EP1885677A2 - Procede de fabrication d'une chlorhydrine par reaction entre un hydrocarbure aliphatique poly hydroxyle et un agent de chloration - Google Patents

Procede de fabrication d'une chlorhydrine par reaction entre un hydrocarbure aliphatique poly hydroxyle et un agent de chloration

Info

Publication number
EP1885677A2
EP1885677A2 EP06763189A EP06763189A EP1885677A2 EP 1885677 A2 EP1885677 A2 EP 1885677A2 EP 06763189 A EP06763189 A EP 06763189A EP 06763189 A EP06763189 A EP 06763189A EP 1885677 A2 EP1885677 A2 EP 1885677A2
Authority
EP
European Patent Office
Prior art keywords
aliphatic hydrocarbon
equal
polyhydroxylated aliphatic
ppm
chlorinating agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06763189A
Other languages
German (de)
English (en)
French (fr)
Inventor
Philippe Krafft
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solvay SA
Original Assignee
Solvay SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39543862&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1885677(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from FR0505120A external-priority patent/FR2885903B1/fr
Priority claimed from EP05104321A external-priority patent/EP1762556A1/en
Application filed by Solvay SA filed Critical Solvay SA
Priority to EP06763189A priority Critical patent/EP1885677A2/fr
Publication of EP1885677A2 publication Critical patent/EP1885677A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/62Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by introduction of halogen; by substitution of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • C07C29/82Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation by azeotropic distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/34Halogenated alcohols
    • C07C31/36Halogenated alcohols the halogen not being fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/34Halogenated alcohols
    • C07C31/42Polyhydroxylic acyclic alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/06Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the liquid phase
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/24Synthesis of the oxirane ring by splitting off HAL—Y from compounds containing the radical HAL—C—C—OY
    • C07D301/26Y being hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/08Compounds containing oxirane rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals

Definitions

  • the present invention relates to a process for producing a chlorohydrin. It relates more specifically to a process for producing a chlorohydrin from a polyhydroxylated aliphatic hydrocarbon and a chlorinating agent.
  • Chlorohydrins are reaction intermediates in the manufacture of epoxides.
  • Dichloropropanol for example, is a reaction intermediate in the manufacture of epichlorohydrin and epoxy resins (Kirk-Othmer Encyclopedia of Chemical Technology, Fourth Edition, 1992, Vol 2, page 156, John Wiley & Sons, Inc.) .
  • dichloropropanol can be obtained in particular by hypochlorination of allyl chloride, by chlorination of allyl alcohol and by hydrochlorination of glycerol.
  • the latter process has the advantage that dichloropropanol can be obtained from fossil raw materials or renewable raw materials, and it is known that petrochemical natural resources, from which fossil fuels are derived, for example petroleum, natural gas or coal, available on the earth are limited.
  • the international application WO 2005/021476 and the application WO 2005/054167 of SOLVAY SA describe a process for the manufacture of dichloropropanol by reaction between glycerol and hydrogen chloride.
  • the hydrogen chloride may be gaseous or in the form of aqueous solutions.
  • the object of the invention is to provide a process for producing chlorohydrin from a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture of them, and a chlorinating agent that does not have these disadvantages.
  • the invention therefore relates to a process for producing a chlorohydrin from a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon, or a mixture thereof, and a chlorinating agent, the chlorinating agent containing at least one of nitrogen, oxygen, hydrogen, chlorine, an organic hydrocarbon compound, a halogenated organic compound, an oxygenated organic compound and a metal.
  • the hydrocarbon-based organic compound is chosen from aromatic, saturated or unsaturated aliphatic hydrocarbons and mixtures thereof.
  • the unsaturated aliphatic hydrocarbon is chosen from acetylene, ethylene, propylene, butene, propadiene, methylacetylene and their mixtures
  • the saturated aliphatic hydrocarbon is chosen from methane, ethane, propane, butane and mixtures thereof
  • the aromatic hydrocarbon is benzene.
  • the halogenated organic compound is a chlorinated organic compound chosen from chloromethanes, chloroethanes, chloropropanes, chlorobutanes, vinyl chloride, vinylidene chloride, monochloropropenes, perchlorethylene, trichlorethylene, chlorobutadiene, chlorobenzenes and mixtures thereof.
  • the halogenated organic compound is a fluorinated organic compound chosen from fluoromethanes, fluoroethanes, vinyl fluoride, vinylidene fluoride, and mixtures thereof.
  • the oxygenated organic compound is chosen from alcohols, chloroalcohols, chloroethers and their mixtures.
  • the metal is chosen from alkali metals, alkaline earth metals, iron, nickel, copper, lead, arsenic, cobalt, titanium, cadmium, antimony, mercury, zinc, selenium, aluminum, bismuth, and mixtures thereof.
  • the chlorinating agent is at least partially derived from a process for producing allyl chloride and / or a process for producing chloromethanes and / or a chlorinolysis process and or a process for oxidizing chlorinated compounds at a temperature greater than or equal to 800 ° C.
  • the manufacturing processes can be carried out independently in batch mode or in continuous mode. It is preferred that at least one of the methods be conducted in a continuous mode. It is more particularly preferred that the continuous mode be used for all manufacturing processes considered.
  • the chlorinating agent contains hydrogen chloride.
  • polyhydroxylated aliphatic hydrocarbon refers to a hydrocarbon that contains at least two hydroxyl groups attached to two different saturated carbon atoms.
  • the polyhydroxylated aliphatic hydrocarbon may contain, but is not limited to, from 2 to 60 carbon atoms.
  • Each of the carbons of a polyhydroxylated aliphatic hydrocarbon bearing the functional hydroxyl (OH) group can not have more than one OH group, and must be of sp3 hybridization.
  • the carbon atom carrying the OH group may be primary, secondary or tertiary.
  • the polyhydroxylated aliphatic hydrocarbon used in the present invention must contain at least two sp3 hybridization carbon atoms carrying an OH group.
  • the polyhydroxylated aliphatic hydrocarbon includes any hydrocarbon containing a vicinal diol (1,2-diol) or a vicinal triol (1,2,3-triol) including higher orders of these repeating units, vicinal or contiguous .
  • the definition of the polyhydroxylated aliphatic hydrocarbon also includes, for example, one or more 1,3-, 1,4-, 1,5- and 1,6-diol functional groups.
  • the polyhydroxylated aliphatic hydrocarbon may also be a polymer such as alcohol - AT -
  • the polyhydroxylated aliphatic hydrocarbons may contain aromatic entities or hetero atoms including, for example, hetero atoms of the halogen, sulfur, phosphorus, nitrogen, oxygen, silicon and boron type, and mixtures thereof.
  • Polyhydroxylated aliphatic hydrocarbons for use in the present invention include, for example, 1,2-ethanediol (ethylene glycol), 1,2-propanediol (propylene glycol), 1,3-propanediol, 1-chloro-2, 3-propanediol (chloropropanediol), 2-chloro-1,3-propanediol
  • the polyhydroxylated aliphatic hydrocarbon used in the present invention includes, for example, 1,2-ethanediol, 1,2-propanediol,
  • the polyhydroxylated aliphatic hydrocarbon used in the present invention includes, for example, 1,2-ethanediol, 1,2-propanediol, chloropropanediol and 1,2,3-propanetriol, and mixtures thereof. least two of them. 1,2,3-propanetriol or glycerol is the most preferred.
  • esters of the polyhydroxylated aliphatic hydrocarbon may be present in the polyhydroxylated aliphatic hydrocarbon and / or may be produced in the process for the manufacture of chlorohydrin and / or may be manufactured prior to the process for producing the chlorohydrin.
  • examples of polyhydroxylated aliphatic hydrocarbon esters include ethylene glycol monoacetate, propanediol monoacetates, glycerol monoacetates, glycerol monostearates, glycerol diacetates, and mixtures thereof.
  • chorhydrin is used here to describe a compound containing at least one hydroxyl group and at least one chlorine atom attached to different saturated carbon atoms.
  • a chlorohydrin which contains at least two hydroxyl groups is also a polyhydroxylated aliphatic hydrocarbon.
  • the starting material and the product of the reaction can each be chlorohydrins.
  • the "produced" chlorohydrin is more chlorinated than the starting chlorohydrin, that is to say that it has more chlorine atoms and fewer hydroxyl groups than the chlorohydrin departure.
  • Preferred chlorohydrins are chloroethanol, chloropropanol, chloropropanediol, dichloropropanol and mixtures of at least two of them. Dichloropropanol is particularly preferred.
  • chlorohydrins are 2-chloroethanol, 1-chloropropan-2-ol, 2-chloropropan-1-ol, 1-chloropropane-2,3-diol, 2-chloropropane-1,3-diol. 1,3-dichloropropan-2-ol, 2,3-dichloropropan-1-ol and mixtures of at least two of them.
  • the polyhydroxylated aliphatic hydrocarbon, the polyhydroxylated aliphatic hydrocarbon ester, or the mixture of them, in the process according to the invention can be obtained starting from fossil raw materials or starting from renewable raw materials, from preferably from renewable raw materials.
  • Fossil raw materials are understood to mean materials from the processing of petrochemical natural resources, for example, petroleum, natural gas, and coal. Of these materials, organic compounds having 2 and 3 carbon atoms are preferred.
  • the polyhydroxylated aliphatic hydrocarbon is glycerol, allyl chloride, allyl alcohol and "synthetic" glycerol are particularly preferred.
  • synthetic glycerol is meant a glycerol generally obtained from petrochemical resources.
  • the polyhydroxylated aliphatic hydrocarbon is ethylene glycol
  • ethylene and “synthetic" ethylene glycol are particularly preferred.
  • polyhydroxylated aliphatic hydrocarbon is propylene glycol
  • propylene and synthetic propylene glycol are particularly preferred.
  • synthetic propylene glycol is meant a propylene glycol generally obtained from petrochemical resources.
  • Renewable raw materials are defined as materials derived from the treatment of renewable natural resources.
  • “natural” ethylene glycol, “natural” propylene glycol and “natural” glycerol are preferred.
  • “natural” ethylene glycol, propylene glycol and glycerol are obtained by sugar conversion via thermochemical processes, which sugars can be obtained from biomass, as described in Industrial Bioproducts: Today and Tomorrow, Energetics. , Incorporated for the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Office of the Biomass Program, July 2003, pages 49, 52 to 56.
  • One of these processes is, for example, the catalytic hydrogenolysis of sorbitol obtained by thermochemical conversion of glucose, for example another method.
  • catalytic hydrogenolysis of xylitol obtained by hydrogenation of xylose Xylose may, for example, be obtained by hydrolysis of hemicellulose contained in corn fibers
  • natural glycerol or “glycerol obtained from renewable raw materials” is intended to mean particular glycerol obtained during the manufacture of biodiesel or glycerol obtained during transformations of fats or oils of plant or animal origin in general such as saponification reactions, trans-esterification or hydrolysis.
  • oils that can be used to make natural glycerol are all common oils, such as palm, palm kernel, copra, babassu, old or new rapeseed, sunflower, maize, castor oil and cotton oils. , peanut, soybean, flax and crambe oils and all oils derived for example from sunflower or rapeseed plants obtained by genetic modification or hybridization.
  • oils used it is also possible to indicate partially modified oils, for example by polymerization or oligomerization, for example the "standolies" of linseed oil, sunflower oil and blown vegetable oils.
  • a particularly suitable glycerol can be obtained during the processing of animal fats.
  • Another particularly suitable glycerol can be obtained during the manufacture of biodiesel.
  • a third particularly suitable glycerol can be obtained during the transformation of fats or oils, animal or vegetable, by trans-esterification in the presence of a heterogeneous catalyst, as described in documents FR 2752242,
  • the heterogeneous catalyst is chosen from mixed oxides of aluminum and zinc, mixed oxides of zinc and titanium, mixed oxides of zinc, titanium and aluminum, and oxides. mixed bismuth and aluminum, and the heterogeneous catalyst is implemented in the form of a fixed bed.
  • the latter process may be a biodiesel manufacturing process.
  • the polyhydroxylated aliphatic hydrocarbon, the polyhydroxylated aliphatic hydrocarbon ester or the mixture of them may be as described in the patent application entitled " Process for the preparation of chlorohydrin by conversion of polyhydroxylated aliphatic hydrocarbons "deposited in the name of SOLVAY SA on the same day as the present application, the contents of which are hereby incorporated by reference.
  • a process for producing a chlorohydrin in which a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon, or a mixture thereof, of which the total content of expressed metals, is reacted. in the form of elements is greater than or equal to 0.1 ⁇ g / kg and less than or equal to 1000 mg / kg, with a chlorinating agent.
  • glycerol obtained from renewable raw materials.
  • the process for producing chlorohydrins according to the invention may be followed by the manufacture of an epoxide.
  • epoxide is used herein to describe a compound having at least one oxygen bridged on a carbon-carbon bond.
  • carbon atoms of the carbon-carbon bond are adjacent and the compound may contain other atoms than carbon and oxygen atoms, such as hydrogen atoms and halogens.
  • the preferred epoxides are ethylene oxide, propylene oxide, glycidol, epichlorohydrin and mixtures of at least two of them.
  • the process for producing the epoxide may be followed by a process for producing epoxy resins.
  • the processes from which the chlorinating agent may be derived are often associated.
  • the heavy by-products of the synthesis of allyl chloride and epichlorohydrin are advantageously employed as a source of raw materials in a high temperature chlorinolysis process to produce commercially valuable materials. These facilities may, however, have other sources of raw materials. Oxidation at or above 800 ° C is used to remove chlorinated or oxygenated organic waste.
  • the processes from which the chlorinating agent can be generated generate hydrogen chloride or aqueous solutions of hydrogen chloride as co-produced. These acids are generally of poor quality, containing traces of organic matter. They are advantageously engaged in the aforementioned chlorohydrin manufacturing process as such or after treatment.
  • an at least partial feed of the process for the manufacture of chorhydrin by the chlorinating agent from a process for producing allyl chloride and / or a chlorinolysis process and / or a manufacturing process chloromethane and / or a process for the oxidation of chlorinated compounds at a temperature greater than or equal to 800 ° C in addition to limiting the transport of hazardous materials with removal of the costs related to these transports, allows an advantageous alternative valuation of the acids co-products in these processes.
  • plant sharing between various manufacturing processes of the same product can be envisaged, which also contributes to a reduction in the costs of these processes.
  • the polyhydroxylated aliphatic hydrocarbon, the polyhydroxylated aliphatic hydrocarbon ester, or the mixture of them can be a crude product or a purified product, such as as specifically disclosed in SOLVAY SA application WO 2005/054167, page 2, line 8, to page 4, line 2.
  • the polyhydroxylated aliphatic hydrocarbon the polyhydroxylated aliphatic hydrocarbon ester, or mixture thereof may have an alkali and / or alkaline earth metal content may be less than or equal to 5 g / kg as described in the application entitled " A process for producing a chlorohydrin by chlorination of a polyhydroxylated aliphatic hydrocarbon deposited in the name of SOLVAY SA on the same day as the present application, the contents of which are hereby incorporated by reference.
  • the alkali metals may be selected from lithium, sodium, potassium, rubidium and cesium and the alkaline earth metals may be selected from magnesium, calcium, strontium and barium.
  • the content of alkaline and / or alkaline-earth metals of the polyhydroxylated aliphatic hydrocarbon, of the ester of polyhydroxylated aliphatic hydrocarbon or mixture thereof is less than or equal to 5 g / kg, often less than or equal to 1 g / kg, more particularly less than or equal to 0.5 g / kg and in some case less than or equal to 0.01 g / kg.
  • the content of alkaline and / or alkaline earth metals of glycerol is generally greater than or equal to 0.1 ⁇ g / kg.
  • the alkali metals are generally lithium, sodium, potassium and cesium, often sodium and potassium, and frequently sodium.
  • the lithium content of the polyhydroxylated aliphatic hydrocarbon, of the polyhydroxylated aliphatic hydrocarbon ester, or of the mixture of them is generally less than or equal to at 1 g / kg, often less than or equal to 0.1 g / kg and more particularly less than or equal to 2 mg / kg. This content is generally greater than or equal to 0.1 ⁇ g / kg.
  • the sodium content of the polyhydroxylated aliphatic hydrocarbon, of the polyhydroxylated aliphatic hydrocarbon ester, or of the mixture of them is generally less than or equal to 1 g / kg, often less than or equal to 0.1 g / kg and more particularly less than or equal to 2 mg / kg. This content is generally greater than or equal to 0.1 ⁇ g / kg.
  • the potassium content of the polyhydroxylated aliphatic hydrocarbon, of the polyhydroxylated aliphatic hydrocarbon ester, or of the mixture of them is generally less than or equal to 1 g / kg, often less than or equal to 0.1 g / kg and more particularly less than or equal to 2 mg / kg. This content is generally greater than or equal to 0.1 ⁇ g / kg.
  • the rubidium content of the polyhydroxylated aliphatic hydrocarbon, of the polyhydroxylated aliphatic hydrocarbon ester, or of the mixture of them is generally less than or equal to 1 g / kg, often less than or equal to 0.1 g / kg and more particularly less than or equal to 2 mg / kg. This content is generally greater than or equal to 0.1 ⁇ g / kg.
  • the cesium content of the polyhydroxylated aliphatic hydrocarbon, of the polyhydroxylated aliphatic hydrocarbon ester, or of the mixture of them is generally less than or equal to 1 g / kg, often less than or equal to 0.1 g / kg and more particularly lower or equal to 2 mg / kg. This content is generally greater than or equal to 0.1 ⁇ g / kg.
  • the alkaline-earth elements are generally magnesium, calcium, strontium and barium, often magnesium and calcium and frequently calcium.
  • the magnesium content of the polyhydroxylated aliphatic hydrocarbon, of the polyhydroxylated aliphatic hydrocarbon ester, or of the mixture of them is generally less than or equal to 1 g / kg, often less than or equal to 0.1 g / kg and more particularly less than or equal to 2 mg / kg. This content is generally greater than or equal to 0.1 ⁇ g / kg.
  • the calcium content of the polyhydroxylated aliphatic hydrocarbon, of the polyhydroxylated aliphatic hydrocarbon ester, or of the mixture of them is generally less than or equal to 1 g / kg, often less than or equal to 0.1 g / kg and more particularly less than or equal to 2 mg / kg. This content is generally greater than or equal to 0.1 ⁇ g / kg.
  • the strontium content of the polyhydroxylated aliphatic hydrocarbon, of the polyhydroxylated aliphatic hydrocarbon ester, or of the mixture of them is generally less than or equal to 1 g / kg, often less than or equal to 0.1 g / kg and more particularly less than or equal to 2 mg / kg. This content is generally greater than or equal to 0.1 ⁇ g / kg.
  • the barium content of the polyhydroxylated aliphatic hydrocarbon, of the polyhydroxylated aliphatic hydrocarbon ester, or of the mixture of them is generally less than or equal to 1 g / kg, often less than or equal to 0.1 g / kg and more particularly less than or equal to 2 mg / kg. This content is generally greater than or equal to 0.1 ⁇ g / kg.
  • the alkali and / or alkaline earth metals are generally present in the form of salts, frequently in the form of chlorides, sulphates and mixtures thereof. Sodium chloride is most often encountered.
  • the chlorinating agent may be as described in the application WO 2005/054167 of SOLVAY SA, of page 4, line 25, on page 6, line 2 .
  • the chlorinating agent may be hydrogen chloride may be as described in SOLVAY SA application WO 2005/054167, page 4, line 30,
  • the chlorinating agent is gaseous hydrogen chloride or an aqueous solution of hydrogen chloride or a hydrogen chloride. combination of both.
  • This chlorinating agent is particularly advantageous since it is often obtained as a by-product in organic synthesis of chlorination, elimination or substitution, or by combustion.
  • the present invention allows recovery of this by-product.
  • the chlorinating agent comes at least partially from a process for producing allyl chloride.
  • the allyl chloride can be obtained by chlorination of propylene.
  • the process for producing allyl chloride is then fed with at least propylene and chlorine.
  • Other compounds may also be present in the feed such as non-chlorinated hydrocarbons other than propylene, partially chlorinated hydrocarbons, totally chlorinated hydrocarbons or mixtures thereof.
  • the allyl chloride can be obtained by dehydrochlorination of dichloropropane.
  • the process for producing allyl chloride is then fed with at least partially chlorinated hydrocarbons, preferably containing dichloropropane, in particular 1,2-dichloropropane.
  • the chlorinating agent comes at least partially from a process for producing chloromethanes.
  • the manufacturing process is fed with methane and / or methyl chloride and chlorine.
  • the process chlorination can be thermal, photochemical or catalytic. Thermal and photochemical processes are preferred.
  • the chlorinating agent comes at least partially from a chlorinolysis process.
  • chlorinolysis is meant any decomposition reaction with chlorine and more particularly decomposition reactions of organic compounds, carried out at temperatures greater than or equal to 300 ° C, preferably greater than or equal to 350 ° C.
  • the chlorinolysis process is fed with at least chlorine and aliphatic or aromatic hydrocarbons, saturated or unsaturated, preferably aliphatic and selected from non-chlorinated aliphatic hydrocarbons, comprising from 1 to 6 carbon atoms, partially and / or totally chlorinated aliphatic hydrocarbons having 1 to 6 carbon atoms and 1 to 14 chlorine atoms, and mixtures thereof.
  • the non-chlorinated hydrocarbons are, for example, propane, propylene, methyl acetylene, methane and ethylene.
  • Partially chlorinated hydrocarbons are, for example, chloroform, trichloropropanes, chloropropenes, tetrachloroethanes, trichloroethanes, acetylene chloride and tetrachloropentane.
  • the totally chlorinated hydrocarbons can be selected from carbon tetrachloride, hexachloroethane, and perchlorethylene.
  • An example of such a process is the process of pyrolysis of chlorinated hydrocarbons containing from one to three carbon atoms in the presence of chlorine for the production of perchlorethylene and carbon tetrachloride. Generally, these hydrocarbons do not contain other heteroatoms than chlorine.
  • the chlorinating agent comes at least partially from a process for the oxidation of chlorinated compounds at a temperature greater than or equal to 800 ° C. This temperature is often greater than or equal to 900 ° C. and more particularly greater than or equal to 1000 ° C. Thereafter, this process will be referred to as a process
  • the oxidation process is fed with at least one oxidizing agent and at least one chlorinated compound.
  • the oxidizing agent may be selected from oxygen, chlorine oxides, nitrogen oxides, their mixtures and their mixtures with nitrogen. Water can be usefully added to the oxidizing agent especially to facilitate the oxidation of chlorinated compounds.
  • the chlorinated compounds can be inorganic or organic compounds. Chlorinated organic compounds are preferred. These chlorinated organic compounds are hydrocarbons chosen from partially chlorinated hydrocarbons comprising from 1 to 10 carbon atoms and from 1 to 21 chlorine atoms, the totally chlorinated hydrocarbons comprising from 1 to 4 carbon atoms and mixtures thereof.
  • chlorinated compounds from processes for producing allyl chloride, epichlorohydrin, dichloroethane, propylene oxide, vinylidene chloride, vinyl chloride, are oxidized at high temperature.
  • 1-trichloroethane, chloromethanes, trichlorethylene and chlorinolysis process to enhance the energy content of chlorinated compounds in the form of CO 2 and generating hydrogen chloride in the form of aqueous solutions of hydrogen chloride (hydrochloric acid) "Technical”) that can be purified or not.
  • the chlorinating agent resulting from a process for producing allyl chloride and / or a process for producing chloromethanes and / or a chlorinolysis process and or a high temperature oxidation process which feeds the manufacture of dichloropropanol contains hydrogen chloride, liquid or gaseous, preferably gaseous.
  • Hydrogen chloride is particularly preferably substantially anhydrous.
  • substantially anhydrous hydrogen chloride is meant hydrogen chloride whose water content is generally less than or equal to 15 mol%, preferably less than or equal to 10 mol% and particularly preferably preferred less than or equal to 8 mol%. This water content is generally greater than or equal to 0.01 ppm in mole.
  • the nitrogen content of the chlorinating agent is generally greater than or equal to 0.1 ppm vol, often greater than or equal to 10 ppm vol and in particular greater than or equal to 20 ppm flight .
  • This content is generally less than or equal to 50 000 ppm vol, often less than or equal to 40 000 ppm vol and in particular less than or equal to 30 000 ppm vol.
  • the oxygen content of the chlorinating agent is generally greater than or equal to 0 , 1 ppm volume and often greater than or equal to 0.5 ppm vol. This content is generally less than or equal to 5% vol, often less than or equal to 2% vol and in particular less than or equal to 1% vol.
  • the hydrogen content of the chlorinating agent is generally greater than or equal to 0. , 1 ppm vol and often greater than or equal to 0.5 ppm vol. This content is generally less than or equal to 0.1% vol and often less than or equal to 500 ppm vol.
  • the chlorine content of the chlorinating agent is generally greater than or equal to 0 , 1 ppm vol and often greater than or equal to 0.5 ppm vol.
  • This content is generally less than or equal to 2000 ppm vol, often less than or equal to 1000 ppm vol and in particular less than or equal to 500 ppm vol.
  • the methane content of the chlorinating agent is generally greater than or equal to 0.1 ppm vol, often greater than or equal to 1 ppm vol and in particular greater than or equal to 5 ppm vol.
  • This content is generally less than or equal to 10,000 ppm vol, often less than or equal to 5,000 ppm vol and in particular less than or equal to 40,000 ppm vol.
  • the carbon monoxide content of the chlorinating agent is generally greater or equal to 0.1 ppm vol, often greater than or equal to 0.5 ppm vol and in particular greater than or equal to 1 ppm vol.
  • This content is generally less than or equal to 10,000 ppm vol, often less than or equal to 5,000 ppm vol and in particular less than or equal to 4,000 ppm vol.
  • the carbon dioxide content of the chlorinating agent is generally greater or equal to 0.1 ppm vol, often greater than or equal to 0.5 ppm vol and in particular greater than or equal to 1 ppm vol.
  • This content is generally less than or equal to 10,000 ppm vol, often less than or equal to 5,000 ppm vol and in particular less than or equal to 4,000 ppm vol.
  • the overall content of chlorinated organic products such as, for example, chloromethanes, ethyl chloride, dichloroethane, vinyl chloride and chlorobenzene, in the chlorinating agent, in not taking into account the water and nitrogen present in the chlorinating agent, is generally greater than or equal to 0.1 ppm vol, often greater than or equal to 1 ppm vol and in particular greater than or equal to 5 ppm flight .
  • This content is generally less than or equal to 50,000 ppm vol, often less than or equal to 20,000 ppm vol and in particular less than or equal to 10,000 ppm vol.
  • the overall content of non-chlorinated organic products such as, for example, ethylene, acetylene, ethane, propylene, methylacetylene and propane, in the chlorinating agent , without taking into account the water and nitrogen present in the chlorinating agent, is generally greater than or equal to 0.1 ppm vol, often greater than or equal to 1 ppm vol and in particular greater than or equal to 5 ppm vol.
  • This content is generally less than or equal to 50,000 ppm vol, often less than or equal to 20,000 ppm vol and in particular less than or equal to 10,000 ppm vol.
  • the overall content of fluorinated organic products such as, for example, vinyl fluoride, fluoroethane, vinylidene fluoride and fluoromethanes, in the chlorinating agent, by not taking account of the water and nitrogen present in the chlorinating agent, is generally greater than or equal to 0.1 ppm vol, often greater than or equal to 1 ppm vol and in particular greater than or equal to 5 ppm vol.
  • This content is generally less than or equal to 500 ppm vol, often less than or equal to 20 000 ppm vol and in particular less than or equal to 100 000 ppm vol.
  • the overall content of organic products comprising heteroatoms other than chlorine and fluoro such as, for example, alcohols and acids, in the chlorinating agent, without taking into account the water and nitrogen present in the chlorinating agent is generally greater than or equal to 0.1 ppm vol, often greater than or equal to 1 ppm vol and in particular greater than or equal to 5 ppm vol.
  • This content is generally less than or equal to 50,000 ppm vol, often less than or equal to 20,000 ppm vol and in particular less than or equal to 10,000 ppm vol.
  • the propylene content of the chlorinating agent is generally greater than or equal to 0.1 ppm vol, often greater than or equal to 1 ppm vol and in particular greater than or equal to 5 ppm vol. This content is generally less than or equal to
  • the monochloropropene content of the chlorinating agent is generally greater than or equal to 0.1 ppm vol, often greater than or equal to 1 ppm vol and in particular greater than or equal to 5 ppm vol.
  • This content is generally less than or equal to 5000 ppm vol, often less than or equal to 1000 ppm vol and in particular less than or equal to 500 ppm vol.
  • the sum of the chloropropane contents of the chlorinating agent, without taking into account the water and nitrogen present in the chlorinating agent, is generally greater or equal to 0.1 ppm vol, often greater than or equal to 1 ppm vol and in particular greater than or equal to 5 ppm vol.
  • This content is generally less than or equal to 10,000 ppm vol, often less than or equal to 4,000 ppm vol and in particular less than or equal to 3,000 ppm vol.
  • the content of isopropanol, chloroalcohols and chloroethers of the chlorinating agent is generally greater than or equal to 0.1 ppm vol, often greater than or equal to 1 ppm vol and in particular greater than or equal to 5 ppm vol.
  • This content is generally less than or equal to 5,000 ppm vol, often less than or equal to 4,000 ppm vol and in particular less than or equal to 3,000 ppm vol.
  • the hydrogen chloride is an aqueous solution of hydrogen chloride.
  • the hydrogen chloride solution content is generally at least 10% by weight. Preferably, this content is greater than or equal to 15% by weight. In this case, the content of the hydrogen chloride solution is generally at most 37% by weight.
  • This second aspect allows the development of aqueous solutions of hydrogen chloride of low quality, resulting for example from the pyrolysis of chlorinated organic compounds or having been used for the pickling of metals.
  • a concentrated aqueous solution of hydrogen chloride is used, generally comprising from 28 to 37% by weight of hydrogen chloride as the primary source of the chlorinating agent and said concentrated solution is separated off. for example by evaporation in at least two fractions, the first consisting essentially of anhydrous hydrogen chloride and the second comprising hydrogen chloride and water in proportions in which they form an azeotrope, said azeotrope being at a pressure of 101.3 kPa of 19 to 25% of hydrogen chloride, and 75 to 81% by weight of water, in particular of about 20% by weight of hydrogen chloride and about 80% water.
  • the aqueous solution of 20% hydrogen chloride may optionally be used to absorb hydrogen chloride produced by the allyl chloride production process, the chlorinolysis process, the chloromethane production process and the process oxidation at high temperature, so as to generate an aqueous solution of hydrogen chloride at 33% by weight of hydrogen chloride.
  • this aspect allows the use of a transportable chlorination agent in an easy manner while allowing an effective control of the water content in the reaction medium, particularly when the reaction between the glycerol and the chlorinating agent is carried out in several steps.
  • the aqueous solution of hydrogen chloride used in this second aspect of the process according to the invention may contain compounds other than water and hydrogen chloride. These compounds can be, inter alia, chlorinated or non-chlorinated inorganic compounds and saturated organic compounds or unsaturated, non-chlorinated, partially chlorinated or totally chlorinated. These compounds may be different depending on the manufacturing process from which the aqueous solution of hydrogen chloride is derived.
  • the individual contents of metals and in particular of alkali metals, alkaline earth metals, iron, nickel, copper, lead, arsenic, cobalt, titanium, cadmium, antimony, mercury, zinc, selenium aluminum and bismuth are generally greater than or equal to 0.03 ppb by weight, often greater than or equal to 0.3 ppb by weight and frequently greater than 1 ppb by weight. weight. These contents are generally less than or equal to 5 ppm by weight and preferably less than or equal to 1 ppm by weight.
  • the chlorinating agent fraction which feeds the manufacture of dichloropropanol and which is derived from a process for producing allyl chloride and / or a process for chlorinolysis and / or a process for producing chloromethane and / or a high temperature oxidation process is generally greater than or equal to 0% by weight of the chlorinating agent, often greater than or equal to 10% by weight and frequently greater than or equal to at 20% by weight.
  • This fraction is generally less than or equal to 100% by weight of the chlorinating agent, often less than or equal to 90% by weight and frequently less than 80% by weight.
  • the reaction between the polyhydroxylated aliphatic hydrocarbon, the ester of the polyhydroxylated aliphatic hydrocarbon, or the mixture of them, and the chlorination can be carried out in a reactor as described in the application WO 2005/054167 SOLVAY SA, on page 6, lines 3 to 23.
  • the reaction between the polyhydroxylated aliphatic hydrocarbon, the ester of the polyhydroxylated aliphatic hydrocarbon, or mixture thereof, and the chlorinating agent may be carried out in equipment, made of or covered with chlorine-resistant materials, as described in the application entitled " Process for producing a chlorohydrin in corrosion-resistant equipment "deposited in the name of SOLVAY SA on the same day as the present application, the contents of which are hereby incorporated by reference.
  • a process for the manufacture of a chlorohydrin comprising a step in which a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof is subjected to a reaction with a chlorinating agent containing hydrogen chloride and at least one other step performed in equipment, made of or coated with chlorinating agent resistant materials, under the conditions of carrying out this step.
  • metallic materials such as enamelled steel, gold and tantalum and non-metallic materials such as high density polyethylene, polypropylene, polyvinylidene fluoride, polytetrafluoroethylene , perfluoroalkoxyalkanes and poly (perfluoropropylvinylether), polysulfones and polysulfides, graphite and impregnated graphite.
  • non-metallic materials such as high density polyethylene, polypropylene, polyvinylidene fluoride, polytetrafluoroethylene , perfluoroalkoxyalkanes and poly (perfluoropropylvinylether), polysulfones and polysulfides, graphite and impregnated graphite.
  • the reaction between the polyhydroxylated aliphatic hydrocarbon, the polyhydroxylated aliphatic hydrocarbon ester, or the mixture of them, and the chlorinating agent may be carried out in a reaction medium, as described in the application entitled “Continuous process for the manufacture of chlorhydrins" filed in the name of SOLVAY SA on the same day as the present application, the content of which is hereby incorporated by reference.
  • a continuous process for the production of chlorohydrin in which a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture of them is reacted with a chlorinating agent and an organic acid.
  • a liquid reaction medium whose composition in the stationary state comprises polyhydroxylated aliphatic hydrocarbon and esters of the polyhydroxylated aliphatic hydrocarbon whose sum of the contents expressed in moles of polyhydroxylated aliphatic hydrocarbon is greater than 1, 1 mol% and less than or equal to 30 mol%, the percentage being related to the organic part of the liquid reaction medium.
  • the organic part of the liquid reaction medium consists of all the organic compounds of the liquid reaction medium, that is to say compounds whose molecule contains at least 1 carbon atom.
  • the reaction between the polyhydroxylated aliphatic hydrocarbon, the polyhydroxylated aliphatic hydrocarbon ester, or the mixture of them, and the chlorinating agent can be carried out in the presence of a catalyst as described in SOLVAY SA application WO 2005/054167, page 6, line 28, to page 8, line 5.
  • a catalyst as described in SOLVAY SA application WO 2005/054167, page 6, line 28, to page 8, line 5.
  • an acid-based catalyst carboxylic acid or on a carboxylic acid derivative having an atmospheric boiling point greater than or equal to 200 ° C, in particular adipic acid and adipic acid derivatives.
  • the reaction between the polyhydroxylated aliphatic hydrocarbon, the polyhydroxylated aliphatic hydrocarbon ester, or the mixture of them, and the chlorinating agent can be carried out at a catalyst concentration, a temperature, a pressure and for residence times as described in SOLVAY SA application WO 2005/054167, page 8, line 6 to page 10, line 10.
  • a temperature of at least 20 ° C and not more than 160 ° C a pressure of not less than 0.3 bar and not more than 100 bar, and a time of stay of not less than 1 hour and not more than 50 hours.
  • the reaction between the polyhydroxylated aliphatic hydrocarbon, the polyhydroxylated aliphatic hydrocarbon ester, or the mixture of them, and the chlorinating agent may be carried out in the presence of a solvent as described in the application WO 2005/054167 of SOLVAY SA, on page 11, lines 12 to 36.
  • an organic solvent such as a chlorinated organic solvent, an alcohol, a ketone, an ester or an ether, a non-aqueous solvent miscible with the polyhydroxylated aliphatic hydrocarbon such as chloroethanol, chloropropanol and chloropropanediol. , dichloropropanol, dioxane, phenol, cresol, and mixtures of chloropropanediol and dichloropropanol, or heavy products of the reaction such as oligomers of at least partially chlorinated and or esterified polyhydroxylated aliphatic hydrocarbon.
  • an organic solvent such as a chlorinated organic solvent, an alcohol, a ketone, an ester or an ether
  • a non-aqueous solvent miscible with the polyhydroxylated aliphatic hydrocarbon such as chloroethanol, chloropropanol and chloropropanediol.
  • the reaction between the polyhydroxylated aliphatic hydrocarbon and the chlorinating agent can be carried out in the presence of a liquid phase comprising heavy compounds other than hydrocarbon polyhydroxylated aliphatic, as described in the application entitled "Process for manufacturing a chlorohydrin in a liquid phase" filed in the name of SOLVAY SA on the same day as the present application, the contents of which are hereby incorporated by reference.
  • a process for producing a chlorohydrin wherein a polyhydroxylated aliphatic hydrocarbon, a polyhydroxylated aliphatic hydrocarbon ester, or a mixture thereof is subjected to a reaction with a chlorinating agent. in the presence of a liquid phase comprising heavy compounds other than the polyhydroxylated aliphatic hydrocarbon and whose boiling point at a pressure of 1 bar absolute is at least 15 ° C higher than the boiling point of chlorohydrin under a pressure of 1 bar absolute.
  • the reaction between the polyhydroxylated aliphatic hydrocarbon, the polyhydroxylated aliphatic hydrocarbon ester, or the mixture of them, and the chlorinating agent is preferably carried out in a liquid reaction medium.
  • the liquid reaction medium may be mono- or multiphasic.
  • the liquid reaction medium consists of all the dissolved or dispersed solid compounds, dissolved or dispersed liquids and gaseous dissolved or dispersed, at the reaction temperature.
  • the reaction medium comprises the reactants, the catalyst, the solvent, the impurities present in the reagents, in the solvent and in the catalyst, the reaction intermediates, the products and the by-products of the reaction.
  • reagents is meant the polyhydroxylated aliphatic hydrocarbon, the polyhydroxylated aliphatic hydrocarbon ester, and the chlorinating agent.
  • impurities present in the polyhydroxylated aliphatic hydrocarbon mention may be made of carboxylic acids, carboxylic acid salts, fatty acid esters with polyhydroxylated aliphatic hydrocarbon, esters of fatty acids with the alcohols used. during the trans-esterification, inorganic salts such as chlorides and sulphates alkali or alkaline earth.
  • polyhydroxylated aliphatic hydrocarbon is glycerol
  • carboxylic acids carboxylic acid salts
  • fatty acid esters such as mono-, di- and triglycerides
  • esters of fatty acids with the alcohols used in transesterification inorganic salts such as alkali or alkaline earth chlorides and sulphates.
  • reaction intermediates mention may be made of the monochlorohydrins of the polyhydroxylated aliphatic hydrocarbon and their esters and / or polyesters, the esters and / or polyesters of the polyhydroxylated aliphatic hydrocarbon and the esters of the polychlorohydrins.
  • chlorohydrin is dichloropropanol
  • the polyhydroxylated aliphatic hydrocarbon ester may therefore be, depending on the case, a reagent, an impurity of the polyhydroxylated aliphatic hydrocarbon or a reaction intermediate.
  • products of the reaction is meant chlorohydrin and water.
  • the water may be the water formed in the chlorination reaction and / or the water introduced into the process, for example via the polyhydroxylated aliphatic hydrocarbon and / or the chlorinating agent, as described in the application WO 2005/054167 of SOLVAY SA, on page 2, lines 22 to 28, on page 3, lines 20 to 25, on page 5, lines 7 to 31 and on page 12, lines 14 to 19.
  • By-products include, for example, partially chlorinated and / or esterified polyhydroxylated aliphatic hydrocarbon oligomers.
  • the polyhydroxylated aliphatic hydrocarbon is glycerol
  • the reaction intermediates and by-products may be formed in the various process steps such as, for example, during the chlorohydrin manufacturing step and during the chlorohydrin separation steps.
  • the liquid reaction medium may thus contain the polyhydroxylated aliphatic hydrocarbon, the dissolved or dispersed chlorination agent in the form of bubbles, the catalyst, the solvent, the impurities present in the reactants, the solvent and the catalyst, such as dissolved salts. or solids for example, the solvent, the catalyst, the reaction intermediates, the products and the by-products of the reaction.
  • the separation of the chlorohydrin and of the other compounds from the reaction medium can be carried out according to the modes as described in the application WO 2005/054167 of SOLVAY SA, of page 12, line 1, to page 16, line 35 and to the These other compounds are those mentioned above and comprise the reagents not consumed, the impurities present in the reagents, the catalyst, the solvent, the reaction intermediates, the water and the by-products of the invention. reaction.
  • the separation of the chlorohydrin and the other compounds from the reaction medium can be carried out according to the methods described in the patent application EP 05104321.4 filed in the name of SOLVAY. SA, 20/20172005, the content of which is hereby incorporated by reference. Particular mention is made of a separation mode comprising at least one separation operation for removing the salt from the liquid phase.
  • a process for producing a chlorohydrin in which (a) a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture are subjected to of them, to a reaction with a chlorinating agent in a reaction medium, (b) a fraction of the reaction medium containing at least water and chlorohydrin is withdrawn continuously or periodically, (c) at least a part of the fraction obtained in step (b) is introduced into a distillation step and (d) the reflux ratio of the distillation step is controlled by supplying water to said distillation step.
  • a process for producing a chlorohydrin in which (a) a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof is subjected to a reaction with hydrogen chloride in a reaction medium, (b) a fraction of the reaction medium containing at least water and the chlorohydrin is withdrawn continuously or periodically, (c) at least part of the fraction obtained in step ( b) is introduced into a distillation step, wherein the ratio between the hydrogen chloride concentration and the water concentration in the fraction introduced into the distillation step is smaller than the ratio of hydrogen chloride concentrations / water in the azeotropic hydrogen chloride / water binary composition at the distillation temperature and pressure.
  • the separation of the chlorohydrin and the other compounds from the reaction medium of chlorination of the polyhydroxylated aliphatic hydrocarbon, of the polyhydroxylated aliphatic hydrocarbon ester, or of the mixture of between them may be carried out according to the modes as described in the application entitled "Process for the manufacture of a chlorohydrin" deposited in the name of SOLVAY SA, the same day as the present application, and the contents of which are hereby incorporated by reference .
  • a process for producing a chlorohydrin comprising the following steps: (a) reacting a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon, or a mixture thereof, with a chlorination and an organic acid to obtain a mixture containing chlorohydrin and chlorohydrin esters, (b) subjecting at least a portion of the mixture obtained in step (a) to one or more treatments in subsequent steps in step (a) and (c) polyhydroxylated aliphatic hydrocarbon is added to at least one of the steps subsequent to step (a), so that it reacts at a temperature greater than or equal to 20 ° C, with the chlorohydrin esters so as to at least partially form esters of the aliphatic hydrocarbon polyhydroxylated. Mention is more particularly made of a process in which the polyhydroxylated aliphatic hydrocarbon is glycerol and the chlorohydrin is dichloropropanol.
  • the separation of the chlorohydrin and the other compounds from the reaction medium of chlorination of the polyhydroxylated aliphatic hydrocarbon, of the polyhydroxylated aliphatic hydrocarbon ester, or of the mixture of between them can be carried out according to the modes as described in the application entitled "Process for the manufacture of a chlorohydrin starting from a polyhydroxylated aliphatic hydrocarbon" deposited in the name of SOLVAY SA the same day as the present application, and whose content is hereby incorporated by reference.
  • a process comprising the following steps: (a) reacting a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon, or a mixture of them, with a chlorination agent such as to obtain at least one medium containing chlorohydrin, water and chlorinating agent, (b) removing at least a fraction of the medium formed in step (a) and (c) subjecting the fraction taken in step (b) to a distillation and / or stripping operation in which polyhydroxylated aliphatic hydrocarbon is added so as to separate from the fraction taken in step (b) a mixture containing water and chlorohydrin having a reduced content of chlorinating agent compared to that of the fraction taken in step (b).
  • the separation of the chlorohydrin and the other compounds from the reaction medium of chlorination of the polyhydroxylated aliphatic hydrocarbon can be carried out according to the modes as described in the application entitled "Process of conversion of polyhydroxylated aliphatic hydrocarbons to chlorhydrins "deposited in the name of SOLVAY SA on the same day as the present application and the contents of which are hereby incorporated by reference.
  • a method of preparation of a chlorohydrin comprising the following steps: (a) reacting a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon, or a mixture thereof, with a chlorinating agent so as to obtain a mixture containing chlorohydrin, chlorohydrin esters and water, (b) subjecting at least a fraction of the mixture obtained in step (a) to a distillation and / or stripping treatment so as to obtain a concentrated portion in water, chlorohydrin and chlorohydrin esters and (c) at least a fraction of the part obtained in step (b) is subjected to a separation operation in the presence of at least one additive so as to obtain a portion concentrated to chlorohydrin and chlorohydrin esters and contains less than 40% by weight of water.
  • the separation operation is more particularly a settling.
  • the separation and the treatment of the other compounds of the reaction medium can be carried out according to modes as described in the application entitled "Process for the production of a chlorohydrin by chlorination" of a polyhydroxylated aliphatic hydrocarbon deposited in the name of SOLVAY SA on the same day as the present application.
  • a preferred treatment is to subject a fraction of the by-products of the reaction to high temperature oxidation.
  • a process for producing a chlorohydrin comprising the following steps: (a) reacting a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon, or a mixture of them, the alkali and / or alkaline-earth metal content is less than or equal to 5 g / kg, an oxidizing agent and an organic acid so as to obtain a mixture containing at least chlorohydrin and by-products, (b) subject to at least a portion of the mixture obtained in step (a) to one or more treatments in steps subsequent to step (a) and (c) at least one of the steps subsequent to step (a) consists of oxidation at a temperature greater than or equal to 800 ° C.
  • step (b) a part of the mixture obtained in step (a) is taken and this part is subjected to oxidation at a temperature greater than or equal to 800 ° C. during the sampling.
  • the treatment of step (b) is a separation operation selected from the settling, filtration, centrifugation, extraction, washing, evaporation, stripping, distillation, adsorption or combinations of at least two of them.
  • the chlorohydrin when the chlorohydrin is chloropropanol, it is generally used in the form of a mixture of compounds comprising the isomers of 1-chloropropan-2-ol and 2-chloropropane-1. ol.
  • This mixture generally contains more than 1% by weight of the two isomers, preferably more than 5% by weight and more particularly more than 50%.
  • the mixture usually contains less than 99.9% by weight of the two isomers, preferably less than 95% by weight and most preferably less than 90% by weight.
  • the other constituents of the mixture may be compounds derived from chloropropanol production processes, such as residual reagents, reaction by-products, solvents and in particular water.
  • the mass ratio between the isomers 1-chloropropan-2-ol and 2-chloropropane-1-ol is usually greater than or equal to 0.01, preferably greater than or equal to 0.4. This ratio is usually less than or equal to 99 and preferably less than or equal to 25.
  • the chlorohydrin when the chlorohydrin is chloroethanol, it is generally used in the form of a mixture of compounds comprising the 2-chloroethanol isomer.
  • This mixture generally contains more than 1% by weight of the isomer, preferably more than 5% by weight and especially more than 50%.
  • the mixture usually contains less than 99.9% by weight of the isomer, preferably less than 95% by weight and most preferably less than 90% by weight.
  • the other constituents of the mixture may be compounds derived from chloroethanol production processes, such as residual reagents, reaction by-products, solvents and in particular water.
  • the chlorohydrin when the chlorohydrin is chloropropanediol, it is generally used in the form of a mixture of compounds comprising the isomers of 1-chloropropane-2,3-diol and 2-chloropropane. -l, 3-diol.
  • This mixture generally contains more than 1% by weight of the two isomers, preferably more than 5% by weight and more particularly more than 50%.
  • the mixture usually contains less than 99.9% by weight of the two isomers, preferably less than 95% by weight and most preferably less than 90% by weight.
  • the other constituents of the mixture may be compounds from the manufacturing processes of the chloropropanediol, such as residual reagents, reaction by-products, solvents and in particular water.
  • the weight ratio between the isomers 1-chloropropane-2,3-diol and 2-chloropropane-1,3-diol is usually greater than or equal to 0.01, preferably greater than or equal to 0.4. This ratio is usually less than or equal to 99 and preferably less than or equal to 25.
  • the chlorohydrin when dichloropropanol, it is generally used in the form of a mixture of compounds. comprising the isomers of 1,3-dichloropropan-2-ol and 2,3-dichloropropan-1-ol. This mixture generally contains more than 1% by weight of the two isomers, preferably more than 5% by weight and more particularly more than 50%.
  • the mixture usually contains less than 99.9% by weight of the two isomers, preferably less than 95% by weight and most preferably less than 90% by weight.
  • the other constituents of the mixture may be compounds from dichloropropanol production processes, such as residual reagents, reaction by-products, solvents and in particular water.
  • the weight ratio between the 1,3-dichloropropan-2-ol and 2,3-dichloropropan-1-ol isomers is usually greater than or equal to 0.01, often greater than or equal to 0.4, frequently greater than or equal to 1 , 5, preferably greater than or equal to 3.0, more preferably greater than or equal to 7.0 and most preferably greater than or equal to 20.0.
  • This ratio is usually less than or equal to 99 and preferably less than or equal to 25.
  • the reaction between the polyhydroxylated aliphatic hydrocarbon, the polyhydroxylated aliphatic hydrocarbon ester, or the mixture of them, and the chlorinating agent can take place in the presence of an organic acid.
  • the organic acid can be a product from the process for producing the polyhydroxylated aliphatic hydrocarbon or a product not from this process. In the latter case, it may be an organic acid used to catalyze the reaction between the polyhydroxylated aliphatic hydrocarbon and the chlorinating agent.
  • the organic acid may also be an organic acid mixture derived from the process for producing the polyhydroxylated aliphatic hydrocarbon and an organic acid not derived from the process for producing the polyhydroxylated aliphatic hydrocarbon.
  • the esters of the polyhydroxylated aliphatic hydrocarbon can come from the reaction between the aliphatic hydrocarbon polyhydroxy and the organic acid, before, during or in the steps following the reaction with the chlorinating agent.
  • the chlorohydrin obtained in the process according to the invention may contain a high content of halogenated ketones, in particular chloroacetone, as described in the patent application FR 05.05120 of 20/20172005 filed in the name of the Applicant, and whose content is hereby incorporated by reference.
  • the content of halogenated ketone can be reduced by subjecting the chlorohydrin obtained in the process according to the invention to azeotropic distillation in the presence of water or by subjecting the chlorohydrin to a dehydrochlorination treatment as described in this application, on page 4, line 1, on page 6, line 35.
  • a process for producing an epoxide in which halogenated ketones are formed as by-products and which comprises at least one treatment for removing at least a portion of the halogenated ketones formed Mention is more particularly made of a process for producing an epoxide by dehydrochlorination of a chlorohydrin of which at least one fraction is produced by chlorination of a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon, or a mixture thereof, a dehydrochlorination treatment and azeotropic distillation treatment of a halogenated water-ketone mixture for removing at least a portion of the halogenated ketones formed and a method of manufacture epichlorohydrin in which the halogenated ketone formed is chloroacetone.
  • the chlorohydrin obtained in the process according to the invention can be subjected to a dehydrochlorination reaction to produce an epoxide as described in the patent applications WO 2005/054167 and FR 05.05120 filed in the name of SOLVAY SA.
  • the dehydrochlorination of the chlorohydrin can be carried out as described in the application entitled "Process for producing an epoxide from a polyhydroxylated aliphatic hydrocarbon and a chlorinating agent" deposited in the name of SOLVAY SA on the same day as the present application, and the content of which is hereby incorporated by reference.
  • a process for producing an epoxide in which a reaction medium resulting from the reaction between a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon, or a mixture of them, is subjected to and a chlorination agent, the medium reaction containing at least 10 g of chlorohydrin per kg of reaction medium, to a subsequent chemical reaction without intermediate treatment.
  • Epoxide manufacturing comprising the steps of: (a) reacting a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon, or a mixture thereof, with a chlorinating agent and an organic acid to form chlorohydrin and chlorohydrin esters in a reaction medium containing polyhydroxylated aliphatic hydrocarbon, polyhydroxylated aliphatic hydrocarbon ester, water, the chlorinating agent and the organic acid, the reaction medium containing at least 10 g of chlorohydrin per kg of reaction medium, (b) subjecting at least a fraction of the reaction medium obtained in step (a), which fraction has the same composition as the reaction medium obtained in step (a), one or more treatments in steps subsequent to step (a) and (c) is added a basic compound to at least one of the steps subsequent to step (a); ) so that he at least partially reacts with the chlorohydrin, the chlorohydrin esters, the chlorinating agent and the organic acid to form epoxide
  • the process for the manufacture of chlorohydrin can be integrated into an overall scheme for the manufacture of an epoxide as described in the application entitled “Process for the manufacture of a epoxide from a chlorohydrin "deposited in the name of SOLVAY SA the same day as the present application, and whose content is here incorporated by reference.
  • a process for the production of an epoxide comprising at least one step of purifying the epoxide formed, the epoxide being at least partly produced by a process for the dehydrochlorination of a chlorohydrin, the latter being at least partly manufactured by a process for chlorinating a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon, or a mixture of them.
  • the various processes involved in the process for producing a chlorohydrin according to the invention may or may not be part of an integrated process for producing chlorinated organic products. An integrated method is preferred.
  • the invention also relates to an installation for implementing an integrated process comprising: (a) an allyl chloride production unit and / or a chloromethane production unit and / or a chlorinolysis unit and / or an oxidation unit chlorinated compounds from which a chlorinating agent containing hydrogen chloride
  • This installation may include:
  • the various manufacturing units are preferably distributed on the same industrial site or on nearby sites, and more preferably on the same site.
  • the industrial scheme comprising these units on the same site or on nearby sites is particularly advantageous, such as, for example, a unit according to the above-mentioned method of manufacturing chlorohydrin in the vicinity of allyl chloride production units and epoxides to which there may be added a chlorinolysis unit and / or a chloromethane production unit and / or a high temperature oxidation unit of chlorinated compounds.
  • nearby sites it is meant in particular to designate industrial sites close enough that the transport of materials between facilities can be done economically by collectors.
  • the polyhydroxylated aliphatic hydrocarbon is preferably glycerol
  • the chlorohydrin is preferably dichloropropanol
  • the epoxide is preferably epichlorohydrin.
  • the epoxide is epichlorohydrin, it can be used in the manufacture of epoxy resins.
  • Figure 1 shows a particular scheme of installation used to implement the method according to the invention, in the case where the polyhydroxylated aliphatic hydrocarbon is glycerol, the chlorohydrin is dichloropropanol and the epoxide is epichlorohydrin.
  • a dehydrochlorination unit of dichloropropanol (1) is supplied with dichloropropanol via line (2) and dehydrochlorination agent via line (3).
  • Epichlorohydrin is withdrawn via line (4) and organic compounds other than epichlorohydrin via line (5). At least a fraction these compounds can feed a chlorinolysis plant (21) via the line (33) and / or a high temperature oxidation plant of chlorinated compounds (23) via the line (34).
  • Epichlorohydrin feeds an epoxy resin manufacturing unit (8) via line (6) and / or a polyglycerol production unit (9) via line (7).
  • the dichloropropanol is from a hypochlorination unit of allyl chloride (10) via line (11) and / or a glycerol chlorination unit (12) via line (13).
  • the glycerol chlorination unit (12) is fed with crude and / or purified glycerol via line (14).
  • the crude / and / or purified glycerol comes from a biodiesel production unit (15) from which biodiesel is also withdrawn via the line (37) and which is fed with vegetable and / or animal fats and / or oils via the line ( 16) and alcohol, preferably methanol via line (17).
  • the glycerol chlorination unit (12) is supplied with hydrogen chloride and / or with an aqueous solution of hydrogen chloride via line (18).
  • the hydrogen chloride and / or the aqueous solution of hydrogen chloride come from an allyl chloride production unit by chlorination of the propylene (19) via the line (20) and / or a production unit of chloromethanes (35) via line (36) and / or a chlorinolysis unit (21) via line (22) and / or a high temperature oxidation unit (23) via line (24).
  • Allyl chloride is withdrawn from the unit (19) and at least one fraction of this allyl chloride is fed to the hypochlorination unit (10) via line (25).
  • the allyl chloride (19) production unit extracts organic compounds other than allyl chloride via line (26), at least one fraction of which serves to feed the chlorinolysis unit (21) via the line (27) and / or the high temperature oxidation unit of chlorinated compounds (23) via line (28).
  • the chlorinolysis unit (21) is withdrawn from perchlorethylene and carbon tetrachloride via line (29) and organic compounds other than perchlorethylene and carbon tetrachloride via line (30) and at least a fraction of these are removed.
  • the compounds can be recycled to the chlorinolysis unit via the line (31) and / or fed to the high temperature oxidation unit of chlorinated compounds (23) via the line (32).
  • Chlorinolysis and high temperature oxidation units of chlorinated compounds can be fed with organic products from other manufacturing units than those mentioned.
  • the dichloropropanol production unit can be fed with hydrogen chloride and / or hydrochloric acid from manufacturing processes other than those mentioned above.
  • the benefits of this scheme include:
  • Process water is, for example, water from pumps or ejectors used to maintain the vacuum in the facilities. It can also be water obtained after decantation of organic.
EP06763189A 2005-05-20 2006-05-19 Procede de fabrication d'une chlorhydrine par reaction entre un hydrocarbure aliphatique poly hydroxyle et un agent de chloration Withdrawn EP1885677A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06763189A EP1885677A2 (fr) 2005-05-20 2006-05-19 Procede de fabrication d'une chlorhydrine par reaction entre un hydrocarbure aliphatique poly hydroxyle et un agent de chloration

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
FR0505120A FR2885903B1 (fr) 2005-05-20 2005-05-20 Procede de fabrication d'epichlorhydrine
EP05104321A EP1762556A1 (en) 2005-05-20 2005-05-20 Process for producing dichloropropanol from glycerol
US73465805P 2005-11-08 2005-11-08
US73465905P 2005-11-08 2005-11-08
US73463505P 2005-11-08 2005-11-08
US73462705P 2005-11-08 2005-11-08
US73463405P 2005-11-08 2005-11-08
US73463705P 2005-11-08 2005-11-08
US73465705P 2005-11-08 2005-11-08
US73463605P 2005-11-08 2005-11-08
EP06763189A EP1885677A2 (fr) 2005-05-20 2006-05-19 Procede de fabrication d'une chlorhydrine par reaction entre un hydrocarbure aliphatique poly hydroxyle et un agent de chloration
PCT/EP2006/062448 WO2006106153A2 (fr) 2005-05-20 2006-05-19 Procede de fabrication d'une chlorhydrine par reaction entre un hydrocarbure aliphatique poly hydroxyle et un agent de chloration

Publications (1)

Publication Number Publication Date
EP1885677A2 true EP1885677A2 (fr) 2008-02-13

Family

ID=39543862

Family Applications (16)

Application Number Title Priority Date Filing Date
EP06755270A Withdrawn EP1885674A1 (fr) 2005-05-20 2006-05-19 Procede de fabrication d'une chlorhydrine dans des equipements resistant a la corrosion
EP06755267A Withdrawn EP1885671A1 (fr) 2005-05-20 2006-05-19 Procede de fabrication d'une chlorhydrine au depart d'un hydrocarbure aliphatique poly hydroxyle
EP06755271A Withdrawn EP1885706A2 (fr) 2005-05-20 2006-05-19 Procede de fabrication d'un epoxyde au depart d'un hydrocarbure aliphatique poly hydroxyle et d'un agent de chloration
EP06755264A Withdrawn EP1890988A2 (fr) 2005-05-20 2006-05-19 Procede de fabrication d'une chlorhydrine
EP06755268A Withdrawn EP1885672A2 (fr) 2005-05-20 2006-05-19 Procede de fabrication d'une chlorhydrine par chloration d'un hydrocarbure aliphatique poly hydroxyle
EP06763200A Withdrawn EP1891032A2 (fr) 2005-05-20 2006-05-19 Procede de fabrication d'un epoxyde au depart d'une chlorhydrine
EP10182403A Withdrawn EP2284163A3 (en) 2005-05-20 2006-05-19 Process for producing dichloropropanol
EP06755262.0A Active EP1885705B1 (fr) 2005-05-20 2006-05-19 Procédé de fabrication d'un époxyde
EP10182309A Withdrawn EP2275417A3 (en) 2005-05-20 2006-05-19 Process for producing dichloropropanol
EP06755269.5A Not-in-force EP1885673B1 (fr) 2005-05-20 2006-05-19 Fabrication de chlorhydrine en phase liquide en presence de composes lourds
EP10182191.6A Active EP2284162B1 (en) 2005-05-20 2006-05-19 Process for producing dichloropropanol
EP06755263A Withdrawn EP1904427A2 (en) 2005-05-20 2006-05-19 Process for producing a chlorhydrin from a multihydroxylated aliphatic hydrocarbon and/or ester thereof in the presence of metal salts
EP06763198A Withdrawn EP1885678A1 (fr) 2005-05-20 2006-05-19 Procede continu de fabrication de chlorhydrines
EP06763189A Withdrawn EP1885677A2 (fr) 2005-05-20 2006-05-19 Procede de fabrication d'une chlorhydrine par reaction entre un hydrocarbure aliphatique poly hydroxyle et un agent de chloration
EP06755272A Withdrawn EP1885675A1 (fr) 2005-05-20 2006-05-19 Procede de preparation de chlorhydrine par conversion d'hydrocarbures aliphatiques poly hydroxyles
EP06755273A Withdrawn EP1885676A2 (fr) 2005-05-20 2006-05-19 Procede de conversion d'hydrocarbures aliphatiques poly hydroxyles en chlorhydrines

Family Applications Before (13)

Application Number Title Priority Date Filing Date
EP06755270A Withdrawn EP1885674A1 (fr) 2005-05-20 2006-05-19 Procede de fabrication d'une chlorhydrine dans des equipements resistant a la corrosion
EP06755267A Withdrawn EP1885671A1 (fr) 2005-05-20 2006-05-19 Procede de fabrication d'une chlorhydrine au depart d'un hydrocarbure aliphatique poly hydroxyle
EP06755271A Withdrawn EP1885706A2 (fr) 2005-05-20 2006-05-19 Procede de fabrication d'un epoxyde au depart d'un hydrocarbure aliphatique poly hydroxyle et d'un agent de chloration
EP06755264A Withdrawn EP1890988A2 (fr) 2005-05-20 2006-05-19 Procede de fabrication d'une chlorhydrine
EP06755268A Withdrawn EP1885672A2 (fr) 2005-05-20 2006-05-19 Procede de fabrication d'une chlorhydrine par chloration d'un hydrocarbure aliphatique poly hydroxyle
EP06763200A Withdrawn EP1891032A2 (fr) 2005-05-20 2006-05-19 Procede de fabrication d'un epoxyde au depart d'une chlorhydrine
EP10182403A Withdrawn EP2284163A3 (en) 2005-05-20 2006-05-19 Process for producing dichloropropanol
EP06755262.0A Active EP1885705B1 (fr) 2005-05-20 2006-05-19 Procédé de fabrication d'un époxyde
EP10182309A Withdrawn EP2275417A3 (en) 2005-05-20 2006-05-19 Process for producing dichloropropanol
EP06755269.5A Not-in-force EP1885673B1 (fr) 2005-05-20 2006-05-19 Fabrication de chlorhydrine en phase liquide en presence de composes lourds
EP10182191.6A Active EP2284162B1 (en) 2005-05-20 2006-05-19 Process for producing dichloropropanol
EP06755263A Withdrawn EP1904427A2 (en) 2005-05-20 2006-05-19 Process for producing a chlorhydrin from a multihydroxylated aliphatic hydrocarbon and/or ester thereof in the presence of metal salts
EP06763198A Withdrawn EP1885678A1 (fr) 2005-05-20 2006-05-19 Procede continu de fabrication de chlorhydrines

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP06755272A Withdrawn EP1885675A1 (fr) 2005-05-20 2006-05-19 Procede de preparation de chlorhydrine par conversion d'hydrocarbures aliphatiques poly hydroxyles
EP06755273A Withdrawn EP1885676A2 (fr) 2005-05-20 2006-05-19 Procede de conversion d'hydrocarbures aliphatiques poly hydroxyles en chlorhydrines

Country Status (12)

Country Link
US (12) US7906691B2 (ru)
EP (16) EP1885674A1 (ru)
JP (13) JP2008545643A (ru)
KR (7) KR100978436B1 (ru)
CN (13) CN102690168A (ru)
BR (8) BRPI0610789A2 (ru)
CA (13) CA2608725A1 (ru)
EA (14) EA014241B1 (ru)
MX (7) MX2007014525A (ru)
MY (4) MY148345A (ru)
TW (16) TWI321129B (ru)
WO (13) WO2006100320A2 (ru)

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7838708B2 (en) 2001-06-20 2010-11-23 Grt, Inc. Hydrocarbon conversion process improvements
CA2532367C (en) 2003-07-15 2013-04-23 Grt, Inc. Hydrocarbon synthesis
US20050171393A1 (en) 2003-07-15 2005-08-04 Lorkovic Ivan M. Hydrocarbon synthesis
KR101009858B1 (ko) * 2003-11-20 2011-01-19 솔베이(소시에떼아노님) 유기 화합물의 제조 방법
US8642822B2 (en) 2004-04-16 2014-02-04 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons using microchannel reactor
US20060100469A1 (en) 2004-04-16 2006-05-11 Waycuilis John J Process for converting gaseous alkanes to olefins and liquid hydrocarbons
US7244867B2 (en) 2004-04-16 2007-07-17 Marathon Oil Company Process for converting gaseous alkanes to liquid hydrocarbons
US20080275284A1 (en) 2004-04-16 2008-11-06 Marathon Oil Company Process for converting gaseous alkanes to liquid hydrocarbons
US7674941B2 (en) 2004-04-16 2010-03-09 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons
US8173851B2 (en) 2004-04-16 2012-05-08 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons
US20080005956A1 (en) * 2004-05-14 2008-01-10 Tran Bo L Methods and compositions for controlling bulk density of coking coal
US7906690B2 (en) * 2004-07-21 2011-03-15 Dow Global Technologies Inc. Batch, semi-continuous or continuous hydrochlorination of glycerin with reduced volatile chlorinated hydrocarbon by-products and chloracetone levels
US7910781B2 (en) * 2004-07-21 2011-03-22 Dow Global Technologies Llc Process for the conversion of a crude glycerol, crude mixtures of naturally derived multihydroxylated aliphatic hydrocarbons or esters thereof to a chlorohydrin
TWI321129B (en) * 2005-05-20 2010-03-01 Solvay Process for preparing a chlorohydrin
KR20080036555A (ko) * 2005-05-20 2008-04-28 솔베이(소시에떼아노님) 클로로히드린으로부터 출발하여 에폭시드를 제조하는 방법
EP1948583A2 (en) * 2005-11-08 2008-07-30 Solvay S.A. Process for the manufacture of dichloropropanol by chlorination of glycerol
EP2457887A1 (en) 2006-02-03 2012-05-30 GRT, Inc. Continuous process for converting natural gas to liquid hydrocarbons
BRPI0707490A2 (pt) 2006-02-03 2011-05-03 Grt Inc separação de gases leves de halogênios
EA200970011A1 (ru) 2006-06-14 2009-06-30 Солвей (Сосьете Аноним) Неочищенный продукт на основе глицерина, способ его очистки и его применение в производстве дихлорпропанола
US7930651B2 (en) 2007-01-18 2011-04-19 Research In Motion Limited Agenda display in an electronic device
US20100032617A1 (en) * 2007-02-20 2010-02-11 Solvay (Societe Anonyme) Process for manufacturing epichlorohydrin
FR2913421B1 (fr) * 2007-03-07 2009-05-15 Solvay Procede de fabrication de dichloropropanol.
FR2913684B1 (fr) * 2007-03-14 2012-09-14 Solvay Procede de fabrication de dichloropropanol
WO2008121158A1 (en) * 2007-04-02 2008-10-09 Inphase Technologies, Inc. Non-ft plane angular filters
WO2008128014A1 (en) * 2007-04-12 2008-10-23 Dow Global Technologies Inc. Process and apparatus for vapor phase purification during hydrochlorination of multi-hydroxylated aliphatic hydrocarbon compounds
TWI432407B (zh) * 2007-04-12 2014-04-01 Dow Global Technologies Llc 回收二氯丙醇之多階方法和裝置
CN101657404B (zh) * 2007-04-12 2013-11-06 陶氏环球技术公司 用于经由共馏回收二氯代醇的方法和设备
JP2010523703A (ja) * 2007-04-12 2010-07-15 ダウ グローバル テクノロジーズ インコーポレイティド ジクロロヒドリンの共沸回収方法及び装置
US20100152499A1 (en) * 2007-04-12 2010-06-17 Briggs John R Conversion of a multihydroxylated-aliphatic hydrocarbon or ester thereof to a chlorohydrin
KR20100027141A (ko) 2007-05-24 2010-03-10 지알티, 인코포레이티드 가역적으로 할로겐화수소를 흡수 및 방출할 수 있는 존 반응기
TW200911740A (en) * 2007-06-01 2009-03-16 Solvay Process for manufacturing a chlorohydrin
TW200911773A (en) * 2007-06-12 2009-03-16 Solvay Epichlorohydrin, manufacturing process and use
TW200911693A (en) 2007-06-12 2009-03-16 Solvay Aqueous composition containing a salt, manufacturing process and use
FR2918058A1 (fr) * 2007-06-28 2009-01-02 Solvay Produit a base de glycerol, procede pour sa purification et son utilisation dans la fabrication de dichloropropanol
FR2919609A1 (fr) * 2007-07-30 2009-02-06 Solvay Procede de fabrication de glycidol
BRPI0815245A2 (pt) 2007-08-23 2015-03-31 Dow Global Technologies Inc Processo para purificar salmoura, processo para reduzir contaminação orgânica de um corrente de salmoura num processo químico, aparelhagem paa purificação de salmoura e aparelhagem de processo químico para produzir salmoura purificada
KR20100068246A (ko) 2007-08-23 2010-06-22 다우 글로벌 테크놀로지스 인크. 염수 정제법
US20100261255A1 (en) 2007-08-23 2010-10-14 Celio Lume Pereira Process, adapted microbes, composition and apparatus for purification of industrial brine
KR101410019B1 (ko) * 2007-09-28 2014-06-26 한화케미칼 주식회사 다가알코올과 염화수소의 반응에 의한 클로로히드린화합물의 제조방법
JP2011502032A (ja) * 2007-10-02 2011-01-20 ソルヴェイ(ソシエテ アノニム) 容器の耐腐食性を向上させるためのケイ素を含有する組成物の使用
FR2925045B1 (fr) * 2007-12-17 2012-02-24 Solvay Produit a base de glycerol, procede pour son obtention et son utilisation dans la fabrication de dichloropropanol
TWI478875B (zh) * 2008-01-31 2015-04-01 Solvay 使水性組成物中之有機物質降解之方法
EA201071157A1 (ru) 2008-04-03 2011-04-29 Солвей (Сосьете Аноним) Композиция, содержащая глицерин, способ ее получения и применение в производстве дихлорпропанола
CN101998945B (zh) * 2008-04-09 2014-04-09 陶氏环球技术公司 用于有效回收二氯代醇的方法和设备
EP2280917A1 (en) * 2008-04-16 2011-02-09 Dow Global Technologies Inc. Conversion of multihydroxylated-aliphatic hydrocarbon or ester thereof to a chlorohydrin
US8282810B2 (en) 2008-06-13 2012-10-09 Marathon Gtf Technology, Ltd. Bromine-based method and system for converting gaseous alkanes to liquid hydrocarbons using electrolysis for bromine recovery
AU2009270801B2 (en) 2008-07-18 2014-04-24 Reaction 35, Llc Continuous process for converting natural gas to liquid hydrocarbons
AT507260B1 (de) 2008-08-25 2010-10-15 Kanzler Walter Verfahren zur herstellung von epichlorhydrin aus glyzerin
ITMI20081535A1 (it) * 2008-08-26 2010-02-26 Biocompany Srl Processo per la preparazione di 1,3-dicloro-2-propanolo
FR2935699A1 (fr) * 2008-09-10 2010-03-12 Solvay Procede de fabrication d'un produit chimique
FR2935968B1 (fr) * 2008-09-12 2010-09-10 Solvay Procede pour la purification de chlorure d'hydrogene
FR2939434B1 (fr) * 2008-12-08 2012-05-18 Solvay Procede de traitement de glycerol.
FR2952060B1 (fr) 2009-11-04 2011-11-18 Solvay Procede de fabrication d'un produit derive de l'epichlorhydrine
WO2011054770A1 (en) 2009-11-04 2011-05-12 Solvay Sa Process for manufacturing an epoxy resin
US8367884B2 (en) 2010-03-02 2013-02-05 Marathon Gtf Technology, Ltd. Processes and systems for the staged synthesis of alkyl bromides
US8198495B2 (en) 2010-03-02 2012-06-12 Marathon Gtf Technology, Ltd. Processes and systems for the staged synthesis of alkyl bromides
WO2011112426A1 (en) * 2010-03-10 2011-09-15 Dow Global Technologies Llc Process for preparing divinylarene dioxides
KR101705210B1 (ko) * 2010-06-30 2017-02-09 롯데정밀화학 주식회사 클로로히드린류 조성물의 제조방법 및 그 방법에 의해 제조된 클로로히드린류 조성물을 사용하는 에피클로로히드린의 제조방법
KR101705207B1 (ko) * 2010-06-30 2017-02-09 롯데정밀화학 주식회사 클로로히드린류의 제조방법 및 그 방법에 의해 제조된 클로로히드린류를 사용하는 에피클로로히드린의 제조방법
KR101705206B1 (ko) * 2010-06-30 2017-02-09 롯데정밀화학 주식회사 클로로히드린류의 제조방법 및 그 방법에 의해 제조된 클로로히드린류를 사용하는 에피클로로히드린의 제조방법
KR101705209B1 (ko) * 2010-06-30 2017-02-09 롯데정밀화학 주식회사 클로로히드린류 조성물의 제조방법 및 그 방법에 의해 제조된 클로로히드린류 조성물을 사용하는 에피클로로히드린의 제조방법
KR101705208B1 (ko) * 2010-06-30 2017-02-09 롯데정밀화학 주식회사 클로로히드린류 조성물의 제조방법 및 그 방법에 의해 제조된 클로로히드린류 조성물을 사용하는 에피클로로히드린의 제조방법
KR101705205B1 (ko) * 2010-06-30 2017-02-09 롯데정밀화학 주식회사 클로로히드린류의 제조방법 및 그 방법에 의해 제조된 클로로히드린류를 사용하는 에피클로로히드린의 제조방법
WO2012015553A1 (en) 2010-07-28 2012-02-02 Dow Global Technologies, Llc Chlorohydrin processing equipment comprising stainless steel
FR2963338B1 (fr) 2010-08-02 2014-10-24 Solvay Procede d'electrolyse
FR2964096A1 (fr) 2010-08-27 2012-03-02 Solvay Procede d'epuration d'une saumure
KR20140009163A (ko) 2010-09-30 2014-01-22 솔베이(소시에떼아노님) 천연유래 에피클로로히드린의 유도체
FR2966825B1 (fr) 2010-10-29 2014-05-16 Solvay Procede de fabrication d'epichlorhydrine
JP2012116920A (ja) * 2010-11-30 2012-06-21 Polyplastics Co ポリオキシメチレン樹脂の製造方法
PL215730B1 (pl) 2011-01-10 2014-01-31 Inst Ciezkiej Syntezy Orga Sposób wytwarzania dichloropropanoli z gliceryny
US8815050B2 (en) 2011-03-22 2014-08-26 Marathon Gtf Technology, Ltd. Processes and systems for drying liquid bromine
PL218074B1 (pl) 2011-04-11 2014-10-31 Inst Ciężkiej Syntezy Organicznej Blachownia Sposób suchego chlorowodorowania masy z chlorowodorowania gliceryny kwasem solnym i urządzenie do suchego chlorowodorowania masy z chlorowodorowania gliceryny kwasem solnym
US8436220B2 (en) 2011-06-10 2013-05-07 Marathon Gtf Technology, Ltd. Processes and systems for demethanization of brominated hydrocarbons
US8829256B2 (en) 2011-06-30 2014-09-09 Gtc Technology Us, Llc Processes and systems for fractionation of brominated hydrocarbons in the conversion of natural gas to liquid hydrocarbons
US8802908B2 (en) 2011-10-21 2014-08-12 Marathon Gtf Technology, Ltd. Processes and systems for separate, parallel methane and higher alkanes' bromination
US9193641B2 (en) 2011-12-16 2015-11-24 Gtc Technology Us, Llc Processes and systems for conversion of alkyl bromides to higher molecular weight hydrocarbons in circulating catalyst reactor-regenerator systems
KR20190105120A (ko) 2011-12-19 2019-09-11 솔베이(소시에떼아노님) 수성 조성물의 총 유기 탄소를 감소시키는 방법
EP2669247A1 (en) 2012-06-01 2013-12-04 Solvay Sa Process for manufacturing dichloropropanol
EP2669307A1 (en) 2012-06-01 2013-12-04 Solvay Sa Process for manufacturing an epoxide
EP2669308A1 (en) 2012-06-01 2013-12-04 Solvay Sa Process for manufacturing an epoxy resin
EP2669305A1 (en) 2012-06-01 2013-12-04 Solvay Sa Process for manufacturing an epoxy resin
EP2669306B1 (en) 2012-06-01 2015-08-12 Solvay Sa Process for manufacturing an epoxy resin
CN104341271B (zh) * 2013-08-02 2016-05-18 中国石油化工股份有限公司 一种盐酸和甘油连续制备二氯丙醇的方法
WO2015074684A1 (en) 2013-11-20 2015-05-28 Solvay Sa Process for manufacturing an epoxy resin
CN106630083B (zh) * 2015-10-29 2021-05-14 中国石油化工股份有限公司 一种环氧化废水的无害化处理方法
TWI547470B (zh) 2015-12-18 2016-09-01 長春人造樹脂廠股份有限公司 製造二氯丙醇之方法
TWI592392B (zh) * 2016-05-31 2017-07-21 國立清華大學 改善二氯丙醇的產率的製造裝置及其製造方法
TWI585072B (zh) * 2016-05-31 2017-06-01 國立清華大學 二氯丙醇的製造裝置及其製造方法
KR102058483B1 (ko) 2017-02-27 2019-12-23 중앙대학교 산학협력단 높은 단맛을 가지는 신규한 브라제인 다중 변이체 및 이의 제조방법
CA3098698A1 (en) 2018-05-01 2019-11-07 Revolution Medicines, Inc. C26-linked rapamycin analogs as mtor inhibitors
CN111875477A (zh) * 2020-08-03 2020-11-03 岳阳隆兴实业公司 一种邻氯醇共沸提纯方法
CN115583869B (zh) * 2022-09-13 2024-04-23 安徽海华科技集团有限公司 一种酚类化合物选择性氧化氯化方法

Family Cites Families (264)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE216471C (ru)
US3061615A (en) 1962-10-30 Process for the production of alpha-epichlorhydrin
DE197309C (ru)
DE58396C (de) Dr. P. FRITSCH in Rostock i. M., Augustenstr. 40 Verfahren zur Darstellung von Glyceriden aromatischer Säuren
US280893A (en) * 1883-07-10 Treating waters containing glycerine obtained by the decomposition of fatty matters
DE238341C (ru)
DE197308C (ru) *
US449255A (en) * 1891-03-31 Watch-bow fastener
DE180668C (ru)
DE1075103B (de) 1960-02-11 VEB Leuna-Werke "Walter Ulbricht", Leuna (Kr. Merseburg) Verfahren zur kontinuierlichen Herstellung von Epichlorhydrin aus Glyzerin
US865727A (en) * 1907-08-09 1907-09-10 Augustin L J Queneau Method of making and utilizing gas.
GB191314767A (en) * 1913-06-26 1914-01-08 Henry Fairbrother Process for Directly Producing Glycerol-halogen-hydrins and Poly-oxy Fatty Acid Esters.
GB405345A (en) 1931-05-08 1934-01-29 Boston Blacking Company Ltd Improvements in or relating to the compounding of latex and to compounded latex
GB406345A (en) 1931-08-24 1934-02-26 Du Pont Improvements in or relating to the production of formic acid
US2063891A (en) 1932-07-15 1936-12-15 Dreyfus Henry Manufacture of chlorhydrins and their ethers
GB404938A (en) 1932-07-15 1934-01-15 Henry Dreyfus Manufacture of chlorhydrins and ethers thereof
US2060715A (en) 1933-01-13 1936-11-10 Du Pont Synthetic resins
GB467481A (en) 1935-09-12 1937-06-14 Eastman Kodak Co Processes of removing water from aqueous aliphatic acids
US2144612A (en) * 1936-09-10 1939-01-24 Dow Chemical Co Preparation of glycerol dichlorohydrin
US2198600A (en) * 1936-09-10 1940-04-30 Dow Chemical Co Glycerol dichlorohydrin
BE422877A (ru) 1937-07-28 1937-08-31
US2319876A (en) 1937-12-04 1943-05-25 Celanese Corp Preparation of aromatic sulphonamide-phenol-dihalide reaction products
GB541357A (en) 1939-02-24 1941-11-24 Du Pont Improvements in or relating to the production of glycerol
US2248635A (en) 1939-06-20 1941-07-08 Shell Dev Treatment of halogenated polyhydric alcohols
BE456650A (ru) 1943-06-16
DE869193C (de) 1944-08-22 1953-03-05 Chloberag Chlor Betr Rheinfeld Verfahren zum Reinigen von Chlorwasserstoff
GB679536A (en) 1947-06-11 1952-09-17 Devoe & Raynolds Co Improvements in epoxide preparation
US2505735A (en) * 1948-05-22 1950-04-25 Harshaw Chem Corp Purufication of crude glycerine
DE848799C (de) * 1948-12-23 1956-08-02 Elektrochemische Werke Rheinfe Vorrichtung zur Absorption von Gasen durch Fluessigkeiten, insbesondere zur Erzeugung von Salzsaeure
GB702143A (en) 1949-10-25 1954-01-13 Hoechst Ag Cold-hardening compositions containing phenol-formaldehyde condensation products, and a process for making such compositions
BE521204A (ru) 1952-07-05 1900-01-01
DE1041488B (de) 1954-03-19 1958-10-23 Huels Chemische Werke Ag Verfahren zur Herstellung von Oxidoalkoholen
US2875217A (en) 1954-07-14 1959-02-24 Upjohn Co Producing 17-hydroxy 20-keto steroids by the use of osmium tetroxide and an organicpolyvalent iodo oxide
US2811227A (en) 1955-01-20 1957-10-29 Houdaille Industries Inc Flutter damper
US2860146A (en) 1955-04-14 1958-11-11 Shell Dev Manufacture of epihalohydrins
US2829124A (en) 1955-12-23 1958-04-01 Borden Co Epoxide resin
GB799567A (en) 1956-04-30 1958-08-13 Solvay Process for the production of alpha-epichlorhydrin
US2945004A (en) * 1956-05-29 1960-07-12 Devoe & Raynolds Co Epoxide resins reacted with polyhydric phenols
US2876217A (en) 1956-12-31 1959-03-03 Corn Products Co Starch ethers containing nitrogen and process for making the same
US2960447A (en) 1957-07-15 1960-11-15 Shell Oil Co Purification of synthetic glycerol
US3026270A (en) 1958-05-29 1962-03-20 Hercules Powder Co Ltd Cross-linking of polymeric epoxides
US3135705A (en) 1959-05-11 1964-06-02 Hercules Powder Co Ltd Polymeric epoxides
SU123153A3 (ru) 1958-11-18 1958-11-30 Словак Гельмут Способ непрерывного получени эпихлоргидрина
US3052612A (en) * 1959-02-16 1962-09-04 Olin Mathieson Recovery of chlorine from electrol ysis of brine
US3158580A (en) * 1960-03-11 1964-11-24 Hercules Powder Co Ltd Poly (epihalohydrin) s
GB984446A (en) 1960-07-05 1965-02-24 Pfaudler Permutit Inc Improvements relating to semicrystalline glass and to the coating of metal therewith
US3158581A (en) * 1960-07-27 1964-11-24 Hercules Powder Co Ltd Polymeric epoxides
FR1306231A (fr) 1960-10-17 1962-10-13 Shell Int Research Procédé de préparation de polyéthers glycidiques
NL270270A (ru) * 1960-10-17
FR1279331A (fr) * 1960-11-07 1961-12-22 Electrochimie Soc Procédé et fabrication de résines époxy et produits obtenus
US3247227A (en) * 1962-04-24 1966-04-19 Ott Chemical Company Epoxidation of organic halohydrins
US3260259A (en) 1962-10-08 1966-07-12 S H Camp & Company Abduction splint
US3328331A (en) 1963-01-22 1967-06-27 Hoechst Ag Epoxy resin masses and process for preparing them
US3341491A (en) * 1963-09-10 1967-09-12 Hercules Inc Vulcanized epihalohydrin polymers
FR1417388A (fr) 1963-10-21 1965-11-12 Hooker Chemical Corp Purification de l'acide chlorhydrique
NL129282C (ru) * 1963-10-21
CH460734A (de) 1963-11-19 1968-08-15 Shell Int Research Herstellung von neuen Epoxyäthern
JPS3927230Y1 (ru) 1963-12-30 1964-09-15
DE1226554B (de) 1964-06-06 1966-10-13 Henkel & Cie Gmbh Verfahren zur Herstellung von Glycid aus Glycerinmonochlorhydrin
FR1417386A (fr) 1964-10-21 1965-11-12 Radyne Ltd Perfectionnement à la spectrométrie
FR1476073A (fr) 1965-04-09 1967-04-07 Shell Int Research Résine époxyde retardant la propagation des flammes
US3355511A (en) 1965-04-09 1967-11-28 Shell Oil Co Flame retardant epoxy compositions containing polyglycidyl ethers of hexahalo bicycloheptadiene bisphenols
US3445197A (en) 1966-05-27 1969-05-20 Continental Oil Co Removing benzene from aqueous muriatic acid using a liquid paraffin
US3457282A (en) * 1966-06-01 1969-07-22 Olin Mathieson Glycidol recovery process
US3455197A (en) * 1966-11-21 1969-07-15 Ppg Industries Inc Adjustable guillotine and table for severing sheet plastic
DE1643497C3 (de) 1967-09-02 1979-06-21 Hoechst Ag, 6000 Frankfurt Verfahren zur Herstellung von Glycidyläthern ein- und mehrwertiger Phenole
US3968178A (en) * 1967-11-08 1976-07-06 Stauffer Chemical Company Chlorination of hydrocarbons
DE2007867B2 (de) * 1970-02-20 1978-11-02 Hoechst Ag, 6000 Frankfurt Verfahren zur kontinuierlichen Herstellung von Dichlorpropanolen
DE1809607C3 (de) * 1968-11-19 1974-01-10 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler, 6000 Frankfurt Verfahren zur absorptiven Trennung von bei der Gasphasenreaktion von Chlor und Cyanwasserstoff anfallenden Gemischen aus Chlorcyan und Chlorwasserstoff
BE744659A (fr) 1969-01-27 1970-07-01 Haveg Industries Inc Article metallique revetu et procede pour le fabriquer
US3867166A (en) 1969-01-27 1975-02-18 Tycon Spa Coated metal article and method of making the same
CH544801A (de) * 1970-03-16 1973-11-30 Reichhold Albert Chemie Ag Verfahren zum Herstellen von Glycidyläthern
US3711388A (en) 1970-12-11 1973-01-16 Dow Chemical Co Oxidation step in electrolysis of aqueous hci
CH545778A (ru) 1971-03-26 1974-02-15
US3839169A (en) 1971-08-11 1974-10-01 Dow Chemical Co Photooxidizing organic contaminants in aqueous brine solutions
BE792326A (fr) 1971-12-07 1973-03-30 Degussa Procede pour la preparation d'halogenohydrines
DE2163096B2 (de) * 1971-12-18 1974-02-14 Gutehoffnungshuette Sterkrade Ag, 4200 Oberhausen Verfahren zur Wiederaufwärmung eines verdichteten Gasstromes über dem Taupunkt
US4173710A (en) 1972-05-15 1979-11-06 Solvay & Cie Halogenated polyether polyols and polyurethane foams produced therefrom
LU67005A1 (ru) 1973-02-12 1974-10-01
DE2241393A1 (de) 1972-08-23 1974-02-28 Bayer Ag Glycidylaether mehrwertiger phenole
CH575405A5 (ru) 1973-02-15 1976-05-14 Inventa Ag
US3865886A (en) 1973-06-20 1975-02-11 Lummus Co Production of allyl chloride
JPS5037714A (ru) * 1973-08-15 1975-04-08
CH593272A5 (ru) 1974-05-24 1977-11-30 Inventa Ag
LU70739A1 (ru) * 1974-08-14 1976-08-19
US4011251A (en) 1975-03-13 1977-03-08 Boris Konstantinovich Tjurin Method of preparing esters of glycerol and polyglycerols and C5-C9 monocarboxylic fatty acids
US4024301A (en) * 1975-05-02 1977-05-17 The B. F. Goodrich Company Internally coated reaction vessel for use in olefinic polymerization
DE2522286C3 (de) * 1975-05-20 1978-05-18 Hoechst Ag, 6000 Frankfurt Verfahren zur Reinigung von Rohchlorwasserstoff
US3954581A (en) * 1975-07-22 1976-05-04 Ppg Industries, Inc. Method of electrolysis of brine
FR2321455A1 (fr) 1975-08-22 1977-03-18 Ugine Kuhlmann Nouveau procede d'epuration oxydante des eaux
US4255470A (en) 1977-07-15 1981-03-10 The B. F. Goodrich Company Process for preventing polymer buildup in a polymerization reactor
US4127594A (en) * 1978-02-21 1978-11-28 Shell Oil Company Selective hydrogenation of olefinic impurities in epichlorohydrin
FR2455580A1 (fr) 1979-05-04 1980-11-28 Propylox Sa Procede pour l'epuration de solutions organiques de peracides carboxyliques
JPS55157607A (en) * 1979-05-25 1980-12-08 Ryonichi Kk Suspension polymerization of vinyl chloride
US4415460A (en) * 1979-07-30 1983-11-15 The Lummus Company Oxidation of organics in aqueous salt solutions
US4240885A (en) 1979-07-30 1980-12-23 The Lummus Company Oxidation of organics in aqueous salt solutions
JPS5699432A (ru) 1979-12-28 1981-08-10 Sorutan Ogurii Shiyarif Gabiru
CA1119320A (en) 1980-01-15 1982-03-02 James P. Mcmullan Bassinet
DE3003819A1 (de) 1980-02-02 1981-08-13 Basf Ag, 6700 Ludwigshafen Elektroden
US4309394A (en) * 1980-04-09 1982-01-05 Monsanto Company Method of preparing ultraphosphoric acid
US4609751A (en) * 1981-12-14 1986-09-02 General Electric Company Method of hydrolyzing chlorosilanes
US4390680A (en) * 1982-03-29 1983-06-28 The Dow Chemical Company Phenolic hydroxyl-containing compositions and epoxy resins prepared therefrom
US4405465A (en) * 1982-06-30 1983-09-20 Olin Corporation Process for the removal of chlorate and hypochlorite from spent alkali metal chloride brines
US4499255B1 (en) * 1982-09-13 2000-01-11 Dow Chemical Co Preparation of epoxy resins
SU1125226A1 (ru) 1982-10-15 1984-11-23 Башкирский государственный научно-исследовательский и проектный институт нефтяной промышленности Способ обработки глинистых буровых и цементных растворов
DE3243617A1 (de) 1982-11-25 1984-05-30 Hermetic-Pumpen Gmbh, 7803 Gundelfingen Pumpe zum foerdern hochkorrosiver medien
US4595469A (en) 1983-05-31 1986-06-17 Chevron Research Company Electrolytic process for production of gaseous hydrogen chloride and aqueous alkali metal hydroxide
DD216471A1 (de) 1983-06-30 1984-12-12 Leuna Werke Veb Verfahren zur aufarbeitung von epoxidharzhaltigen reaktionsgemischen
SU1159716A1 (ru) 1983-07-13 1985-06-07 Чувашский государственный университет им.И.Н.Ульянова Св зующее дл изготовлени литейных форм и стержней теплового отверждени
DE3339051A1 (de) 1983-10-28 1985-05-09 Henkel KGaA, 4000 Düsseldorf Verfahren zur verbesserten destillativen aufarbeitung von glycerin
JPS60258171A (ja) 1984-06-04 1985-12-20 Showa Denko Kk エピクロルヒドリンの製造方法
US4599178A (en) * 1984-07-16 1986-07-08 Shell Oil Company Recovery of glycerine from saline waters
DE3471768D1 (en) 1984-11-09 1988-07-07 Agfa Gevaert Nv Photographic elements comprising protective layers containing antistats
US4560812A (en) * 1984-12-10 1985-12-24 Shell Oil Company Recovery of glycerine from saline waters
GB2173496B (en) 1985-04-04 1989-01-05 Inst Ciezkiej Syntezy Orga Method for producing epichlorohydrin
DD238341B1 (de) 1985-06-20 1988-06-22 Thaelmann Schwermaschbau Veb Verfahren zur regenerierung von altsanden
JPS62242638A (ja) * 1986-04-14 1987-10-23 Nisso Yuka Kogyo Kk 塩素化エ−テル化合物の製造方法
CN1025432C (zh) * 1987-05-29 1994-07-13 三井石油化学工业株式会社 一种制备环氧化合物的方法
DE3811826A1 (de) 1987-06-25 1989-10-19 Solvay Werke Gmbh Verfahren zur herstellung von polyglycerinen
DE3721003C1 (en) 1987-06-25 1988-12-01 Solvay Werke Gmbh Process for the preparation of polyglycerols
DE3809882A1 (de) * 1988-03-24 1989-10-05 Solvay Werke Gmbh Verfahren zur herstellung von polyglycerinen
DE3811524A1 (de) * 1988-04-06 1989-10-19 Solvay Werke Gmbh Verfahren und vorrichtung zur herstellung von reinst-epichlorhydrin
DE3816783A1 (de) * 1988-05-17 1989-11-30 Wacker Chemie Gmbh Verfahren zur reinigung von rohem, gasfoermigem chlorwasserstoff
US4882098A (en) 1988-06-20 1989-11-21 General Signal Corporation Mass transfer mixing system especially for gas dispersion in liquids or liquid suspensions
KR900006513Y1 (ko) 1988-07-06 1990-07-26 주식회사 불티나종합상사 라이터의 잠금장치
CA1329782C (en) * 1988-08-09 1994-05-24 Thomas Buenemann Process for purifying crude glycerol
DE3842692A1 (de) * 1988-12-19 1990-06-21 Solvay Werke Gmbh Verfahren zur herstellung von polyglycerinen
JPH0798763B2 (ja) 1989-06-09 1995-10-25 鐘淵化学工業株式会社 1,2―ジクロルエタンの熱分解方法
SU1685969A1 (ru) 1989-07-26 1991-10-23 Всесоюзный научно-исследовательский и проектный институт галургии Способ пылеподавлени водорастворимых солей
KR910007854A (ko) 1989-10-04 1991-05-30 리챠드 지. 워터만 모노에폭사이드의 제조방법
WO1991009924A1 (en) 1989-12-29 1991-07-11 The Procter & Gamble Company Ultra mild surfactant with good lather
DE4000104A1 (de) 1990-01-04 1991-07-11 Dallmer Gmbh & Co Ablaufarmatur fuer eine brausewanne
JPH0625196B2 (ja) 1990-01-29 1994-04-06 ダイソー株式会社 エピクロルヒドリンの製造方法
US5146011A (en) * 1990-03-05 1992-09-08 Olin Corporation Preparation of chlorohydrins
KR0168057B1 (ko) 1990-04-12 1999-03-20 베르너 발데크 에폭시 수지의 제조방법
US5278260A (en) * 1990-04-12 1994-01-11 Ciba-Geigy Corporation Process for the preparation of epoxy resins with concurrent addition of glycidol and epihalohydrin
JPH085821B2 (ja) * 1990-08-01 1996-01-24 昭和電工株式会社 塩素化反応器
DE4039750A1 (de) 1990-12-13 1992-06-17 Basf Ag Verfahren zur entfernung von phosgen aus abgasen
FR2677643B1 (fr) 1991-06-12 1993-10-15 Onidol Procede pour l'obtention de polyglycerols et d'esters de polyglycerols.
IT1248564B (it) 1991-06-27 1995-01-19 Permelec Spa Nora Processo di decomposizione elettrochimica di sali neutri senza co-produzione di alogeni o di acido e cella di elettrolisi adatta per la sua realizzazione.
DE4131938A1 (de) * 1991-09-25 1993-04-01 Krupp Koppers Gmbh Verfahren zur aufarbeitung des sumpfproduktes einer extraktivdestillation zur gewinnung reiner kohlenwasserstoffe
US5139622A (en) 1991-10-03 1992-08-18 Texaco Chemical Company Purification of propylene oxide by extractive distillation
BE1005719A3 (fr) * 1992-03-17 1993-12-28 Solvay Procede de production d'epichlorhydrine.
DE4210997C1 (ru) 1992-04-02 1993-01-14 Krupp Vdm Gmbh, 5980 Werdohl, De
US5393724A (en) 1992-04-30 1995-02-28 Tosoh Corporation Process for removing oxidizable substance or reducible substance, composite containing metal oxide or hydroxide, and process for production thereof
DE4225870A1 (de) * 1992-08-05 1994-02-10 Basf Ag Verfahren zur Herstellung von Glycerincarbonat
DE59307919D1 (de) * 1992-09-06 1998-02-12 Solvay Deutschland Verfahren zur Behandlung von organischen Stoffen, insbesondere chlororganische Verbindungen enthaltenden Abwässern aus der Epichlorhydrinherstellung
US5286354A (en) * 1992-11-30 1994-02-15 Sachem, Inc. Method for preparing organic and inorganic hydroxides and alkoxides by electrolysis
DE4244482A1 (de) 1992-12-30 1994-07-07 Solvay Deutschland Verfahren zur Abwasserbehandlung
DE4302306A1 (de) 1993-01-28 1994-08-04 Erdoelchemie Gmbh Verfahren zur Verminderung des AOX-Gehaltes von AOX-haltigen Abwässern
DE4309741A1 (de) * 1993-03-25 1994-09-29 Henkel Kgaa Verfahren zum Herstellen von Diglycerin
DK0618170T3 (da) 1993-03-31 1996-10-07 Basf Corp Fremgangsmåde til produktion af hydrogenchloridsyre af purissimumkvalitet ud fra fremstillingen af organiske isocyanater
DE4314108A1 (de) * 1993-04-29 1994-11-03 Solvay Deutschland Verfahren zur Behandlung von organische und anorganische Verbindungen enthaltenden Abwässern, vorzugsweise aus der Epichlorhydrin-Herstellung
DE4335311A1 (de) 1993-10-16 1995-04-20 Chema Balcke Duerr Verfahrenst Begasungsrührsystem
US5532389A (en) * 1993-11-23 1996-07-02 The Dow Chemical Company Process for preparing alkylene oxides
DE4401635A1 (de) 1994-01-21 1995-07-27 Bayer Ag Substituierte 1,2,3,4-Tetrahydro-5-nitro-pyrimidine
JPH083087A (ja) * 1994-06-22 1996-01-09 Mitsubishi Chem Corp α−位にトリフルオロメチル基を有するアルコールの製造方法
WO1996007617A1 (de) 1994-09-08 1996-03-14 Solvay Umweltchemie Gmbh Verfahren zur entfernung von chlor und halogen-sauerstoff-verbindungen aus wasser durch katalytische reduktion
US5486627A (en) * 1994-12-02 1996-01-23 The Dow Chemical Company Method for producing epoxides
US5578740A (en) 1994-12-23 1996-11-26 The Dow Chemical Company Process for preparation of epoxy compounds essentially free of organic halides
US5731476A (en) * 1995-01-13 1998-03-24 Arco Chemical Technology, L.P. Poly ether preparation
US6177599B1 (en) 1995-11-17 2001-01-23 Oxy Vinyls, L.P. Method for reducing formation of polychlorinated aromatic compounds during oxychlorination of C1-C3 hydrocarbons
JP3827358B2 (ja) 1996-03-18 2006-09-27 株式会社トクヤマ 塩酸水溶液の製造方法
US5763630A (en) * 1996-03-18 1998-06-09 Arco Chemical Technology, L.P. Propylene oxide process using alkaline earth metal compound-supported silver catalysts
US5744655A (en) * 1996-06-19 1998-04-28 The Dow Chemical Company Process to make 2,3-dihalopropanols
FR2752242B1 (fr) 1996-08-08 1998-10-16 Inst Francais Du Petrole Procede de fabrication d'esters a partir d'huiles vegetales ou animales et d'alcools
JP4392862B2 (ja) 1997-02-20 2010-01-06 ゾルファイ ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング 溶液から塩素酸イオンを除去するための方法
BE1011456A3 (fr) * 1997-09-18 1999-09-07 Solvay Procede de fabrication d'un oxiranne.
EP0916624B1 (en) 1997-11-11 2001-07-25 Kawasaki Steel Corporation Porcelain-enameled steel sheets and frits for enameling
BE1011576A3 (fr) * 1997-11-27 1999-11-09 Solvay Produit a base d'epichlorhydrine et procede de fabrication de ce produit.
EP1042219A1 (en) 1997-12-22 2000-10-11 The Dow Chemical Company Production of one or more useful products from lesser value halogenated materials
JP3223267B2 (ja) 1997-12-25 2001-10-29 独立行政法人物質・材料研究機構 蛍石型またはその派生構造の酸化物焼結体とその製造方法
AU749910B2 (en) * 1998-03-19 2002-07-04 Mitsubishi Chemical Corporation Method for producing monoethylene glycol
JP4122603B2 (ja) * 1998-03-31 2008-07-23 昭和電工株式会社 ジクロロアセトキシプロパン及びその誘導体の製造方法
BE1011880A4 (fr) 1998-04-21 2000-02-01 Solvay Procede d'epuration de saumures.
DE19817656B4 (de) 1998-04-21 2007-08-02 Scintilla Ag Handwerkzeugmaschine, insbesondere Stichsäge
US6103092A (en) * 1998-10-23 2000-08-15 General Electric Company Method for reducing metal ion concentration in brine solution
US6142458A (en) * 1998-10-29 2000-11-07 General Signal Corporation Mixing system for dispersion of gas into liquid media
EP1140751B1 (en) * 1998-12-18 2004-03-24 Dow Global Technologies Inc. Process for making 2,3-dihalopropanols
EP1134195A3 (en) 1999-05-17 2002-08-28 Mitsubishi Heavy Industries, Ltd. Flue gas desulphurisation
US6111153A (en) 1999-06-01 2000-08-29 Dow Corning Corporation Process for manufacturing methyl chloride
EP1059278B1 (en) 1999-06-08 2004-12-01 Showa Denko Kabushiki Kaisha Process for producing epichlorohydrin and intermediate thereof
US6333420B1 (en) * 1999-06-08 2001-12-25 Showa Denko K.K. Process for producing epichlorohydrin and intermediate thereof
JP2001037469A (ja) 1999-07-27 2001-02-13 Nissan Chem Ind Ltd エピクロロヒドリンの微生物分解
CN1119320C (zh) 1999-11-10 2003-08-27 中国石化集团齐鲁石油化工公司 3-氯-2-羟丙基三甲基氯化铵有机副产物的分离方法
BRPI0008181B8 (pt) 2000-01-19 2017-03-21 Sumitomo Chemical Co processo de preparação de cloro.
JP3712903B2 (ja) * 2000-01-28 2005-11-02 花王株式会社 グリセリンの製造方法
JP4389327B2 (ja) 2000-03-16 2009-12-24 東亞合成株式会社 塩酸の回収方法
JP2001276572A (ja) 2000-04-04 2001-10-09 Nkk Corp 有害ポリハロゲン化化合物の分解方法及び装置
US6613127B1 (en) 2000-05-05 2003-09-02 Dow Global Technologies Inc. Quench apparatus and method for the reformation of organic materials
JP5407100B2 (ja) 2000-05-08 2014-02-05 東ソー株式会社 有機物含有無機塩の精製方法及び食塩電解用精製塩
US6740633B2 (en) * 2000-05-09 2004-05-25 Basf Aktiengesellschaft Polyelectrolyte complexes and a method for production thereof
JP3825959B2 (ja) 2000-06-16 2006-09-27 キヤノン株式会社 汚染物質分解方法及び装置
JP2002020333A (ja) * 2000-07-06 2002-01-23 Toagosei Co Ltd 水酸基の塩素化方法
JP2002038195A (ja) 2000-07-27 2002-02-06 Closs Co Ltd 洗浄剤、この洗浄剤の製造方法、この洗浄剤の製造装置、及び、この洗浄剤を用いた洗浄方法
ES2223959T3 (es) * 2000-12-04 2005-03-01 Westfalia Separator Ag Procedimiento de pretratamiento de aceites en bruto y grasas en bruto para la produccion de esteres de acidos grasos.
EP1231189B2 (de) 2001-02-08 2018-03-07 Pfaudler GmbH Hochkorrosionsbeständige schwermetallfreie Emailzusammensetzung sowie Verfahren zu deren Herstellung und Verwendung, und beschichtete Körper
JP2002265985A (ja) 2001-03-06 2002-09-18 Kanegafuchi Chem Ind Co Ltd アポリポ蛋白質b分泌抑制性脂質組成物
JP2002265986A (ja) 2001-03-15 2002-09-18 Akio Kobayashi 脂肪酸アルキルエステル及びグリセリンの製造方法
US6588287B2 (en) * 2001-04-02 2003-07-08 Daimlerchrysler Multiple stage system for aerodynamic testing of a vehicle on a static surface and related method
JP4219608B2 (ja) 2001-04-05 2009-02-04 日本曹達株式会社 ジフェニルスルホン化合物の製造方法
DE10124386A1 (de) 2001-05-18 2002-11-28 Basf Ag Verfahren zur Destillation oder Reaktivdestillation eines Gemisches, das mindestens eine toxische Komponente enthält
CN1266030C (zh) * 2001-06-28 2006-07-26 住友化学工业株式会社 提纯氯的方法和生产1,2-二氯乙烷的方法
JP2003081891A (ja) * 2001-06-28 2003-03-19 Sumitomo Chem Co Ltd 1,2―ジクロロエタンの製造方法
JP2003026791A (ja) * 2001-07-11 2003-01-29 Mitsubishi Gas Chem Co Inc 芳香族ポリカーボネート樹脂の製造方法
US6794478B2 (en) 2001-09-28 2004-09-21 Dainippon Ink And Chemicals, Inc. Preparing epoxy resin by distilling two fractions to recover and reuse epihalohydrin without glycidol
US7517445B2 (en) 2001-10-09 2009-04-14 Scimist, Inc. Mediated electrochemical oxidation of food waste materials
US6806396B2 (en) 2001-12-18 2004-10-19 E. I. Du Pont De Nemours And Company Disposal of fluoroform (HFC-23)
JP3981556B2 (ja) 2001-12-20 2007-09-26 株式会社トクヤマ 塩化メチルの製造方法
JP2003206473A (ja) 2002-01-15 2003-07-22 Mitsubishi Heavy Ind Ltd シール材ならびに該シール材を適用した有機ハロゲン化合物の分解装置
DE10203914C1 (de) 2002-01-31 2003-10-02 Degussa Verfahren zur Reinigung eines HCI-haltigen Abgases aus der Organosilanesterherstellung und dessen Verwendung
DE10207442A1 (de) * 2002-02-22 2003-09-11 Bayer Ag Aufbereitung von Kochsalz enthaltenden Abwässern zum Einsatz in der Chlor-Alkali-Elektrolyse
US6719957B2 (en) * 2002-04-17 2004-04-13 Bayer Corporation Process for purification of anhydrous hydrogen chloride gas
US6802976B2 (en) * 2002-05-13 2004-10-12 E. I. Du Pont De Nemours And Company Organic sulfur reduction in wastewater
US6745726B2 (en) * 2002-07-29 2004-06-08 Visteon Global Technologies, Inc. Engine thermal management for internal combustion engine
DE10235476A1 (de) * 2002-08-02 2004-02-12 Basf Ag Integriertes Verfahren zur Herstellung von Isocyanaten
US7037481B2 (en) 2002-09-09 2006-05-02 United Brine Services Company, Llc Production of ultra pure salt
DE10254709A1 (de) 2002-11-23 2004-06-09 Reinhold Denz Elektrolyse-Vorrichtung
DE10260084A1 (de) * 2002-12-19 2004-07-01 Basf Ag Auftrennung eines Stoffgemisches aus Clorwasserstoff und Phosgen
JP2004216246A (ja) 2003-01-14 2004-08-05 Toshiba Corp 高周波プラズマ処理装置及び高周波プラズマ処理方法
KR200329740Y1 (ko) 2003-04-21 2003-10-10 심구일 건축용 외장 복합판넬
KR100514819B1 (ko) 2003-05-12 2005-09-14 주식회사 알에스텍 키랄 글리시딜 유도체의 제조방법
JP2005007841A (ja) 2003-06-18 2005-01-13 Nittetu Chemical Engineering Ltd 耐食性の良好なフッ素樹脂ライニング方法
CZ294890B6 (cs) * 2003-09-01 2005-04-13 Spolek Pro Chemickou A Hutní Výrobu,A.S. Způsob přípravy dichlorpropanolů z glycerinu
JP2005097177A (ja) 2003-09-25 2005-04-14 Sumitomo Chemical Co Ltd プロピレンオキサイドの精製方法
CN100999442B (zh) 2003-11-20 2012-04-11 索尔维公司 含有二氯丙醇的假共沸组合物以及用于生产该组合物的方法
FR2868419B1 (fr) 2004-04-05 2008-08-08 Solvay Sa Sa Belge Procede de fabrication de dichloropropanol
KR101009858B1 (ko) * 2003-11-20 2011-01-19 솔베이(소시에떼아노님) 유기 화합물의 제조 방법
FR2862644B1 (fr) 2003-11-20 2007-01-12 Solvay Utilisation de ressources renouvelables
FR2865903A1 (fr) 2004-02-05 2005-08-12 Michel Jean Robert Larose Produit alimentaire fourre pour la restauration rapide.
FR2869613B1 (fr) 2004-05-03 2008-08-29 Inst Francais Du Petrole Procede de transesterification d'huiles vegetales ou animales au moyen de catalyseurs heterogenes a base de bismuth, de titane et d'aluminium
FR2869612B1 (fr) 2004-05-03 2008-02-01 Inst Francais Du Petrole Procede de transesterification d'huiles vegetales ou animales au moyen de catalyseurs heterogenes a base de zinc, de titane et d'aluminium
EP1593732A1 (fr) * 2004-05-03 2005-11-09 Institut Français du Pétrole Procede de transesterification d'huiles vegezales ou animales au moyen de catalyseurs heterogenes a base de zinc ou de bismuth de titane et d'aluminium
FR2872504B1 (fr) 2004-06-30 2006-09-22 Arkema Sa Purification de l'acide chlorhydrique sous-produit de la synthese de l'acide methane sulfonique
US7910781B2 (en) * 2004-07-21 2011-03-22 Dow Global Technologies Llc Process for the conversion of a crude glycerol, crude mixtures of naturally derived multihydroxylated aliphatic hydrocarbons or esters thereof to a chlorohydrin
EP1771403B1 (en) * 2004-07-21 2010-01-06 Dow Global Technologies Inc. Conversion of a multihydroxylated-aliphatic hydrocarbon or ester thereof to a chlorohydrin
EP1632558A1 (en) * 2004-09-06 2006-03-08 The Procter & Gamble A composition comprising a surface deposition enhancing cationic polymer
DE102004044592A1 (de) 2004-09-13 2006-03-30 Basf Ag Verfahren zur Trennung von Chlorwasserstoff und Phosgen
EP1807492A1 (en) 2004-10-08 2007-07-18 The Procter and Gamble Company Oligomeric alkyl glyceryl sulfonate and/or sulfate surfactant mixture and a detergent composition comprising the same
FR2881732B1 (fr) * 2005-02-08 2007-11-02 Solvay Procede pour la purification de chlorure d'hydrogene
TW200630385A (en) 2005-02-09 2006-09-01 Vinnolit Gmbh & Co Kg Process for the polymerisation of vinyl-containing monomers
TWI321129B (en) * 2005-05-20 2010-03-01 Solvay Process for preparing a chlorohydrin
FR2885903B1 (fr) 2005-05-20 2015-06-26 Solvay Procede de fabrication d'epichlorhydrine
EP1762556A1 (en) 2005-05-20 2007-03-14 SOLVAY (Société Anonyme) Process for producing dichloropropanol from glycerol
JP4904730B2 (ja) 2005-07-04 2012-03-28 住友化学株式会社 芳香族化合物と塩化水素の分離回収方法
EP1948583A2 (en) 2005-11-08 2008-07-30 Solvay S.A. Process for the manufacture of dichloropropanol by chlorination of glycerol
US7126032B1 (en) 2006-03-23 2006-10-24 Sunoco, Inc. (R&M) Purification of glycerin
FR2913683A1 (fr) 2007-03-15 2008-09-19 Solvay Produit brut a base de glycerol, procede pour sa purification et son utilisation dans la fabrication de dichloropropanol
EA200970011A1 (ru) * 2006-06-14 2009-06-30 Солвей (Сосьете Аноним) Неочищенный продукт на основе глицерина, способ его очистки и его применение в производстве дихлорпропанола
DE102006041465A1 (de) * 2006-09-02 2008-03-06 Bayer Materialscience Ag Verfahren zur Herstellung von Diarylcarbonat
FR2912743B1 (fr) 2007-02-20 2009-04-24 Solvay Procede de fabrication d'epichlorhydrine
CN101041421A (zh) 2007-03-22 2007-09-26 广东富远稀土新材料股份有限公司 萃取提纯工业盐酸的方法
FR2917411B1 (fr) 2007-06-12 2012-08-03 Solvay Epichlorhydrine, procede de fabrication et utilisation
FR2918058A1 (fr) 2007-06-28 2009-01-02 Solvay Produit a base de glycerol, procede pour sa purification et son utilisation dans la fabrication de dichloropropanol
DE102007058701A1 (de) * 2007-12-06 2009-06-10 Bayer Materialscience Ag Verfahren zur Herstellung von Diarylcarbonat
FR2925046A1 (fr) 2007-12-14 2009-06-19 Rhodia Poliamida E Especialidades Ltda Procede d'obtention d'alcool a partir d'un aldehyde
FR2925045B1 (fr) 2007-12-17 2012-02-24 Solvay Produit a base de glycerol, procede pour son obtention et son utilisation dans la fabrication de dichloropropanol
EP2085364A1 (en) 2008-01-31 2009-08-05 SOLVAY (Société Anonyme) Process for degrading organic substances in an aqueous composition
US20090196041A1 (en) * 2008-02-05 2009-08-06 Joseph Peter D Energy efficient light
JP2009263338A (ja) 2008-03-12 2009-11-12 Daiso Co Ltd エピクロロヒドリンの新規な製造方法
FR2929611B3 (fr) 2008-04-03 2010-09-03 Solvay Composition comprenant du glycerol, procede pour son obtention et son utilisation dans la fabrication de dichloropropanol
TWI368616B (en) * 2008-08-01 2012-07-21 Dow Global Technologies Llc Process for producing epoxides
FR2935699A1 (fr) 2008-09-10 2010-03-12 Solvay Procede de fabrication d'un produit chimique
FR2935968B1 (fr) 2008-09-12 2010-09-10 Solvay Procede pour la purification de chlorure d'hydrogene

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006106153A2 *

Also Published As

Publication number Publication date
TWI388542B (zh) 2013-03-11
EP2284162A3 (en) 2011-03-16
CA2608816A1 (en) 2006-10-12
EA201300253A1 (ru) 2013-11-29
TWI320037B (en) 2010-02-01
EP2284162A2 (en) 2011-02-16
US20080161613A1 (en) 2008-07-03
EP1885672A2 (fr) 2008-02-13
CN102603475A (zh) 2012-07-25
JP5405821B2 (ja) 2014-02-05
US7557253B2 (en) 2009-07-07
US20080194847A1 (en) 2008-08-14
EP1885675A1 (fr) 2008-02-13
TWI313261B (en) 2009-08-11
WO2006100318A3 (fr) 2007-03-22
TWI332941B (en) 2010-11-11
WO2006106155A2 (fr) 2006-10-12
CA2608720A1 (en) 2006-09-28
JP2008540615A (ja) 2008-11-20
JP2008545640A (ja) 2008-12-18
US7615670B2 (en) 2009-11-10
JP2008545643A (ja) 2008-12-18
WO2006100314A1 (fr) 2006-09-28
EA200702546A1 (ru) 2008-04-28
CN101098843B (zh) 2012-04-11
EA017149B1 (ru) 2012-10-30
WO2006100317A1 (fr) 2006-09-28
CA2608946A1 (en) 2006-09-28
US20080214848A1 (en) 2008-09-04
TWI320036B (en) 2010-02-01
TW200700364A (en) 2007-01-01
CN101006037B (zh) 2010-11-10
KR100982605B1 (ko) 2010-09-15
MY158842A (en) 2016-11-15
TW200700366A (en) 2007-01-01
EA200702549A1 (ru) 2008-06-30
WO2006106154A1 (fr) 2006-10-12
CN101052606B (zh) 2011-12-21
US20080200642A1 (en) 2008-08-21
CN101107208B (zh) 2012-01-11
EP1885674A1 (fr) 2008-02-13
BRPI0610791A2 (pt) 2010-11-03
EA200702564A1 (ru) 2008-04-28
MX2007014514A (es) 2008-02-05
KR20080019008A (ko) 2008-02-29
MX2007014527A (es) 2008-02-07
EA200702562A1 (ru) 2008-04-28
MY148345A (en) 2013-03-29
JP2008545641A (ja) 2008-12-18
TW200938519A (en) 2009-09-16
US20090131631A1 (en) 2009-05-21
JP2008545642A (ja) 2008-12-18
WO2006100320A2 (fr) 2006-09-28
KR20080037616A (ko) 2008-04-30
CA2608732A1 (en) 2006-10-12
EP1885678A1 (fr) 2008-02-13
EA014241B1 (ru) 2010-10-29
CA2608719A1 (en) 2006-09-28
EA200702553A1 (ru) 2008-06-30
TWI335323B (en) 2011-01-01
TW200642999A (en) 2006-12-16
WO2006100312A2 (en) 2006-09-28
US8344185B2 (en) 2013-01-01
MY148295A (en) 2013-03-29
US20080154050A1 (en) 2008-06-26
KR101337048B1 (ko) 2013-12-05
CA2608715A1 (en) 2006-09-28
CN1993306B (zh) 2012-07-04
CN101006037A (zh) 2007-07-25
EP1885706A2 (fr) 2008-02-13
EA018478B1 (ru) 2013-08-30
JP2008540614A (ja) 2008-11-20
TW200940489A (en) 2009-10-01
MX2007014516A (es) 2008-02-05
TWI323249B (en) 2010-04-11
CN102659511A (zh) 2012-09-12
US8106245B2 (en) 2012-01-31
WO2006100315A2 (fr) 2006-09-28
JP2008540617A (ja) 2008-11-20
EP1885673B1 (fr) 2015-08-12
KR101345965B1 (ko) 2014-01-02
BRPI0610748A2 (pt) 2013-04-02
US20080194851A1 (en) 2008-08-14
WO2006100312A3 (en) 2006-11-02
BRPI0610789A2 (pt) 2010-11-09
BRPI0610745A2 (pt) 2012-10-30
JP2008540608A (ja) 2008-11-20
CA2608953A1 (en) 2006-09-28
JP5551359B2 (ja) 2014-07-16
US20080194884A1 (en) 2008-08-14
WO2006100313A3 (fr) 2006-11-09
JP2008540609A (ja) 2008-11-20
EP1885671A1 (fr) 2008-02-13
EP1904427A2 (en) 2008-04-02
JP2008540610A (ja) 2008-11-20
US20080200701A1 (en) 2008-08-21
WO2006100311A3 (fr) 2006-11-23
TW200700360A (en) 2007-01-01
EA018479B1 (ru) 2013-08-30
WO2006100319A1 (fr) 2006-09-28
EA013681B1 (ru) 2010-06-30
BRPI0610799A2 (pt) 2010-11-09
TW200700401A (en) 2007-01-01
EP2284163A3 (en) 2011-03-09
TW200700363A (en) 2007-01-01
US7906692B2 (en) 2011-03-15
EA200702548A1 (ru) 2008-06-30
WO2006100318A2 (fr) 2006-09-28
CN101107208A (zh) 2008-01-16
US20080194850A1 (en) 2008-08-14
KR20080019006A (ko) 2008-02-29
TW200700402A (en) 2007-01-01
EP2284163A2 (en) 2011-02-16
WO2006100318A9 (fr) 2006-11-16
TWI322142B (en) 2010-03-21
JP5259390B2 (ja) 2013-08-07
EP1885676A2 (fr) 2008-02-13
CA2608961A1 (en) 2006-09-28
WO2006100320A3 (fr) 2006-12-28
MX2007014525A (es) 2008-02-05
TW200700403A (en) 2007-01-01
JP5419446B2 (ja) 2014-02-19
WO2006106155A3 (fr) 2006-12-28
CN102603474A (zh) 2012-07-25
JP2008540613A (ja) 2008-11-20
KR20080019010A (ko) 2008-02-29
CN1993307A (zh) 2007-07-04
US8173823B2 (en) 2012-05-08
CA2608723A1 (en) 2006-09-28
JP5777268B2 (ja) 2015-09-09
US20080194849A1 (en) 2008-08-14
TWI332940B (en) 2010-11-11
WO2006100315A3 (fr) 2006-11-16
CN1993306A (zh) 2007-07-04
TW200700365A (en) 2007-01-01
JP5179351B2 (ja) 2013-04-10
WO2006106153A2 (fr) 2006-10-12
EP1891032A2 (fr) 2008-02-27
CN101098843A (zh) 2008-01-02
TWI321129B (en) 2010-03-01
BRPI0610746A2 (pt) 2012-10-30
CN101052606A (zh) 2007-10-10
CN102531841A (zh) 2012-07-04
TW200700361A (en) 2007-01-01
MX2007014523A (es) 2008-02-05
EA200702561A1 (ru) 2008-04-28
TW200700359A (en) 2007-01-01
EP2284162B1 (en) 2016-11-02
CA2608725A1 (en) 2006-10-12
CN1993307B (zh) 2012-04-11
TWI332493B (en) 2010-11-01
US7893193B2 (en) 2011-02-22
WO2006106153A3 (fr) 2006-12-28
MX2007014530A (es) 2008-02-05
KR100978436B1 (ko) 2010-08-26
JP2008540616A (ja) 2008-11-20
EA200702550A1 (ru) 2008-06-30
WO2006100313A2 (fr) 2006-09-28
KR100982618B1 (ko) 2010-09-15
US20080194848A1 (en) 2008-08-14
EP2275417A3 (en) 2011-03-09
CN101006068A (zh) 2007-07-25
CN102690168A (zh) 2012-09-26
US8389777B2 (en) 2013-03-05
EP1885705B1 (fr) 2019-02-13
CA2608722A1 (en) 2006-09-28
CA2608946C (en) 2014-03-25
WO2006100311A2 (fr) 2006-09-28
TWI349657B (en) 2011-10-01
WO2006100312A9 (en) 2007-05-18
CN101006068B (zh) 2011-06-08
CN101031532A (zh) 2007-09-05
EA200702554A1 (ru) 2008-06-30
EA200702555A1 (ru) 2008-06-30
BRPI0610751A2 (pt) 2010-11-09
EP1885673A1 (fr) 2008-02-13
TW200940488A (en) 2009-10-01
JP2008540611A (ja) 2008-11-20
CA2608956A1 (en) 2006-09-28
WO2006100316A1 (fr) 2006-09-28
EA200702551A1 (ru) 2008-06-30
EP1890988A2 (fr) 2008-02-27
TW200700367A (en) 2007-01-01
BRPI0610744A2 (pt) 2012-10-30
MX2007014532A (es) 2008-02-07
CN101031532B (zh) 2010-11-10
TWI332942B (en) 2010-11-11
US7906691B2 (en) 2011-03-15
CA2608937A1 (en) 2006-09-28
EA200702552A1 (ru) 2008-06-30
JP5280842B2 (ja) 2013-09-04
KR20080036554A (ko) 2008-04-28
EP2275417A2 (en) 2011-01-19
TW200700362A (en) 2007-01-01
CA2608961C (en) 2014-09-30
EA200702565A1 (ru) 2008-04-28
EP1885705A2 (fr) 2008-02-13
KR100979371B1 (ko) 2010-08-31
MY148378A (en) 2013-04-15
TWI333945B (en) 2010-12-01
KR101331367B1 (ko) 2013-11-19
KR20080019007A (ko) 2008-02-29
KR20080019009A (ko) 2008-02-29

Similar Documents

Publication Publication Date Title
EP1885677A2 (fr) Procede de fabrication d'une chlorhydrine par reaction entre un hydrocarbure aliphatique poly hydroxyle et un agent de chloration
JP6373554B2 (ja) エポキシドの製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071220

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080801

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1112696

Country of ref document: HK

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOLVAY SA

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1112696

Country of ref document: HK

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20151201