CN1278747A - 用于膜电极组合件的催化剂及其制备方法 - Google Patents

用于膜电极组合件的催化剂及其制备方法 Download PDF

Info

Publication number
CN1278747A
CN1278747A CN98811189A CN98811189A CN1278747A CN 1278747 A CN1278747 A CN 1278747A CN 98811189 A CN98811189 A CN 98811189A CN 98811189 A CN98811189 A CN 98811189A CN 1278747 A CN1278747 A CN 1278747A
Authority
CN
China
Prior art keywords
catalyst
acicular
particles
deposition
nanostructured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN98811189A
Other languages
English (en)
Inventor
M·K·德比
G·M·豪根
A·J·斯坦巴克
J·H·托马斯三世
R·J·齐格勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Co
Original Assignee
Minnesota Mining and Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minnesota Mining and Manufacturing Co filed Critical Minnesota Mining and Manufacturing Co
Publication of CN1278747A publication Critical patent/CN1278747A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24851Intermediate layer is discontinuous or differential
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24851Intermediate layer is discontinuous or differential
    • Y10T428/2486Intermediate layer is discontinuous or differential with outer strippable or release layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24917Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/254Polymeric or resinous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/268Monolayer with structurally defined element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2927Rod, strand, filament or fiber including structurally defined particulate matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2938Coating on discrete and individual rods, strands or filaments

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供了用于膜电极组合件的电极中的纳米结构元件,用于燃料电池、传感器、电化学池等中。该纳米结构元件包含携带针状纳米级催化剂颗粒的针状显微结构载体晶须,该催化剂颗粒可包含交替层的催化剂材料的形式,催化剂颗粒表面层的组成与催化剂颗粒的整体组成不同,该元件显示出具有改善的一氧化碳耐受性。

Description

用于膜电极组合件的催化剂及其制备方法
发明领域
本发明涉及用于燃料电池和传感器的纳米结构催化剂,具体涉及表现出对一氧化碳中毒有良好耐受性的催化剂。本发明还涉及制备该催化剂的方法以及使用该催化剂的燃料电池和传感器。
                    发明背景
电化学池,包括质子交换膜燃料电池、传感器、电解池和电化学反应器,是本领域已知的。通常,这样的电化学池的中心组件是膜电极组合件,其包含的两个起催化作用的电极被一个离子导电膜(ICM)分开,通常称为膜电极组合件(MEA)。在燃料电池中,MEA被夹在两个多孔的导电背衬层之间,形成一个5层组合件。当3层MEA包含位于中间的聚合物膜时,燃料电池通常称为聚合物电解质燃料电池(PEFC)。在典型的低温燃料电池中,氢气在阳极被氧化,氧气(通常是空气)在阴极被还原:
Pt(阳极)                    Pt(阴极)
2e-(经过电路)→
已经用Pt微粒或碳载Pt催化剂的施涂分散体形式的催化剂电极制造出了燃料电池MEA。这些常规催化剂在含电解质的油墨或糊浆中施加到ICM上或毗邻该膜的背衬层上。用于氢-燃料聚合物电解质膜的主要的催化剂形式是通过湿化学方法(如氯铂酸还原)涂覆在大的碳颗粒上的Pt或Pt合金。该常规形式的催化剂分散在离聚物粘合剂、溶剂和时常分散在聚四氟乙烯(PTFE)颗粒中,形成油墨、糊浆或分散体,然后施加到膜上或电极背衬材料上。碳载体颗粒除了起机械支承作用外,本领域中通常认为它提供了电极层内所需的导电性。
在另一个变化方案中,催化剂金属盐在固体聚合物电解质的有机溶液中被还原,形成催化剂金属颗粒在该电解质中的分散体(没有载体颗粒),然后将其浇铸到电极背衬层上形成催化剂电极。
还有一种变化方案是,将Pt微粒直接混合到溶剂与聚合物电解质的溶液中,然后涂覆到电极背衬层上。然而,由于不能制得很细小的微粒以及分散体稳定性的限制,该方法导致催化剂载荷量非常高,因此成本非常高。
常规的催化剂合金颗粒通常用湿化学或冶金方法制得并载于常规的碳载体颗粒上。常规的颗粒具有代表合金化学计量的均一组成、大致球形的形态(表明常规方法产生的颗粒具有微晶生长的习性),并且随机地分散在大的载体颗粒表面上。催化剂颗粒也可不用载体作为“黑色物”。据报道,这些颗粒的直径在2至25纳米的范围内,随每个载体颗粒上催化剂量的增加而增大。
已经采用了其它各种结构和手段来施加或以其它方式使催化剂与电解质接触形成电极。这些MEA可以包括:(a)沉积在ICM表面上的多孔金属膜或金属颗粒或碳载催化剂粉末的平面分布;(b)沉积在ICM上或包埋在ICM中的金属栅格或筛网;或(c)包埋在ICM表面中的催化活性的纳米结构复合元件。
发现PEFC是一种潜在的能源,例如用于电动运输工具,因为PEFC已经显示具有很好的能量转换效率,高的功率密度以及可以忽略的污染。在诸如汽车的运输工具中,方便的氢气来源可以是甲醇的水蒸汽重整,因为甲醇比氢气更容易贮藏在运输工具中。然而,已经知道甲醇重整气体会含有多达25%的二氧化物(CO2)和1%的一氧化碳(CO),而纯铂的催化性能会在甚至百万分之10(ppm)CO存在下显著降低。因此,成功的使用重整氢气燃料取决于减少燃料中的CO含量或开发出耐受CO的催化剂,或这两者。
本领域中已经报道了两种方法来避免CO对PEFC性能的影响。第一种方法是通过将空气(通常以2%体积)导入重整氢气流中来使阳极处的CO氧化成CO2(如美国专利4,910,099所述)。尽管这种方法是有效的,但是它给PEFC带来了增加的复杂性,并且使其效率降低。第二种方法是将Pt电极和第二种元素(最好用钌(Ru))制成合金来增加Pt电极对CO的耐受性(例如参见,M.Iwase和S.Kawatsu,ElectrochemicalSociety Proceedings,V.95-23,p.12;Proceedings of the First International Symposium onProton Conducting Membrane Fuel Cell,S.Gottesfeld等人编辑,The ElectrochemicalSociety,Pennington,NJ,1995)。当碳载体上Pt载荷量为0.4毫克/平方厘米合金的Pt∶Ru的原子比为1∶1、,燃料电池在80℃下工作时,获得了对高达100ppm CO的耐受性。本领域中还知道(T.A.Zawodzinski,Jr.,Fuel Cells for Transportation,US Department ofEnergy,NAtional Laboratory R&D Meeting,1997年7月22—23日,Washington,DC),PtRu载荷量为0.6毫克/平方厘米,在高于100℃的温度下工作的PEFC显示出能耐受100ppm CO。然而,该方法在低温工作时或采用较低载荷量的催化剂时会失效。
已经公开了一些纳米结构的复合制品。例如参见美国专利4,812,352,5,039,561,5,176,786,5,336,558,5,338,430和5,238,729。美国专利No.5,338,430揭示,包埋在固体聚合物电解质中的纳米结构电极,其性能比采用金属微粒或碳载金属催化剂的常规电极优越,其优越性包括:能更有效地使用昂贵的催化剂材料并且催化活性较大。
                         发明概述
简言之,本发明提供了用于电化学池的纳米结构元件,该元件包含携带针状纳米级(nanoscopic)催化剂颗粒的针状显微载体晶须,以及制备该元件的方法和装置。本发明的催化剂证明,PEFC阳极催化剂在一氧化碳存在下对氢进行氧化的性能有所改善。本发明的催化剂可用于燃料电池、传感器、电解池、氯碱分离膜等中的MEA。
另一方面,本发明提供了制备本发明的纳米结构元件的方法。本发明的催化剂制品是这样制得的:将催化剂以多层形式真空涂覆到显微结构体上,从而使催化剂形成了载于显微结构体上的针状纳米级催化剂颗粒。该结构为催化剂材料提供极高的表面积/体积比。同时,该方法允许对催化剂组成和形态进行控制,这在以前从未有过。例如,可以沉积交替层的不同催化剂材料。结晶度和合金化程度可受控制。另外,最终催化剂的表面组成可以独立于催化剂整体组成而进行调节。
另一方面,本发明提供了一种催化剂,该催化剂证实在燃料电池应用中具有改善的一氧化碳耐受性。
还有一方面,本发明提供了一种电化学装置,包括燃料电池,其中插入了本发明的纳米结构元件。
在本申请中:
“膜电极组合件”指包含一个包括电解质的膜以及至少一个(但较佳的为两个或多个)毗邻该膜的电极的结构;
“生长表面”指,针对纳米级催化剂颗粒而言,沉积材料优先掺入于其上的那部分表面;
“纳米结构的元件”指针状分散的微米级(microscopic)结构体,且其至少一部分表面上包含纳米级催化剂材料;
“显微结构”指针状分散的微米级结构;
“纳米级催化剂颗粒”指至少一个尺寸等于或小于约10纳米、或晶粒大小约为10纳米或更小(经标准的2-θ x-射线衍射扫描的衍射峰半宽度测得)的催化剂材料颗粒;
“针状”指长度与平均横截面宽度之比大于或等于3;
“分散”是对相互有别的细小部分而言,这些部分在物质上是不连续的,但是不排除这些部分相互接触;和
“微米级”指至少一个尺寸等于或小于约1微米。
本发明的优点是提供了表面积/体积比非常高的、组成和形态可控制的、CO耐受性优越的纳米结构元件形式的催化剂。
附图简述
图1是在放大40000倍下拍摄的本发明的纳米结构元件在其最初基材上的场致发射扫描电子显微照片。
图2是在放大270000倍下拍摄的本发明涂覆了针状纳米级催化剂颗粒的单个针状载体颗粒的透射电子显微照片。
图2A是图2的详细情况。
图3是在放大270000倍下拍摄的本发明涂覆了针状纳米级催化剂颗粒的单个针状载体颗粒的透射电子显微照片。
图4A是用来实施本发明方法的装置的示意图。
图4B是用来实施本发明方法的装置的示意图。
图5显示了本发明的10个燃料电池的电流密度对电池电压的变化曲线。
图6显示了本发明的燃料电池以及对比燃料电池的电流密度随时间变化的曲线。
                       较佳实施方案详述
本发明的催化剂颗粒包含伸长的或针状的纳米级颗粒,其一个尺寸等于或小于约10纳米。催化剂颗粒是通过将催化剂材料真空沉积到一个尺寸等于或小于约1微米的针状显微结构载体上来制得的。在本发明的沉积过程中,随着每个载体颗粒上催化剂量的增加,催化剂颗粒主要是长度增加而不是直径增加。本发明的催化剂颗粒可以是交替层的不同催化剂材料,它们在组成、合金化程度或结晶度上有所不同。通过改变各单层的厚度,就可以改变整体的化学计量以及合金化程度。通过控制沉积源的开或闭以及基材最后几次在沉积源前面通过时向沉积源提供功率的多少,就可以控制催化剂颗粒的表面组成。催化剂颗粒的表面组成可以不同于颗粒整体的组成。
本发明的纳米级催化剂颗粒示于图1,其中显示了在转移至ICM之前仍在最初基材上的本发明纳米结构元件的场致发射扫描电子显微照片,在图2和3中分别示出了涂覆了针状纳米级催化剂颗粒的单个针状载体颗粒的透射电子显微照片。
图2是本发明的一个涂覆了催化剂的载体颗粒之一部分的透射电子显微照片。该针状载体颗粒是苝红(PR149)晶须,其上的催化剂载荷量为0.42毫克/平方厘米的Pt和Ru的交替层。图2显示,二元催化剂涂层包含更小的、密集填充但分散的针状颗粒,这些颗粒均匀地取向是稍稍偏离垂直于PR149载体颗粒核心侧面的方向。纳米级针状催化剂颗粒的直径只有约8-9纳米,其长度在此例子中约为50纳米。例如,插图(图2A)中显示的针状纳米级颗粒长55纳米,直径为9.3纳米。对于电极上较低或较高的催化剂载荷量而言,其催化剂颗粒的长度短于或长于本例,因为针状颗粒会随着载荷量的提高而生长得更长。
从晶形和非晶形催化剂颗粒观察到载体颗粒侧面上催化剂颗粒具有相同类型的柱状或针状生长形态。图3显示了涂覆在PR 149载体颗粒上的非晶形PtOx的这种节状生长。在该例子中,催化剂颗粒的高径比相当低,因为催化剂载荷量相当低。随着载荷量的增加,这种催化剂颗粒变长。
图2还证实,单个针状催化剂颗粒是晶状的,分层的。电子显微照片显示了一些晶粒中由于堆垛层错而产生的TEM图象中的干涉带。这些显示成垂直于催化剂颗粒长度的亮的和暗的条带。这是单个针状催化剂颗粒含有结晶材料的直接证据。这些催化剂的X-射线衍射θ-2 θ扫描显示,Pt Ru是具有Pt型面心立方晶格(FCC)的混合合金。对于FCC晶格,只有密集的(111)晶格平面能显示堆垛层错,这表明显示出条带的催化剂颗粒含有具有[111]生长轴的晶粒。(图2显示只有一些催化剂颗粒具有干涉带,这是因为出现电子干涉所需的条件所致,这些条件包括颗粒的合适位置和取向。但是,预计所有的纳米级催化剂颗粒均具有相同的结晶结构)。
尽管不希望受理论的束缚,但仍可以得到关于针状催化剂颗粒合金构成的一些结论。用来制备图2所示样品的条件与实施例6样品3-5所述的相同,只是其溅射时间为50分钟,给予的总为0.43毫克/平方厘米。实施例6表明,这些二元催化剂富含Ru(Pt∶Ru=35∶65重量%),且这一系列样品的X-射线衍射θ-2 θ扫描显示出获得两个晶相,一个是具有Pt面心立方晶格结构和PtRu2化学计量的晶态合金,第二个是Ru晶相。图2的针状结晶颗粒中所示的堆垛层错可能与交替的PtRu2晶相和Ru相之间的界面有关。换句话说,在结晶颗粒沉积生长期间,富含Ru的晶相分离成PtRu2合金和纯Ru的交替层。在图2样品所用的转鼓速度和沉积速度下,在50分钟的涂覆期间,转鼓转动73次,使得相当于约290纳米的PtRu质量沉积施加到表面上。这暗示有约4纳米/转的材料被加到表面上。假定材料集中施加在针状晶体的末端,该层厚度与实施例6中讨论的X-射线衍射峰拟合获得的d(111)晶格间距在同一数量级。
适用于本发明的显微结构的载体可包含有机颜料的晶须,最佳的有机颜料是C.I.PIGMENT RED 149(苝红)。晶须具有基本上均一的但不相同的横截面,并且有高的长宽比。显微结构的载体晶须上沉积涂覆着适合于作为催化剂的材料,从而使晶须具有精细的纳米级表面结构,该结构能起多个催化部位的作用。
制备显微结构层的方法是本领域中已知的。例如,制备有机显微结构层的方法公开在下列文献中:Materials Science and Engineering,A158(1992),1-6页;J.Vac.Sci.Technol.A,5,(4)1987年7/8月,1914-16页;J.Vac.Sci.Technol.A,6,(3),1988年5月/6月,1907-11页;Thin Solid Films,186,1990,327-47页;J.Mat.Sci.25,1990,5257-68页;Rapidly Quenched Metals,Proc.of the Fifth Int.Conf.on Rapidly Quenched Metals,Wurzburg,Germany(1984年9月3-7日),S.Steeb等人编辑,Elsevier Science PublishersB.V.,New York,(1985),1117-24页;Photo.Sci.and Eng.,24(4),1980年7月/8月,211-16页;和美国专利4,568,598和4,340,276。制备无机物为基础的显微结构晶须层的方法例如公开在下列文献中:J.Vac.Sci.Tech.A,1,(3),1983年7月/9月,1398-1402页;美国专利3,969,545;以及美国专利4,252,865,4,396,643,4,148,294,4,252,843,4,155,781,4,209,008和5,138,220;K.Robbie,L.J.Friedrich,S.K.Dew,J.Smy和M.J.Brett,J.Brett,J.Vac.Sci.Technol.A 13(3),1032(1995)和K.Robbie,M.J.Brett和A.Lakhtokia,J.Vac.Sci.Technol.A 13(6),2991(1995)。
显微结构的取向相对于基材表面来说通常是均一的。显微结构的取向通常垂直于最初的基材表面,该表面的垂直方向(法向)定义成垂直于一假想平面的直线方向,该假想平面与显微结构底部和基材表面接触点处的该处基材表面相切。可以看到表面法向随基材表面的轮廓而变。显微结构各处的主轴可以相互平行或不平行。
另外,显微结构的形状、大小和取向也可以不一致。例如,显微结构的顶部可以弯曲、卷曲或呈弧形,或者显微结构在其整个长度上可以弯曲、卷曲或呈弧形。
较佳的,显微结构各处宜具有均一的长度和形状,并且沿其主轴具有均一的横截面尺寸。每一显微结构的长度宜小于约50微米。更佳的,每一显微结构的长度在约0.1至5微米范围内,最佳的在0.1至3微米范围内。在任何显微结构层中,显微结构宜具有均一的长度。较佳的,每一显微结构的平均横截面尺寸小于约1微米,更佳的在0.01至0.5微米之间。最佳的,每一显微结构的平均横截面尺寸在0.03至0.3微米。
显微结构的面积数密度宜在约107至1011个显微结构/平方厘米之间,更佳的,在约108至1010个显微结构/平方厘米范围内。
显微结构中可以有各种取向,有笔直和卷曲的形状(例如须状、棒状、锥形、金字塔形、球形、圆柱形、板条形等,它们可以扭曲、弯曲或是笔直的),任何一层中可以有各种取向和形状的组合。
显微结构的高径比(即长度与直径之比)宜在约3∶1至约100∶1的范围内。
用作基材的材料包括在用来形成显微结构的条件下保持完整的那些材料。基材可以是柔性或刚性的,平面或非平面形的,凸起的,凹陷的,有组织纹理的,或它们的组合。
较佳的基材包括有机材料和无机材料(例如包括玻璃、陶瓷、金属和半导体)。较佳的无机基材是玻璃和金属。较佳的有机基材是聚酰亚胺。更佳的,基材用10-70纳米厚的导电金属层金属化,以除去静电荷。这个层可以是不连续的。较佳的是,这个层是用来涂覆显微结构晶须的相同金属。
典型的有机基材包括在退火温度下稳定的那些基材,例如聚合物如聚酰亚胺膜(例如购自DuPont Electronics,Wilmington,DE,商品名为“KAPTON”)、高温稳定的聚酰亚胺、聚酯、聚酰胺和聚芳酰胺。
用作基材的金属例如包括,铝、钴、铜、钼、镍、铂、钽或它们的组合。用作基材的陶瓷例如包括,金属的或非金属的氧化物,如氧化铝和氧化硅。有用的无机非金属是硅。
用本领域已知的技术将能形成显微结构的有机材料层施加到基材上,这些技术例如包括气相沉积(例如真空蒸发、升华和化学气相沉积),和溶液涂布或分散液涂布(例如浸涂、喷涂、旋涂、刮刀涂布、刮条涂布、辊涂和倾泻涂布(即,将液体倾倒在表面上,使液体在整个表面上流动))。较佳的是用物理真空气相沉积(即在施加的真空条件下升华有机材料)来施加有机层。
用来产生显微结构(例如涂布后籍等离子腐蚀的方法)的适用的有机材料例如包括,聚合物及其预聚物(例如,热塑性聚合物如醇酸、三聚氰胺、脲甲醛、邻苯二甲酸二烯丙酯、环氧类聚合物、酚醛类聚合物、聚酯和硅氧烷;热固性聚合物,如丙烯腈-丁二烯-苯乙烯、醛缩醇、丙烯酸类、纤维素、氯化聚醚、乙烯-乙酸乙烯酯、氟碳类、离聚物、尼龙、聚对亚苯基二甲基聚合物、苯氧基聚合物、异质同晶聚合物、聚乙烯、聚丙烯、聚酰胺-酰亚胺、聚酰亚胺、聚碳酸酯、聚酯、聚苯醚、聚苯乙烯、聚砜和乙烯基聚合物);有机金属化合物(例如,双(η5-环戊二烯基)铁(II)、五羰铁、五羰钌、五羰锇、六羰铬、六羰钼、六羰钨以及三(三苯基膦)氯化铑)。
较佳的,有机物为基的显微结构层的化学组成宜与起始的有机材料相同。用来制备显微结构层的较佳的有机材料例如包括,含有π电子密度充分离域的链或环的平面分子。这些有机材料通常结晶成人字形结构。较佳的有机材料一般可分类成多核芳香烃和杂环芳香烃化合物。
多核芳香烃在Morrison和Boyd,Organic Chemistry,第3版,Allyn and Bacon Inc.(Boston:1974)30章中有所描述。杂环芳香烃化合物在同书31章中有所描述。
市售的较佳的多核芳香烃例如包括,萘、菲、苝、蒽、晕苯和芘。一种较佳的多核芳香烃是N,N′-二(3,5-二甲苯基)苝-3,4,9,10双(二羧酰亚胺)(购自AmericanHoechst Corp.of Somerset,NJ,商品名为“C.I.PIGMENT RED 149”),在本文中称为“苝红”。
市售的较佳的杂环芳香烃化合物例如包括,酞菁、卟啉、咔唑、嘌呤和蝶呤。杂环芳香烃化合物的典型例子例如包括,无金属酞菁(如二氢酞菁)及其金属络合物(例如铜酞菁)。
较佳的是,有机材料在沉积到基材上时能形成连续层。该连续层的厚度宜在1纳米至1000纳米之间。
显微结构的取向受有机层沉积时的基材温度、沉积速度和入射角度的影响。如果有机材料沉积时的基材温度足够高的话(即,超过临界基材温度,在本领域中,该温度与有机材料沸点(Kelvin度数)的1/3相关),则沉积的有机材料会在沉积时或随后退火时形成随机取向的显微结构。如果沉积时基材温度相当低(即低于临界基材温度),则沉积的有机材料在退火时会形成均一取向的显微结构。例如,如果希望采用苝红的显微结构均一取向,则沉积苝红期间的基材温度宜在约0-30℃之间。一些随后的涂布过程,如DC磁控溅射和阴极电弧真空方法,可以产生曲线形显微结构。
如果希望显微结构按一定图案分布,则可以通过例如机械方法、真空加工方法、化学方法、气体压力或流体方法、辐射方法及其组合方式选择性地除去基材上的某些显微结构。有用的机械方法例如包括,用锋利的器具(例如剃刀)将显微结构从基材上刮下,以及用聚合物包封,然后脱层。有用的辐射方法包括激光或光烧蚀。这种烧蚀可产生有一定图案的电极。有用的化学方法例如包括,用酸浸蚀显微结构层的选定区域。有用的真空方法例如包括,离子溅射和反应性离子蚀刻。有用的空气压力方法例如包括,用气体(如空气)或液体流将显微结构从基材上吹下。还可采用上述方式的组合方法,例如用光致抗蚀剂和光刻法。
显微结构可以是基材的延伸并与基材材料相同,其方法例如是将不连续的金属显微岛区(microisland)掩模气相沉积到聚合物表面上,然后用等离子蚀刻或反应性离子蚀刻除去未被金属显微岛区掩盖住的聚合物材料,留下聚合物基材的一些突起物在其表面上,只要这些突起物能被转移到ICM上。
美国专利4,812,352和5,039,561公开了一种制备有机物为基的显微结构层的较佳方法。如这些文章中所公开的,一种制备显微结构层的方法包括以下步骤:
i)将有机材料蒸气沉积或凝结到基材上,形成连续或不连续的薄层;和
ii)使沉积的有机层在真空、一定温度下退火一定时间,该退火温度应足以使沉积的有机层发生物理变化,形成含有密集排列的不连续显微结构的显微结构层,但该退火温度应不足以使有机层蒸发或升华。
对于不同的膜厚度来说,为了将沉积层完全转变成显微结构,可以有最适合的最高退火温度。在完全转变成显微结构后,其中每一显微结构的主尺寸与最初沉积的有机层厚度成正比。由于显微结构之间是不连续的,相隔距离约为其横截面的尺寸,较佳的是其横截面尺寸均一,且所有的原始有机膜材都转变成显微结构,因此重量守恒意味着显微结构长度将与最初沉积的层厚度成比例。由于原始有机层厚度与显微结构长度的这一关系,并且横截面尺寸与长度无关,因此显微结构的长度和高径比可以独立于其横截面尺寸以及区域密度而变。例如,已经发现,当厚度在约0.05至0.2微米时,显微结构长度约为气相沉积苝红层厚度的10-15倍。显微结构层的表面积(即各个个体显微结构表面积的总和)比最初沉积在基材上的有机层的表面积大得多。最初沉积层的厚度较佳在大约0.03至0.5微米的范围内。
每一个个体显微结构可以是单晶或多晶的,而不是非晶形的。由于显微结构具有晶体本性和均一的取向,显微结构层可以具有高度的各向异性。
如果希望显微结构不连续分布,则可以在有机层沉积步骤中用掩模来选择性地涂敷在基材的特定区域。也可采用本领域中已知的用于将有机层选择性地沉积到基材具体区域上的其它技术。
在退火步骤中,在真空下加热涂布了有机层的基材,加热的时间和温度应足以使涂布的有机层发生物理变化,其中有机层长成一层显微结构层,该显微结构层中是密集排列的不连续的有取向的单晶或多晶的许多单个显微结构。当沉积时的基材温度非常低时,显微结构的均一取向是退火过程的固有结果。没有观察到在退火步骤前使涂布的基材接触大气会对随后的显微结构形成产生不利的影响。
例如,如果涂布的有机物材料是苝红或酞菁铜,则退火宜在真空下(即低于约1×10-3乇)、160至270℃的温度范围内进行。将最初有机层转变成显微结构层所需的退火时间取决于退火温度。通常,退火时间在大约10分钟至约6小时的范围内就足够了。较佳的,退火时间在约20分钟至4小时的范围内。而且,就苝红而言,观察到将所有最初有机层转变成显微结构层但不使其升华的最适退火温度随沉积层厚度而变。通常,对于厚度为0.05至0.15微米的最初有机层来说,温度在245-270℃的温度范围内。
气相沉积步骤和退火步骤之间的间隔时间可以从几分钟到几个月不等,这没有明显的不良影响,只要涂布后的复合材料被保藏在封闭容器内以最大程度地减少污染(如灰尘)即可。随着显微结构的生长,有机物的红外波段强度改变,激光镜面反射率下降,因此可以通过如表面红外分光术来仔细地原地监测这个转变。在显微结构生长至所需的尺寸后,使包含基材和显微结构的这个层结构冷却,然后置于大气压下。
用来生成显微结构的有用的无机材料例如包括,碳、金刚石状碳、陶瓷(例如金属或非金属的氧化物,例如氧化铝、氧化硅、氧化铁和氧化铜;金属或非金属的氮化物,例如氮化硅和氮化钛;和金属或非金属的碳化物,如碳化硅;金属或非金属的硼化物,如硼化钛);金属或非金属的硫化物,如硫化镉和硫化锌;金属硅化物,例如硅化镁、硅化钙和硅化铁;金属(如贵金属,如金、银、铂、锇、铱、钯、钌和铑及其组合;过渡金属如钪、钒、铬、锰、钴、镍、铜、锆及其组合;低熔点金属如铋、铅、铟、锑、锡、锌和铝;耐火金属,如钨、铼、钽、钼及其组合);和半导体材料(如金刚石、锗、硒、砷、硅、碲、砷化镓、锑化镓、磷化镓、锑化铝、锑化铟、氧化铟锡、锑化锌、磷化铟、砷化铝镓、碲化锌及其组合)。
如上所述,通过在最初的PR 149层沉积期间控制基材温度,可以将较佳实施方案的显微结构制成具有随机的取向。还可对涂布过程采取合适的条件,将显微结构制成具有曲线形状。如L.Aleksandrov在″半导体材料晶体在晶体表面的生长″第1章,Elsevier,New York,1984中的图6所述,不同涂布方法(例如热蒸发沉积、离子沉积、溅射和注入)中,到达原子的能量可以在5个量级的范围内。
将制备显微结构层的方法修改成用来制备不连续的显微结构分布,这也在本发明的范围内。
包含纳米级催化剂颗粒的涂布材料宜为催化剂材料或赋予整个纳米结构元件催化性质的材料。涂布材料可以是无机材料,也可以是有机材料,包括聚合物材料。有用的无机涂布材料可包括在上述显微结构部分中所描述的那些材料。有用的有机材料例如包括,导电性聚合物(如聚乙炔)、衍生自聚对苯二亚甲基的聚合物、以及能形成自装配层的材料。
如下所述,可以用气相沉积方法沉积到有显微结构的层上形成涂层,这些方法例如是离子溅射沉积、阴极电弧沉积、蒸气冷凝、真空升华、物理蒸汽传输、化学蒸气传输和金属有机化合物化学蒸气沉积。较佳的是,贴合涂布的材料是催化剂金属或金属合金。
制得的供纳米结构用的针状载体的关键方面是:它能容易地从最初基材转移到膜或EBL表面上形成MEA催化剂电极层;它允许更多的催化剂颗粒沉积到其表面上,较佳的有至少80%重量比(占载体与催化剂颗粒的组合重量)沉积到其表面上的催化剂颗粒;它具有足够的数密度和高径比,以便为催化剂提供很大的载体表面积,其至少为基材平面面积的3-5倍,但是更佳的为基材平面面积的10-15倍;最初基材上的针状载体颗粒的形状和取向有助于催化剂颗粒均匀地涂布到针状组织形态中。
本领域中已经记载,在平面基材上以几乎平行的入射角气相沉积薄膜时,会由于阴影(shadowing)效应产生取向的、不连续的柱状生长。该方法在J.van deWaterbeemd,G.van Oosterhout,Philips Res.Repts.,22,375-387(1967)中有所描述,并在美国专利5,645,929中引用作为获得纳米结构薄膜的方法。
然而,本发明所得的却是出乎意料的结果:在已经具有取向而不连续显微结构(如这种情况是针状载体颗粒)的膜平面基材上以接近垂直的入射角进行沉积,可以使更小得多的不连续的纳米级结构生长在单个显微结构的侧面。这种分数分值(fractal)状的结构应接近具有最大的表面积。由于催化剂电极的电化学活性与该催化剂的活性表面积直接有关,而该面积又和总几何表面积直接有关,因此该效果对催化领域是有特别现实意义的。
在本发明中,真空沉积可用本领域已知的任何合适的手段来实现。用来真空沉积的设备通常包括真空室,其包括真空泵、源或靶、基材,以及产生待沉积物质的装置。
化学气相沉积(CVD)方法可用来真空沉积化学反应产生的物质从而形成一薄膜,该化学反应在反应物流经加热的基材并在基材表面处或附近反应时发生。CVD方法例如可以包括等离子体辅助的CVD、光激发的CVD、金属有机物CVD以及相关的方法。
较佳的,可用物理气相沉积(PVD)来制造本发明的催化剂和催化剂结构体。PVD方法涉及沉积原子或分子或它们的组合,通常是在真空下蒸发或溅射产生的。PVD方法的特征在于具有以下步骤:(1)采用电阻、电感、电子束加热的溅射、激光束烧蚀、直流等离子体产生、射频等离子体产生、分子束取向附生或相似方式进行蒸发,来产生沉积物质;(2)通过分子流、粘性流、等离子体气体传输等方式将沉积物质从原料输送到基材上;和(3)在基材上进行膜的生长,可用对基材加偏压作为辅助。PVD可以用各种基材温度来控制沉积材料的结晶和生长方式。
物理气相溅射沉积是在部分真空(二极系统为13.3至1.33帕,磁控电子管系统为0.13至0.013帕)下进行的,此时靶极(通常是阴极)被经电场加速的气体离子轰击。溅射气体通常是惰性气体如氩气,但是该溅射气体也可包括能掺入沉积膜中的反应性元素,例如在氮化物、氧化物和碳化物沉积的情况下。当溅射气体被离子化时,产生辉光放电或等离子体。气体离子通过电场或电场和磁场朝靶加速。通过动量传递,靶的原子则射出,移动通过真空室沉积在基材上。靶通常可以是单种元素物质。
合金沉积可以通过共同蒸发多种靶元素来实现,其方法是从单个合金源蒸发或溅射,以及快速蒸发预成形合金颗粒。用本领域已知的方法进行合金的PVD并不令人满意,其原因主要有以下这些:合金的组分通常具有不同的蒸气压和溅射率(溅射产额),并且它们会随时间而改变,这样靶上产生的合金可能与靶合金的组成不同。多源共同蒸发或溅射方法通常会导致合金组成沿基材平面变化;快速蒸发、脉冲激光蒸发和电子束蒸发会导致微滴发射出来,从而在基材上产生大的瑕疵。
用真空沉积方法沉积混合的金属或合金催化剂,可采用单个混合的催化剂源来实现。然而,由于不同元素的溅射速度或蒸发/升华速度不同,很难控制化学计量比。另一种方法是从不同元素的多个源同时共同沉积到基材的相同区域上。然而,由于实际装置的物理尺寸,可以到达基材的入射角受到限制,而且,由于不同点与这些源的距离不同,很难在基材上进行均匀的沉积。另外,沉积源还会相互污染。
根据本发明,真空沉积混合金属或合金催化剂的较佳方法是依次沉积若干层交替的元素组成。利用多层、超薄层真空沉积方法来制得合金或多元素催化剂,就可避免上述困难。另外,可能也希望在施加一种材料时,采用的溅射气体条件不同于施加其它材料的溅射气体条件,例如对一种元素采用反应溅射沉积,而对另一种元素采用非反应溅射沉积。
沉积速度由沉积源功率的设定以及靶源和基材之间的抛掷距离所控制,而每次通过的沉积量受沉积速度和通过时间所控制。因此,利用多个靶源功率和转鼓速度的组合,就可获得在靶下每次通过的固定沉积量。每次通过的沉积量可以不同,从低端的1015原子/平方厘米或更低范围的亚单层不连续掺杂浓度到高端的数百层原子层。根据沉积材料所特有的薄膜生长机制和溅射条件,材料可能以连续的薄膜或不连续形式成核岛区。通过这种方式,沉积可以进行控制,如在原子层外延情况下,以控制催化剂结构和组成在从晶格单元到多层形态范围内,又可在从无序的膜到超晶格状结构(其中既存在合金相又存在各单种元素的结晶相)的范围内。每次通过的量可以从1/10的原子单层到数百个原子单层不等,但是较佳的是在1个和100个单层之间,更佳的在5至50个单层之间。
图4A和4B示出了本发明中用来多层真空沉积的两种可能的装置构型。在这些实施方案中,将两个或多个真空沉积台放在支承基材的传动装置前面,该传动装置带动基材在真空沉积台所确定的不同沉积空间中移动。在图9B中,半连续带材形式的基材以直线方向完全通过一系列蒸气源(例如溅射靶或蒸发源)的前面,进行一次依序各层的沉积,然后倒转方向来进行另一次沉积,然后重复该循环所需次数。这两种方法之任一种其修整表面组成的能力均高于上述真空涂覆混合金属催化剂层的其它两种方法。
在一个较佳的实施方案中,催化剂涂层通过采用图4A和4B所示类型的系统的溅射沉积方法施加到载体颗粒上。为了对连续的基材涂覆,图4B所示的直线形方法是较佳的。该装置由三源磁控管溅射系统组成,这些系统排列在含有直径为38厘米(15英寸)旋转鼓的圆柱形室的外部周围。基材装在转鼓上,并以1至8rpm的速度依次籍转鼓的旋转通过溅射源前面的位置。溅射源被适当遮蔽起来,这样样品不会在同一时间被任两个溅射流所涂覆。材料沉积的速度和基材在靶前移动的速度确定了包含最终催化剂颗粒的各单层厚度。任何能抽足够真空的真空泵均可采用。一种这样的真空泵是Varian AV8低温泵(Varian Associates,Lexington,MA),它可以和Alactel2012A旋转叶式粗真空泵(Alactel Vaccum Products,Hingham,MA)结合使用。低温泵可以通过碟形阀与溅射室部分隔离。在沉积期间,压力维持在0.28帕(2.1毫乇),溅射气流速度由MKS流量控制器(MKS Instruments Inc.,Andover,MA)控制。任何惰性或反应性的溅射气体均可采用。较佳的可采用氩气或氩气和氧气的混合气体。在Pt或Ru沉积中改变氩气/氧气流量比就可以控制氧的化学计量。任何合适的靶和功率源均可采用。在一个实施方案中,采用三英寸的靶。(Target Materials.,Columbeus,OH)。该靶由0.76厘米(0.3英寸)的靶材料用铟结合在铜衬底上,这是溅射沉积领域中的标准做法。在一个实施方案中,Advanced Energy MDX 500电源(Advanced EngergyIndustries,Inc.,Fort Collins,CO)以电源的恒功率方式使用。
本发明催化剂颗粒的形状、形态或晶体习性是新的,颗粒中分布不同的化学元素(在合金催化剂情况下)的方式是新的,颗粒形状或大小随催化剂载荷量增加而变化的方式是新的,颗粒分布在载体上的方式也是新的。这些特征性的区别是非常重要的,因为通常知道,催化剂活性与结构是高度相关的。因此,催化剂的化学组成在确定其在多相催化中的效果时并不是唯一的、通常也不是最重要的特征。催化反应发生在催化剂的表面上,因此,催化剂的表面组成和表面结构,而不是其体内组成和结构,是非常重要的。
在图2中计数伸出每单位面积PR149催化剂载体颗粒侧面的纳米级针状催化剂颗粒的数目,从PR149载体颗粒的已知长度以及每单位基材平面面积上该PR149载体颗粒的已知数目,就可以估计出本发明催化剂的几何表面积。PR149载体颗粒以约3-4×109/平方厘米基材的数密度生长。这些针状晶须的形状约为正六面体形,长约1.5微米,宽50纳米,厚25纳米。从图2中可以估算出,每个针状催化剂颗粒占据了每个PR149载体晶须的约100平方纳米的表面积,因为看到晶须的每150纳米长度上有大约15个这样的颗粒。在图2的样品中,载体颗粒约1微米的长度上被催化剂颗粒以如此方式覆盖。对于更小的催化剂针状颗粒而言,每个PR149晶须提供了约1.5×105平方纳米的几何表面积。这意味着有大约1500个这样的催化剂颗粒包覆了每个载体颗粒的侧面。如果象图2所示的那样,每个这样的催化剂颗粒可近似视为圆柱形,其直径为D,长度为L,则其几何表面积为πDL,图2中这些颗粒的D平均为8.3纳米,L平均为33纳米。每个这样的颗粒的表面积约为860平方纳米。那么每平方厘米基材上的催化剂总几何表面积为3×109晶须/平方厘米×1500个催化剂颗粒/晶须×860平方纳米/催化剂颗粒,即为3.9×1015平方纳米/平方厘米,即39平方厘米/平方厘米。作为比较,计算出每平方厘米涂覆碳的电极基材上载于碳颗粒上粒度分布已知的常规球形催化剂颗粒的几何表面积(Mizuhata等人,ElectrochemicalSociety Proceedings 1995,Vol.95-23,24页)。该面积与该基材单位面积上的催化剂载荷量正比例,对于载荷量为0.4毫克/平方厘米来说,它们得到的表面积增加为1.948平方厘米/平方厘米(见前一参考文献中的表Ⅰ)。因此,对于大约相同的总催化剂载荷量来说,图2所示的本发明纳米结构催化剂提供比几何表面积增大是常规催化剂颗粒的大约20倍。
本发明的方法和装置允许选择性地改变催化剂涂层整体的化学计量、合金程度、结晶程度、晶粒形态以及表面组成。这些改变可以通过改变单层的相对沉积速度、功率、抛掷距离或在任何源料前通过的时间来实现。另外,可以在溅射气体中加入其它组分来改变催化剂的组成和结构。任何已知的溅射气体添加剂,和沉积材料反应或不反应的,以及是作为组成部分还是作为掺杂剂掺入催化剂中的,均可采用。添加剂可包括惰性气体、卤素、Ⅶ族元素,较佳的是氩和氧。如果不同的真空沉积台足够分开,则可以产生只在选定层掺入添加剂或不同层掺入不同添加剂的分层混合物。
在使用添加剂的一个实施方案中,本发明的方法和装置可被修改成选择性地改变催化剂涂层的结晶特征。在一个较佳的实施方案中,通过在溅射气体组成中加入氧,一个产生全铂纳米级催化剂的方法可以从获得高度结晶的产物改变成获得完全非晶形的产物。非晶形催化剂颗粒所见的柱状或针状的催化剂颗粒的生长形态与结晶催化剂颗粒相同。图3显示了涂覆在PR149载体颗粒上的非晶形PtOx的这种结节状生长。铂催化剂所用的氧气∶氩气比至少应为1∶1,更佳的为10∶1。另外,结晶和非晶形催化剂的分层混合物可以这样来产生:将氧气加入一些但并非全部真空沉积台的溅射气体组成中,如果不同的真空沉积台足够分开的话。
本发明的方法和装置能产生具有独立于整体组成的较佳最终表面层组成的催化剂颗粒。这可以通过改变最终表面层沉积时的沉积条件来实现。新的条件应至少在最后一次沉积步骤时采用,较佳的是在沉积出相当于最后1-50(更佳的为1-20)个单层厚度时采用。新的条件可以包括:关闭任何一个正在运行的沉积台以停止其催化剂的沉积,打开一个新的沉积台以沉积新的催化剂,调高或调低任一沉积台的功率,在任一沉积台的溅射气体中加入或减去某个添加剂,或能为最终表面层组成或结构提供所需变化的任何其它措施。
一个较佳的实施方案显示,当其用于氢燃料电池的阳极时,它有改善的CO耐受性。这个CO耐受性较佳的实施方案可以用上述方法实现,其中利用Ar/O的混合物作为溅射气体沉积Pt和Ru的交替层。较佳的应采用1∶1至1∶10的Ar/O比例,最佳的为1∶2。此催化剂主要是掺入了氧的Pt和Ru的交替层,但也可含对催化剂性能没有不利影响的其它元素。整体催化剂组成中的Pt∶Ru原子比宜在约2∶1和1∶5之间。更佳的,在约1∶1和约1∶2之间。在沉积步骤的最后阶段(更佳的在最后1-10次通过时,最佳的在最后1-3次通过时)减少或停止Ru的沉积,或增加Pt的沉积,可使生长表面的组成与整体组成不同。其中最佳的是,在沉积步骤的最后阶段停止Ru沉积。这样,生长表面的组成比整体组成更富含Pt;即每份Pt的Ru还少于1份。更佳的是,生长表面中对于每一重量份Pt,Ru的重量份少于约2/3,尤其佳的是少于40%。
本发明可用于采用为此目的而优化的膜电极的电化学装置中,如燃料电池、电池组、电解池、电化学反应器如氯碱分离膜、或气体、蒸气或液体传感器。本发明可用于CO耐受性有利的电化学装置中。
下列一些实施例进一步描述了本发明的目的和优点,但是这些实施例中引述的具体材料和用量,以及其它条件和细节不应被理解成不恰当地限定了本发明。
                       实施例
在下述一些实施例中,根据纳入本文作参考的美国专利No.5,338,430中描述的方法制得具有显微结构的催化剂用载体。根据美国专利4,812,352和5,039,561中描述的技术,利用有机颜料C.I.Pigment Res 149(即N,N’-二(3,5-二甲苯基)苝-3,4,9,10双(二羧酰亚胺))的热蒸发沉积和真空退火,制得在聚酰亚胺基材上的纳米结构的苝红(PR149,American Hoechst Corp.,Somerset,NJ)薄膜。在沉积和退火后,形成了高度取向的晶体结构,该晶体结构具有大的高径比,约0.5至2微米的可控制长度,宽度约为0.03-0.05微米,每平方微米的区域数密度约为30个晶须,其取向基本上垂直于聚酰亚胺基材。这种显微结构的载体不导电,当其被压入ICM中后,很容易从聚酰亚胺基材上分离下来。
在下列一些实施例中,利用图4A所示的真空系统,通过溅射沉积,将Pt和Ru催化剂涂层施加到PR149载体颗粒上。该装置由一个三源磁控管溅射系统组成,排列在内中装直径38厘米(15英寸)的旋转鼓的圆柱形溅射室的四周围。基材固定在转鼓上并以1至8rpm的速度依次旋转通过各个溅射源前面的位置。溅射源被适当遮蔽起来,以使样品不会在同一时间被任两个溅射流涂覆。所用的真空泵是装备了Alactel2012A旋转叶片粗真空泵(Alactel Vaccum Products,Hingham,MA)的Varian AV8低温泵(Varian Associates,Lexington,MA)。该低温泵通过碟形阀与溅射室部分隔离。在沉积期间,压力维持在0.28帕(2.1毫乇),溅射气流速度由MKS流量控制器(MKSInstruments Inc.,Andover MA)控制。所用溅射气体是氩气或氩气/氧气的混合物。通过在Pt或Ru沉积中改变氩气/氧气流量比,就可控制溅射沉积层中氧的化学计量。采用三英寸的靶(Target Materials.,Columbeus,OH),该靶是0.76厘米(0.3英寸)的靶材料用铟结合在铜衬底上组成的。每次沉积采用恒功率方式的Advanced Energy MDX500电源(Advanced Engergy Industries,Inc.,Fort Collins,CO)。
沉积后,通过简单地重量法测定催化剂载荷量。用精确到1微克的数字式天平称重载于聚酰亚胺上的纳米结构膜层样品。然后,用纸或亚麻布从聚酰亚胺基材上擦去纳米结构层,对基材重新称重。由于纳米结构催化剂载体的一个较佳性质是它容易完全转移到离子交换膜上,因此它也容易用布简单地擦拭除去。不含Pt的催化剂载体颗粒的单位面积重量也用这种方法来测定。用于阳极(燃料电池的氢反应电极)的纳米结构如下面各实施例所述那样制备。用于阴极(燃料电池的氧反应电极)的纳米结构这样制得:用氩气作为溅射气体沉积Pt,纳米结构上预先涂覆了约0.02毫克/平方厘米的碳。催化剂载荷量在0.09至0.425毫克/平方厘米之间不等。
所用离子导电膜是全氟化的磺酸材料,具体是NafionTM 117膜(DuPont Chemicals,Wilmington,DE,购自ElectroChem,Inc.,Woburn,MA,和Aldrich Chemical Co.,Inc.,Milwaukee,WI)。
使用前,将Nafion膜依次浸在下列溶液中进行预处理:a)沸水中1小时,b)沸腾的3%H2O2中1小时,c)沸腾的超纯水中1小时,d)沸腾的0.5M硫酸中1小时,e)沸腾的超纯去离子水中1小时。然后将Nafion保存在超纯去离子水中直至使用。在其参与形成MEA前,将Nafion置于数层清洁的亚麻布之间,30℃下放置10-20分钟,使其干燥。
用静压工艺制得每一MEA,该方法包括通过在真空、130℃下以160兆帕(11.6吨/平方英寸)的压力,将催化剂涂覆的纳米结构的元件加压转移到Nafion 117膜上。为了用静压法制备活性区域为5平方厘米的MEA,将聚酰亚胺基材上的两片5cm2纳米结构元件的方片(一片用于阳极,一片用于阴极)分别置于7.6厘米×7.6厘米的Nafion 117膜中央的两面。在催化剂涂覆的基材/Nafion/催化剂涂覆的基材的这样一个夹心物的两面上各放置厚50微米、7.6厘米×7.6厘米的聚酰亚胺片材。然后将该组合件置于两片钢制垫板之间,在低真空、130℃下用Carver lab压机(Carver Inc.,Wabash,IN)以160兆帕(每平方英寸11.6吨)的压力压制。施加低真空(小于约2乇),以便在施加最大压力之前除去该叠层中的空气。然后剥离最初的5平方厘米的聚酰亚胺基材,使催化剂与Nafion膜表面相连。
MEA的两个催化剂电极上都用0.4厘米(0.015")厚的ELATTM电极背衬层(E-tek,Inc.,Natick,MA)覆盖,然后放在厚250微米的TeflonTM涂覆的玻璃纤维垫片(The FuronCo.,CHR Division,New Haven,CT)的5平方厘米方孔内,该方孔被切成与催化剂区域配合。Elat电极背衬层被称为“carbon only(只有碳)”,即它不含催化剂。然后将构成的MEA装在测试台的池(Fuel Cell Technologies,Inc.,Albuquerque,NM)中。该测试台包括一个可变化的电子载荷以及分离的阳极和阴极气体处理系统,用于控制气体流量、压力和湿度。电子载荷和气体流量由计算机控制。
在下列测试参数下获得燃料电池极化曲线:电极面积为5平方厘米;电池温度为75℃,阳极气压(表压)为62.0千帕(9psig);阳极气体流量为75-150标准cc/分钟;阳极加湿温度为105℃:阴极气压(表压)为414千帕(60psig);阴极流速为600标准cc/分钟;阴极加湿温度为65℃。气体流的加湿是将气体通过维持在指定温度下的喷雾瓶来进行的。使每个燃料电池达到在氢气和氧气流下75℃的操作条件。运行24小时后启动测试过程,测定下列参数:阳极压力、阳极流量、阴极压力、阴极流量、电池温度和CO浓度。
催化剂沉积的表面化学计量数据用X-射线光电子光谱法(XPS)测定,该方法采用装备了AlKα单色仪的Hewlett-Packard 5950A型ESCA系统(Hewlett-Packard Co.,Palo Alto,CA)。XPS是一种测定材料表面元素组成的无破坏性的方法,该方法根据的是测定通过软X-射线激发来自原子核心水平的光发射电子的动力学能量。发射的电子可在相对于样品表面的不同角度上被检测到;在接近0°下检测到的那些电子表明最接近表面(即约5_深)位置的元素组成。所用样品来自参考片(witness slide)上的沉积物(见下文实施例1)。
用X-射线衍射检查样品,采用Philips垂直型衍射仪(反射几何关系)、铜Kα辐射以及散射辐射的比例检测器(Philips Electronic Instruments Co.,Mahwah,NJ)。衍射仪装备有可变的入射缝隙,固定的出射缝隙、以及石墨衍射束单色器。用双面涂覆的胶带将样品固定在玻璃支座上。在35至90度(2θ)散射角范围用0.06度的步长和16秒的停留时间进行分步扫描。发生器设定在40kV和35mA。通过减去代表性样品NafionTM以类似方式扫描获得的数据组,除去由于聚合物基质和玻璃支座引起的背景散射。用Philips PC-APD软件分析所得结果。在校正仪器的展宽后,用Secherrer方程式从观察到的峰宽确定表观的晶粒大小,该峰宽取在峰高一半处的峰全宽(FWHM)。
整体组成用能量分散荧光分析(EDAX)方法测得。用Amway扫描电子显微镜进行测定,该显微镜具有硅为基的X-射线检测器阵列,采用Tracor Northern计数电子设备和软件。所用样品来自参考片上的沉积物(见下文实施例1)或来自用牙用胶粘剂从基材上取下的晶须。扫描电子显微镜的电子束在撞击样品时产生X-射线。X-射线的能量取决于其撞击材料的原子电子结构。在100秒的间隔内在固定的束流下取0和10keV之间的X-射线能量。拟合数据,减去背景值后,Pt-La峰(2.051eV)和Ru-La峰(2.558eV)的比值提供了整体材料的原子比。
实施例1催化剂的制备
总体组成的Ru∶Pt原子比为50∶50,表面组成的Pt∶Ru∶O为63∶0∶34(样品1-9)的阳极催化剂组合物的制备如下:将50微米的聚酰亚胺薄膜固定在直径为38厘米的转鼓上,该薄膜上沉积了纳米结构催化剂用的PR149载体元件(其制备如上所述),该转鼓固定在如上文以及图4A所述的真空系统中。将另一小片聚酰亚胺固定在系统中用作XPS和EDAX测定的参考片。用旋转叶片泵将该系统粗粗降压至0.27帕,此时将该泵关闭,将闸门阀开向低温泵。将该系统抽真空至大约1.3×10-3帕,然后在闸门阀和低温泵之间放置一碟形阀,从而获得最大的室压,通常在0.027帕范围内。碟形阀的目的是低温泵和室内较高的压力部分分离。质量流量控制器设定为溅射氩气为8sccm,溅射氧气为16sccm。调节每一气体的流量,以达到室压为0.28帕的稳态,此时流量比保持在氧气∶氩气为2∶1。然后,将每一溅射源的电源设定成恒功率方式,Pt源为175瓦,Ru源为285瓦。转鼓以3rpm的速度旋转。两个功率源同时参与。在沉积时需作一些微量的气体流量调节,以维持压力为0.28帕。沉积持续10分钟或在每一源下通过30次,此后关闭Ru源。使Pt源继续工作1分钟,这相当于在没有Ru溅射流下继续通过三次。随后对薄膜的测定显示,载荷量为0.09毫克/平方厘米。经能量分散X-射线分析测得,Pt∶Ru的整体组成为50∶50。测得表观晶粒大小为,(111)晶格平面为5纳米,(220)晶格平面为3.3纳米,(311)晶格平面为3.8纳米,经X-射线衍射分析,合金化程度很高。对参考片的XPS分析的结果表明,发射电子对于样品表面的角度为38°时Ru∶Pt为0.037,在18°时没有Ru,这表明表面上只有PtOx
以类似方式制得许多催化剂材料,其中Ru和Pt的比值随着氧∶氩比值的不同而改变。制备结果显示在表1中。
                          表1
    样品 总体的Ru/Pt原子比 38°下的Ru/Pt比值 18°下的Ru/Pt比值 38°下的表面氧百分数
    1-1     54∶46     0.260     0.271     38
    1-2     54∶46     1.040     1.330     47
    1-3     56∶44     0.926     0.962     48
    1-4     56∶44     1.292     1.381     45
    1-5     55∶45     0.131     0.100     30
    1-6     56∶44     0.141     0.134     64
    1-7     50∶50     0.319     0.286     32
    1-8     50∶50     0.114     0.147     37
    1-9     50∶50     0.037     0.000     34
从表Ⅰ数据可以看出,样品1-9对应于上述步骤的详细描述。表Ⅰ的数据表明,对于一给定的整体组成而言,平面参考片(即没有显微结构的样品)的表面组成可以制成富含Pt或富含Ru,其具体方法是选择最后指向靶的源以及靶暴露于最后的源的次数。例如,就样品1-7、1-8和1-9而言,靶在Pt源下分别再通过1、2和3次。该方法中还能控制催化剂表面的氧含量。例如,样品1-6的氧∶氩比值为10∶1,而样品1-7的该比值为4∶1,这反映了每个样品中氧含量的表面百分数。这说明生长表面的组成受控制。
实施例2 PtRu对比PtRuOx的高CO耐受性
如上所述制得具有不同阳极催化剂组成的MEA并进行测试。表Ⅲ中给出了组成。图5比较了Pt/Ru和PR/RuOx组成在一定范围的8个样品在接触含31-37.5ppm CO的H2时的极化曲线,以及其中两个样品对纯氢气的响应。图5的数据表明在采用PtRu和PtRuOx化合物作为燃料电池催化剂之间CO耐受性的差别。本发明的沉积方法能将表面氧数值X控制在1和2之间。在用氧作为溅射气体的所有情况下,可以看到CO存在时的电池性能均比纯氩溅射有所改善。惊奇的是,最具耐受性的阳极组成是非常富含Pt的,而在这之间,即靠近50/50Pt/Ru的那些组成显示出的性能最差。这与常规碳颗粒负载的Pt/Ru催化剂所公开的结果相反。
                         表Ⅲ
    样品 Pt/Ru/O
    1-A     35/65/0
    1-B     50/50/0
    1-C     25/26/49
    1-D     53/18/29
    1-E     57/5.7/37
    1-F     53/18/29
    1-G     35/65/0
    1-H     42/22/36
    1-I     34/30/36
    1-J     42/22/36
实施例3 富含Pt的生长表面
制备了用整体Ru/Pt比为50∶50、外生长表面上Pt含量不同(经XPS在38°角度下测得)的本发明催化剂结构。采用含该催化剂结构的MEA组装燃料电池,如上所述测出极化曲线,在阳极部使用含35、100和322ppm CO的氢气。结果显示在表Ⅳ中。在每一情况中,载荷量均为0.09毫克/平方厘米。
                         表Ⅳ
样品 Delta V35ppm CO Delta V100ppm CO Delta V322ppm CO
1-7 180mV NA NA
1-8 0 0 320mV
1-9 0 0 0
在表Ⅳ中,“Delta V”代表与纯氢情况相比,当电流密度为0.7V时,每个包含如实施例1所述制得的催化剂样品的MEA在接触所示浓度的CO时的电池电压降。如表Ⅰ所示,样品1-9最外层的Pt是Ru/Pt比为0.319的样品1-7的至少三倍,且基本上没有Ru。表Ⅳ数据表明,总体Pt∶Ru比为50∶50而最外层Pt含量很高的本发明阳极催化剂暴露于322ppm CO的氢气时不受影响。
实施例4
本实施例以及下列对比例证明,当以相同方式应用于MEA中而没有附加的离聚物且在相同条件下测试时,纳米结构催化剂的CO耐受性比常规的碳载催化剂有所改善。
如下制得纳米结构的阳极催化剂。如上所述在聚酰亚胺基材上制得PR149纳米结构薄膜,采用上文所述的以及图4A所示的安装在真空系统中直径为38厘米的转鼓,在氩气/氧气混合物中溅射涂覆交替的Pt层和Ru层,结果具有35/65重量百分比的标称PR/Ru整体组成。在转鼓最后两次旋转时只运行Pt靶,结果获得富含Pt的表面组成,经对参考片XSP方法测得标准Pt/Ru/O为57∶6∶37重量百分数。测得载荷量约为0.09毫克/平方厘米。
制备了一种阴极催化剂,它是另一个有纳米结构的PR149晶须膜,其上先溅射涂覆了0.01毫克/平方厘米的碳,然后是0.37毫克/平方厘米的Pt。
如上所述,此时是将这两种催化剂热压转移到Nafion 117膜的相反两个面上。将这些纳米结构的膜用作阳极和阴极催化剂以制造5平方厘米的MEA,此时纳米结构的催化剂载体颗粒直接包埋在Nafion膜中,纳米结构膜和Nafion膜中均不附加入离聚物。
如上所述在燃料电池测试装置中测试该MEA,使阳极与含100ppm CO的氢接触。阳极/阴极表压分别为62/414千帕(9/16psig)氢/氧,流量分别为75/600sccm,喷雾瓶加湿温度分别为105℃/65℃。电池温度为75℃。电池先在纯氢下运行,直至其工作稳定,然后切换至与含100ppm CO的氢接触,在不同时间测出0.7伏下的电池电流,这时测试台以恒定电压方式运行。在两个小时以上的测试期间不进行极化扫描。图6中示出了电流密度随时间的变化情况,其表明在前20分钟内性能从约0.52安/平方厘米减少至约为0.45安/平方厘米,但在然后的2小时内更缓慢地减少至约0.425安/平方厘米。图6中显示出该性能远远优于在相同条件下测试的阳极上具有载荷量高得多的商用碳载PtRu催化剂的MEA。
实施例5(对比例)
从E-tek,Inc.获得一个有催化剂的气体扩散电极,其由Vulcan XC-72碳颗粒上的20%(重量)Pt∶Ru(1∶1原子比)催化剂组成,碳颗粒涂覆在ELATTM碳纤维布电极背衬上。在收到时,催化剂和ELATTM膜中没有附加入离聚物。载荷量为0.37毫克/平方厘米。将有催化剂的膜方片的催化剂面靠Nafion 117膜中央放置作为阳极,制得5平方厘米的MEA。将实施例4制得的5平方厘米的Pt涂覆的纳米结构薄膜片靠Nafion膜的对面放置作为阴极。用前面的实施例中转移催化剂所用的相同步骤和条件对该夹心物进行热压。用实施例4所用的相同条件和测试程序在100ppm下测试该MEA的CO耐受性。图6显示了该对比MEA在0.7伏下的电流密度随时间的变化情况。图6的数据表明,尽管其载荷量(0.37毫克/平方厘米)要高得多,但对比例的碳颗粒负载的PtRu催化剂的电流密度在接触CO的前20分钟内从0.43安/平方厘米突然下降到0.025安/平方厘米,然后在随后的2小时内继续逐渐下降至0.02安/平方厘米。该性能远远差于本发明的纳米结构的膜阳极催化剂。
实施例6
本实施例证明混合Pt/Ru针状纳米级催化剂颗粒是真正的合金,利用本发明的方法可以获得不同的合金相(PtRu和PtRu2),在同一样品中可以获得混合的合金相。
将以聚酰亚胺为基材的PR149显微结构载体颗粒膜装在上述的溅射真空系统的可旋转转鼓上。PR149晶须长约1.5微米。转鼓以每转41.25秒的速度旋转,每个样品的氩气溅射压力为0.29帕(2.2毫乇)。在以下的一些样品中改变溅射靶功率和时间,获得不同的合金组成。对于每个样品,如上所述热压制成单电极MEA,是将约1平方厘米的催化剂涂覆的晶须热压入Nafion 117膜中,此单电极MEA用于X-射线衍射分析。从所得的X-射线衍射(XRD)线状谱减去平的Nafion 117样品的散射强度,作为背景校正。催化剂衍射峰用软件拟合,获得形成催化剂颗粒的合金存在和类型的信息。
对于样品1,Pt靶在175瓦的功率下运行,Ru靶在500瓦下运行25分钟。在这些条件下,从每个靶所测得的沉积速度,计算出催化剂载荷量为Pt是0.13毫克/平方厘米,Ru是0.13毫克/平方厘米。SEM中的能量分散X-射线(EDAX)荧光分析表明,Pt∶Ru整体组成为35∶65(原子百分数),从Pt的密度(21.45克/cc)和Ru的密度(12.2克/cc)的差异,计算出这与载荷量是相符的。XRD表明,催化剂颗粒由两个结晶相组成。一个相是Pt面心立方(FCC)-型晶体结构,它含有约70原子百分数的Ru,这表明其合金组成为PtRu2。第二个相是纯的Ru相(有一些可能有Pt取代的迹象)。根据(111)的衍射级,第一相的晶粒大小为130_。根据Ru(111)峰,第二相的晶粒大小为128_。
对于样品2,Pt靶在185瓦的功率下运行,Ru靶在300瓦下运行25分钟。在这些条件下,计算出Pt的载荷量为0.14毫克/平方厘米,Ru的载荷量为0.08毫克/平方厘米。SEM中的EDAX荧光分析表明Pt∶Ru整体组成为50∶50(原子百分数)。XRD显示晶体颗粒由单晶相组成,该晶相是含有约54原子百分数Ru的Pt FCC型晶体结构,这表明其合金组成为PtRu。根据(111)的衍射级,合金的晶粒大小为114_。
对于样品3-8,用不同的靶功率和沉积时间制得两组类似的样品,获得不同载荷量的混合合金。表V归纳了样品3-8连同样品1和2的制备条件和所得的合金组成。
                      表Ⅴ
样品 Pt功率瓦 Ru功率瓦 时间分钟 总载荷量mg/cm2   Pt∶Ru原子%     相   合金(111)
  1   175   500   25     0.26   35∶65   PtRu2+Ru   130_
  2   185   300   25     0.22   50∶50     PtRu   114_
  3   175   450   35     0.34   35∶65   PtRu2+Ru   105_
  4   175   450   17.5     0.165   35∶65   PtRu2+Ru   72_
5 175 450 6 0.046 35∶65 PtRu2+Ru 38_
6 175 285 35 0.23 50∶50 PtRu 65_
7 175 285 17 014 50∶50 PtRu 55_
8 175 285 6 0.044 50∶50     PtRu 36_
表Ⅴ的数据表明,在具有相同Pt∶Ru比值的四个样品的每一组中,以所有的载荷量都获得了相同的合金组成。
在不脱离本发明的范围和理论的情况下,本领域技术人员显然能对本发明作各种变化和改进,应理解本发明并没有受上述描述性实例不恰当的限制。

Claims (10)

1.纳米结构元件,它包含针状纤维结构的载体晶须,该晶须携带着针状纳米级催化剂颗粒。
2.根据权利要求1所述的纳米结构元件,其中针状纳米级催化剂颗粒包含不同催化剂材料交替层。
3.根据权利要求2所述的纳米结构元件,其中针状纳米级催化剂颗粒包含含Pt催化剂和含Ru催化剂的交替层。
4.根据权利要求1所述的纳米结构元件,其中针状纳米级催化剂颗粒的生长表面的组成与针状纳米级催化剂颗粒的整体组成不同。
5.根据权利要求4所述的纳米结构元件,其中针状纳米级催化剂颗粒包含Pt和Ru,其中针状纳米级催化剂颗粒的生长表面的组成所包含的Pt/Ru比值高于针状纳米级催化剂颗粒的整体组成。
6.一种制备权利要求2或3所述的纳米结构元件的方法,该方法包括将至少两种不同的催化剂材料重复交替地真空沉积到针状显微结构载体晶须上的步骤。
7.一种制备权利要求4或5所述的纳米结构元件的方法,该方法包括以下步骤:将至少两种不同的催化剂材料重复交替地真空沉积到针状显微结构载体晶须上,然后将至少一种、但少于所有种所述催化剂材料真空沉积到所述针状显微结构载体晶须上。
8.一氧化碳耐受性纳米结构元件,它包含权利要求3或权利要求5所述的纳米结构元件,其中催化剂生长表面上的Pt与Ru的重量比大于1∶1,催化剂材料整体的Pt和Ru之重量比在1∶2和1∶1之间。
9.一种一氧化碳耐受性催化剂,该催化剂包含Pt和Ru,其中催化剂整体的Pt和Ru之重量比小于1∶1,催化剂表面上的Pt和Ru之重量比大于1∶1。
10.一种电化学池,它包含权利要求1至8任一所述的纳米结构元件。
CN98811189A 1997-10-10 1998-04-29 用于膜电极组合件的催化剂及其制备方法 Pending CN1278747A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/948,910 1997-10-10
US08/948,910 US5879827A (en) 1997-10-10 1997-10-10 Catalyst for membrane electrode assembly and method of making

Publications (1)

Publication Number Publication Date
CN1278747A true CN1278747A (zh) 2001-01-03

Family

ID=25488372

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98811189A Pending CN1278747A (zh) 1997-10-10 1998-04-29 用于膜电极组合件的催化剂及其制备方法

Country Status (9)

Country Link
US (2) US5879827A (zh)
EP (1) EP1021246B1 (zh)
JP (1) JP4837822B2 (zh)
KR (2) KR100570136B1 (zh)
CN (1) CN1278747A (zh)
AU (1) AU7469698A (zh)
CA (1) CA2304157A1 (zh)
DE (1) DE69824875T2 (zh)
WO (1) WO1999019066A1 (zh)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100359730C (zh) * 2004-04-26 2008-01-02 株式会社东芝 液体燃料型固体高分子燃料电池、及其阳极和膜电极组件
CN100377396C (zh) * 2004-06-23 2008-03-26 三星Sdi株式会社 燃料电池的电极及其制备方法以及包含它的膜电极组件和燃料电池系统
CN100513308C (zh) * 2004-06-23 2009-07-15 佳能株式会社 制造碳纤维的方法及其应用
CN101656315A (zh) * 2008-08-22 2010-02-24 福特全球技术公司 具有薄膜网催化剂的催化剂层和燃料电池电极组件
CN101288193B (zh) * 2005-10-12 2010-10-06 3M创新有限公司 燃料电池纳米催化剂
CN101946360A (zh) * 2007-12-21 2011-01-12 3M创新有限公司 电极催化剂分散体和油墨组合物
CN101282787B (zh) * 2005-10-12 2011-05-18 3M创新有限公司 三元纳米催化剂及其制造方法
CN101263621B (zh) * 2005-09-13 2011-05-25 3M创新有限公司 通过螺旋位错持续生长形成纳米结构层
CN101263620B (zh) * 2005-09-13 2011-06-08 3M创新有限公司 多层纳米结构化薄膜
US8007957B2 (en) 2004-11-26 2011-08-30 Samsung Sdi Co., Ltd. Electrode for fuel cell, fuel cell system comprising the same, and method for preparing the same
US8017284B2 (en) 2004-09-08 2011-09-13 Samsung Sdi Co., Ltd. Electrode for a fuel cell, and a membrane-electrode assembly and fuel cell system comprising the same
US8057958B2 (en) 2005-07-29 2011-11-15 Samsung Sdi Co., Ltd. Electrode for fuel cell, membrane-electrode assembly comprising same and fuel cell system comprising same
CN102428598A (zh) * 2009-04-23 2012-04-25 3M创新有限公司 使用混合无机物的催化剂性质控制
CN102859769A (zh) * 2010-04-26 2013-01-02 3M创新有限公司 通过减小的阳极反应物压力进行的燃料电池水管理
CN102947990A (zh) * 2010-04-26 2013-02-27 3M创新有限公司 铂镍催化剂合金
CN103857831A (zh) * 2011-10-10 2014-06-11 3M创新有限公司 催化剂电极及其制备和使用方法
CN104300160A (zh) * 2014-09-29 2015-01-21 青岛康合伟业商贸有限公司 一种用于电化学电池电极的催化剂的制造方法
US9346673B2 (en) 2004-06-23 2016-05-24 Samsung Sdi Co., Ltd. Electrode for fuel cell, membrane-electrode assembly for fuel cell comprising the same, fuel cell system comprising the same, and method for preparing the electrode
CN105609786A (zh) * 2007-06-20 2016-05-25 约翰逊马西燃料电池有限公司 催化剂层
CN107858661A (zh) * 2017-11-02 2018-03-30 中国科学院山西煤炭化学研究所 一种甲醇电氧化催化剂及其制备方法和应用
CN109891646A (zh) * 2016-10-26 2019-06-14 3M创新有限公司 用于燃料电池的pt-ni-ir催化剂
CN109891645A (zh) * 2016-10-26 2019-06-14 3M创新有限公司 催化剂
CN110095490A (zh) * 2019-04-17 2019-08-06 北京工业大学 一种检测四针状氧化锌晶须电导特性的器件及方法
CN110639521A (zh) * 2019-09-29 2020-01-03 湘潭大学 暴露高指数面的氧化铁十二面体纳米晶体催化剂的制备方法
CN111048304A (zh) * 2019-12-31 2020-04-21 西安西电电力电容器有限责任公司 圆柱形电容器用电极结构及电容器
CN112259747A (zh) * 2020-10-21 2021-01-22 成都新柯力化工科技有限公司 一种生长晶须形成的燃料电池膜电极组件及制备方法

Families Citing this family (225)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6153327A (en) * 1995-03-03 2000-11-28 Southwest Research Institute Amorphous carbon comprising a catalyst
US6159533A (en) * 1997-09-11 2000-12-12 Southwest Research Institute Method of depositing a catalyst on a fuel cell electrode
WO1998021769A1 (fr) * 1996-11-11 1998-05-22 Gorina, Liliya Fedorovna Mode de fabrication d'une pile isolee a combustible haute temperature et de ses composants: cathode, anode, passage de courant, couches d'isolation electrique et d'interface, et de l'electrolyte
US6673127B1 (en) * 1997-01-22 2004-01-06 Denora S.P.A. Method of forming robust metal, metal oxide, and metal alloy layers on ion-conductive polymer membranes
US6890624B1 (en) * 2000-04-25 2005-05-10 Nanogram Corporation Self-assembled structures
EP0935303A4 (en) * 1997-07-28 2005-03-09 Nisshin Spinning SEPARATOR FOR FUEL CELLS
US6136412A (en) * 1997-10-10 2000-10-24 3M Innovative Properties Company Microtextured catalyst transfer substrate
US5879828A (en) * 1997-10-10 1999-03-09 Minnesota Mining And Manufacturing Company Membrane electrode assembly
US5879827A (en) * 1997-10-10 1999-03-09 Minnesota Mining And Manufacturing Company Catalyst for membrane electrode assembly and method of making
US6297185B1 (en) * 1998-02-23 2001-10-02 T/J Technologies, Inc. Catalyst
EP0940170B1 (en) * 1998-03-02 2002-09-11 Wako Pure Chemical Industries, Ltd. Microencapsulated osmium oxide composition
US6350369B1 (en) * 1998-04-14 2002-02-26 California Institute Of Technology Method and system for determining analyte activity
EP0952241B1 (en) * 1998-04-23 2001-09-05 N.E. Chemcat Corporation Supported Pt-Ru electrocatalyst, and electrodes, membrane-electrode assembly and solid polymer electrolyte fuel cells, using said electrocatalyst
US6610436B1 (en) * 1998-09-11 2003-08-26 Gore Enterprise Holdings Catalytic coatings and fuel cell electrodes and membrane electrode assemblies made therefrom
US8394330B1 (en) 1998-10-02 2013-03-12 The California Institute Of Technology Conductive organic sensors, arrays and methods of use
US6287717B1 (en) 1998-11-13 2001-09-11 Gore Enterprise Holdings, Inc. Fuel cell membrane electrode assemblies with improved power outputs
EP2096427A3 (en) * 1998-11-16 2009-11-18 California Institute of Technology Simultaneous determination of equilibrium and kinetic properties
AT409798B (de) * 1998-11-19 2002-11-25 Hoffmann La Roche Elektrodensystem
US7122152B2 (en) * 1999-05-10 2006-10-17 University Of Florida Spatiotemporal and geometric optimization of sensor arrays for detecting analytes fluids
DE60026309T2 (de) * 1999-05-10 2006-12-14 California Institute Of Technology, Pasadena Verwendung eines räumlich-zeitlichen reaktionsverhaltens in sensor-arrays zur detektion von analyten in fluiden
US6631333B1 (en) * 1999-05-10 2003-10-07 California Institute Of Technology Methods for remote characterization of an odor
US6238534B1 (en) * 1999-05-14 2001-05-29 3M Innovative Properties Company Hybrid membrane electrode assembly
US6403245B1 (en) 1999-05-21 2002-06-11 Microcoating Technologies, Inc. Materials and processes for providing fuel cells and active membranes
US6300000B1 (en) 1999-06-18 2001-10-09 Gore Enterprise Holdings Fuel cell membrane electrode assemblies with improved power outputs and poison resistance
US6890715B1 (en) * 1999-08-18 2005-05-10 The California Institute Of Technology Sensors of conducting and insulating composites
US6936370B1 (en) * 1999-08-23 2005-08-30 Ballard Power Systems Inc. Solid polymer fuel cell with improved voltage reversal tolerance
EP1232533A2 (en) 1999-11-17 2002-08-21 Neah Power Systems, Inc. Fuel cells having silicon substrates and/or sol-gel derived support structures
DE19959972A1 (de) 1999-12-13 2001-06-21 Basf Ag Herstellung von Materialbibliotheken durch Sputterverfahren
US6482763B2 (en) 1999-12-29 2002-11-19 3M Innovative Properties Company Suboxide fuel cell catalyst for enhanced reformate tolerance
US6589682B1 (en) * 2000-01-27 2003-07-08 Karen Fleckner Fuel cells incorporating nanotubes in fuel feed
US6502419B2 (en) 2000-04-13 2003-01-07 Sun Microsystems, Inc. Electro-desorption compressor
EP1290068B1 (en) * 2000-06-02 2010-08-25 SRI International Polymer membrane composition
US6656870B2 (en) 2000-09-29 2003-12-02 Osram Sylvania Inc. Tungsten-containing fuel cell catalyst and method of making same
US7727927B2 (en) * 2000-09-29 2010-06-01 Global Tungsten & Powders Corp. Method of making tungsten-containing fuel cell catalysts
US6663998B2 (en) * 2001-04-05 2003-12-16 The Technical University Of Denmark (Dtu) Anode catalyst materials for use in fuel cells
US6651521B2 (en) * 2001-05-01 2003-11-25 Hewlett-Packard Development Company, L.P. Method for sampling and testing data centers for metallic particulates
US7316855B2 (en) * 2001-06-01 2008-01-08 Polyfuel, Inc. Fuel cell assembly for portable electronic device and interface, control, and regulator circuit for fuel cell powered electronic device
TW582124B (en) * 2001-06-01 2004-04-01 Polyfuel Inc Fuel cell assembly for portable electronic device and interface, control, and regulator circuit for fuel cell powered electronic device
US6756651B2 (en) * 2001-09-26 2004-06-29 International Business Machines Corporation CMOS-compatible metal-semiconductor-metal photodetector
US6495279B1 (en) 2001-10-02 2002-12-17 Ford Global Technologies, Inc. Ultrahigh power density miniaturized solid-oxide fuel cell
KR100388433B1 (ko) * 2001-10-15 2003-06-25 한국과학기술연구원 금속 나노선의 제조방법
JP3634304B2 (ja) * 2001-12-12 2005-03-30 本田技研工業株式会社 固体高分子型燃料電池用電極構造体
US8389434B2 (en) * 2002-04-11 2013-03-05 Second Sight Medical Products, Inc. Catalyst and a method for manufacturing the same
US6974533B2 (en) * 2002-04-11 2005-12-13 Second Sight Medical Products, Inc. Platinum electrode and method for manufacturing the same
CN1669169A (zh) * 2002-05-13 2005-09-14 复合燃料公司 离子导电嵌段共聚物
US7354679B2 (en) * 2002-05-13 2008-04-08 Polyfuel, Inc. Ion conductive random copolymers
US6861105B2 (en) * 2002-06-18 2005-03-01 Guardian Industries Corp. Method of making automotive trim with chromium inclusive coating thereon, and corresponding automotive trim product
US20030234172A1 (en) * 2002-06-25 2003-12-25 Arthur Alan R. Method of facilitating a chemical reaction by applying radio frequency energy
US20030235753A1 (en) * 2002-06-25 2003-12-25 David Champion Method for fabricating high surface area catalysts
US7335908B2 (en) * 2002-07-08 2008-02-26 Qunano Ab Nanostructures and methods for manufacturing the same
US20040194664A1 (en) 2002-08-05 2004-10-07 Elementis Pigments, Inc. Low sulfur red iron oxide useful as a catalyst or catalyst component and a process for making low sulfur red iron oxide
JP3826867B2 (ja) * 2002-09-24 2006-09-27 日本電気株式会社 燃料電池用触媒担持粒子および燃料電池用触媒電極の製造方法
JP2004127814A (ja) 2002-10-04 2004-04-22 Toyota Motor Corp 燃料電池用電極触媒及びその製造方法
JP3861146B2 (ja) * 2002-10-25 2006-12-20 独立行政法人産業技術総合研究所 燃料電池用負極触媒
US20050150778A1 (en) * 2002-11-18 2005-07-14 Lewis Nathan S. Use of basic polymers in carbon black composite vapor detectors to obtain enhanced sensitivity and classification performance for volatile fatty acids
US20040175598A1 (en) * 2002-12-02 2004-09-09 Bliven David C. Fuel cell power supply for portable computing device and method for fuel cell power control
US20040146769A1 (en) * 2002-12-02 2004-07-29 Michael Birschbach Fuel cell cartridge for portable electronic device
WO2004064181A2 (en) * 2003-01-09 2004-07-29 Symyx Technologies Inc. Platinum-ruthenium-cobalt electrocatalyst
CA2519957C (en) * 2003-03-26 2012-06-26 Osram Sylvania Inc. Tungsten-based electrocatalyst and fuel cell containing same
JP4207120B2 (ja) * 2003-04-08 2009-01-14 ソニー株式会社 触媒電極並びに電気化学デバイス
US7571011B2 (en) * 2003-05-01 2009-08-04 Second Sight Medical Products, Inc. Adherent metal oxide coating forming a high surface area electrode
TW200505093A (en) * 2003-07-10 2005-02-01 Du Pont Electrodes and other fuel cell components having ultra low catalyst loadings coated thereon and processes for making and using the same
JP2007519165A (ja) * 2003-07-16 2007-07-12 キュンウォン エンタープライズ コ.エルティーディー. 燃料電池の電極触媒用ナノ構造金属‐カーボン複合体及びその製造方法
US7786403B2 (en) * 2003-08-28 2010-08-31 Nawo Tec Gmbh Method for high-resolution processing of thin layers using electron beams
US20050112450A1 (en) * 2003-09-08 2005-05-26 Intematix Corporation Low platinum fuel cell catalysts and method for preparing the same
US8211593B2 (en) * 2003-09-08 2012-07-03 Intematix Corporation Low platinum fuel cells, catalysts, and method for preparing the same
US7351444B2 (en) * 2003-09-08 2008-04-01 Intematix Corporation Low platinum fuel cell catalysts and method for preparing the same
US7419741B2 (en) * 2003-09-29 2008-09-02 3M Innovative Properties Company Fuel cell cathode catalyst
US20050092597A1 (en) * 2003-10-29 2005-05-05 O'neil James Method of forming thin-film electrodes
WO2005050763A1 (en) * 2003-11-14 2005-06-02 Arizona Board Of Regents Microfluidic fuel cell system and method for portable energy applications
JP4228911B2 (ja) * 2003-12-25 2009-02-25 パナソニック株式会社 燃料電池とその製造方法
US20110039690A1 (en) * 2004-02-02 2011-02-17 Nanosys, Inc. Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production
US20060021087A1 (en) 2004-04-09 2006-01-26 Baum James A Compositions and methods for control of insect infestations in plants
US20050250002A1 (en) * 2004-04-28 2005-11-10 National Research Council Of Canada Composite catalyst layer, electrode and passive mixing flow field for compressionless fuel cells
EP1750317A4 (en) * 2004-05-17 2007-10-31 Nippon Catalytic Chem Ind Anode support substrate for a solid oxide fuel cell and manufacturing process therefor
GB0411735D0 (en) * 2004-05-26 2004-06-30 Johnson Matthey Plc Fuel cell system
GB0411733D0 (en) * 2004-05-26 2004-06-30 Johnson Matthey Plc Anode structure
JP4734858B2 (ja) * 2004-06-28 2011-07-27 ソニー株式会社 触媒の製造方法及び触媒を有する燃料電池の製造方法
JP4908778B2 (ja) * 2004-06-30 2012-04-04 キヤノン株式会社 固体高分子型燃料電池の触媒層の製造方法および固体高分子型燃料電池の製造方法
US7229944B2 (en) * 2004-07-23 2007-06-12 Massachusetts Institute Of Technology Fiber structures including catalysts and methods associated with the same
US8101317B2 (en) * 2004-09-20 2012-01-24 3M Innovative Properties Company Durable fuel cell having polymer electrolyte membrane comprising manganese oxide
US7572534B2 (en) * 2004-09-20 2009-08-11 3M Innovative Properties Company Fuel cell membrane electrode assembly
US20090130514A1 (en) * 2004-10-14 2009-05-21 Canon Kabushiki Kaisha Membrane electrode assembly for fuel cell, method of producing same, and fuel cell
US7713910B2 (en) * 2004-10-29 2010-05-11 Umicore Ag & Co Kg Method for manufacture of noble metal alloy catalysts and catalysts prepared therewith
US20060105219A1 (en) * 2004-11-15 2006-05-18 Anderson Robert D Fuel cell component storage or shipment
US7608118B2 (en) * 2004-11-15 2009-10-27 3M Innovative Properties Company Preconditioning fuel cell membrane electrode assemblies
JP5013675B2 (ja) * 2004-11-25 2012-08-29 株式会社リコー 電極触媒の製造方法及び電極触媒
KR100669456B1 (ko) * 2004-11-26 2007-01-15 삼성에스디아이 주식회사 연료전지용 전극, 이를 포함하는 연료전지 및 연료전지용전극의 제조방법
KR101405353B1 (ko) 2004-12-09 2014-06-11 원드 매터리얼 엘엘씨 연료 전지용의 나노와이어 기반 막 전극 조립체
US8278011B2 (en) 2004-12-09 2012-10-02 Nanosys, Inc. Nanostructured catalyst supports
US7939218B2 (en) * 2004-12-09 2011-05-10 Nanosys, Inc. Nanowire structures comprising carbon
US7842432B2 (en) * 2004-12-09 2010-11-30 Nanosys, Inc. Nanowire structures comprising carbon
US7687176B2 (en) * 2004-12-10 2010-03-30 3M Innovative Properties Company Fuel cell
US20060292407A1 (en) * 2004-12-15 2006-12-28 Dominic Gervasio Microfluidic fuel cell system and method for portable energy applications
US7862956B2 (en) * 2004-12-29 2011-01-04 3M Innovative Properties Company Z-axis electrically conducting flow field separator
US7311990B2 (en) * 2004-12-29 2007-12-25 3M Innovative Properties Company Form-in-place fastening for fuel cell assemblies
US20060144791A1 (en) * 2004-12-30 2006-07-06 Debe Mark K Platinum recovery from nanostructured fuel cell catalyst
US20060147791A1 (en) * 2004-12-30 2006-07-06 Debe Mark K Platinum recovery from fuel cell stacks
US7410509B2 (en) * 2005-01-19 2008-08-12 Greatbatch Ltd. Sputtered ruthenium oxide coatings in electrolytic capacitor
CA2597290A1 (en) * 2005-02-16 2006-08-24 3M Innovative Properties Company Fuel cell catalyst
US7274458B2 (en) 2005-03-07 2007-09-25 3M Innovative Properties Company Thermoplastic film having metallic nanoparticle coating
JP4405934B2 (ja) * 2005-03-28 2010-01-27 Tanakaホールディングス株式会社 固体高分子形燃料電池の燃料極用触媒
CA2605342C (en) * 2005-04-28 2011-06-28 Canon Kabushiki Kaisha Hydrophobic catalyst layer for polymer electrolyte fuel cell and method of producing the same, and polymer electrolyte fuel cell and method of producing the same
WO2006119549A1 (en) * 2005-05-12 2006-11-16 Very Small Particle Company Pty Ltd Improved catalyst
CN102353696B (zh) * 2005-06-24 2014-04-23 华盛顿州立大学研究基金会 用于纳米结构的组分的制备和涂覆的方法
US7771512B2 (en) * 2005-06-24 2010-08-10 Washington State University Research Foundation Apparatus with high surface area nanostructures for hydrogen storage, and methods of storing hydrogen
KR101213475B1 (ko) * 2005-08-20 2012-12-20 삼성에스디아이 주식회사 중형 다공성 탄소 복합체, 그 제조방법 및 이를 이용한연료전지
US7790304B2 (en) 2005-09-13 2010-09-07 3M Innovative Properties Company Catalyst layers to enhance uniformity of current density in membrane electrode assemblies
US8367267B2 (en) * 2005-10-28 2013-02-05 3M Innovative Properties Company High durability fuel cell components with cerium oxide additives
US8628871B2 (en) * 2005-10-28 2014-01-14 3M Innovative Properties Company High durability fuel cell components with cerium salt additives
US20070102283A1 (en) * 2005-11-10 2007-05-10 Won Tae K PVD method to condition a substrate surface
JP5189271B2 (ja) * 2005-11-10 2013-04-24 国立大学法人長岡技術科学大学 アノード触媒及びその製造方法
US20080259976A1 (en) * 2005-11-30 2008-10-23 The Governors Of The University Of Alberta Organic Columnar Thin Films
KR100706450B1 (ko) * 2005-12-08 2007-04-10 현대자동차주식회사 고체 전해질 연료전지용 혼합 전극 촉매 소재의 제조방법
KR100752265B1 (ko) * 2005-12-27 2007-08-29 경원엔터프라이즈 주식회사 연료전지의 전극 촉매용 나노 구조 금속-카본 복합체 및그의 제조방법
KR20070095055A (ko) 2006-03-20 2007-09-28 삼성에스디아이 주식회사 연료 전지용 막-전극 어셈블리, 이의 제조방법 및 이를포함하는 연료 전지 시스템
US7740902B2 (en) * 2006-04-20 2010-06-22 3M Innovative Properties Company Method for making oxygen-reducing catalyst layers
US7906251B2 (en) * 2006-04-20 2011-03-15 3M Innovative Properties Company Oxygen-reducing catalyst layer
US7842153B2 (en) * 2006-06-23 2010-11-30 Atomic Energy Council-Institute Of Nuclear Energy Research Decal method for transferring platinum-and platinum alloy-based catalysts with nanonetwork structures
US7753978B2 (en) * 2006-06-30 2010-07-13 Caterpillar Inc Filter system
US8383293B2 (en) * 2006-11-22 2013-02-26 GM Global Technology Operations LLC Supports for fuel cell catalysts based on transition metal silicides
US8288059B2 (en) 2006-12-15 2012-10-16 3M Innovative Properties Company Processing methods and systems for assembling fuel cell perimeter gaskets
US7732083B2 (en) * 2006-12-15 2010-06-08 3M Innovative Properties Company Gas diffusion layer incorporating a gasket
US8012284B2 (en) * 2006-12-15 2011-09-06 3M Innovative Properties Company Method and apparatus for fabricating roll good fuel cell subassemblies
JP5105888B2 (ja) * 2007-02-01 2012-12-26 キヤノン株式会社 ガス拡散電極、燃料電池及びガス拡散電極の製造方法
WO2008127828A1 (en) 2007-04-12 2008-10-23 3M Innovative Properties Company High performance, high durability non-precious metal fuel cell catalysts
US20080315459A1 (en) * 2007-06-21 2008-12-25 3M Innovative Properties Company Articles and methods for replication of microstructures and nanofeatures
US20090114618A1 (en) * 2007-06-21 2009-05-07 3M Innovative Properties Company Method of making hierarchical articles
US20090041986A1 (en) * 2007-06-21 2009-02-12 3M Innovative Properties Company Method of making hierarchical articles
GB0714460D0 (en) * 2007-07-25 2007-09-05 Johnson Matthey Plc Catalyst
US8900420B2 (en) * 2007-08-20 2014-12-02 3M Innovative Properties Company Catalyst production process
KR100957302B1 (ko) * 2007-09-07 2010-05-12 현대자동차주식회사 연료전지용 막-전극 접합체의 제조방법
JP5544456B2 (ja) * 2007-09-21 2014-07-09 独立行政法人産業技術総合研究所 貴金属ナノ構造体及び電気化学リアクター
US20110053020A1 (en) * 2007-11-09 2011-03-03 Washington State University Research Foundation Catalysts and related methods
US7709413B2 (en) * 2007-11-26 2010-05-04 Kabuhsiki Kaisha Toshiba Solid catalysts and fuel cell employing the solid catalysts
JP2009125685A (ja) * 2007-11-26 2009-06-11 Toshiba Corp 固体触媒およびこの固体触媒を用いた燃料電池
FR2924359B1 (fr) * 2007-11-30 2010-02-12 Commissariat Energie Atomique Procede de preparation de depot de nanoparticules metalliques par depot physique en phase vapeur
DE102007062033A1 (de) 2007-12-21 2009-06-25 Robert Bosch Gmbh Brennstoffzelle, Strömungsfeldplatte und Verfahren zur Herstellung einer Strömungsfeldplatte
US8426078B2 (en) * 2007-12-21 2013-04-23 3M Innovative Properties Company Manufacturing of fuel cell membrane electrode assemblies incorporating photocurable cationic crosslinkable resin gasket
JP5580312B2 (ja) * 2008-08-25 2014-08-27 スリーエム イノベイティブ プロパティズ カンパニー 電圧反転耐性を有する燃料電池用ナノ触媒
US8507152B2 (en) * 2009-05-14 2013-08-13 GM Global Technology Operations LLC Fabrication of electrodes with multiple nanostructured thin catalytic layers
US8481231B2 (en) 2009-05-14 2013-07-09 GM Global Technology Operations LLC Preparation of nanostructured thin catalytic layer-based electrode ink
US8512908B2 (en) 2009-05-14 2013-08-20 GM Global Technology Operations LLC Fabrication of catalyst coated diffusion media layers containing nanostructured thin catalytic layers
US8802329B2 (en) * 2009-05-14 2014-08-12 GM Global Technology Operations LLC Electrode containing nanostructured thin catalytic layers and method of making
KR102067922B1 (ko) 2009-05-19 2020-01-17 원드 매터리얼 엘엘씨 배터리 응용을 위한 나노구조화된 재료
US9312545B2 (en) 2009-07-17 2016-04-12 Danmarks Tekniske Universitet Platinum and palladium alloys suitable as fuel cell electrodes
ITMI20091531A1 (it) * 2009-09-03 2011-03-04 Industrie De Nora Spa Attivazione continua di strutture elettrodiche mediante tecniche di deposizione in vuoto
CN102668201B (zh) * 2009-12-22 2015-05-20 3M创新有限公司 具有纳米结构化催化剂和分散催化剂亚层的燃料电池电极
TWI400195B (zh) * 2010-01-08 2013-07-01 Iner Aec Executive Yuan 儲氫結構形成方法
JP5973423B2 (ja) 2010-04-26 2016-08-23 スリーエム イノベイティブ プロパティズ カンパニー アニーリングされたナノ構造薄膜触媒
US20110143263A1 (en) * 2010-04-29 2011-06-16 Ford Global Technologies, Llc Catalyst Layer Having Thin Film Nanowire Catalyst and Electrode Assembly Employing the Same
US9570760B2 (en) * 2010-04-29 2017-02-14 Ford Global Technologies, Llc Fuel cell electrode assembly and method of making the same
FR2959610B1 (fr) * 2010-04-30 2013-01-04 Dreux Agglomeration Procede de depot d'une couche catalytique pour pile a combustible
JP5438245B2 (ja) * 2010-05-03 2014-03-12 スリーエム イノベイティブ プロパティズ カンパニー ナノ構造の作製方法
US8445164B2 (en) 2010-05-27 2013-05-21 GM Global Technology Operations LLC Electrode containing nanostructured thin catalytic layers and method of making
US8765327B2 (en) 2010-07-12 2014-07-01 3M Innovative Properties Company Fuel cell electrodes with conduction networks
TWI512129B (zh) * 2010-08-06 2015-12-11 Industrie De Nora Spa 電解製程所用電極之製法
JP5700397B2 (ja) * 2010-08-06 2015-04-15 国立大学法人名古屋大学 ナノ微粒子を担持したナノ構造体の製造方法
US9640802B2 (en) * 2010-10-26 2017-05-02 Ford Global Technologies, Llc Catalyst assembly and method of making the same
US10003081B2 (en) * 2010-10-26 2018-06-19 Ford Global Technologies, Llc Catalyst assembly and method of making the same
US20120196741A1 (en) * 2011-01-28 2012-08-02 Ford Global Technologies, Llc Thin Film Ink Catalyst
US8796170B2 (en) 2011-02-04 2014-08-05 Ford Global Technologies, Llc Layered catalyst
US8623779B2 (en) 2011-02-04 2014-01-07 Ford Global Technologies, Llc Catalyst layer supported on substrate hairs of metal oxides
US20130209898A1 (en) * 2011-09-30 2013-08-15 Vojislav Stamenkovic Mesostructured thin-films as electrocatalysts with tunable compositions and surface morphology
US9246177B2 (en) 2011-09-30 2016-01-26 Uchicago Argonne, Llc Bimetallic alloy electrocatalysts with multilayered platinum-skin surfaces
KR101349075B1 (ko) 2011-10-10 2014-01-16 한국과학기술연구원 물질전달성이 향상된 연료전지 및 그 제조 방법
EP2774203B8 (en) 2011-11-04 2016-06-01 Greenerity GmbH Method for the preparation of catalyst-coated membranes
EP2798690A1 (en) 2011-12-29 2014-11-05 3M Innovative Properties Company Electrochemical cell electrode
JP6274716B2 (ja) * 2012-03-02 2018-02-07 スリーエム イノベイティブ プロパティズ カンパニー ガス拡散層およびガス拡散層を含む膜電極接合体、ならびに膜電極接合体の再生方法
DK2830762T3 (da) 2012-03-30 2023-07-17 Johnson Matthey Hydrogen Tech Limited Katalytisk tyndfilmsmateriale til anvendelse i brændselsceller
US8518596B1 (en) 2012-05-16 2013-08-27 GM Global Technology Operations LLC Low cost fuel cell diffusion layer configured for optimized anode water management
US20150325861A1 (en) 2012-07-06 2015-11-12 Denmarks Tekniske Universitet Platinum and palladium alloys suitable as fuel cell electrodes
GB201214326D0 (en) 2012-08-10 2012-09-26 Johnson Matthey Fuel Cells Ltd Process
US9153822B2 (en) 2012-08-14 2015-10-06 Ford Global Technologies, Llc Nano-structured thin film catalyst
CA2891134A1 (en) 2012-11-21 2014-05-30 Danmarks Tekniske Universitet Platinum and palladium alloys suitable as fuel cell electrodes
CN103849885B (zh) * 2012-12-06 2016-12-21 清华大学 阴极催化剂,阴极材料及其制备方法及反应器
KR20150098647A (ko) 2012-12-19 2015-08-28 쓰리엠 이노베이티브 프로퍼티즈 캄파니 나노구조화된 휘스커 물품
US9689057B2 (en) * 2012-12-26 2017-06-27 Posco Steel sheet coated with aluminum-magnesium
US20160079604A1 (en) 2013-04-23 2016-03-17 3M Company Catalyst electrodes and method of making it
CN103471979B (zh) * 2013-08-14 2016-08-31 镇江耐丝新型材料有限公司 一种金刚线表面颗粒的计算方法
JP6331580B2 (ja) * 2014-03-28 2018-05-30 日揮触媒化成株式会社 電極触媒、触媒層前駆体、触媒層、及び燃料電池
WO2015183128A1 (ru) * 2014-05-30 2015-12-03 Общество С Ограниченной Ответственностью "Эй Ти Энерджи" Способ изготовления катализатора на основе платины и катализатор на основе платины
WO2016100034A1 (en) 2014-12-15 2016-06-23 3M Innovative Properties Company Membrane electrode assembly
CN104404466A (zh) * 2014-12-26 2015-03-11 合肥京东方光电科技有限公司 磁控溅射镀膜方法及系统
CA2979531C (en) * 2015-03-13 2023-05-09 Stc.Unm Multi-layered meas with hydrophobicity gradient
CN104818463B (zh) * 2015-04-09 2017-10-10 河南科技大学 一种纳米铂包覆金颗粒膜复合材料的制备方法
EP3303657B1 (en) * 2015-05-26 2023-06-28 3M Innovative Properties Company Oxygen evolution catalyst electrodes, and methods of making and using the same
US10384201B2 (en) * 2016-02-17 2019-08-20 Korea Institute Of Energy Research Direct synthesis method of nanostructured catalyst particles on various supports and catalyst structure produced by the same
DE102016203936A1 (de) 2016-03-10 2017-09-28 Volkswagen Aktiengesellschaft Geträgertes Katalysatormaterial für eine Brennstoffzelle, Verfahren zu seiner Herstellung sowie Elektrodenstruktur und Brennstoffzelle mit einem solchen Katalysatormaterial
DE102016111981A1 (de) 2016-06-30 2018-01-04 Volkswagen Ag Verfahren zur Herstellung eines geträgerten Katalysatormaterials für eine Brennstoffzelle
CN109891647A (zh) 2016-10-26 2019-06-14 3M创新有限公司 用于燃料电池的pt-ni-ir催化剂
KR20190076999A (ko) 2016-10-26 2019-07-02 쓰리엠 이노베이티브 프로퍼티즈 캄파니 촉매
JP6809897B2 (ja) 2016-12-20 2021-01-06 スリーエム イノベイティブ プロパティズ カンパニー 膜電極接合体及び固体高分子形燃料電池
WO2018118877A1 (en) 2016-12-20 2018-06-28 3M Innovative Properties Company Electrolyzer including a porous hydrophobic gas diffusion layer
CN110475907B (zh) 2017-04-03 2022-08-23 3M创新有限公司 水电解槽
US11414770B2 (en) 2017-04-03 2022-08-16 3M Innovative Properties Company Water electrolyzers
WO2018185617A1 (en) 2017-04-03 2018-10-11 3M Innovative Properties Company Water electrolyzers
RU2655507C1 (ru) * 2017-05-22 2018-05-28 Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" (ФИЦ КНЦ СО РАН, КНЦ СО РАН) Способ получения на подложке пленок с ферромагнитными кластерами Mn5Ge3Ox в матрице GeO2
EP3635806B1 (en) 2017-06-05 2021-10-06 3M Innovative Properties Company Electrode catalyst-containing dispersion compositions and articles therefrom
KR20200102471A (ko) 2017-12-22 2020-08-31 쓰리엠 이노베이티브 프로퍼티즈 캄파니 전해 장치를 위한 분산된 촉매-함유 애노드 조성물
US20210008528A1 (en) 2018-04-04 2021-01-14 3M Innovative Properties Company Catalyst comprising pt, ni, and ru
EP3776701A1 (en) * 2018-04-04 2021-02-17 3M Innovative Properties Company Catalyst
US11404702B2 (en) 2018-04-04 2022-08-02 3M Innovative Properties Company Catalyst comprising Pt, Ni, and Cr
CN111954950A (zh) * 2018-04-04 2020-11-17 3M创新有限公司 包含Pt、Ni和Ta的催化剂
CN112042023A (zh) 2018-04-13 2020-12-04 3M创新有限公司 催化剂
EP3776704B1 (en) 2018-04-13 2022-12-28 3M Innovative Properties Company Catalyst
EP3776703B1 (en) 2018-04-13 2024-02-21 3M Innovative Properties Company Catalyst
WO2019212926A1 (en) 2018-05-01 2019-11-07 3M Innovative Properties Company Platinum-coated polyimide particles and articles thereof
US10833332B2 (en) 2018-06-01 2020-11-10 Uchicago Argonne, Llc Systems and methods for scale-up synthesis multi-layered Pt-skin nanoparticle catalysts
US10637072B2 (en) 2018-06-12 2020-04-28 Uchicago Argonne, Llc Systems and methods for PTNI nanocages
US11560632B2 (en) 2018-09-27 2023-01-24 3M Innovative Properties Company Membrane, membrane electrode assembly, and water electrolyzer including the same
EP3856956A4 (en) 2018-09-28 2022-08-10 3M Innovative Properties Company HYDROGEN REFUELING SYSTEM
EP3895238A1 (en) 2018-12-13 2021-10-20 3M Innovative Properties Company Catalyst
JP2022514560A (ja) 2018-12-19 2022-02-14 スリーエム イノベイティブ プロパティズ カンパニー 水電解装置
EP3900088A1 (en) 2018-12-21 2021-10-27 3M Innovative Properties Company Fluoropolymer ionomers with reduced catalyst poisoning and articles therefrom
KR102188585B1 (ko) * 2019-01-18 2020-12-09 한국과학기술연구원 금속 단일 원자 촉매 및 이의 제조방법
US20210087698A1 (en) * 2019-09-20 2021-03-25 Triad National Security, Llc Water electrolysis
US11679377B2 (en) 2020-01-28 2023-06-20 Uchicago Argonne, Llc Control of nanostructure and activity by alloying and/or segregation
US11628427B2 (en) 2020-01-28 2023-04-18 Uchicago Argonne, Llc Segregation induced core-shell structure
US20230219073A1 (en) * 2020-03-26 2023-07-13 The Regents Of The University Of Michigan Doping gradient-based photocatalysis
EP3975299A1 (de) 2020-09-29 2022-03-30 Technische Universität Berlin Herstellungsmethode von katalysatorbeschichteten membranen
US20240068115A1 (en) * 2021-02-05 2024-02-29 Smoltek Ab An electrolyzer comprising a catalyst supported on a nanostructure
SE2130154A1 (en) * 2021-06-04 2022-12-05 Smoltek Ab An electrolyzer with a nanostructured catalyst support
SE545366C2 (en) * 2021-02-05 2023-07-18 Smoltek Ab An electrolyzer and a method for producing a catalyst supported on a nanostructure
CN115041157B (zh) * 2022-06-10 2023-08-08 佛山科学技术学院 一种制氢催化剂载体及其制备方法

Family Cites Families (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL142204B (nl) * 1965-02-01 1974-05-15 Tno Werkwijze voor het vervaardigen van kunstmatige draden uit warmtegevoelige polymeren en aldus verkregen draden.
US3442715A (en) * 1965-03-01 1969-05-06 Monsanto Res Corp Method of making diffusion membrane electrodes from visco elastic dough
US3676222A (en) * 1970-09-10 1972-07-11 Monsanto Res Corp Conductive carbon membrane electrode
US3969545A (en) * 1973-03-01 1976-07-13 Texas Instruments Incorporated Light polarizing material method and apparatus
JPS5146589A (en) * 1974-10-21 1976-04-21 Kureha Chemical Ind Co Ltd Shinkinakozo ojusuru ionkokanmaku oyobi sono seizoho
DE2616662C2 (de) * 1976-04-15 1984-02-02 Dornier System Gmbh, 7990 Friedrichshafen Verfahren zur herstellung einer selektiven solarabsorberschicht auf aluminium
JPS52130491A (en) * 1976-04-27 1977-11-01 Toyo Soda Mfg Co Ltd Improvement of current efficiency of cation exchange membranes
US4155781A (en) * 1976-09-03 1979-05-22 Siemens Aktiengesellschaft Method of manufacturing solar cells, utilizing single-crystal whisker growth
US4252843A (en) * 1977-02-18 1981-02-24 Minnesota Mining And Manufacturing Company Process for forming a microstructured transmission and reflectance modifying coating
US4209008A (en) * 1977-07-26 1980-06-24 United Technologies Corporation Photon absorbing surfaces and methods for producing the same
FR2423065A1 (fr) * 1978-04-12 1979-11-09 Battelle Memorial Institute Procede de fabrication d'electrodes pour piles a combustible, dispositif pour la mise en oeuvre du procede et electrodes resultant de ce procede
DE2917234C3 (de) * 1978-04-28 1982-05-13 Rikagaku Kenkyusho, Wako, Saitama Katalysator zur Konzentrierung von Wasserstoffisotopen
US4252865A (en) * 1978-05-24 1981-02-24 National Patent Development Corporation Highly solar-energy absorbing device and method of making the same
US4340276A (en) * 1978-11-01 1982-07-20 Minnesota Mining And Manufacturing Company Method of producing a microstructured surface and the article produced thereby
US4215183A (en) * 1979-01-02 1980-07-29 General Electric Company Wet proofed conductive current collector for the electrochemical cells
US4550123A (en) * 1979-12-28 1985-10-29 Albany International Corp. Thermally plastifiable compositions for microporous sorbent structure
JPS6046515B2 (ja) * 1980-09-27 1985-10-16 株式会社東芝 燃料電池の電解質保持マトリックスの製造方法
US4396643A (en) * 1981-06-29 1983-08-02 Minnesota Mining And Manufacturing Company Radiation absorbing surfaces
JPS58201823A (ja) * 1982-05-18 1983-11-24 Asahi Glass Co Ltd イオン交換膜の製造方法
US4539256A (en) * 1982-09-09 1985-09-03 Minnesota Mining And Manufacturing Co. Microporous sheet material, method of making and articles made therewith
FR2540882A1 (fr) * 1983-02-15 1984-08-17 Shell Int Research Hydrodesulfuration catalytique de melanges d'hydrocarbures
US4557957A (en) * 1983-03-18 1985-12-10 W. L. Gore & Associates, Inc. Microporous metal-plated polytetrafluoroethylene articles and method of manufacture
US4720400A (en) * 1983-03-18 1988-01-19 W. L. Gore & Associates, Inc. Microporous metal-plated polytetrafluoroethylene articles and method of manufacture
JPS60825A (ja) * 1983-06-20 1985-01-05 Res Dev Corp Of Japan 微粒子の製造方法
US4568598A (en) * 1984-10-30 1986-02-04 Minnesota Mining And Manufacturing Company Article with reduced friction polymer sheet support
US4826554A (en) * 1985-12-09 1989-05-02 The Dow Chemical Company Method for making an improved solid polymer electrolyte electrode using a binder
US5143805A (en) * 1986-03-24 1992-09-01 W. R. Grace & Co.-Conn: Cathodic electrode
US4735875A (en) * 1986-03-24 1988-04-05 W. R. Grace & Co. Cathodic electrode
US4654281A (en) * 1986-03-24 1987-03-31 W. R. Grace & Co. Composite cathodic electrode
US4853305A (en) * 1986-03-24 1989-08-01 W. R. Grace & Co.-Conn. Cathodic electrode
US4731310A (en) * 1986-08-15 1988-03-15 W. R. Grace & Co. Cathodic electrode
US4992126A (en) * 1986-08-08 1991-02-12 The Dow Chemical Company Method for making a current collector bonded to a solid polymer membrane
US4791037A (en) * 1986-08-15 1988-12-13 W. R. Grace & Co.-Conn. Carbon electrode
US5039561A (en) * 1986-08-25 1991-08-13 Minnesota Mining And Manufacturing Company Method for preparing an article having surface layer of uniformly oriented, crystalline, organic microstructures
US4812352A (en) * 1986-08-25 1989-03-14 Minnesota Mining And Manufacturing Company Article having surface layer of uniformly oriented, crystalline, organic microstructures
US4849311A (en) * 1986-09-24 1989-07-18 Toa Nenryo Kogyo Kabushiki Kaisha Immobilized electrolyte membrane
JPS63117321A (ja) * 1986-11-04 1988-05-21 Riken Corp 垂直磁気異方性膜の製造方法
US4726989A (en) * 1986-12-11 1988-02-23 Minnesota Mining And Manufacturing Microporous materials incorporating a nucleating agent and methods for making same
US4867881A (en) * 1987-09-14 1989-09-19 Minnesota Minning And Manufacturing Company Orientied microporous film
JP2758407B2 (ja) * 1988-07-01 1998-05-28 株式会社リケン 極微細柱状晶構造薄膜
US5176786A (en) * 1988-07-13 1993-01-05 Minnesota Mining And Manufacturing Company Organic thin film controlled molecular epitaxy
US4863813A (en) * 1988-09-15 1989-09-05 Bell Communications Research, Inc. Primary source of electrical energy using a mixture of fuel and oxidizer
US4957943A (en) * 1988-10-14 1990-09-18 Minnesota Mining And Manufacturing Company Particle-filled microporous materials
US4910099A (en) * 1988-12-05 1990-03-20 The United States Of America As Represented By The United States Department Of Energy Preventing CO poisoning in fuel cells
US5120594A (en) * 1989-11-20 1992-06-09 Minnesota Mining And Manufacturing Company Microporous polyolefin shaped articles with patterned surface areas of different porosity
US5395705A (en) * 1990-08-31 1995-03-07 The Dow Chemical Company Electrochemical cell having an electrode containing a carbon fiber paper coated with catalytic metal particles
US5162167A (en) * 1990-09-11 1992-11-10 Allied-Signal Inc. Apparatus and method of fabricating a monolithic solid oxide fuel cell
US5138220A (en) * 1990-12-05 1992-08-11 Science Applications International Corporation Field emission cathode of bio-molecular or semiconductor-metal eutectic composite microstructures
US5238729A (en) * 1991-04-05 1993-08-24 Minnesota Mining And Manufacturing Company Sensors based on nanosstructured composite films
US5336558A (en) * 1991-06-24 1994-08-09 Minnesota Mining And Manufacturing Company Composite article comprising oriented microstructures
US5641565A (en) * 1991-07-05 1997-06-24 Asahi Kasei Kogyo Kabushiki Kaisha Separator for a battery using an organic electrolytic solution and method for preparing the same
US5260360A (en) * 1991-10-18 1993-11-09 Minnesota Mining And Manufacturing Company Oil, water and sweat repellent microporous membrane materials
DE4140972A1 (de) * 1991-12-12 1993-06-17 Metallgesellschaft Ag Membran fuer eine gasdiffusionselektrode, verfahren zur herstellung der membran und gasdiffusionselektrode mit membran
US5264299A (en) * 1991-12-26 1993-11-23 International Fuel Cells Corporation Proton exchange membrane fuel cell support plate and an assembly including the same
CA2070588A1 (en) * 1991-12-31 1993-07-01 Kimberly-Clark Worldwide, Inc. Conductive fabric and method of producing same
DE4208057C2 (de) * 1992-03-13 1993-12-23 Deutsche Aerospace Zellaufbau für Elektrolyseure und Brennstoffzellen
US5399184A (en) * 1992-05-01 1995-03-21 Chlorine Engineers Corp., Ltd. Method for fabricating gas diffusion electrode assembly for fuel cells
JPH0668157A (ja) * 1992-05-04 1994-03-11 Internatl Business Mach Corp <Ibm> データベース内の情報を表示する装置および方法
US5277996A (en) * 1992-07-02 1994-01-11 Marchetti George A Fuel cell electrode and method for producing same
US5334292A (en) * 1992-08-17 1994-08-02 Board Of Regents, The University Of Texas System Conducting polymer films containing nanodispersed catalyst particles: a new type of composite material for technological applications
JP3271801B2 (ja) * 1992-09-22 2002-04-08 田中貴金属工業株式会社 高分子固体電解質型燃料電池、該燃料電池の加湿方法、及び製造方法
US5338430A (en) * 1992-12-23 1994-08-16 Minnesota Mining And Manufacturing Company Nanostructured electrode membranes
US5352651A (en) * 1992-12-23 1994-10-04 Minnesota Mining And Manufacturing Company Nanostructured imaging transfer element
US5460896A (en) * 1993-01-22 1995-10-24 Kabushiki Kaisha Equos Research Fuel cell
US5635039A (en) * 1993-07-13 1997-06-03 Lynntech, Inc. Membrane with internal passages to permit fluid flow and an electrochemical cell containing the same
JPH07112135A (ja) * 1993-08-23 1995-05-02 Sumitomo Electric Ind Ltd 排気ガス浄化フィルタ材及びその製造方法
US5932185A (en) * 1993-08-23 1999-08-03 The Regents Of The University Of California Method for making thin carbon foam electrodes
US5429886A (en) * 1993-08-30 1995-07-04 Struthers; Ralph C. Hydrocarbon (hydrogen)/air aerogel catalyzed carbon electrode fuel cell system
US5834523A (en) * 1993-09-21 1998-11-10 Ballard Power Systems, Inc. Substituted α,β,β-trifluorostyrene-based composite membranes
JPH0792615A (ja) * 1993-09-24 1995-04-07 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
US5514461A (en) * 1993-10-05 1996-05-07 Kureha Chemical Industry Co., Ltd. Vinylidene fluoride porous membrane and method of preparing the same
US5326619A (en) * 1993-10-28 1994-07-05 Minnesota Mining And Manufacturing Company Thermal transfer donor element comprising a substrate having a microstructured surface
GB9324101D0 (en) * 1993-11-23 1994-01-12 Johnson Matthey Plc Improved manufacture of electrodes
US5459016A (en) * 1993-12-16 1995-10-17 Minnesota Mining And Manufacturing Company Nanostructured thermal transfer donor element
JPH0817440A (ja) * 1994-07-04 1996-01-19 Tanaka Kikinzoku Kogyo Kk 高分子電解質型電気化学セル用電極
US5523177A (en) * 1994-10-12 1996-06-04 Giner, Inc. Membrane-electrode assembly for a direct methanol fuel cell
US5659296A (en) * 1994-10-24 1997-08-19 Minnesota Mining And Manufacturing Company Exposure indicating apparatus
KR0134462B1 (ko) * 1994-10-26 1998-04-20 배순훈 한쪽면에 복수개의 기록층을 형성한 광디스크용 광 픽업 시스템
US5547551A (en) * 1995-03-15 1996-08-20 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
US5599614A (en) * 1995-03-15 1997-02-04 W. L. Gore & Associates, Inc. Integral composite membrane
JPH08215571A (ja) * 1995-02-16 1996-08-27 Ykk Kk 複合超微粒子及びそれを用いたメタノールの合成・改質用触媒
US5620807A (en) * 1995-08-31 1997-04-15 The Dow Chemical Company Flow field assembly for electrochemical fuel cells
US5702755A (en) * 1995-11-06 1997-12-30 The Dow Chemical Company Process for preparing a membrane/electrode assembly
US5879827A (en) * 1997-10-10 1999-03-09 Minnesota Mining And Manufacturing Company Catalyst for membrane electrode assembly and method of making

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100359730C (zh) * 2004-04-26 2008-01-02 株式会社东芝 液体燃料型固体高分子燃料电池、及其阳极和膜电极组件
CN100377396C (zh) * 2004-06-23 2008-03-26 三星Sdi株式会社 燃料电池的电极及其制备方法以及包含它的膜电极组件和燃料电池系统
CN100513308C (zh) * 2004-06-23 2009-07-15 佳能株式会社 制造碳纤维的方法及其应用
US9346673B2 (en) 2004-06-23 2016-05-24 Samsung Sdi Co., Ltd. Electrode for fuel cell, membrane-electrode assembly for fuel cell comprising the same, fuel cell system comprising the same, and method for preparing the electrode
US8017284B2 (en) 2004-09-08 2011-09-13 Samsung Sdi Co., Ltd. Electrode for a fuel cell, and a membrane-electrode assembly and fuel cell system comprising the same
US8007957B2 (en) 2004-11-26 2011-08-30 Samsung Sdi Co., Ltd. Electrode for fuel cell, fuel cell system comprising the same, and method for preparing the same
US8057958B2 (en) 2005-07-29 2011-11-15 Samsung Sdi Co., Ltd. Electrode for fuel cell, membrane-electrode assembly comprising same and fuel cell system comprising same
CN101263621B (zh) * 2005-09-13 2011-05-25 3M创新有限公司 通过螺旋位错持续生长形成纳米结构层
CN101263620B (zh) * 2005-09-13 2011-06-08 3M创新有限公司 多层纳米结构化薄膜
CN101282787B (zh) * 2005-10-12 2011-05-18 3M创新有限公司 三元纳米催化剂及其制造方法
CN101288193B (zh) * 2005-10-12 2010-10-06 3M创新有限公司 燃料电池纳米催化剂
CN105609786A (zh) * 2007-06-20 2016-05-25 约翰逊马西燃料电池有限公司 催化剂层
CN105609786B (zh) * 2007-06-20 2019-12-17 约翰逊马西燃料电池有限公司 催化剂层
CN101946360A (zh) * 2007-12-21 2011-01-12 3M创新有限公司 电极催化剂分散体和油墨组合物
CN101656315B (zh) * 2008-08-22 2014-08-20 福特全球技术公司 具有薄膜网催化剂的催化剂层和燃料电池电极组件
CN101656315A (zh) * 2008-08-22 2010-02-24 福特全球技术公司 具有薄膜网催化剂的催化剂层和燃料电池电极组件
CN104466205A (zh) * 2009-04-23 2015-03-25 3M创新有限公司 使用混合无机物的催化剂性质控制
CN102428598A (zh) * 2009-04-23 2012-04-25 3M创新有限公司 使用混合无机物的催化剂性质控制
CN104466205B (zh) * 2009-04-23 2018-04-13 3M创新有限公司 使用混合无机物的催化剂性质控制
CN102947990A (zh) * 2010-04-26 2013-02-27 3M创新有限公司 铂镍催化剂合金
CN102859769A (zh) * 2010-04-26 2013-01-02 3M创新有限公司 通过减小的阳极反应物压力进行的燃料电池水管理
CN102859769B (zh) * 2010-04-26 2017-05-31 3M创新有限公司 通过减小的阳极反应物压力进行的燃料电池水管理
CN103857831A (zh) * 2011-10-10 2014-06-11 3M创新有限公司 催化剂电极及其制备和使用方法
CN103857831B (zh) * 2011-10-10 2016-08-17 3M创新有限公司 催化剂电极及其制备和使用方法
CN104300160A (zh) * 2014-09-29 2015-01-21 青岛康合伟业商贸有限公司 一种用于电化学电池电极的催化剂的制造方法
CN109891645A (zh) * 2016-10-26 2019-06-14 3M创新有限公司 催化剂
CN109891646A (zh) * 2016-10-26 2019-06-14 3M创新有限公司 用于燃料电池的pt-ni-ir催化剂
CN107858661B (zh) * 2017-11-02 2019-03-05 中国科学院山西煤炭化学研究所 一种甲醇电氧化催化剂及其制备方法和应用
CN107858661A (zh) * 2017-11-02 2018-03-30 中国科学院山西煤炭化学研究所 一种甲醇电氧化催化剂及其制备方法和应用
CN110095490A (zh) * 2019-04-17 2019-08-06 北京工业大学 一种检测四针状氧化锌晶须电导特性的器件及方法
CN110639521A (zh) * 2019-09-29 2020-01-03 湘潭大学 暴露高指数面的氧化铁十二面体纳米晶体催化剂的制备方法
CN111048304A (zh) * 2019-12-31 2020-04-21 西安西电电力电容器有限责任公司 圆柱形电容器用电极结构及电容器
CN112259747A (zh) * 2020-10-21 2021-01-22 成都新柯力化工科技有限公司 一种生长晶须形成的燃料电池膜电极组件及制备方法
CN112259747B (zh) * 2020-10-21 2021-08-03 成都新柯力化工科技有限公司 一种生长晶须形成的燃料电池膜电极组件及制备方法

Also Published As

Publication number Publication date
CA2304157A1 (en) 1999-04-22
EP1021246A1 (en) 2000-07-26
KR20010031023A (ko) 2001-04-16
KR100567198B1 (ko) 2006-04-04
US5879827A (en) 1999-03-09
EP1021246B1 (en) 2004-06-30
KR100570136B1 (ko) 2006-04-12
WO1999019066A1 (en) 1999-04-22
AU7469698A (en) 1999-05-03
DE69824875D1 (de) 2004-08-05
JP2001519594A (ja) 2001-10-23
US6040077A (en) 2000-03-21
JP4837822B2 (ja) 2011-12-14
DE69824875T2 (de) 2005-07-07
KR20050072150A (ko) 2005-07-08

Similar Documents

Publication Publication Date Title
JP4837822B2 (ja) 膜電極組体のための触媒
JP5426166B2 (ja) 膜電極接合体の電流密度の均一性を高める触媒層
KR100517417B1 (ko) 막 전극 조립체
CN101263621B (zh) 通过螺旋位错持续生长形成纳米结构层
CN109891646B (zh) 用于燃料电池的pt-ni-ir催化剂
JP2003506850A (ja) マイクロテクスチャード触媒移動基材
WO1999013128A1 (en) A method of depositing an electrocatalyst and electrodes formed by such method
EP3776702B1 (en) Catalyst comprising pt, ni, and ta
US11955645B2 (en) Catalyst
JP7076715B2 (ja) 触媒
JP2019534147A (ja) 燃料電池用pt−ni−ir触媒
JP2019534146A (ja) 触媒
WO2019193460A1 (en) Catalyst comprising pt, ni, and ru
JP2012524979A (ja) 有機顔料による触媒粒径制御
CN113228355A (zh) 催化剂
WO2023008147A1 (ja) 燃料電池用電極材料、燃料電池用膜電極接合体および燃料電池
Electrocatalyst Pt Submonolayers on Ru Nanoparticles

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication