CN104300160A - 一种用于电化学电池电极的催化剂的制造方法 - Google Patents

一种用于电化学电池电极的催化剂的制造方法 Download PDF

Info

Publication number
CN104300160A
CN104300160A CN201410514674.3A CN201410514674A CN104300160A CN 104300160 A CN104300160 A CN 104300160A CN 201410514674 A CN201410514674 A CN 201410514674A CN 104300160 A CN104300160 A CN 104300160A
Authority
CN
China
Prior art keywords
catalyst
ruthenium
platinum
electrochemical cell
nanometer level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410514674.3A
Other languages
English (en)
Inventor
高玉成
王玉芝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
QINGDAO KANGHEWEIYE COMMERCIAL Co Ltd
Original Assignee
QINGDAO KANGHEWEIYE COMMERCIAL Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by QINGDAO KANGHEWEIYE COMMERCIAL Co Ltd filed Critical QINGDAO KANGHEWEIYE COMMERCIAL Co Ltd
Priority to CN201410514674.3A priority Critical patent/CN104300160A/zh
Publication of CN104300160A publication Critical patent/CN104300160A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

一种用于电化学电池电极的催化剂的制造方法,电化学电池电极的催化剂包括:针状纤维结构的载体晶须,其具有针状纳米级催化剂颗粒;所述针状纳米级催化剂颗粒包含不同催化剂材料叠层;其中所述催化剂纳米级颗粒为铂和钌;以及所述针状纳米级催化剂颗粒的生长表面上的铂和钌的重量比小于等于1:1,针状纳米级催化剂颗粒的整体的铂和钌的重量比在2:1和1:1之间,其特征在于,将铂和钌催化剂材料交替地真空沉积到所述针状纤维结构的载体晶须上,然后按以上比例将铂或钌中的一种催化剂材料真空地沉积到所述针状纤维结构载体晶须上。

Description

一种用于电化学电池电极的催化剂的制造方法
技术领域
本发明涉及一种用于电化学电池电极的催化剂的制造方法。
背景技术
电化学电池是现阶段人民生产生活中广泛使用的电池,其具有广泛的优点,但是目前的电化学电池技术还不能满足大规模电力系统发展的需要,例如燃料电池容量小、效率低、安全性低的特点都限制着电动车的发展,而其中燃料电池的电极性能是非常重要的一环,而在电池电极中使用催化剂是现阶段研究的热点,因此,本发明旨在寻找一种能够使电化学电池增大容量、提高转化效率、延长使用寿命的电化学电池电极的催化剂的制造方法。
发明内容
本发明提供一种用于电化学电池电极的催化剂的制造方法,电化学电池电极的催化剂包括:
针状纤维结构的载体晶须,其具有针状纳米级催化剂颗粒;
所述针状纳米级催化剂颗粒包含不同催化剂材料叠层;
其中所述催化剂纳米级颗粒为铂和钌;以及
所述针状纳米级催化剂颗粒的生长表面上的铂和钌的重量比小于等于1:1,针状纳米级催化剂颗粒的整体的铂和钌的重量比在2:1和1:1之间,
其特征在于,将铂和钌催化剂材料交替地真空沉积到所述针状纤维结构的载体晶须上,然后按以上比例将铂或钌中的一种催化剂材料真空地沉积到所述针状纤维结构载体晶须上。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
该用于电化学电池电极的催化剂的制造方法,电化学电池电极的催化剂包括:
针状纤维结构的载体晶须,其具有针状纳米级催化剂颗粒;
所述针状纳米级催化剂颗粒包含不同催化剂材料叠层;
其中所述催化剂纳米级颗粒为铂和钌;以及
所述针状纳米级催化剂颗粒的生长表面上的铂和钌的重量比为1:1,针状纳米级催化剂颗粒的整体的铂和钌的重量比在2:1,
其制造步骤为,首先将铂和钌催化剂材料交替地真空沉积到所述针状纤维结构的载体晶须上,然后按以上比例将铂或钌中的一种催化剂材料真空地沉积到所述针状纤维结构载体晶须上。
实施例2
该用于电化学电池电极的催化剂的制造方法,电化学电池电极的催化剂包括:
针状纤维结构的载体晶须,其具有针状纳米级催化剂颗粒;
所述针状纳米级催化剂颗粒包含不同催化剂材料叠层;
其中所述催化剂纳米级颗粒为铂和钌;以及
所述针状纳米级催化剂颗粒的生长表面上的铂和钌的重量比为1:2,针状纳米级催化剂颗粒的整体的铂和钌的重量比为1:1,
其制造步骤为,首先将铂和钌催化剂材料交替地真空沉积到所述针状纤维结构的载体晶须上,然后按以上比例将铂或钌中的一种催化剂材料真空地沉积到所述针状纤维结构载体晶须上。
实施例3
该该用于电化学电池电极的催化剂的制造方法,电化学电池电极的催化剂包括:
针状纤维结构的载体晶须,其具有针状纳米级催化剂颗粒;
所述针状纳米级催化剂颗粒包含不同催化剂材料叠层;
其中所述催化剂纳米级颗粒为铂和钌;以及
所述针状纳米级催化剂颗粒的生长表面上的铂和钌的重量比为1:3,,针状纳米级催化剂颗粒的整体的铂和钌的重量比为3:2,
其制造步骤为,首先将铂和钌催化剂材料交替地真空沉积到所述针状纤维结构的载体晶须上,然后按以上比例将铂或钌中的一种催化剂材料真空地沉积到所述针状纤维结构载体晶须上。
使用包含了以上催化剂制造的电极的电池,电池容量变大、转换效率提高、使用寿命延长,获得了良好的技术效果。

Claims (2)

1.一种用于电化学电池电极的催化剂的制造方法,电化学电池电极的催化剂包括:
针状纤维结构的载体晶须,其具有针状纳米级催化剂颗粒;
所述针状纳米级催化剂颗粒包含不同催化剂材料叠层;
其中所述催化剂纳米级颗粒为铂和钌;以及
所述针状纳米级催化剂颗粒的生长表面上的铂和钌的重量比小于等于1:1,针状纳米级催化剂颗粒的整体的铂和钌的重量比在2:1和1:1之间,
其特征在于,将铂和钌催化剂材料交替地真空沉积到所述针状纤维结构的载体晶须上,然后按以上比例将铂或钌中的一种催化剂材料真空地沉积到所述针状纤维结构载体晶须上。
2.如权利要求1所述的用于电化学电池电极的催化剂的制造方法,其特征在于,所述针状纳米级催化剂颗粒的生长表面上的铂和钌的重量比为1:3,,针状纳米级催化剂颗粒的整体的铂和钌的重量比为3:2。
CN201410514674.3A 2014-09-29 2014-09-29 一种用于电化学电池电极的催化剂的制造方法 Pending CN104300160A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410514674.3A CN104300160A (zh) 2014-09-29 2014-09-29 一种用于电化学电池电极的催化剂的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410514674.3A CN104300160A (zh) 2014-09-29 2014-09-29 一种用于电化学电池电极的催化剂的制造方法

Publications (1)

Publication Number Publication Date
CN104300160A true CN104300160A (zh) 2015-01-21

Family

ID=52319803

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410514674.3A Pending CN104300160A (zh) 2014-09-29 2014-09-29 一种用于电化学电池电极的催化剂的制造方法

Country Status (1)

Country Link
CN (1) CN104300160A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1278747A (zh) * 1997-10-10 2001-01-03 美国3M公司 用于膜电极组合件的催化剂及其制备方法
CN101401236A (zh) * 2005-11-30 2009-04-01 国家科学研究中心 通过在载体上的沉积制造燃料电池的电极的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1278747A (zh) * 1997-10-10 2001-01-03 美国3M公司 用于膜电极组合件的催化剂及其制备方法
CN101401236A (zh) * 2005-11-30 2009-04-01 国家科学研究中心 通过在载体上的沉积制造燃料电池的电极的方法

Similar Documents

Publication Publication Date Title
Cheng et al. Template fabrication of amorphous Co2SiO4 nanobelts/graphene oxide composites with enhanced electrochemical performances for hybrid supercapacitors
Cai et al. High-performance supercapacitor electrode based on the unique ZnO@ Co3O4 core/shell heterostructures on nickel foam
Zhou et al. ZrO2-nanoparticle-modified graphite felt: bifunctional effects on vanadium flow batteries
Mohamed et al. In-situ growing mesoporous CuO/O-doped g-C3N4 nanospheres for highly enhanced lithium storage
Wang et al. 2-Methylimidazole-derived Ni–Co layered double hydroxide nanosheets as high rate capability and high energy density storage material in hybrid supercapacitors
Wang et al. Hybrid device employing three-dimensional arrays of MnO in carbon nanosheets bridges battery–supercapacitor divide
Wu et al. Bottom-up fabrication of sulfur-doped graphene films derived from sulfur-annulated nanographene for ultrahigh volumetric capacitance micro-supercapacitors
Mondal et al. Highly porous NiCo2O4 nanoflakes and nanobelts as anode materials for lithium-ion batteries with excellent rate capability
Tu et al. Amorphous ZnO quantum dot/mesoporous carbon bubble composites for a high-performance lithium-ion battery anode
Li et al. Dual-porosity SiO2/C nanocomposite with enhanced lithium storage performance
Liu et al. Ultrathin and lightweight 3D free-standing Ni@ NiO nanowire membrane electrode for a supercapacitor with excellent capacitance retention at high rates
Wang et al. Synthesis of 3D-nanonet hollow structured Co3O4 for high capacity supercapacitor
He et al. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material
Xia et al. Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithium-ion batteries
Xia et al. A new type of porous graphite foams and their integrated composites with oxide/polymer core/shell nanowires for supercapacitors: structural design, fabrication, and full supercapacitor demonstrations
Zhang et al. Nitrogen-doped hierarchical porous carbon nanowhisker ensembles on carbon nanofiber for high-performance supercapacitors
Qiu et al. Three-dimensional phosphorus-doped graphitic-C3N4 self-assembly with NH2-functionalized carbon composite materials for enhanced oxygen reduction reaction
Xing et al. Simple synthesis of mesoporous carbon nanofibers with hierarchical nanostructure for ultrahigh lithium storage
Wang et al. Embedding NiCo2O4 nanoparticles into a 3DHPC assisted by CO2-expanded ethanol: a potential lithium-ion battery anode with high performance
Benítez et al. Pistachio shell-derived carbon activated with phosphoric acid: A more efficient procedure to improve the performance of Li–S batteries
CN106505200B (zh) 碳纳米管/石墨烯/硅复合锂电池负极材料及其制备方法
KR101341088B1 (ko) 층상구조를 가지는 전해질 막과 그 제조 방법 및 그 전해질 막을 구비한 레독스 흐름 전지
CN108722453A (zh) 一种用于碱性电催化析氢的磷化钼/碳复合纳米材料
Wang et al. Enabling a high performance of mesoporous α-Fe2O3 anodes by building a conformal coating of cyclized-PAN network
Yao et al. In situ integration of anisotropic SnO2 heterostructures inside three-dimensional graphene aerogel for enhanced lithium storage

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150121

WD01 Invention patent application deemed withdrawn after publication