CN1360350A - 发光设备及其制造方法 - Google Patents

发光设备及其制造方法 Download PDF

Info

Publication number
CN1360350A
CN1360350A CN01143386A CN01143386A CN1360350A CN 1360350 A CN1360350 A CN 1360350A CN 01143386 A CN01143386 A CN 01143386A CN 01143386 A CN01143386 A CN 01143386A CN 1360350 A CN1360350 A CN 1360350A
Authority
CN
China
Prior art keywords
luminaire
conductive coating
switch element
lead
signal line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN01143386A
Other languages
English (en)
Other versions
CN100438061C (zh
Inventor
三崎舜平
小山润
长田麻衣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of CN1360350A publication Critical patent/CN1360350A/zh
Application granted granted Critical
Publication of CN100438061C publication Critical patent/CN100438061C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • H10K59/1315Interconnections, e.g. wiring lines or terminals comprising structures specially adapted for lowering the resistance
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/88Dummy elements, i.e. elements having non-functional features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electroluminescent Light Sources (AREA)
  • Thin Film Transistor (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Device Packages (AREA)

Abstract

提供了一种发光设备,甚至可以在大屏幕的情况下实现低功耗。电镀像素部分的源信号线或电源线的表面以减少接线的阻抗。像素部分的源信号线是通过一个不同于制造驱动电路部分的源信号线的步骤制造的。像素部分的电源线是通过一个不同于制造基底上引出的电源线的步骤制造的。同样,电镀接头以减少阻抗。最好是电镀前的接线是由与栅电极相同的材料制成的,且是电镀接线的表面而形成源信号线或电源线的。

Description

发光设备及其制造方法
                         技术领域
本发明涉及一种显示屏,其发光元件形成在基底之上,密封在基底和表面部件之间。本发明还涉及一种显示模块,其中在显示屏中安装了一个IC。请注意,在此定义中,显示屏和显示模块统称为发光设备。本发明还涉及使用发光设备的电子设备。
                         背景技术
因为发光元件本身会发光,可见度高,液晶显示设备(LCD)所需的背景光不是必需的,所以它适合薄的厚度,而且对观看角度没有限制。因此,最近将使用发光元件的发光设备称作替换CRT和LCD的显示设备。
发光元件有一个包括有一种加上电场而发光(电致发光)的有机化合物的层(下文中称作有机化合物层)、一个阳极层和一个阴极层。有机化合物的光包括其从单线激励态返回到基态所发出的光(荧光)和从三线激励态返回到基态所发出的光(磷光)。在本发明的发光设备中可以使用任一种光。
请注意,在此定义中,阳极层和阴极层之间的所有层被称为有机化合物层。有机化合物层特别包括一个发光层、一个空子发射层、一个电子发射层、一个空子传输层和一个电子传输层。基本上发光元件的结构是阳极、发光层和阴极顺次层叠。除了这种结构之外,还有发光元件的结构是阳极、空子发射层、发光层和阴极顺次层叠的情形和发光元件的结构是阳极、空子发射层、发光层、电子传输层和阴极顺次层叠的情形。
另外,在此定义中,发光元件的光发射称为发光元件的操作。此外,在此定义中,包括阳极、有机化合物层和阴极的元件称作发光元件。
近来有源矩阵发光设备的使用扩大,对大尺寸的屏幕、高清晰度和高可靠性的需求增加。同时,提高了生产力,增加了对低成本的需求。
在有源矩阵发光设备中,流入发光设备的电流由各个像素中提供的一个薄膜晶体管(TFT)控制。
传统上,当生产上面提到的TFT使用铝作为栅极信号线的材料时,热处理会形成如小丘或金属须一类的突起,而且铝原子会渗透到沟道形成区域之中。所以导致了TFT工作的失败和TFT品质的降低。为了防止这种情况,当使用耐热处理的金属材料,典型是具有高熔点的金属元件时,在屏幕尺寸变大的情况下线路阻抗更高。因此导致了功耗增加这样的问题。对于发光元件来说耗电流大。因此,特别是在屏幕为3英寸或更大的情况下,由于线路阻抗的影响而导致了屏幕两端的亮度不同或相互干扰。
                      发明描述
因此,本发明的一个目标是提供一种即使是在大屏幕的情况下也能实现低功耗的发光设备的结构及制造该设备的方法。
本发明试图电镀像素部分中源信号线的表面或电源线的表面,以减少接线阻抗。请注意,在本发明中像素部分的源信号线使用不同于制造驱动电路部分中源信号线的工艺制造。像素部分的电源线也使用不同于制造导向基底的电源线的工艺制造。此外,对于接头执行同样的电镀过程以减少阻抗。
在本发明中,最好是接线在电镀之前使用与栅电极相同的材料制造,然后电镀接线的表面以形成源信号线或电源线。要电镀的金属膜优选使用电阻抗低于栅电极的膜。因此,像素部分的源信号线或电源线经过电镀成为低阻抗的接线。
在此定义中提出的本发明设计一种包括一根源信号线、一个发光元件或一个TFT的发光设备,其特征在于源信号线由导线和阻抗低于导线并覆盖其上的涂层组成,TFT的开关根据输入到源信号线的信号进行控制,由此来控制发光元件的光发射。
在此定义中提出的本发明涉及一种包括一根电源线、一个发光元件和一个TFT的发光设备,其特征在于:电源线由导线和阻抗低于导线并覆盖其上的涂层组成;TFT的开关根据输入到TFT栅电极的信号进行控制;当打开TFT时,电源线的电压加到发光元件的像素电极上,使发光元件发光。
在此定义中提出的本发明涉及一种包括一根源信号线、一根电源线、一个发光元件和一个TFT的发光设备,其特征在于:源信号线由第一导线和阻抗低于第一导线并覆盖其上的第一涂层组成;电源线由第二导线和阻抗低于第二导线并覆盖其上的第二涂层组成;TFT的开关根据输入到TFT栅电极的信号进行控制;当打开TFT时,电源线的电压加到发光元件的像素电极上,使发光元件发光。
本发明的设备的特征在于第一导线和第二导线是同时形成的。
在此定义中提出的本发明涉及一种包括一根源信号线、一个发光元件、一个TFT和一个接头的发光设备,其特征在于:源信号线由第一导线和阻抗低于第一导线并覆盖其上的第一涂层组成;接头由第二导线和阻抗低于第二导线并覆盖其上的第二涂层组成;TFT的开关根据输入到源信号线的信号进行控制,以控制发光元件的发光。
本发明的设备的特征在于第一导线和第二导线是同时形成的。
在此定义中提出的本发明涉及一种包括一根电源线、一个发光元件、一个TFT和一个接头的发光设备,其特征在于:电源线由第一导线和阻抗低于第一导线并覆盖其上的第一涂层组成;接头由第二导线和阻抗低于第二导线并覆盖其上的第二涂层组成;当打开TFT时,电源线的电压加到发光元件的像素电极上,使从发光元件发光。
本发明的设备的特征在于第一导线和第二导线是同时形成的。
在此定义中提出的本发明涉及一种包括一个像素部分和一个驱动电路的发光设备,像素部分有一根源信号线、一个发光元件和一个第一TFT,驱动电路有一个第二TFT和一个第三TFT,其特种在于:源信号线由导线和阻抗低于该导线并覆盖其上的涂层组成;第一TFT的开关根据输入到第一TFT栅电极的信号进行控制;当打开第一TFT时,电源线的电压加到发光元件的像素电极上以从发光元件发光。
在此定义中提出的本发明涉及一种包括一个像素部分和一个驱动电路的发光设备,像素部分有一根电源线、一个发光元件和一个第一TFT,驱动电路有一个第二TFT和一个第三TFT,其特种在于:电源线由导线和阻抗低于该导线并覆盖其上的涂层组成;第一TFT的转换根据输入到第一TFT栅电极的信号进行控制;当打开第一TFT时,电源线的电压加到发光元件的像素电极上以从发光元件发光。
在此定义中提出的本发明涉及一种制造发光设备的方法,包括下列步骤:在基底的绝缘表面上形成一个半导体层;在半导体层上形成一个栅极绝缘膜;在栅极绝缘膜上形成一个栅电极和一条导线;在半导体层上加入一种给予n型的杂质元素以形成一个杂质区域;通过一种电镀方法在半导体的表面上形成一个阻抗低于半导体的涂层,以形成源信号线;形成一个覆盖源信号线的绝缘膜;以及在绝缘膜上形成一个栅极信号线。
在此定义中提出的本发明涉及一种制造发光设备的方法,包括下列步骤:在基底的绝缘表面上形成一个半导体层;在半导体层上形成一个栅极绝缘膜;在栅极绝缘膜上形成一个栅电极和一条导线;在半导体层上加上一种给予n型杂质元素以形成一个杂质区域;通过一种电镀方法在半导体的表面上形成一个阻抗低于半导体的涂层,以形成电源线;形成一个覆盖电源线的绝缘膜;以及在绝缘膜上形成一个栅极信号线。
本发明的设备的特征在于通过一种电镀方法形成涂层。
本发明的设备的特征在于涂层包括从铜、铝、金、银的集合中选出的一种元素及其合金作为主要成分。
本发明的设备特征在于导线是由与TFT栅电极相同的材料制成。
本发明的设备特征在于涂层是通过一种印刷的方法形成的。
本发明的设备特征在于第一TFT、第二TFT和第三TFT是n沟道TFT。
本发明的设备特征在于第一TFT、第二TFT和第三TFT是p沟道TFT。
本发明的设备特征在于第一TFT、第二TFT和第三TFT包括EEMOS电路和EDMOS电路中的一个。
本发明的设备特征在于第二TFT是n沟道TFT,第三TFT是p沟道TFT。
本发明的设备特征在于第一TFT包括一个带有锥形部分的栅电极、一个与栅电极重叠的沟道形成区域和一个部分与栅电极重叠的杂质区域。
本发明的设备特征在于第一TFT包括许多沟道形成区域。
本发明的设备特征在于第一TFT包括三个沟道形成区域。
本发明的设备特征在于第二TFT和第三TFT中的每一个都包括一个带有锥形部分的栅电极、一个与栅电极重叠的沟道形成区域的和一个部分与栅电极重叠的杂质区域。
本发明的设备特征在于第一TFT、第二TFT和第三TFT中的一个中的杂质区域包括一个浓度梯度至少处于1×10-17到1×10-18/cm3杂质浓度的区域,杂质浓度随着与沟道形成区域距离的增加而增加。
本发明的设备特征在于发光设备是电致发光显示设备、个人计算机和数字通用光盘之一。
本发明的方法特征在于在使用电镀方法的步骤中导线与接线连接,使得电压相同。
本发明的方法特征在于为了处于相同电压而连接的接线在形成涂层之后使用激光切断。
本发明的方法特征在于为了处于相同电压而连接的接线在电镀之后同时与基底隔离。
                        附图描述
在附图中:
图1是处于电镀阶段的发光设备的上表面视图;
图2是发光设备电镀之后的上表面视图;
图3A到3C显示了根据本发明制造发光设备的步骤;
图4A到4C显示了根据本发明制造发光设备的步骤;
图5A到5C显示了根据本发明制造发光设备的步骤;
图6显示了根据本发明制造发光设备的步骤;
图7A和7B显示了一个接头部分;
图8是一个像素的上表面视图;
图9A和9C显示了接头部分;
图10是一个发光设备的截面图;
图11A和11B显示了NMOS电路的一个结构;
图12A和12B显示了移位寄存器的一个结构;
图13是发光设备在电镀之后的上表面视图;
图14是一个像素的上表面视图;
图15A到15C显示了一个接头部分;
图16是一种发光设备的截面图;
图17是一种发光设备的截面图;
图18是一种发光设备的截面图;
图19是一种发光元件的截面图;
图20A和20B是一个接头和一个引线之间的连接以及一个反电极和引线之间的连接的截面图;
图21是一种发光设备的上表面视图;
图22是发光设备中一个像素部分的上表面视图;
图23A和23B是驱动电路框图;
图24A到24C显示了电子设备;以及
图25是一种发光设备的截面图。
                      优选实施形式
下文将描述本发明的实施方案。
首先,在基底上形成基础绝缘膜之后,形成具有想要形状的半导体层。然后,形成覆盖半导体层的绝缘膜(包括栅极绝缘膜)。在绝缘膜上形成导电膜并蚀刻形成栅电极、作为像素部分源信号线的导线、作为像素部分电源线的导线和作为接头电极的导线。请注意,在本发明中,在形成栅电极之后才在层间绝缘层上形成栅极信号线。
接下来,使用保护层掩模或栅电极将给予传导率的杂质元素加入到半导体层之中,在半导体层上形成杂质区域。请注意,将杂质元素加入到半导体层中可以在形成栅电极之前或形成栅电极之后进行。栅电极还可以在将杂质元素加入到半导体层中之后再次蚀刻。
根据本发明,在活化加入到各个半导体层中的杂质元素之后,执行电镀(电镀方法),在作为像素部分源信号线的导线表面、作为像素部分电源线的导线表面和作为接头电极的导线表面上形成一个金属膜(涂层)。
请注意,在此定义中,源信号线包括电镀之前的源信号线和电镀之后的源信号线。包括在表面上形成的金属膜(涂层)的,电镀之后的源信号线称作源信号线。同样的,电源线包括电镀之前的电源线(导线)和电镀之后的电源线。包括在表面上形成的金属膜(涂层)的,电镀之后的电源线称作电源线。同样的,接头包括电镀之前的接头(导线)和电镀之后的接头。包括在表面上形成的金属膜(涂层)的,电镀之后的接头称作接头。
图1显示了一个状态,在该状态中通过一种电镀方法在作为像素部分源信号线的导线表面上、作为像素部分电源线的导线表面上和作为接头的导线表面上形成金属膜。请注意,图1中显示了三条像素部分的源信号线104,并只显示了三条电源线105。像素部分的源信号线104相互平行,是带状的。像素部分的电源线105相互平行,是带状的。图中只显示了六个接头107。
参考数字101代表一个像素部分。在像素部分101中给出了电镀之前的源信号线104和电镀之前的电源线105。源信号线104和电源线105与电镀电极108连接。请注意,电镀前的源信号线104和电镀前的电源线105不必与同一个电镀电极108相连,可以与不同的电镀电极相连。
在接头部分106,形成了许多(六个)电镀前的接头107并与电镀电极109相连。
在此实施方案中,在作为像素部分101的同一基底上形成了源极端驱动电路102和栅极端驱动电路103。但是,不必在作为像素部分101的同一基底上形成源极端驱动电路102和栅极端驱动电路103。请注意,在图1中,源极端驱动电路102和栅极端驱动电路103处于执行电镀方法之前的状态。
参考数字110表示基底分割线。当在电镀之后沿着基底分割线110分割基底时,源信号线104、电源线105和接头107与电镀电极108和109分离开来。
电镀方法是使直流电流流经包含有要通过电镀方法形成的金属离子的水溶液,然后在阴极表面形成一个金属膜。当镀上金属时,可以使用阻抗低于栅电极的材料,例如铜、银、金、铭、铁、镍、铂、它们的合金或类似的材料。因为铜具有非常低的电阻抗,所以适合用作根据本发明覆盖在源信号线表面的金属膜。
图1中显示的显示屏被浸入到包含有要镀的金属离子的电解液中。然后要镀的金属或不可溶的金属用作阳极,并在电镀电极108和109之间加上预定义的位差。这样,从阳离子还原的、要镀的金属沉淀在源信号线104、电源线105和接头107的表面中。
在电镀之后,形成层间绝缘层,并形成与半导体层杂质区域相连的连接电极121和栅极信号线111。在本发明中,栅极信号线111是通过层间绝缘层中提供的接触孔与栅电极电连接的。图2是在形成了用于将导线层的杂质区域或电源线与接头连接起来的接线(引线)121和栅极信号线111之后的显示屏的上表面视图。
像素部分的源信号线104与源极端驱动电路102电连接。电源线105与接头107相互之间电连接。源极端驱动电路102与接头107相互之间电连接。
在电镀之后,基底沿着基底分割线110分割,将源信号线104、电源线105和接头107与电镀电极108和109分离开来。
操作员通过控制电流密度和时间可以适当的设置由电镀方法形成的金属膜的膜厚度。
因此,根据本发明,像素部分的源信号线、像素部分的电源线和接头覆盖有低阻抗的金属材料。因此,即使像素部分的面积大,也足以得到高速驱动。
特别是在降低了电源线的阻抗时,避免了由引线阻抗引起的电源线电压降,因此可以防止串扰。
这里有一个例子,其中像素部分的源信号线、像素部分的电源线和接头是与栅电极同时形成的。但是,它们和栅电极可以分别形成。例如,在将杂质元素加入到各个半导体层中之后,形成保护栅电极的绝缘膜,活化加入到各个半导体层中的杂质元素,并通过光刻步骤同时在绝缘膜上形成由低阻抗材料(典型是主要包含铝、银和铜的材料)制成的像素部分的源信号线、像素部分的电源线和接头。电镀由此而得到的像素部分的源信号线、像素部分的电源线和接头。为了减少掩膜的数目,可以使用印刷的方法来形成像素部分的源信号线和像素部分的电源线。
在此实施方案中,通过电镀方法用低阻抗的金属材料覆盖像素部分的源信号线、像素部分的电源线和接头。但是,像素部分的源信号线或像素部分的电源线优选通过电镀方法用低阻抗的金属材料覆盖。
根据本发明,在有源矩阵发光设备中,即使像素部分的面积变大而得到一个大屏幕,也可以实现较好的显示。
对于具有上述结构的本发明,下面将结合实施方案进行更为详细的描述。
实施方案1
在这种实施方案中,将要参考图3A-3C到图6来描述在同一基底上同时制造包括像素部分的TFT和包括一个在像素部分附近配置的驱动电路的TFT(CMOS电路包括一个n沟道TFT和一个p沟道的TFT)。
首先,在此实施方案中使用了由玻璃制成的基底200,例如氟硼酸钡玻璃(以#7059玻璃、#1737玻璃或类似的玻璃为代表,由CorningCorporation生产)或氟硼酸铝玻璃。基底200除半透明外没有特别的限制,且可以使用石英玻璃。另外,可以使用具有耐此实施方案中的处理温度的耐热度的塑胶基底。
接下来,在基底200上形成由氧化硅膜、氮化硅膜或氧氮化硅膜一类的绝缘膜制成的带基薄膜201。在此实施方案中,带基薄膜201使用了两层的结构。但是,可以使用单层膜的绝缘膜或两层或更多层层叠的结构。氧氮化硅膜201a是带基薄膜201的第一层,是通过等离子体CVD方法,以SiH4、NH3和N2O作为活性气体而形成的,厚度为10到200nm(优选是50到100nm)。在此实施方案中,形成了膜厚度为50nm的氧氮化硅膜201a(成分比例:Si=32%、O=27%、N=24%、H=17%)。氧氮化硅膜201b是带基薄膜201的第二层,是通过等离子体CVD方法,以SiH4和N2O作为活性气体层叠而成的,厚度为50到200nm(优选是100到150nm)。在此实施方案中,形成了膜厚度为100nm的氧氮化硅膜201b(成分比例:Si=32%、O=59%、N=7%、H=2%)。
然后,依下列步骤在带基薄膜上形成半导体层202到205:在通过一种已有的方法(例如喷射方法、LPCVD方法或等离子体CVD方法)形成一个非晶形结构的半导体膜之后,执行一个已有的结晶处理(例如激光结晶方法、热结晶方法或使用镍一类催化剂的热结晶方法)来获得一个晶形半导体膜,然后将晶形半导体膜制成想要的形状。形成的半导体层201到205的厚度要达到25到80nm(优选是30到60nm)。对用于晶形半导体膜的材料没有限制。但是,优选使用硅、硅锗合金或类似的材料制成。在本实施方案中,在通过等离子体CVD方法形成厚度为55 nm的非晶形硅膜之后,在非晶形硅膜上保留一种含镍溶液。在非晶形硅膜于500℃脱氢1小时之后,于550℃执行热结晶4小时,然后执行增强结晶的激光退火处理以形成晶形硅膜。然后,使用光刻方法形成晶形硅膜的形状,以形成半导体层202到205。
在形成半导体层202到205之后,可以相称的加入痕量杂质元素(硼或磷)以分别形成增强型和耗尽型。
当通过激光结晶方法形成晶形半导体膜时,可以使用受激准分子激光器、YAG激光器或YVO4激光器,它是脉冲振荡型或持续光发射型。当使用了这些激光器时,优选使用一种通过光学系统线性会聚激光振荡器发出的激光并将其照射到半导体膜上的方法。结晶的条件由操作员适当的选择。当使用了受激准分子激光器时,脉冲振荡频率设置为300[Hz],激光能量密度设置为100到400[mJ/cm2](典型是200到300[mJ/cm2])。当使用了YAG激光器时,最好是使用其第二谐波,脉冲振荡频率设置为30到300[Hz],激光能量密度设置为300到600[mJ/cm2](典型是300到500[mJ/cm2])。激光使用100到1000[m]的宽度,例如400[m],线性会聚后照射到基底的整个表面上。此时,线性激光的重合度设置为50到90[%]。
请注意,可以将执行持续振荡或脉冲振荡的气体激光器或固体激光器用作激光器。作为气体激光器有受激准分子激光器、氩激光器、氪激光器等激光器。另外作为固体激光器有YAG激光器、YVO4激光器、YLF激光器、YAlO3激光器、玻璃激光器、红宝石激光器、紫翠玉激光器、钛:兰宝石激光器等激光器。使用如YAG、YVO4、YLF或YAlO3这样的晶体的激光器加入铬、钕、铒、钬、铈、钴、钛或铥后也可以用作固体激光器。激光器的基波依加入的材料而变,获得了基波为1m左右的激光。通过非线性光学元件可获得基波的谐波。
此外,在使用非线性光学元件将固体激光器发射的红外激光转换成绿色激光之后,可以使用由另外一个非线性光学元件获得的紫外线激光。
为了在非晶形半导体膜结晶阶段获得大结晶粒度的晶体,优选做法是使用能够进行连续振荡的固体激光器并使用基波的第二谐波到第四谐波。典型的,最好用Nd:YVO4激光器(1064nm的基波)的第二谐波(532nm)或第三谐波(355nm)。具体是通过一个非线性光学元件将输出为10W的连续振荡YVQ4激光器发射出的激光转换成谐波。另外,有一个通过定位共鸣器中YVQ4晶体和非线性光学元件来发射谐波的方法。优选是矩形或椭圆形的激光通过一个光学系统形成在照射表面上,并照射到要处理的目标上。在此时需要有大有0.01到100MW/cm2的能量密度(优选是0.1到10MW/cm2)。半导体膜以相对于激光的大约10到2000cm/s的速度移动并被激光照射。
然后形成覆盖半导体层202到205的栅极绝缘膜206。栅极绝缘膜206是通过等离子体CVD方法或喷射方法用厚度为40到150nm的含硅绝缘膜形成的。在这个实施方案中,通过等离子体CVD方法形成了厚度为115nm的氧氮化硅膜(成分比例:Si=32%、O=59%、N=7%、H=2%)。当然栅极绝缘膜不限于氧氮化硅膜,因此可以使用单层或层叠结构的其它绝缘膜。
然后,如图3A所示,膜厚度为20到100nm的第一传导膜207a和膜厚度为100到400nm的第二传导膜207b层叠在栅极绝缘膜206上。在此实施方案中,层叠了膜厚度为30nm、由氮化钽制成的第一传导膜207a和膜厚度为370nm、由钨制成的第二传导膜207b。氮化钽膜是通过喷射方法,以钽作为含氮气体中的目标而形成的。此外它可以通过热CVD方法使用六氟化钨(WF6)来形成。在任一情况下,当这些膜用作栅电极时,必须要降低阻抗,钨膜的电阻率最好达到20或更低。当晶体颗粒增大时可以降低钨膜的电阻率。但是,如果在钨膜中存在大量的杂质元素,例如氧,那么会抑制结晶,从而增加阻抗。因此,在此实施方案中,在适当考虑后通过喷射方法用高纯度钨(纯度为99.9999%或99.99%)作为目标来形成钨膜,这样在膜形成阶段杂质就不会从气相进入其中。这样可以达到9到20的电阻率。
请注意,在此实施方案中,氮化钽用于第一传导膜207a,钨用于第二传导膜207b。但是,本发明没有特别限制要用这些材料,可以使用钽、钨、钛、钼、铝、铜、铬和钕中的一种元素或将上述元素作为主要成分的合金材料或复合材料来形成各个传导膜。另外,可以使用形式为掺有杂质元素,例如磷,的多晶硅膜的半导体膜。此外还有由钽(Ta)膜制成的第一传导膜和由钨膜制成的第二传导膜的组合物、由氮化钛(TiN)膜制成的第一传导膜和由钨膜制成的第二传导膜的组合物、由氮化钽(TaN)膜制成的第一传导膜和由铝膜制成的第二传导膜的组合物和由氮化钽(TaN)膜制成的第一传导膜和由铜膜制成的第二传导膜的组合物。
接下来,通过光刻法形成由保护膜制成的掩膜208,并执行形成电极和接线的第一蚀刻处理。第一蚀刻处理是在第一蚀刻条件和第二蚀刻条件下执行的。在此实施方案中,作为第一蚀刻条件,使用了ICP(感应耦合等离子体)蚀刻方法。此外,CF4、Cl2和O2用作蚀刻气体,各种气体流量比设置为25/25/10(sccm)。在1Pa气压下给螺旋型电极加上500W和13.56MHz的RF功率以产生等离子体,从而进行蚀刻。请注意,Cl2、BCl3、SiCl4、CCl4等形式的氯系气体、CF4、SF6、NF3等形式的氟系气体或O2适合用作蚀刻气体。这里使用了由MatsushitaE1ectric Industrial Co.制造的,使用ICP的干蚀刻仪器(Model E645-□ICP)。此外,供给基底端150W和13.56MHz的RF功率(采样阶段)以施加足够的自偏负电压。在此第一蚀刻条件下蚀刻钨膜,这样使第一导电涂层的末端部分变成锥状。第一蚀刻条件下钨的蚀刻速度为200.39nm/min,氮化钽的蚀刻速度是80.32nm/min。钨与氮化钽的选择比为2.5左右。在第一蚀刻条件下,钨的锥角为26左右。
接下来,在不去除由保护膜制成的掩膜208的情况下将第一蚀刻条件变成第二时刻条件。即,将CF4和Cl2用作蚀刻气体,各种气体流量比设置为30/30(sccm)。在1Pa气压下给螺旋型电极加上500W和13.56MHz的RF功率以产生等离子体,然后进行30秒左右的蚀刻。此外,供给基底端150W和13.56MHz的RF功率(采样阶段)以施加足够的自偏负电压。在混合了CF4和Cl2这样的第二蚀刻条件下,将钨膜和氮化钽膜蚀刻到相同的程度。第二蚀刻条件下钨的蚀刻速度为58.97nm/min,氮化钽的蚀刻速度是66.43nm/min。请注意,为了进行蚀刻而不在栅极绝缘膜上留下残渣,蚀刻时间优选是以大约10到20%的速度增加。
在上面的第一蚀刻处理中,当保护膜制成的掩膜的形状适合时,由于加在基底端的偏压的影响,第一和第二导电涂层的末端变成了锥形。锥部的角度优选设置为15到45。
因此,通过第一蚀刻处理形成了由第一导电涂层和第二导电涂层(第一导电涂层213a到218a和第二导电涂层213b到218b)制成的第一成形导电涂层213到218(图3B)。虽然没有给出,在作为栅极绝缘膜的绝缘膜206中,将没有被第一成形导电涂层213到218覆盖的区域蚀刻了大约10到20nm,从而形成了较薄的区域。
然后,在不去除由保护膜制成的掩膜的情况下执行第一添加处理,将给予n型的杂质元素加入到半导体层中(图3C)。添加处理优选是通过离子添加方法或离子注入方法来执行。对于离子添加方法的条件,剂量设置为1×1013到5×1015/cm2,加速电压设置为60到100keV。在此实施方案中,剂量设置为1.5×1015,加速电压设置为80keV。对于给予n型的杂质元素,使用了周期表族15的元素,典型是磷(P)或砷(As)。这里使用了磷(P)。在这种情况下,导电涂层213到216变成给予n的掩膜,从而以自动调整的方式形成n型杂质区域(高浓度)270到273。给予n型的杂质元素以1×1020到1×1021/cm3的浓度范围加入到杂质区域270到273中。
接下来,在不去除由保护膜制成的掩膜的情况下执行第二添加处理。这里将SF6、Cl2和O2用作蚀刻气体,各种气体流量比设置为24/12/24(sccm)。在1.3Pa气压下给螺旋型电极加上700W和13.56MHz的RF功率以产生等离子体,然后进行25秒的蚀刻。此外,供给基底端10W和13.56MHz的RF功率(采样阶段)以施加足够的自偏负电压。在混合了CF4和Cl2这样的第二时刻条件下,将钨膜和氮化钽膜蚀刻到相同的程度。第二蚀刻条件下钨的蚀刻速度为227.3nm/min,氮化钽的蚀刻速度是32.1nm/min。请注意,为了进行蚀刻而不在栅极绝缘膜上留下残渣,蚀刻时间优选是以大约10到20%的速度增加,钨与氮化钽的选择比为6.83左右。因此,当SF6用作蚀刻气体时,由于对绝缘膜的选择比高,所以可以抑制膜缩减。
通过第二蚀刻处理,第二导电涂层(钨)的锥角变成70左右。通过第二蚀刻处理形成第二导电涂层222b到227b。另一方面很难蚀刻到第一导电涂层,从而形成第一导电涂层222a到227a。另外,通过第二蚀刻处理将保护层制成的掩膜208变成保护层制成的掩膜209的形状(图4A)。虽然没有显示,第一导电涂层的宽度与第二蚀刻处理之前相比,实际上在第二蚀刻处理之后变窄了0.15m,即在整个线宽变窄0.3m。这里,沟道长度方向的第二导电涂层的宽度对应于上述实施方案中显示的第二宽度。
在上面的第二蚀刻处理中,将CF4、Cl2和O2用作蚀刻气体。在这种情况下,各种气体流量比优选设置为25/25/10(sccm),在1Pa气压下给螺旋型电极加上500W和13.56MHz的RF功率以产生等离子体,从而进行蚀刻。此外,供给基底端20W和13.56MHz的RF功率(采样阶段)以施加足够的自偏负电压。在使用了CF4、Cl2和O2的情况下,钨的蚀刻速度为124.62nm/min,氮化钽的蚀刻速度是20.67nm/min。钨与氮化钽的选择比为6.05。因此是选择性的蚀刻钨膜。在这种情况下,在绝缘膜206中,没有被第一成形导电涂层222到227覆盖的区域蚀刻了大约50nm,从而形成了较薄的区域。
接下来在去除了保护膜制成的掩膜之后,执行第二添加处理以获得图4B中的状态。第二导电涂层222b到225b用作杂质元素的掩膜,然后进行添加,将杂质元素加入到第一导电涂层222a到225a锥形部分下的半导体层中。在此实施方案中,磷(P)用作杂质元素,等离子添加是在1.5×1014/cm3剂量、90keV加速电压、0.5A/cm2离子电流密度、磷化氢(PH3)的5%稀释氢气体和30sccm气体流量的添加条件下执行的。因此,以自动调整的方式形成以第一导电涂层覆盖的杂质区域(低浓度)228到231。添加到杂质区域228到231中的磷(P)的浓度为1×1017到1×1019/cm3,具有与第一导电涂层锥形部分膜厚度一致的浓度梯度。请注意,第一导电涂层锥形部分覆盖的半导体层的杂质浓度(P)是从第一导电涂层锥形部分的末端到内部逐渐降低的。即浓度分布是由第二添加处理形成的。另外,将杂质元素添加到杂质区域(高浓度)270到273以形成杂质区域(高浓度)232到235。
请注意,在此实施方案中,锥形部分的宽度(沟道长度方向的宽度)优选为0.5m或更大,其限制是1.5m到2m。因此,虽然在沟道长度方向具有浓度梯度的杂质区域(低浓度)宽度限制取决于膜厚度,但变成了1.5m到2m。虽然这里分别显示了杂质区域(高浓度)和杂质区域(低浓度),但实际上没有明确的边界,从而形成了浓度变化的区域。同样的,在沟道形成区域和杂质区域(低浓度)之间没有明确的边界。
然后,在除像素部分之外的区域被掩膜246覆盖的时候执行第三蚀刻处理。对于掩膜246,优选使用金属镀层、玻璃镀层、陶瓷镀层或陶瓷玻璃镀层。在第三蚀刻处理中,选择性蚀刻没有被掩膜246覆盖的区域中的第一导电涂层的锥形部分,这样不会存在被半导体层杂质区域所覆盖的区域。第三蚀刻处理是由使用对钨具有高选择比的Cl3作为蚀刻气体的ICP蚀刻仪器执行的。在此实施方案中,Cl3的气体流量设置为80(sccm),在1.2Pa气压下给螺旋型电极加上350W和13.56MHz的RF功率以产生等离子体,然后进行30秒的蚀刻。此外,供给基底端50W和13.56MHz的RF功率(采样阶段)以施加足够的自偏负电压。通过第三蚀刻处理形成了导电涂层236(第一导电涂层236a和第二导电涂层236b)、237(第一导电涂层237a和第二导电涂层237b)、238(第一导电涂层238a和第二导电涂层238b)和239(第一导电涂层239a和第二导电涂层239b)。请注意,导电涂层238成为源信号线,导电涂层239成为电源线(图4C)。
在此实施方案中介绍了执行第三蚀刻处理的例子。但是,如果不需要第三蚀刻处理就不必执行它。
接下来,如图5A所示,在去除了保护膜制成的掩膜之后,新形成了保护膜制成的掩膜245,并执行了第三添加处理。通过第三添加处理,在半导体层中形成了杂质区域247到250,这些区域作为p沟道TFT的有源层,添加了给予与上面导电类型(n型)相反的导电类型(p型)的杂质元素。给予p型的杂质元素的添加是以导电涂层223和237作为掩膜,以自动调整的方式形成杂质区域的。
在此实施方案中,杂质区域247到250是由使用乙硼烷(B2H6)的离子添加方法形成的。请注意,杂质区域247包括杂质区域247a和247b。同样杂质区域249包括杂质区域249a和249b。在第三添加处理中,构成n沟道TFT的半导体层为保护层制成的掩膜245所覆盖。虽然通过第一添加处理和第二添加处理在杂质区域247到250中加入了不同浓度的磷,还要执行添加处理,使任一区域中给予p型的杂质元素的浓度达到2×1020到2×1021原子/cm3。这样,由于那些杂质区域起p沟道TFT的源极区和漏极区的作用,所以将不会产生问题。
接下来,执行活化添加到各个半导体层中的杂质元素的步骤。这个活化步骤是使用退火熔炉通过热退火方法执行的。热退火方法优选是在1ppm或更低的氧浓度,优选是0.1ppm,400到700℃,典型是500到550℃,的氮气中执行。在此实施方案中,活化处理是在550℃热处理4小时完成的。请注意,除了热退火方法,可以使用激光退火方法或快速热退火方法(RTA方法)。
虽然没有显示,但通过活化处理扩散了杂质元素。从而使n型杂质区域(低浓度)和n型杂质区域(高浓度)之间的边界不再存在。
请注意,在此实施方案中,与上面活化处理同时发生的是,作为结晶催化剂的镍被含高浓度磷的杂质区域所吸收,主要减少的是成为沟道形成区域的半导体层中的镍。对于由此制造的、带有沟道形成区域的TFT,减小了关电流,结晶度更好。因此获得了高场效应迁移率,取得了更好的性能。
此外,在氢气中进行热处理来氢化半导体层。作为氢化的另一种方法,可以执行等离子体氢化(使用由等离子体激励的氢)。
在此实施方案中,当使用了激光退火方法时,可以使用在结晶中使用的激光器,在活化的情况下,需要有与结晶时相同的移动速度和大约0.01到100MW/cm2的能量密度(优选是0.01到10MW/cm2)。
接下来,电镀作为像素部分源信号线的导电涂层238的表面、作为像素部分电源线的导电涂层239的表面和接头部分的电极表面(没有显示)。图7A是执行电镀之后的接头部分的上表面视图,图7B是其截面图。在图7B中,参考数字400代表接头部分,401代表接头。在图7B中还典型显示了一个驱动电路部分的TFT 303,并只显示了一条像素部分的源信号线238。在此实施方案中是使用铜电镀液(EEJA生产的Microfab Cu2000)进行电镀的。在这个电镀之后,如上面实施方案中一个例子所描述的,要电镀的导线通过伪模式彼此之间连接起来,这样它们的电压相同。在随后步骤中分割基底的时候,切割其间的电极,并将基底分离。使用伪模式会形成短路环。
接下来,形成覆盖像素部分源信号线的第一层间绝缘膜255。优选将包含的硅作为主要成分的无机绝缘膜用作第一层间绝缘膜255。
然后,在第一层间绝缘膜255上形成由有机绝缘材料制成的第二层间绝缘膜256。在此实施方案中,形成了膜厚度为1.6m的丙烯酸类树脂膜。
接着使用光掩膜在第二层间绝缘膜256上形成透明传导膜制成的像素电极257。例如,优选将ITO(氧化铟与氧化锡的合金)、氧化铟与氧化锌的合金(In2O3-ZnO)或氧化锌(ZnO)用作作为像素电极257的透明传导膜。
接着使用光掩膜选择性的蚀刻第二层间绝缘膜256,形成到达各个杂质区域(232、234、247和249)的接触孔、到达像素部分源信号线238的接触孔和到达电源线239的接触孔。
接着形成将杂质区域(232、234、247和249)与源信号线238和电源线239电连接的电极257到263。还形成栅极信号线264。
通过与像素电极247接触并与其重叠的电极262,像素电极257与像素部分的电流控制TFT 307的杂质区域249a电连接。
杂质区域234通过电极260与源信号线238电连接。杂质区域249b通过电极263与电源线239电连接。
在此实施方案中,简要说明了一个在形成像素电极247之后形成电极262的例子。但是,在形成了接触孔和电极之后,可以形成透明传导膜制成的像素电极来重叠电极。
这样,包括一个CMOS电路302的驱动电路301由一个n沟道TFT303和一个p沟道TFT 304组成,带有由n沟道TFT制成的开关TFT 306的像素部分305和由p沟道TFT构成的电流控制TFT 307可以在同一基底上形成(图5C)。在此实施方案中,出于便利的关系,这样的基底称作有源矩阵基底。
接下来,如图6所示,形成厚度为500[nm]的含硅绝缘膜(在此实施方案中是氧化硅膜),然后在对应于像素电极257的位置形成一个槽。这样形成了起堤作用的第三层间绝缘膜280。当在形成槽时使用了湿蚀刻方法时,可以轻松的形成锥形的侧壁。如果没有在槽中形成形状足够平缓的侧壁,那么由于该步骤而导致的有机化合物层变质是一个值得注意的问题。因此需要注意。
请注意,在此实施方案中,由氧化硅制成的膜用作第三层间绝缘膜280。但是,在某些情况下可以使用由聚酰亚胺、聚酰胺、丙烯或BCB(环丁烯甲苯)制成的有机树脂膜。
接下来,通过蒸发的方法形成有机化合物层265,然后通过蒸发方法形成阴极(银化镁电极)266。此时最好对像素电极257执行热处理,在形成有机化合物层265和阴极266之前完全去除水分。请注意,在此实施方案中银化镁电极用作发光元件的阴极。但是可以使用其它已有的材料制造。
对于有机化合物层265,可以使用通过加电场而发光的已有材料。在此实施方案中,有机化合物层是由空子传输层和发射层构成的两层结构。但是,有一种情况是有机化合物层中还有空子发射层、电子发射层和电子传输层中的任意一个。由此,已经介绍了各种组合的示例,可以使用任何一种结构。
在此实施方案中,通过蒸发的方法形成聚四氟乙烯作为空子传输层。另外,通过蒸发的方法形成其中分子扩散了30到40%的哦二唑衍生物1,3,4的PBD的聚乙烯咔唑作用发光层,并在其中添加了1%的、作为绿光发光中心的氧杂萘邻酮6号。
此外优选提供钝化膜267。在此实施方案中,厚度为300nm的氮化硅膜用作钝化膜267。在形成阴极266之后不需暴露到空气中就可以接着形成钝化膜。通过钝化膜267,有机化合物层265可以进一步不与水气和氧气接触。
请注意,有机化合物层265的厚度优选设置为10到400[nm](典型是60到150[nm]),阴极的厚度优选设置为80到200[nm](典型是100到150[nm])。
由此完成了如图6中显示结构的发光设备。请注意,在此实施方案制造发光设备的步骤中,根据电路结构和步骤之间的相互关系,使用钽和钨作为形成栅电极的材料来制成源信号线,使用铝作为形成源极和漏极的接线材料来制成栅极信号线。但是可以使用不同的材料。
图8显示了在此实施方案中制造的有源矩阵基底像素部分的上表面视图。请注意,对于图5A到5C和图6中对应的部分使用了相同的参考标识。图6中显示的虚线A-A’对应于通过沿图8中显示的虚线A-A’切割而获得的截面图。图6中显示的虚线B-B’也对应于通过沿图8中显示的虚线B-B’切割而获得的截面图。
像素331包括源信号线238和栅极信号线264。电流控制TFT 307的漏极区通过电极262与像素电极257相连。在开口330中,像素电极257和有机化合物层相互重叠,而发光设备308发光。栅极接线333的一部分包括电流控制TFT 307的栅电极237。参考数字334代表由半导体层制成的电容接线。部分332是一个电容,其中电容器接线334和栅极接线333通过插入其中的栅极绝缘膜而相互重叠。
请注意,为了不使用屏蔽膜就光屏蔽像素电极之间的裂缝,可以制造一个仪器,使用源信号线238覆盖像素电极的末端。
根据此实施方案中给出的步骤,制造有源矩阵基底所需的光掩膜的数量可以设置为5。
实际上,在完成了图6中显示的结构之后,为了防止大气暴露,优选是使用保护膜(复合薄膜、可紫外线硬化的树脂膜或类似的膜)或具有高密封性和低脱气的半透明密封元件来封装(密封)。在这种情况下,当密封元件内部是惰性气体或其中装有吸湿材料(例如氧化钡)时,会提高发光元件的可靠性。
然后使用密封元件或类似元件来密封有源矩阵基底和遮蔽元件以提高密封性。从元件或电路中引出的连接接头的连接器是在带有外部信号接头(柔性印制电路:FPC)的基底上形成的,连接它就得到了一个产品。
接下来,将有源矩阵基底分割成想要的形状。请注意,这个分割操作可以在使用密封元件密封有源矩阵基底和遮蔽元件之前或之后进行。通过这个分割操作,分离了为电镀而提供的伪模式。
图9A是分割之后接头部分的上表面视图,图9B是沿着虚线D-D’切割而得到截面图。在图9B和图C中,参考数字400表示接头部分,401表示与外部接头连接的接头。图9A到9C还典型显示了一个驱动电路部分的TFT和像素部分中唯一的一个源信号线238。接头401与源信号线238和电源线239电连接。在接头部分400中,露出了电镀接头401的一部分,并在其上形成了由ITO制成的透明传导膜404。请注意,透明传导膜404可以与像素部分的像素电极同时形成。
此外用一种已有技术将一个FPC粘到接头的露出部分上。图9C是粘完FPC 405之后的截面图。
这里介绍了在基底上形成所有驱动电路的例子。但是几个IC可以用作驱动电路的一部分。
这样制造的发光设备可以用作各种电子设备的显示部分。
实施方案2
在实施方案1中介绍了在驱动电路中形成CMOS电路的例子。但是,NMOS可以只使用n沟道TFT来形成。请注意,当通过n沟道TFT的组合来形成NMOS电路时,例子有如图11A所示的只使用增强型TFT形成的电路和如图11B所示的使用增强型TFT和损耗型TFT的组合形成的电路。在像素部分装配的TFT还可以只使用n沟道TFT形成。请注意,在这种情况下,像素的电极优选是阴极。图10是此实施方案的发光设备的截面图。请注意,图10显示的是形成像素电极547之后和形成第三层间绝缘膜之前的状态。
参考数字501代表包含TFT的驱动电路,505代表包含TFT的像素部分。像素部分505包含开关TFT 506和电流控制TFT 507,两者都是n沟道TFT。
参考数字526代表电镀之后的源信号线,527代表电镀后的电源线。源信号线526通过电极561与开关TFT 506的杂质区域电连接。电源线527通过接线562与电流控制TFT 506的杂质区域电连接。
驱动电路501包括带有n沟道TFT 503和504的nMOS电路。
通过将属于周期表族15的一种元素(优选是磷)或周期表族13的一种元素(优选是硼)添加到用于沟道形成区域的半导体中,n沟道TFT 503和504可以分别成为增强型和耗尽型。
当分别形成了增强型和耗尽型时,如果需要,优选将属于周期表族15的一种元素(优选是磷)或周期表族13的一种元素(优选是硼)添加到用于沟道形成区域的半导体中。
在图11A中,参考数字31和32各代表一个增强型n沟道TFT(下文称为E型NTFT)。在图11B中参考数字33代表一个E型NTFT,34代表一个耗尽型n沟道TFT(下文称为D型NTFT)。
请注意,在图11A和11B中,参考标识VDH代表一根施加正电压的电源线(正压电源线),参考标识VDL代表一根施加负电压的电源线(正压电源线)。结合地电压(地电源线),负压电源线可以用作电源线。
图12A和12B显示了一个使用图11A所示的EEMOS电路或图11B所示的EDMOS制造移位寄存器的例子。在图12A和12B中,参考数字40和41各代表一个触发器电路。另外,参考数字42和43各代表一个E型NTFT。一个时钟信号(CL)输入到E型NTFT 42的栅极。一个颠倒了极性的时钟信号(CL条)输入到E型NTFT 42的栅极。参考数字44代表一个倒相器电路。如图12B所示,图11A所示的EEMOS电路或图11B所示的EDMOS被用作倒相器电路。因此,显示设备的驱动电路可以只包括一个n沟道TFT。
当使用包含n沟道TFT的NMOS电路制造小显示区域的显示设备中的驱动电路时,与使用NMOS电路相比增加了功耗。但是本发明在大显示区域的情况下特别有效。因此,在具有大显示区域的固定监视器或电视的情况中不会引起涉及功耗的问题。在只使用NMOS电路制造栅极端驱动电路的情况下也没有问题。但是,源极端驱动电路最好部分使用外部IC或类似的元件制造,而不是只使用NMOS电路,其原因在于这样可以实现高速驱动。
请注意,通过与实施方案1的自由组合可以实现此实施方案。
实施方案3
在此实施方案中将描述使用同一电镀电极连接包含在像素部分中的源信号线、包含在像素部分的电源线和接头并执行电镀情况下的虚模式。
图13是此实施方案的发光设备的上表面视图。请注意,图13中典型显示了像素部分中的三个源信号线604和三个电源线605。像素部分中的源信号线604彼此平行,是带状的。像素部分中的电源线605彼此平行,是带状的。典型显示了6个接头。
参考数字601代表像素部分。像素部分601中配有电镀前的源信号线604和电镀前的电源线605。在接头部分606形成了很多(6个)电镀前的接头。
源信号线604、电源线605和接头607都与电镀电极609相连。
在此实施方案中,与像素部分601中的情况一样,在同一基底上形成源极端驱动电路602和栅极端驱动电路603。但是不需象像素部分601一样在同一基底上形成源极端驱动电路602和栅极端驱动电路603。请注意,在图13中源极端驱动电路602和栅极端驱动电路603在执行电镀方法之前处于一个状态。
参考数字610代表基底分割线。当在电镀之后沿着基底分割线610分割基底时,源信号线604、电源线605和接头607与电镀电极609分离开来。
在电镀之后形成了层间绝缘膜,并形成了用于连接半导体层杂质区域的接线(引线)和栅极信号线。在本发明中,栅极信号线通过层间绝缘膜中提供的接触孔与栅电极电连接。在图13中参考数字612代表引线,611代表栅极信号线。
像素部分中的源信号线604通过接线与源极端驱动电路602电连接。电源线605和接头607通过引线612彼此之间相互电连接。源极端驱动电路602和接头607通过引线612彼此之间电连接。
在电镀之后,沿着基底分割线610分隔基底,将源信号线604、电源线605和接头607与电镀电极609分离开来。
这样,根据本发明,像素部分的源信号线、像素部分的电源线和接头用低阻抗的金属材料覆盖。因此,即使像素部分的区域大,也可以有效实现高速驱动。
特别是当减小了电源线的阻抗时,避免了由接线阻抗引起的电源线压降,由此可以防止串扰。
此实施方案可以通过与实施方案1或者2的自由组合来实现。
实施方案4
在此实施方案中描述了一根源信号线用与栅电极一样的材料制造,电源线用与栅极信号线一样的材料制造的例子。
图14显示了此实施方案中一个像素的上表面视图。在此实施方案中,包含源信号线703、栅极信号线704和电源线705的区域对应于像素700。像素700有一个开关TFT 701和一个电流控制TFT 702。
栅极接线711包括电流控制TFT 702的栅电极712。
源信号线703、开关TFT 701的栅电极708、电流控制TFT 702的栅电极712和栅极接线711是由同一传导膜制成的。
电流控制TFT 702的漏极区通过电极709与像素电极706相连。在像素电极706上形成了第三层间绝缘膜(没有显示),在第三层间绝缘膜上形成了有机化合物层(没有显示)。像素电极706和有机化合物层通过第三层间绝缘膜中提供的开口707彼此之间相互接触。
电极709、电源线705、栅极信号线704、直接与开关TFT 701源极区和漏极区相连的接线和直接与电流控制TFT 702源极区和漏极区相连的接线是由相同的传导膜制成。
栅极接线711包括电流控制TFT 702的栅电极712。参考数字710代表由半导体层制成的电容接线。电容接线710和栅极接线711通过插入其间的栅极绝缘膜(没有显示)而重叠的区域是一个电容。
请注意,为了不使用遮蔽膜就光遮蔽像素电极之间的裂缝,可以制造一种仪器,用源信号703覆盖像素电极706的末端。
这个实施方案可以通过与实施方案3的自由组合来实现。
实施方案5
在此实施方案中,在图15A到15C中显示了一个由与实施方案1中不同的步骤形成源信号线或电源线的例子。
图15A显示了一个电镀像素部分的源信号线903或电源线(没有显示),形成层间绝缘膜,在层间绝缘膜中形成接触孔,然后电镀接头部分900的例子。
接头901和源信号线903或电源线是以与TFT的栅极电极902相同的步骤形成的。首先,只选择性的电镀像素部分的源信号线903或电源线。然后形成层间绝缘膜,并在其中形成接触孔。在形成接触孔时露出了接头部分900中接头901的一部分。接下来,只电镀接头部分900中接头901露出的部分,形成涂层904。请注意,涂层904包含在接头901中。
此后,形成与引线或半导体层杂质区域相连的电极。根据实施方案1执行后续的步骤,这样更好的得到了图15A所示的结构。
请注意,包含在半导体层中的杂质元素的活化优选在形成涂层904之前执行。
对于实施方案1的情况,在电镀阶段要电镀的电极或接线通过虚模式彼此互连,这样它们处于同一电压。在后续步骤分割基底的时候,切割它们之间的电极,分离基底。使用虚模式还会形成一个短路环。
图15B显示了一个通过与图15A不同的步骤进行电镀的例子。此实施方案是一个源信号线913没有与TFT栅电极912同时形成的例子。
在形成了保护栅电极912的绝缘膜之后,活化添加到各个半导体膜之中的杂质元素。然后,通过一个光刻法的步骤在绝缘膜上同时形成由低阻抗金属材料(典型的是主要包含铝、银和铜的材料)制成的像素部分的源信号线913和接头911。这样,根据本发明,像素部分的源信号线是由低阻抗的金属材料制成的。这样,即使像素部分的区域变得更大,仍足以驱动它。另外,为了减少掩膜的数量,可以通过印刷方法通过源信号线。
然后执行电镀(电镀方法),在像素部分源信号线913的表面和接头911的表面上形成金属膜。根据实施方案1执行后续步骤,这样更好的获得了图15B中显示的结构。
图15C显示了一个通过与图15A不同的步骤形成源信号线的例子。
在此实施方案中,通过印刷方法形成源信号线。提供的导电涂层用于提高像素中源信号线的位置精确度。
在此实施方案中,通过与栅电极情况中一样的步骤形成包含源信号线的导电涂层915a和915b。然后不用绝缘膜覆盖栅电极就活化杂质元素。活化是在减压了的惰性气体中通过,例如,热退火进行的,避免了导电涂层氧化引起的阻抗增加。然后,为了填充导电涂层之间的缝隙,使用印刷的方法形成源信号线。当沿着源信号线提供了导电涂层时,可以防止在印刷方法(丝网印刷)中引起的易断问题。根据实施方案1执行激光步骤,这样更好的得到了图15C显示的结构。
丝网印刷是将具有想要形状的孔洞的镀膜用作掩膜,形成粘液(稀释液)或者墨水,在其中在一个衬底上混合了例如金属粒子(Ag,Al,或者相似的),该衬底是一个将要通过孔洞进行印刷的主体,然后通过热烘烤形成带有想要形状的接线。这样的印刷方法成本相对较低,可以用于大区域的情况,因此适合本发明。
除了丝网印刷方法,本发明还可以应用使用旋转鼓的凹板印刷方法、凹板印刷方法和各种平板印刷方法。
像素部分的源信号线可以通过上面的各种方法形成。
请注意,此实施方案可以与实施方案1到4中的任一个自由组合。
实施方案6
在此实施方案中,将用图16描述具有与实施方案1中介绍的不同结构的发光设备。
在驱动电路921中,形成了p沟道TFT 923和n沟道TFT 924,从而制成了CMOS电路。
在像素部分922中形成开关TFT 925和电流控制TFT 926。开关TFT 925的源极区域和漏极区域中的一个是与源信号线927电连接的。另外,虽然没有显示,另一个是与电流控制TFT 926的栅电极电连接的。
电流控制TFT 926中的源极区域和漏极区域中的一个是与电源线(没有显示)电连接的。此外,另一个是与包含在发光元件928中的像素电极929连接的。
发光元件928包含像素电极929、与像素电极929接触的有机化合物层930和与有机化合物层930接触的反电极931。请注意,在此实施方案中,在反电极931上配有覆盖驱动电路921和像素部分922的保护膜932。
在此实施方案中,如图16所示,具有孔洞部分的第三层间绝缘膜934形成在对应于像素电极929的位置上。第三层间绝缘膜934具有绝缘属性,充当了一个筑堤,具有分隔相邻像素的各个有机化合物层的作用。在此实施方案中,第三层间绝缘膜934是由保护层制成的。
在此实施方案中,第三层间绝缘膜934的厚度设置为1m左右。形成孔洞部分是其随着接近像素电极929而扩大,即变成所谓的逆锥形。这是按下列步骤形成的。首先,在形成保护膜之后,使用掩膜覆盖除形成孔洞部分所在区域以外的区域。接下来,照射UV光使其露出,然后通过显影剂去掉露出的区域。
如在此实施方案中所述,当以逆锥形形成第三层间绝缘膜934时,在后续步骤形成有机层阶段于相邻像素间分割有机化合物层。这样,即使有机化合物层的热膨胀系数与第三层间绝缘膜934的不同,也可以避免有机化合物层的裂化和剥皮。
请注意,在此实施方案中,由保护膜制成的膜用作第三层间绝缘膜。但是,在某些情况下可以使用聚酰亚胺、聚酰胺、丙烯、BCB(环丁烯甲苯)、氧化硅膜或类似的膜。如果第三层间绝缘膜934是具有绝缘属性的物质,那么可以使用有机物或无机物。
虽然图16中没有显示,电源线也在与栅电极情况中一样的层中形成,然后电镀。这样可以减少接线阻抗。
此实施方案可以通过与实施方案1到5自由组合来实现。
实施方案7
在此实施方案中描述了一个具有反转交错的TFT的发光设备的结构。图17是此实施方案的发光设备的截面图。请注意,图17显示了处在形成像素电极之后、形成第三层间绝缘膜之前的状态。
在此实施方案的发光设备中,驱动电路940包括一个n沟道TFT942和一个p沟道TFT 943,这构成一个CMOS电路。
像素部分941包括一个开关TFT 944和一个电流控制TFT 945。参考数字947代表源信号线,948代表电源线,而949代表栅极信号线。
开关TFT 944中的源极区域和漏极区域中的一个是与源信号线947电连接的。另外,虽然没有显示,另一个是与电流控制TFT 945的栅电极电连接的。
电流控制TFT 945中的源极区域和漏极区域中的一个是与电源线948电连接的。此外,另一个是与像素电极946电连接的。
栅极信号线949是在第二层间绝缘膜950上形成的。虽然没有显示,栅极信号线949是与开关TFT 944的栅电极相连的。
源信号线947和电源线948在与TFT栅电极情况中相同的层中形成的,然后电镀以减小接线阻抗。请注意,在此实施方案中,栅极绝缘膜951的一部分是在电镀(电镀方法)之前通过蚀刻去掉的,这露出了像素部分中源信号线947的表面和电源线948的表面,然后通过电镀方法在这些表面上形成一层金属膜。
此实施方案可以通过与实施方案1到6的自由组合来实现。
实施方案8
在此实施方案中描述了一种具有与实施方案1不同结构的发光设备。图18是此实施方案发光设备像素部分的截面图。
图18显示了形成开关TFT 834、电容833和电流控制TFT 832的情形。玻璃基底或有机树脂基底用作基底801,这是形成这些元件的基础。与玻璃材料相比,有机树脂基底重量轻,因此对减少发光设备自身的重量有作用。当制造发光设备时,可以使用聚酰亚胺、聚乙烯对本二酸盐(PET)、聚乙烯萘(PEN)、聚醚砜(PES)或芳族聚酰胺。对于玻璃基底优选使用称作非碱性玻璃的硼硅酸钡玻璃或硼硅酸铝玻璃。玻璃基底所使用的厚度为0.5~1.1mm。但是为了减轻重量,需要减少厚度。另外,为了进一步减轻重量,优选使用具有2.37g/cc这样小比重的玻璃基底。
在基底801上形成防止基底杂质扩散和进行压力控制的第一绝缘膜802。这是用含硅绝缘膜制成的。例如,这可使用等离子体CVD方法用SiH4、NH3和N2O形成一个厚度为20到100 nm的氮氧化硅膜来获得。关于成分,其中氮浓度设置为20到30原子%,氧浓度设置为20到30原子%,这样就提供了张应力。在第一绝缘膜的上层最好再形成一层由用SiH4和N2O得到的氮氧化硅膜所制成的绝缘膜。关于该绝缘膜的成分,氮浓度设置为1到20原子%,氧浓度设置为55到65原子%,这样就减少了氮浓度并减轻了内部压力。
半导体膜803和804由具有晶体结构的硅膜制成。一个典型的例子是通过对由等离子体CVD方法形成的非晶形硅膜进行激光照射或热处理而得到的半导体膜。其厚度设置为20到60nm。在上层形成作为栅极绝缘膜的第二绝缘膜805和栅电极806、807。栅电极807与电容833的一个电极相连。
在栅电极的上层形成第三绝缘层808,第三绝缘层808由用SiH4、NH3和N2得到的氮化硅或用SiH4、NH3和N2O得到的氮氧化硅制成,起保护膜的作用。还有由聚酰亚胺或丙烯酸树脂这样的有机树脂材料形成的第四绝缘膜809,是一个平面膜。
在由有机树脂材料形成的第四绝缘膜之上形成由氮化硅一类的无机绝缘材料制成的第五绝缘膜810。有机树脂材料有吸湿性,即吸纳水分的属性。如果再次散发出水分,会给有机化合物供氧,从而导致发光元件变质。因此,为了防止水分的滞留和再次散发,要在第四绝缘膜809上形成由SiH4、NH3和N2O得到的氮氧化硅或SiH4、NH3和N2得到的氮化硅制成的第五绝缘膜810。另一种方法是省略第四绝缘膜809,第五绝缘膜810只有一层可以用作基底。
然后,形成接触各个半导体膜中的源极或漏极区域的接触孔。通过喷射方法形成由ITO(氧化铟锡)、氧化锌或类似材料制成的,厚度为110nm的透明导电涂层,然后蚀刻成想要的形状(如图8所示的形状),形成发光元件833电极之一的阳极811。
形成总厚度为300到500nm的钛、铝层叠结构的电极812到815,得到与半导体膜的接触面。形成电极815覆盖阳极811。
参考数字830表示通过电极812与包含在半导体层830中的杂质区域相连的源信号线。电镀源信号线830的表面以减少制造电阻。
在这些电极上形成的绝缘膜816到819是由氮化硅或类似材料制成的,形成这些绝缘膜的末端部分,使其位于电极的外部。这样的结构是通过下列步骤获得的。将形成电极的传导膜的一层与绝缘膜层叠,根据保护层820到823的形状进行蚀刻。然后,使用剩余的保护层形状只对传导膜进行蚀刻,这样可以形成如图18所示的罩。所以绝缘膜816到819不必局限于绝缘膜。如果一种材料具有对形成接线的传导膜的蚀刻选择比,这样的材料就可以用于绝缘膜。
通过蒸发方法形成有机化合物层824和阴极825。这样,这里形成的罩就变成了掩膜,有机化合物层824和阴极825可以以自动调整的方式在阳极811上形成。保护层820到823可以留在绝缘膜816到819上,或可以去除。
对有机化合物层824和阴极825可以执行湿处理(例如使用化学溶液蚀刻或水洗法这样的处理)。这样,需要根据阳极811提供由绝缘材料制成的隔断墙层,在临近元件之间形成绝缘隔离。但是,当使用了该实施方案的像素结构时,接线和在其上形成的绝缘膜可以用作用于隔断墙层的基底。
这样,发光设备833包括由ITO这样的透明传导材料制成的阳极811、包含空子发射层、空子传输层、发射层等层的有机化合物层824和由碱金属或碱土金属,例如MgAg或LiF,这样的材料制成的阴极825。
这样,不会有在外围设备中形成的元件施加压力到发光元件上的情况。因此可以防止由热应力或类似情况导致的发光元件的变质。结果是可以制造高可靠性的发光元件。
实施方案9
在此实施方案中,将用图19来描述在实施方案8中用图18描述的发光设备的另一种结构。在形成阳极621之后形成第七绝缘膜。该绝缘膜是由氧化硅、氮化硅或类似的物质制成的。然后通过蚀刻去除阳极621上的第七绝缘膜。在此时,如图19所示,阳极621的末端部分由第七绝缘膜覆盖。这样获得了已具形状的第七绝缘膜640。
同样的执行后续的步骤,并形成连接电极625、绝缘膜628等等。形成如图19所示的有机化合物层634和阴极635。当提供了第七绝缘膜640时,可以防止阴极635与末端部分中的阳极621接触,从而防止短路。
根据在此实施方案中说明的像素结构,可以防止热应力引起的发光元件的变质,并可以制造具有高可靠性的发光设备。
实施方案10
在此实施方案中将描述基底上的引线和接头之间连接的情形。
如图20A所示,在接头部分中,接头681是由与栅电极相同的材料制成的。电镀接头681以达到减少阻抗的目的。
在通过蚀刻形成接触孔的同时去除在接头上层形成的第三绝缘膜858、第四绝缘膜681和第五绝缘膜600,这样就可以露出表面。当在接头681上层叠了透明导电涂层682时,可以得到与FPC的连接。
因为发光元件的反电极变成了一个公共电极,所以连接做在了像素部分的外部。为了控制来自外部的电压,反电极通过基底上的引线与接头相连。图20B显示了一个引线和反电极之间的连接结构。
引线684与第四绝缘膜659相接触,与栅极信号线形成在同一层中。在通过蚀刻形成接触孔的同时去除引线上层中形成的第五绝缘膜660,露出表面。
在第五绝缘膜660上形成像素电极661,并形成与像素电极661相接触的有机化合物层674。形成反电极675以覆盖有机化合物层674和引线684。形成引线684和反电极675之间的接触。请注意,反电极675不与像素电极661相接触。
引线684通过在第三绝缘膜658和第四绝缘膜659中形成的接触孔与接头681相连。
通过蒸发的方法形成有机化合物层674。但是如果执行该处理,会在整个基底表面上形成有机化合物层。所以根据像素部分的区域,使用金属掩膜或陶瓷掩膜这样的荫罩掩膜来形成它。请注意,要改变掩膜的大小,从而在包括像素部分外部区域在内的区域中形成阴极。当进行这样的处理时,可以获得如图20B所示的结构。
实施方案11
图21显示了一个发光设备的外观,介绍了一种在基底721中形成像素部分722、栅极端驱动电路724、源极端驱动电路723和接头726的情形。接头726通过引线725与各个驱动电路相连。在像素部分722中,接线728是在输入图像信号的信号线延伸方向形成的,也起到了隔断墙的作用。虽然这些接线728包括源信号线和电源线,但这里省略了细节。在接线728中,电源线通过引线733与接头726相连。
引线727连在反电极和接头之间。在实施方案10中已经描述了连接方法。
如果需要,可以通过COG(玻璃上的芯片)或类似的方法在元件基底上安装包含存储器和类似元件的IC芯片。
在接线728之间形成发光元件,其结构如图22所示。像素电极730对应于各个像素,形成在接线728之间。有机化合物层731形成在像素电极上层中的接线728之间。此外有机化合物层731还以带状不间断的形成在很多像素电极730上。
在有机化合物层731的上层形成反电极732。同样的在接线728之间形成带状的反电极732。此外在不是由接线728夹在中间的区域中,即像素部分722的外部区域中形成与反电极732的连接。可以在反电极的一个末端部分或其两个末端部分形成连接部分。
引线727在与栅极信号线(没有显示)相同的层中形成,不与接线728直接相连。在重叠部分形成引线727和反电极732之间的接触。
发光元件定义为像素电极730、有机化合物层731和反电极732之间的重叠区域。在有源矩阵发光设备中,每个像素电极730与相应的有源元件相连。如果反电极有一个缺陷,而且缺陷是在像素部分的内部造成的,那么恐怕该缺陷会是一个线缺陷。但是如图22所示,当获得了制成与反电极两端的连接和将反电极用作公共电极这样的结构时,可以减少发生关于此类线缺陷的担心。
实施方案12
在此实施方案中介绍了一个象热处理那样执行PPTA(多脉冲热退火)的例子。
PPTA是对处理面多次重复一个包括使用光源(卤素灯、金属卤化物灯、高压水银灯、高压钠灯、氙灯或类似的灯)加热和通过制泠剂(氮、氦、氩、氪、氙或类似元素)循环冷却这一循环的热处理。光源每次发射的发光时间是0.1到60秒,优选是0.1到20秒。光多次照射。请注意,光源是电源和控制电路以脉冲方式打开的,这样半导体膜中的保持时间变成0.5到5秒。
当缩短了实际加热时间,而且由半导体膜选择性吸收的光是通过PPTA从一个表面端或两个表面端中配备的光源照射出时,基底本身不会被大大加热,只会选择性加热半导体膜(以100到200℃/秒的温度增长率)。为了抑制基底的温度上升,要使用制冷剂从外部进行冷却(以50到150℃/秒的温度下降率)。
下面介绍了一个为了活化而执行实施方案1中的热处理的例子。
在图5A显示的活化步骤中执行PPTA。使用钨卤灯作为光源,从基底的一个表面或两个表面照射出脉冲光。此时,氦的流速与钨卤灯的闪烁同步变化,这样就选择性的加热了半导体膜。
通过PPTA活化了杂质元素,并将包含在半导体膜中并用于结晶的金属元素从沟道形成区域收集到杂质区域。请注意,如果不仅将磷,还将给予p型的杂质元素加入到杂质区域之中,那么它还是有影响的。这样,优选添加了一个在第一添加之后将给予p型的硼添加到杂质区域中的步骤。此外,用于PPTA的处理面可以在13.3Pa或更低的减压态中准备,以防止氧化和玷污。
请注意,这个实施方案可以与实施方案1到11中任一个自由组合。
实施方案13
在此实施方案中将介绍包含在本发明发光设备的驱动电路中的源极端驱动电路和栅极端驱动电路的具体结构。
图23A和23B是本发明发光设备中的驱动电路的方框图。图23A显示了包含移位寄存器6002、锁存器(A)6003和锁存器(B)6004的源极端驱动电路6001。
在源极端驱动电路6001中,移位寄存器6002中输入了一个时钟信号(CLK)和一个启动信号(SP)。移位寄存器6002根据时钟信号(CLK)和启动信号(SP)产生一个定时信号。定时信号通过一个缓冲器及类似元件(没有显示)输入到一个POST电路。
来自移位寄存器6002的定时信号由缓冲器及类似元件缓冲放大。由于有很多电路或元件与输入定时信号的接线相连,所以接线有一个大负载电容(寄生电容)。提供的缓冲器是用于避免定时信号上升或下降的“慢化”,这是由大负载电容引起的。请注意,缓冲器不是必需的。
由缓冲器缓冲放大的定时信号输入到锁存器(A)6003。锁存器(A)6003包括很多多级锁存器,用于处理n位的数字视频信号。当输入定时信号时,锁存器(A)6003顺序捕捉到由源极端驱动电路6001从外部输入的数字视频信号并保存。
请注意,当数字视频信号被捕捉到锁存器(A)6003之中时,它们可以顺序输入到包含在锁存器(A)6003中的多级锁存器中。但是,本发明不只限于这种结构。可以执行所谓的分区驱动,其中包含在锁存器(A)6003中的多级锁存器被分成了几个组,然后数字视频信号同时被输入到各个组中。请注意,此时组的数量称作分区数量。当锁存器被分成,例如,四级而成组时,称为进行了具有四个分区的分区驱动。
到完成将数字视频信号写入到锁存器(A)6003中所有级的锁存器中为止的时间称为一个线周期。实际上,有一种情形是线周期包含一个通过将一个水平回扫周期加入到上述线周期之中而获得的周期。
当结束一个线周期时,锁存器信号输入到锁存器(B)6004之中。此时所有写入锁存器(A)6003及在其中保存的数字视频信号被发送到锁存器(B)6004,写入到锁存器(B)6004的所有级中并保存。
数字视频信号到锁存器(A)6003的写入完全将数字视频信号发送到锁存器(B)6004之中,这是根据来自移位寄存器6002的定时信号顺序进行的。
在第二个线周期期间,写入到锁存器(B)6004中并保存的数字视频信号输入到源信号线。
图23B是表示栅极端驱动电路结构的方框图。
栅极端驱动电路6005包括一个移位寄存器6006和一个缓冲器6007。如果需要还可以包括一个电平移动器。
在栅极端驱动电路6005中,来自移位寄存器6006的定时信号输入到缓冲器6007,然后输入到对应的栅极信号线。与一条线对应的像素中的开关TFT的栅电极与栅极信号线相连。因为需要打开与一条线对应的像素中所有的开关TFT,所以使用了能够流大电流的缓冲器。
这个实施方案可以通过与实施方案1到12的自由结合来实现。
实施方案14
在此实施方案中,通过使用有机化合物材料可以显著提高外部发光量子效率,这样来自三重激子的磷光可以用于发光。结果是可以减少发光元件的功耗、延长发光元件的寿命和减轻发光元件的重量。
下面是使用三重激子提高外部发光量子效率的报告(T.Tsutsui,C.Adachi.S.Saito,在有机分子系统的光化学的处理,ed.K.Honda,(Elsevier Sci.Pub.,Tokyo,1991)p.437)。
下面给出了由上面文章叙述的有机化合物材料(香豆素色素)的分子式。
Figure A0114338600411
                                             化学分子式1
(M.A.Baldo.D.F.O Brien,Y.You,A,Shoustikov,S.Sibley,M.E.Thompson.S.R.Forrest.Nature 395(1998)p.151)
下面给出了由上面文章叙述的有机化合物材料(铂复合物)的分子式。
Figure A0114338600421
                                         化学分子式2
(M.A.Baldo.S.Lamansky,P.E.Burrows,M.E.Thompson.S.R.Forrest.Appl.Phys.Lett.,75(1999)p.4.)
(T.Tsutsui,M.-J.Yang,M.Yahiro,K.Nakamura,T.Watanabe,T.Tsuji,Y.Fukuda,T.Wakimoto,S.Mayaguchi,Jpn,Appl.Phys.,38(12B)(1999)L1502)
下面给出了由上面文章叙述的有机化合物材料(铹复合物)的分子式。
Figure A0114338600422
化学分子式3
如上所述,如果三重激子发出的磷光可以置于实际使用,那么在大体上使用单重激子发出的磷光的情况下可以实现外部发光量子效率三到四倍的提高。
根据本发明的结构可以通过与实施方案1到13中任一结构的组合来自由实施。
实施方案15
在此实施方案中将描述一个通过印刷方法用低阻抗材料形成源信号线或电源线的例子。
图25是此实施方案一个发光设备的截面图。发光设备有一个驱动电路450和一个像素部分451。像素部分451包括一个开关TFT 452和一个电流控制TFT 453。
在此实施方案中,通过印刷方法形成了源信号线458和电源线462之中至少有一个或两者。虽然在此实施方案中使用了丝网印刷方法,本发明也可以应用使用旋转鼓的凹板印刷方法、凹板印刷方法和各种平版印刷方法。此类印刷方法成本较低,可以用在大面积的情况中,所以适合本发明。
在此实施方案中,源信号线458和电源线462由铜制成。请注意,通过印刷方法形成的接线所用的材料最好具有低于通过图形形成的接线或电极的阻抗。
接下来,在第二层间绝缘膜472上形成由透明传导膜制成的像素电极461。
然后,蚀刻栅极绝缘膜470、第一层间绝缘膜471和第二层间绝缘膜472,形成接触开关TFT 452的杂质区域454和电流控制TFT 453的杂质区域456、457的接触孔。
然后在第二层间绝缘膜472上形成传导膜,并定制形状,形成电极459、460和473。电极459覆盖了源信号线458的整个表面或一部分,形成了接触面。请注意,在此实施方案中,电极459覆盖了源信号线458的整个表面。使用这种结构可以防止制造源信号线的材料进入有机化合物层463之中,而且可以防止印刷方法(丝网印刷)中引起的易断现象。请注意,在此实施方案中,电极459、460和473是由图形精确度高于由印刷方法形成的源信号线458和电源线462的材料制成的。在此实施方案中电极是由Ti/Al/Ti的复合薄膜制成的。
电极459与开关TFT 452的杂质区域454相连。电极460与像素电极461相连,从而电连接电流控制TFT 453的杂质区域456和像素电极461。
电极473覆盖电源线462的整个表面或一部分,形成接触。请注意,在此实施方案中电极473覆盖了电源线462的整个表面。使用这种结构可以防止电源线462的材料进入有机化合物层463。
然后在第二层间绝缘膜472上形成有机化合物层463以覆盖电极459、460、473和像素电极461。还使用金属掩膜在有机化合物层上形成反电极466。请注意,像素电极461、有机化合物层463和反电极466之间的重叠区域对应于发光元件467。
如上所述,可以通过各种方法形成像素部分的源信号线或电源线。当减少了源信号或电源的阻抗时,可以实现大屏幕尺寸和高图像质量的发光设备。
请注意,此实施方案的结构可以通过与实施方案1到13的任一结构的自由组合来实现。
实施方案16
因为发光设备是自发光的,所以与液晶显示设备相比在色泽鲜艳的位置具有更高的清晰度,而且观看角度更宽。因此它可以用作各种电子仪器的显示部分。
下面给出了此类电子仪器的例子:摄影机;数字摄像机;护目型显示屏(安装在头上的显示屏);车辆导航系统;音频再现设备(例如汽车音响系统,混音系统);膝上型计算机;游戏设备;手持信息终端(例如移动计算机、移动电话、移动游戏设备或电子书籍);以及配有记录介质的图像回放设备(特别是进行记录介质的回放并配有可以显示那些图像的显示屏的设备,例如数字视频光盘(DVD))。尤其是因为手持信息终端经常是从对角线方向观看,所以观看区域的宽度显得非常重要。因此优选是使用发光设备。图24显示了这些电子仪器的例子。
图24A说明了一个电荧光显示设备,包括一个框架2001、支架2002、显示部分2003、扬声器部分2004、视频输入端口2005或相似物。本发明的发光设备可以用作显示部分2003。发光设备是自发光型的,因此不需要背景光。这样其中的显示部分的厚度可以小于液晶显示设备的厚度。电荧光显示设备包括所有的信息显示设备,例如用于个人计算机、电视接收机、广告显示屏或类似的设备。
图24B显示了一个膝上型计算机,包括一个主体2201、框架2202、显示部分2203、键盘2204、外部连接端口2205、指向鼠标及相似物。根据本发明的发光设备可以用作显示部分2203。
图24C说明了一个包括记录介质的图像回放设备(更明确是DVD播放机),包括一个主体2401、框架2402、显示部分A 2403、显示部分B 2404、记录介质(DVD或类似的)2405、操作开关2406、扬声器部分2407及相似物。显示部分A 2403主要用于显示特征信息。根据本发明的电光设备可以用作这些显示部分A 2403和B 2404。包括记录介质的图像回放仪器还包括家庭游戏设备或相似物。
请注意,如果有机化合物材料发出的光将来变得更亮,那么可用于前投式或背投式投影仪,其中将包含输出图像信息的光通过投射的透镜或类似物的装置来放大。
上面提到的电子仪器更适合用于显示通过因特网、CATV(有线电视系统)这样的电信途径传播的信息,特别适合用于显示电影信息。发光显示设备适合用于显示电影是因为有机化合物材料可以表现出高响应速度。
此外因为发光设备的发光部分消耗功率,所以最好是以将其中的发光部分变得尽可能的小的方式来显示消息。从而当发光设备用到主要显示特征信息的显示部分时,例如用于手持信息终端的显示部分时,更具体是用于移动电话或音频再现设备时,最好是驱动发光设备,使得通过发光部分来形成特征信息,而不发光部分对应于背景。
如上所述,本发明可以用于所有领域中大范围的电子仪器。本实施方案中的电子仪器可以使用具有实施方案1到15中所示的任何一种配置的发光设备。
根据本发明,即使是当扩大像素部分的区域以获得大屏幕时,用有源矩阵发光设备形式的发光设备就可以实现优良的显示。由于像素部分源信号线的阻抗大为减少,所以本发明可以用于大屏幕,例如对角线有40英寸或50英寸的大屏幕。

Claims (76)

1.一种发光设备,包括:
很多矩阵排列的像素,很多像素中的每一个包括一个开关元件和一个发光元件;以及
很多为开关元件提供信号的源信号线,
其中多数源信号线中至少有一个包括一条导线和导线上的导电涂层。
2.根据权利要求1的发光设备,其中导电涂层是通过电镀方法形成的。
3.根据权利要求1的发光设备,其中导电涂层包括至少一种从包含铜、铝、金、银的组中选择的元素及其合金作为主要成分。
4.根据权利要求1的任一个的发光设备,其中导线是由与开关元件栅电极相同的材料制成的。
5.根据权利要求1的发光设备,其中开关元件包括至少一个薄膜晶体管。
6.一种包括根据权利要求1的发光设备的电子设备,其中发光设备是从包含电致发光显示设备、个人计算机和数字通用光盘的集合中选取的。
7.一种发光设备,包括:
很多矩阵排列的像素,很多像素中的每一个包括一个开关元件和一个发光元件;以及
很多为发光元件加电压的电源线,
其中多数电源线中至少有一个包括一条导线和导线上的导电涂层。
8.根据权利要求7的发光设备,其中导电涂层是通过电镀方法形成的。
9.根据权利要求7的发光设备,其中导电涂层包括至少一种从包含铜、铝、金、银的集合中选择的元素及其合金作为主要成分。
10.根据权利要求7的任一个的发光设备,其中导线是由与开关元件栅电极相同的材料制成的。
11.根据权利要求7的发光设备,其中开关元件包括至少一个薄膜晶体管。
12.一种包括根据权利要求7的发光设备的电子设备,其中发光设备是从包含电致发光显示设备、个人计算机和数字通用光盘的集合中选取的。
13.一种发光设备,包括:
很多矩阵排列的像素,很多像素中的每一个包括一个开关元件和一个发光元件;
很多为开关元件提供信号的源信号线;以及
很多为发光元件加电压的电源线,
其中多数源信号线中的至少一条包括一条第一导线和第一导线上的第一导电涂层,以及
其中多数电源线中的至少一条包括一条第二导线和第二导线上的第二导电涂层。
14.根据权利要求13的发光设备,其中第一导电涂层和第二导电涂层中至少有一个是由电镀方法形成的。
15.根据权利要求13的发光设备,其中第一导电涂层和第二导电涂层中至少有一个包括至少一种从包含铜、铝、金、银的集合中选择的元素及其合金作为主要成分。
16.根据权利要求13的发光设备,其中第一导电涂层和第二导电涂层是同时形成的。
17.根据权利要求13的发光设备,其中第一导电涂层和第二导电涂层中至少有一个是由与开关元件栅电极相同的材料制成的。
18.根据权利要求13的任一个的发光设备,其中第一导电涂层和第二导电涂层中至少有一个是由印刷方法形成的。
19.根据权利要求13的发光设备,其中开关元件包括至少一个薄膜晶体管。
20.一种包括根据权利要求13的发光设备的电子设备,其中发光设备是从包含电致发光显示设备、个人计算机和数字通用光盘的集合中选取的。
21.一种发光设备,包括:
很多矩阵排列的像素,很多像素中的每一个包括一个开关元件和一个发光元件;
很多为开关元件提供信号的源信号线;以及
至少一个接头,
其中多数源信号线中的至少一条包括一条第一导线和第一导线上的第一导电涂层,以及
其中接头包括一条第二导线和第二导线上的第二导电涂层。
22.根据权利要求21的发光设备,其中第一导电涂层和第三导电涂层中至少有一个是由电镀方法形成的。
23.根据权利要求21的发光设备,其中第一导电涂层和第二导电涂层中至少有一个包括至少一种从包含铜、铝、金、银的集合中选择的元素及其合金作为主要成分。
24.根据权利要求21的任一种的发光设备,其中第一导电涂层和第二导电涂层是同时形成的。
25.根据权利要求21的发光设备,其中第一导电涂层和第二导电涂层中至少有一个是由与开关元件栅电极相同的材料制成的。
26.根据权利要求21中任一个的发光设备,其中第一导电涂层和第二导电涂层中至少有一个是由印刷方法形成的。
27.根据权利要求21的发光设备,其中开关元件包括至少一个薄膜晶体管。
28.一种包括根据权利要求21的发光设备的电子设备,其中发光设备是从包含电致发光显示设备、个人计算机和数字通用光盘的集合中选取的。
29.一种发光设备,包括:
很多矩阵排列的像素,很多像素中的每一个包括一个开关元件和一个发光元件;
很多为发光元件加电压的电源线;以及
至少一个与多数电源线电连接的接头,
其中多数电源线中的至少一条包括一条第一导线和第一导线上的第一导电涂层,以及
其中接头包括一条第二导线和第二导线上的第二导电涂层。
30.根据权利要求29的发光设备,其中第一导电涂层和第二导电涂层中至少有一个是由电镀方法形成的。
31.根据权利要求29的发光设备,其中第一导电涂层和第二导电涂层中至少有一个包括至少一种从包含铜、铝、金、银的集合中选择的元素及其合金作为主要成分。
32.根据权利要求29的发光设备,其中第一导电涂层和第二导电涂层是同时形成的。
33.根据权利要求29的发光设备,其中第一导电涂层和第二导电涂层中至少有一个是由与开关元件栅电极相同的材料制成的。
34.根据权利要求29的发光设备,其中第一导电涂层和第二导电涂层中至少有一个是由印刷方法形成的。
35.根据权利要求29的发光设备,其中开关元件包括至少一个薄膜晶体管。
36.一种包括根据权利要求29的发光设备的电子设备,其中发光设备是从包含电致发光显示设备、个人计算机和数字通用光盘的集合中选取的。
37.一种发光设备,包括:
一像素部分,包括很多矩阵排列的像素,多数像素中的每一个都包括一个第一开关元件、很多为开关元件提供信号的源信号线和一个发光元件;以及
一个驱动很多像素的驱动电路,驱动电路有一个第二开关元件和一个第三开关元件,
其中多数源信号线中至少有一个包括一条导线和导线上的导电涂层。
38.根据权利要求37的发光设备,其中第一、第二和第三开关元件是n沟道薄膜晶体管。
39.根据权利要求37的发光设备,其中第一、第二和第三开关元件是p沟道薄膜晶体管。
40.根据权利要求37的发光设备,其中第二和第三开关元件包括EEMOS电路和EDMOS电路中的至少一个。
41.根据权利要求37的发光设备,其中第二开关元件是一个n沟道薄膜晶体管,而第三开关元件是一个p沟道薄膜晶体管。
42.根据权利要求37的发光设备,其中导电涂层是通过电镀方法形成的。
43.根据权利要求37的发光设备,其中导电涂层是通过印刷方法形成的。
44.根据权利要求37的发光设备,其中导电涂层包括至少一种从包含铜、铝、金、银的集合中选择的元素及其合金作为主要成分。
45.根据权利要求37的发光设备,其中导线是由与第一、第二和第三开关元件的栅电极相同的材料制成的。
46.根据权利要求37的发光设备,其中第一、第二和第三开关元件中至少有一个包括至少一个薄膜晶体管。
47.根据权利要求37的发光设备,其中第一开关元件包括很多沟道形成区域。
48.根据权利要求37的发光设备,其中第一开关元件包括三个沟道形成区域。
49.根据权利要求37的发光设备,其中第一、第二和第三开关元件中至少有一个包含一个具有一个锥形部分的栅电极、一个与栅电极重叠的沟道形成区域和一个部分与栅电极重叠的杂质区域。
50.根据权利要求49的发光设备,其中第一、第二和第三开关元件中至少有一个的杂质区域包括一个浓度梯度至少处于1×1017到1×1018/cm3杂质浓度的区域,且杂质浓度随与沟道形成区域的距离的增加而增加。
51.一种包括根据权利要求37的发光设备的电子设备,其中发光设备是从包含电致发光显示设备、个人计算机和数字通用光盘的集合中选取的。
52.一种发光设备,包括:
像素部分包括很多矩阵排列的像素,很多像素中的每一个都包括一个开关元件、一个发光元件和很多为发光元件加电压的电源线;以及
一个驱动多数像素的驱动电路,驱动电路有一个第二开关元件和一个第三开关元件,
其中多数电源线中至少有一个包括一条导线和导线上的导电涂层。
53.根据权利要求52的发光设备,其中第一、第二和第三开关元件中至少有一个包括至少一个薄膜晶体管。
54.根据权利要求52的发光设备,其中第一、第二和第三开关元件是n沟道薄膜晶体管。
55.根据权利要求52的发光设备,其中第一、第二和第三开关元件是p沟道薄膜晶体管。
56.根据权利要求52的发光设备,其中第二和第三开关元件包括EEMOS电路和EDMOS电路中的至少一个。
57.根据权利要求52的发光设备,其中第二开关元件是一个n沟道薄膜晶体管,而第三开关元件是一个p沟道薄膜晶体管。
58.根据权利要求52的发光设备,其中导电涂层是通过电镀方法形成的。
59.根据权利要求52的发光设备,其中导电涂层是通过印刷方法形成的。
60.根据权利要求52的发光设备,其中导电涂层包括至少一种从包含铜、铝、金、银的集合中选择的元素及其合金作为主要成分。
61.根据权利要求52的发光设备,其中导线是由与开关元件栅电极相同的材料制成的。
62.根据权利要求52的发光设备,其中第一开关元件包括很多沟道形成区域。
63.根据权利要求52的发光设备,其中第一开关元件包括三个沟道形成区域。
64.根据权利要求52的发光设备,其中第一、第二和第三开关元件中至少有一个包含一个具有一个锥形部分的栅电极、一个与栅电极重叠的沟道形成区域和一个部分与栅电极重叠的杂质区域。
65.根据权利要求64的发光设备,其中第一、第二和第三开关元件中至少有一个的杂质区域包括一个浓度梯度至少处于1×1017到1×1018/cm3杂质浓度的区域,且杂质浓度随与沟道形成区域的距离的增加而增加。
66.一种包括根据权利要求52的发光设备的电子设备,其中发光设备是从包含电致发光显示设备、个人计算机和数字通用光盘的集合中选取的。
67.一种制造发光设备的方法,包括下列步骤:
形成覆盖基底绝缘表面的半导体膜;
形成覆盖半导体膜的栅极绝缘膜;
在栅极绝缘膜上形成一个栅电极和一条导线;
将给予n型的杂质元素加入到半导体膜之中,形成一个n型杂质区域;
通过电镀方法在导线表面上形成阻抗低于导线的导电涂层,从而形成一条源信号线;
形成覆盖源信号线的绝缘膜;以及
在绝缘膜上形成一条栅极信号线。
68.根据权利要求67的制造发光设备的方法,其中源信号线是一种包括至少一种从包含铜、铝、金、银的集合中选择的元素及其合金作为主要成分的材料制成的。
69.根据权利要求67的任一个的制造发光设备的方法,其中导线与接线相连,从而在使用电镀方法的步骤中处于同一电压。
70.根据权利要求69的制造发光设备的方法,其中接线是在形成导电涂层之后使用激光分割的。
71.根据权利要求69的制造发光设备的方法,其中接线是在电镀之后同时与基底分离的。
72.一种制造发光设备的方法,包括下列步骤:
形成覆盖基底绝缘表面的半导体膜;
形成覆盖半导体膜的栅极绝缘膜;
在栅极绝缘膜上形成一个栅电极和一条导线;
将给予n型的杂质元素加入到半导体膜之中,形成一个n型杂质区域;
通过电镀方法在导线表面上形成阻抗低于导线的导电涂层,从而形成一条电源线;
形成覆盖电源线的绝缘膜;以及
在绝缘膜上形成一条栅极信号线。
73.根据权利要求72的制造发光设备的方法,其中源信号线是一种包括至少一种从包含铜、铝、金、银的集合中选择的元素及其合金作为主要成分的材料制成的。
74.根据权利要求72的任一个的制造发光设备的方法,其中导线与接线相连,从而在使用电镀方法的步骤中处于同一电压。
75.根据权利要求74的制造发光设备的方法,其中接线是在形成导电涂层之后使用激光分割的。
76.根据权利要求74的制造发光设备的方法,其中接线是在电镀之后同时与基底分离的。
CNB011433868A 2000-12-21 2001-12-21 发光设备及其制造方法 Expired - Fee Related CN100438061C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP388378/00 2000-12-21
JP2000388378 2000-12-21

Publications (2)

Publication Number Publication Date
CN1360350A true CN1360350A (zh) 2002-07-24
CN100438061C CN100438061C (zh) 2008-11-26

Family

ID=18855123

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB011433868A Expired - Fee Related CN100438061C (zh) 2000-12-21 2001-12-21 发光设备及其制造方法

Country Status (6)

Country Link
US (6) US6933533B2 (zh)
KR (2) KR100859567B1 (zh)
CN (1) CN100438061C (zh)
MY (1) MY145489A (zh)
SG (1) SG111923A1 (zh)
TW (1) TW541713B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320515C (zh) * 2003-02-24 2007-06-06 友达光电股份有限公司 有机发光显示器
US7573068B2 (en) 2004-09-21 2009-08-11 Casio Computer Co., Ltd. Transistor array substrate and display panel
CN102800815A (zh) * 2012-08-06 2012-11-28 深圳市华星光电技术有限公司 显示装置及其制作方法
CN101567381B (zh) * 2008-04-22 2014-04-02 精工爱普生株式会社 有机电致发光装置及电子设备
CN104916660A (zh) * 2015-04-20 2015-09-16 京东方科技集团股份有限公司 柔性显示面板及显示装置
CN110268460A (zh) * 2017-02-23 2019-09-20 夏普株式会社 驱动电路、矩阵基板以及显示装置
CN110972495A (zh) * 2019-05-10 2020-04-07 京东方科技集团股份有限公司 发光驱动基板及其制作方法、发光基板和显示装置

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6825488B2 (en) 2000-01-26 2004-11-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US6509616B2 (en) * 2000-09-29 2003-01-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and its manufacturing method
TW525216B (en) 2000-12-11 2003-03-21 Semiconductor Energy Lab Semiconductor device, and manufacturing method thereof
SG111923A1 (en) 2000-12-21 2005-06-29 Semiconductor Energy Lab Light emitting device and method of manufacturing the same
TW575652B (en) * 2001-03-07 2004-02-11 Matsushita Electric Ind Co Ltd Light-emitting device
US6661180B2 (en) 2001-03-22 2003-12-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, driving method for the same and electronic apparatus
JP4969001B2 (ja) * 2001-09-20 2012-07-04 株式会社半導体エネルギー研究所 半導体装置及びその作製方法
JP4310984B2 (ja) * 2002-02-06 2009-08-12 株式会社日立製作所 有機発光表示装置
KR100864001B1 (ko) * 2002-06-14 2008-10-16 삼성전자주식회사 유기 전계발광장치
KR100489786B1 (ko) * 2002-07-08 2005-05-16 엘지.필립스 엘시디 주식회사 액티브 매트릭스형 유기전계발광 소자
US7094684B2 (en) * 2002-09-20 2006-08-22 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
AU2003264515A1 (en) 2002-09-20 2004-04-08 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
WO2004075607A1 (ja) * 2003-02-20 2004-09-02 Fujitsu Limited 有機el素子及びその製造方法
JP4562997B2 (ja) 2003-03-26 2010-10-13 株式会社半導体エネルギー研究所 素子基板及び発光装置
JP4166783B2 (ja) 2003-03-26 2008-10-15 株式会社半導体エネルギー研究所 発光装置及び素子基板
US20050005436A1 (en) * 2003-07-09 2005-01-13 Jung-Chien Chang Method for preparing thin integrated circuits with multiple circuit layers
IL156945A0 (en) * 2003-07-15 2004-02-08 Itzhak Tavori Device and a method for orthopedic delivery of bone reconstruction medium
KR100553745B1 (ko) * 2003-08-06 2006-02-20 삼성에스디아이 주식회사 평판표시장치
US7753751B2 (en) 2004-09-29 2010-07-13 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating the display device
KR100696479B1 (ko) * 2004-11-18 2007-03-19 삼성에스디아이 주식회사 평판표시장치 및 그의 제조방법
KR101133760B1 (ko) 2005-01-17 2012-04-09 삼성전자주식회사 박막 트랜지스터 표시판 및 이를 포함하는 액정 표시 장치
US7732330B2 (en) 2005-06-30 2010-06-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method using an ink-jet method of the same
US7685706B2 (en) * 2005-07-08 2010-03-30 Semiconductor Energy Laboratory Co., Ltd Method of manufacturing a semiconductor device
US7655566B2 (en) * 2005-07-27 2010-02-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP4448148B2 (ja) * 2006-03-29 2010-04-07 キヤノン株式会社 有機発光装置
KR100736575B1 (ko) * 2006-04-28 2007-07-06 엘지전자 주식회사 디스플레이 소자용 모기판 및 이를 이용한 디스플레이 장치
JP4396693B2 (ja) * 2006-11-28 2010-01-13 セイコーエプソン株式会社 電気光学装置および電子機器
JP4403430B2 (ja) * 2007-03-14 2010-01-27 ソニー株式会社 表示パネル及び電子機器
JP5346497B2 (ja) * 2007-06-12 2013-11-20 株式会社半導体エネルギー研究所 半導体装置
JP5336102B2 (ja) * 2008-04-03 2013-11-06 三菱電機株式会社 Tft基板
US8053253B2 (en) * 2008-06-06 2011-11-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
TWI475282B (zh) * 2008-07-10 2015-03-01 Semiconductor Energy Lab 液晶顯示裝置和其製造方法
KR101588576B1 (ko) 2008-07-10 2016-01-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치 및 전자 기기
JP5216716B2 (ja) 2008-08-20 2013-06-19 株式会社半導体エネルギー研究所 発光装置及びその作製方法
JP2011187922A (ja) * 2009-10-30 2011-09-22 Toshiba Lighting & Technology Corp 発光装置、発光装置の製造方法および照明装置
KR101802406B1 (ko) 2009-11-27 2017-11-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작방법
WO2011108020A1 (ja) * 2010-03-01 2011-09-09 パナソニック株式会社 有機el装置およびその製造方法
US8741677B2 (en) 2010-11-30 2014-06-03 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method of the same
KR101889748B1 (ko) * 2011-01-10 2018-08-21 삼성디스플레이 주식회사 유기 발광 표시 장치 및 이의 제조 방법
CN102646676B (zh) * 2011-11-03 2015-06-10 京东方科技集团股份有限公司 一种tft阵列基板
DE102012109161B4 (de) * 2012-09-27 2021-10-28 Pictiva Displays International Limited Organisches, optoelektronisches Bauelement, Verfahren zum Herstellen eines organischen, optoelektronischen Bauelementes und Verfahren zum stoffschlüssigen, elektrischen Kontaktieren
KR102390441B1 (ko) * 2015-10-15 2022-04-26 삼성디스플레이 주식회사 유기발광 표시장치
WO2018043426A1 (ja) * 2016-09-05 2018-03-08 シャープ株式会社 アクティブマトリクス基板およびその製造方法
CN107887422B (zh) * 2017-10-31 2020-12-25 昆山国显光电有限公司 有机电致发光器件、显示器及移动通信设备
FR3077653A1 (fr) * 2018-02-06 2019-08-09 Aledia Dispositif optoelectronique avec des composants electroniques au niveau de la face arriere du substrat et procede de fabrication
KR20210044055A (ko) * 2019-10-14 2021-04-22 삼성전자주식회사 발광 다이오드 모듈 및 이를 포함하는 디스플레이 장치

Family Cites Families (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3952020A (en) * 1973-11-26 1976-04-20 Phillips Petroleum Company Lactone production
US4033833A (en) * 1975-10-30 1977-07-05 Western Electric Company, Inc. Method of selectively electroplating an area of a surface
JP2513739Y2 (ja) 1984-04-11 1996-10-09 キヤノン株式会社 薄膜トランジスタ基板
JP2552159B2 (ja) 1987-02-02 1996-11-06 セイコーエプソン株式会社 半導体装置及びその製造方法
JPH0812354B2 (ja) 1987-10-14 1996-02-07 セイコーエプソン株式会社 アクティブマトリクス基板の製造方法
JP2513739B2 (ja) 1987-11-19 1996-07-03 富士通株式会社 ボックス型キュア炉
JP2605346B2 (ja) 1988-05-17 1997-04-30 三菱電機株式会社 表示装置の製造方法
JPH028821A (ja) 1988-06-28 1990-01-12 Sharp Corp アクティブマトリックス基板
JP2575052B2 (ja) * 1988-12-07 1997-01-22 ホシデン株式会社 液晶表示素子
US5157470A (en) 1989-02-27 1992-10-20 Hitachi, Ltd. Thin film transistor, manufacturing method thereof and matrix circuit board and image display device each using the same
JPH02223924A (ja) 1989-02-27 1990-09-06 Hitachi Ltd 表示パネルの製造方法
US5218221A (en) 1989-10-20 1993-06-08 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and manufacturing method thereof
US5498573A (en) * 1989-11-29 1996-03-12 General Electric Company Method of making multi-layer address lines for amorphous silicon liquid crystal display devices
JP2846028B2 (ja) 1990-01-18 1999-01-13 シチズン時計株式会社 液晶表示パネル基板の製造方法
JPH04282832A (ja) 1990-10-23 1992-10-07 Samsung Electron Co Ltd 半導体装置の平坦化方法および半導体装置
US5849601A (en) 1990-12-25 1998-12-15 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for manufacturing the same
JPH04232923A (ja) 1990-12-28 1992-08-21 Sanyo Electric Co Ltd 表示装置の電極基板の製造方法
US5576858A (en) * 1991-10-14 1996-11-19 Hosiden Corporation Gray scale LCD control capacitors formed between a control capacitor electrode on one side of an insulating layer and two subpixel electrodes on the other side
US5432015A (en) * 1992-05-08 1995-07-11 Westaim Technologies, Inc. Electroluminescent laminate with thick film dielectric
KR100201867B1 (ko) 1992-06-16 1999-06-15 안 기 훈 졸-겔법에 의한 광감응성유리와 그 제조방법
JPH06148685A (ja) 1992-11-13 1994-05-27 Toshiba Corp 液晶表示装置
JP3587537B2 (ja) 1992-12-09 2004-11-10 株式会社半導体エネルギー研究所 半導体装置
US5539551A (en) 1992-12-28 1996-07-23 Casio Computer Co., Ltd. LCD TFT drain and source electrodes having ohmic barrier, primary conductor, and liquid impermeable layers and method of making
JP3453776B2 (ja) 1993-02-23 2003-10-06 セイコーエプソン株式会社 アクティブマトリクス基板の製造方法
JPH07110495A (ja) 1993-10-14 1995-04-25 Hitachi Ltd アクティブマトリクス型液晶表示装置
TW264575B (zh) * 1993-10-29 1995-12-01 Handotai Energy Kenkyusho Kk
US5923962A (en) * 1993-10-29 1999-07-13 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
JP3431033B2 (ja) 1993-10-29 2003-07-28 株式会社半導体エネルギー研究所 半導体作製方法
JPH07140475A (ja) 1993-11-16 1995-06-02 Rohm Co Ltd 液晶表示装置の配線構造
JP3398453B2 (ja) 1994-02-24 2003-04-21 株式会社東芝 薄膜トランジスタの製造方法
JP3347217B2 (ja) 1994-04-22 2002-11-20 三菱電機株式会社 薄膜トランジスタ及びその製造方法
JP3402400B2 (ja) 1994-04-22 2003-05-06 株式会社半導体エネルギー研究所 半導体集積回路の作製方法
JP2630252B2 (ja) 1994-04-26 1997-07-16 日本電気株式会社 トンネルトランジスタおよびその製造方法
US5831387A (en) * 1994-05-20 1998-11-03 Canon Kabushiki Kaisha Image forming apparatus and a method for manufacturing the same
JP3297666B2 (ja) 1994-06-02 2002-07-02 株式会社半導体エネルギー研究所 アクティブマトリクス表示装置
US5650636A (en) * 1994-06-02 1997-07-22 Semiconductor Energy Laboratory Co., Ltd. Active matrix display and electrooptical device
JP3312083B2 (ja) * 1994-06-13 2002-08-05 株式会社半導体エネルギー研究所 表示装置
US5536950A (en) 1994-10-28 1996-07-16 Honeywell Inc. High resolution active matrix LCD cell design
JP2992464B2 (ja) 1994-11-04 1999-12-20 キヤノン株式会社 集電電極用被覆ワイヤ、該集電電極用被覆ワイヤを用いた光起電力素子及びその製造方法
JPH08201851A (ja) * 1995-01-31 1996-08-09 Sharp Corp アクティブマトリクス基板
JP3539821B2 (ja) 1995-03-27 2004-07-07 株式会社半導体エネルギー研究所 半導体装置の作製方法
JPH08274336A (ja) 1995-03-30 1996-10-18 Toshiba Corp 多結晶半導体薄膜トランジスタ及びその製造方法
JPH0926603A (ja) * 1995-05-08 1997-01-28 Semiconductor Energy Lab Co Ltd 表示装置
JPH0926602A (ja) 1995-07-12 1997-01-28 Sony Corp アクティブマトリクス表示装置
JPH0945930A (ja) 1995-07-28 1997-02-14 Sony Corp 薄膜トランジスタ及びその製造方法
JPH09106887A (ja) 1995-08-09 1997-04-22 Citizen Watch Co Ltd 有機エレクトロルミネセンス素子およびその駆動方法
JP2990046B2 (ja) * 1995-08-16 1999-12-13 日本電気株式会社 反射型液晶表示装置及びその製造方法
DE69634822T2 (de) * 1995-08-22 2006-04-27 Japan Tobacco Inc. Amid-verbindungen und ihre anwendung
JPH0981053A (ja) 1995-09-07 1997-03-28 Casio Comput Co Ltd 電界発光素子及びその駆動方法
US6069370A (en) 1997-03-26 2000-05-30 Nec Corporation Field-effect transistor and fabrication method thereof and image display apparatus
JP2776336B2 (ja) 1995-09-26 1998-07-16 日本電気株式会社 薄膜トランジスタおよび薄膜トランジスタの製造方法
JPH09105953A (ja) * 1995-10-12 1997-04-22 Semiconductor Energy Lab Co Ltd 液晶表示装置
US6015724A (en) 1995-11-02 2000-01-18 Semiconductor Energy Laboratory Co. Manufacturing method of a semiconductor device
TW329500B (en) * 1995-11-14 1998-04-11 Handotai Energy Kenkyusho Kk Electro-optical device
KR0161462B1 (ko) 1995-11-23 1999-01-15 김광호 액정 디스플레이에서의 게이트 패드 형성방법
JP2803713B2 (ja) 1995-12-08 1998-09-24 日本電気株式会社 アクティブマトリクス基板及びその製造方法
JP3963974B2 (ja) * 1995-12-20 2007-08-22 株式会社半導体エネルギー研究所 液晶電気光学装置
JP3647542B2 (ja) 1996-02-20 2005-05-11 株式会社半導体エネルギー研究所 液晶表示装置
US5815226A (en) * 1996-02-29 1998-09-29 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of fabricating same
KR100202236B1 (ko) 1996-04-09 1999-07-01 구자홍 액티브 매트릭스 기판의 제조방법 및 그 방법에 의해 제조되는 액티브 매트릭스 기판
JPH09318975A (ja) 1996-05-30 1997-12-12 Nec Corp 薄膜電界効果型トランジスタ素子アレイおよびその製造 方法
KR100223158B1 (ko) * 1996-06-07 1999-10-15 구자홍 액티브매트릭스기판 및 그 제조방법
JPH1048640A (ja) 1996-07-30 1998-02-20 Toshiba Corp アクティブマトリクス型液晶表示装置
JPH1090711A (ja) 1996-09-17 1998-04-10 Seiko Epson Corp 反射型液晶表示装置およびその製造方法
JP3555141B2 (ja) 1996-09-26 2004-08-18 セイコーエプソン株式会社 表示装置
JPH10104663A (ja) * 1996-09-27 1998-04-24 Semiconductor Energy Lab Co Ltd 電気光学装置およびその作製方法
JPH10104595A (ja) 1996-09-30 1998-04-24 Matsushita Electric Ind Co Ltd 表示装置およびその製造方法
JP3392672B2 (ja) * 1996-11-29 2003-03-31 三洋電機株式会社 表示装置
JP3463971B2 (ja) 1996-12-26 2003-11-05 出光興産株式会社 有機アクティブel発光装置
JP3641342B2 (ja) * 1997-03-07 2005-04-20 Tdk株式会社 半導体装置及び有機elディスプレイ装置
KR100550020B1 (ko) * 1997-03-12 2006-10-31 세이코 엡슨 가부시키가이샤 전류구동형발광소자를구비한화소회로,표시장치및전자기기
DE69825402T2 (de) 1997-03-12 2005-08-04 Seiko Epson Corp. Pixelschaltung, anzeigevorrichtung und elektronische apparatur mit stromgesteuerter lichtemittierender vorrichtung
JP3544280B2 (ja) 1997-03-27 2004-07-21 株式会社半導体エネルギー研究所 半導体装置の作製方法
JPH112835A (ja) 1997-06-13 1999-01-06 Sharp Corp アクティブマトリクス基板
JP4027465B2 (ja) 1997-07-01 2007-12-26 株式会社半導体エネルギー研究所 アクティブマトリクス型表示装置およびその製造方法
JP3847419B2 (ja) 1997-07-02 2006-11-22 三菱電機株式会社 液晶表示装置
JP3520396B2 (ja) * 1997-07-02 2004-04-19 セイコーエプソン株式会社 アクティブマトリクス基板と表示装置
US6380672B1 (en) * 1997-08-21 2002-04-30 Seiko Epson Corporation Active matrix display device
JP3980178B2 (ja) * 1997-08-29 2007-09-26 株式会社半導体エネルギー研究所 不揮発性メモリおよび半導体装置
JP3591242B2 (ja) 1997-09-18 2004-11-17 セイコーエプソン株式会社 薄膜トランジスタ、画素マトリクス及び液晶表示装置
JP3919900B2 (ja) * 1997-09-19 2007-05-30 株式会社半導体エネルギー研究所 液晶表示装置およびその作製方法
JPH1197698A (ja) 1997-09-24 1999-04-09 Toshiba Corp 薄膜トランジスタ
KR100244504B1 (ko) * 1997-11-15 2000-02-01 김영환 칩 사이즈 반도체 패키지의 제조방법
GB9803441D0 (en) * 1998-02-18 1998-04-15 Cambridge Display Tech Ltd Electroluminescent devices
KR100451379B1 (ko) * 1998-06-19 2005-01-13 엘지.필립스 엘시디 주식회사 액정표시장치및그제조방법
KR100333180B1 (ko) 1998-06-30 2003-06-19 주식회사 현대 디스플레이 테크놀로지 Tft-lcd제조방법
JP4472064B2 (ja) 1998-08-31 2010-06-02 株式会社半導体エネルギー研究所 半導体装置の製造方法
EP0984492A3 (en) 1998-08-31 2000-05-17 Sel Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising organic resin and process for producing semiconductor device
JP4363684B2 (ja) 1998-09-02 2009-11-11 エルジー ディスプレイ カンパニー リミテッド 薄膜トランジスタ基板およびこれを用いた液晶表示装置
JP4493741B2 (ja) 1998-09-04 2010-06-30 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6493048B1 (en) 1998-10-21 2002-12-10 Samsung Electronics Co., Ltd. Thin film transistor array panel for a liquid crystal display and a method for manufacturing the same
KR20000027776A (ko) 1998-10-29 2000-05-15 김영환 액정 표시 장치의 제조방법
US6274887B1 (en) 1998-11-02 2001-08-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method therefor
US6617644B1 (en) 1998-11-09 2003-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
JP2000223715A (ja) * 1998-11-25 2000-08-11 Semiconductor Energy Lab Co Ltd 薄膜トランジスタの作製方法およびアクティブマトリクス基板の作製方法
US6277679B1 (en) 1998-11-25 2001-08-21 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing thin film transistor
US6501098B2 (en) 1998-11-25 2002-12-31 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device
JP2000174282A (ja) * 1998-12-03 2000-06-23 Semiconductor Energy Lab Co Ltd 半導体装置
US6420988B1 (en) * 1998-12-03 2002-07-16 Semiconductor Energy Laboratory Co., Ltd. Digital analog converter and electronic device using the same
US6469317B1 (en) * 1998-12-18 2002-10-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
JP4234244B2 (ja) 1998-12-28 2009-03-04 富士通マイクロエレクトロニクス株式会社 ウエハーレベルパッケージ及びウエハーレベルパッケージを用いた半導体装置の製造方法
DE69942442D1 (de) * 1999-01-11 2010-07-15 Semiconductor Energy Lab Halbleiteranordnung mit Treiber-TFT und Pixel-TFT auf einem Substrat
US6576924B1 (en) 1999-02-12 2003-06-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having at least a pixel unit and a driver circuit unit over a same substrate
US6576926B1 (en) * 1999-02-23 2003-06-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
US6724149B2 (en) 1999-02-24 2004-04-20 Sanyo Electric Co., Ltd. Emissive display device and electroluminescence display device with uniform luminance
JP2000242196A (ja) 1999-02-24 2000-09-08 Sanyo Electric Co Ltd エレクトロルミネッセンス表示装置
KR100290913B1 (ko) 1999-03-04 2001-05-15 김영환 고전압 소자 및 그 제조방법
US6306694B1 (en) 1999-03-12 2001-10-23 Semiconductor Energy Laboratory Co., Ltd. Process of fabricating a semiconductor device
US6281552B1 (en) 1999-03-23 2001-08-28 Semiconductor Energy Laboratory Co., Ltd. Thin film transistors having ldd regions
US6399988B1 (en) * 1999-03-26 2002-06-04 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor having lightly doped regions
JP4578611B2 (ja) 1999-03-26 2010-11-10 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP4850326B2 (ja) * 1999-03-26 2012-01-11 株式会社半導体エネルギー研究所 半導体装置の作製方法
US7122835B1 (en) * 1999-04-07 2006-10-17 Semiconductor Energy Laboratory Co., Ltd. Electrooptical device and a method of manufacturing the same
JP2000357671A (ja) 1999-04-13 2000-12-26 Sharp Corp 金属配線の製造方法
US6461899B1 (en) * 1999-04-30 2002-10-08 Semiconductor Energy Laboratory, Co., Ltd. Oxynitride laminate “blocking layer” for thin film semiconductor devices
JP3480697B2 (ja) 1999-05-10 2003-12-22 ナノックス株式会社 Cog型液晶表示装置の製造方法
JP4552239B2 (ja) 1999-05-12 2010-09-29 ソニー株式会社 表示用薄膜半導体素子及び表示装置
US6583471B1 (en) 1999-06-02 2003-06-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having first and second insulating films
TW527735B (en) 1999-06-04 2003-04-11 Semiconductor Energy Lab Electro-optical device
US6952020B1 (en) 1999-07-06 2005-10-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2001094238A (ja) * 1999-07-16 2001-04-06 Sharp Corp 金属配線の製造方法およびその金属配線を備えた配線基板
JP4700156B2 (ja) * 1999-09-27 2011-06-15 株式会社半導体エネルギー研究所 半導体装置
CN1195243C (zh) * 1999-09-30 2005-03-30 三星电子株式会社 用于液晶显示器的薄膜晶体管阵列屏板及其制造方法
FR2799444B1 (fr) 1999-10-12 2001-12-14 Oreal Dispositif de distribution d une composition a gradient de concentration
US6524877B1 (en) * 1999-10-26 2003-02-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and method of fabricating the same
JP4727029B2 (ja) * 1999-11-29 2011-07-20 株式会社半導体エネルギー研究所 El表示装置、電気器具及びel表示装置用の半導体素子基板
TW465122B (en) * 1999-12-15 2001-11-21 Semiconductor Energy Lab Light-emitting device
US6750835B2 (en) 1999-12-27 2004-06-15 Semiconductor Energy Laboratory Co., Ltd. Image display device and driving method thereof
JP5408829B2 (ja) * 1999-12-28 2014-02-05 ゲットナー・ファンデーション・エルエルシー アクティブマトリックス基板の製造方法
US6646692B2 (en) * 2000-01-26 2003-11-11 Semiconductor Energy Laboratory Co., Ltd. Liquid-crystal display device and method of fabricating the same
US6639265B2 (en) * 2000-01-26 2003-10-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the semiconductor device
US6825488B2 (en) * 2000-01-26 2004-11-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7023021B2 (en) * 2000-02-22 2006-04-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
JP2001312222A (ja) * 2000-02-25 2001-11-09 Sharp Corp アクティブマトリクス基板およびその製造方法並びに該基板を用いた表示装置および撮像装置
TW521303B (en) * 2000-02-28 2003-02-21 Semiconductor Energy Lab Electronic device
US6580475B2 (en) 2000-04-27 2003-06-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US6500701B2 (en) * 2000-04-28 2002-12-31 Casio Computer Co., Ltd. Method of manufacturing thin film transistor panel having protective film of channel region
US6495005B1 (en) * 2000-05-01 2002-12-17 International Business Machines Corporation Electroplating apparatus
TW480576B (en) * 2000-05-12 2002-03-21 Semiconductor Energy Lab Semiconductor device and method for manufacturing same
JP2001324725A (ja) 2000-05-12 2001-11-22 Hitachi Ltd 液晶表示装置およびその製造方法
US6489222B2 (en) * 2000-06-02 2002-12-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
JP2002009296A (ja) 2000-06-26 2002-01-11 Matsushita Electric Ind Co Ltd 薄膜トランジスタアレイ及び薄膜トランジスタアレイの製造方法
US6509616B2 (en) 2000-09-29 2003-01-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and its manufacturing method
KR100396695B1 (ko) * 2000-11-01 2003-09-02 엘지.필립스 엘시디 주식회사 에천트 및 이를 이용한 전자기기용 기판의 제조방법
JP4954366B2 (ja) 2000-11-28 2012-06-13 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP4954365B2 (ja) 2000-11-28 2012-06-13 株式会社半導体エネルギー研究所 半導体装置の作製方法
TW525216B (en) 2000-12-11 2003-03-21 Semiconductor Energy Lab Semiconductor device, and manufacturing method thereof
SG111923A1 (en) 2000-12-21 2005-06-29 Semiconductor Energy Lab Light emitting device and method of manufacturing the same
SG118117A1 (en) * 2001-02-28 2006-01-27 Semiconductor Energy Lab Semiconductor device and manufacturing method thereof
CN1259767C (zh) 2002-10-01 2006-06-14 华中科技大学 一种中高压电力变换方法和装置
WO2005015250A1 (ja) * 2003-08-06 2005-02-17 Advantest Corporation 試験装置、補正値管理方法、及びプログラム
CN1291321C (zh) 2003-08-20 2006-12-20 英业达股份有限公司 动态指定网络存取权限的方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320515C (zh) * 2003-02-24 2007-06-06 友达光电股份有限公司 有机发光显示器
US7573068B2 (en) 2004-09-21 2009-08-11 Casio Computer Co., Ltd. Transistor array substrate and display panel
US7871837B2 (en) 2004-09-21 2011-01-18 Casio Computer Co., Ltd. Display panel manufacturing method
CN101567381B (zh) * 2008-04-22 2014-04-02 精工爱普生株式会社 有机电致发光装置及电子设备
CN102800815B (zh) * 2012-08-06 2015-05-20 深圳市华星光电技术有限公司 有机显示装置及其制作方法
WO2014023039A1 (zh) * 2012-08-06 2014-02-13 深圳市华星光电技术有限公司 有机显示装置及其制作方法
CN102800815A (zh) * 2012-08-06 2012-11-28 深圳市华星光电技术有限公司 显示装置及其制作方法
CN104916660A (zh) * 2015-04-20 2015-09-16 京东方科技集团股份有限公司 柔性显示面板及显示装置
US9881989B2 (en) 2015-04-20 2018-01-30 Boe Technology Group Co., Ltd. Flexible display panel and display device
CN110268460A (zh) * 2017-02-23 2019-09-20 夏普株式会社 驱动电路、矩阵基板以及显示装置
CN110268460B (zh) * 2017-02-23 2021-08-10 夏普株式会社 驱动电路、矩阵基板以及显示装置
CN110972495A (zh) * 2019-05-10 2020-04-07 京东方科技集团股份有限公司 发光驱动基板及其制作方法、发光基板和显示装置
US11588085B2 (en) 2019-05-10 2023-02-21 Boe Technology Group Co., Ltd. Light emitting drive substrate and manufacturing method thereof, light emitting substrate and display device

Also Published As

Publication number Publication date
US20140346481A1 (en) 2014-11-27
KR20020050718A (ko) 2002-06-27
CN100438061C (zh) 2008-11-26
US20110315993A1 (en) 2011-12-29
US20020079503A1 (en) 2002-06-27
US9793335B2 (en) 2017-10-17
US7629618B2 (en) 2009-12-08
KR20080063246A (ko) 2008-07-03
US9231044B2 (en) 2016-01-05
SG111923A1 (en) 2005-06-29
TW541713B (en) 2003-07-11
KR100859567B1 (ko) 2008-09-23
KR100891728B1 (ko) 2009-04-03
US8013346B2 (en) 2011-09-06
US20050200301A1 (en) 2005-09-15
MY145489A (en) 2012-02-29
US20090321753A1 (en) 2009-12-31
US6933533B2 (en) 2005-08-23
US8735909B2 (en) 2014-05-27
US20160133685A1 (en) 2016-05-12

Similar Documents

Publication Publication Date Title
CN1360350A (zh) 发光设备及其制造方法
CN1286156C (zh) 制造半导体器件的方法
CN100350632C (zh) 半导体显示器件
CN1311562C (zh) 发光器件
CN100350446C (zh) 发光装置
CN1286347C (zh) 制造和/或者修复发光设备的方法
CN1244896C (zh) 电子装置
CN1227714C (zh) 薄膜形成器件,形成薄膜的方法和自发光器件
CN1477492A (zh) 显示设备及使用该设备的显示系统
CN1866540A (zh) 半导体设备及其制造方法
CN1892734A (zh) 显示装置、电子装置和驱动显示装置的方法
CN1248295C (zh) 一种制造半导体器件的方法
CN1421907A (zh) 薄膜晶体管的制造方法
CN1874630A (zh) 电光学装置
CN1427451A (zh) 半导体器件及其制造方法
CN1319892A (zh) 光电器件
CN1396626A (zh) 半导体器件及其制造方法
CN1409288A (zh) 发光器件、驱动发光器件的方法和电子设备
CN1458640A (zh) 发光器件及其制造方法
CN1409374A (zh) 剥离方法以及制造半导体器件的方法
CN1708852A (zh) 半导体装置及半导体装置的制作方法
CN1706044A (zh) 半导体设备及其制作方法
CN1423305A (zh) 制造半导体器件的方法
CN1279519A (zh) 电致发光显示器件及电子装置
CN1734736A (zh) 电视机和电子设备以及半导体器件的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081126

Termination date: 20171221