400nM、450nM、500nM、550nM、600nM、650nMもしくは675nM、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度であり、前記第2の濃度域は、450nM、500nM、550nM、600nM、650nM、700nM、750nM、800nM、850nM、900nM、1000nMもしくは1012nMであり、またはこれらの濃度のいずれか2つによって定義される濃度範囲にある任意の濃度である。いくつかの実施形態においては、前記1回目の選択は、前記2回目の選択を行う前に、2日、3日、4日、5日、6日または7日にわたって前記T細胞を前記選択剤に暴露することを含む。いくつかの実施形態においては、前記2回目の選択は、前記T細胞を単離する前に、少なくとも2日、3日、4日、5日、6日、7日、8日、9日、10日、11日、12日、13日もしくは14日にわたって、またはこれらの時間点のいずれか2つによって定義される範囲にある任意の時間にわたって、前記T細胞を前記選択剤に暴露することを含む。
いくつかの実施形態においては、対象におけるがんまたは疾患を治療、抑制または緩和する方法であって、本明細書に記載の改変T細胞を対象に投与することを含む方法が提供される。いくつかの実施形態においては、前記対象はヒトである。
本明細書における実質的に複数形および/または単数形の用語の使用に関して、当業者であれば、本明細書の文脈および/または本明細書に記載の用途を踏まえて、複数個のものを単数のものであると解釈することができ、かつ/または単数のものを複数個のものであると解釈することができる。本発明を明確なものとするため、単数から複数または複数から単数へのさまざまな置き換えが本明細書において記載されている。
当業者であれば、通常、本明細書に記載の用語、特に、添付の請求項(たとえば、添付の請求項の本体部)において使用されている用語は「オープンエンドな」用語であることを理解するであろう(たとえば、「含んでいる(including)」という用語は、「含んでいるが、これらに限定されない」と解釈されるべきであり、「有する(having)」という用語は、「少なくとも有する」と解釈されるべきであり、「含む(includes)」という用語は「含むが、これらに限定されない」と解釈されるべきである)。さらに、当業者であれば、特定の数について請求項に記載する場合、その記載の意図も請求項に明確に記載すべきであり、特定数が記載されない場合はその意図を記載する必要はないことを理解するであろう。分かりやすく説明をすれば、たとえば、後述の特許請求の範囲では、請求項を記載するために、「少なくとも1つ」や「1つ以上」といった前置きが記載されている場合がある。しかしながら、このような前置きが使用されているからといって、不定冠詞「1つ(aまたはan)」で記載された特定の請求項を、1つのみの要素を含む実施形態に限定すべきではなく、たとえ同じ請求項内に「1つ以上」または「少なくとも1つ」といった前置きと「1つ(aまたはan)」といった不定冠詞とが含まれていたとしても、1つのみの要素を含む実施形態に限定すべきではない(たとえば、「1つ(aおよび/またはan)」は、通常、「少なくとも1つ」または「1つ以上」を意味すると解釈されるべきである)。これは、請求項の記載において定冠詞が使用された場合でも同じである。さらに、請求項に特定の数が明確に記載されていたとしても、当業者であれば、通常、「少なくとも」記載されたその数であるということを理解するであろう(たとえば、修飾語を伴わない「2つ」という記載は、「少なくとも」2つまたは「2つ以上」を意味する)。さらに、たとえば「A、BおよびCのうち少なくとも1つ」などの頻用される語句が使用される場合、通常、そのような文構造は、当業者がその語句を通常理解する意味で記載されている(たとえば、「A、BおよびCのうち少なくとも1つを有するシステム」は、Aのみを有するシステム、Bのみを有するシステム、Cのみを有するシステム、AとBの両方を有するシステム、AとCの両方を有するシステム、BとCの両方を有するシステム、ならびに/またはA、BおよびCのすべてを有するシステムなどを包含するが、これらに限定されない)。「A、BまたはCのうち少なくとも1つ」などの頻用される語句が使用される場合、通常、そのような文構造は、当業者がその語句を通常理解する意味で記載されている(たとえば、「A、BまたはCのうち少なくとも1つを有するシステム」は、Aのみを有するシステム、Bのみを有するシステム、Cのみを有するシステム、AとBの両方を有するシステム、AとCの両方を有するシステム、BとCの両方を有するシステム、ならびに/またはA、BおよびCのすべてを有するシステムなどを包含するが、これらに限定されない)。さらに、当業者であれば、2つ以上の選択肢を表すための選言的用語および/または選言的語句は、明細書、特許請求の範囲または図面のいずれにおいても、列記された用語のうちの1つ、列記された用語のいずれか、または列記された用語の両方を含む場合があると理解すべきであると理解するであろう。たとえば、「AまたはB」という表現は、「AまたはB」または「AおよびB」を示す場合を包含する。
さらに、本開示の構成要素または態様がマーカッシュ形式で記載されている場合、当業者であれば、マーカッシュ形式で記載された個々のメンバーまたはメンバーのサブグループについても記載されていると理解するであろう。

Claims (64)

  1. オリゴヌクレオチドに核酸を安定に挿入するための遺伝子送達ポリヌクレオチドであって、
    該遺伝子送達ポリヌクレオチド内において、挿入される該核酸が逆方向末端反復遺伝子配列に挟まれていること、
    該遺伝子送達ポリヌクレオチドが選択可能であること、
    該遺伝子送達ポリヌクレオチドが、第1〜第7の配列を含み、
    第1の配列が、第1の逆方向末端反復遺伝子配列を含み、
    第2の配列が、第2の逆方向末端反復遺伝子配列を含み、
    第3の配列が、プロモーター領域配列を含み、
    第4の配列が、タンパク質をコードする少なくとも1つの遺伝子またはmRNAにより転写される配列をコードする少なくとも1つの遺伝子を含む最適化された配列であり、
    第5の配列が、ジヒドロ葉酸還元酵素の二重変異体をコードする少なくとも1つの選択マーカーカセットを含む最適化された配列であり、該ジヒドロ葉酸還元酵素の二重変異体のメトトレキサートに対する親和性が15,000分の1または約15,000分の1に低減されており、メトトレキサートを用いて、前記遺伝子送達ポリヌクレオチドによって形質導入された細胞の選択を行うことによって、前記少なくとも1つの遺伝子を発現する細胞の割合を増加させることができ、
    第6の配列が、第1の付着部位(attP)を含み、
    第7の配列が、第2の付着部位(attB)を含むこと、ならびに
    第1の配列、第2の配列、第3の配列、第4の配列、第5の配列、第6の配列および第7の配列がそれぞれ5’末端および3’末端を有し、第1の逆方向末端反復遺伝子配列を含む第1の配列の3’末端が、第3の配列の5’末端に隣接し、第3の配列の3’末端が、第4の配列の5’末端に隣接し、第4の配列の3’末端が、第5の配列の5’末端に隣接し、第5の配列の3’末端が、第2の逆方向末端反復を含む第2の配列の5’末端に隣接していること
    を特徴とする遺伝子送達ポリヌクレオチド。
  2. 環状である、請求項1に記載の遺伝子送達ポリヌクレオチド。
  3. 少なくとも1kb〜5kbである、請求項1または2に記載の遺伝子送達ポリヌクレオチド。
  4. 前記プロモーター領域が、EF1プロモーター配列を含む、請求項1〜3のいずれか一項に記載の遺伝子送達ポリヌクレオチド。
  5. 前記第4の配列が、タンパク質をコードする遺伝子を1つ、2つ、3つ、4つまたは5つ含む、請求項1〜4のいずれか一項に記載の遺伝子送達ポリヌクレオチド。
  6. 前記第4の配列中の総GC/AT比が低下するように該配列のコドンが最適化されている、請求項1〜5のいずれか一項に記載の遺伝子送達ポリヌクレオチド。
  7. ヒトにおける発現を目的としたコドン最適化によって、前記第4の配列が最適化されている、請求項1〜5のいずれか一項に記載の遺伝子送達ポリヌクレオチド。
  8. 前記第4の配列が、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である、請求項1〜7のいずれか一項に記載の遺伝子送達ポリヌクレオチド。
  9. 前記第4の配列が、同じエピトープに特異的な複数の抗体結合ドメインなどの、関連する複数のタンパク質をコードする複数の核酸から作製されたコンセンサス配列である、請求項1〜8に記載の遺伝子送達ポリヌクレオチド。
  10. 前記関連する複数のタンパク質が、同じエピトープに特異的な複数の抗体結合ドメインを含む、請求項8〜9のいずれか一項に記載の遺伝子送達ポリヌクレオチド。
  11. 前記第5の配列中の総GC/AT比が低下するように該配列のコドンが最適化されている、請求項1〜10のいずれか一項に記載の遺伝子送達ポリヌクレオチド。
  12. ヒトにおける発現を目的としたコドン最適化によって、前記第5の配列が最適化されている、請求項1〜10のいずれか一項に記載の遺伝子送達ポリヌクレオチド。
  13. 前記最適化されたコドンおよび/またはコンセンサス配列が、複数の関連配列において利用されている配列および/または核酸塩基の可変性を比較することによって作製される、請求項6〜12のいずれか一項に記載の遺伝子送達ポリヌクレオチド。
  14. 前記タンパク質が治療用タンパク質である、請求項1〜13のいずれか一項に記載の遺伝子送達ポリヌクレオチド。
  15. 前記タンパク質が、抗体またはその一部を含み、該抗体またはその一部がヒト化されていてもよい、請求項1〜14のいずれか一項に記載の遺伝子送達ポリヌクレオチド。
  16. 前記ジヒドロ葉酸還元酵素の二重変異体が、L22FおよびF31Sのアミノ酸変異を含む、請求項1〜15のいずれか一項に記載の遺伝子送達ポリヌクレオチド。
  17. 養子T細胞免疫療法のための遺伝子改変マルチプレックスT細胞を製造する方法であって、
    請求項1〜16および40のいずれか一項に記載の遺伝子送達ポリヌクレオチドを提供すること、
    T細胞に前記遺伝子送達ポリヌクレオチドを導入すること、
    Sleeping Beautyトランスポゼースをコードするベクターを提供すること、
    Sleeping Beautyトランスポゼースをコードする前記ベクターを前記T細胞に導入すること、
    第1の濃度域の選択試薬を加えることを含む1回目の選択と、第1の濃度域よりも高くかつ第1の濃度域の少なくとも1.5倍以上である第2の濃度域の該選択試薬を加えることを含む2回目の選択とを含む操作によって、前記遺伝子送達ポリヌクレオチドを含む前記細胞を選択すること、ならびに
    選択圧下において表現型を発現する前記T細胞を単離すること
    を含む方法。
  18. 前記導入をエレクトロポレーションによって行う、請求項17に記載の方法。
  19. 前記選択を、選択マーカーカセットを使用して選択圧を高めることによって行う、請求項17または18に記載の方法。
  20. 前記選択試薬が選択剤を含む、請求項17〜19のいずれか一項に記載の方法。
  21. 前記選択剤がメトトレキサートである、請求項20に記載の方法。
  22. 前記第1の濃度域が少なくとも50nM〜100nMであり、前記第2の濃度域が少なくとも75nM〜150nMである、請求項17〜21のいずれか一項に記載の方法。
  23. 前記第1の濃度域が少なくとも75nM〜150nMであり、前記第2の濃度域が少なくとも112.5nM〜225nMである、請求項17〜21のいずれか一項に記載の方法。
  24. 前記第1の濃度域が少なくとも300nM〜675nMであり、前記第1の濃度域が少なくとも450nM〜1012nMである、請求項17〜21のいずれか一項に記載の方法。
  25. 前記1回目の選択が、前記2回目の選択を行う前に、2日、3日、4日、5日、6日または7日にわたって前記T細胞を前記選択剤に暴露することを含む、請求項17〜24のいずれか一項に記載の方法。
  26. 前記2回目の選択が、前記T細胞を単離する前に、少なくとも2日、3日、4日、5日、6日、7日、8日、9日、10日、11日、12日、13日もしくは14日にわたって、またはこれらの時間点のいずれか2つによって定義される範囲にある任意の時間にわたって、前記T細胞を前記選択剤に暴露することを含む、請求項17〜25のいずれか一項に記載の方法。
  27. T細胞におけるタンパク質の産生を増加させる方法であって、
    請求項1〜16および40のいずれか一項に記載のポリヌクレオチドを提供すること、
    細胞に前記ポリヌクレオチドを導入すること、
    Sleeping Beautyトランスポゼースをコードするベクターを提供すること、
    Sleeping Beautyトランスポゼースをコードする前記ベクターを前記T細胞に導入すること、
    第1の濃度域の選択試薬を加えることを含む1回目の選択と、第1の濃度域よりも高くかつ第1の濃度域の少なくとも1.5倍以上である第2の濃度域の該選択試薬を加えることを含む2回目の選択とを含む操作によって、前記遺伝子送達ポリヌクレオチドを含む前記細胞を選択すること、ならびに
    選択圧下において表現型を発現する前記細胞を単離すること
    を含む方法。
  28. 前記導入をエレクトロポレーションによって行う、請求項27に記載の方法。
  29. 前記選択を、選択マーカーカセットを使用して選択圧を高めることによって行う、請求項27または28に記載の方法。
  30. 前記選択試薬が選択剤を含む、請求項27〜29のいずれか一項に記載の方法。
  31. 前記選択剤がメトトレキサートである、請求項30に記載の方法。
  32. 前記第1の濃度域が少なくとも50nM〜100nMであり、前記第2の濃度域が少なくとも75nM〜150nMである、請求項27〜31のいずれか一項に記載の方法。
  33. 前記第1の濃度域が少なくとも75nM〜150nMであり、前記第2の濃度域が少なくとも112.5nM〜225nMである、請求項27〜31のいずれか一項に記載の方法。
  34. 前記第1の濃度域が少なくとも300nM〜675nMであり、前記第2の濃度域が少なくとも450nM〜1012nMである、請求項27〜31のいずれか一項に記載の方法。
  35. 前記1回目の選択が、前記2回目の選択を行う前に、2日、3日、4日、5日、6日または7日にわたって前記細胞を前記選択剤に暴露することを含む、請求項27〜34のいずれか一項に記載の方法。
  36. 前記2回目の選択が、前記単離を行う前に、少なくとも2日、3日、4日、5日、6日または7日にわたって前記細胞を前記選択剤に暴露することを含む、請求項27〜35のいずれか一項に記載の方法。
  37. 請求項16〜36、63および64に記載の方法のいずれかによって製造された、養子T細胞免疫療法のための遺伝子改変マルチプレックスT細胞。
  38. 対象におけるがんまたは疾患を治療、抑制または緩和する方法であって、請求項37に記載の改変T細胞を対象に投与することを含む方法。
  39. 前記対象がヒトである、請求項38に記載の方法。
  40. ミニサークル(minicircle)である、請求項1〜16のいずれか一項に記載の遺伝子送達ポリヌクレオチド。
  41. 養子T細胞免疫療法のための遺伝子改変細胞を製造する方法であって、
    請求項1〜16および40のいずれか一項に記載の遺伝子送達ポリヌクレオチドを提供すること、
    T細胞前駆細胞に前記遺伝子送達ポリヌクレオチドを導入すること、
    Sleeping Beautyトランスポゼースをコードするベクターを提供すること、
    Sleeping Beautyトランスポゼースをコードする前記ベクターを前記T細胞前駆細胞に導入すること、
    第1の濃度域の選択試薬を加えることを含む1回目の選択と、第1の濃度域よりも高くかつ第1の濃度域の少なくとも1.5倍以上である第2の濃度域の該選択試薬を加えることを含む2回目の選択とを含む操作によって、前記遺伝子送達ポリヌクレオチドを含む前記T細胞前駆細胞を選択すること、ならびに
    選択圧下において表現型を発現する前記T細胞前駆細胞を単離すること
    を含む方法。
  42. 前記導入をエレクトロポレーションによって行う、請求項41に記載の方法。
  43. 前記選択を、選択マーカーカセットを使用して選択圧を高めることによって行う、請求項41または42に記載の方法。
  44. 前記選択試薬が選択剤を含む、請求項41〜43のいずれか一項に記載の方法。
  45. 前記選択剤がメトトレキサートである、請求項44に記載の方法。
  46. 前記第1の濃度域が少なくとも50nM〜100nMであり、前記第2の濃度域が少なくとも75nM〜150nMである、請求項41〜45のいずれか一項に記載の方法。
  47. 前記第1の濃度域が少なくとも75nM〜150nMであり、前記第2の濃度域が少なくとも112.5nM〜225nMである、請求項41〜45のいずれか一項に記載の方法。
  48. 前記第1の濃度域が少なくとも300nM〜675nMであり、前記第1の濃度域が少なくとも450nM〜1012nMである、請求項41〜45のいずれか一項に記載の方法。
  49. 前記1回目の選択が、前記2回目の選択を行う前に、2日、3日、4日、5日、6日または7日にわたって前記T細胞を前記選択剤に暴露することを含む、請求項41〜48のいずれか一項に記載の方法。
  50. 前記2回目の選択が、前記T細胞前駆細胞を単離する前に、少なくとも2日、3日、4日、5日、6日、7日、8日、9日、10日、11日、12日、13日もしくは14日にわたって、またはこれらの時間点のいずれか2つによって定義される範囲にある任意の時間にわたって、前記T細胞前駆細胞を前記選択剤に暴露することを含む、請求項41〜49のいずれか一項に記載の方法。
  51. 前記T細胞前駆細胞が造血幹細胞である、請求項41〜50のいずれか一項に記載の方法。
  52. T細胞前駆細胞におけるタンパク質の産生を増加させる方法であって、
    請求項1〜16および40のいずれか一項に記載のポリヌクレオチドを提供すること、
    T細胞前駆細胞に前記ポリヌクレオチドを導入すること、
    Sleeping Beautyトランスポゼースをコードするベクターを提供すること、
    Sleeping Beautyトランスポゼースをコードする前記ベクターを前記T細胞前駆細胞に導入すること、
    第1の濃度域の選択試薬を加えることを含む1回目の選択と、第1の濃度域よりも高くかつ第1の濃度域の少なくとも1.5倍以上である第2の濃度域の該選択試薬を加えることを含む2回目の選択とを含む操作によって、前記遺伝子送達ポリヌクレオチドを含む前記T細胞前駆細胞を選択すること、ならびに
    選択圧下において表現型を発現する前記T細胞前駆細胞を単離すること
    を含む方法。
  53. 前記導入をエレクトロポレーションによって行う、請求項52に記載の方法。
  54. 前記選択を、選択マーカーカセットを使用して選択圧を高めることによって行う、請求項53または54に記載の方法。
  55. 前記選択試薬が選択剤を含む、請求項52〜24のいずれか一項に記載の方法。
  56. 前記選択剤がメトトレキサートである、請求項55に記載の方法。
  57. 前記第1の濃度域が少なくとも50nM〜100nMであり、前記第2の濃度域が少なくとも75nM〜150nMである、請求項52〜56のいずれか一項に記載の方法。
  58. 前記第1の濃度域が少なくとも75nM〜150nMであり、前記第2の濃度域が少なくとも112.5nM〜225nMである、請求項52〜56のいずれか一項に記載の方法。
  59. 前記第1の濃度域が少なくとも300nM〜675nMであり、前記第2の濃度域が少なくとも450nM〜1012nMである、請求項52〜56のいずれか一項に記載の方法。
  60. 前記1回目の選択が、前記2回目の選択を行う前に、2日、3日、4日、5日、6日または7日にわたって前記細胞を前記選択剤に暴露することを含む、請求項52〜59のいずれか一項に記載の方法。
  61. 前記2回目の選択が、前記細胞を単離する前に、少なくとも2日、3日、4日、5日、6日または7日にわたって前記細胞を前記選択剤に暴露することを含む、請求項52〜60のいずれか一項に記載の方法。
  62. 前記T細胞前駆細胞が造血幹細胞である、請求項52〜61のいずれか一項に記載の方法。
  63. 前記T細胞がT細胞前駆細胞である、請求項17〜36のいずれか一項に記載の方法。
  64. 前記T細胞前駆細胞が造血幹細胞である、請求項63に記載の方法。
JP2017504604A 2014-04-10 2015-04-08 メトトレキサートによる選択と組み合わせたSleeping Beautyトランスポゾンによる遺伝子改変T細胞の製造 Active JP6788573B6 (ja)

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
US201461977751P 2014-04-10 2014-04-10
US61/977,751 2014-04-10
US201461986479P 2014-04-30 2014-04-30
US61/986,479 2014-04-30
US201462058973P 2014-10-02 2014-10-02
US62/058,973 2014-10-02
US201462088363P 2014-12-05 2014-12-05
US62/088,363 2014-12-05
US201462089730P 2014-12-09 2014-12-09
US62/089,730 2014-12-09
US201462090845P 2014-12-11 2014-12-11
US62/090,845 2014-12-11
PCT/US2015/024868 WO2015157386A1 (en) 2014-04-10 2015-04-08 Production of engineered t-cells by sleeping beauty transposon coupled with methotrexate selection

Publications (4)

Publication Number Publication Date
JP2017513520A true JP2017513520A (ja) 2017-06-01
JP2017513520A5 JP2017513520A5 (ja) 2018-05-24
JP6788573B2 JP6788573B2 (ja) 2020-11-25
JP6788573B6 JP6788573B6 (ja) 2020-12-16

Family

ID=54288361

Family Applications (11)

Application Number Title Priority Date Filing Date
JP2016561839A Pending JP2017515464A (ja) 2014-04-10 2015-04-08 細胞免疫療法のための方法および組成物
JP2016561722A Active JP6772068B2 (ja) 2014-04-10 2015-04-08 導入遺伝子の遺伝子タグおよびその使用方法
JP2016561635A Active JP6765967B2 (ja) 2014-04-10 2015-04-08 特定の組成を有する遺伝子により改変されたt細胞製剤
JP2016561659A Active JP6765968B2 (ja) 2014-04-10 2015-04-08 薬物制御による導入遺伝子の発現
JP2017504604A Active JP6788573B6 (ja) 2014-04-10 2015-04-08 メトトレキサートによる選択と組み合わせたSleeping Beautyトランスポゾンによる遺伝子改変T細胞の製造
JP2020105133A Active JP7062720B2 (ja) 2014-04-10 2020-06-18 細胞免疫療法のための方法および組成物
JP2020155809A Active JP7093385B2 (ja) 2014-04-10 2020-09-16 薬物制御による導入遺伝子の発現
JP2020155429A Active JP7148580B2 (ja) 2014-04-10 2020-09-16 特定の組成を有する遺伝子により改変されたt細胞製剤
JP2020164326A Active JP7106610B2 (ja) 2014-04-10 2020-09-30 導入遺伝子の遺伝子タグおよびその使用方法
JP2022069142A Pending JP2022109953A (ja) 2014-04-10 2022-04-20 細胞免疫療法のための方法および組成物
JP2022112278A Active JP7402933B2 (ja) 2014-04-10 2022-07-13 導入遺伝子の遺伝子タグおよびその使用方法

Family Applications Before (4)

Application Number Title Priority Date Filing Date
JP2016561839A Pending JP2017515464A (ja) 2014-04-10 2015-04-08 細胞免疫療法のための方法および組成物
JP2016561722A Active JP6772068B2 (ja) 2014-04-10 2015-04-08 導入遺伝子の遺伝子タグおよびその使用方法
JP2016561635A Active JP6765967B2 (ja) 2014-04-10 2015-04-08 特定の組成を有する遺伝子により改変されたt細胞製剤
JP2016561659A Active JP6765968B2 (ja) 2014-04-10 2015-04-08 薬物制御による導入遺伝子の発現

Family Applications After (6)

Application Number Title Priority Date Filing Date
JP2020105133A Active JP7062720B2 (ja) 2014-04-10 2020-06-18 細胞免疫療法のための方法および組成物
JP2020155809A Active JP7093385B2 (ja) 2014-04-10 2020-09-16 薬物制御による導入遺伝子の発現
JP2020155429A Active JP7148580B2 (ja) 2014-04-10 2020-09-16 特定の組成を有する遺伝子により改変されたt細胞製剤
JP2020164326A Active JP7106610B2 (ja) 2014-04-10 2020-09-30 導入遺伝子の遺伝子タグおよびその使用方法
JP2022069142A Pending JP2022109953A (ja) 2014-04-10 2022-04-20 細胞免疫療法のための方法および組成物
JP2022112278A Active JP7402933B2 (ja) 2014-04-10 2022-07-13 導入遺伝子の遺伝子タグおよびその使用方法

Country Status (19)

Country Link
US (12) US10865242B2 (ja)
EP (8) EP3943507A1 (ja)
JP (11) JP2017515464A (ja)
KR (8) KR102509481B1 (ja)
CN (7) CN106661570B (ja)
AU (8) AU2015243920B2 (ja)
BR (4) BR112016023517A2 (ja)
CA (5) CA2945302A1 (ja)
ES (2) ES2867224T3 (ja)
IL (5) IL297591A (ja)
MX (6) MX2016013158A (ja)
MY (4) MY186846A (ja)
NZ (3) NZ725081A (ja)
PH (4) PH12016502010A1 (ja)
RU (5) RU2751921C2 (ja)
SA (1) SA516380056B1 (ja)
SG (8) SG10201808819XA (ja)
WO (5) WO2015157386A1 (ja)
ZA (2) ZA201607060B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021515576A (ja) * 2018-03-16 2021-06-24 イミュソフト コーポレーション フォリスタチンを分泌するように遺伝子操作されたb細胞ならびにフォリスタチン関連疾患、状態、障害を処置するために、ならびに筋肉の成長および強度を増強するためにこれを使用する方法

Families Citing this family (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100548667C (zh) * 2003-01-20 2009-10-14 日本瑞翁株式会社 层合件及其制造方法
JP6538684B2 (ja) * 2013-11-21 2019-07-03 ユーシーエル ビジネス ピーエルシー 細胞
EP3943507A1 (en) * 2014-04-10 2022-01-26 Seattle Children's Hospital, dba Seattle Children's Research Institute Drug related transgene expression
EP3647412A1 (en) 2014-04-23 2020-05-06 Juno Therapeutics, Inc. Methods for isolating, culturing, and genetically engineering immune cell populations for adoptive therapy
GB2540694A (en) 2014-04-29 2017-01-25 Seattle Children's Hospital (Dba Seattle Children's Res Institute) CCR5 disruption of cells expressing anti-hiv chimeric antigen receptor (CAR) derived from broadly neutralizing antibodies
IL251774B (en) 2014-10-20 2022-07-01 Juno Therapeutics Inc Methods and preparations for dosing in stress cell therapy
KR101697473B1 (ko) 2014-11-26 2017-01-18 주식회사 녹십자랩셀 T 세포를 이용한 자연살해세포의 배양방법
KR20170087514A (ko) 2014-12-03 2017-07-28 주노 쎄러퓨티크스 인코퍼레이티드 입양 세포 치료를 위한 방법 및 조성물
HUE053995T2 (hu) 2014-12-05 2021-08-30 Memorial Sloan Kettering Cancer Center B-sejt-érési antigént célzó antitestek és alkalmazási eljárások
MA41346A (fr) 2015-01-12 2017-11-21 Juno Therapeutics Inc Eléments régulateurs post-transcriptionnels d'hépatite modifiée
KR20170128234A (ko) 2015-01-16 2017-11-22 주노 쎄러퓨티크스 인코퍼레이티드 Ror1에 특이적인 항체 및 키메라 항원 수용체
CN107667169B (zh) * 2015-02-24 2021-10-29 得克萨斯州大学系统董事会 遗传修饰的t细胞的选择方法
AU2016225012B2 (en) 2015-02-27 2020-09-03 Kevin Chen Chimeric antigen receptors (CARS) targeting hematologic malignancies, compositions and methods of use thereof
US11173179B2 (en) 2015-06-25 2021-11-16 Icell Gene Therapeutics Llc Chimeric antigen receptor (CAR) targeting multiple antigens, compositions and methods of use thereof
WO2017222593A1 (en) 2016-06-24 2017-12-28 Icell Gene Therapeutics Llc Chimeric antigen receptors (cars), compositions and methods thereof
AU2016283102B2 (en) 2015-06-25 2021-03-11 Icell Gene Therapeutics Llc Chimeric antigen receptors (CARs), compositions and methods of use thereof
CN108174604B (zh) 2015-08-07 2023-06-23 西雅图儿童医院(Dba西雅图儿童研究所) 用于实体瘤靶向的双特异性car t细胞
EP3352798A1 (en) * 2015-09-22 2018-08-01 Julius-Maximilians-Universität Würzburg A method for high level and stable gene transfer in lymphocytes
IL299114A (en) * 2015-10-06 2023-02-01 Hope City Chimeric antigen receptors targeting PSCA
KR20180103831A (ko) * 2015-10-23 2018-09-19 더 리젠츠 오브 더 유니버시티 오브 콜로라도, 어 바디 코포레이트 편평세포암종의 예후 및 치료
WO2017072361A1 (en) 2015-10-30 2017-05-04 Nbe-Therapeutics Ag Anti-ror1 antibodies
US11020429B2 (en) 2015-11-05 2021-06-01 Juno Therapeutics, Inc. Vectors and genetically engineered immune cells expressing metabolic pathway modulators and uses in adoptive cell therapy
MX2018007203A (es) * 2015-12-14 2018-11-12 Genomefrontier Therapeutics Inc Sistema de transposon, kit que comprende el mismo, y sus usos.
WO2017112877A1 (en) * 2015-12-22 2017-06-29 Icell Gene Therapeutics, Llc Chimeric antigen receptors and enhancement of anti-tumor activity
EP3405496B1 (en) 2016-01-20 2023-10-25 University of Florida Research Foundation, Incorporated Ror1 antibody compositions and related methods
EP3202783A1 (en) * 2016-02-02 2017-08-09 Ecole Polytechnique Federale de Lausanne (EPFL) Engineered antigen presenting cells and uses thereof
WO2017161212A1 (en) 2016-03-16 2017-09-21 Juno Therapeutics, Inc. Methods for adaptive design of a treatment regimen and related treatments
US20220025001A1 (en) * 2016-04-28 2022-01-27 The Trustees Of Dartmouth College Nucleic acid constructs for co-expression of chimeric antigen receptor and transcription factor, cells containing and therapeutic use thereof
CA3026778A1 (en) * 2016-06-07 2017-12-14 Max-Delbruck-Centrum Fur Molekulare Medizin In Der Helmholtz-Gemeinschaft Chimeric antigen receptor and car-t cells that bind bcma
US11787848B2 (en) 2016-06-08 2023-10-17 Precigen, Inc. CD33 specific chimeric antigen receptors
US20190119636A1 (en) 2017-10-23 2019-04-25 Poseida Therapeutics, Inc. Modified stem cell memory t cells, methods of making and methods of using same
MA46649A (fr) 2016-10-13 2019-08-21 Juno Therapeutics Inc Méthodes et compositions d'immunothérapie impliquant des modulateurs de la voie métabolique du tryptophane
WO2018075941A1 (en) * 2016-10-21 2018-04-26 Washington University Ap4 and methods of promoting t cell activation
WO2018102606A1 (en) * 2016-11-30 2018-06-07 Intrexon Corporation Steroid administration and immunotherapy
MX2019006288A (es) 2016-12-03 2020-10-01 Juno Therapeutics Inc Metodos y composiciones para el uso de celulas t terapeuticas en combinacion con inhibidores de quinasa.
MX2019006631A (es) * 2016-12-12 2019-11-12 Seattle Childrens Hospital Dba Seattle Childrens Res Inst Variantes quimericas de factores de transcripcion con sensibilidad aumentada a induccion por ligando de farmaco de expresion transgenica en celulas mamiferas.
CN106800601B (zh) * 2017-01-19 2021-04-06 广东昭泰体内生物医药科技有限公司 一种嵌合抗原受体及其应用
US11517627B2 (en) * 2017-01-20 2022-12-06 Juno Therapeutics Gmbh Cell surface conjugates and related cell compositions and methods
JP7228522B2 (ja) 2017-02-27 2023-02-24 ジュノー セラピューティクス インコーポレイテッド 細胞療法における投薬に関する組成物、製造物品、および方法
WO2018160622A1 (en) 2017-02-28 2018-09-07 Endocyte, Inc. Compositions and methods for car t cell therapy
AU2018234640B2 (en) 2017-03-14 2024-03-14 Juno Therapeutics, Inc. Methods for cryogenic storage
CN106963945A (zh) * 2017-03-27 2017-07-21 山东兴瑞生物科技有限公司 一种加强型人乳头瘤病毒hpv‑16/18的二价dc疫苗
WO2018191490A1 (en) * 2017-04-13 2018-10-18 The Trustees Of The University Of Pennsylvania Use of gene editing to generate universal tcr re-directed t cells for adoptive immunotherapy
JOP20180040A1 (ar) 2017-04-20 2019-01-30 Gilead Sciences Inc مثبطات pd-1/pd-l1
CN108728477B (zh) * 2017-04-24 2022-02-22 华东理工大学 一种高效的转座突变系统及构建方法
CN118147137A (zh) * 2017-05-17 2024-06-07 西雅图儿童医院(Dba西雅图儿童研究所) 生成哺乳动物t细胞活化诱导型合成启动子(syn+pro)以改善t细胞疗法
CA3064000A1 (en) 2017-05-24 2018-11-29 Effector Therapeutics, Inc. Methods and compositions for cellular immunotherapy
US20200108096A1 (en) * 2017-05-26 2020-04-09 Green Cross Lab Cell Corporation Method for culturing natural killer cell, using transformed t cell
WO2018223101A1 (en) 2017-06-02 2018-12-06 Juno Therapeutics, Inc. Articles of manufacture and methods for treatment using adoptive cell therapy
CN107335054B (zh) * 2017-06-30 2021-01-15 山东兴瑞生物科技有限公司 一种慢性乙肝治疗性dc疫苗
SG11202000846WA (en) 2017-08-07 2020-02-27 Nbe Therapeutics Ag Anthracycline-based antibody drug conjugates having high in vivo tolerability
CN111133104A (zh) * 2017-08-11 2020-05-08 特里比奥迪卡有限责任公司 通过模板化组装生成结合到识别分子的表位的方法
CN111094349A (zh) * 2017-08-23 2020-05-01 马克思-德布鲁克-分子医学中心亥姆霍兹联合会 嵌合抗原受体和结合cxcr5的car-t细胞
KR20200070236A (ko) * 2017-09-26 2020-06-17 롱우드 유니버시티 면역치료제로서의 pd1-특이적 키메라 항원 수용체
US11771718B2 (en) 2017-10-18 2023-10-03 Precigen, Inc. Polypeptide compositions comprising spacers
CN107759700A (zh) * 2017-10-18 2018-03-06 银丰生物工程集团有限公司 靶向cd19抗原的转基因t细胞及其制备方法与应用
US10329543B2 (en) 2017-10-23 2019-06-25 Poseida Therapeutics, Inc. Modified stem cell memory T cells, methods of making and methods of using same
CN111542596A (zh) * 2017-11-01 2020-08-14 朱诺治疗学股份有限公司 产生工程化细胞的治疗性组合物的方法
US11851679B2 (en) 2017-11-01 2023-12-26 Juno Therapeutics, Inc. Method of assessing activity of recombinant antigen receptors
BR112020008323A2 (pt) 2017-11-01 2020-11-03 Juno Therapeutics Inc anticorpos e receptores de antígenos quiméricos específicos para antígeno de maturação de células b
EP3707160A1 (en) 2017-11-10 2020-09-16 The U.S.A. as represented by the Secretary, Department of Health and Human Services Chimeric antigen receptors targeting tumor antigens
JP2021502829A (ja) * 2017-11-14 2021-02-04 メモリアル スローン ケタリング キャンサー センター Il−36を分泌する免疫応答性細胞およびその使用
AU2018392212B9 (en) 2017-12-20 2021-03-18 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2'3' cyclic dinucleotides with phosphonate bond activating the STING adaptor protein
EP3728283B1 (en) 2017-12-20 2023-11-22 Institute of Organic Chemistry and Biochemistry ASCR, V.V.I. 3'3' cyclic dinucleotides with phosphonate bond activating the sting adaptor protein
CN110028588A (zh) * 2018-01-11 2019-07-19 上海细胞治疗研究院 抗原-Fc融合蛋白及其检测阳性CAR-T细胞的应用
US10561686B2 (en) 2018-01-12 2020-02-18 Innovative Cellular Therapeutics CO., LTD. Modified cell expansion and uses thereof
CN112055595A (zh) 2018-01-22 2020-12-08 恩多塞特公司 Car t细胞的使用方法
CN108103027B (zh) * 2018-02-02 2021-12-24 中国医学科学院血液病医院(血液学研究所) 高效率血细胞重编程同时实现基因编辑的方法
SG11202007646UA (en) 2018-02-13 2020-09-29 Gilead Sciences Inc Pd-1/pd-l1 inhibitors
CN108383914A (zh) * 2018-02-23 2018-08-10 北京美康基免生物科技有限公司 一种基于cd19的嵌合抗原受体及其应用
TW202005654A (zh) 2018-04-06 2020-02-01 捷克科學院有機化學與生物化學研究所 2,2,─環二核苷酸
TWI833744B (zh) 2018-04-06 2024-03-01 捷克科學院有機化學與生物化學研究所 3'3'-環二核苷酸
TWI818007B (zh) 2018-04-06 2023-10-11 捷克科學院有機化學與生物化學研究所 2'3'-環二核苷酸
US10869888B2 (en) 2018-04-17 2020-12-22 Innovative Cellular Therapeutics CO., LTD. Modified cell expansion and uses thereof
TWI712412B (zh) 2018-04-19 2020-12-11 美商基利科學股份有限公司 Pd‐1/pd‐l1抑制劑
WO2019211799A1 (en) 2018-05-03 2019-11-07 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2'3'-cyclic dinucleotide analogue comprising a cyclopentanyl modified nucleotide
CR20200544A (es) 2018-05-14 2021-02-11 Gilead Sciences Inc Inhibidores de mcl-1
JP2021523743A (ja) * 2018-05-15 2021-09-09 カースゲン セラピューティクス カンパニー リミテッドCarsgen Therapeutics Co., Ltd. 遺伝子操作された細胞及びその応用
EP3841124A4 (en) 2018-06-29 2022-03-23 ApitBio, Inc. ANTI-L1CAM ANTIBODIES AND THEIR USES
TWI732245B (zh) 2018-07-13 2021-07-01 美商基利科學股份有限公司 Pd‐1/pd‐l1抑制劑
CN110845621A (zh) * 2018-08-21 2020-02-28 上海恒润达生生物科技有限公司 一种靶向egfr和cd19双靶点的嵌合抗原受体方法
US20220348682A1 (en) 2018-08-30 2022-11-03 Innovative Cellular Therapeutics Holdings, Ltd. Chimeric antigen receptor cells for treating solid tumor
CN113039206A (zh) * 2018-08-31 2021-06-25 西雅图儿童医院(Dba西雅图儿童研究所) 包含b7h3嵌合抗原受体的方法和组合物
EP3860717A1 (en) 2018-10-03 2021-08-11 Gilead Sciences, Inc. Imidozopyrimidine derivatives
CN112955435A (zh) 2018-10-24 2021-06-11 吉利德科学公司 Pd-1/pd-l1抑制剂
WO2020092528A1 (en) 2018-10-31 2020-05-07 Gilead Sciences, Inc. Substituted 6-azabenzimidazole compounds having hpk1 inhibitory activity
JP7460644B2 (ja) 2018-10-31 2024-04-02 ギリアード サイエンシーズ, インコーポレイテッド Hpk1阻害剤としての置換6-アザベンゾイミダゾール化合物
CN113383071A (zh) 2018-11-01 2021-09-10 亘喜生物科技(上海)有限公司 用于t细胞工程化的组合物和方法
US20220008465A1 (en) * 2018-11-16 2022-01-13 Juno Therapeutics, Inc. Methods of dosing engineered t cells for the treatment of b cell malignancies
US10918667B2 (en) 2018-11-20 2021-02-16 Innovative Cellular Therapeutics CO., LTD. Modified cell expressing therapeutic agent and uses thereof
SG11202105502RA (en) * 2018-11-30 2021-06-29 Juno Therapeutics Inc Methods for treatment using adoptive cell therapy
JP2022513164A (ja) * 2018-11-30 2022-02-07 セルラリティ インク. 胎盤由来同種car-t細胞およびその使用
SG11202105380RA (en) * 2018-11-30 2021-06-29 Juno Therapeutics Inc Methods for dosing and treatment of b cell malignancies in adoptive cell therapy
AU2020231115A1 (en) 2019-03-07 2021-08-26 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3'3'-cyclic dinucleotides and prodrugs thereof
EP3934757B1 (en) 2019-03-07 2023-02-22 Institute of Organic Chemistry and Biochemistry ASCR, V.V.I. 2'3'-cyclic dinucleotides and prodrugs thereof
EP3935065A1 (en) 2019-03-07 2022-01-12 Institute of Organic Chemistry and Biochemistry ASCR, V.V.I. 3'3'-cyclic dinucleotide analogue comprising a cyclopentanyl modified nucleotide as sting modulator
WO2020191172A1 (en) * 2019-03-19 2020-09-24 Immatics US, Inc. Cd28 t cell cultures, compositions, and methods of using thereof
US20200308248A1 (en) * 2019-03-26 2020-10-01 ST Phi Therapeutics Chimeric Natural Killer Cell Receptors and Method of Using Thereof
US20220195414A1 (en) * 2019-04-08 2022-06-23 Russell Biotech, Inc. Improved Manufacturing Procedures for Cell Based Therapies
CN109994156A (zh) * 2019-04-16 2019-07-09 北京中佰耀因医药科技有限公司 一种含报告模板信息管理模块的精准用药智能报告系统
CN109872792A (zh) * 2019-04-16 2019-06-11 北京中佰耀因医药科技有限公司 一种用于指导精准用药的基因检测智能报告系统
CN109994176A (zh) * 2019-04-16 2019-07-09 北京中佰耀因医药科技有限公司 一种含样本类型信息管理模块的精准用药智能报告系统
CN109979545A (zh) * 2019-04-16 2019-07-05 北京中佰耀因医药科技有限公司 一种含样本状态信息管理模块的精准用药智能报告系统
CN109994180A (zh) * 2019-04-16 2019-07-09 北京中佰耀因医药科技有限公司 一种含基因位点信息管理模块的精准用药智能报告系统
CN110010222A (zh) * 2019-04-16 2019-07-12 长沙三济生物科技有限公司 一种基于精准用药知识库的基因身份识别系统
CN110010200A (zh) * 2019-04-16 2019-07-12 长沙三济生物科技有限公司 一种基因身份识别系统
TW202210480A (zh) 2019-04-17 2022-03-16 美商基利科學股份有限公司 類鐸受體調節劑之固體形式
TW202212339A (zh) 2019-04-17 2022-04-01 美商基利科學股份有限公司 類鐸受體調節劑之固體形式
TWI826690B (zh) 2019-05-23 2023-12-21 美商基利科學股份有限公司 經取代之烯吲哚酮化物及其用途
JP2022538397A (ja) * 2019-06-19 2022-09-02 ユリウス-マクシミリアン-ウニヴェルシテート・ヴュルツブルク キメラ抗原受容体設計で実施するためのウルトラモジュラー(ultramodular) IgG3ベーススペーサードメイン及び多機能部位
EP3990476A1 (en) 2019-06-25 2022-05-04 Gilead Sciences, Inc. Flt3l-fc fusion proteins and methods of use
CN110608991B (zh) * 2019-09-09 2022-04-29 浙江普罗亭健康科技有限公司 基于质谱流式检测技术的细胞周期检测试剂盒及检测方法
CN118178645A (zh) 2019-10-18 2024-06-14 四十七公司 用于治疗骨髓增生异常综合征和急性髓系白血病的联合疗法
JP2022552748A (ja) 2019-10-31 2022-12-19 フォーティ セブン, インコーポレイテッド 抗cd47及び抗cd20による血液癌の治療
TWI778443B (zh) 2019-11-12 2022-09-21 美商基利科學股份有限公司 Mcl1抑制劑
PE20230376A1 (es) 2019-12-24 2023-03-06 Carna Biosciences Inc Compuestos moduladores de la diacilglicerol quinasa
US11692038B2 (en) 2020-02-14 2023-07-04 Gilead Sciences, Inc. Antibodies that bind chemokine (C-C motif) receptor 8 (CCR8)
CN111533808B (zh) * 2020-03-10 2021-02-09 南京医科大学 一种可自分泌TLR4 scFv且靶向cMet的嵌合抗原受体修饰的T细胞及其应用
CR20220547A (es) 2020-05-01 2022-12-15 Gilead Sciences Inc Compuestos de 2,4-dioxopirimidina inhibidores de cd73
US20230338422A1 (en) * 2020-07-09 2023-10-26 Nanjing Legend Biotech Co., Ltd. Engineering gamma delta t cells with interleukin-36 for immunotherapy
CN116490518A (zh) 2020-07-17 2023-07-25 西穆尔克斯股份有限公司 用于重定向免疫抑制信号传导的嵌合MyD88受体及相关组合物和方法
TW202241935A (zh) 2020-12-18 2022-11-01 美商世紀治療股份有限公司 具有可調適受體專一性之嵌合抗原受體系統
EP4277639A2 (en) * 2021-01-15 2023-11-22 Seattle Children's Hospital d/b/a Seattle Children's Research Institute Hybrid and truncated immune cell proteins
TW202302145A (zh) 2021-04-14 2023-01-16 美商基利科學股份有限公司 CD47/SIRPα結合及NEDD8活化酶E1調節次單元之共抑制以用於治療癌症
WO2022245671A1 (en) 2021-05-18 2022-11-24 Gilead Sciences, Inc. Methods of using flt3l-fc fusion proteins
CA3222439A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
WO2022271650A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
EP4359415A1 (en) 2021-06-23 2024-05-01 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
CN117480155A (zh) 2021-06-23 2024-01-30 吉利德科学公司 二酰基甘油激酶调节化合物
CN118056012A (zh) * 2021-08-24 2024-05-17 赛斯尔擎生物技术(上海)有限公司 一种修饰细胞的方法
WO2023076983A1 (en) 2021-10-28 2023-05-04 Gilead Sciences, Inc. Pyridizin-3(2h)-one derivatives
CA3235986A1 (en) 2021-10-29 2023-05-04 Gilead Science, Inc. Cd73 compounds
AU2022417491A1 (en) 2021-12-22 2024-05-23 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
AU2022419982A1 (en) 2021-12-22 2024-06-06 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
TW202340168A (zh) 2022-01-28 2023-10-16 美商基利科學股份有限公司 Parp7抑制劑
WO2023173137A1 (en) * 2022-03-11 2023-09-14 Yale University Compositions and methods for efficient and stable genetic modification of eukaryotic cells
TW202346277A (zh) 2022-03-17 2023-12-01 美商基利科學股份有限公司 Ikaros鋅指家族降解劑及其用途
US20230355796A1 (en) 2022-03-24 2023-11-09 Gilead Sciences, Inc. Combination therapy for treating trop-2 expressing cancers
WO2023187031A1 (en) * 2022-04-01 2023-10-05 Miltenyi Biotec B.V. & Co. KG A system for drug-inducible expression of a polynucleotide
TW202345901A (zh) 2022-04-05 2023-12-01 美商基利科學股份有限公司 用於治療結腸直腸癌之組合療法
TW202400138A (zh) 2022-04-21 2024-01-01 美商基利科學股份有限公司 Kras g12d調節化合物
US20230348561A1 (en) 2022-04-28 2023-11-02 Immatics US, Inc. Dominant negative tgfbeta receptor polypeptides, cd8 polypeptides, cells, compositions, and methods of using thereof
WO2023212655A1 (en) 2022-04-28 2023-11-02 Immatics US, Inc. Il-12 polypeptides, il-15 polypeptides, il-18 polypeptides, cd8 polypeptides, compositions, and methods of using thereof
US20230348548A1 (en) 2022-04-28 2023-11-02 Immatics US, Inc. Membrane-bound il-15, cd8 polypeptides, cells, compositions, and methods of using thereof
CN114990069B (zh) * 2022-05-17 2023-09-22 郑州大学第一附属医院 一种过表达slc43a2的嵌合抗原受体t细胞的制备方法和应用
WO2023227900A1 (en) * 2022-05-27 2023-11-30 Autolus Limited Method
CN117210457A (zh) * 2022-06-10 2023-12-12 拜奥卡德联合股份公司 具有启动子活性的核酸及其用途
WO2024006702A1 (en) * 2022-06-27 2024-01-04 Foundation Medicine, Inc. Methods and systems for predicting genotypic calls from whole-slide images
WO2024006929A1 (en) 2022-07-01 2024-01-04 Gilead Sciences, Inc. Cd73 compounds
WO2024064668A1 (en) 2022-09-21 2024-03-28 Gilead Sciences, Inc. FOCAL IONIZING RADIATION AND CD47/SIRPα DISRUPTION ANTICANCER COMBINATION THERAPY
CN116179495A (zh) * 2022-11-28 2023-05-30 上海恩凯细胞技术有限公司 转基因免疫细胞及其应用
CN116844685B (zh) * 2023-07-03 2024-04-12 广州默锐医药科技有限公司 一种免疫治疗效果评估方法、装置、电子设备及存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013123061A1 (en) * 2012-02-13 2013-08-22 Seattle Children's Hospital D/B/A Seattle Children's Research Institute Bispecific chimeric antigen receptors and therapeutic uses thereof

Family Cites Families (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2096222C (en) 1990-11-13 1998-12-29 Stephen D. Lupton Bifunctional selectable fusion genes
US20020111474A1 (en) * 1990-12-14 2002-08-15 Capon Daniel J. Chimeric chains for receptor-associated signal transduction pathways
JPH07507278A (ja) 1992-06-01 1995-08-10 ニューイングランド メディカル センター ホスピタルズ インク Cd43キメラ分子による細胞間相互作用の阻害
US5827642A (en) 1994-08-31 1998-10-27 Fred Hutchinson Cancer Research Center Rapid expansion method ("REM") for in vitro propagation of T lymphocytes
US5783186A (en) * 1995-12-05 1998-07-21 Amgen Inc. Antibody-induced apoptosis
US6133027A (en) * 1996-08-07 2000-10-17 City Of Hope Inducible expression system
US6660257B1 (en) 1996-10-25 2003-12-09 Pharmacia Corporation Circular permuteins of flt3 ligand
US6410319B1 (en) 1998-10-20 2002-06-25 City Of Hope CD20-specific redirected T cells and their use in cellular immunotherapy of CD20+ malignancies
US6912492B1 (en) * 1999-05-25 2005-06-28 University Of Medicine & Dentistry Of New Jersey Methods for diagnosing, preventing, and treating developmental disorders due to a combination of genetic and environmental factors
JP4045713B2 (ja) 2000-01-31 2008-02-13 松下電器産業株式会社 自動機用溶接機
GB0015119D0 (en) * 2000-06-20 2000-08-09 Angeletti P Ist Richerche Bio Methods and means for regulation of gene expression
CA2413156C (en) * 2000-07-03 2009-08-18 Gala Design, Inc. Expression vectors
GB0025307D0 (en) * 2000-10-16 2000-11-29 Celltech Chiroscience Ltd Biological products
AU2001297703B2 (en) 2000-11-07 2006-10-19 City Of Hope CD19-specific redirected immune cells
AU2002248571B2 (en) 2001-03-07 2007-01-18 Merck Patent Gmbh Expression technology for proteins containing a hybrid isotype antibody moiety
US7070995B2 (en) * 2001-04-11 2006-07-04 City Of Hope CE7-specific redirected immune cells
US20090257994A1 (en) 2001-04-30 2009-10-15 City Of Hope Chimeric immunoreceptor useful in treating human cancers
WO2002097099A1 (en) 2001-05-29 2002-12-05 Valentis, Inc. Regulated expression of ghrh
WO2003025228A1 (en) 2001-09-18 2003-03-27 Proteologics, Inc. Methods and compositions for treating hcap associated diseases
US20030148982A1 (en) * 2001-11-13 2003-08-07 Brenner Malcolm K. Bi-spcific chimeric T cells
EP1572939A4 (en) 2002-04-11 2006-08-30 Amgen Inc HER-2 RECEPTOR TYROSINE KINASE MOLECULES AND USES THEREOF
WO2004029284A2 (en) 2002-09-30 2004-04-08 Protein Design Labs, Inc. Efficient generation of stable expression cell lines through the use of scorable homeostatic reporter genes
US7662387B2 (en) * 2003-02-20 2010-02-16 Seattle Genetics Anti-cd70 antibody-drug conjugates and their use for the treatment of cancer and immune disorders
US20050129671A1 (en) * 2003-03-11 2005-06-16 City Of Hope Mammalian antigen-presenting T cells and bi-specific T cells
WO2004092338A2 (en) 2003-04-11 2004-10-28 Diadexus, Inc. Compositions, splice variants and methods relating to cancer specific genes and proteins
ZA200509363B (en) * 2003-04-18 2007-04-25 Norwood Immunology Ltd Tolerance to graft prior to thymic regeneration
WO2005017102A2 (en) * 2003-05-30 2005-02-24 Diadexus, Inc. Compositions, splice variants and methods relating to ovarian specific nucleic acids and proteins
JP4772674B2 (ja) * 2003-07-21 2011-09-14 イステイチユート・デイ・リチエルケ・デイ・ビオロジア・モレコラーレ・ピ・アンジエレツテイ・エツセ・ピー・アー ヒト上皮成長因子2/neu抗原をコードする合成遺伝子およびその用途
EP1680447A2 (en) 2003-10-24 2006-07-19 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti S.P.A. Orthogonal gene switches
WO2005062881A2 (en) 2003-12-24 2005-07-14 Transgenrx, Inc. Gene therapy using transposon-based vectors
US20090098142A1 (en) 2004-06-09 2009-04-16 Kasaian Marion T Methods and compositions for treating and monitoring treatment of IL-13-associated disorders
US7910101B2 (en) * 2004-10-25 2011-03-22 Centocor, Inc. Melanocortin receptor binding mimetibodies, compositions, methods and uses
DE202005002921U1 (de) 2005-02-23 2005-04-21 Magcode Ag Verbindungssystem, insbesondere elektrisches Verbindungssystem
CN101212977A (zh) * 2005-06-01 2008-07-02 国际创新生物技术研究所有限公司 葡萄糖可诱导的胰岛素表达和治疗糖尿病的方法
BRPI0711207A2 (pt) 2006-05-22 2011-03-22 Hiprocell Llc vetor alvo para intregação em sìtios-especificos, método de sìtio-especìfico que integra um polinucleotìdeo codificando uma proteina de interesse em um genoma de uma célula eucariótia, célula eucariótica isolada , kit para uso no sìtio-especìfico que integra um polinucleotideo dentro de um genoma de uma celula in vitro e kit para uso em produzir uma proteìna em célula
WO2008012237A1 (en) * 2006-07-24 2008-01-31 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti Spa Multi-antigen construct and uses thereof
US7709253B2 (en) 2006-08-04 2010-05-04 The Board Of Trustees Of The Leland Stanford Junior University Ligand-regulable transactivation systems, methods of use thereof, methods of detecting estrogen receptor ligands, and methods of differentiating estrogen receptor ligand agonists and antagonists
CA2693155A1 (en) * 2007-07-25 2009-01-29 Fraunhofer Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Self coupling recombinant antibody fusion proteins
EP2279253B1 (en) 2008-04-09 2016-11-16 Maxcyte, Inc. Engineering and delivery of therapeutic compositions of freshly isolated cells
EP2331566B1 (en) 2008-08-26 2015-10-07 City of Hope Method and compositions for enhanced anti-tumor effector functioning of t cells
WO2010045002A2 (en) 2008-09-26 2010-04-22 Tocagen Inc. Gene therapy vectors and cytosine deaminases
US8829173B2 (en) 2008-09-26 2014-09-09 Tocagen Inc. Recombinant vectors
US8329882B2 (en) 2009-02-18 2012-12-11 California Institute Of Technology Genetic control of mammalian cells with synthetic RNA regulatory systems
EP2438443A4 (en) * 2009-06-02 2012-07-25 Targeted Molecular Diagnostics Llc METHOD FOR DETECTING AND QUANTIFYING THE P95 COMPONENT OF HER2 / NEU (ERBB2)
US9873035B2 (en) * 2009-07-09 2018-01-23 Cfph, Llc Amusement device for a game of chance involving one or more rolling indicators on a rotating element with position indicators
JP5934099B2 (ja) * 2009-10-01 2016-06-15 アメリカ合衆国 抗血管内皮増殖因子受容体−2キメラ抗原受容体及び癌の治療のためのその使用
EP3527585B1 (en) 2009-11-03 2022-02-16 City of Hope Truncated epiderimal growth factor receptor (egfrt) for transduced t cell selection
JP5285678B2 (ja) 2010-06-18 2013-09-11 株式会社エヌ・ティ・ティ・ドコモ 移動通信方法及びコアネットワーク装置
PT3012268T (pt) 2010-09-08 2018-01-31 Chemotherapeutisches Forschungsinstitut Georg Speyer Haus Recetores de antigénio quimérico com uma região de charneira otimizada
KR20230133410A (ko) 2010-12-09 2023-09-19 더 트러스티스 오브 더 유니버시티 오브 펜실바니아 암을 치료하기 위한 키메릭 항원 수용체 변형 t 세포의 용도
EA201391059A1 (ru) 2011-01-18 2014-05-30 Дзе Трастиз Оф Дзе Юниверсити Оф Пенсильвания Композиции для лечения рака и способы их применения
BR112013024395B1 (pt) 2011-03-23 2021-10-26 Fred Hutchinson Cancer Research Center Composições adotivas de imunoterapia celular e método para fabricação da dita composição
CN103502439B (zh) * 2011-04-13 2016-10-12 因缪尼卡姆股份公司 用于抗原特异性t细胞增殖的方法
US20130071414A1 (en) * 2011-04-27 2013-03-21 Gianpietro Dotti Engineered cd19-specific t lymphocytes that coexpress il-15 and an inducible caspase-9 based suicide gene for the treatment of b-cell malignancies
EP3683319A1 (en) 2011-06-01 2020-07-22 Precision Biosciences, Inc. Methods and products for producing engineered mammalian cell lines with amplified transgenes
CN103649125A (zh) * 2011-06-22 2014-03-19 霍夫曼-拉罗奇有限公司 利用包含mhc i类的复合物通过循环中的病毒特异性细胞毒性t细胞清除靶细胞
CA2851795C (en) * 2011-10-20 2018-11-13 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-cd22 chimeric antigen receptors
DE102011118018B4 (de) 2011-10-25 2017-10-26 Plasmidfactory Gmbh & Co. Kg Minicircles mit Transpositionskassetten und ihre Verwendung zur Transformation von Zellen
US10391126B2 (en) 2011-11-18 2019-08-27 Board Of Regents, The University Of Texas System CAR+ T cells genetically modified to eliminate expression of T-cell receptor and/or HLA
ITRM20120058A1 (it) * 2012-02-20 2013-08-21 Pisanelli Giovanni Codacci Famiglia di molecole a base di zuccheri ad uso terapeutico e relativo procedimento di produzione
JP2015509717A (ja) * 2012-02-22 2015-04-02 ザ トラスティーズ オブ ザ ユニバーシティ オブ ペンシルバニア 抗腫瘍活性およびcar存続性を強化するためのicosベースのcarの使用
RU2766608C2 (ru) 2012-04-11 2022-03-15 Дзе Юнайтед Стейтс Оф Америка, Эз Репрезентед Бай Дзе Секретари, Департмент Оф Хелс Энд Хьюман Сёрвисез Химерные антигенные рецепторы, нацеленные на антиген созревания b-клеток
US20130280220A1 (en) 2012-04-20 2013-10-24 Nabil Ahmed Chimeric antigen receptor for bispecific activation and targeting of t lymphocytes
US9540657B2 (en) 2012-05-25 2017-01-10 California Institute Of Technology Expression of secreted and cell-surface polypeptides
KR20150027756A (ko) 2012-05-30 2015-03-12 베일러 칼리지 오브 메디신 Dna 수복, 변경 및 대체를 위한 도구로서의 초나선 미니벡터
EP2669378A1 (en) 2012-05-31 2013-12-04 Helmut Hanenberg Cytochrome P450 suicide gene system
US9792559B2 (en) 2012-06-01 2017-10-17 Nec Corporation Switching system, line card, switch card, FDB learning method, FDB learning arbitration method and program
KR102135239B1 (ko) 2012-08-20 2020-07-17 프레드 헛친슨 켄서 리서치 센터 세포 면역요법을 위한 방법 및 조성물
WO2014039044A1 (en) 2012-09-06 2014-03-13 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of producing t memory stem cell populations
WO2014055657A1 (en) 2012-10-05 2014-04-10 The Trustees Of The University Of Pennsylvania Use of a trans-signaling approach in chimeric antigen receptors
WO2014097442A1 (ja) 2012-12-20 2014-06-26 三菱電機株式会社 車載装置及びプログラム
US20150329640A1 (en) * 2012-12-20 2015-11-19 Bluebird Bio, Inc. Chimeric antigen receptors and immune cells targeting b cell malignancies
EP2964753B1 (en) 2013-03-07 2018-04-25 Baylor College of Medicine Targeting cd138 in cancer
EP2777711A1 (en) * 2013-03-11 2014-09-17 Icon Genetics GmbH Her2/Neu cancer vaccine
TWI654206B (zh) 2013-03-16 2019-03-21 諾華公司 使用人類化抗-cd19嵌合抗原受體治療癌症
US9629877B2 (en) * 2013-05-14 2017-04-25 Board Of Regents, The University Of Texas System Human application of engineered chimeric antigen receptor (CAR) T-cells
US9108442B2 (en) 2013-08-20 2015-08-18 Ricoh Company, Ltd. Image forming apparatus
KR20160079854A (ko) 2013-10-31 2016-07-06 프레드 헛친슨 켄서 리서치 센터 변형된 조혈 줄기/선조 및 비-t 효과기 세포 및 이의 용도
JP6538684B2 (ja) 2013-11-21 2019-07-03 ユーシーエル ビジネス ピーエルシー 細胞
CA2936501A1 (en) 2014-01-13 2015-07-16 Stephen J. Forman Chimeric antigen receptors (cars) having mutations in the fc spacer region and methods for their use
EP3593812A3 (en) 2014-03-15 2020-05-27 Novartis AG Treatment of cancer using chimeric antigen receptor
EP3943507A1 (en) 2014-04-10 2022-01-26 Seattle Children's Hospital, dba Seattle Children's Research Institute Drug related transgene expression
CN108174604B (zh) 2015-08-07 2023-06-23 西雅图儿童医院(Dba西雅图儿童研究所) 用于实体瘤靶向的双特异性car t细胞
AU2017213661B2 (en) 2016-02-05 2022-06-02 City Of Hope Administration of engineered T cells for treatment of cancers in the central nervous system
MX2019006631A (es) 2016-12-12 2019-11-12 Seattle Childrens Hospital Dba Seattle Childrens Res Inst Variantes quimericas de factores de transcripcion con sensibilidad aumentada a induccion por ligando de farmaco de expresion transgenica en celulas mamiferas.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013123061A1 (en) * 2012-02-13 2013-08-22 Seattle Children's Hospital D/B/A Seattle Children's Research Institute Bispecific chimeric antigen receptors and therapeutic uses thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JONNALAGADDA M. ET AL., GENE THER., vol. 20(8) (2013), JPN6019007638, pages 853 - 860, ISSN: 0004216526 *
KACHEROVSKY N. ET AL., NUCLEIC ACIDS RESEARCH, vol. Vol.40 No.11 (2012), JPN6019007641, pages 85, ISSN: 0004216527 *
金森 利至 他: "ヒト細胞を宿主としたヒトtissue-type plasminogen activatorの発現", 組織培養研究, vol. 8(2)(1990), JPN6019007642, pages 31 - 39, ISSN: 0004216528 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021515576A (ja) * 2018-03-16 2021-06-24 イミュソフト コーポレーション フォリスタチンを分泌するように遺伝子操作されたb細胞ならびにフォリスタチン関連疾患、状態、障害を処置するために、ならびに筋肉の成長および強度を増強するためにこれを使用する方法

Also Published As

Publication number Publication date
ZA201607061B (en) 2024-05-30
MX2016013160A (es) 2017-02-09
CN106661570A8 (zh) 2017-07-04
JP6765967B2 (ja) 2020-10-14
NZ725079A (en) 2018-03-23
IL248235B (en) 2021-01-31
KR102387243B1 (ko) 2022-04-14
EP3129053A4 (en) 2017-11-08
WO2015157399A1 (en) 2015-10-15
KR20220051024A (ko) 2022-04-25
KR102508166B1 (ko) 2023-03-13
RU2016143384A (ru) 2018-05-11
US10865242B2 (en) 2020-12-15
BR112016023523A2 (pt) 2017-10-17
AU2015243927A1 (en) 2016-11-03
AU2015243882A1 (en) 2016-11-03
AU2015243920B2 (en) 2020-10-08
US20170029774A1 (en) 2017-02-02
AU2015243922A1 (en) 2016-11-03
BR112016023517A2 (pt) 2017-10-17
CN106573969B (zh) 2021-07-30
AU2015243882C1 (en) 2020-09-24
RU2016143389A (ru) 2018-05-15
SG10201808819XA (en) 2018-11-29
AU2015243849A1 (en) 2016-11-03
ES2867224T3 (es) 2021-10-20
IL248229B2 (en) 2023-05-01
AU2021201679A1 (en) 2021-04-08
RU2016143385A (ru) 2018-05-15
MY186846A (en) 2021-08-26
IL248235A0 (en) 2016-11-30
CA2945308C (en) 2023-10-31
CA2945302A1 (en) 2015-10-15
CA2945303A1 (en) 2015-10-15
CN113528581A (zh) 2021-10-22
US20190248891A1 (en) 2019-08-15
BR112016023513A2 (pt) 2017-10-17
JP6765968B2 (ja) 2020-10-07
JP2021036867A (ja) 2021-03-11
IL248243A0 (en) 2016-11-30
MY185678A (en) 2021-05-30
CA2945305A1 (en) 2015-10-15
EP3129399A1 (en) 2017-02-15
EP3129471A1 (en) 2017-02-15
MY184163A (en) 2021-03-24
CN106536558A (zh) 2017-03-22
AU2015243882B2 (en) 2020-03-12
EP3129405B1 (en) 2021-02-24
SG11201608392WA (en) 2016-11-29
CN106573969A (zh) 2017-04-19
AU2015243922B2 (en) 2021-08-05
RU2751920C2 (ru) 2021-07-20
PH12016502012A1 (en) 2017-01-09
US20210371517A1 (en) 2021-12-02
IL248238A0 (en) 2016-11-30
CN112877291A (zh) 2021-06-01
EP3954708A1 (en) 2022-02-16
CN106574246A (zh) 2017-04-19
WO2015157399A9 (en) 2016-11-24
KR20160144430A (ko) 2016-12-16
RU2016143384A3 (ja) 2018-11-30
AU2021201679B2 (en) 2023-05-04
EP3129480A1 (en) 2017-02-15
JP2017513470A (ja) 2017-06-01
CN106661570B (zh) 2020-02-07
IL248243B2 (en) 2024-04-01
EP3129471A4 (en) 2017-11-08
EP3129405A4 (en) 2017-08-09
IL248229A (en) 2016-11-30
US20210139583A1 (en) 2021-05-13
US20220064292A1 (en) 2022-03-03
EP3129399B1 (en) 2021-05-26
AU2015243920A1 (en) 2016-11-03
US20180009891A1 (en) 2018-01-11
KR102387243B9 (ko) 2023-07-10
RU2751921C2 (ru) 2021-07-20
CA2945305C (en) 2023-10-17
RU2016143389A3 (ja) 2018-12-04
KR102463529B1 (ko) 2022-11-07
KR20160143762A (ko) 2016-12-14
RU2016143381A3 (ja) 2018-11-30
NZ739448A (en) 2019-10-25
US20220380461A1 (en) 2022-12-01
JP7148580B2 (ja) 2022-10-05
JP2021019589A (ja) 2021-02-18
RU2016143385A3 (ja) 2018-11-30
CA2945308A1 (en) 2015-10-15
RU2752275C2 (ru) 2021-07-26
NZ725081A (en) 2018-02-23
WO2015157384A1 (en) 2015-10-15
CN106535934A (zh) 2017-03-22
US20170015746A1 (en) 2017-01-19
US20220372140A1 (en) 2022-11-24
JP2022184989A (ja) 2022-12-13
MX2016013158A (es) 2017-04-27
SG10201808833XA (en) 2018-11-29
RU2016143381A (ru) 2018-05-11
SA516380056B1 (ar) 2021-07-04
SG11201608393TA (en) 2016-11-29
KR102509481B1 (ko) 2023-03-10
EP3129405A1 (en) 2017-02-15
BR112016023500A2 (pt) 2017-10-17
ZA201607060B (en) 2024-05-30
JP2022153456A (ja) 2022-10-12
US11414486B2 (en) 2022-08-16
JP6788573B6 (ja) 2020-12-16
KR102618955B1 (ko) 2023-12-27
AU2015243927B2 (en) 2021-09-02
PH12016502010A1 (en) 2017-01-09
SG10201808825XA (en) 2018-11-29
JP6772068B2 (ja) 2020-10-21
MY192522A (en) 2022-08-25
SG11201608395PA (en) 2016-11-29
JP7402933B2 (ja) 2023-12-21
JP7093385B2 (ja) 2022-06-29
US20170267742A1 (en) 2017-09-21
JP2017518037A (ja) 2017-07-06
CA2945303C (en) 2024-02-13
JP2022109953A (ja) 2022-07-28
BR112016023507A2 (pt) 2017-10-17
SG10201808811QA (en) 2018-11-29
KR20230038310A (ko) 2023-03-17
KR20220153100A (ko) 2022-11-17
ES2880932T3 (es) 2021-11-26
WO2015157386A1 (en) 2015-10-15
US20170152297A1 (en) 2017-06-01
US20210002364A1 (en) 2021-01-07
RU2729112C2 (ru) 2020-08-04
KR102600544B1 (ko) 2023-11-09
AU2021273652A1 (en) 2021-12-16
WO2015157432A1 (en) 2015-10-15
EP4056201A1 (en) 2022-09-14
AU2015243849B2 (en) 2020-12-17
US10611837B2 (en) 2020-04-07
EP3943507A1 (en) 2022-01-26
JP6788573B2 (ja) 2020-11-25
CN106661570A (zh) 2017-05-10
MX2016013144A (es) 2017-04-27
BR112016023500B1 (pt) 2024-04-30
JP7062720B2 (ja) 2022-05-06
KR20160144432A (ko) 2016-12-16
WO2015157391A1 (en) 2015-10-15
RU2016143388A3 (ja) 2018-11-30
JP7106610B2 (ja) 2022-07-26
NZ758289A (en) 2024-01-26
JP2017515464A (ja) 2017-06-15
KR20160138298A (ko) 2016-12-02
MX2016013149A (es) 2017-04-27
CA2945320A1 (en) 2015-10-15
EP3129399A4 (en) 2017-11-08
JP2021000117A (ja) 2021-01-07
MX2022010807A (es) 2022-09-27
KR20160144431A (ko) 2016-12-16
MX2016013159A (es) 2017-04-27
JP2020195380A (ja) 2020-12-10
SG11201608396YA (en) 2016-11-29
EP3129480A4 (en) 2017-08-16
EP3129053A1 (en) 2017-02-15
US10266592B2 (en) 2019-04-23
IL248243B1 (en) 2023-12-01
PH12016502009A1 (en) 2017-01-09
PH12016502011A1 (en) 2017-01-09
AU2015243849A9 (en) 2019-07-25
IL297591A (en) 2022-12-01
JP2017512484A (ja) 2017-05-25
US11155616B2 (en) 2021-10-26
RU2016143388A (ru) 2018-05-14
AU2021200007A1 (en) 2021-03-04
IL248229B1 (en) 2023-01-01

Similar Documents

Publication Publication Date Title
US20210139583A1 (en) Production of engineered t-cells by sleeping beauty transposon coupled with methotrexate selection
US11590171B2 (en) Targeted replacement of endogenous T cell receptors
US20190161530A1 (en) Chimeric antigen receptor t cell compositions
US20190241910A1 (en) Genome edited immune effector cells
JP2023179469A (ja) 免疫療法のためのt細胞におけるtgfbr2のcrispr-cas9編集のための方法、組成物、および構成要素
CN112040986A (zh) 用于改进的免疫疗法的基因调控组合物和方法
CN113396216A (zh) 用于改进的免疫疗法的组合基因靶标
KR20200079312A (ko) 면역요법을 위한 t 세포 내 cblb의 crispr-cas9 편집 방법, 조성물 및 성분
US20220041999A1 (en) Methods to enrich genetically engineered t cells
JP2020528046A (ja) T細胞に基づく免疫療法の有効性増強のための組成物および方法
CN117120062A (zh) 用于发现cd8 t细胞中治疗靶标的体内crispr筛选系统

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180406

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190517

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200518

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201030

R150 Certificate of patent or registration of utility model

Ref document number: 6788573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250