CN1525612A - 氮化物半导体器件 - Google Patents

氮化物半导体器件 Download PDF

Info

Publication number
CN1525612A
CN1525612A CNA2004100037214A CN200410003721A CN1525612A CN 1525612 A CN1525612 A CN 1525612A CN A2004100037214 A CNA2004100037214 A CN A2004100037214A CN 200410003721 A CN200410003721 A CN 200410003721A CN 1525612 A CN1525612 A CN 1525612A
Authority
CN
China
Prior art keywords
layer
nitride semiconductor
semiconductor layer
type
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004100037214A
Other languages
English (en)
Other versions
CN1264262C (zh
Inventor
Д
中村修二
����һ
长滨慎一
岩佐成人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP30528195A external-priority patent/JP2900990B2/ja
Priority claimed from JP30527995A external-priority patent/JP3235440B2/ja
Priority claimed from JP33205695A external-priority patent/JP2891348B2/ja
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Publication of CN1525612A publication Critical patent/CN1525612A/zh
Application granted granted Critical
Publication of CN1264262C publication Critical patent/CN1264262C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen characterised by the doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2202Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure by making a groove in the upper laser structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2009Confining in the direction perpendicular to the layer structure by using electron barrier layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3201Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures incorporating bulkstrain effects, e.g. strain compensation, strain related to polarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3206Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures ordering or disordering the natural superlattice in ternary or quaternary materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/321Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures having intermediate bandgap layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3403Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having a strained layer structure in which the strain performs a special function, e.g. general strain effects, strain versus polarisation
    • H01S5/3404Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having a strained layer structure in which the strain performs a special function, e.g. general strain effects, strain versus polarisation influencing the polarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/341Structures having reduced dimensionality, e.g. quantum wires
    • H01S5/3412Structures having reduced dimensionality, e.g. quantum wires quantum box or quantum dash
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3413Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers comprising partially disordered wells or barriers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biophysics (AREA)
  • Geometry (AREA)
  • Plasma & Fusion (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Recrystallisation Techniques (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

一种具有氮化物半导体层结构的氮化物半导体器件。该层结构包括含铟氮化物半导体构成的量子阱结构的有源层(16)。提供具有比有源层(16)大的带隙能量的第一氮化物半导体层(101),使之与有源层(16)接触。在第一层(101)之上提供具有比第一层(101)小的带隙能量的第二氮化物半导体层(102)。另外,在第二层(102)之上提供具有比第二层(102)大的带隙能量的第三氮化物半导体层(103)。

Description

氮化物半导体器件
本发明涉及包括如激光二极管器件(LD)或发光二极管(LED)的光发射器件和如太阳能电池的光接收器件的氮化物半导体器件,特别涉及氮化物半导体光发射器件。
根据其组成氮化物半导体可以有1.95到6.0eV的带隙能量,因此它们作为如发光二极管(LED)器件和激光二极管(LD)器件等光发射器件的材料很受已引起人们的关注。最近,由于利用了这些氮化物半导体材料,高亮度蓝光LED器件和绿光LED器件已投入实用中。这些LED器件具有含p-n结的双异质结结构且都有超过1mW的输出功率。
常规LED器件基本上皆具有双异质结结构,其中InGaN构成的有源层夹在由AlGaN构成的n型和p型覆盖层之间。GaN构成的n型接触层形成在n型覆盖层上,GaN构成的p型接触层形成在p型覆盖层上。这种层叠结构形成在如蓝宝石构成的基片上。
LD器件基本上可以具有和上述LED器件相似的结构,但是,大多数LD器件具有光和载流子分别限制的分别限制结构。例如在日本特许公开(JP-A)6-21511中公开了分别限制结构的氮化物半导体LD器件,该文件中说明了其中InGaN有源层夹在如n型GaN和p型GaN波导层的两个光波导层之间的分别限制结构的光发射器件。n型AlGaN载流子限制层形成在n型光波导层上,另一p型AlGaN载流子限制层形成在p型光波导层上。
同时,常规双异质结结构半导体器件具有有源层、所形成的与有源层接触且具有比有源层大的带隙能量的第一覆盖层、所形成的与第一覆盖层接触且具有比第一覆盖层大的带隙能量的第二覆盖层。根据各能级该结构可用于向有源层有效地注入电子和空穴。
同样常规氮化物半导体LD器件具有有源层和置于有源层之上的覆盖层,所说覆盖层包括例如由载流子限制层(光限制层)连接的光波导层,每层具有逐步增加的带隙能量(例如,参见上述提到的公开申请)。
但是,已发现具有含铟有源层的常规氮化物半导体器件特别是上述结构的LD器件光发射效率较低。特别是,发现由于增加供给器件的电流而导致的器件的温升使光发射效率严重降低。
因此,本发明的目的是提供一种具有由含铟的氮化物半导体构成的有源层的氮化物半导体器件,其特征是该氮化物半导体器件光发射效率高。
本发明的另一目的是提供一种氮化物半导体器件,当器件温度升高时其光发射效率只稍稍降低。
本发明的第一方案提供一种氮化物半导体器件,该器件包括:
具有第一和第二表面且由含铟的氮化物半导体构成的量子阱结构有源层;
和有源层第一表面接触且具有比有源层大的带隙能量的第一氮化物半导体层;
第二氮化物半导体层,它位于有源层第一表面一侧,比第一氮化物半导体层离有源层远,且具有比第一氮化物半导体层小的带隙能量;
第三氮化物半导体层,它位于有源层第一表面一侧,比第二氮化物半导体层离有源层远,且具有比第二氮化物半导体层大的带隙能量。
本发明的第二方案提供一种氮化物半导体器件,该器件包括:
由n型氮化物半导体构成的第一覆盖层;
在第一覆盖层上的量子阱结构有源层,所说有源层由含铟和镓的氮化物半导体构成,且至少具有一个厚度不大于70埃的阱层,其中所说阱层以和下层晶格失配的状态置于下层上,且包括多个富铟区和少铟区;
由用受主杂质掺杂的氮化物半导体构成的、位于有源层上的第二覆盖层。
本发明的第三方案提供一种氮化物半导体器件,该器件包括:由n型含铝氮化物半导体或n型氮化镓构成的第一n型层,和由n型含铝氮化物半导体构成的第二n型层,其中该器件具有由n型含铟氮化物半导体构成的、位于第一n型层和第二n型层之间的第三n型层。
在本发明的氮化物半导体器件中,有源层夹在最终与正电极接触的层结构和最终与负电极接触的层结构之间。下面,有时称最终与正电极接触的层结构一端为p端,称最终与负电极接触的层结构一端为n端。
另外,在本发明中,广义的氮化物半导体是周期表中III族元素的氮化物,具体地是,由InxAlyGa1-x-yN表示的氮化物半导体,这里0≤x≤1,0≤y≤1,且0≤x+y≤1。
从下面的说明中可看出本发明的另外的目的和优点,一部分可以从说明中获悉,或可以通过实现本发明获悉。本发明的目的和优点可以通过所附权利要求书中特别指出的手段和其组合来实现。
与说明书结合且构成其一部分的附图示出了本发明的优选实施例,它们和上面的一般说明及下面对优选实施例的详细说明一起用来解释本发明的原理。
图1表示对应于常规LD器件的层结构的能带;
图2表示根据本发明第一实施例的LD器件的剖面图;
图3表示根据本发明第二实施例的LD器件的剖面图;
图4表示根据本发明第三实施例的LD器件的剖面图;
图5表示对应于图4器件结构的能带;
图6表示根据本发明第四实施例的LD器件的剖面图。
本发明检测了随着具有含铟有源层的氮化物半导体器件温度的升高光发射效率降低的机理。结果发现,这种光发射效率降低主要是由于与含铝的氮化物半导体或氮化镓(GaN)相比含铟的氮化物半导体特别是InGaN更难生长所导致的。即,构成InGaN的InN和GaN的分解温度彼此有很大的差异,这样InGaN有相分离为InN和GaN的趋势。因此,铟含量增加便更难得到均匀组成的有源层。正因如此,在常规半导体器件中,才将形成有源层的InGaN中铟含量控制在很低水平。
当形成GaN光波导层与低铟含量的InGaN有源层接触时,有源层和光波导层的带差变得极小。这可以参照表示常规氮化物半导体光发射器件能带的图1来解释。如图1所示,在常规氮化物半导体器件中,直接夹住InGaN有源层的光波导层(GaN)的带隙能量不比有源层(InGaN)的带隙能量大多少(因为InGaN的In含量很低,InGaN接近GaN)。因此,当所加电流增加器件温度升高时,分别从n型层和p型层注入到有源层的电子和空穴复合发光(hν)之前,热能使电子和空穴分别从有源层流出到达置于结对面的波导层(GaN),即,电子到达p型光波导层,空穴到达n型光波导层。结果光发射效率降低,特别是随着温度升高效率降低。
因此,在本发明的氮化物半导体器件中,邻接和夹住含铟的氮化物半导体有源层的两个第一层(第一p端层和第一n端层)由比有源层带隙能量大的氮化物半导体构成。较好是,两个第一层具有比有源层大0.01-4.05eV的带隙能量。由于有这样大的带隙能量的第一层的存在,注入到有源层的电子和空穴不会流出有源层。在每个第一层上,具有最好邻接第一层的第二层(第二p端层和第二n端层)。第二层具有比第一层小但最好比有源层大的带隙能量。第二层最好具有比第一层小0.01-4.05eV的带隙能量。在每个第二层上,具有最好邻近第二层的第三层(第三p端层和第三n端层)。第三层具有比第二层大的带隙能量。第三层最好具有比第二层大0.01-4.05eV的带隙能量。从第三层端注入的电子和空穴将有效地注入到具有较小带隙能量的第二层,但因为第一层的较大带隙能量而不大可能注入到有源层。因此,在本发明中,最好是第一层足够薄使电子或空穴即载流子由于隧穿效应(隧穿)而可以通过。因此,使电子或空穴有效地从第三层注入到有源层。结果,在本发明的器件中,电子或空穴将有效地从第三层注入到有源层,且由于结对面的第一层的存在而被限制住,即使温度升高也不会流出有源层。
从上面的说明可以看出,如果有源层的p端和n端之一具有三层结构,则包括第一、第二和第三层的三层结构可以防止载流子即电子或空穴流出。最好是在有源层两端(p端和n端)都具有三层结构。
下面将参照图2到6解释本发明。所有这些附图中,皆用相同的数字表示相同的元件或部件。
图2是表示根据本发明第一实施例的LD器件的剖面图。在该LD器件中,在有源层的p端有本发明的三层结构。
图2的LD器件有通过缓冲层12在基片11上的半导体层叠结构。层叠结构包括在缓冲层12上的n型接触层13、n型载流子限制层(光限制层)14、n型光波导层15、有源层16、具有比有源层16大的带隙能量的第一p端氮化物半导体层101、具有比第一p端氮化物半导体层小的带隙能量的第二p端氮化物半导体层102、具有比第二p端氮化物半导体层大的带隙能量的第三p端氮化物半导体层103、和p型接触层17。在p型接触层17上具有含接触孔18a于其中的电流限制层18。在n型接触层13的暴露表面上有负电极19,而在电流限制层18上有正电极20。正电极20通过电流限制层18的接触孔18a与p型接触层17接触。
基片11可以由适于在其上生长氮化物半导体的普通材料制成,包括尖晶石(MgAl2O4)、蓝宝石(Al2O3,包括A、R和C表面)、SiC(包括6H、4H、和3C)、ZnS、ZnO、GaAs和GaN。
缓冲层12可以由AlN、GaN、AlGaN等形成。可以在不高于900℃的温度形成具有几十埃到几百埃范围的厚度。形成缓冲层是为了减轻基片11与要形成于其上的氮化物半导体层之间的晶格失配。因此,当使用和氮化物半导体晶格匹配的基片时、或使用具有和氮化物半导体接近的晶格常数的基片时、或根据生长氮化物半导体的方法可以省略缓冲层12。
由氮化物半导体、较好是由GaN或InaGa1-aN(0<a<1)形成n型接触层13。(在该说明书中,有时简单称由InaGa1-aN(0<a<1)或类似表达式表示的氮化物半导体为InGaN。)用Si掺杂GaN作为n型接触层13,它具有高载流子浓度,且能和负电极19形成良好的欧姆接触,这样便可降低激光器件的阈值电流。尽管没有特别限制n型接触层13的厚度,但该厚度通常为0.1到5μm。
形成在腐蚀暴露的n型接触层13表面上的负电极较好由如Al、Ti、W、Cu、Zn、Sn、或In等金属材料和其合金形成。这些金属材料可以和n型接触层13形成良好的欧姆接触。
由n型氮化物半导体形成n型载流子限制层14和在层14上的n型光波导层15。在图2的实施例中,n型载流子限制层14较好由含铝氮化物半导体形成,最好由AlbGa1-bN(0<a<1)形成,而n型光波导层15较好由含铟n型氮化物半导体即IncGa1-cN(0<c<1)或GaN形成,n型载流子限制层14的优选厚度通常为0.1到1μm,而n型光波导层15的优选厚度通常为100埃到1μm。
n型光波导层15上的有源层16具有量子阱结构(如单量子阱(SQW)结构或多量子阱(MQW)结构)。量子阱结构具有由含铟的氮化物半导体即IndAleGa1-d-eN(0<d≤1,0≤e≤1,且0<d+e≤1)形成的阱层,该阱层具有比n型光波导层15和第一p端氮化物半导体层101小的带隙能量。较好的是,由三元混晶InfGa1-fN形成阱层。三元混晶InGaN具有结晶度比四元混晶好且由此可增强光发射输出功率的层。
特别地,较好是有源层16是由交替层叠InGaN阱层和具有比阱层大的带隙能量的氮化物半导体势垒层构成的MQW结构(MQW结构最少有3层)。在本发明中,MQW结构可以是:具有与如n型光波导层15等n型层接触的、作为结构最下层的阱层的结构,和具有与如第一p端层101等p型层接触的、作为结构最上层的阱层的结构;或者可以是:具有与如n型光波导层15等n型层接触的、作为结构最下层的势垒层的结构,和具有与如第一p端层101等P型层接触的、作为结构最上层的势垒层的结构。形成势垒层的氮化物半导体包括GaN、AlGaN等。但是,特别优选的是和阱层一样由三元混晶Inf’Ga1-f’N(0<f”<1,f’<f)形成势垒层。如果有源层16是由不同带隙能量的InGaN层层叠构成的MQW结构,则可以实现高输出功率的LD器件,通过改变有源层铟的摩尔百分比和/或改变第一或第三n端或p端氮化物半导体层的铝摩尔百分比,按照量子阱能级之间发射,该器件能发射365nm到660nm的光。此外,层叠在阱层的InGaN势垒层有比AlGaN层软的晶体,因此可以在其上形成覆盖层,例如,AlGaN层,它叠置于其上,较厚且不破裂,这便可能实现极好的激光振荡。
在MQW结构的情况下,最好阱层的厚度不大于70埃,势垒层的厚度不大于150埃。同时,最好是由单量子阱层形成的SQW结构的有源层的厚度的不大于70埃。最好阱和势垒层的厚度皆为5埃以上。
有源层16可以是没用杂质或掺杂物掺杂(不掺杂)的类型,或者可以是具有用杂质或掺杂物即受主杂质和/或施主杂质掺杂的阱和/或势垒层的类型。对掺杂有源层,特别优选硅掺杂的。当硅掺杂有源层时,LD器件的阈值电流有降低的趋势。可以把如四乙基硅的有机硅气体、如硅烷的氢化硅气体、和/或如四氯化硅的卤化硅气体等加入生长形成有源层的氮化物半导体的原材料气体中进行Si掺杂。
由具有比有源层16(更严格说是阱层)大的带隙能量的氮化物半导体层形成和有源层16邻接的第一p端氮化物半导体层101。较好是由含铝氮化物半导体即IngAlhGa1-g-hN(0≤g≤1,0<h≤1,且0<g+h≤1)且最好是由三元混晶AljGa1-jN(0≤j≤1)形成第一氮化物半导体层。(在本说明书中,有时简称由AljGa1-jN(0<j<1)或类似表达式表示的氮化物半导体为AlGaN。)
第一p端氮化物半导体层101较好是i型或p型。特别是用AlGaN,很容易得到高载流子浓度的p型。另外,形成连接由含InGaN阱层构成的有源层16的AlGaN层,可能得到高发射输出功率的器件。
在本发明中,在晶体生长过程中,可以用如Mg、Zn、C、Be、Ca或Ba等受主杂质或其混合物掺杂得到包括一个形成有源层16的p型氮化物半导体。受主杂质的浓度较好为1×1017到1×1022/cm3。当受主杂质为镁时,掺杂的浓度较好为1×1018到1×1020/cm3,更好是1×1019到1×1020/cm3。任何情况下,为了得到高载流子浓度的p型层,用受主杂质掺杂后,需要以不低于400℃的温度在惰性气体气氛中进行退火处理。通常,在Mg掺杂p型AlGaN情况下,可以得到1×1017到1×1019/cm3的载流子浓度。同时可以进行i型氮化物半导体的制备,例如,生长不掺受主杂质的ALjGa1-jN,这里j不小于0.5。另外,可以用补偿空穴载流子浓度的量的施主杂质掺杂p型氮化物半导体、或用补偿电子载流子浓度的量的受主杂质掺杂n型氮化物半导体来制备I型氮化物半导体。
特别优选的是第一p端氮化物半导体层101足够薄可使载流子(空穴载流子)能隧穿通过它,更具体地,第一p端氮化物半导体层101的厚度不大于0.1μm,较好不大于0.05μm(不大于500埃),最好不大于0.03μm(不大于300埃)。如果第一p端氮化物半导体层101的厚度在上述范围内,则可以防止第一p端氮化物半导体层101形成裂纹,且可以生长具有极好结晶度的氮化物半导体层。此外,随着Al含量的增加和AlGaN厚度的减小,容易实现激光振荡。例如,当使用ALjGa1-jN时,这里j不小于0.2,第一p端氮化物半导体层101的厚度较好不大于500埃。尽管对第一p端氮化物半导体层101的厚度不设下限,但最好不小于10埃。
第二p端氮化物半导体层102具有比第一p端氮化物半导体层101小的带隙能量,但较好具有大于有源层16的带隙能量,将它置于比第一p端氮化物半导体层101离有源层更远的位置。最好是,如图2所示,形成第二p端氮化物半导体层102连接第一p端氮化物半导体层101。较好由InkGa1-kN(0≤k≤1且最好由GaN或InGaN形成第二p端氮化物半导体层102。如果第二p端氮化物半导体层102由GaN或InGaN形成,即使该层较厚时,所得第二p端氮化物半导体层102也几乎无裂纹,且具有极好的结晶度。第二p端氮化物半导体层102的厚度较好为0.01到5μm,最好为0.02到1μm,该范围使第二p端氮化物半导体层102起例如希望有的光波导层的作用。此外,第二p端氮化物半导体层102包含受主杂质且较好是p型。
另外,如下所述,第二p端氮化物半导体层102,特别是由GaN或InGaN形成的该层,还起对在其上生长第三p端氮化物半导体层103有用的缓冲层的作用。与AlGaN相比,InGaN或GaN为较软的晶体。因此,在具有比有源层16大的带隙能量的第一p端氮化物半导体层101和第三p端氮化物半导体层103之间,由于由InGaN或GaN形成的第二p端氮化物半导体层102的存在,可以使第三p端氮化物半导体层103无裂纹,且因此其厚度厚于第一p端氮化物半导体层101。
第三p-侧氮化物半导体层103具有一个大于第二p-侧氮化物半导体层102的带隙能量并且形成在离相对于第二p-侧氮化物半导体层102的有源层更大距离的的位置上。最好,第三p-侧氮化物半导体层103形成为贴近第二p-侧氮化物半导体层102,如图2所示的那样。第三p-侧氮化物半导体层103由含铝氮化物半导体即InmAlnGa1-m-nN(0≤m≤1,0<n≤1,0<m+n≤1)形成为好,最好由AlGaN三元混合晶体形成。
第三p-侧氮化物半导体层103被要求具有大于第二p-侧氮化物半导体层102的带隙能量。这是因为第三p-侧氮化物半导体层103作为载流子限制和光限制层。第三p-侧氮化物半导体层103的厚度在0.01至2μm的范围为好,最好在0.05至2μm的范围内,该范围使第三p-侧氮化物半导体层103能够作为具有优良结晶性的载流子限制层。此外,第三p-侧氮化物半导体层103包括一受主杂质并以p-型为好。
p-型接触层17由p-型氮化物半导体形成,置于第三p-侧氮化物半导体层103上。特别是,使用InGaN或GaN尤其是掺Mg的p-型GaN作为p-型接触层17,产生了具有最好载流子集中并建立同正电极20的良好电阻性接触的p-型层,这样就能降低阈值电流。
为了获得电阻性接触,正电极20以由具有相对高的工作函数的金属材料例如Ni、Pd、Rh、Pt、Ag或Au及其合金所形成为好。
电流限制层18由电绝缘材料形成,以二氧化硅为好。该电流限制层18可以省略。
在图2中,n-型载流子限制层14通过防裂层30设在n-型接触层13上。
即,当晶体成长到具有较大厚度时,含铝氮化物半导体就会在晶体中形成裂缝。尤其是,在n-型GaN或AlGaN层上直接成长出n-型含铝氮化物半导体的厚层而没有裂缝的形成是困难的。例如,在由如n-型GaN等所形成的n-型接触层13上形成n-型层是困难的,该n-型层由含铝氮化物半导体特别是AlGaN构成并是由需要0.1μm或以上的大的厚度的n-型载流子限制层14为例。因而,首先在n-型接触层13上形成一由含铟氮化物半导体如n-型层InpGa1-pN(0<p≤1)所构成的n-型层以作为防裂层30,然后才形成由n-型含铝氮化物半导体所构成的n-型载流子限制层14。由于防裂层30的存在,n-型载流子限制层14就能成长到所需的厚度(例如0.1μm或更高)。防裂层30的厚度以100埃至0.5μm的范围内为好。
接着,本发明提供一种氮化物半导体器件,包括:第一n-型层,由n-型含铝氮化物半导体或n-型氮化镓所形成;第二n-型层,由含铝n-型氮化物半导体所形成,其中,该器件具有由含铟n-型氮化物半导体所形成的第三n-型层并被设在第一n-型层和第二n-型层之间。第三n-型层可以设在第一n-型层和第二n-型层之间的任何地方,而不需要贴近第一n-型层和第二n-型层中的任何一个。
图3是表示本发明的第二实施例的氮化物半导体LD器件的截面图,其中用与图2中的相同的标号表示相同的元件或部件。参照图3,该LD器件具有一个通过缓冲层12形成在衬底11上的氮化物半导体结构。该结构包括n-型接触层13、防裂层30、第三n-侧氮化物半导体203、第二n-侧氮化物半导体层202、第一n-侧氮化物半导体层201、有源层16、p-型光导层31、p-型载流子限制层(光限制层)32、p-型接触层17和电流限制层18。如图2所示,负电极19被电连接到n-型接触层13上而正电极20被电连接到p-型接触层17上。
在图3的LD器件中,第一n-侧氮化物半导体层201、第二n-侧氮化物半导体层202、和第三n-侧氮化物半导体203,除导电类型以外,基本上分别与相应的第一p-侧氮化物半导体层101、第二p-侧氮化物半导体层102和第三p-侧氮化物半导体层103相同,如参照图2所述的那样,根据带隙能量、所使用的氮化物半导体材料和厚度,但除导电类型外。
另外,关于第一p-侧氮化物半导体层101、第二p-侧氮化物半导体层102和第三p-侧氮化物半导体层103所涉及的优选材料、优选厚度等可以分别应用于第一n-侧氮化物半导体层201、第二n-侧氮化物半导体层202和第三n-侧氮化物半导体203。
为了简化重复,被设置成与有源层16相邻的第一n-侧氮化物半导体层201由具有大于有源层16(更严格地说,其阱层)的带隙能量的氮化物半导体层所形成。最好,第一n-侧氮化物半导体层201由含铝氮化物半导体层所形成,尤其是由AlGaN三元混合晶体形成更好。
第一n-侧氮化物半导体层201还是足够的薄以使载流子(电子载流子)能够通过其。特别是,第一n-侧氮化物半导体层201的厚度不大于0.1μm,不大于0.05μm(不大于500埃)更好,最好不大于0.03μm(不大于300埃)。但第一n-侧氮化物半导体层201的厚度也不能小于10埃。
第一n-侧氮化物半导体层201为n-型或i-型较好。
在本发明中,虽然可以不用掺入杂质来获得n-型氮化物半导体,即在不掺杂的状态下,但是,可以在晶体的成长过程中通过掺入施主杂质如Si、Ge、Sn、S或其组合来获得所需的n-型。在此情况下,施主杂质的集中以1×1016到1×1022/cm3。特别是,以1×1017到1×1021/cm3的集中来掺入Si为好,最好是1×1018到1×1020/cm3
第二n-侧氮化物半导体层202具有小于第一n-侧氮化物半导体层201的带隙能量,当以大于有源层16的为好,并且形成在离相对于第一n-侧氮化物半导体层201的有源层更大距离的的位置上。最好,如图3所示的那样,第二n-侧氮化物半导体层202以由InkGa1-kN(0<k≤1)所形成为好,并最好由GaN或InGaN所形成。第二n-侧氮化物半导体层202的厚度在0.01至5μm的范围为好,最好在0.02至1μm的范围内,该范围使第二n-侧氮化物半导体层202能够被用于例如所需的光导层。第二n-侧氮化物半导体层202是n-型的。如参照图2所述的那样,第二p-侧氮化物半导体层102作为缓冲层以使第三p-侧氮化物半导体层103在其上成长而形成为相对薄的层。同样,第二n-侧氮化物半导体层202作为缓冲层以成长第一n-侧氮化物半导体层201,但作为缓冲层不是很重要的,因为第一n-侧氮化物半导体层201是薄的。
为了作为一个载流子限制和光限制层,第三n-侧氮化物半导体203也具有大于第二n-侧氮化物半导体层202的带隙能量,并形成在离相对于第二n-侧氮化物半导体层202的有源层16更大距离的的位置上。最好,如图3所示的那样,第三n-侧氮化物半导体203形成为贴近于第二n-侧氮化物半导体层202。第三n-侧氮化物半导体203以由含铝氮化物半导体所形成为好,最好由AlGaN三元混合晶体形成。第三n-侧氮化物半导体203的厚度在0.01至2μm的范围为好,最好在0.05至2μm的范围内,该范围使第三n-侧氮化物半导体203能够具有优良结晶性并作为一个载流子限制和光限制层。第三n-侧氮化物半导体203是n-型的,其以由含铝氮化物半导体所构成为好,并通过防裂层30而形成在由GaN所构成的n-型接触层13上。
p-型光导层31和p-型载流子限制层(光限制层)32都是由p-型氮化物半导体所形成。p-型载流子限制层(光限制层)32具有大于p-型光导层31的带隙能量,而p-型光导层31具有大于有源层16的带隙能量。
图4表示一种氮化物半导体LD器件,其在有源层的每个p-侧和n-侧上具有本发明的三层层叠结构,并且其是最佳实施例。参照图4,该LD器件具有一个通过缓冲层12形成在衬底11上的氮化物半导体结构。该结构包括n-型接触层13、防裂层30、第三n-侧氮化物半导体203、第二n-侧氮化物半导体层202、第一n-侧氮化物半导体层201、有源层16、第一p-侧氮化物半导体层101、第二p-侧氮化物半导体层102、第三p-侧氮化物半导体层103和p-型接触层17。具有接触孔18a的电流限制层18设在p-型接触层17上。负电极19设在n-型接触层13的暴露面上,而正电极20设在电流限制层18上。正电极20通过电流限制层18的接触孔18a而同p-型接触层17相连接。构成图4的器件的元件图参照图2和3所述的那些相同。
构成本发明的器件的氮化物半导体层可以通过金属有机蒸汽相外延生长(MOVPE)法来生长。但该氮化物半导体层也可以通过包括氢化物蒸汽相外延生长(HDVPE)法和分子束蒸汽相外延生长(MBE)法的现有其它方法来生长。
图5表示图4所示的LD器件的能量带,其中有源层具有MQW结构。如图5所示,在本发明的双-异构的LD器件的情况下,第一p-侧氮化物半导体层101和第一n-侧氮化物半导体层201被置于贴近于包括含铟氮化物半导体的有源层16处。即,这两种第一氮化物半导体层101和201都处于贴近于有源层16处,他们每个都具有大于有源层16(更严格地说,其阱层)并大于第二p-侧氮化物半导体层102的和第二n-侧氮化物半导体层202的带隙能量。由于这两种第一氮化物半导体层101和201都是薄的,因而他们不是作为阻挡载流子、电子载流子和空穴载流子,而能分别通过第一n-侧氮化物半导体层201和第一p-侧氮化物半导体层101,并在有源层16上高效地重新组合以发射光(hυ),其中所述电子载流子是从第三n-侧氮化物半导体203注入到第二n-侧氮化物半导体层202中,所述空穴载流子是从第三p-侧氮化物半导体层103注入到第二p-侧氮化物半导体层102中。
由于第一氮化物半导体层101和201的带隙能量都足够大,注入的载流子被第一氮化物半导体层101和201所拦阻而不会流出有源层16。作为电子和空穴载流子被有效地积累在有源层16中的结果,而能够进行光的高效的发射,即使器件温度上升或注入电流密度增加。因此,本发明的氮化物半导体器件实现了一种LD器件,其特征在于,即使在器件温度上升时光发射效率的较小降低和低的阈值电流(密度)。
本发明人在本发明的器件中对有源层进行了严格的研究,特别是对具有由包含铟和镓的氮化物半导体所形成的阱层的有源层进行了严格的研究。结果,他们发现:在例如InGaN的生长过程中,所含的铟依赖于生长条件不会在生长的InGaN层中成为均匀的,并且,由此而形成富铟区或相和贫铟区或相。电子和空穴载流子位于富铟区而形成为发射以激子(exciton)或双激子为基础的光。即,富铟区构成量子点或量子盒(quantum dots or quantum boxes),而且发现:象在参照图2-4已经描述的器件那样,阱层以同下层状态晶格失配而形成在下层的氮化物半导体层例如n-型氮化物半导体层(含铝氮化物半导体层15或201)上,并具有不大于70埃的厚度。可以按现有技术那样通过在n-型氮化物半导体层上生长阱形氮化物半导体层并在生长附加氮化物半导体层之前允许该生长层保持一个短的时间周期最好2至20秒来提供这样的阱层。将要在具有阱层的有源层上形成的该附加层需要包括受主杂质。具有上述结构的LD器件具有低于普通量子阱结构激光的阈值电流,并能具有较高的特性温度。
因此,本发明提供一种氮化物半导体器件,包括:由n-型氮化物半导体的第一覆盖层;位于该第一覆盖层上的量子阱结构(SQW或MQW结构)的有源层,所述有源层包括含铟和含镓氮化物半导体并具有至少一层厚度不大于70埃的阱层,其中,所述阱层以同下层状态晶格失配地置于下层上并包括许多富铟区和贫铟区;以及位于有源层上并包括掺入了受主杂质的氮化物半导体的第二覆盖层。该下层指第一覆盖层本身,例如n-型半导体层,例如,如在参照图2至4所述的器件中的含铝氮化物半导体层15或201,位于第一覆盖层上的阻挡层,或其上形成阱层的阻挡层。图6简要或概念地表示出这样一个器件,其中为了简化说明有源层具有一个SQW结构。如图6所示的那样,在第一覆盖层上具有70埃或以下的厚度的量子阱层(有源层)54以同与InGaN一起均匀形成的层52状态晶格失配地包括一n-型氮化物半导体层52,但通过上述的相分离而构成富铟区54a和富镓区(贫铟区)54b。特别是,富铟区54a和贫铟区都产生为点或具有20至50埃大小的盒。每个富铟区54a和每个贫铟区54b交替地规则地排列在阱层的平面方向上。在量子阱层(有源层)54上,由氮化物半导体形成的第二覆盖层56掺入受主杂质。
实际上,最好,具有构成量子点或盒的阱层的有源层如参照图2至4所述的那样构成有源层16。相分离阱层的带隙能量由这种阱层的平均半导体组成即相分离之前的组成所决定。
在具有阱层或构成量子点或箱的层的有源层掺入受主杂质和/或施主杂质的情况下,阈值电流可以进一步减低。
在一个阱层的平面中的铟含量的不均匀意味着具有不同带隙(即富铟区和贫铟区)的InGaN区产生在一个单独的阱层的平面方向上。因而,在导电带中所存在的电子立即降入富铟相中,并同在价电子带中的所存在的空穴重新组合以发射hυ的能量。换句话说,电子载流子和空穴载流子处于阱层的富铟相中而形成集中的激子,由此降低了激光的阈值电流并提高了激光的光发射输出。
在阱层被掺入施主杂质和/或受主杂质例如硅时,由杂质获得的附加能级形成在导电带和价电子带之间。因而,电子载流子降到更深的杂质感应能级中,而空穴载流子则移动到p-型杂质感应级,以形成电子载流子和空穴载流子的重新组合,由此而发射更小的hυ的能量。这使我们相信:电子载流子和空穴载流子进一步被集中以进一步产生集中的激子,而降低了激光装置的阈值电流。在本发明中,最好包括硅和锗,尤其是硅。特别是,当硅被掺入时,阈值电流就会进一步降低。同时,杂质可以被掺入阻挡层中和MQW结构的的有源层中,可以仅被掺入到一个阱层中或一个阻挡层中。
下面借助例子来说明本发明。
例1
在该例子中,具有图4所示的结构的氮化物半导体LD器件被制造。
一充分清洁的尖晶石衬底11(MgAl2O4)被放置在MOVPE设备的反应容器中,在该容器内部的气体完全由氢气所取代。然后,在氢气流动中,衬底的温度被提高到1050℃以进行衬底的清洁。
接着,温度被降到510℃,通过使用氢作为运载气体并用氨和三甲基镓(TMG)作为原料气体而使GaN缓冲层12在衬底11上生长到约200埃的厚度。
在缓冲层的生长之后,只停止TMG蒸汽,并在氨气的流动中使温度被提高到1030℃。在1030℃,加入TMG气体,使用硅烷气体(SiH4)作为掺杂剂气体,使Si-掺入n-型GaN层象n-型接触层13一样生长到4μm的厚度。
然后,把温度降到800℃,用TMG、TMI(三甲基铟)和氨作为原料气体并用硅烷气体作为掺杂剂气体而使由Si-掺入In0.1Ga0.9N所构成的防裂层30生长到500埃的厚度。
然后,使温度升到1030℃,用三甲基铝(TMA)、TMG和氨作为原料气体并用硅烷气体作为掺杂剂气体而使Si-掺入n-型Al0.2Ga0.8N层象第三n-侧氮化物半导体203一样生长到0.5μm的厚度。
接着,使温度降到800℃,并只停止TMA蒸汽,使由Si-掺入n-型GaN所构成的第二n-侧氮化物半导体层202生长到0.2μm的厚度。
然后,使温度升到1050℃,用TMA、TMG和氨作为原料气体并用硅烷气体作为掺杂剂气体而使由Si-掺入In0.1Ga0.9N所构成的第一n-侧氮化物半导体层201生长到300埃的厚度。
接着,用TMG、TMI和氨作为原料气体,按下列方法使有源层16生长。温度被保持在800℃上并使由不掺杂的In0.2Ga0.8N所构成的阱层生长到25埃的厚度。接着,通过变化TMI的克分子率,而在相同温度下,使由不掺杂的In0.01Ga0.99N所构成的阻挡层生长到50埃的厚度。把该连续操作重复进行两次,使阱层被层叠以形成具有7层MQW结构的有源层。
然后,使温度升到1050℃,通过使用TMG、TMA、氨和茂基镁(Cp2Mg)而使由Mg-掺入p-型Al0.1Ga0.9N所构成的第一p-侧氮化物半导体层101生长到300埃的厚度。
接着,在1050℃下,通过使用TMG、氨和Cp2Mg而使由Mg-掺入p-型GaN所构成的第二p-侧氮化物半导体层102生长到0.2μm的厚度。
接着,在1050℃下,通过使用TMG、TMA、氨和茂基镁(Cp2Mg)而使由Mg-掺入p-型Al0.2Ga0.8N所构成的第三p-侧氮化物半导体层103生长到0.5μm的厚度。
最后,在1050℃下,使由Mg-掺入p-型GaN所构成的p-型接触层17生长到0.5μm的厚度。
在此反应之后,温度被降低到室温,晶片被拿出反应容器。该晶片在700℃下进行退火而进一步降低p-型层的电阻。然后,从最顶层的p-型接触层17进行刻蚀以暴露出条状型的n-型接触层13的表面。在刻蚀处理之后,由二氧化硅所形成的电流限制层18被形成在p-型接触层17上并在其中形成接触孔18a。然后,由Ni和Au所组成的正电极20以条状形成以使其能通过电流限制层18的接触孔1ga而同p-型接触层17相接触。另一方面,由Ti和Al所组成的负电极19以条状形成。
接着,晶片在垂直于条形电极的方向上被切割成一条,并把切割表面进行抛光以产生平行镜面,其以SiO2和TiO2交替层叠以形成介电多层体。最后,该条在平行于电极的方向上切割被以产生4μm×600μm的条状芯片,该芯片被用作激光芯片。这样获得的芯片被设到热容器中,而在室温下产生激光振荡。所发现的激光振荡是400nm的波长,在脉冲电流(10μsec的脉宽,10%的占空比)下具有2kA/cm2的阈值脉冲电流密度和200K的T0(特性温度)。
下面,在依赖于阈值电流密度的温度的基础上来评价本发明的器件。LD的阈值电流密度即Jth与exp(T/T0)成比例,其中T是工作温度(K),T0是特性温度(K)。即,T0越大,即使在高温下阈值电流密度越低,由此而导致稳定的工作。
在例1的器件中,在第一p-侧氮化物半导体层101和201没有形成的情况下,则没有观察到激光振荡。在第一p-侧氮化物半导体层101和201中的一个没有形成的情况下,本发明的LD器件呈现Jth=3kA/cm2和T0=100K。如上述那样,具有AljGa1-jN的第一p-侧氮化物半导体层101和201的例1的LD器件,在j是0.1时,给出了Jth=2kA/cm2和T0=200K。但是,具有AljGa1-jN的第一p-侧氮化物半导体层101和201的例1的LD器件,在j是0.2时,给出了Jth=1.5kA/cm2和T0=300K。并且,具有AljGa1-jN的第一p-侧氮化物半导体层101和201的例1的LD器件,在j是0.3时,给出了Jth=1.4kA/cm2和T0=400K,由此,表示出了本发明的LD器件的优良的特性。
例2
本发明的LD器件按例1那样制造,除了第一n-侧氮化物半导体层201未生长之外。该LD器件具有与图2的LD器件相同的结构,以使n-型载流子限制层(光限制层)14对应于第三n-侧氮化物半导体203,而n-型光导层15对应于第二n-侧氮化物半导体层202。该LD器件在Jth=3kA/cm2和T0=100K时呈现400nm的波长的激光振荡。
例3
本发明的LD器件按例1那样制造,除了第一p-侧氮化物半导体层101未生长之外。该LD器件具有与图3的LD器件相同的结构,以使p-型载流子限制层(光限制层)32对应于第三p-侧氮化物半导体层103,而p-型光导层31对应于第二p-侧氮化物半导体层102。该LD器件象例2的LD的情况下那样在Jth=3kA/cm2时呈现400nm的波长的激光振荡,并给出T0=100K。
例4
本发明的LD器件按例2那样制造,除了有源层16具有由阱层所形成的单独量子阱结构之外,该阱层由具有50埃的厚度的不掺杂Al0.2Ga0.8N所构成并且第一p-侧氮化物半导体层101由Al0.7Ga0.7N所形成之外。该LD器件在Jth=5kA/cm2和T0=50K时呈现400nm的波长的激光振荡。
例5
本发明的LD器件按例1那样制造,除了第二n-侧氮化物半导体层202由Si-掺入n-型In0.01Ga0.99N所形成并且第二p-侧氮化物半导体层102由Mg-掺入p-型In0.01Ga0.99N所形成之外,该LD器件呈现与例1相同的特性。
例6
本发明的LD器件按例1那样制造,除了有源层的阱层和阻挡层都以1×1019/cm3的浓度掺入硅而作为施主杂质之外。相对于例1的LD器件,该器件呈现降低了5%的阈值电流和提高了约10%的T0
例7
本发明的LD器件按例1那样制造,除了有源层的阱层和阻挡层都以1×1018/cm3的浓度掺入镁而作为受主杂质之外。该器件呈现与例1相同的特性。
例8
本发明的LD器件按例1那样制造,除了有源层的阱层和阻挡层都以1×1019/cm3的浓度掺入硅而作为施主杂质并以1×1018/cm3的浓度掺入镁而作为受主杂质之外。该LD器件呈现与例6相同的特性。
例9
在该例中,制造出了具有如图2所示的的结构的氮化物半导体LD器件。
首先,把被完全清洗了的蓝宝石衬底(0001面)11放置在MOVPE设备的反应室中。使用TMG和氨作为原料气体,GaN在500℃下生长在衬底上到200埃的厚度以形成缓冲层12。
然后,使温度升到1050℃,用TMG和氨作为原料气体并用硅烷气体作为掺杂剂气体而使Si-掺入GaN在此温度下生长到4μm的厚度而形成n-型接触层13。
此后,使温度降到750℃,用TMG、TMI和氨作为原料气体并用硅烷气体作为掺杂剂气体而使Si-掺入n-型Al0.3Ga0.7N生长到0.5μm的厚度以形成n-型载流子限制层14。
然后,用TMG和氨作为原料气体并用硅烷气体作为掺杂剂气体而使Si-掺入n-型GaN生长到500埃的厚度而形成n-型光导层15。
接着,用TMG、TMI和氨作为原料气体,使有源层16生长。特别是,使温度保持在750℃上,使不掺杂In0.2Ga0.8N生长在n-型光导层15上而到达25埃的厚度以形成阱层。然后,在相同温度下通过改变TMI蒸汽的流动率,而使不掺杂In0.1Ga0.9N生长在阱层上而到达50埃的厚度以形成阻挡层。交替形成阱层和阻挡层的过程总共重复13次,最终长成这种阱层,这样形成具有0.1μm的总厚度的MQW结构的有源层16。
在有源层16形成之后,使温度升到1050℃,用TMG、TMA和氨作为原料气体并用Cp2Mg作为施主气体,而使Mg-掺入Al0.2Ga0.8N生长到100埃的厚度以形成第一p-侧氮化物半导体层101。
然后,把温度保持在1050℃上,用TMG和氨作为原料气体并用Cp2Mg作为施主气体,而使Mg-掺入p-型GaN生长到500埃的厚度以形成第二p-侧氮化物半导体层102。
接着,用TMG、TMA和氨作为原料气体并用Cp2Mg作为施主气体,通过使Mg-掺入Al0.3Ga0.7N生长到0.5μm的厚度以形成第三p-侧氮化物半导体层103。
接着,用TMG和氨作为原料气体并用Cp2Mg作为施主气体,而使Mg-掺入p-型GaN生长到0.5μm的厚度以形成p-型接触层17,
在反应之后,温度被降低到室温,晶片被拿出反应容器。然后,从最顶层的p-型接触层17进行刻烛以暴露出条状型的n-型接触层13的表面。然后,由Ni和Au所组成的正电极20以条状形成,而由Ti和Al所组成的负电极19以条状形成。这样处理后的晶片在垂直于条形电极19和20的纵向的方向上被进行竖直腐蚀以形成竖直的刻蚀表面,其上的反射镜面被形成为准备谐振面,由此提供一个LD芯片。该器件被设到热容器中,而在室温下产生激光振荡。所发现的激光振荡是具有0.2nm的半带宽的410nm的波长,阈值脉冲电流密度是2kA/cm2
例10
按与例9一样的方法来制造LD器件,除了第三p-侧氮化物半导体层103形成为0.1μm的厚度之外。该器件在室温下以具有0.2nm的半带宽的410nm的波长呈现激光振荡,并且,阈值脉冲电流密度是4.0kA/cm2
例11
与例9一样的方法来进行制造,除了防裂层30形成为200埃的厚度以及在形成n-型载流子限制层14之前进一步使由Si-掺入GaN所组成的n-型接触层在防裂层上形成到0.5μm之外。这样制造出的LD器件在室温下以具有0.2nm的半带宽的410nm的波长呈现激光振荡,并且,阈值脉冲电流密度是4.0kA/cm2
例12
与例9一样的方法来进行制造,除了通过用TMG、TMI和氨作为原料气体并用硅烷气体作为掺杂剂气体而使Si-掺入n-型In0.05Ga0.95N来使n-型载流子限制层14形成为500埃的厚度而形成n-型载流子限制层14以及通过用TMG、TMI和氨作为原料气体并用Cp2Mg作为施主气体而使Mg-掺入In0.01Ga0.99N生长到500埃的厚度而形成第二p-侧氮化物半导体层102之外。这样制造出的LD器件在室温下以具有0.2nm的半带宽的410nm的波长呈现激光振荡,并且,阈值脉冲电流密度是4.0kA/cm2
例13
与例9一样的方法来进行制造,除了使用尖晶石((111)-plane)作为衬底11之外。所获得的晶片按例1那样进行处理,由此而获得LD器件。这样制造出的LD器件在室温下以具有0.2nm的半带宽的410nm的波长呈现激光振荡,并且,阈值脉冲电流密度是4.0kA/cm2
例14
与例1一样的方法来进行制造,除了在In0.2Ga0.8N(平均组成)的每个阱层形成之后,把该阱保持5秒然后形成每个阻挡层,而获得LD器件之外。在该器件中,发现:每个阱层被相分离成为富铟区和贫铟区,而每个富铟区几乎对应于In0.4Ga0.6N的组成,每个贫铟区几乎对应于In0.02Ga0.98N的组成。进而,可以通过TEM截面相片确定:富铟区和贫铟区交替地有规则地排列在阱层的平面方向上(参见图6)。这样制造出的LD器件呈现出:电流密度低于例1所制造的器件的器件的30%,和T0高于例1所制造的器件的20%。
例15
与例14一样的方法来进行制造,除了在每个阱层中掺入硅而制造LD器件之外。这样制造出的LD器件呈现出:电流密度低于例1所制造的器件的器件的40%,和T0高于例1所制造的器件的30%。
在上述的每个实施例中,未特别指明浓度的杂质是以上述优选浓度范围被掺入。
上述的例子表示出最佳的例子,其中有源层、第一氮化物半导体层、第二氮化物半导体层和第三氮化物半导体层相接触。但是,根据本发明,至少第一氮化物半导体层需要接触有源层,而其他的氮化物半导体层可以被插入第一氮化物半导体层和第二氮化物半导体层之间或者第二氮化物半导体层和第三氮化物半导体层之间。
其他的优点和改型对本领域技术人员是显而易见的。因而,本发明的范围并不仅限于上述特定的详细描述和所示的各个实施例。因此,在不背离由权利要求书及其等同物所限定的发明内容的范围和精神的情况下,可以进行各种改型。

Claims (23)

1.一种具有氮化物半导体层结构的氮化物半导体器件,包含:
量子阱结构有源层,具有第一表面和第二表面且由含铟氮化物半导体构成;
第一氮化物半导体层,形成为邻接有源层的第一表面且具有比有源层大的带隙能量;
第二氮化物半导体层,形成在有源层的第一表面一侧,比第一氮化物半导体层离有源层远,且具有比第一氮化物半导体层小的带隙能量;以及
第三氮化物半导体层,形成在有源层的第一表面一侧,比第二氮化物半导体层离有源层远,并且具有比第二氮化物半导体层大的带隙能量和具有比第一氮化物半导体层大的厚度。
2.如权利要求1所述的器件,其中所述第一氮化物半导体层具有10埃到0.1μm的厚度。
3.如权利要求1所述的器件,其中所述有源层掺有杂质。
4.如权利要求1所述的器件,其中所述层结构设置在有源层的p端上。
5.如权利要求4所述的器件,其中所述第二氮化物半导体层邻接第一氮化物半导体层。
6.如权利要求5所述的器件,它是激光器件,其中,第二氮化物半导体层是光波导层,且所述的氮化物半导体层是光限制层。
7.如权利要求1所述的器件,其中所述层结构设置在有源层的n端上。
8.如权利要求7所述的器件,其中所述第二氮化物半导体层邻接第一氮化物半导体层。
9.如权利要求8所述的器件,它是激光器件,其中,第二氮化物半导体层是光波导层,且所述的氮化物半导体层是光限制层。
10.如权利要求1所述的器件,其中所述第二氮化物半导体层由含铟氮化物半导体或GaN构成。
11.如权利要求10所述的器件,其中所述第三氮化物半导体层由含铝氮化物半导体构成。
12.如权利要求1所述的器件,其中所述层结构设置在有源层的n端上,且接触层设置在比第三层离有源层远的位置上。
13.如权利要求12所述的器件,进一步包含位于接触层和第三氮化物半导体层之间的含铟氮化物半导体层。
14.如权利要求1所述的器件,其中所述第二氮化物半导体层由含铟氮化物半导体构成。
15.一种氮化物半导体器件,包含:
第一覆盖层,由n型氮化物半导体构成;
设置在第一覆盖层上的量子阱结构有源层,该有源层由含铟和镓的氮化物半导体构成,且具有厚度不大于70埃的至少一层阱层,其中,阱层以和下层晶格失配的状态置于下层上,且包括多个富铟区和少铟区;以及
第二覆盖层,设置在有源层上且由掺有受主杂质的氮化物半导体构成。
16.如权利要求15所述的器件,其中所述有源层掺有杂质。
17.如权利要求16所述的器件,其中所述杂质包含硅或锗。
18.如权利要求16所述的器件,其中所述杂质掺入阱层中。
19.一种氮化物半导体器件,包括:
第一n型层,由n型含铝氮化物半导体或n型氮化镓构成;以及
第二n型层,由n型含铝氮化物半导体构成,
其中,该器件具有第三n型层,该第三n型层位于在第一n型层和第二n型层之间,由n型含铟氮化物半导体构成。
20.一种具有氮化物半导体层结构和单发光层的发光氮化物半导体器件,该器件包含:
量子阱结构有源层,具有第一表面和第二表面并且由含铟氮化物半导体构成;
第一氮化物半导体层,形成为邻接有源层的第一表面并且具有比有源层大的带隙能量;
第二氮化物半导体层,是光波导层,且形成在有源层的第一表面一侧,比第一氮化物半导体层离有源层远,而且具有比第一氮化物半导体层小的带隙能量;以及
第三氮化物半导体层,形成在有源层的第一表面一侧,比第二氮化物半导体层离有源层远,并且具有比第二氮化物半导体层大的带隙能量。
21.一种制造具有量子阱结构有源层的氮化物半导体器件的方法,其中,量子阱结构有源层包括由含铟氮化物半导体构成的阱层,该方法包含:生长作为阱层的含铟氮化物半导体;以及使生长的阱层到一定的程度,直到在阱层的表面内形成富铟和少铟区。
22.如权利要求21所述的方法,其中所述阱层形成在与阱层晶格失配的下层上面。
23.如权利要求22所述的方法,其中所述阱层由InfGa1-fN构成,其中0<f<1,以及下层由Inf′Ga1-f′N构成,其中0<f′<1,且f′<f。
CNB2004100037214A 1995-11-06 1996-11-06 氮化物半导体器件 Expired - Lifetime CN1264262C (zh)

Applications Claiming Priority (24)

Application Number Priority Date Filing Date Title
JP287189/95 1995-11-06
JP287189/1995 1995-11-06
JP28718995 1995-11-06
JP305281/1995 1995-11-24
JP305279/95 1995-11-24
JP305280/1995 1995-11-24
JP305281/95 1995-11-24
JP305280/95 1995-11-24
JP30528195A JP2900990B2 (ja) 1995-11-24 1995-11-24 窒化物半導体発光素子
JP305279/1995 1995-11-24
JP30528095 1995-11-24
JP30527995A JP3235440B2 (ja) 1995-11-24 1995-11-24 窒化物半導体レーザ素子とその製造方法
JP31785095 1995-12-06
JP317850/95 1995-12-06
JP317850/1995 1995-12-06
JP332056/95 1995-12-20
JP332056/1995 1995-12-20
JP33205695A JP2891348B2 (ja) 1995-11-24 1995-12-20 窒化物半導体レーザ素子
JP18633996 1996-07-16
JP186339/1996 1996-07-16
JP186339/96 1996-07-16
JP22814796 1996-08-29
JP228147/1996 1996-08-29
JP228147/96 1996-08-29

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB961205253A Division CN1160801C (zh) 1995-11-06 1996-11-06 氮化物半导体器件

Publications (2)

Publication Number Publication Date
CN1525612A true CN1525612A (zh) 2004-09-01
CN1264262C CN1264262C (zh) 2006-07-12

Family

ID=27573376

Family Applications (3)

Application Number Title Priority Date Filing Date
CNB961205253A Expired - Lifetime CN1160801C (zh) 1995-11-06 1996-11-06 氮化物半导体器件
CNB200410003720XA Expired - Lifetime CN100350641C (zh) 1995-11-06 1996-11-06 氮化物半导体器件
CNB2004100037214A Expired - Lifetime CN1264262C (zh) 1995-11-06 1996-11-06 氮化物半导体器件

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CNB961205253A Expired - Lifetime CN1160801C (zh) 1995-11-06 1996-11-06 氮化物半导体器件
CNB200410003720XA Expired - Lifetime CN100350641C (zh) 1995-11-06 1996-11-06 氮化物半导体器件

Country Status (5)

Country Link
US (5) US5959307A (zh)
EP (2) EP0772249B1 (zh)
KR (1) KR100267839B1 (zh)
CN (3) CN1160801C (zh)
DE (1) DE69636088T2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101330118B (zh) * 2007-06-22 2010-06-09 晶能光电(江西)有限公司 用于制造p型半导体结构的方法
CN104795313A (zh) * 2009-08-26 2015-07-22 首尔伟傲世有限公司 制造半导体基底的方法和制造发光装置的方法
CN110676283A (zh) * 2019-10-16 2020-01-10 福州大学 一种基于纳米线的μLED显示设计方法

Families Citing this family (201)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6900465B2 (en) * 1994-12-02 2005-05-31 Nichia Corporation Nitride semiconductor light-emitting device
CN1160801C (zh) * 1995-11-06 2004-08-04 日亚化学工业株式会社 氮化物半导体器件
JP3448450B2 (ja) 1996-04-26 2003-09-22 三洋電機株式会社 発光素子およびその製造方法
JP3304787B2 (ja) 1996-09-08 2002-07-22 豊田合成株式会社 半導体発光素子及びその製造方法
SG63757A1 (en) * 1997-03-12 1999-03-30 Hewlett Packard Co Adding impurities to improve the efficiency of allngan quantum well led's
JP4119501B2 (ja) * 1997-07-10 2008-07-16 ローム株式会社 半導体発光素子
JP3822318B2 (ja) * 1997-07-17 2006-09-20 株式会社東芝 半導体発光素子及びその製造方法
WO1999005728A1 (en) * 1997-07-25 1999-02-04 Nichia Chemical Industries, Ltd. Nitride semiconductor device
US6559467B2 (en) 1997-11-18 2003-05-06 Technologies And Devices International, Inc. P-n heterojunction-based structures utilizing HVPE grown III-V compound layers
US6472300B2 (en) 1997-11-18 2002-10-29 Technologies And Devices International, Inc. Method for growing p-n homojunction-based structures utilizing HVPE techniques
US20020047135A1 (en) * 1997-11-18 2002-04-25 Nikolaev Audrey E. P-N junction-based structures utilizing HVPE grown III-V compound layers
US6479839B2 (en) 1997-11-18 2002-11-12 Technologies & Devices International, Inc. III-V compounds semiconductor device with an AlxByInzGa1-x-y-zN non continuous quantum dot layer
US6599133B2 (en) 1997-11-18 2003-07-29 Technologies And Devices International, Inc. Method for growing III-V compound semiconductor structures with an integral non-continuous quantum dot layer utilizing HVPE techniques
US6559038B2 (en) 1997-11-18 2003-05-06 Technologies And Devices International, Inc. Method for growing p-n heterojunction-based structures utilizing HVPE techniques
US6476420B2 (en) 1997-11-18 2002-11-05 Technologies And Devices International, Inc. P-N homojunction-based structures utilizing HVPE growth III-V compound layers
US6890809B2 (en) * 1997-11-18 2005-05-10 Technologies And Deviles International, Inc. Method for fabricating a P-N heterojunction device utilizing HVPE grown III-V compound layers and resultant device
US6849862B2 (en) * 1997-11-18 2005-02-01 Technologies And Devices International, Inc. III-V compound semiconductor device with an AlxByInzGa1-x-y-zN1-a-bPaAsb non-continuous quantum dot layer
US6555452B2 (en) 1997-11-18 2003-04-29 Technologies And Devices International, Inc. Method for growing p-type III-V compound material utilizing HVPE techniques
JPH11163458A (ja) * 1997-11-26 1999-06-18 Mitsui Chem Inc 半導体レーザ装置
US6541797B1 (en) * 1997-12-04 2003-04-01 Showa Denko K. K. Group-III nitride semiconductor light-emitting device
US6194743B1 (en) * 1997-12-15 2001-02-27 Agilent Technologies, Inc. Nitride semiconductor light emitting device having a silver p-contact
US6593589B1 (en) * 1998-01-30 2003-07-15 The University Of New Mexico Semiconductor nitride structures
EP2273572B1 (en) * 1998-03-12 2015-04-29 Nichia Corporation A nitride semiconductor device
JP4138930B2 (ja) * 1998-03-17 2008-08-27 富士通株式会社 量子半導体装置および量子半導体発光装置
US6249534B1 (en) 1998-04-06 2001-06-19 Matsushita Electronics Corporation Nitride semiconductor laser device
JPH11297631A (ja) 1998-04-14 1999-10-29 Matsushita Electron Corp 窒化物系化合物半導体の成長方法
US6459100B1 (en) 1998-09-16 2002-10-01 Cree, Inc. Vertical geometry ingan LED
JP2000156544A (ja) 1998-09-17 2000-06-06 Matsushita Electric Ind Co Ltd 窒化物半導体素子の製造方法
WO2000021143A1 (de) * 1998-10-05 2000-04-13 Osram Opto Semiconductors Gmbh & Co. Ohg Strahlungsemittierender halbleiterchip
JP2000124552A (ja) * 1998-10-16 2000-04-28 Agilent Technol Inc 窒化物半導体レーザ素子
US6690700B2 (en) 1998-10-16 2004-02-10 Agilent Technologies, Inc. Nitride semiconductor device
US6366018B1 (en) 1998-10-21 2002-04-02 Sarnoff Corporation Apparatus for performing wavelength-conversion using phosphors with light emitting diodes
US6404125B1 (en) 1998-10-21 2002-06-11 Sarnoff Corporation Method and apparatus for performing wavelength-conversion using phosphors with light emitting diodes
AU1626400A (en) * 1998-11-16 2000-06-05 Emcore Corporation Iii-nitride quantum well structures with indium-rich clusters and methods of making the same
KR100683877B1 (ko) * 1999-03-04 2007-02-15 니치아 카가쿠 고교 가부시키가이샤 질화물 반도체 레이저소자
JP4037554B2 (ja) * 1999-03-12 2008-01-23 株式会社東芝 窒化物半導体発光素子およびその製造方法
US6838705B1 (en) * 1999-03-29 2005-01-04 Nichia Corporation Nitride semiconductor device
JP2000286448A (ja) * 1999-03-31 2000-10-13 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体発光素子
US6389051B1 (en) * 1999-04-09 2002-05-14 Xerox Corporation Structure and method for asymmetric waveguide nitride laser diode
US6303404B1 (en) * 1999-05-28 2001-10-16 Yong Tae Moon Method for fabricating white light emitting diode using InGaN phase separation
JP4750238B2 (ja) * 1999-06-04 2011-08-17 ソニー株式会社 半導体発光素子
ES2149137B1 (es) * 1999-06-09 2001-11-16 Univ Madrid Politecnica Celula solar fotovoltaica de semiconductor de banda intermedia.
US6829273B2 (en) 1999-07-16 2004-12-07 Agilent Technologies, Inc. Nitride semiconductor layer structure and a nitride semiconductor laser incorporating a portion of same
JP2001053339A (ja) * 1999-08-11 2001-02-23 Toshiba Corp 半導体発光素子およびその製造方法
JP3511372B2 (ja) * 1999-08-31 2004-03-29 シャープ株式会社 半導体発光素子およびそれを使用した表示装置
JP2001119102A (ja) * 1999-10-15 2001-04-27 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体レーザダイオード
US6515313B1 (en) 1999-12-02 2003-02-04 Cree Lighting Company High efficiency light emitters with reduced polarization-induced charges
TW459371B (en) * 1999-12-02 2001-10-11 United Epitaxy Co Ltd Quantum well device with anti-electrostatic discharge and the manufacturing method thereof
US6486499B1 (en) 1999-12-22 2002-11-26 Lumileds Lighting U.S., Llc III-nitride light-emitting device with increased light generating capability
US6885035B2 (en) 1999-12-22 2005-04-26 Lumileds Lighting U.S., Llc Multi-chip semiconductor LED assembly
US6573537B1 (en) 1999-12-22 2003-06-03 Lumileds Lighting, U.S., Llc Highly reflective ohmic contacts to III-nitride flip-chip LEDs
US6903376B2 (en) 1999-12-22 2005-06-07 Lumileds Lighting U.S., Llc Selective placement of quantum wells in flipchip light emitting diodes for improved light extraction
US6514782B1 (en) 1999-12-22 2003-02-04 Lumileds Lighting, U.S., Llc Method of making a III-nitride light-emitting device with increased light generating capability
US6504171B1 (en) 2000-01-24 2003-01-07 Lumileds Lighting, U.S., Llc Chirped multi-well active region LED
JP3686569B2 (ja) * 2000-03-02 2005-08-24 シャープ株式会社 半導体発光装置及びそれを用いた表示装置
JP3636976B2 (ja) * 2000-03-17 2005-04-06 日本電気株式会社 窒化物半導体素子およびその製造方法
JP2001298028A (ja) * 2000-04-17 2001-10-26 Tokyo Electron Ltd 半導体デバイス製造方法
DE10051465A1 (de) * 2000-10-17 2002-05-02 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines Halbleiterbauelements auf GaN-Basis
JP3624794B2 (ja) 2000-05-24 2005-03-02 豊田合成株式会社 Iii族窒化物系化合物半導体発光素子の製造方法
TWI289944B (en) * 2000-05-26 2007-11-11 Osram Opto Semiconductors Gmbh Light-emitting-diode-element with a light-emitting-diode-chip
JP2002084000A (ja) * 2000-07-03 2002-03-22 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体発光素子
US6586762B2 (en) * 2000-07-07 2003-07-01 Nichia Corporation Nitride semiconductor device with improved lifetime and high output power
KR100344103B1 (ko) * 2000-09-04 2002-07-24 에피밸리 주식회사 질화갈륨계 결정 보호막을 형성한 반도체 소자 및 그 제조방법
EP1387453B1 (en) * 2001-04-12 2009-11-11 Nichia Corporation Gallium nitride compound semiconductor element
JP3912043B2 (ja) 2001-04-25 2007-05-09 豊田合成株式会社 Iii族窒化物系化合物半導体発光素子
US7132676B2 (en) * 2001-05-15 2006-11-07 Kabushiki Kaisha Toshiba Photon source and a method of operating a photon source
GB2376563A (en) * 2001-06-13 2002-12-18 Sharp Kk A method of growing a magnesium-doped nitride semiconductor material
TW550839B (en) * 2001-07-25 2003-09-01 Shinetsu Handotai Kk Light emitting element and method for manufacturing thereof
TWI262606B (en) * 2001-08-30 2006-09-21 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor-element and its production method
DE10142653A1 (de) * 2001-08-31 2003-04-30 Osram Opto Semiconductors Gmbh Strahlungsemittierendes Halbleiterbauelement und Verfahren zu dessen Herstellung
US6645885B2 (en) * 2001-09-27 2003-11-11 The National University Of Singapore Forming indium nitride (InN) and indium gallium nitride (InGaN) quantum dots grown by metal-organic-vapor-phase-epitaxy (MOCVD)
ATE387736T1 (de) * 2001-11-05 2008-03-15 Nichia Corp Halbleiterelement
US7329554B2 (en) * 2001-11-08 2008-02-12 Midwest Research Institute Reactive codoping of GaAlInP compound semiconductors
US6724013B2 (en) * 2001-12-21 2004-04-20 Xerox Corporation Edge-emitting nitride-based laser diode with p-n tunnel junction current injection
US6515308B1 (en) * 2001-12-21 2003-02-04 Xerox Corporation Nitride-based VCSEL or light emitting diode with p-n tunnel junction current injection
JP2003289176A (ja) * 2002-01-24 2003-10-10 Sony Corp 半導体発光素子およびその製造方法
US6881983B2 (en) * 2002-02-25 2005-04-19 Kopin Corporation Efficient light emitting diodes and lasers
CN100353624C (zh) * 2002-03-08 2007-12-05 松下电器产业株式会社 半导体激光器和其制造方法
US20030189215A1 (en) * 2002-04-09 2003-10-09 Jong-Lam Lee Method of fabricating vertical structure leds
US8294172B2 (en) 2002-04-09 2012-10-23 Lg Electronics Inc. Method of fabricating vertical devices using a metal support film
US6911079B2 (en) * 2002-04-19 2005-06-28 Kopin Corporation Method for reducing the resistivity of p-type II-VI and III-V semiconductors
US7002180B2 (en) * 2002-06-28 2006-02-21 Kopin Corporation Bonding pad for gallium nitride-based light-emitting device
TW200401462A (en) 2002-06-17 2004-01-16 Kopin Corp Light-emitting diode device geometry
US6734091B2 (en) 2002-06-28 2004-05-11 Kopin Corporation Electrode for p-type gallium nitride-based semiconductors
CN1324772C (zh) * 2002-06-19 2007-07-04 日本电信电话株式会社 半导体发光器件
US6841802B2 (en) 2002-06-26 2005-01-11 Oriol, Inc. Thin film light emitting diode
US6955985B2 (en) 2002-06-28 2005-10-18 Kopin Corporation Domain epitaxy for thin film growth
GB2392170A (en) * 2002-08-23 2004-02-25 Sharp Kk MBE growth of a semiconductor layer structure
KR100542720B1 (ko) * 2003-06-03 2006-01-11 삼성전기주식회사 GaN계 접합 구조
US7122841B2 (en) 2003-06-04 2006-10-17 Kopin Corporation Bonding pad for gallium nitride-based light-emitting devices
DE10329079B4 (de) 2003-06-27 2014-10-23 Osram Opto Semiconductors Gmbh Strahlungsemittierendes Halbleiterbauelement
TWI233697B (en) * 2003-08-28 2005-06-01 Genesis Photonics Inc AlInGaN light-emitting diode with wide spectrum and solid-state white light device
US20070290230A1 (en) 2003-09-25 2007-12-20 Yasutoshi Kawaguchi Nitride Semiconductor Device And Production Method Thereof
US7345297B2 (en) * 2004-02-09 2008-03-18 Nichia Corporation Nitride semiconductor device
US20050179042A1 (en) * 2004-02-13 2005-08-18 Kopin Corporation Monolithic integration and enhanced light extraction in gallium nitride-based light-emitting devices
US20050179046A1 (en) * 2004-02-13 2005-08-18 Kopin Corporation P-type electrodes in gallium nitride-based light-emitting devices
US7482635B2 (en) 2004-02-24 2009-01-27 Showa Denko K.K. Gallium nitride-based compound semiconductor multilayer structure and production method thereof
JP2005294753A (ja) * 2004-04-05 2005-10-20 Toshiba Corp 半導体発光素子
JP3863177B2 (ja) * 2004-04-16 2006-12-27 ナイトライド・セミコンダクター株式会社 窒化ガリウム系発光装置
US7154163B2 (en) * 2004-05-05 2006-12-26 Supernova Optoelectronics Corp. Epitaxial structure of gallium nitride series semiconductor device utilizing two buffer layers
US7550783B2 (en) * 2004-05-11 2009-06-23 Cree, Inc. Wide bandgap HEMTs with source connected field plates
US7573078B2 (en) * 2004-05-11 2009-08-11 Cree, Inc. Wide bandgap transistors with multiple field plates
US9773877B2 (en) * 2004-05-13 2017-09-26 Cree, Inc. Wide bandgap field effect transistors with source connected field plates
KR100558455B1 (ko) * 2004-06-25 2006-03-10 삼성전기주식회사 질화물 반도체 소자
KR100513923B1 (ko) * 2004-08-13 2005-09-08 재단법인서울대학교산학협력재단 질화물 반도체층을 성장시키는 방법 및 이를 이용하는 질화물 반도체 발광소자
KR100670531B1 (ko) * 2004-08-26 2007-01-16 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조방법
US7829912B2 (en) * 2006-07-31 2010-11-09 Finisar Corporation Efficient carrier injection in a semiconductor device
US7920612B2 (en) * 2004-08-31 2011-04-05 Finisar Corporation Light emitting semiconductor device having an electrical confinement barrier near the active region
KR100649496B1 (ko) * 2004-09-14 2006-11-24 삼성전기주식회사 질화물 반도체 발광소자 및 제조방법
FI20041213A0 (fi) * 2004-09-17 2004-09-17 Optogan Oy Puolijohdeheterorakenne
CN100356596C (zh) * 2004-10-10 2007-12-19 晶元光电股份有限公司 高亮度氮化铟镓铝发光二极管及其制造方法
US7253451B2 (en) * 2004-11-29 2007-08-07 Epivalley Co., Ltd. III-nitride semiconductor light emitting device
CN100379042C (zh) * 2005-02-18 2008-04-02 乐清市亿昊科技发展有限公司 发光二极管管芯的基底结构体及制造基底结构体的方法
CN100380695C (zh) * 2005-03-03 2008-04-09 乐清市亿昊科技发展有限公司 发光二极管管芯及其制造方法
US11791385B2 (en) * 2005-03-11 2023-10-17 Wolfspeed, Inc. Wide bandgap transistors with gate-source field plates
US20090159869A1 (en) * 2005-03-11 2009-06-25 Ponce Fernando A Solid State Light Emitting Device
KR100631980B1 (ko) * 2005-04-06 2006-10-11 삼성전기주식회사 질화물 반도체 소자
KR100748247B1 (ko) * 2005-07-06 2007-08-09 삼성전기주식회사 질화물계 반도체 발광다이오드 및 그 제조방법
DE102005048196B4 (de) * 2005-07-29 2023-01-26 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Strahlungsemittierender Halbleiterchip
US20070045638A1 (en) * 2005-08-24 2007-03-01 Lumileds Lighting U.S., Llc III-nitride light emitting device with double heterostructure light emitting region
JP2007066981A (ja) * 2005-08-29 2007-03-15 Toshiba Corp 半導体装置
KR100691283B1 (ko) * 2005-09-23 2007-03-12 삼성전기주식회사 질화물 반도체 소자
JP5113330B2 (ja) * 2005-11-30 2013-01-09 ローム株式会社 窒化ガリウム半導体発光素子
JP2007294878A (ja) * 2006-03-31 2007-11-08 Fujifilm Corp 半導体層とその成膜方法、半導体発光素子、及び半導体発光装置
DE102006025964A1 (de) * 2006-06-02 2007-12-06 Osram Opto Semiconductors Gmbh Mehrfachquantentopfstruktur, strahlungsemittierender Halbleiterkörper und strahlungsemittierendes Bauelement
RU2306634C1 (ru) * 2006-08-08 2007-09-20 Закрытое Акционерное Общество "Светлана - Оптоэлектроника" Полупроводниковая светоизлучающая гетероструктура
KR20080023980A (ko) * 2006-09-12 2008-03-17 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조 방법
JP5105160B2 (ja) 2006-11-13 2012-12-19 クリー インコーポレイテッド トランジスタ
US7612362B2 (en) * 2006-11-22 2009-11-03 Sharp Kabushiki Kaisha Nitride semiconductor light emitting device
KR100868530B1 (ko) 2006-12-04 2008-11-13 한국전자통신연구원 질화물 반도체 발광 소자
JP2008226906A (ja) * 2007-03-08 2008-09-25 Sharp Corp 窒化物半導体発光素子
US8031752B1 (en) 2007-04-16 2011-10-04 Finisar Corporation VCSEL optimized for high speed data
US8039740B2 (en) * 2007-06-20 2011-10-18 Rosestreet Labs Energy, Inc. Single P-N junction tandem photovoltaic device
JP4341702B2 (ja) 2007-06-21 2009-10-07 住友電気工業株式会社 Iii族窒化物系半導体発光素子
KR101393953B1 (ko) * 2007-06-25 2014-05-13 엘지이노텍 주식회사 발광 소자 및 그 제조방법
DE102007031926A1 (de) * 2007-07-09 2009-01-15 Osram Opto Semiconductors Gmbh Strahlungsemittierender Halbleiterkörper
KR101316423B1 (ko) * 2007-08-09 2013-10-08 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
KR100887050B1 (ko) * 2007-12-06 2009-03-04 삼성전기주식회사 질화물 반도체 소자
JP4720834B2 (ja) * 2008-02-25 2011-07-13 住友電気工業株式会社 Iii族窒化物半導体レーザ
JP5279006B2 (ja) * 2008-03-26 2013-09-04 パナソニック株式会社 窒化物半導体発光素子
DE102009018603B9 (de) 2008-04-25 2021-01-14 Samsung Electronics Co., Ltd. Leuchtvorrichtung und Herstellungsverfahren derselben
US8664747B2 (en) * 2008-04-28 2014-03-04 Toshiba Techno Center Inc. Trenched substrate for crystal growth and wafer bonding
KR20090117538A (ko) * 2008-05-09 2009-11-12 삼성전기주식회사 질화물 반도체 발광소자
JP4572963B2 (ja) * 2008-07-09 2010-11-04 住友電気工業株式会社 Iii族窒化物系半導体発光素子、及びエピタキシャルウエハ
CN102439740B (zh) 2009-03-06 2015-01-14 李贞勋 发光器件
US8207547B2 (en) 2009-06-10 2012-06-26 Brudgelux, Inc. Thin-film LED with P and N contacts electrically isolated from the substrate
TWI405409B (zh) * 2009-08-27 2013-08-11 Novatek Microelectronics Corp 低電壓差動訊號輸出級
JP5916980B2 (ja) * 2009-09-11 2016-05-11 シャープ株式会社 窒化物半導体発光ダイオード素子の製造方法
US8525221B2 (en) 2009-11-25 2013-09-03 Toshiba Techno Center, Inc. LED with improved injection efficiency
US10115859B2 (en) * 2009-12-15 2018-10-30 Lehigh University Nitride based devices including a symmetrical quantum well active layer having a central low bandgap delta-layer
US8907321B2 (en) * 2009-12-16 2014-12-09 Lehigh Univeristy Nitride based quantum well light-emitting devices having improved current injection efficiency
KR101754900B1 (ko) * 2010-04-09 2017-07-06 엘지이노텍 주식회사 발광 소자
WO2011162394A1 (ja) * 2010-06-24 2011-12-29 日立化成工業株式会社 不純物拡散層形成組成物、n型拡散層形成組成物、n型拡散層の製造方法、p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池素子の製造方法
EP2408028B1 (en) * 2010-07-16 2015-04-08 LG Innotek Co., Ltd. Light emitting device
WO2012051324A1 (en) 2010-10-12 2012-04-19 Alliance For Sustainable Energy, Llc High bandgap iii-v alloys for high efficiency optoelectronics
US20120180868A1 (en) * 2010-10-21 2012-07-19 The Regents Of The University Of California Iii-nitride flip-chip solar cells
US20120103419A1 (en) * 2010-10-27 2012-05-03 The Regents Of The University Of California Group-iii nitride solar cells grown on high quality group-iii nitride crystals mounted on foreign material
JP2012104528A (ja) * 2010-11-08 2012-05-31 Sharp Corp 窒化物半導体発光素子
RU2456711C1 (ru) * 2010-11-11 2012-07-20 Общество с ограниченной ответственностью "Галлий-Н" Полупроводниковый светоизлучающий элемент
TWI435477B (zh) * 2010-12-29 2014-04-21 Lextar Electronics Corp 高亮度發光二極體
CN102738340B (zh) * 2011-04-01 2015-07-22 山东华光光电子有限公司 一种采用AlInN量子垒提高GaN基LED内量子效率的LED结构及制备方法
KR101781435B1 (ko) 2011-04-13 2017-09-25 삼성전자주식회사 질화물 반도체 발광소자
CN102201505A (zh) * 2011-05-03 2011-09-28 映瑞光电科技(上海)有限公司 一种氮化物led结构及其制备方法
CN102157646A (zh) * 2011-05-03 2011-08-17 映瑞光电科技(上海)有限公司 一种氮化物led结构及其制备方法
US8395165B2 (en) 2011-07-08 2013-03-12 Bridelux, Inc. Laterally contacted blue LED with superlattice current spreading layer
US20130026480A1 (en) 2011-07-25 2013-01-31 Bridgelux, Inc. Nucleation of Aluminum Nitride on a Silicon Substrate Using an Ammonia Preflow
US8648384B2 (en) * 2011-07-25 2014-02-11 Lg Innotek Co., Ltd. Light emitting device
US8916906B2 (en) 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
US8865565B2 (en) 2011-08-02 2014-10-21 Kabushiki Kaisha Toshiba LED having a low defect N-type layer that has grown on a silicon substrate
US9343641B2 (en) 2011-08-02 2016-05-17 Manutius Ip, Inc. Non-reactive barrier metal for eutectic bonding process
US9142743B2 (en) 2011-08-02 2015-09-22 Kabushiki Kaisha Toshiba High temperature gold-free wafer bonding for light emitting diodes
US9012939B2 (en) 2011-08-02 2015-04-21 Kabushiki Kaisha Toshiba N-type gallium-nitride layer having multiple conductive intervening layers
US20130032810A1 (en) 2011-08-03 2013-02-07 Bridgelux, Inc. Led on silicon substrate using zinc-sulfide as buffer layer
US8564010B2 (en) 2011-08-04 2013-10-22 Toshiba Techno Center Inc. Distributed current blocking structures for light emitting diodes
US8624482B2 (en) 2011-09-01 2014-01-07 Toshiba Techno Center Inc. Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8669585B1 (en) 2011-09-03 2014-03-11 Toshiba Techno Center Inc. LED that has bounding silicon-doped regions on either side of a strain release layer
US8558247B2 (en) 2011-09-06 2013-10-15 Toshiba Techno Center Inc. GaN LEDs with improved area and method for making the same
US8686430B2 (en) 2011-09-07 2014-04-01 Toshiba Techno Center Inc. Buffer layer for GaN-on-Si LED
US9178114B2 (en) 2011-09-29 2015-11-03 Manutius Ip, Inc. P-type doping layers for use with light emitting devices
US8664679B2 (en) 2011-09-29 2014-03-04 Toshiba Techno Center Inc. Light emitting devices having light coupling layers with recessed electrodes
US20130082274A1 (en) 2011-09-29 2013-04-04 Bridgelux, Inc. Light emitting devices having dislocation density maintaining buffer layers
US8853668B2 (en) 2011-09-29 2014-10-07 Kabushiki Kaisha Toshiba Light emitting regions for use with light emitting devices
US9012921B2 (en) 2011-09-29 2015-04-21 Kabushiki Kaisha Toshiba Light emitting devices having light coupling layers
US8698163B2 (en) 2011-09-29 2014-04-15 Toshiba Techno Center Inc. P-type doping layers for use with light emitting devices
US8552465B2 (en) 2011-11-09 2013-10-08 Toshiba Techno Center Inc. Method for reducing stress in epitaxial growth
US8581267B2 (en) 2011-11-09 2013-11-12 Toshiba Techno Center Inc. Series connected segmented LED
WO2013147946A1 (en) 2012-03-30 2013-10-03 The Regents Of The University Of Michigan Gan-based quantum dot visible laser
TW201401558A (zh) * 2012-06-28 2014-01-01 Lextar Electronics Corp 發光二極體結構及其製作方法
US9847411B2 (en) 2013-06-09 2017-12-19 Cree, Inc. Recessed field plate transistor structures
US9679981B2 (en) 2013-06-09 2017-06-13 Cree, Inc. Cascode structures for GaN HEMTs
US9755059B2 (en) 2013-06-09 2017-09-05 Cree, Inc. Cascode structures with GaN cap layers
TW201513397A (zh) * 2013-09-26 2015-04-01 Lextar Electronics Corp 發光二極體之製造方法
US9337369B2 (en) 2014-03-28 2016-05-10 Sunpower Corporation Solar cells with tunnel dielectrics
JP6306200B2 (ja) 2014-09-22 2018-04-04 シャープ株式会社 窒化物半導体発光素子
DE102014117611A1 (de) 2014-12-01 2016-06-02 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip
US9793252B2 (en) 2015-03-30 2017-10-17 Emagin Corporation Method of integrating inorganic light emitting diode with oxide thin film transistor for display applications
KR102347387B1 (ko) * 2015-03-31 2022-01-06 서울바이오시스 주식회사 자외선 발광 소자
CN105957936B (zh) * 2016-06-24 2018-04-13 太原理工大学 一种duv led外延片结构
DE102016111929A1 (de) * 2016-06-29 2018-01-04 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterkörper und Leuchtdiode
KR102553985B1 (ko) * 2017-11-16 2023-07-10 파나소닉 홀딩스 코퍼레이션 Ⅲ족 질화물 반도체
CN109599466A (zh) * 2018-12-03 2019-04-09 广东工业大学 一种双波长led外延结构及其制作方法

Family Cites Families (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115385A (ja) 1984-07-02 1986-01-23 Nec Corp 半導体レ−ザ
JPH0680859B2 (ja) 1984-12-27 1994-10-12 ソニー株式会社 半導体レーザー
US4862471A (en) * 1988-04-22 1989-08-29 University Of Colorado Foundation, Inc. Semiconductor light emitting device
US4894832A (en) * 1988-09-15 1990-01-16 North American Philips Corporation Wide band gap semiconductor light emitting devices
US5181218A (en) * 1988-12-14 1993-01-19 Kabushiki Kaisha Toshiba Manufacturing method of semiconductor laser with non-absorbing mirror structure
JP2704181B2 (ja) * 1989-02-13 1998-01-26 日本電信電話株式会社 化合物半導体単結晶薄膜の成長方法
GB9024332D0 (en) 1990-11-08 1990-12-19 British Telecomm Method of training a neural network
US5412226A (en) 1989-11-20 1995-05-02 British Telecommunications Public Limited Company Semi-conductor structures
JPH03290984A (ja) * 1990-04-06 1991-12-20 Matsushita Electron Corp 半導体レーザ
JP2564024B2 (ja) * 1990-07-09 1996-12-18 シャープ株式会社 化合物半導体発光素子
JPH04218994A (ja) * 1990-08-31 1992-08-10 Toshiba Corp 半導体発光装置
JP3160914B2 (ja) * 1990-12-26 2001-04-25 豊田合成株式会社 窒化ガリウム系化合物半導体レーザダイオード
GB9123638D0 (en) * 1991-11-07 1992-01-02 Magill Alan R Apparel & fabric & devices suitable for health monitoring applications
US5258990A (en) * 1991-11-07 1993-11-02 The United States Of America As Represented By The Secretary Of The United States Department Of Energy Visible light surface emitting semiconductor laser
US5308327A (en) * 1991-11-25 1994-05-03 Advanced Surgical Inc. Self-deployed inflatable retractor
US5309921A (en) * 1992-02-11 1994-05-10 Spectrum Medical Technologies Apparatus and method for respiratory monitoring
US5800360A (en) * 1992-02-11 1998-09-01 Spectrum Medical Technologies, Inc. Apparatus and method for respiratory monitoring
EP0558089B1 (en) * 1992-02-28 2002-06-05 Hitachi, Ltd. Semiconductor optical integrated device and method of manufacture thereof, and light receiver using said device
US5818072A (en) 1992-05-12 1998-10-06 North Carolina State University Integrated heterostructure of group II-VI semiconductor materials including epitaxial ohmic contact and method of fabricating same
JP3243768B2 (ja) 1992-07-06 2002-01-07 日本電信電話株式会社 半導体発光素子
JP2917742B2 (ja) 1992-07-07 1999-07-12 日亜化学工業株式会社 窒化ガリウム系化合物半導体発光素子とその製造方法
US5294883A (en) * 1992-08-04 1994-03-15 International Business Machines Corporation Test detector/shutoff and method for BiCMOS integrated circuit
DE69230260T2 (de) * 1992-08-07 2000-07-13 Asahi Chemical Ind Halbleiteranordnung auf nitridbasis und verfahren zu ihrer herstellung
US5578839A (en) * 1992-11-20 1996-11-26 Nichia Chemical Industries, Ltd. Light-emitting gallium nitride-based compound semiconductor device
JPH06164055A (ja) 1992-11-25 1994-06-10 Asahi Chem Ind Co Ltd 量子井戸型半導体レーザ
JPH06164085A (ja) 1992-11-27 1994-06-10 Nitto Denko Corp 複合フレキシブル基板
JP2827794B2 (ja) 1993-02-05 1998-11-25 日亜化学工業株式会社 p型窒化ガリウムの成長方法
JPH0773140B2 (ja) 1993-02-09 1995-08-02 日本電気株式会社 半導体レーザ
JP2778405B2 (ja) 1993-03-12 1998-07-23 日亜化学工業株式会社 窒化ガリウム系化合物半導体発光素子
JP2932467B2 (ja) 1993-03-12 1999-08-09 日亜化学工業株式会社 窒化ガリウム系化合物半導体発光素子
JPH0774431A (ja) 1993-06-23 1995-03-17 Furukawa Electric Co Ltd:The 半導体光素子
US5479932A (en) * 1993-08-16 1996-01-02 Higgins; Joseph Infant health monitoring system
US5383211A (en) * 1993-11-02 1995-01-17 Xerox Corporation TM-polarized laser emitter using III-V alloy with nitrogen
JPH07235729A (ja) 1994-02-21 1995-09-05 Nichia Chem Ind Ltd 窒化ガリウム系化合物半導体レーザ素子
JPH07235723A (ja) 1994-02-23 1995-09-05 Hitachi Ltd 半導体レーザ素子
JP3325380B2 (ja) 1994-03-09 2002-09-17 株式会社東芝 半導体発光素子およびその製造方法
US5656832A (en) * 1994-03-09 1997-08-12 Kabushiki Kaisha Toshiba Semiconductor heterojunction device with ALN buffer layer of 3nm-10nm average film thickness
US6005258A (en) 1994-03-22 1999-12-21 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III Nitrogen compound having emission layer doped with donor and acceptor impurities
DE69534387T2 (de) * 1994-03-22 2006-06-14 Toyoda Gosei Kk Lichtemittierende Halbleitervorrichtung, die eine Stickstoff enthaltende Verbindung der Gruppe III verwendet
US5646953A (en) * 1994-04-06 1997-07-08 Matsushita Electronics Corporation Semiconductor laser device
US5689123A (en) * 1994-04-07 1997-11-18 Sdl, Inc. III-V aresenide-nitride semiconductor materials and devices
JPH07297447A (ja) 1994-04-20 1995-11-10 Toyoda Gosei Co Ltd 3族窒化物半導体発光素子
JP2956489B2 (ja) 1994-06-24 1999-10-04 日亜化学工業株式会社 窒化ガリウム系化合物半導体の結晶成長方法
EP0772247B1 (en) * 1994-07-21 2004-09-15 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
US5838029A (en) * 1994-08-22 1998-11-17 Rohm Co., Ltd. GaN-type light emitting device formed on a silicon substrate
US5557115A (en) * 1994-08-11 1996-09-17 Rohm Co. Ltd. Light emitting semiconductor device with sub-mount
JP3561536B2 (ja) 1994-08-23 2004-09-02 三洋電機株式会社 半導体発光素子
US5825052A (en) * 1994-08-26 1998-10-20 Rohm Co., Ltd. Semiconductor light emmitting device
US5693963A (en) * 1994-09-19 1997-12-02 Kabushiki Kaisha Toshiba Compound semiconductor device with nitride
JPH08116128A (ja) 1994-10-17 1996-05-07 Fujitsu Ltd 半導体量子井戸光素子
US5661074A (en) * 1995-02-03 1997-08-26 Advanced Technology Materials, Inc. High brightness electroluminescent device emitting in the green to ultraviolet spectrum and method of making the same
US5679965A (en) 1995-03-29 1997-10-21 North Carolina State University Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact, non-nitride buffer layer and methods of fabricating same
US5670798A (en) * 1995-03-29 1997-09-23 North Carolina State University Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact non-nitride buffer layer and methods of fabricating same
JPH08290218A (ja) 1995-04-19 1996-11-05 Hirata Corp 曲げ加工装置及び曲げ加工方法
JP3728332B2 (ja) 1995-04-24 2005-12-21 シャープ株式会社 化合物半導体発光素子
US5739554A (en) * 1995-05-08 1998-04-14 Cree Research, Inc. Double heterojunction light emitting diode with gallium nitride active layer
JPH08316581A (ja) 1995-05-18 1996-11-29 Sanyo Electric Co Ltd 半導体装置および半導体発光素子
US5625202A (en) * 1995-06-08 1997-04-29 University Of Central Florida Modified wurtzite structure oxide compounds as substrates for III-V nitride compound semiconductor epitaxial thin film growth
JP2839077B2 (ja) 1995-06-15 1998-12-16 日本電気株式会社 窒化ガリウム系化合物半導体発光素子
JPH0964419A (ja) 1995-08-28 1997-03-07 Sumitomo Chem Co Ltd 3−5族化合物半導体及び発光素子
KR100326101B1 (ko) 1995-08-31 2002-10-09 가부시끼가이샤 도시바 반도체장치의제조방법및질화갈륨계반도체의성장방법
JP2919788B2 (ja) 1995-08-31 1999-07-19 株式会社東芝 半導体装置、半導体装置の製造方法、及び窒化ガリウム系半導体の成長方法
US6121638A (en) * 1995-09-12 2000-09-19 Kabushiki Kaisha Toshiba Multi-layer structured nitride-based semiconductor devices
US5789876A (en) * 1995-09-14 1998-08-04 The Regents Of The Univeristy Of Michigan Method and apparatus for generating and accelerating ultrashort electron pulses
JPH09116225A (ja) 1995-10-20 1997-05-02 Hitachi Ltd 半導体発光素子
JP3727091B2 (ja) 1995-10-31 2005-12-14 豊田合成株式会社 3族窒化物半導体素子
JP2900990B2 (ja) 1995-11-24 1999-06-02 日亜化学工業株式会社 窒化物半導体発光素子
JP3235440B2 (ja) 1995-11-24 2001-12-04 日亜化学工業株式会社 窒化物半導体レーザ素子とその製造方法
JP2877063B2 (ja) 1995-11-06 1999-03-31 松下電器産業株式会社 半導体発光素子
CN1160801C (zh) 1995-11-06 2004-08-04 日亚化学工业株式会社 氮化物半导体器件
US5684309A (en) * 1996-07-11 1997-11-04 North Carolina State University Stacked quantum well aluminum indium gallium nitride light emitting diodes
US6009180A (en) 1996-09-17 1999-12-28 The Boeing Company Fluidic element noise and vibration control constructs and methods
AU7377698A (en) * 1997-05-13 1998-12-08 Ser-Tek Systems, Inc. Conveyor with integrated self-actuating clamp
JP4242985B2 (ja) 1999-10-26 2009-03-25 帝人株式会社 イソフタレート系ポリエステルの製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101330118B (zh) * 2007-06-22 2010-06-09 晶能光电(江西)有限公司 用于制造p型半导体结构的方法
CN104795313A (zh) * 2009-08-26 2015-07-22 首尔伟傲世有限公司 制造半导体基底的方法和制造发光装置的方法
CN110676283A (zh) * 2019-10-16 2020-01-10 福州大学 一种基于纳米线的μLED显示设计方法

Also Published As

Publication number Publication date
CN1156909A (zh) 1997-08-13
EP1653524A1 (en) 2006-05-03
EP0772249B1 (en) 2006-05-03
CN1525578A (zh) 2004-09-01
EP0772249A2 (en) 1997-05-07
US20040101012A1 (en) 2004-05-27
KR100267839B1 (ko) 2000-10-16
US7166869B2 (en) 2007-01-23
US8304790B2 (en) 2012-11-06
EP0772249A3 (en) 1998-11-04
KR970026601A (ko) 1997-06-24
DE69636088T2 (de) 2006-11-23
US7166874B2 (en) 2007-01-23
DE69636088D1 (de) 2006-06-08
CN100350641C (zh) 2007-11-21
US20030015724A1 (en) 2003-01-23
US20070272915A1 (en) 2007-11-29
CN1264262C (zh) 2006-07-12
US20040183063A1 (en) 2004-09-23
US5959307A (en) 1999-09-28
CN1160801C (zh) 2004-08-04

Similar Documents

Publication Publication Date Title
CN1160801C (zh) 氮化物半导体器件
CN1252883C (zh) 氮化镓系列化合物半导体元件
CN1142598C (zh) 氮化物半导体发光器件
US8513694B2 (en) Nitride semiconductor device and manufacturing method of the device
CN1194425C (zh) 半导体发光器件及其制造方法
KR100902576B1 (ko) N형 ⅲ족 질화물 반도체 적층구조
CN1211867C (zh) 发光元件
CN1274008C (zh) Ⅲ族氮化物系化合物半导体器件及其制造方法
CN1157804C (zh) 氮化半导体器件及其制造方法
CN1175533C (zh) 半导体元件及其制造方法
CN1667846A (zh) 发光元件及其制造方法
CN1667847A (zh) 氮化物系半导体发光元件
CN1586015A (zh) 紫外光发射元件
CN1487606A (zh) 氮化物系半导体发光元件
CN1734802A (zh) 氮化物半导体发光元件及制造氮化物半导体发光元件的方法
CN1641900A (zh) 半导体发光元件
US20050236641A1 (en) Strain-controlled iii-nitride light emitting device
CN1909257A (zh) 半导体发光元件
US20060261353A1 (en) Group III nitride semiconductor stacked structure
US9142714B2 (en) High power ultraviolet light emitting diode with superlattice
CN1484324A (zh) 化合物半导体发光器件的外延衬底及制造方法和发光器件
JP2008288397A (ja) 半導体発光装置
KR20090111711A (ko) 반도체 발광소자 및 그 제조방법
CN101030618A (zh) 氮化物半导体发光装置制造方法
CN1147010C (zh) 自钝化非平面结三族氮化物半导体器件及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20060712

EXPY Termination of patent right or utility model