CN104300160A - 一种用于电化学电池电极的催化剂的制造方法 - Google Patents
一种用于电化学电池电极的催化剂的制造方法 Download PDFInfo
- Publication number
- CN104300160A CN104300160A CN201410514674.3A CN201410514674A CN104300160A CN 104300160 A CN104300160 A CN 104300160A CN 201410514674 A CN201410514674 A CN 201410514674A CN 104300160 A CN104300160 A CN 104300160A
- Authority
- CN
- China
- Prior art keywords
- catalyst
- ruthenium
- platinum
- electrochemical cell
- nanometer level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8803—Supports for the deposition of the catalytic active composition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/921—Alloys or mixtures with metallic elements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Catalysts (AREA)
- Inert Electrodes (AREA)
Abstract
一种用于电化学电池电极的催化剂的制造方法,电化学电池电极的催化剂包括:针状纤维结构的载体晶须,其具有针状纳米级催化剂颗粒;所述针状纳米级催化剂颗粒包含不同催化剂材料叠层;其中所述催化剂纳米级颗粒为铂和钌;以及所述针状纳米级催化剂颗粒的生长表面上的铂和钌的重量比小于等于1:1,针状纳米级催化剂颗粒的整体的铂和钌的重量比在2:1和1:1之间,其特征在于,将铂和钌催化剂材料交替地真空沉积到所述针状纤维结构的载体晶须上,然后按以上比例将铂或钌中的一种催化剂材料真空地沉积到所述针状纤维结构载体晶须上。
Description
技术领域
本发明涉及一种用于电化学电池电极的催化剂的制造方法。
背景技术
电化学电池是现阶段人民生产生活中广泛使用的电池,其具有广泛的优点,但是目前的电化学电池技术还不能满足大规模电力系统发展的需要,例如燃料电池容量小、效率低、安全性低的特点都限制着电动车的发展,而其中燃料电池的电极性能是非常重要的一环,而在电池电极中使用催化剂是现阶段研究的热点,因此,本发明旨在寻找一种能够使电化学电池增大容量、提高转化效率、延长使用寿命的电化学电池电极的催化剂的制造方法。
发明内容
本发明提供一种用于电化学电池电极的催化剂的制造方法,电化学电池电极的催化剂包括:
针状纤维结构的载体晶须,其具有针状纳米级催化剂颗粒;
所述针状纳米级催化剂颗粒包含不同催化剂材料叠层;
其中所述催化剂纳米级颗粒为铂和钌;以及
所述针状纳米级催化剂颗粒的生长表面上的铂和钌的重量比小于等于1:1,针状纳米级催化剂颗粒的整体的铂和钌的重量比在2:1和1:1之间,
其特征在于,将铂和钌催化剂材料交替地真空沉积到所述针状纤维结构的载体晶须上,然后按以上比例将铂或钌中的一种催化剂材料真空地沉积到所述针状纤维结构载体晶须上。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
该用于电化学电池电极的催化剂的制造方法,电化学电池电极的催化剂包括:
针状纤维结构的载体晶须,其具有针状纳米级催化剂颗粒;
所述针状纳米级催化剂颗粒包含不同催化剂材料叠层;
其中所述催化剂纳米级颗粒为铂和钌;以及
所述针状纳米级催化剂颗粒的生长表面上的铂和钌的重量比为1:1,针状纳米级催化剂颗粒的整体的铂和钌的重量比在2:1,
其制造步骤为,首先将铂和钌催化剂材料交替地真空沉积到所述针状纤维结构的载体晶须上,然后按以上比例将铂或钌中的一种催化剂材料真空地沉积到所述针状纤维结构载体晶须上。
实施例2
该用于电化学电池电极的催化剂的制造方法,电化学电池电极的催化剂包括:
针状纤维结构的载体晶须,其具有针状纳米级催化剂颗粒;
所述针状纳米级催化剂颗粒包含不同催化剂材料叠层;
其中所述催化剂纳米级颗粒为铂和钌;以及
所述针状纳米级催化剂颗粒的生长表面上的铂和钌的重量比为1:2,针状纳米级催化剂颗粒的整体的铂和钌的重量比为1:1,
其制造步骤为,首先将铂和钌催化剂材料交替地真空沉积到所述针状纤维结构的载体晶须上,然后按以上比例将铂或钌中的一种催化剂材料真空地沉积到所述针状纤维结构载体晶须上。
实施例3
该该用于电化学电池电极的催化剂的制造方法,电化学电池电极的催化剂包括:
针状纤维结构的载体晶须,其具有针状纳米级催化剂颗粒;
所述针状纳米级催化剂颗粒包含不同催化剂材料叠层;
其中所述催化剂纳米级颗粒为铂和钌;以及
所述针状纳米级催化剂颗粒的生长表面上的铂和钌的重量比为1:3,,针状纳米级催化剂颗粒的整体的铂和钌的重量比为3:2,
其制造步骤为,首先将铂和钌催化剂材料交替地真空沉积到所述针状纤维结构的载体晶须上,然后按以上比例将铂或钌中的一种催化剂材料真空地沉积到所述针状纤维结构载体晶须上。
使用包含了以上催化剂制造的电极的电池,电池容量变大、转换效率提高、使用寿命延长,获得了良好的技术效果。
Claims (2)
1.一种用于电化学电池电极的催化剂的制造方法,电化学电池电极的催化剂包括:
针状纤维结构的载体晶须,其具有针状纳米级催化剂颗粒;
所述针状纳米级催化剂颗粒包含不同催化剂材料叠层;
其中所述催化剂纳米级颗粒为铂和钌;以及
所述针状纳米级催化剂颗粒的生长表面上的铂和钌的重量比小于等于1:1,针状纳米级催化剂颗粒的整体的铂和钌的重量比在2:1和1:1之间,
其特征在于,将铂和钌催化剂材料交替地真空沉积到所述针状纤维结构的载体晶须上,然后按以上比例将铂或钌中的一种催化剂材料真空地沉积到所述针状纤维结构载体晶须上。
2.如权利要求1所述的用于电化学电池电极的催化剂的制造方法,其特征在于,所述针状纳米级催化剂颗粒的生长表面上的铂和钌的重量比为1:3,,针状纳米级催化剂颗粒的整体的铂和钌的重量比为3:2。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410514674.3A CN104300160A (zh) | 2014-09-29 | 2014-09-29 | 一种用于电化学电池电极的催化剂的制造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410514674.3A CN104300160A (zh) | 2014-09-29 | 2014-09-29 | 一种用于电化学电池电极的催化剂的制造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104300160A true CN104300160A (zh) | 2015-01-21 |
Family
ID=52319803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410514674.3A Pending CN104300160A (zh) | 2014-09-29 | 2014-09-29 | 一种用于电化学电池电极的催化剂的制造方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104300160A (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1278747A (zh) * | 1997-10-10 | 2001-01-03 | 美国3M公司 | 用于膜电极组合件的催化剂及其制备方法 |
CN101401236A (zh) * | 2005-11-30 | 2009-04-01 | 国家科学研究中心 | 通过在载体上的沉积制造燃料电池的电极的方法 |
-
2014
- 2014-09-29 CN CN201410514674.3A patent/CN104300160A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1278747A (zh) * | 1997-10-10 | 2001-01-03 | 美国3M公司 | 用于膜电极组合件的催化剂及其制备方法 |
CN101401236A (zh) * | 2005-11-30 | 2009-04-01 | 国家科学研究中心 | 通过在载体上的沉积制造燃料电池的电极的方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cheng et al. | Template fabrication of amorphous Co2SiO4 nanobelts/graphene oxide composites with enhanced electrochemical performances for hybrid supercapacitors | |
Zhao et al. | ZIF-derived porous CoNi2S4 on intercrosslinked polypyrrole tubes for high-performance asymmetric supercapacitors | |
Cai et al. | High-performance supercapacitor electrode based on the unique ZnO@ Co3O4 core/shell heterostructures on nickel foam | |
Zhou et al. | ZrO2-nanoparticle-modified graphite felt: bifunctional effects on vanadium flow batteries | |
Wang et al. | Hybrid device employing three-dimensional arrays of MnO in carbon nanosheets bridges battery–supercapacitor divide | |
Wu et al. | Bottom-up fabrication of sulfur-doped graphene films derived from sulfur-annulated nanographene for ultrahigh volumetric capacitance micro-supercapacitors | |
Tu et al. | Amorphous ZnO quantum dot/mesoporous carbon bubble composites for a high-performance lithium-ion battery anode | |
Liang et al. | Hierarchical NiCo2O4 nanosheets@ halloysite nanotubes with ultrahigh capacitance and long cycle stability as electrochemical pseudocapacitor materials | |
Li et al. | Dual-porosity SiO2/C nanocomposite with enhanced lithium storage performance | |
Liu et al. | Ultrathin and lightweight 3D free-standing Ni@ NiO nanowire membrane electrode for a supercapacitor with excellent capacitance retention at high rates | |
Ai et al. | Rational synthesis of branched CoMoO4@ CoNiO2 core/shell nanowire arrays for all-solid-state supercapacitors with improved performance | |
He et al. | Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material | |
Xia et al. | Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithium-ion batteries | |
Zhang et al. | Nitrogen-doped hierarchical porous carbon nanowhisker ensembles on carbon nanofiber for high-performance supercapacitors | |
Liang et al. | Nickel–iron nitride–nickel sulfide composites for oxygen evolution electrocatalysis | |
Lai et al. | Flexible hybrid membranes of NiCo2O4-doped carbon nanofiber@ MnO2 core–sheath nanostructures for high-performance supercapacitors | |
Huang et al. | Yolk@ shell or concave cubic NiO–Co3O4@ C nanocomposites derived from metal–organic frameworks for advanced lithium-ion battery anodes | |
Gong et al. | High-loading nickel cobaltate nanoparticles anchored on three-dimensional N-doped graphene as an efficient bifunctional catalyst for lithium–oxygen batteries | |
Ye et al. | Micropore-boosted layered double hydroxide catalysts: EIS analysis in structure and activity for effective oxygen evolution reactions | |
Chen et al. | Enhanced capacitance performance by coupling 2D conductive metal–organic frameworks and conducting polymers for hybrid supercapacitors | |
CN106505200B (zh) | 碳纳米管/石墨烯/硅复合锂电池负极材料及其制备方法 | |
KR101341088B1 (ko) | 층상구조를 가지는 전해질 막과 그 제조 방법 및 그 전해질 막을 구비한 레독스 흐름 전지 | |
Chen et al. | (001) Facet-dominated hierarchically hollow Na2Ti3O7 as a high-rate anode material for sodium-ion capacitors | |
Yao et al. | In situ integration of anisotropic SnO2 heterostructures inside three-dimensional graphene aerogel for enhanced lithium storage | |
Wang et al. | Enabling a high performance of mesoporous α-Fe2O3 anodes by building a conformal coating of cyclized-PAN network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20150121 |
|
WD01 | Invention patent application deemed withdrawn after publication |