WO2009093343A1 - 多層配線板およびその製造方法 - Google Patents

多層配線板およびその製造方法 Download PDF

Info

Publication number
WO2009093343A1
WO2009093343A1 PCT/JP2008/054903 JP2008054903W WO2009093343A1 WO 2009093343 A1 WO2009093343 A1 WO 2009093343A1 JP 2008054903 W JP2008054903 W JP 2008054903W WO 2009093343 A1 WO2009093343 A1 WO 2009093343A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
wiring board
recess
multilayer wiring
insulating layer
Prior art date
Application number
PCT/JP2008/054903
Other languages
English (en)
French (fr)
Inventor
Sotaro Ito
Michimasa Takahashi
Yukinobu Mikado
Original Assignee
Ibiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co., Ltd. filed Critical Ibiden Co., Ltd.
Priority to CN2008800110574A priority Critical patent/CN101653053B/zh
Priority to EP08722297A priority patent/EP2136610A4/en
Priority to JP2009550417A priority patent/JP4876173B2/ja
Publication of WO2009093343A1 publication Critical patent/WO2009093343A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5383Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5389Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6661High-frequency adaptations for passive devices
    • H01L2223/6677High-frequency adaptations for passive devices for antenna, e.g. antenna included within housing of semiconductor device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • H01L2224/82009Pre-treatment of the connector or the bonding area
    • H01L2224/8203Reshaping, e.g. forming vias
    • H01L2224/82035Reshaping, e.g. forming vias by heating means
    • H01L2224/82039Reshaping, e.g. forming vias by heating means using a laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • H01L2224/82009Pre-treatment of the connector or the bonding area
    • H01L2224/8203Reshaping, e.g. forming vias
    • H01L2224/82035Reshaping, e.g. forming vias by heating means
    • H01L2224/82045Reshaping, e.g. forming vias by heating means using a corona discharge, e.g. electronic flame off [EFO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92244Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01011Sodium [Na]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01087Francium [Fr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01088Radium [Ra]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19042Component type being an inductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/07Electric details
    • H05K2201/0707Shielding
    • H05K2201/0723Shielding provided by an inner layer of PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/096Vertically aligned vias, holes or stacked vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09618Via fence, i.e. one-dimensional array of vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09709Staggered pads, lands or terminals; Parallel conductors in different planes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10954Other details of electrical connections
    • H05K2201/10969Metallic case or integral heatsink of component electrically connected to a pad on PCB
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.

Definitions

  • the present invention relates to a multilayer wiring board and a manufacturing method thereof. More specifically, the present invention relates to a multilayer wiring board in which an electronic component such as an IC is incorporated and a manufacturing method thereof.
  • multilayer printed wiring boards incorporating semiconductor elements include those disclosed in Japanese Patent Application Laid-Open No. 2001-339165 or Japanese Patent Application Laid-Open No. 2002-050874.
  • the multilayer printed wiring board disclosed in these documents includes a semiconductor element, an insulating layer formed on the substrate so as to cover the semiconductor element, a conductor circuit formed on the surface of the insulating layer, the conductor circuit and the semiconductor A via hole provided in the insulating layer so as to be electrically connected to the pad of the element.
  • external connection terminals for example, PGA, BGA, etc.
  • the semiconductor element built in the substrate is connected via these external connection terminals. It is designed to make an electrical connection with the outside.
  • Japanese Patent Application Laid-Open No. 2001-274034 discloses a technology of an electronic component package that can mount electronic components with high density and also has a shielding effect from electromagnetic noise on the electronic components.
  • the technology disclosed in Japanese Patent Laid-Open No. 2001-274034 includes a recess formed in a core material, a semiconductor chip embedded in the recess, and an insulating layer formed so as to cover the recess on the surface of the core material on the opening side of the recess.
  • the inner wall surface and the bottom surface of the recess are made of a conductive metal.
  • JP-A-2006-019342 that harmonic radiation noise can be cut off and reflection can be greatly reduced.
  • a semiconductor IC embedded inside the multilayer substrate By providing a semiconductor IC embedded inside the multilayer substrate, a metal shield covering one surface of the multilayer substrate, and a magnetic sheet provided between the one surface of the multilayer substrate and the metal shield, noise can be reduced. Suppression is possible.
  • the above-described conventional technology has the following problems.
  • EMI high frequency electromagnetic interference
  • a metal cap is attached to the surface of the electronic component to minimize the influence of electromagnetic waves from other electronic components.
  • the protection by the metal cap is effective for the electronic component mounted on the surface of the substrate, but cannot be applied to the electronic component built in the substrate in order to further increase the density.
  • the metal cap protects the upper and side surfaces of the electronic component mounted on the substrate surface from the influence of electromagnetic waves, and cannot protect the lower surface on which the electronic component is mounted. Therefore, mutual EMI between the electronic component mounted on the substrate surface and the electronic component built in the substrate cannot be prevented.
  • the technique disclosed in Japanese Patent Laid-Open No. 2001-274034 does not have a structure in which an electromagnetic shield layer is provided between electronic components in the electronic component package in order to prevent EMI in the electronic component package. Therefore, there is a problem that EMI between the electronic components in the electronic component package cannot be prevented.
  • the present invention has been made to solve the above-described problems, and provides a multilayer wiring board that prevents malfunction of electronic components due to electromagnetic interference and enables high-density electronic component mounting. Objective. In particular, it is an object to protect other electronic components in the substrate from interference caused by electromagnetic waves generated from a part of the circuit of the substrate.
  • the multilayer wiring board according to the first aspect of the present invention comprises: A multilayer wiring board in which a conductor circuit and an insulating layer are formed, and the conductor circuits separated by the insulating layer are electrically connected via vias; A recess formed in the insulating layer; An electromagnetic shield layer having a roughened surface formed on at least one of a bottom surface and a side surface of the recess; An electronic component housed in the recess; It is characterized by providing.
  • the electromagnetic shield layer formed on the bottom surface of the recess is composed of a conductor layer formed on the surface of the insulating layer of the multilayer wiring board.
  • the electromagnetic shield layer is made of metal.
  • At least one of the bottom and side surfaces of the recess and the electromagnetic shield layer is formed of a material whose absorption loss is larger than a wiring material forming the conductor circuit, and the insulating layer on the bottom side of the recess
  • the other electromagnetic shielding layer that is opposed to each other is formed of a material having a reflection loss equal to or higher than that of the wiring material forming the conductor circuit.
  • the electromagnetic shield layer formed on the bottom surface of the recess and having a roughened surface is made of a material having a smaller electromagnetic wave reflection loss than other electromagnetic shield layers facing each other with the insulating layer on the bottom surface side of the recess interposed therebetween. It is formed.
  • the electromagnetic shield layer formed on the bottom surface of the recess and having a roughened surface is formed of a material having a larger absorption loss of electromagnetic waves than other electromagnetic shield layers facing each other with the insulating layer on the bottom surface side of the recess interposed therebetween. May be.
  • the electromagnetic shield layer formed on at least one of the side surfaces of the recess and having a roughened surface has a smaller electromagnetic wave reflection loss than the other electromagnetic shield layers facing each other in the same insulating layer on the side surface of the recess. It is formed of a material.
  • the electromagnetic shield layer formed on at least one of the side surfaces of the recess and having a roughened surface has a larger absorption loss of electromagnetic waves than other electromagnetic shield layers facing each other in the same insulating layer on the side surface of the recess. May be formed.
  • the multilayer wiring board according to the second aspect of the present invention is A multilayer wiring board in which a conductor circuit and an insulating layer are formed, and the conductor circuits separated by the insulating layer are electrically connected via vias; A recess formed in the insulating layer; An electromagnetic shield layer formed of two or more layers on at least one of the bottom and side surfaces of the recess; An electronic component housed in the recess; It is characterized by providing.
  • At least one of the electromagnetic shielding layers formed of the two or more layers is formed of a metal.
  • the electromagnetic shield layer formed on the bottom surface of the recess is formed of a material having a smaller electromagnetic wave reflection loss than other electromagnetic shield layers facing each other with the insulating layer on the bottom surface side of the recess interposed therebetween.
  • the electromagnetic shield layer formed on the bottom surface of the concave portion may be formed of a material having a larger electromagnetic wave absorption loss than other electromagnetic shield layers facing each other with the insulating layer on the bottom surface side of the concave portion interposed therebetween.
  • any one of the electromagnetic shield layers formed on at least one of the side surfaces of the recess has a smaller electromagnetic wave reflection loss than the other electromagnetic shield layers facing each other in the same insulating layer on the side surface of the recess. It is formed of a material.
  • any one of the electromagnetic shield layers formed on at least one of the side surfaces of the recess is a material having a larger electromagnetic wave absorption loss than the other electromagnetic shield layers facing each other in the same insulating layer on the side surface of the recess. May be formed.
  • the electromagnetic shielding layer that appears on the surface layer of the electromagnetic shielding layer formed of two or more layers on at least one of the bottom surface and the side surface of the concave portion is more electromagnetic than the electromagnetic shielding layers other than the surface layer of the two or more layers. It is characterized by being formed of a material having a small reflection loss.
  • the electromagnetic shielding layer that appears on the surface layer of the electromagnetic shielding layer formed of two or more layers on at least one of the bottom surface and the side surface of the concave portion is more resistant to electromagnetic waves than electromagnetic shielding layers other than the surface layer of the two or more layers. It may be made of a material having a large absorption loss.
  • the surface of the electromagnetic shielding layer that appears on at least one of the bottom and side surfaces of the recess is roughened.
  • a method for manufacturing a multilayer wiring board includes: A method of manufacturing a multilayer wiring board including a multilayer wiring board in which a conductor circuit and an insulating layer are formed and the conductor circuits separated by the insulating layer are electrically connected via vias, Forming a recess in the insulating layer of the multilayer wiring board; A shield layer forming step of forming an electromagnetic shield layer on at least one of the bottom and side surfaces of the recess; Roughening the surface of the electromagnetic shield layer formed on at least one of the bottom and side surfaces of the recess; Embedding an electronic component in the recess, It is characterized by providing.
  • a method for manufacturing a multilayer wiring board according to a fourth aspect of the present invention is A method of manufacturing a multilayer wiring board including a multilayer wiring board in which a conductor circuit and an insulating layer are formed and the conductor circuits separated by the insulating layer are electrically connected via vias, Forming a recess in the insulating layer of the multilayer wiring board; A first shield layer forming step of forming a first electromagnetic shield layer on at least one of a bottom surface and a side surface of the recess; A material having a smaller electromagnetic wave reflection loss or a larger electromagnetic wave absorption loss than the first electromagnetic shield layer is provided on the surface layer side of the recess of at least a part of the first electromagnetic shield layer. Forming a second electromagnetic shielding layer with a material; Embedding an electronic component in the recess, It is characterized by providing.
  • the method includes a step of roughening the surface of the second electromagnetic shield layer.
  • the present invention it is possible to provide a multilayer wiring board that prevents electronic components from malfunctioning due to electromagnetic interference and enables high-density electronic component mounting.
  • other electronic components in the substrate can be protected from interference caused by electromagnetic waves generated from a part of the circuit of the substrate.
  • FIG. 1 It is sectional drawing of a multilayer wiring board when the electromagnetic shielding layer around the recessed part which concerns on Embodiment 1 of this invention is formed with the via. It is the figure which arranged the via formed in the circumference of the crevice of a multilayer wiring board on each side in the shape of a straight line. It is the figure which arranged the via formed in the circumference of the crevice of a multilayer wiring board zigzag in the direction of each side. It is a top view which shows the example of the positional relationship of the recessed part of a multilayer wiring board.
  • Example 2 An image obtained by observing the surface shape of a copper clad laminate with a scanning electron microscope (photographing magnification: 2000 times) and subjected to surface roughening treatment (Example 2) is shown.
  • An example in which a cross-sectional shape of a copper clad laminate is observed with a scanning electron microscope (photographing magnification: 5000 times) and subjected to surface roughening treatment (Example 1) is shown.
  • Example 2 which gave the surface roughening process by the image which observed the cross-sectional shape of the copper clad laminated board with the scanning electron microscope (imaging magnification 5000 times).
  • FIG. 1 is a sectional view of a multilayer wiring board according to Embodiment 1 of the present invention.
  • the electromagnetic shield layer around the recess is configured by an array of vias filled with metal.
  • the multilayer wiring board 1 electrically connects a plurality of insulating layers 11a, 11b, 12, 13, 14, 15 and a conductor circuit 2 separated by the insulating layers 11a, 11b, 12, 13, 14, 15 and the conductor circuit 2 It is comprised from the via 3 connected to.
  • recesses 21 and 22 are formed in part of insulating layers 11a, 11b, and.
  • Conductor layers 31 and 32 are formed on the bottom surfaces of the respective recesses 21 and 22.
  • vias (filled vias) 41 a, 41 b, and 42 filled with metal are formed around the recesses 21 and 22.
  • the surface of the conductor layer 31 formed on the bottom surface of the recess 21 is roughened.
  • the surface of the conductor layer 32 formed on the bottom surface of the recess 22 is not roughened, but may be roughened.
  • the conductor layer 9a is formed on the surface of the insulating layer having the recesses 21, and the conductor layer 9b is formed on the surface of the insulating layer having the recesses 22. Further, a conductor layer 10 a is formed opposite to the insulating layer on the bottom surface side of the recess 21, and a conductor layer 10 b is formed to face the insulating layer on the bottom surface side of the recess 22.
  • Filled vias 41 a, 41 b, 42 formed around the recesses 21, 22 are connected to conductor layers 31, 32 formed on the bottom surfaces of the recesses 21, 22. Since the conductor layers 31 and 32 formed on the bottom surface of one recess 21 and 22 and the filled vias 41a, 41b and 42 formed around the recesses 21 and 22 are electrically connected, they have the same potential. They may be connected to, for example, a ground (ground) and kept at a reference potential of the multilayer wiring board 1.
  • the filled vias 41a, 41b, 42 may not be connected to the conductor layers 31, 32 formed on the bottom surfaces of the recesses 21, 22. In that case, it is desirable that the filled vias 41a, 41b, and 42 are connected to the same reference potential as that of the conductor layers 31 and 32.
  • the conductor layer 9 on the surface of the insulating layer may be connected to the filled vias 41a, 41b, and 42 and kept at the reference potential of the multilayer wiring board 1.
  • Electronic parts 4A and 4B are embedded in the recesses 21 and 22, respectively.
  • the electronic components 4A and 4B embedded in the recesses 21 and 22 are connected to the conductor circuit 2 by vias 3 formed in the insulating layers 13 and 15 on the recesses 21 and 22, respectively.
  • An electronic component 5 is also mounted on the surface layer of the multilayer wiring board 1.
  • the electronic component 5 mounted on the surface layer is connected to the conductor circuit 2 on the surface layer by solder bumps S formed on the conductor circuit 2.
  • the depth of the recesses 21 and 22 formed in the insulating layers 11a, 11b and 14 is set according to the shape of the electronic component to be embedded.
  • the concave portion 21 may be formed across two or more insulating layers 11a and 11b. In that case, filled vias 41 a and 41 b for electromagnetic shielding are formed at least over the entire height of the recess 21.
  • FIG. 2A and 2B are diagrams showing the arrangement of the vias 41 formed around the recess 21 of the multilayer wiring board 1.
  • vias 41 are arranged around the rectangular recess 21 so that each side is linear.
  • vias 41 are arranged in a zigzag manner in the direction of each side around the rectangular recess 21.
  • the opening shape of the recess 21 formed in the insulating layer 11 is not limited to a rectangle, and is formed according to the shape and circuit arrangement of the electronic component 4 to be embedded.
  • the filled vias 41 formed around the recess 21 along the edge of the recess opening may be arranged in a single row as shown in FIG. 2A along the edge of the recess opening, or arranged in a zigzag manner as shown in FIG. 2B. May be.
  • the interval (gap) of the filled via 41 is set so as to block electromagnetic waves having a frequency generated from the electronic component embedded in the recess 21 or affecting the electronic component.
  • the filled vias 41a, 41b, and 42 are columnar and are preferably connected to adjacent filled vias. In that case, the filled vias 41a, 41b, and 42 form a single conductor layer without a gap, and have a high electromagnetic shielding effect.
  • the conductor layers 31 and 32 and the filled vias 41a, 41b and 42 surround the entire outer surface except for the upper surface where the connection pads of the electronic components 4A and 4B built in the recesses 21 and 22 are provided, the electronic components The electromagnetic shielding effects in the side and bottom directions of 4A and 4B can be obtained simultaneously.
  • the two recesses 21 and 22 in FIG. 1 are separated from each other by the conductor layers 31 and 32, and the periphery of the recesses 21 and 22 is surrounded by filled vias 41a, 41b, and 42. 4A and the electronic component 4B in the lower recess 22 are electromagnetically shielded from each other.
  • FIG. 3 is a plan view showing an example of the positional relationship between the recesses 21 and 22 of the multilayer wiring board 1 of FIG. As shown in FIG. 3, even if there are portions where the two recesses 21 and 22 do not overlap, the recesses 21 and 22 are surrounded by filled vias 41 and 42, so that the recesses 21 and 22 are electromagnetically shielded. ing.
  • the electronic component 5 mounted on the surface layer of the multilayer wiring board 1 and the electronic component 4B embedded in at least one recess 22 are electromagnetically shielded from each other.
  • the electronic components 4A and 4B embedded in the recesses 21 and 22 and the electronic component 5 mounted on the surface layer of the multilayer wiring board 1 include, for example, a digital signal IC, an analog signal IC, or a memory IC.
  • passive components such as resistors, capacitors, and inductances, or switching elements may be included.
  • the circuits formed in the recesses 21 and 22 or the surface layer are digital signal circuits, analog signal circuits, memory circuits, or the like, respectively. Since each of the recesses 21 and 22 is separated by an electromagnetic shield, mutual electromagnetic interference is prevented, and a digital signal circuit, an analog signal circuit, a memory circuit, and the like can be mixed in one multilayer wiring board 1.
  • the metal used for the conductor layers 31 and 32 which are electromagnetic shields it is desirable to use a metal in which one or more of nickel, copper and chromium are blended.
  • these metals include copper, copper-chromium alloy, copper-nickel alloy, nickel, nickel-chromium alloy, chromium, etc., but other metals may be used.
  • the thickness of the conductor layers 31 and 32 formed of the metal is preferably 5 to 20 ⁇ m. The reason is that if the thickness is less than 5 ⁇ m, the effect as the shield layer may be offset. On the other hand, if the thickness exceeds 20 ⁇ m, the effect of the shield layer may not be improved.
  • electroless plating, electrolytic plating, sputtering, vapor deposition, or the like is desirable. This is because it is easy to form a metal film having a uniform film thickness, and it is easier to obtain an electromagnetic shielding effect.
  • the conductor layers 31 and 32 formed by these methods may be formed of a single layer or a plurality of layers of two or more layers. In the case of forming with a plurality of layers, either the same method or different methods may be used. This can be appropriately performed depending on the type and thickness of the metal layer formed as the electromagnetic shield layer. These do not dramatically reduce the electromagnetic shielding effect.
  • a conductor layer 31 formed on the surface of the insulating layer 11 is used to form a conductor layer 31 on the bottom surface of the recess 21 containing the electronic component 4A, and the electronic component 4A (for example, a semiconductor element) is built on the conductor layer 31. It is desirable. The reason is that the depth of the recess 21 can be made uniform, whereby the electronic component 4 ⁇ / b> A is not housed and built in the tilted state in the recess 21. Therefore, even if the substrate that accommodates the electronic component 4A is made of resin, a desired via hole shape can be formed when the via 3 connected to the connection pad of the electronic component 4A is formed in the resin insulating layer 13.
  • the conductor layer 31 is formed in the resin insulating layer, warping is less likely to occur due to the influence of thermal stress, external stress, and the like. As a result, it is easy to ensure electrical connectivity and connection reliability between the connection pad of the electronic component 4A and the conductor circuit 2 including the via 3 connected thereto.
  • the conductor layers 31 and 32 on the bottom surface of the recess may have a flat surface. Thereby, it becomes easy to ensure the retainability of the concave shape and the adhesiveness with the adhesive.
  • a rough surface may be formed on the conductor layers 31 and 32 as necessary. Since the conductor layers 31 and 32 and the adhesive are brought into close contact with each other by these rough surfaces, it may be easy to ensure the adhesive strength.
  • the insulating layers 11 and 14 in which the recesses 21 and 22 for accommodating the electronic components 4A and 4B are formed are mainly formed of a resin material in which a glass cloth or the like is impregnated with a reinforcing agent by glass epoxy resin or the like. Therefore, when the concave portions 21 and 22 are formed by counterboring or the like, irregular irregularities are formed on the bottom surfaces of the concave portions 21 and 22 depending on the positions. As a result, the depths of the recesses 21 and 22 tend to be uneven. In particular, in the vicinity of the four corners of the recesses 21 and 22 having a substantially rectangular cross section, the depth of the recesses 21 and 22 tends to be shallower than other portions.
  • the conductor layers 31 and 32 on the bottom surfaces of the recesses 21 and 22 as in the present invention, it is easy to make the depths of the recesses 21 and 22 uniform.
  • the recesses 21 and 22 have a rectangular cross section, the depths of the recesses 21 and 22 near the four corners are easily uniformized.
  • the electronic components 4A and 4B are accommodated in the recesses 21 and 22, the electronic components 4A and 4B are less likely to be inclined. Therefore, when the vias 3 connected to the pads of the accommodated electronic components 4A and 4B are formed in the insulating layers 13 and 15, a desired via hole shape can be obtained. Furthermore, since the conductor layers 31 and 32 are formed in close contact between the insulating layers 11, 12, and 14, warpage is less likely to occur due to the influence of thermal stress, external stress, and the like. As a result, for example, a connection failure between the connection pads of the electronic components 4A and 4B and the conductor circuit such as the via 3 is less likely to occur, so that the electrical connectivity and the connection reliability are not easily lowered.
  • the adhesive layer formed between the electronic components 4A and 4B and the conductor layers 31 and 32 can be easily made to have a uniform thickness, the adhesiveness of the semiconductor elements is made uniform, heat cycle, etc. Even if the reliability test is performed, the adhesion is easily secured over a long period of time.
  • the conductor layers 31 and 32 may have a larger area than the bottom surfaces of the recesses 21 and 22 and may be formed outside the side surfaces of the recesses 21 and 22. Therefore, the conductor layers 31 and 32 formed in this way can exhibit a shielding effect in the bottom direction of the electronic components 4A and 4B incorporated in the multilayer wiring board 1, and thus are formed by the arrangement of the filled vias 41 and 42. It is desirable to be provided with an electromagnetic shield layer.
  • the filled vias 41a, 41b, 41c, and 42 have a heat dissipation effect because they are connected to the conductor layers 31 and 32 that are in contact with the electronic components.
  • the filled via 41c it may be formed up to the surface of the multilayer wiring board and connected to a heat sink or the like. Further, a filled via may be formed on the back side of the conductor layers 31 and 32 on the bottom surface of the recesses 21 and 22 to increase the heat dissipation path.
  • the conductor layers 31 and 32 may roughen the bottom surface of the recess.
  • Examples of the surface roughening treatment method include blackening treatment, chemical etching treatment, matte treatment method and sandblasting method.
  • the blackening treatment is a treatment in which irregularities of about 5 to 7 ⁇ m are formed by oxidation and the surface becomes rough.
  • the surface roughening treatment may be applied to either the conductor layer located on the bottom surface or the side surface of the recess, but it is preferable to apply to all the conductor layers on the bottom surface and the side surface of the recess.
  • the conductor layer 31 may be formed of a material whose absorption loss is larger than that of the wiring material forming the conductor circuit, and the conductor layer 10a may be formed of a material whose reflection loss is equal to or higher than that of the wiring material forming the conductor circuit. Good.
  • the conductor layer 31 is iron and the conductor layer 10a is silver, copper, aluminum, or the like.
  • the bottom and side surfaces of the recesses By making the bottom and side surfaces of the recesses a material with a large absorption loss of electromagnetic waves, the electromagnetic waves radiated from the electronic components embedded in the multilayer wiring board are reduced, and the surfaces facing each other with the insulating layer on the bottom surface side of the recesses in between By using a material with a large reflection loss, the influence of electromagnetic waves from the outside is suppressed and an electromagnetic shielding effect is obtained.
  • the conductor layer 32 and the conductor layer 10b may be formed of a material whose absorption loss is larger than the wiring material forming the conductor circuit, and the conductor layer 10b is a wiring material whose reflection loss forms the conductor circuit. It may be formed of a material equivalent to or higher than.
  • the conductor layer 31 formed on the bottom surface or side surface of the recess 21 is made of a material having a smaller electromagnetic wave reflection loss than the conductor layer 10a facing the insulating layer on the bottom surface side of the recess 21.
  • the conductor layer 31 is made of a material having a larger electromagnetic wave absorption loss than the conductor layer 10a.
  • a material having a smaller electromagnetic wave reflection loss or a larger electromagnetic wave absorption loss than the conductor layer 10b is selected.
  • the conductor layer 32 may be opposed to the insulating layer on the bottom surface side of the recess 21.
  • the conductor layer 31 is formed of a material having a smaller electromagnetic wave reflection loss than the conductor layer 32 or a material having a larger electromagnetic wave absorption loss.
  • the conductor layer 32 may be made of a material having a smaller electromagnetic wave reflection loss than the conductor layer 31 or a material having a larger electromagnetic wave absorption loss.
  • the electronic components 4A and 4B built in the recesses 21 and 22 can be protected from interference due to the electromagnetic wave. Any combination may be used. By combining the material selection and the surface roughening treatment of the conductor layers 31 and 32, it is possible to enhance the electromagnetic shielding effect.
  • the conductor layers 9a and 9b formed on the surface of the insulating layer having the recesses 21 and 22 and the conductor layers 10a and 10b facing each other with the insulating layer on the bottom surface side of the recesses 21 and 22 are connected to the recesses 21 and 22, respectively.
  • the conductor layers 9a, 9b, 10a, and 10b are shown separately depending on the positional relationship, but the conductor layer 10a and the conductor layer 9b may be formed on the same insulating layer and connected to the same reference potential.
  • the same material may be used.
  • the same applies to the conductor layer 10b and the conductor layer 9a which may be formed on the same insulating layer and connected to the same reference potential, or may be formed of the same material.
  • 4A to 4N and 4M are cross-sectional views illustrating a part of the manufacturing process of the multilayer wiring board 1 according to Embodiment 1 of the present invention.
  • the multilayer wiring board constituting the multilayer wiring board 1 is formed by laminating a copper-clad laminate in which copper foil is pasted on one side or both sides of an insulating resin base material. Is used.
  • FIG. 4A is a cross-sectional view of a double-sided copper-clad laminate.
  • the double-sided copper-clad laminate is formed, for example, from a laminate in which copper foil 6 is stretched on both sides of the insulating layer 11.
  • the insulating layer 11 may be an insulating resin without filler. Laser irradiation is performed on one surface of such a double-sided copper-clad laminate to form via openings 7 and 8 that penetrate the one copper foil 6 and the insulating layer 11 and reach the back surface of the other copper foil 6. .
  • FIG. 4B is a cross-sectional view of a double-sided copper-clad laminate in which via openings are formed.
  • the via openings 7 and 8 include a via opening 7 for connecting the conductor circuit 2 and a via opening 8 for electromagnetic shielding.
  • the via opening 8 for electromagnetic shielding is formed outside the area of the recess 21 that accommodates an electronic component 4A described later, and is formed in a form in which adjacent openings are connected.
  • the laser irradiation is performed using a pulse oscillation type carbon dioxide laser processing apparatus.
  • the processing conditions are as follows: pulse energy is 0.5 to 100 mJ, pulse width is 1 to 100 ⁇ s, pulse interval is 0.5 ms or more, and frequency is 2000 to It is desirable that the frequency is 3000 Hz and the number of shots is in the range of 1 to 5.
  • the diameter of the via openings 7 and 8 that can be formed under such processing conditions is preferably 20 to 250 ⁇ m. The reason is that if the opening diameter is less than 20 ⁇ m, via formation is likely to be technically difficult, and electrical connectivity may be reduced. On the other hand, if the diameters of the via openings 7 and 8 exceed 250 ⁇ m, the filling property in plating may be difficult, the electrical connectivity may be deteriorated, and the density of wiring is hindered. This is because there are cases.
  • a direct laser method in which laser irradiation is performed to simultaneously form openings in the copper foil 6 and the insulating layer 11, and via openings are performed.
  • a conformal method in which the insulating layer 11 is irradiated with laser after the copper foil portions corresponding to 7 and 8 are previously removed by etching, and either of them may be used.
  • This desmear treatment is performed by wet treatment such as chemical treatment of an acid or an oxidizing agent (for example, chromic acid or permanganic acid), or dry treatment such as oxygen plasma discharge treatment, corona discharge treatment, ultraviolet laser treatment, or excimer laser treatment. Is called.
  • the method for selecting these desmear treatments is selected according to the amount of smear that is expected to remain depending on the type, thickness, opening diameter, laser conditions, and the like of the insulating layer 11.
  • FIG. 4C is a cross-sectional view of a double-sided copper-clad laminate in which via openings 7 and 8 are filled with metal.
  • the via openings 7 and 8 of the substrate subjected to the desmear treatment are subjected to electrolytic copper plating using the copper foil 6 as a plating lead, and the via openings are completely filled with the electrolytic copper plating in the via openings. It is formed.
  • the electrolytic copper plating raised on the upper portion of the opening of the substrate may be removed and flattened by belt sander polishing, buff polishing, etching, or the like.
  • FIG. 4D is a cross-sectional view of a double-sided copper-clad laminate in which the conductor circuit 2 and the conductor layer 31 are formed on both sides.
  • a resist layer is formed on the copper foils 6 on both sides of the insulating layer 11, and an etching process is performed with an etching solution made of cupric chloride or the like on the resist non-formed portion through exposure and development processes. Thereafter, the resist is peeled to form a conductor circuit 2 including a via land, a positioning mark for alignment, and the like on one surface of the insulating layer 11.
  • a conductor layer 31 having a size related to the concave portion 21 for accommodating the electronic component 4A, a conductor circuit 2 including a via land, a positioning mark for alignment, and the like are formed.
  • a plurality of vias 41 for electromagnetic shielding are connected to each other, and one end thereof is exposed on one surface of the insulating layer 11 and the other is connected to the surface of the conductor layer 31 to electromagnetically A shield layer is formed.
  • a conductor layer 9 is formed on the surface of the insulating layer 11. When covering the surface, it is preferable to remove the place where the recess 21 is formed.
  • the conductor layer 9 must not be continuous to the conductor circuit 2 electrically connected to the via 3, but may be continuous to the conductor circuit 2 connected to the electromagnetic shielding via 41.
  • FIG. 4E is a cross-sectional view of a multilayer wiring board in which a recess 21 for accommodating an electronic component is formed.
  • An opening reaching the surface of the conductor layer 31 through the insulating layer 11 is formed, for example, by laser processing in a surface region (recessed region) opposite to the surface on which the conductor layer 31 of the insulating layer 11 is provided.
  • a recess 21 is formed so that the surface of the conductor layer is exposed to form an electronic component housing substrate. If necessary, the recess 21 that exposes the conductor layer 31 can be formed through a resist formation step and an etching treatment step.
  • an opening reaching the conductor layer surface from the surface of the insulating layer 11 through the resin layer is formed in the laminate of the insulating layer 11 and the insulating layer 12 by laser irradiation using a pulse oscillation type carbon dioxide laser processing apparatus.
  • a recess for accommodating or incorporating the electronic component is formed.
  • the processing conditions of the recess 21 that accommodates the electronic component 4A are as follows: the pulse energy is 0.5 to 100 mJ, the pulse width is 1 to 100 ⁇ s, the pulse interval is 0.5 ms or more, the frequency is 2000 to 3000 Hz, and the number of shots is 1 to 10. It is desirable to be within.
  • the concave portion 21 for incorporating the electronic component 4A is formed, and the conductor layer 31 (in this case, the copper foil 6) is exposed on the bottom surface of the concave portion 21.
  • FIG. 4F is a diagram in which the surface of the bottom surface of the recessed portion of the exposed conductor layer 31 is roughened.
  • the surface roughening treatment method include blackening treatment, chemical etching treatment, matte treatment method and sandblasting method.
  • black oxidation treatment is performed by washing with water and alkaline degreasing. After that, the copper surface can be roughened by soft etching and immersing in a black oxidation treatment solution (an aqueous solution of trisodium phosphate and sodium chlorite) at 95 ° C. for 2 minutes.
  • a black oxidation treatment solution an aqueous solution of trisodium phosphate and sodium chlorite
  • the rough surface formed in this way has a dendritic form of 0.1 to 1.0 ⁇ m, and it is desirable that the surface length is three times or more that of a non-roughened copper surface.
  • the same double-sided copper-clad laminate is washed with water, acid degreased and then soft-etched, and CZ-treated for 1 minute with an organic acid micro-etching agent (MEC Etch Bond CZ8100, manufactured by Mec Corporation).
  • MEC Etch Bond CZ8100 organic acid micro-etching agent
  • the rough surface formed by this is composed of acute irregularities of 0.1 to 5.0 ⁇ m, and RMS (root mean square roughness) is preferably 0.30 ⁇ m or more.
  • FIG. 4H and 4G are cross-sectional views of the multilayer wiring board in which the electronic component 4A is accommodated in the recess 21.
  • FIG. An electronic component 4A for example, a semiconductor element is embedded in the electronic component housing substrate obtained through the steps up to FIG. 4G.
  • the embedded electronic component 4A for example, a semiconductor element in which an intermediary layer covering the connection pad P is formed can be used.
  • the intermediate layer formed on the electronic component 4 ⁇ / b> A may be covered with the conductor layer 10 on the surface other than the portion covering the connection pad P.
  • the conductor layer 10 is formed so as not to be connected to the connection pad P and the conductor circuit 2.
  • This intermediary layer is an intermediary layer provided to directly connect the pad P of the semiconductor element and the conductor circuit 2 including the via 3 of the multilayer wiring board.
  • a thin film layer is provided on the die pad, and the thin film It is desirable to form a thickening layer on the layer and to form at least two metal layers.
  • the intermediate layer is formed in a size larger than the die pad of the semiconductor element.
  • a size facilitates alignment with the die pad.
  • the electrical connection with the die pad is improved, and the via opening by laser irradiation or photoetching is not damaged without damaging the die pad. Processing becomes possible. Therefore, it is possible to reliably embed the semiconductor element in the multilayer wiring board and to make an electrical connection.
  • a metal layer that forms the conductor circuit 2 of the multilayer wiring board can be directly formed on the mediation layer.
  • the mediating layer forms a resist made of a dry film on the entire surface of the connection pad side of the semiconductor element or on the metal film formed on the semiconductor element housing substrate embedded with the semiconductor element. Then, after removing the portion corresponding to the mediating layer, it is thickened by electrolytic plating, and then the resist is removed and the mediating layer can be similarly formed on the connection pad P of the semiconductor element by the etching solution. .
  • FIGS. 4I and 4H are cross-sectional views of a multilayer wiring board in which an insulating layer 12 and a copper foil 6 are laminated on an insulating layer 11 and the insulating layer 13 and the copper foil 6 are formed on the electronic component 4A.
  • the insulating layer 12 is laminated on the surface of the insulating layer 11 on the side where the conductor layer 31 is formed.
  • the conductor layer 32 that forms the bottom surface of the recess 22 formed on the lower side is formed.
  • a copper-clad substrate is formed from a prepreg that is an adhesive layer and a copper foil 6 is overlaid, and a laminated body is formed by laminating the copper clad substrate on both surfaces of the insulating layer 11 by thermocompression bonding.
  • the insulating layer 12 and the copper foil 32 are laminated on the substrate containing the electronic component 4A in the same manner as the insulating layer 13 and the copper foil 6 are laminated.
  • FIG. 4J is a cross-sectional view of a multilayer wiring board in which vias 3 and conductor circuits 2 are formed in insulating layers 12 and 13 and conductor circuits 2 are formed on the surface layer. Vias 3 and conductor circuits 2 are formed in the insulating layer 13 in the same manner as the insulating layer 11. At the same time, the conductor layer 32 that forms the bottom surface of the recess 22 formed on the lower side is formed. After laminating the insulating layer 13 and the copper foil 6, the same process as the process described with reference to FIGS. 4B to 4D is performed to electrically connect to the intermediate layer formed on the connection pad P of the built-in semiconductor element. The via 3 to be electrically connected to the conductor circuit 2 including the via 3 formed on the insulating layer 11 and the outer conductor circuit 2 are formed.
  • FIG. 4K and FIG. 4J are cross-sectional views of a multilayer wiring board on which an insulating layer 14 for forming a recess 22 for accommodating the electronic component 4B is formed on the lower side.
  • the insulating layer 14 and the copper foil 6 are laminated in the same manner as the insulating layer 12 and the copper foil 6 are laminated.
  • FIGS. 4K and 4J are cross-sectional views of the multilayer wiring board in which the vias 3, the conductor circuits 2, and the recesses 22 are formed in the insulating layer 14 laminated in FIGS. 4K and 4J. 4B to 4E, the vias 3 connected to the conductor circuit 2, the electromagnetic shielding vias 42 arranged around the recesses 22, and the recesses 22 are formed, and the conductor layer 9 is formed. .
  • the bottom surface of the recess 22 is a conductor layer 32 formed in the step of forming the conductor circuit 2 of FIG. 4I.
  • the conductor layer 32 exposed by laser processing may be subjected to a blackening process, a chemical etching process, a matting process, a sandblasting process, or the like to roughen the surface of the bottom surface of the recess.
  • FIG. 4M and 4L are cross-sectional views of the multilayer wiring board in which the electronic component 4B is accommodated in the lower concave portion 22 and the insulating circuit 15 is laminated to form the conductor circuit 2.
  • a multilayered printed wiring board can be obtained by laminating an insulating layer and a copper foil and repeating the same processing as in FIGS. 4K, 4J to 4M and 4L.
  • solder resist layer is formed on the surface of the multilayer wiring board.
  • the solder resist composition is applied to the entire outer surface of the multilayer wiring board, the coating film is dried, and then a photomask film having solder pad openings drawn thereon is placed on the coating film to expose and develop.
  • a solder pad opening exposing the conductive pad portion located immediately above the via 3 of the conductor circuit 2 is formed.
  • an opening may be formed by attaching a solder resist layer in a dry film and exposing / developing or laser processing.
  • a corrosion-resistant layer such as nickel-gold is formed on the solder pad exposed from the non-formation portion of the mask layer.
  • the thickness of the nickel layer is desirably 1 to 7 ⁇ m
  • the thickness of the gold layer is desirably 0.01 to 0.1 ⁇ m.
  • nickel-gold, nickel-palladium-gold, gold (single layer), silver (single layer), etc. may be formed as a corrosion-resistant layer.
  • the mask layer is peeled off. As a result, a printed wiring board in which a solder pad with a corrosion-resistant layer and a solder pad without a corrosion-resistant layer are mixed is obtained.
  • solder body is supplied to the solder pad portion exposed immediately above the via from the opening of the solder resist, and solder bumps S are formed by melting and solidifying the solder body.
  • the multilayer wiring board 1 is formed by bonding a conductive ball or a conductive pin to the pad portion using a conductive adhesive or a solder layer.
  • a solder transfer method or a printing method can be used as a method for supplying the solder body and the solder layer.
  • solder transfer method is performed as follows. A solder foil is bonded to the prepreg, and this solder foil is etched leaving only a portion corresponding to the opening, thereby forming a solder pattern to obtain a solder carrier film. After this solder carrier film is coated with a flux on the solder resist opening portion of the substrate, the solder pattern is laminated so that the solder pattern comes into contact with the pad, and this is heated and transferred.
  • the printing method is a method in which a printing mask (metal mask) provided with an opening in a portion corresponding to a pad is placed on a substrate, a solder paste is printed, and heat treatment is performed.
  • solder for forming such solder bumps Sn / Ag solder, Sn / In solder, Sn / Zn solder, Sn / Bi solder, etc. can be used, and their melting points are connected between the circuit boards to be laminated. It is desirable that the melting point of the conductive bump is lower.
  • the electronic component 5 is soldered to the conductor circuit 2 on the surface by placing and heating the electronic component 5 on the printed solder paste.
  • the electronic component 5 is mounted on the surface of the multilayer wiring board facing the bottom surface of at least one recess 22. Since the electronic component 5 mounted on the surface and the electronic component 4B accommodated in the recess 22 are electromagnetically shielded, mutual electromagnetic interference is prevented.
  • the insulating layer and the conductor circuit were multi-layered by sequentially laminating the insulating layer and the copper foil.
  • a plurality of one unit circuit boards are formed with two or more insulating layers, and thermocompression bonding is performed collectively. By doing so, it is good also as a multilayer wiring board which made the insulating layer and the conductor circuit multilayered.
  • Embodiment 1 since the electromagnetic shield around the recesses 21 and 22 is formed by the filled vias 41 and 42, it can be processed simultaneously with the vias connecting the conductor circuits. There is no need to form a conductor layer on the side surface of the recess by metal plating or the like, and the number of processes is not increased for electromagnetic shielding.
  • the conductor layer 31 may be formed of a material whose absorption loss is larger than the wiring material forming the conductor circuit, and the conductor layer 10a is formed of a material whose reflection loss is equal to or higher than that of the wiring material forming the conductor circuit. May be.
  • the conductor layer 31 is iron and the conductor layer 10a is silver, copper, aluminum, or the like.
  • the bottom and side surfaces of the recesses By making the bottom and side surfaces of the recesses a material with a large absorption loss of electromagnetic waves, the electromagnetic waves radiated from the electronic components embedded in the multilayer wiring board are reduced, and the surfaces facing each other with the insulating layer on the bottom surface side of the recesses in between By using a material with a large reflection loss, the influence of electromagnetic waves from the outside is suppressed and an electromagnetic shielding effect is obtained.
  • the conductor layer 31 formed on the bottom surface or the side surface of the recess 21 has a material having a smaller electromagnetic wave reflection loss than the conductor layer 10a facing the insulating layer on the bottom surface side of the recess 21 or the absorption loss of the conductor electromagnetic wave. Larger material may be used. Further, considering the position of the conductor layer 31 formed on the bottom surface or side surface of the recess 21, the conductor layer 32 may be opposed to the insulating layer on the bottom surface side of the recess 21.
  • the conductor layer 31 is formed of a material having a smaller electromagnetic wave reflection loss than the conductor layer 32 or a material having a larger electromagnetic wave absorption loss.
  • the material of the conductor layers 31, 32, 10a, and 10b is selected in consideration of the magnitude of the reflection loss and absorption loss of the electromagnetic waves in the concave portions 21 and 22, the electronic components built into the concave portions 21 and 22 due to interference due to electromagnetic waves. Any combination that can protect 4A and 4B may be used. By combining the material selection and the surface roughening treatment of the conductor layers 31 and 32, it is possible to enhance the electromagnetic shielding effect.
  • FIG. 5 is a cross-sectional view of the multilayer wiring board 1 according to Embodiment 2 of the present invention.
  • the electromagnetic shielding layer around the recesses 21 and 22 is plated so as to cover the conductor layers 51 and 52 formed by plating on the side surfaces of the recesses 21 and 22 and further the conductor layers 31, 32 and 51, 52. It is comprised with the conductor layers 61 and 62 formed by these.
  • the multilayer wiring board 1 electrically connects the plurality of insulating layers 11, 12, 13, 14, 15, the conductor circuit 2 separated by the insulating layers 11, 12, 13, 14, 15 and the conductor circuit 2. Consists of vias 3.
  • recesses 21 and 22 are formed in part of insulating layers 11 and 14.
  • the conductor layer 9 is formed on the surface of the insulating layer having the respective recesses 21 and 22, and the conductor layer 10 is formed at a position facing the insulating layer on the bottom surface side of the recesses 21 and 22.
  • Conductive layers 31 and 32 are formed on the bottom surfaces of the respective recesses 21 and 22.
  • Conductive layers 51 and 52 are formed on the side surfaces of the recesses 21 and 22.
  • the electromagnetic shield around the recesses 21 and 22 is the conductor layers 51 and 52 formed on the side surfaces of the recesses 21 and 22, and plating is performed so as to cover the conductor layers 31, 32, 51, 52.
  • the present embodiment is the same as the first embodiment except that the formed conductor layers 61 and 62 are present and the electromagnetic shield layer is made of two or more layers.
  • the conductor layers 51 and 52 formed on the side surfaces of the recesses 21 and 22 are electrically connected to the conductor layers 31 and 32 on the bottom surface of the recess.
  • Conductor layers 61 and 62 formed so as to cover the conductor layers 31, 32, 51 and 52 are also electrically connected.
  • the conductor layers 31, 32 formed on the bottom surface of one recess 21, 22 and the conductor layers 51, 52 formed around the recesses 21, 22 are the conductor layers 31, 32, 51, 52, 61, 62 Since they are electrically connected, they have the same potential.
  • the conductor layers 31, 32, 51, 52, 61, 62 may be connected to the ground (ground), for example, and kept at the reference potential of the multilayer wiring board 1.
  • the reference potential of the multilayer wiring board 1 may be maintained through the conductor layer 9 formed so as to be connected to the conductor layers 31, 32, 51, 52, 61, 62.
  • Electronic parts 4A and 4B are embedded in the respective recesses.
  • the electronic components 4A and 4B embedded in the recesses 21 and 22 are connected to the conductor circuit 2 by vias 3 formed in the insulating layers 13 and 15 on the recesses 21 and 22, respectively.
  • An electronic component 5 is also mounted on the surface layer of the multilayer wiring board 1.
  • the electronic component 5 mounted on the surface layer is connected to the surface conductor circuit 2 by solder bumps S formed on the conductor circuit.
  • the depth of the recesses 21 and 22 formed in the insulating layers 11a, 11b, and 14 is set according to the shape of the electronic components 4A and 4B to be embedded.
  • the concave portion 21 may be formed across two or more insulating layers 11a and 11b.
  • the conductor layer 51 for electromagnetic shielding is formed at least over the entire height of the recess.
  • the conductor layers 61 and 62 formed so as to cover the bottom surfaces of the recesses 21 and 22 and the side conductor layers 31, 32, 51 and 52 are connected pads P of the electronic components 4 ⁇ / b> A and 4 ⁇ / b> B built in the recesses 21 and 22. Since the entire outer surface excluding the upper surface provided with is surrounded, the electromagnetic shielding effect in the side surface direction and the bottom surface direction of the electronic components 4A and 4B can be obtained at the same time. Since the two recesses 21 and 22 in FIG. 5 are separated by the conductor layers 31 and 32 and the periphery of the recesses 21 and 22 is surrounded by the conductor layers 51 and 52, they are covered by the conductor layers 61 and 62. 5, the electronic component 4A in the upper concave portion 21 and the electronic component 4B in the lower concave portion 22 are electromagnetically shielded from each other.
  • the surface of the exposed conductor layers 61, 62 or the exposed portions of the exposed conductor layers 31, 32, 51, 52 that are not covered with the conductor layers 61, 62 may be roughened.
  • the roughening treatment is performed by performing a blackening treatment, a chemical etching treatment, a matte treatment method, a sandblasting method, or the like.
  • the conductor layers 61 and 62 may be formed of a material having a smaller electromagnetic wave reflection loss than the conductor layers 31, 32, 51 and 52.
  • the conductor layers 31, 32, 51 and 52 are copper, and the conductor layers 61 and 62 are nickel or gold.
  • the conductor layers 31, 32, 51, 52 may be silver or aluminum, and the conductor layers 61, 62 may be iron.
  • the conductor layers 61 and 62 may be formed of a material having a larger electromagnetic wave absorption loss than the conductor layers 31, 32, 51 and 52.
  • the conductor layers 31, 32, 51, 52 are copper
  • the conductor layers 61, 62 are silver or iron.
  • a combination of materials in which the conductor layers 31, 32, 51, and 52 are nickel and aluminum and the conductor layers 61 and 62 are copper is also possible.
  • the electromagnetic wave emitted by the electronic component embedded in the multilayer wiring board is reduced, The influence of electromagnetic waves from the outside can be suppressed.
  • the inside of the recess with a material having a large absorption loss and making the outside of the recess with a material having a smaller absorption loss than the inner layer, the influence of electromagnetic waves radiated by the electronic component embedded in the multilayer wiring board can be reduced. In addition, electromagnetic waves from the outside can be reduced.
  • any one of the two or more layers forming the concave portion is made of a material having a smaller electromagnetic wave reflection loss or a material having a larger electromagnetic wave absorption loss than the conductive layer facing the insulating layer on the bottom surface side of the concave portion. Even if formed, it has a high shielding effect. In this way, when a conductor layer is formed by selecting a material in consideration of reflection loss or absorption loss, the conductor layer has a higher shielding effect than when a single-layer conductor layer is formed of any material. Have.
  • the periphery of the recesses 21 and 22 is the conductor layers 61 and 62 or the conductor layers 51 and 52. Since it is surrounded, the recesses 21 and 22 are electromagnetically shielded.
  • the electronic component 5 mounted on the surface layer of the multilayer wiring board 1 and the electronic component 4B embedded in at least one recess 22 are electromagnetically shielded from each other.
  • FIG. 6A to 6N and FIG. 6O are cross-sectional views illustrating a part of the manufacturing process of the multilayer wiring board 1 according to Embodiment 2 of the present invention.
  • the electromagnetic shield around the recesses 21 and 22 is replaced with the filled via arrangement, and conductor layers 51 and 52 formed on the side surfaces of the recesses 21 and 22 are used.
  • conductor layers 61 and 62 formed by plating so as to cover the conductor layers 31, 32 and 51, 52, and the electromagnetic shield layer is formed of two or more layers. Since other than that is the same as that of Embodiment 1, description is abbreviate
  • FIG. 6A is a cross-sectional view of a double-sided copper-clad laminate.
  • the double-sided copper-clad laminate is formed, for example, from a laminate in which copper foil 6 is stretched on both sides of the insulating layer 11. Laser irradiation is performed on one surface of such a double-sided copper-clad laminate to form a via opening 7 that penetrates one copper foil 6 and the insulating layer 11 and reaches the back surface of the other copper foil 6.
  • FIG. 6B is a cross-sectional view of a double-sided copper-clad laminate in which via openings are formed.
  • the via opening 7 is for connecting the conductor circuit 2.
  • FIG. 6C is a cross-sectional view of a double-sided copper-clad laminate in which the via opening 7 is filled with metal.
  • An electrolytic copper plating process using the copper foil 6 as a plating lead is performed on the via opening 7 of the desmeared substrate, and the via 3 is formed by completely filling the via opening 7 with the electrolytic copper plating. .
  • FIG. 6D is a cross-sectional view of a wiring board in which the conductor circuit 2 and the conductor layer 31 are formed on both surfaces.
  • the copper foil 6 on both sides of the double-sided copper-clad laminate is etched to form a conductor circuit 2 including a via land, a positioning mark for alignment, and the like on one surface of the insulating layer 11.
  • a conductor layer 31 having a size related to the recess 21 accommodating the electronic component 4A, a conductor circuit 2 including a via land, a conductor layer 9 covering the surface of the insulating layer, and an alignment layer A positioning mark or the like is formed.
  • FIG. 6E is a cross-sectional view of the wiring board in which the via 3 and the conductor circuit 2 are formed in the insulating layer 12.
  • the insulating layer 12 and the copper foil 6 are laminated on the surface of the insulating layer 11 on the side where the conductor layer 31 is formed.
  • Vias 3 and conductor circuits 2 are formed in the insulating layer 12 in the same manner as the double-sided copper-clad laminate.
  • the conductor layer 32 that forms the bottom surface of the recess 22 formed on the lower side is formed.
  • FIG. 6F is a cross-sectional view of the multilayer wiring board in which the recess 21 for accommodating the electronic component 4A is formed.
  • the recess 21 for accommodating the electronic component 4A is formed in the surface region (recessed region) opposite to the surface on which the conductor layer 31 of the insulating layer 11 is provided, for example, an opening that penetrates the resin layer and reaches the surface of the conductor layer is formed by laser processing.
  • a concave portion 21 that exposes the surface is formed to form an electronic component housing substrate.
  • FIG. 6G is a cross-sectional view of the multilayer wiring board in which the conductor layer 51 is formed on the side surface of the recess 21. Resist layers are formed on both sides of the multilayer wiring board. For example, a dry film resist having a thickness of 15 ⁇ m is laminated to form a resist layer, and a recess 21 provided in the insulating layer 11 and a non-resist forming portion where the peripheral edge of the opening is exposed are formed.
  • catalyst nuclei are attached to the inner wall surface of the recess 21 and the surface of the peripheral edge of the opening.
  • it is immersed in an electroless copper plating aqueous solution to form, for example, an electroless copper plating film having a thickness of 0.5 to 3.0 ⁇ m on the inner wall surface of the recess 21 and the surface of the peripheral edge of the opening.
  • electrolytic copper plating is performed with an electrolytic copper plating aqueous solution and plating conditions, and an electrolytic copper plating film is formed in the resist non-formed portion.
  • the plating resist is peeled and removed by alkali to form a shielding metal layer composed of an electroless copper plating film and an electrolytic copper plating film on the inner wall surface (bottom surface and side surface) of the recess 21 and the opening peripheral edge of the recess 21. Is done.
  • the surfaces of the conductor layer 31 and the conductor layer 51 having a flat surface exposed on the bottom surface of the recess 21 are covered with an electroless copper plating film, and an electrolytic copper plating film is formed on the electroless copper plating film.
  • a metal layer for shielding is formed.
  • FIG. 6H is a diagram in which the conductor layer 61 is formed.
  • the conductor layer 61 forms a plating which is the conductor layer 61 so as to cover the surfaces of the conductor layer 31 formed on the bottom surface of the recess and the conductor layer 51 formed on the side surface of the recess.
  • the conductor layers 31 and 51 are made of copper and the conductor layer 61 is nickel-plated, washing with water, acid degreasing and soft etching are performed, and an electroless nickel plating solution (nickel chloride, sodium hypophosphite, sodium citrate is added).
  • An electroless nickel plating solution nickel chloride, sodium hypophosphite, sodium citrate is added.
  • a nickel plating layer having a thickness of 5 ⁇ m is formed by immersing in an acidic aqueous solution) for 20 minutes.
  • the conductor layers 31 and 51 are made of copper and the conductor layer 61 is gold-plated, it is washed with water and acid-degritted and then soft-etched, and electroless gold plating solution (potassium gold cyanide, ammonium chloride, hypophosphorous acid) An aqueous solution containing sodium and sodium citrate) is immersed at 80 ° C. for 7.5 minutes to form a gold plating layer having a thickness of 0.03 ⁇ m.
  • the silver-plated layer is formed by applying a silver paste on the copper surface or affixing a silver-plated copper foil. Form.
  • the conductor layer 61 When the conductor layer 61 is formed only on either the bottom surface or the bottom surface, the conductor layer 31 on the bottom surface of the recess or the portion where the side surface 51 of the recess is exposed on the surface of the recess is subjected to blackening treatment or chemical etching treatment, The surface may be roughened. Depending on the material of the conductor layer 61, the surface of the conductor layer 61 can be roughened. In addition, when the thickness of the conductor layer 61 is sufficiently small compared to the unevenness of the surface roughening and the surface cannot be directly roughened, the conductor layer 61 is formed after the surfaces of the conductor layers 31 and 51 are roughened. By doing so, unevenness can be formed on the surface of the recess.
  • FIG. 6I is a cross-sectional view of a multilayer wiring board in which the electronic component 4A is accommodated in the recess 21.
  • FIG. An electronic component 4A for example, a semiconductor element is embedded in the electronic component housing substrate obtained through the steps up to FIG. 6G.
  • FIG. 6G is a cross-sectional view of the multilayer wiring board in which the conductor layer 51 is formed on the side surface of the recess 21. Resist layers are formed on both sides of the multilayer wiring board. For example, a dry film resist having a thickness of 15 ⁇ m is laminated to form a resist layer, and a recess 21 provided in the insulating layer 11 and a non-resist forming portion where the peripheral edge of the opening is exposed are formed.
  • catalyst nuclei are attached to the inner wall surface of the recess 21 and the surface of the peripheral edge of the opening.
  • it is immersed in an electroless copper plating aqueous solution to form, for example, an electroless copper plating film having a thickness of 0.5 to 3.0 ⁇ m on the inner wall surface of the recess 21 and the surface of the peripheral edge of the opening.
  • electrolytic copper plating is performed with an electrolytic copper plating aqueous solution and plating conditions, and an electrolytic copper plating film is formed in the resist non-formed portion.
  • the plating resist is peeled and removed by alkali to form a shielding metal layer composed of an electroless copper plating film and an electrolytic copper plating film on the inner wall surface (bottom surface and side surface) of the recess 21 and the opening peripheral edge of the recess 21. Is done.
  • the surface of the conductor layer 31 having a flat surface exposed on the bottom surface of the recess 21 is covered with an electroless copper plating film, and an electrolytic copper plating film is formed on the electroless copper plating film to form a shielding metal layer. Is forming.
  • FIG. 6H is a cross-sectional view of the multilayer wiring board in which the electronic component 4A is accommodated in the recess 21.
  • FIG. An electronic component 4A for example, a semiconductor element is embedded in the electronic component housing substrate obtained through the steps up to FIG. 6G.
  • FIGS. 6I and 6J are cross-sectional views of a multilayer wiring board in which an insulating layer 13 is formed on the electronic component 4A.
  • the insulating layer 13 and the copper foil 6 are laminated in the same manner as the insulating layer 12 and the copper foil 6 are laminated on the substrate containing and incorporating the electronic component 4A.
  • FIG. 6J and FIG. 6K are cross-sectional views of the multilayer wiring board in which the conductor circuit 2 is formed on the surface layer.
  • the same process as the process described with reference to FIGS. 6B to 6D is performed, so that the intermediate layer formed on the connection pad P of the built-in electronic component 4A is electrically connected.
  • the via 3 to be connected, the outer conductor circuit 2 and the conductor layer 10 are formed.
  • the conductor layer 10 is formed so as to cover the surface of the electronic component 4 ⁇ / b> A without being connected to the connection pad P and the conductor circuit 2.
  • FIG. 6K and FIG. 6L are cross-sectional views of the multilayer wiring board on which the insulating layer 14 for forming the recess 22 for accommodating the electronic component 4B is formed.
  • the insulating layer 14 and the copper foil 6 are laminated in the same manner as the insulating layer 12 and the copper foil 6 are laminated.
  • FIG. 6L and FIG. 6M are cross-sectional views of the multilayer wiring board in which the via 3, the conductor circuit 2, the concave portion 22, and the conductive layer 52 on the side surface of the concave portion are formed on the insulating layer 14 laminated in FIG. 6K and FIG. 6B to 6D, FIG. 6F, and FIG. 6G, the via 3 connected to the conductor circuit 2, the recess 22, the conductor layer 52 on the side surface of the recess, and the conductor layer 9 are formed.
  • the bottom surface of the recess 22 is a conductor layer 32 formed in the step of forming the conductor circuit 2 of FIG. 6E. In the same manner as described with reference to FIG.
  • an electroless copper plating film is formed on the inner wall surface (bottom surface and side surface) of the recess 22 and the opening peripheral edge of the recess 22 so as to cover the conductor layer 32 and the conductor layer 52.
  • a conductor layer 62 made of an electrolytic copper plating film may be formed with a shielding metal layer.
  • the surfaces of the conductor layers 32, 52, and 62 forming the concave surface may be roughened.
  • 6M and 6N are cross-sectional views of the multilayer wiring board in which the electronic component 4B is accommodated in the lower concave portion 22 and the insulating circuit 15 is laminated to form the conductor circuit 2.
  • FIG. 6H and 6I and 6I and 6J the electronic component 4B is accommodated in the recess 22 and the conductor layer 10 is formed, and then the insulating layer 15 and the copper foil 6 are laminated.
  • the via 3 electrically connected to the intermediate layer formed on the connection pad P of the built-in electronic component 4B and the multilayer wiring board are formed.
  • the via 3 electrically connected to the conductor circuit 2 including the formed via 3 and the outer conductor circuit 2 are formed.
  • an insulating layer and a copper foil are laminated, and the same processing as in FIGS. 6K, 6L to 6M, and 6N is repeated to obtain a multilayered wiring board having a further increased number of layers.
  • the electronic component 5 is mounted on the surface of the multilayer wiring board.
  • 6N and 6O are cross-sectional views of the multilayer wiring board having the electronic component 5 mounted on the surface.
  • a solder resist layer is formed on the surface of the multilayer wiring board.
  • a solder body is supplied to the solder pad portion exposed immediately above the via from the opening of the solder resist, and solder bumps S are formed by melting and solidifying the solder body.
  • a conductive ball or a conductive pin is joined to the pad portion using a conductive adhesive or a solder layer to form a multilayer wiring board.
  • a solder transfer method or a printing method can be used as supplying the solder body and the solder layer.
  • the electronic component 5 is soldered to the conductor circuit 2 on the surface by placing and heating the electronic component 5 on the printed solder paste.
  • the electronic component is mounted on the surface of the multilayer wiring board facing the bottom surface of at least one recess 22. Since the electronic component 5 mounted on the surface and the electronic component 4B accommodated in the recess 22 are electromagnetically shielded, mutual electromagnetic interference is prevented.
  • the conductor layer 61 appearing on the surface layer of the recess 21 may be formed of a material having a smaller electromagnetic wave reflection loss than the conductor layers 31 and 51 other than the surface layer forming the recess 21.
  • the conductor layers 31 and 51 are copper, and the conductor layer 61 is nickel or gold.
  • the conductor layers 31 and 51 may be silver or aluminum, and the conductor layer 61 may be iron or the like.
  • the conductor layer 61 may be formed of a material having a larger electromagnetic wave absorption loss than the conductor layers 31 and 51.
  • the conductor layers 31 and 51 are copper, and the conductor layer 61 is silver or iron.
  • the conductor layers 31 and 51 may be nickel or aluminum, and the conductor layer 61 may be copper.
  • it may be formed of a material having a large absorption loss of electromagnetic waves.
  • the conductor layer 10a is copper, and the conductor layers 31, 51, 61 are nickel or gold.
  • the conductor layer 10a may be a combination of silver or aluminum, and the conductor layers 31, 51, 61 may be a combination of iron or the like.
  • the conductor layer 10a is copper
  • the conductor layers 31, 51, 61 are silver or iron
  • the conductor layer 10a is nickel or aluminum
  • the conductor layers 31, 51, 61 are copper. Combinations are also possible.
  • the conductor layers 31, 51, 61, and 10a corresponding to the recess 21 are read as the conductor layers 32, 52, 62, and 10b corresponding to the recess 22, and the material can be selected in the same manner.
  • the conductor layer 10a and the conductor layer 9b, or the conductor layer 10b and the conductor layer 9a may be formed on the same insulating layer and connected to the same reference potential, or may be formed of the same material.
  • the conductor layer when the conductor layer is made of two or more layers and the inside of the recess is made of a material having a small reflection loss and the outside is made of a material having a reflection loss larger than that of the inside layer, or the inside of the recess.
  • the conductor layer has a higher shielding effect than a single-layer conductor layer made of any material. .
  • any one of the two or more layers forming the recess is formed of a material having a smaller electromagnetic wave reflection loss than the opposing conductor layer with the insulating layer on the bottom side of the recess interposed therebetween, or absorption of the electromagnetic wave Even when formed of a material with a large loss, the conductor layer has a higher shielding effect than when a single conductor layer is formed of any material.
  • FIG. 7 is a cross-sectional view showing an example of the configuration of the multilayer wiring board 1 in the case where two recessed portions are formed in one insulating layer using a filled via for the electromagnetic shield of the recessed portion.
  • Two recesses 22 and 23 are simultaneously formed in one insulating layer 14.
  • the bottom conductor layers 32 and 33 are formed in the recesses 22 and 23, respectively.
  • filled vias 42 and 43 are arranged around the recesses 22 and 23 to form an electromagnetic shield.
  • the electronic components 4B and 4C can be accommodated in the recesses 22 and 23, respectively.
  • FIG. 8 is a plan view showing an example of the positional relationship between the recesses 21, 22, and 23 of the multilayer wiring board of FIG. As shown in FIG. 8, even if there is a portion where the two concave portions do not overlap, the bottom surfaces of the concave portions 21, 22, and 23 are separated by the conductor layers 31, 32, and 33, and the surroundings are filled vias 41, 42, Since it is surrounded by 43, the recesses are electromagnetically shielded. In addition, the electronic component 5 mounted on the surface layer of the multilayer wiring board 1 and the electronic components 4B and 4C embedded in the two lower concave portions 22 and 23 are electromagnetically shielded from each other.
  • FIG. 9 is a cross-sectional view showing an example of the configuration of the multilayer wiring board 1 in the case where two concave portions are formed in one insulating layer using a conductive layer on the side surface of the concave portion for the electromagnetic shield of the concave portion.
  • Two recesses 22 and 23 are simultaneously formed in one insulating layer 14.
  • Conductive layers 32 and 33 on the bottom surface and conductive layers 52 and 53 on the side surfaces are formed in the recesses 22 and 23, respectively.
  • the electronic components 4B and 4C can be accommodated in the recesses 22 and 23, respectively.
  • a roughening treatment is applied to the conductor layer 52 on the side surface of the recess 22 on the side close to the recess 23.
  • Methods for roughening the surface include blackening treatment, chemical etching treatment, matte treatment method and sandblasting method.
  • the conductor layer 52 may be formed of a material having an electromagnetic wave reflection loss smaller than that of the conductor layer 53, or may be formed of a material having an electromagnetic wave absorption loss larger than that of the conductor layer 53.
  • the electromagnetic wave radiated by the electronic component 4B is reduced, the influence of the electromagnetic wave from the electronic component 4C at the opposite position in the same insulating layer on the side surface side of the recess 22 is suppressed, and an electromagnetic shielding effect is provided.
  • the conductor layer 53 is copper
  • the conductor layer 52 is nickel or gold.
  • the conductor layer 53 may be silver or aluminum, and the conductor layer 52 may be a combination of iron or the like.
  • the conductor layer 53 may be copper
  • the conductor layer 52 may be silver or iron
  • the conductor layer 53 may be nickel or aluminum
  • the conductor layer 52 may be a combination of copper.
  • the electronic components 4B and 4C incorporated in the recesses 22 and 23 can be protected from interference due to the electromagnetic wave. Any combination may be used. By combining the material selection and the surface roughening treatment of the conductor layers 52 and 53, the electromagnetic shielding effect can be enhanced.
  • the conductor layers 31, 32 Since it is surrounded by 33, 51, 52, 53, the recesses are electromagnetically shielded.
  • the electronic component 5 mounted on the surface layer of the multilayer wiring board 1 and the electronic components 4B and 4C embedded in the two lower concave portions 22 and 23 are electromagnetically shielded from each other.
  • the multilayer wiring board 1 according to the present invention has two or more recesses 21 and 22 for accommodating the electronic components 4A and 4B, and an electromagnetic shield layer is provided on the bottom and side surfaces of the recesses 21 and 22, respectively. Since they are formed, the electronic components housed in the recesses 21 and 22 do not interfere with each other. Moreover, since the electronic component 5 mounted on the surface layer facing the bottom surface side of one recess 22 of the multilayer wiring board is electromagnetically shielded from the recess 22, the electronic component 4B accommodated in the recess 22 Electromagnetic interference with the electronic component 5 mounted on the surface facing the bottom surface side of the recess 22 can be prevented.
  • the bottom and side conductor layers appearing on the surface layer of the recess may be roughened, and two or more electromagnetic shield layers formed on the bottom surface and the periphery forming the recess may be used.
  • the surface layer of the concave portion of the electromagnetic shield layer formed of two or more layers is roughened.
  • the surface to be roughened may be either the bottom surface or the side surface, but it is desirable to roughen both surfaces in order to increase the electromagnetic shielding effect.
  • the layer appearing on the surface layer of the concave portion of the electromagnetic shielding layer formed of two or more layers is a material having a smaller electromagnetic wave reflection loss or a material having a larger electromagnetic wave absorption loss than layers other than the two or more surface layers. A higher electromagnetic shielding effect can be obtained.
  • any one of the electromagnetic shielding layers in the recess formed of two or more layers is made of a material having a larger absorption loss of electromagnetic waves than the wiring material forming the conductor circuit, and sandwiches the insulating layer on the bottom surface side of the recess.
  • the other electromagnetic shielding layers facing each other are formed of a material having a reflection loss of electromagnetic waves equal to or higher than that of the wiring material forming the conductor circuit.
  • any one of the electromagnetic shield layers of the recess formed of two or more layers is made of a material having a smaller electromagnetic wave reflection loss than other electromagnetic shield layers facing each other with the insulating layer on the bottom side of the recess interposed therebetween, or It is made of a material with a large absorption loss.
  • the other electromagnetic shielding layer which opposes may form another recessed part.
  • Embodiment 1 since the electromagnetic shield around the recesses 21 and 22 is formed by the filled vias 41 and 42, it can be processed simultaneously with the vias connecting the conductor circuits. There is no need to form a conductor layer on the side surface of the recess by metal plating or the like, and the number of processes is not increased for electromagnetic shielding. Furthermore, the heat dissipation effect by filled vias 41 and 42 can also be expected.
  • Example 3 The surface shape, the cross-sectional shape, and the electromagnetic wave of the copper clad laminate (hereinafter referred to as examples) subjected to the surface roughening treatment in this embodiment and the untreated copper clad laminate (hereinafter referred to as comparative examples)
  • the absorption characteristics were compared.
  • Examples include a copper-clad laminate (hereinafter referred to as Example 1) subjected to black oxidation treatment, a copper-clad laminate (hereinafter referred to as Example 2) subjected to chemical etching treatment, and copper plated with gold on the surface.
  • Three types of tension laminate hereinafter referred to as Example 3 were used.
  • Example 3 it compared only about the electromagnetic wave absorption characteristic.
  • FIG. 10 shows the surface shape of Example 1 observed with FE-SEM (apparatus: JEOL, acceleration voltage: 3 kV) (imaging magnification: 2000 times).
  • FIG. 11 shows an example 2 and FIG. 12 shows a comparative example.
  • FIG. 13 shows the cross-sectional shape of Example 1 observed with an FE-SEM (apparatus: JSM-7500F, acceleration voltage: 7 kV) (imaging magnification: 5000 times).
  • FIG. 14 shows the example 2 and FIG. 15 shows the comparative example.
  • FIG. 16 shows the calculation result of the surface roughness parameter.
  • the cross-sectional images of FIGS. 13, 14, and 15 were binarized to extract a surface profile. Subsequently, after surface profile inclination correction processing, surface roughness parameters Ra (arithmetic mean roughness), RMS (root mean square roughness) and surface length were calculated.
  • the effect 1 represents Example 1
  • the effect 2 represents Example 2
  • the compare represents a comparative example
  • the surface length represents the surface length.
  • the surface of Example 1 as shown in FIGS. 10 and 13 is a dendritic coarseness of 0.1 to 1.0 ⁇ m covered with a granular form having a size of 10 to 20 nm. It was confirmed that a surface was formed and the surface length was significantly larger than that of the comparative example. Further, as shown in FIG. 11 and FIG. 14, a rough surface with acute irregularities of 0.1 to 5.0 ⁇ m is formed on the surface of Example 2. From FIG. It was confirmed that the value of) was larger than that of the comparative example.
  • the electromagnetic wave absorption characteristics are measured after a high-frequency loop antenna connected to a vector network analyzer (device name: Wiltron 37225, measurement frequency: around 1 GHz) of a cylindrical cavity resonator is installed in a cylindrical casing and magnetically coupled.
  • a vector network analyzer device name: Wiltron 37225, measurement frequency: around 1 GHz
  • Each sample was placed in the housing in a state where the frequency was swept, and the Q value in the housing before and after placing the sample was measured and compared.
  • a sample having a square size of 25 mm on a side was used.
  • Example 1 When the sample is placed, the Q value becomes low and the resonance amplitude decreases.
  • Examples 1, 2, and 3 show that the difference between the Q values before and after the sample placement is larger than that of the comparative example and the decrease in resonance amplitude is large. In particular, in Example 2, it is confirmed that there is a radio wave absorption characteristic. did it.
  • each recess is separated by an electromagnetic shield, so that mutual electromagnetic interference is prevented, and a digital signal circuit, an analog signal circuit, a memory circuit, and the like are mixed in one multilayer wiring board. be able to.
  • circuits having different properties can be integrated on one multilayer wiring board, so that an electronic circuit can be configured with higher density. Thereby, it becomes possible to make a portable terminal etc. small.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Geometry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

 電磁干渉による電子部品の誤動作の発生を防止し、高密度の電子部品実装を可能にする多層配線板を提供する。特に、基板の一部の回路から発生する電磁波による干渉から、基板内の他の電子部品を保護する。  多層配線板(1)は、導体回路(2)と絶縁層(11a、11b、12、13、14、15)が形成されて、絶縁層(11a、11b、12、13、14、15)で隔てられた導体回路(2)どうしがビア(3)を介して電気接続される多層配線基板と、絶縁層(11a、11b、12、13、14、15)に形成された凹部(21、22)と、凹部(21、22)の底面と側面の少なくとも一方に形成され表面が粗化された電磁シールド層(31、32、41a、41b、42)と、凹部(21、22)に収容された電子部品(4A、4B)と、を備える。

Description

多層配線板およびその製造方法
 本発明は、多層配線板およびその製造方法に関する。より詳しくは、ICなどの電子部品が内蔵された多層配線板およびその製造方法に関する。
 携帯情報機器(いわゆるモバイル端末)では、小型化、高機能化が進展している。従来、このような携帯機器を小型化するため、印刷配線板の層内部に、電子部品を組み込んだ、いわゆる部品内蔵基板が提案されている。また、印刷配線板表面に高密度に電子部品を実装する技術として、例えば、フリップチップ接続がある。
 半導体素子を内蔵する多層プリント配線板としては、例えば、特開2001-339165号公報または特開2002-050874号公報等に開示されたものがある。これらの文献に開示された多層プリント配線板は、半導体素子、その半導体素子を被覆するように基板上に形成した絶縁層と、絶縁層の表面に形成された導体回路と、その導体回路と半導体素子のパッドとを電気的に接続するように絶縁層に設けたビアホールとから構成されている。
 このような従来の多層プリント配線板においては、その最外層の表面に外部接続端子(例えば、PGA、BGA等)が設けられ、基板に内蔵された半導体素子は、これらの外部接続端子を介して外部との電気的な接続を行うようになっている。
また、電子部品を高密度に実装できると共に、電子部品に対する電磁ノイズからのシールド効果も有する電子部品パッケージの技術が、特開2001-274034号公報に記載されている。特開2001-274034号公報の技術は、コア材に形成された凹部と、凹部内に埋め込まれた半導体チップと、凹部の開口側のコア材の表面に凹部を覆うように形成された絶縁層と、絶縁層の表面に形成された配線層と、絶縁層に形成され、配線層と半導体チップの凹部開口側の表面に形成された電極端子とを電気的に接続するビアとを有する電子部品パッケージにおいて、凹部の内壁面および底面を導電性金属で構成するものである。
 さらに、高調波輻射ノイズを遮断し、反射についても大幅に低減することができるとして特開2006-019342号公報に記載されている。多層基板の内部に埋め込まれた半導体ICと多層基板の一方の表面を被う金属シールドと、多層基板の一方の表面と金属シールドとの間に設けられた磁性体シートを備えることで、ノイズの抑制が可能となるものである。
 しかしながら、前述の従来技術には次の問題がある。基板内に高密度に電子部品を実装した場合、高い周波数の電磁波の干渉(EMI:Electro Magnetic Interference)による電子部品の誤動作が発生する。EMIを防止するため、電子部品表面に金属キャップを装着し、他の電子部品による電磁波の影響を最小限に抑えるなどの方法が採られている。金属キャップによる保護は基板表面に実装された電子部品には有効であるが、さらに高密度化を図るために基板内部に内蔵された電子部品には適用できない。また、金属キャップは、基板表面に実装されている電子部品の上部および側面を電磁波の影響から保護するものであり、電子部品が実装されている下面は保護できない。したがって、基板表面に実装された電子部品と、基板内部に内蔵された電子部品の間の相互のEMIを防止することができない。
 また、前述の特開2001-274034号公報の技術は、電子部品パッケージ内のEMIを防止するために、電子部品パッケージ内の電子部品の間に電磁シールド層を設ける構造になっていない。そのため、電子部品パッケージ内の電子部品どうしのEMIを防止することができないという問題がある。
 さらに、特開2006-019342号公報に記載された金属シールドと磁性体シートで多層基板の一方を被う方法では、基板厚さの薄型化は困難である。
 本発明は、上記のような問題を解決するためになされたもので、電磁干渉による電子部品の誤動作の発生を防止し、高密度の電子部品実装を可能にする多層配線板を提供することを目的とする。特に、基板の一部の回路から発生する電磁波による干渉から、基板内の他の電子部品を保護することを目的とする。
 この目的を達成するため、本発明の第1の観点に係る多層配線板は、
 導体回路と絶縁層が形成されて、前記絶縁層で隔てられた前記導体回路どうしがビアを介して電気接続される多層配線基板と、
 前記絶縁層に形成された凹部と、
 前記凹部の底面と側面の少なくとも一方に形成され表面が粗化された電磁シールド層と、
 前記凹部に収容された電子部品と、
を備えることを特徴とする。
 好ましくは、前記凹部の底面に形成される電磁シールド層は、前記多層配線基板の絶縁層の表面に形成された導体層で構成されることを特徴とする。
 好ましくは、前記電磁シールド層は、金属で形成されることを特徴とする。
 好ましくは、前記凹部の底面と側面の両方もしくは一方の電磁シールド層は、吸収損失が前記導体回路を形成する配線材料より大きい材料で形成され、かつ、前記凹部の底面側にある前記絶縁層を挟んで対向する他の電磁シールド層は、反射損失が前記導体回路を形成する配線材料と同等もしくはそれ以上の材料で形成されることを特徴とする。
 好ましくは、前記凹部の底面に形成され表面が粗化された電磁シールド層は、前記凹部の底面側にある前記絶縁層を挟んで対向する他の電磁シールド層より電磁波の反射損失が小さい材料で形成されることを特徴とする。
 また、前記凹部の底面に形成され表面が粗化された電磁シールド層は、前記凹部の底面側にある前記絶縁層を挟んで対向する他の電磁シールド層より電磁波の吸収損失が大きい材料で形成されてもよい。
 好ましくは、前記凹部の側面の少なくとも一方に形成され表面が粗化された電磁シールド層は、前記凹部の側面側にある同一絶縁層内で対向する他の電磁シールド層より電磁波の反射損失が小さい材料で形成されることを特徴とする。
 また、前記凹部の側面の少なくとも一方に形成され表面が粗化された電磁シールド層は、前記凹部の側面側にある同一絶縁層内で対向する他の電磁シールド層より電磁波の吸収損失が大きい材料で形成されてもよい。
 本発明の第2の観点に係る多層配線板は、
 導体回路と絶縁層が形成されて、前記絶縁層で隔てられた前記導体回路どうしがビアを介して電気接続される多層配線基板と、
 前記絶縁層に形成された凹部と、
 前記凹部の底面と側面の少なくとも一方に2層以上の層で形成された電磁シールド層と、
 前記凹部に収容された電子部品と、
を備えることを特徴とする。
 好ましくは、前記2層以上の層で形成された電磁シールド層の少なくとも1層は、金属で形成されることを特徴とする。
 好ましくは、前記凹部の底面に形成された電磁シールド層は、前記凹部の底面側にある前記絶縁層を挟んで対向する他の電磁シールド層より電磁波の反射損失が小さい材料で形成されることを特徴とする。
 また、前記凹部の底面に形成された電磁シールド層は、前記凹部の底面側にある前記絶縁層を挟んで対向する他の電磁シールド層より電磁波の吸収損失が大きい材料で形成されてもよい。
 好ましくは、前記凹部の側面の少なくとも一方に形成された電磁シールド層のいずれかの層は、前記凹部の側面側にある同一絶縁層内で対向する他の電磁シールド層より電磁波の反射損失が小さい材料で形成されることを特徴とする。
 また、前記凹部の側面の少なくとも一方に形成された電磁シールド層のいずれかの層は、前記凹部の側面側にある同一絶縁層内で対向する他の電磁シールド層より電磁波の吸収損失が大きい材料で形成されてもよい。
 好ましくは、前記凹部の底面と側面の少なくとも一方に2層以上の層で形成された電磁シールド層の表層に現れた電磁シールド層は、前記2層以上の層の表層以外の電磁シールド層より電磁波の反射損失が小さい材料で形成されることを特徴とする。
 また、前記凹部の底面と側面の少なくとも一方に2層以上の層で形成された電磁シールド層の表層に現れた電磁シールド層は、前記2層以上の層の表層以外の電磁シールド層より電磁波の吸収損失が大きい材料で形成されてもよい。
 さらに好ましくは、前記凹部の底面と側面の少なくとも一方の表層に現れた電磁シールド層の表面は粗化されることを特徴とする。
 本発明の第3の観点に係る多層配線板の製造方法は、
 導体回路と絶縁層が形成されて、前記絶縁層で隔てられた前記導体回路どうしがビアを介して電気接続される多層配線基板を含む多層配線板の製造方法であって、
 前記多層配線基板の絶縁層に凹部を形成する工程と、
 前記凹部の底面と側面の少なくとも一方に電磁シールド層を形成するシールド層形成工程と、
 前記凹部の底面と側面の少なくとも一方に形成された電磁シールド層の表面を粗化する工程と、
 前記凹部に電子部品を埋め込む工程と、
を備えることを特徴とする。
 本発明の第4の観点に係る多層配線板の製造方法は、
 導体回路と絶縁層が形成されて、前記絶縁層で隔てられた前記導体回路どうしがビアを介して電気接続される多層配線基板を含む多層配線板の製造方法であって、
 前記多層配線基板の絶縁層に凹部を形成する工程と、
 前記凹部の底面と側面の少なくとも一方に第1の電磁シールド層を形成する第1のシールド層形成工程と、
 前記第1の電磁シールド層の少なくとも一部の該第1の電磁シールド層よりも凹部の表層側に、該第1の電磁シールド層よりも電磁波の反射損失が小さい材料もしくは電磁波の吸収損失が大きい材料で第2の電磁シールド層を形成する工程と、
 前記凹部に電子部品を埋め込む工程と、
を備えることを特徴とする。
 好ましくは、前記第2の電磁シールド層の表面を粗化する工程を備えることを特徴とする。
 本発明によれば、電磁干渉による電子部品の誤動作の発生を防止し、高密度の電子部品実装を可能にする多層配線板を提供することができる。特に、基板の一部の回路から発生する電磁波による干渉から、基板内の他の電子部品を保護することができる。
本発明の実施の形態1に係る凹部周囲の電磁シールド層がビアで形成された場合の多層配線板の断面図である。 多層配線板の凹部の周囲に形成されたビアを各辺が直線状に配列した図である。 多層配線板の凹部の周囲に形成されたビアを各辺の方向にジグザグに配列した図である。 多層配線板の凹部の位置関係の例を示す平面図である。 本発明の実施の形態1に係る多層配線板の製造工程の一部を示す断面図で、両面銅張積層板の断面図である。 ビア用開口が形成された両面銅張積層板の断面図である。 ビア用開口に金属を充填した両面銅張積層板の断面図である。 両面に導体回路および導体層を形成した配線基板の断面図である。 電子部品を収容する凹部を形成した配線基板の断面図である。 露出した導体層の凹部底面の表面を粗化した配線基板の断面図である。 電子部品を凹部に収容した配線基板の断面図である。 絶縁層に絶縁層および銅箔を積層し、電子部品を収容した上に絶縁層および銅箔を形成した多層配線基板の断面図である。 絶縁層にビアと導体回路を形成し、表層に導体回路を形成した多層配線基板の断面図である。 下側に電子部品を収容する凹部を形成するための絶縁層を形成した多層配線基板の断面図である。 積層した絶縁層に、ビアと導体回路と凹部を形成した多層配線基板の断面図である。 下側の凹部に電子部品を収容し、絶縁層を積層して導体回路を形成した多層配線基板の断面図である。 表面に電子部品を実装した多層配線板の断面図である。 本発明の実施の形態2に係る凹部周囲の電磁シールド層が導体層で形成された場合の多層配線板の断面図である。 本発明の実施の形態2に係る多層配線板の製造工程の一部を示す断面図で、両面銅張積層板の断面図である。 ビア用開口が形成された両面銅張積層板の断面図である。 ビア用開口に金属を充填した両面銅張積層板の断面図である。 両面に導体回路および導体層を形成した配線基板の断面図である。 絶縁層にビアと導体回路を形成した多層配線基板の断面図である。 電子部品を収容する凹部を形成した多層配線基板の断面図である。 凹部の側面に導体層を形成した多層配線基板の断面図である。 凹部に導体層を形成した多層配線基板の断面図である。 電子部品を凹部に収容した多層配線基板の断面図である。 電子部品を収容した上に絶縁層を形成した多層配線基板の断面図である。 表層に導体回路を形成した多層配線基板の断面図である。 電子部品を収容する凹部を形成するための絶縁層を形成した多層配線基板の断面図である。 積層した絶縁層に、ビアと導体回路と凹部および凹部側面の導体層を形成した多層配線基板の断面図である。 下側の凹部に電子部品を収容し、絶縁層を積層して導体回路を形成した多層配線基板の断面図である。 表面に電子部品を実装した多層配線板の断面図である。 1つの絶縁層に2つの凹部を形成する場合の多層配線板の構成の一例を示す断面図である。 多層配線板の凹部の位置関係の例を示す平面図である。 1つの絶縁層に2つの凹部を形成する場合の多層配線板の構成の一例を示す断面図である。 銅張積層板の表面形状を走査型電子顕微鏡(撮影倍率2000倍)で観察した像で、表面粗化処理を施したもの(実施例1)を示す。 銅張積層板の表面形状を走査型電子顕微鏡(撮影倍率2000倍)で観察した像で、表面粗化処理を施したもの(実施例2)を示す。 銅張積層板の表面形状を走査型電子顕微鏡(撮影倍率2000倍)で観察した像で、未処理のもの(比較例)を示す。 銅張積層板の断面形状を走査型電子顕微鏡(撮影倍率5000倍)で観察した像で、表面粗化処理を施したもの(実施例1)を示す。 銅張積層板の断面形状を走査型電子顕微鏡(撮影倍率5000倍)で観察した像で、表面粗化処理を施したもの(実施例2)を示す。 銅張積層板の断面形状を走査型電子顕微鏡(撮影倍率5000倍)で観察した像で、未処理のもの(比較例)を示す。 銅張積層板の表面粗さパラメータの算出結果の表である。
符号の説明
 1 多層配線板
 2 導体回路
 3 ビア
 4、4A、4B 電子部品
 5 電子部品
 9 、10 導体層(電磁シールド層)
 11、12、13、14、15 絶縁層
 21、22 凹部
 31、32 導体層(電磁シールド層)
 41、41a、41b、41c フィルドビア(電磁シールド層)
 42、42a、42b フィルドビア(電磁シールド層)
 51、52 側面導体層(電磁シールド層)
 61、62 導体層(電磁シールド層)
 以下、本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付し、その説明は繰り返さない。
(実施の形態1)
 図1は、本発明の実施の形態1に係る多層配線板の断面図である。実施の形態1では、凹部の周囲の電磁シールド層は金属が充填されたビアの配列で構成される。
 多層配線板1は、複数の絶縁層11a、11b、12、13、14、15と絶縁層11a、11b、12、13、14、15に隔てられた導体回路2と、導体回路2を電気的に接続するビア3から構成される。本発明の実施の形態1に従う多層配線板1は、絶縁層11a、11b、14の一部に凹部21、22が形成されている。それぞれの凹部21、22の底面には導体層31、32が形成されている。また、凹部21、22の周囲には金属が充填されたビア(フィルドビア)41a、41b、42が形成されている。
 凹部21の底面に形成された導体層31の表面は粗化されている。凹部22の底面に形成された導体層32の表面は粗化されていないが、粗化されていても構わない。
 凹部21を有する絶縁層の表面に導体層9aが形成され、凹部22を有する絶縁層の表面に導体層9bが形成されている。また、凹部21の底面側にある絶縁層を挟んで対向する導体層10aが形成され、凹部22の底面側にある絶縁層を挟んで対向する導体層10bが形成されている。
 凹部21、22の周囲に形成されたフィルドビア41a、41b、42は、凹部21、22の底面に形成された導体層31、32に接続している。1つの凹部21、22の底面に形成された導体層31、32と凹部21、22の周囲に形成されたフィルドビア41a、41b、42は、電気的に導通しているので同じ電位である。それらは、例えばグランド(接地)に接続され、多層配線板1の基準の電位に保たれてもよい。
 フィルドビア41a、41b、42は、凹部21、22の底面に形成された導体層31、32と接続していなくてもよい。その場合、フィルドビア41a、41b、42は、導体層31、32と同じ基準電位に接続されていることが望ましい。
 絶縁層の表面の導体層9は、フィルドビア41a、41b、42に接続され、多層配線板1の基準の電位に保たれてもよい。
 それぞれの凹部21、22には、電子部品4A、4Bが埋め込まれている。凹部21、22に埋め込まれた電子部品4A、4Bは、凹部21、22の上の絶縁層13、15に形成されたビア3によって導体回路2に接続されている。また、多層配線板1の表層にも電子部品5が実装されている。表層に実装された電子部品5は、導体回路2上に形成された半田バンプSによって表層の導体回路2に接続している。
 絶縁層11a、11b、14に形成される凹部21、22の深さは埋め込まれる電子部品の形状に応じて設定される。例えば図1の上の凹部21のように、2層またはそれ以上の絶縁層11a、11bに亘って凹部21が形成されてもよい。その場合、少なくとも凹部21の高さ全体に亘って、電磁シールド用のフィルドビア41a、41bを形成する。
 図2Aおよび図2Bは、多層配線板1の凹部21の周囲に形成されたビア41の配列を示す図である。図2Aでは、矩形の凹部21の周囲に、各辺が直線状にビア41が配列されている。図2Bでは、矩形の凹部21の周囲に、各辺の方向にジグザグにビア41が配列されている。絶縁層11に形成される凹部21の開口形状は矩形に限らず、埋め込まれる電子部品4の形状と回路配置に合わせて形成される。凹部21の周囲に、凹部開口の縁部に沿って形成されるフィルドビア41の配列は、凹部開口の縁部に沿って図2Aのように一列でもよいし、図2Bのようにジグザグに配列されてもよい。
 フィルドビア41の間隔(隙間)は、凹部21に埋め込まれる電子部品から発生する、または電子部品に影響を及ぼす周波数の電磁波を遮断するように設定される。フィルドビア41の隙間は小さい方が遮断される周波数が高い。フィルドビア41a、41b、42は柱状で、隣り合うフィルドビアと連結させるのがよい。その場合、フィルドビア41a、41b、42は、隙間なく一枚の導体層を形成し、電磁シールド効果が高い。
 導体層31、32とフィルドビア41a、41b、42は、凹部21、22に内蔵される電子部品4A、4Bの接続パッドが設けられている上面を除く外側表面の全体を取り囲んでいるので、電子部品4A、4Bの側面方向および底面方向の電磁シールド効果を同時に得ることができる。図1の2つの凹部21、22どうしは導体層31、32で隔てられ、凹部21、22の周囲がフィルドビア41a、41b、42で囲まれているので、図1の上の凹部21の電子部品4Aと、下の凹部22の電子部品4Bとは互いに電磁シールドされている。
 図3は、図1の多層配線板1の凹部21、22の位置関係の例を示す平面図である。図3に示すように、2つの凹部21、22が重なっていない部分があっても、凹部21、22の周囲はフィルドビア41、42で囲まれているので、凹部21、22どうしは電磁シールドされている。また、多層配線板1の表層に実装された電子部品5と、少なくとも1つの凹部22に埋め込まれた電子部品4Bとは互いに電磁シールドされている。
 凹部21、22に埋め込まれる電子部品4A、4B、および多層配線基板1の表層に実装される電子部品5は、例えば、ディジタル信号IC、アナログ信号ICまたはメモリICなどを含む。その他、抵抗、コンデンサ、インダクタンスなどの受動部品、またはスイッチング素子などを含む場合もある。凹部21、22または表層に構成される回路はそれぞれ、ディジタル信号回路、アナログ信号回路、またはメモリ回路などである。凹部21、22ごとに電磁シールドで分離されるので相互の電磁干渉が防止され、1つの多層配線板1の中に、ディジタル信号回路、アナログ信号回路およびメモリ回路などを混在させることができる。
 電磁シールドである導体層31、32に用いられる金属としては、ニッケル、銅、クロムのいずれか1種類、あるいは2種類以上が配合されている金属を用いることが望ましい。これらの金属の一例としては、銅、銅-クロム合金、銅-ニッケル合金、ニッケル、ニッケル-クロム合金、クロムなどが挙げられるが、これら以外の金属を用いてもよい。
 前記金属で形成される導体層31、32の厚さは、5~20μmが望ましい。その理由は、厚さが5μm未満では、シールド層としての効果を相殺させてしまうことがあるからである。一方、厚さが20μm超では、シールド層の効果を向上させることができないことがあるからである。
 これらの導体層31、32の形成方法としては、無電解めっき、電解めっき、スパッタリング、蒸着等が望ましい。その理由としては、膜厚の均一な金属膜を形成することが容易であるため、電磁シールド効果をより得やすいからである。これらの方法により形成された導体層31、32は、単層もしくは2層以上の複数層で形成してもよい。複数層で形成する場合には、同一方法による形成でも、異なる方法による形成でもどちらでもよい。電磁シールド層として形成する金属層の種類、厚みなどにより適宜行うことができるのである。これらにより、電磁シールド効果を劇的に低下させるものではない。
 絶縁層11の表面に形成した導体層を利用して電子部品4Aを内蔵する凹部21の底面の導体層31を形成し、この導体層31の上に電子部品4A(例えば半導体素子)が内蔵されることが望ましい。その理由は、凹部21の深さを均一にすることが可能となり、それによって電子部品4Aが凹部21内に傾いた状態で収容、内蔵されることがなくなるからである。そのため、電子部品4Aを収容する基板が樹脂製であっても、電子部品4Aの接続パッドに接続されるビア3を樹脂絶縁層13に形成する際に、所望のビアホール形状とすることができる。また、導体層31は樹脂絶縁層内に形成されているので、熱応力や外部応力などの影響によって反りが生じることが少なくなる。その結果、電子部品4Aの接続パッドと、それに接続されたビア3を含んだ導体回路2との電気的接続性や接続信頼性を確保しやすくなるからである。
 また、凹部底面の導体層31、32としては、平坦な表面を有するものであってもよい。それにより、凹部形状の保持性や接着剤との接着性が確保されやすくなる。必要に応じて、導体層31、32には粗面を形成してもよい。これらの粗面により導体層31、32と接着剤とが密着するので、接着強度を確保しやすくなることがある。
 さらに詳細に説明すると、電子部品4A、4Bを収容する凹部21、22が形成される絶縁層11、14は、主としてガラスエポキシ樹脂などによりガラス布等に補強剤が含浸された樹脂材料から形成されていることから、ザグリ加工等により凹部21、22を形成した場合には、その凹部21、22の底面では位置によって不規則な凹凸が形成される。その結果、凹部21、22の深さが不均一になりやすい。特に断面をほぼ矩形に形成した凹部21、22の四隅付近では、他の部分に比して凹部21、22の深さが浅くなりやすい。それ故に、本発明のように、凹部21、22の底面に導体層31、32を形成することによって、凹部21、22の深さの均一化が容易になる。特に、凹部21、22が断面矩形の場合には、四隅付近での凹部21、22の深さも均一化しやすくなる。
 したがって、凹部21、22に電子部品4A、4Bを収容する際には、電子部品4A、4Bが傾くことが少なくなるのである。故に、収容された電子部品4A、4Bのパッドに接続されるビア3を絶縁層13、15に形成する際にも、所望のビアホール形状とすることができる。さらに、導体層31、32は絶縁層11、12、14間に密着して形成されているので、熱応力や外部応力などの影響によって反りが生じることが少なくなる。その結果、例えば、電子部品4A、4Bの接続パッドとビア3等の導体回路との接続不良が起きにくくなるため、電気接続性や接続信頼性が低下しにくくなるのである。
 また、電子部品4A、4Bと導体層31、32との間に形成される接着剤層は、厚みを均一にすることが容易になるので、半導体素子の密着性を均等にして、ヒートサイクルなどの信頼性試験を行っても長期間にわたって密着性が確保されやすくなるのである。
 導体層31、32は凹部21、22の底面よりも大きな面積とし、凹部21、22の側面の外側に形成することもできる。したがって、このように形成された導体層31、32は、多層配線板1に内蔵された電子部品4A、4Bの底面方向のシールド効果を発揮することができるので、フィルドビア41、42の配列によって形成される電磁シールド層と併設することが望ましい。
 なお、フィルドビア41a、41b、41c、42は、電子部品に接している導体層31、32に繋がっているので放熱効果を有する。フィルドビア41cのように多層配線板の表面まで形成して、放熱板などに接続してもよい。また、凹部21、22の底面の導体層31、32の背面側にフィルドビアを形成して、放熱経路を増やしてもよい。
 導体層31、32は、凹部の底面を粗化してもよい。表面粗化処理の方法は、黒化処理、化学エッチング処理、つや消し処理法やサンドブラスト法などがあげられる。黒化処理は、酸化により5~7μmほどの凹凸ができ表面が粗くなる処理である。導体層31、32を表面粗化処理することで、凹部に埋め込まれた電子部品4A、4Bから放射された電磁波が、凹部開口方向に向かって鏡面反射するのを抑えることができ、結果として、電子部品にかかる電磁波の影響を低減することができる。
 前記表面粗化処理は、凹部の底面および側面に位置する導体層のいずれかについて施せばよいが、凹部の底面と側面の全ての導体層について施す方が望ましい。
 また、導体層を形成する材料を選択する際に、電磁波の反射損失あるいは吸収損失を考慮して材料選択することで、より高い電磁シールド効果を有することができる。
 導体層31は吸収損失が導体回路を形成する配線材料より大きい材料で形成してもよく、導体層10aは反射損失が導体回路を形成する配線材料と同等もしくはそれ以上の材料で形成してもよい。例えば、配線が銅で形成されているとき、導体層31は鉄など、導体層10aは銀、銅やアルミニウムなどである。凹部の底面および側面を電磁波の吸収損失の大きい材料にすることで、当該多層配線板に埋め込まれた電子部品の放射する電磁波を低減し、凹部の底面側にある絶縁層を挟んで対向する面を反射損失の大きい材料にすることで、外部からの電磁波の影響を抑え電磁シールド効果を有する。
 導体層32と導体層10bについても同様に、導体層32は吸収損失が導体回路を形成する配線材料より大きい材料で形成してもよく、導体層10bは反射損失が導体回路を形成する配線材料と同等もしくはそれ以上の材料で形成してもよい。
 また、配線材料と導体層ではなく、導体層と導体層について材料選択を行った場合も、高い電磁シールド効果を有することができる。
 凹部21の底面もしくは側面に形成された導体層31は、凹部21の底面側にある絶縁層を挟んで対向する導体層10aよりも電磁波の反射損失が小さい材料にする。あるいは、導体層31は、導体層10aよりも電磁波の吸収損失が大きい材料にする。凹部22についても同様であり、導体層32は導体層10bより電磁波の反射損失が小さい、もしくは、電磁波の吸収損失が大きい材料を選択する。
 さらに、凹部21の底面もしくは側面に形成された導体層31の位置を基準に考えると、凹部21の底面側にある絶縁層を挟んで対向するのは、導体層32であってもよい。導体層31は、導体層32より電磁波の反射損失の小さい材料、もしくは、電磁波の吸収損失の大きい材料で形成する。導体層32についても同様であり、導体層32は導体層31より電磁波の反射損失が小さい材料、または、電磁波の吸収損失が大きい材料であっても構わない。
 導体層31と導体層32において、電磁波の反射損失および吸収損失の大小を考慮して材料選択を行う場合は、電磁波による干渉などから、凹部21、22に内蔵する電子部品4A、4Bを保護できる組合せであればよい。材料選択と、導体層31、32の表面粗化処理を合わせることで、電磁シールド効果を高めることも可能である。
 凹部21、22を有する絶縁層の表面に形成された導体層9a、9b、および凹部21、22の底面側にある絶縁層を挟んで対向する導体層10a、10bは、凹部21、22との位置関係により、導体層9a、9b、10a、10bのそれぞれを区別して示しているが、導体層10aと導体層9bが同じ絶縁層上に形成され、かつ、同じ基準電位に接続されてもよく、同じ材料で形成しても構わない。導体層10bと導体層9aについても同様であって、同じ絶縁層上に形成され、かつ、同じ基準電位に接続されてもよく、同じ材料で形成しても構わない。
 次に、凹部21、22の周囲をフィルドビア41、42でシールドする場合の多層配線板1の製造工程について説明する。図4Aないし図4N図4Mは、本発明の実施の形態1に係る多層配線板1の製造工程の一部を示す断面図である。本発明にかかる多層配線板1を製造するにあたって、それを構成する多層配線基板としては、絶縁性樹脂基材の片面もしくは両面に銅箔が貼付けられてなる銅張積層板を積層した形態のものを用いる。
 図4Aは両面銅張積層板の断面図である。両面銅張積層板は、例えば、絶縁層11の両面に銅箔6を張った積層板から形成される。絶縁層11としては、例えばガラスエポキシを用いることができる。絶縁層11としてはフィラのない絶縁性樹脂であってもよい。このような両面銅張積層板の一方の表面にレーザ照射を行って、一方の銅箔6および絶縁層11を貫通して他方の銅箔6の裏面に達するビア用開口7、8を形成する。
 図4Bはビア用開口が形成された両面銅張積層板の断面図である。ビア用開口7、8には、導体回路2を接続するためのビア用開口7と、電磁シールドのためのビア用開口8がある。このとき、電磁シールドのためのビア用開口8は、後述する電子部品4Aを収容する凹部21の領域の外側に形成され、隣接する開口どうしが連結した形態に形成される。
 前記レーザ照射は、パルス発振型炭酸ガスレーザ加工装置を用いて行われ、その加工条件は、パルスエネルギーが0.5~100mJ、パルス幅が1~100μs、パルス間隔が0.5ms以上、周波数2000~3000Hz、ショット数が1~5の範囲内であることが望ましい。
 このような加工条件のもとで形成され得るビア用開口7、8の径は、20~250μmであることが望ましい。その理由は、開口径が20μm未満では、ビア形成が技術的に困難になりやすく、電気接続性が低下してしまうことがある。一方、ビア用開口7、8の径が250μmを超えると、めっきでの充填性に難があることがあり、電気接続性が低下してしまうことがあるし、配線の高密度化を阻害することもあるからである。
 なお、レーザ照射によって銅張積層板にビア用開口7、8を形成させるには、銅箔6と絶縁層11とに同時に開口を形成するようなレーザ照射を行うダイレクトレーザ法と、ビア用開口7、8に該当する銅箔部分をエッチングにより予め除去した後に、絶縁層11にレーザ照射を行うコンフォーマル法があり、そのどちらを用いてもよい。
 レーザ照射で形成されたビア用開口内に残留する樹脂残滓を除去するために、デスミア処理を行うことが望ましい。このデスミア処理は、酸あるいは酸化剤(例えば、クロム酸、過マンガン酸)の薬液処理等の湿式処理や、酸素プラズマ放電処理、コロナ放電処理、紫外線レーザ処理またはエキシマレーザ処理等の乾式処理によって行われる。これらのデスミア処理を選択する方法は、絶縁層11の種類や、厚み、開口径、レーザ条件等により残留が予想されるスミア量に応じて選ばれる。
 図4Cはビア用開口7、8に金属を充填した両面銅張積層板の断面図である。前記デスミア処理した基板のビア用開口7、8に対して、銅箔6をめっきリードとする電解銅めっき処理を施し、ビア用開口内に電解銅めっきを完全に充填してビア3、41が形成される。なお、場合によっては電解銅めっき処理の後、基板の開口上部に盛り上がった電解銅めっきを、ベルトサンダー研磨、バフ研磨、エッチング等によって除去して平坦化してもよい。
 図4Dは両面に導体回路2および導体層31を形成した両面銅張積層板の断面図である。絶縁層11の両面の銅箔6の上にレジスト層を形成し、露光、現像工程を経てレジスト非形成部分に対して、塩化第二銅などからなるエッチング液により、エッチング処理を行う。その後、レジストを剥離することにより、絶縁層11の一方の表面には、ビアランドを含んだ導体回路2と、位置合わせ用の位置決めマーク等が形成される。他方の表面には、電子部品4Aを収容する凹部21に関連したサイズを有する導体層31と、ビアランドを含んだ導体回路2、および位置合わせ用の位置決めマーク等が形成される。
 なお、電磁シールド用の複数のビア41は互いに連結された形態に形成され、それらの一端は、絶縁層11の一方の表面に露出しており、他方は導体層31表面に接続されて、電磁シールド層を形成している。
 さらに、絶縁層11の表面に導体層9を形成する。表面を被う際に、凹部21が形成される場所を除いておく方が好ましい。導体層9は、ビア3と電気的に接続した導体回路2に連続してはならないが、電磁シールド用のビア41と接続した導体回路2に連続していてもよい。
 図1に示すように部品4Aの高さが絶縁層11の厚さより大きい場合は、図4Dの状態からさらに絶縁層11bと銅箔6を絶縁層11の上に積層して、ビア3と導体回路2を形成する。
 図4Eは電子部品を収容する凹部21を形成した多層配線基板の断面図である。絶縁層11の導体層31を設けた面と反対側の表面領域(凹部形成領域)に、例えば、レーザ加工によって絶縁層11を貫通して導体層31の表面に達する開口を形成し、その開口から導体層表面が露出するような凹部21を形成して、電子部品収容用基板とする。必要に応じて、レジスト形成工程、エッチング処理工程を経て、導体層31が露出されるような凹部21を形成することもできる。
 例えば、絶縁層11と絶縁層12との積層体に、パルス発振型炭酸ガスレーザ加工装置を用いたレーザ照射によって、絶縁層11の表面から樹脂層を貫通して導体層表面に達する開口を形成して、電子部品を収容または内蔵させる凹部を形成する。
 電子部品4Aを収容する凹部21の加工条件は、パルスエネルギーが0.5~100mJ、パルス幅が1~100μs、パルス間隔が0.5ms以上、周波数2000~3000Hz、ショット数が1~10の範囲内であることが望ましい。
 このようなレーザ加工により、電子部品4Aを内蔵させる凹部21が形成され、凹部21の底面には、導体層31(この場合は、銅箔6を指す)が露出される。
 図4Fは、露出した導体層31の凹部底面の表面を粗化した図である。表面を粗化することで、電磁波の反射が一定方向ではなく散乱して起こり、格納された部品に与える影響を低減できる。表面粗化処理の方法は、黒化処理、化学エッチング処理、つや消し処理法やサンドブラスト法などがあげられる。
 例えば、ガラス布エポキシ樹脂基材の両面に、厚さ35μmの銅箔が接着剤を介して貼り付けられた厚さ800μmの両面銅張積層板に対して、黒色酸化処理は、水洗、アルカリ脱脂した後にソフトエッチングし、黒色酸化処理液(リン酸三ナトリウムと亜塩素酸ナトリウムの水溶液)中に95℃で2分間浸漬することにより銅表面を粗化できる。これにより形成される粗面は、0.1~1.0μmの樹状の形態からなり、粗化されていない銅表面に比べて3倍以上の表面長であることが望ましい。
 または化学エッチング処理として、同じ両面銅張積層板に対して、水洗、酸脱脂した後にソフトエッチングし、有機酸系マイクロエッチング剤(メック株式会社製、メックエッチボンドCZ8100)で1分間CZ処理することにより銅表面を粗化できる。これにより形成される粗面は、0.1~5.0μmの鋭角的な凹凸からなり、RMS(2乗平均粗さ)が0.30μm以上であることが望ましい。
 図4H図4Gは電子部品4Aを凹部21に収容した多層配線基板の断面図である。図4Gまでの工程により得られた電子部品収容用基板に電子部品4A、例えば半導体素子を埋め込む。この埋め込まれる電子部品4Aとしては、例えば接続パッドPを被覆する仲介層が形成された半導体素子を用いることができる。電子部品4Aに形成された仲介層は、接続パッドPを被覆している部分以外は、表面を導体層10で被われていてもよい。導体層10は、接続パッドPおよび導体回路2に接続しないように、形成される。
 この仲介層は、半導体素子のパッドPと多層配線基板のビア3を含む導体回路2とを直接的に接続させるために設けられた仲介層であり、ダイパッド上に、薄膜層を設け、その薄膜層上にさらに厚付け層を設けることによって形成され、少なくとも2層以上の金属層で形成することが望ましい。
 また、この仲介層は、半導体素子のダイパッドよりも大きなサイズに形成されることが好ましい。そのようなサイズにすることによって、ダイパッドとの位置合わせが容易となり、その結果、ダイパッドとの電気的接続性が向上すると共に、ダイパッドにダメージを与えることなくレーザ照射やフォトエッチングによるビア用開口の加工が可能となる。そのため、半導体素子の多層配線基板への埋め込みや電気的な接続を確実に行うことができる。また、仲介層上には、直接、多層配線板の導体回路2をなす金属層を形成することが可能となる。
 仲介層は、前述したような製造方法以外にも、半導体素子の接続パッド側の全表面または半導体素子を埋め込んだ半導体素子収容用基板上に形成した金属膜上に、ドライフィルムからなるレジストを形成し、仲介層に該当する部分を除去させた後、電解めっきによって厚付けし、その後、レジストを剥離してエッチング液によって、同様に半導体素子の接続パッドP上に仲介層を形成することもできる。
 図4I図4Hは絶縁層11に絶縁層12および銅箔6を積層し、電子部品4Aを収容した上に絶縁層13および銅箔6を形成した多層配線基板の断面図である。絶縁層11の導体層31が形成された側の表面に絶縁層12を積層する。また、同時に下側に形成される凹部22の底面となる導体層32を形成する。例えば、接着剤層であるプリプレグに銅箔6を重ね合わせたものから銅張基板を形成し、それを絶縁層11の両面に熱圧着により積層してなる積層体を形成する。電子部品4Aを収容した基板上に、絶縁層13および銅箔6を積層したのと同様にして、絶縁層12と銅箔32を積層する。
 図4J図4Iは、絶縁層12、13にビア3と導体回路2を形成し、表層に導体回路2を形成した多層配線基板の断面図である。絶縁層13に、絶縁層11と同様にして、ビア3と導体回路2を形成する。また、同時に下側に形成される凹部22の底面となる導体層32を形成する。絶縁層13と銅箔6を積層した後、図4Bないし図4Dで説明した工程と同様の処理を行うことにより、内蔵された半導体素子の接続パッドP上に形成した仲介層に電気的に接続されるビア3と、絶縁層11上に形成されたビア3を含む導体回路2に電気的に接続されるビア3、および外側の導体回路2を形成する。
 図4K図4Jは下側に電子部品4Bを収容する凹部22を形成するための絶縁層14を形成した多層配線基板の断面図である。絶縁層12および銅箔6を積層したのと同様にして、絶縁層14と銅箔6を積層する。
 図4L図4Kは、図4K図4Jで積層した絶縁層14に、ビア3と導体回路2と凹部22を形成した多層配線基板の断面図である。図4Bないし図4Eで説明した工程と同様にして、導体回路2に接続するビア3、凹部22の周囲に配列する電磁シールド用のビア42、及び凹部22を形成、および導体層9を形成する。する。凹部22の底面は、図4Iの導体回路2を形成する工程で形成された導体層32である。導体層31と同様に、レーザ加工により露出した導体層32に、黒化処理、化学エッチング処理、つや消し処理法やサンドブラスト法などの処理を施し、凹部底面の表面を粗化しても構わない。
 図4M図4Lは、下側の凹部22に電子部品4Bを収容し、絶縁層15を積層して導体回路2を形成した多層配線基板の断面図である。図4H図4Gおよび図4I図4Hで説明した工程と同様にして、電子部品4Bを凹部22に収容し、導体層10を形成した後、絶縁層15と銅箔6を積層する。図4Bないし図4Dで説明した工程と同様の処理を行うことにより、内蔵された電子部品4Bの接続パッドP上に形成した仲介層に電気的に接続されるビア3と、半導体素子収容基板に形成されたビア3を含む導体回路2に電気的に接続されるビア3、および外側の導体回路2を形成する。
 さらに、絶縁層と銅箔を積層させ、図4K図4Jないし図4M図4Lと同様の処理を繰り返し行うことによって、さらに多層化したプリント配線板を得ることができる。
 次に、基板の表面に電子部品5を実装する。図4N図4Mは、表面に電子部品5を実装した多層配線板の断面図である。多層配線基板の表面にソルダーレジスト層をそれぞれ形成する。この場合、多層配線基板の外表面全体にソルダーレジスト組成物を塗布し、その塗膜を乾燥した後、この塗膜に半田パッドの開口部を描画したフォトマスクフィルムを載置して露光、現像処理することにより、導体回路2のビア3直上に位置する導電性パッド部分を露出させた半田パッド開口をそれぞれ形成する。この場合、ソルダーレジスト層をドライフィルム化したものを貼り付けて、露光・現像もしくはレーザ加工により開口を形成させてもよい。
 前記マスク層の非形成部から露出した半田パッド上に、ニッケル-金などの耐食層を形成する。このとき、ニッケル層の厚みは、1~7μmが望ましく、金層の厚みは0.01~0.1μmが望ましい。ニッケル-金以外に耐食層として、ニッケル-パラジウム-金、金(単層)、銀(単層)等を形成してもよい。耐食層を形成した後に、マスク層を剥離する。これにより、耐食層が形成された半田パッドと耐食層が形成されていない半田パッドが混在するプリント配線板となる。
 ソルダーレジストの開口からビア直上に露出した半田パッド部分に、半田体を供給し、この半田体の溶融・固化によって半田バンプSを形成する。あるいは導電性ボールまたは導電性ピンを導電性接着剤もしくは半田層を用いてパッド部に接合して、多層配線板1が形成される。半田体および半田層の供給方法としては、半田転写法や印刷法を用いることができる。
 半田転写法は、次のように行う。プリプレグに半田箔を貼り合わせ、この半田箔を開口部分に相当する箇所のみを残してエッチングすることにより、半田パターンを形成して半田キャリアフィルムとする。この半田キャリアフィルムを、基板のソルダーレジスト開口部分にフラックスを塗布した後、半田パターンがパッドに接触するように積層し、これを加熱して転写する。
 一方、印刷法は、パッドに相当する箇所に開口を設けた印刷マスク(メタルマスク)を基板に載置し、半田ペーストを印刷して加熱処理する方法である。このような半田バンプを形成する半田としては、Sn/Ag半田、Sn/In半田、Sn/Zn半田、Sn/Bi半田などが使用でき、それらの融点は、積層される各回路基板間を接続する導電性バンプの融点よりも低いことが望ましい。
 印刷した半田ペーストの上に電子部品5を置いて加熱することによって、表面の導体回路2に電子部品5が半田付けされる。電子部品5は、少なくとも1つの凹部22の底面に対向する多層配線基板の表面に実装されている。表面に実装された電子部品5と、凹部22に収容された電子部品4Bは、電磁シールドされるので、相互の電磁干渉が防止される。
 前述の方法は、絶縁層および銅箔を逐次積層することにより絶縁層と導体回路の多層化を行ったが、2層以上の絶縁層で1単位の回路基板を複数形成し、一括で加熱圧着することによって、絶縁層と導体回路を多層化した多層配線板としてもよい。
 実施の形態1は、凹部21、22の周囲の電磁シールドをフィルドビア41、42で形成するので、導体回路を接続するビアと同時に加工することができる。凹部の側面に金属めっき等で導体層を形成する必要がなく、電磁シールドのために工程を増加することがない。
 また、導体層31は吸収損失が導体回路を形成する配線材料より大きい材料で形成してもよく、導体層10aは反射損失が導体回路を形成する配線材料と同等もしくはそれ以上の材料で形成してもよい。例えば、配線が銅で形成されているとき、導体層31は鉄など、導体層10aは銀、銅やアルミニウムなどである。凹部の底面および側面を電磁波の吸収損失の大きい材料にすることで、当該多層配線板に埋め込まれた電子部品の放射する電磁波を低減し、凹部の底面側にある絶縁層を挟んで対向する面を反射損失の大きい材料にすることで、外部からの電磁波の影響を抑え電磁シールド効果を有する。
 凹部21の底面もしくは側面に形成された導体層31は、凹部21の底面側にある絶縁層を挟んで対向する導体層10aよりも電磁波の反射損失が小さい材料、あるいは、導体電磁波の吸収損失が大きい材料にしてもよい。さらに、凹部21の底面もしくは側面に形成された導体層31の位置を基準に考えると、凹部21の底面側にある絶縁層を挟んで対向するのは、導体層32であってもよい。導体層31は、導体層32より電磁波の反射損失の小さい材料、もしくは、電磁波の吸収損失の大きい材料で形成する。
 凹部21、22において、導体層31、32、10a、10bを電磁波の反射損失および吸収損失の大小を考慮して材料選択する場合は、電磁波による干渉などから、凹部21、22に内蔵する電子部品4A、4Bを保護できる組合せであればよい。材料選択と、導体層31、32の表面粗化処理を合わせることで、電磁シールド効果を高めることも可能である。
(実施の形態2)
 図5は、本発明の実施の形態2に係る多層配線板1の断面図である。実施の形態2では、凹部21、22の周囲の電磁シールド層は凹部21、22の側面にめっきによって形成された導体層51、52、さらに導体層31、32および51、52を覆うようにめっきによって形成された導体層61、62、とで構成される。
 多層配線板1は、複数の絶縁層11、12、13、14、15と、絶縁層11、12、13、14、15に隔てられた導体回路2と、導体回路2を電気的に接続するビア3から構成される。本発明の実施の形態2に従う多層配線板1は、絶縁層11、14の一部に凹部21、22が形成されている。それぞれの凹部21、22を有する絶縁層の表面に導体層9が形成され、凹部21、22の底面側にある絶縁層を挟んで対向する位置に導体層10が形成されている。また、それぞれの凹部21、22の底面には導体層31、32が形成されている。また、凹部21、22の側面には導体層51、52が形成されている。実施の形態2は、凹部21、22の周囲の電磁シールドが凹部21、22の側面に形成された導体層51、52であることおよび導体層31、32、51、52を覆うようにめっきによって形成された導体層61、62が存在し、電磁シールド層が2層以上からなる層で出来ていること以外は、実施の形態1と同様である。
 凹部21、22の側面に形成された導体層51、52は、凹部底面の導体層31、32に電気的に接続している。導体層31、32、51、52を覆うように形成された導体層61、62も電気的に接続している。1つの凹部21、22の底面に形成された導体層31、32と凹部21、22の周囲に形成された導体層51、52は、これら導体層31、32、51、52、61、62は電気的に導通しているので同じ電位である。導体層31、32、51、52、61、62は、例えばグランド(接地)に接続され、多層配線板1の基準の電位に保たれてもよい。また、導体層31、32、51、52、61、62に接続するように形成された導体層9を介して多層配線板1の基準の電位に保たれてもよい。
 それぞれの凹部には、電子部品4A、4Bが埋め込まれている。凹部21、22に埋め込まれた電子部品4A、4Bは、凹部21、22の上の絶縁層13、15に形成されたビア3によって導体回路2に接続されている。また、多層配線板1の表層にも電子部品5が実装されている。表層に実装された電子部品5は、導体回路上に形成された半田バンプSによって表層の導体回路2に接続している。
 絶縁層11a、11b、14に形成される凹部21、22の深さは埋め込まれる電子部品4A、4Bの形状に応じて設定される。例えば図5の上の凹部21のように、2層またはそれ以上の絶縁層11a、11bに亘って凹部21が形成されてもよい。その場合、少なくとも凹部の高さ全体に亘って、電磁シールド用の導体層51を形成する。
 凹部21、22の底面と、側面の導体層31、32、51、52を覆うように形成された導体層61、62は、凹部21、22に内蔵される電子部品4A、4Bの接続パッドPが設けられている上面を除く外側表面の全体を取り囲んでいるので、電子部品4A、4Bの側面方向および底面方向の電磁シールド効果を同時に得ることができる。図5の2つの凹部21、22どうしは導体層31、32で隔てられ、凹部21、22の周囲が導体層51、52で囲まれているのでおり、導体層61、62で覆っているので、図5の上の凹部21の電子部品4Aと、下の凹部22の電子部品4Bとは互いに電磁シールドされている。
 露出した導体層61、62の表面、もしくは導体層61、62で覆われていない部分の露出した導体層31、32、51、52の表面を粗化処理してもよい。粗化処理は、黒化処理、化学エッチング処理、つや消し処理法やサンドブラスト法などを施すことによって行う。また、導体層61、62は、導体層31、32、51、52より電磁波の反射損失が小さい材料で形成してもよい。例えば、導体層31、32、51、52は銅、導体層61、62はニッケルや金である。また、別の組合せとしては、導体層31、32、51、52は銀やアルミニウム、導体層61、62は鉄などの組合せでもよい。
 あるいは、導体層61、62を、導体層31、32、51、52より電磁波の吸収損失の大きい材料で形成してもよい。例えば、導体層31、32、51、52は銅、導体層61、62は銀や鉄などである。他の組合せとしては、導体層31、32、51、52はニッケルやアルミニウム、導体層61、62は銅とする材料の組合せなども可能である。
 凹部の内側を反射損失が小さい材料で、凹部の外側を内側の層より反射損失が大きい材料で形成することにより、当該多層配線板に埋め込まれた電子部品の放射する電磁波を低減し、また、外部からの電磁波の影響を抑えることができる。
 あるいは、凹部の内側を吸収損失が大きい材料で形成し、凹部の外側を内側の層より吸収損失が小さい材料にすることで、当該多層配線板に埋め込まれた電子部品の放射する電磁波の影響を抑え、また、外部からの電磁波を低減することができる。
 さらに、凹部を形成する2層以上の層のいずれかが、凹部の底面側にある絶縁層を挟んで対向する導体層より電磁波の反射損失が小さい材料、または、電磁波の吸収損失の大きい材料で形成しても、高いシールド効果を有する。このようにして反射損失もしくは吸収損失を考慮して材料を選択して導体層を形成した場合は、いずれかの材料で単層の導体層を形成した場合に比べ、導体層は高いシールド効果を有する。
 実施の形態1と同じく、例えば図3に示すように、2つの凹部21、22が重なっていない部分があっても、凹部21、22の周囲は導体層61、62もしくは導体層51、52で囲まれているので、凹部21、22どうしは電磁シールドされている。また、多層配線板1の表層に実装された電子部品5と、少なくとも1つの凹部22に埋め込まれた電子部品4Bとは互いに電磁シールドされている。
 次に、凹部21、22の周囲を導体層51、52でシールドし、導体層31、32および導体層51、52を覆うように導体層61、62で電磁シールド層を形成する場合の多層配線板の製造工程について説明する。図6Aないし図6N図6Oは、本発明の実施の形態2に係る多層配線板1の製造工程の一部を示す断面図である。実施の形態2は、凹部21、22の周囲の電磁シールドをフィルドビアの配列に代えて凹部21、22の側面に形成された導体層51、52とする。導体層31、32および51、52を覆うようにめっきによって形成された導体層61、62が存在し、電磁シールド層が2層以上からなる層で形成される。それ以外は、実施の形態1と同様なので、共通する部分については説明を省略する。
 図6Aは両面銅張積層板の断面図である。両面銅張積層板は、例えば、絶縁層11の両面に銅箔6を張った積層板から形成される。このような両面銅張積層板の一方の表面にレーザ照射を行って、一方の銅箔6および絶縁層11を貫通して他方の銅箔6の裏面に達するビア用開口7を形成する。
 図6Bはビア用開口が形成された両面銅張積層板の断面図である。実施の形態2では、ビア用開口7は導体回路2を接続するためのものである。ビア用開口内に残留する樹脂残滓を除去するために、デスミア処理を行うことが望ましい。
 図6Cはビア用開口7に金属を充填した両面銅張積層板の断面図である。前記デスミア処理した基板のビア用開口7に対して、銅箔6をめっきリードとする電解銅めっき処理を施し、ビア用開口7内に電解銅めっきを完全に充填してビア3が形成される。
 図6Dは両面に導体回路2および導体層31を形成した配線基板の断面図である。両面銅張積層板の両面の銅箔6をエッチング処理して、絶縁層11の一方の表面には、ビアランドを含んだ導体回路2と、位置合わせ用の位置決めマーク等が形成される。他方の表面には、電子部品4Aを収容する凹部21に関連したサイズを有する導体層31と、ビアランドを含んだ導体回路2、絶縁層の表面を被う導体層9、、および位置合わせ用の位置決めマーク等が形成される。
 図6Eは絶縁層12にビア3と導体回路2を形成した配線基板の断面図である。絶縁層11の導体層31が形成された側の表面に絶縁層12と銅箔6を積層する。絶縁層12に、両面銅張積層板と同様にして、ビア3と導体回路2を形成する。また、同時に下側に形成される凹部22の底面となる導体層32を形成する。
 図6Fは電子部品4Aを収容する凹部21を形成した多層配線基板の断面図である。絶縁層11の導体層31を設けた面と反対側の表面領域(凹部形成領域)に、例えば、レーザ加工によって樹脂層を貫通して導体層表面に達する開口を形成し、その開口から導体層表面が露出するような凹部21を形成して、電子部品収容用基板とする。
 図6Gは凹部21の側面に導体層51を形成した多層配線基板の断面図である。多層配線基板の両面にレジスト層を形成する。例えば、厚さ15μmのドライフィルムレジストをラミネートしてレジスト層を形成し、絶縁層11に設けた凹部21およびその開口周縁部が露出されたレジスト非形成部を形成する。
 前記レジスト非形成部の表面に、パラジウム触媒を付与することにより、凹部21の内壁面およびその開口周縁部の表面に触媒核を付着させる。次に、無電解銅めっき水溶液中に浸漬して、凹部21の内壁面およびその開口周縁部の表面に、例えば厚さ0.5~3.0μmの無電解銅めっき膜を形成する。ついで、電解銅めっき水溶液およびめっき条件にて電解銅めっきを施し、レジスト非形成部に、電解銅めっき膜を形成する。その後、アルカリによってめっきレジストを剥離除去することによって、凹部21の内壁面(底面および側面)および凹部21の開口周縁部に無電解銅めっき膜と電解銅めっき膜とからなるシールド用金属層が形成される。なお、凹部21の底面に露出する平坦な表面を有する導体層31および導体層51の表面は、無電解銅めっき膜により被覆され、その無電解銅めっき膜上に電解銅めっき膜が形成されてシールド用金属層を形成している。
 図6Hは、導体層61が形成された図である。導体層61は、凹部底面に形成された導体層31および凹部側面に形成された導体層51の表面を覆うようにして導体層61であるめっきを形成する。
 例えば導体層31、51が銅で形成され、導体層61をニッケルめっきする場合、水洗、酸脱脂の後にソフトエッチングし、無電解ニッケルめっき液(塩化ニッケル、次亜リン酸ナトリウム、クエン酸ナトリウムを含む酸性の水溶液)に20分間浸漬することで、厚さ5μmのニッケルめっき層を形成する。
 また、導体層31、51が銅で形成され、導体層61を金めっきする場合、水洗、酸脱脂の後にソフトエッチングし、無電解金めっき液(シアン化金カリウム、塩化アンモニウム、次亜リン酸ナトリウム、クエン酸ナトリウムを含む水溶液)に80℃で7.5分間浸漬することで、厚さ0.03μmの金めっき層を形成する。
 あるいは、導体層31、51が銅で形成され、導体層61を銀めっきする場合、銅の表面に銀ペーストを塗布、または銀めっきが施された銅箔を貼付するなどして銀めっき層を形成する。
 なお、導体層61を底面もしくは底面のどちらか一方にのみ形成した場合、凹部底面の導体層31もしくは凹部側面の51が凹部表面に露出している部分を黒化処理や化学エッチング処理を行い、表面を粗化してもよい。導体層61の材質によっては、導体層61の表面を粗化することも可能である。また、表面粗化の凹凸に比べて導体層61の厚みが十分小さく、かつ、表面を直接は粗化できない場合であれば、導体層31、51の表面を粗化した後に導体層61を形成することで、凹部の表面に凹凸を形成することができる。
 図6Iは電子部品4Aを凹部21に収容した多層配線基板の断面図である。図6Gまでの工程により得られた電子部品収容用基板に電子部品4A、例えば半導体素子を埋め込む。
 図6Gは凹部21の側面に導体層51を形成した多層配線基板の断面図である。多層配線基板の両面にレジスト層を形成する。例えば、厚さ15μmのドライフィルムレジストをラミネートしてレジスト層を形成し、絶縁層11に設けた凹部21およびその開口周縁部が露出されたレジスト非形成部を形成する。
 前記レジスト非形成部の表面に、パラジウム触媒を付与することにより、凹部21の内壁面およびその開口周縁部の表面に触媒核を付着させる。次に、無電解銅めっき水溶液中に浸漬して、凹部21の内壁面およびその開口周縁部の表面に、例えば厚さ0.5~3.0μmの無電解銅めっき膜を形成する。ついで、電解銅めっき水溶液およびめっき条件にて電解銅めっきを施し、レジスト非形成部に、電解銅めっき膜を形成する。
 その後、アルカリによってめっきレジストを剥離除去することによって、凹部21の内壁面(底面および側面)および凹部21の開口周縁部に無電解銅めっき膜と電解銅めっき膜とからなるシールド用金属層が形成される。なお、凹部21の底面に露出する平坦な表面を有する導体層31の表面は、無電解銅めっき膜により被覆され、その無電解銅めっき膜上に電解銅めっき膜が形成されてシールド用金属層を形成している。
 図6Hは電子部品4Aを凹部21に収容した多層配線基板の断面図である。図6Gまでの工程により得られた電子部品収容用基板に電子部品4A、例えば半導体素子を埋め込む。
 図6I図6Jは電子部品4Aを収容した上に絶縁層13を形成した多層配線基板の断面図である。電子部品4Aを収容、内蔵した基板上に、絶縁層12および銅箔6を積層したのと同様にして、絶縁層13と銅箔6を積層する。
 図6J図6Kは表層に導体回路2を形成した多層配線基板の断面図である。絶縁層13と銅箔6を積層した後、図6Bないし図6Dで説明した工程と同様の処理を行うことにより、内蔵された電子部品4Aの接続パッドP上に形成した仲介層に電気的に接続されるビア3と、外側の導体回路2、および導体層10を形成する。導体層10は、接続パッドPと導体回路2に接続することなく電子部品4Aの表面を被うように形成される。
 図6K図6Lは、電子部品4Bを収容する凹部22を形成するための絶縁層14を形成した多層配線基板の断面図である。絶縁層12および銅箔6を積層したのと同様にして、絶縁層14と銅箔6を積層する。
 図6L図6Mは、図6K図6Lで積層した絶縁層14に、ビア3と導体回路2と凹部22および凹部側面の導体層52を形成した多層配線基板の断面図である。図6Bないし図6D、図6Fおよび図6Gで説明した工程と同様にして、導体回路2に接続するビア3、凹部22、及び凹部側面の導体層52、および導体層9を形成する。凹部22の底面は、図6Eの導体回路2を形成する工程で形成された導体層32である。なお、図6GHに関して説明したようにと同様にして、導体層32と導体層52を覆うように、凹部22の内壁面(底面および側面)および凹部22の開口周縁部に無電解銅めっき膜と電解銅めっき膜とからなる導体層62シールド用金属層が形成されてもよい。く、凹部表面を形成する導体層32、52、62の表面を粗化してもよい。
 図6M図6Nは、下側の凹部22に電子部品4Bを収容し、絶縁層15を積層して導体回路2を形成した多層配線基板の断面図である。図6H図6Iおよび図6I図6Jで説明した工程と同様にして、電子部品4Bを凹部22に収容し、導体層10を形成した後、絶縁層15と銅箔6を積層する。図6Bないし図6Dで説明した工程と同様の処理を行うことにより、内蔵された電子部品4Bの接続パッドP上に形成した仲介層に電気的に接続されるビア3と、多層配線基板に形成されたビア3を含む導体回路2に電気的に接続されるビア3、および外側の導体回路2を形成する。
 さらに、絶縁層と銅箔を積層させ、図6K図6Lないし図6M図6Nと同様の処理を繰り返し行うことによって、さらに多層化した多層配線基板を得ることができる。
 次に、多層配線基板の表面に電子部品5を実装する。図6N図6Oは、表面に電子部品5を実装した多層配線板の断面図である。多層配線基板の表面にソルダーレジスト層をそれぞれ形成する。ソルダーレジストの開口からビア直上に露出した半田パッド部分に、半田体を供給し、この半田体の溶融・固化によって半田バンプSを形成する。あるいは導電性ボールまたは導電性ピンを導電性接着剤もしくは半田層を用いてパッド部に接合して、多層配線板が形成される。半田体および半田層の供給方法としては、半田転写法や印刷法を用いることができる。
 印刷した半田ペーストの上に電子部品5を置いて加熱することによって、表面の導体回路2に電子部品5が半田付けされる。電子部品は、少なくとも1つの凹部22の底面に対向する多層配線基板の表面に実装されている。表面に実装された電子部品5と、凹部22に収容された電子部品4Bは、電磁シールドされるので、相互の電磁干渉が防止される。
 実施の形態2において、凹部21の表層に現れた導体層61は、凹部21を形成する表層以外の導体層31、51より電磁波の反射損失が小さい材料で形成してもよい。例えば、導体層31、51は銅、導体層61はニッケルや金である。また、別の組合せとしては、導体層31、51は銀やアルミニウム、導体層61は鉄などの組合せでもよい。
 あるいは、導体層61は、導体層31、51より電磁波の吸収損失の大きい材料で形成してもよい。例えば、導体層31、51は銅、導体層61は銀や鉄などである。他の組合せとしては、導体層31、51はニッケルやアルミニウム、導体層61は銅とする材料の組合せなども可能である。
 また、凹部21を形成する2層以上の層である導体層31、51、61のいずれかが、凹部の底面側にある絶縁層を挟んで対向する導体層10aより電磁波の反射損失が小さい材料、あるいは、電磁波の吸収損失が大きい材料で形成してもよい。例えば、反射損失を考えて材料選択した場合は、導体層10aは銅、導体層31、51、61はニッケルや金である。別の組合せとしては、導体層10aは銀やアルミニウム、導体層31、51、61は鉄などの組合せでもよい。吸収損失を考えて材料選択した場合は、導体層10aは銅、導体層31、51、61は銀や鉄など、もしくは、導体層10aはニッケルやアルミニウム、導体層31、51、61は銅の組合せでもよい。
 導体層を形成する際、凹部21に対する導体層31、51、61、10aを、凹部22に対する導体層32、52、62、10bと読み替え、同様に材料を選択できる。
 さらに、導体層10aと導体層9b、あるいは、導体層10bと導体層9aが同じ絶縁層上に形成され、かつ、同じ基準電位に接続されてもよく、同じ材料で形成しても構わない。
 なお、当実施の形態2において、導体層を2層以上の層にして凹部の内側を反射損失が小さい材料で、外側を内側の層より反射損失が大きい材料で形成した場合、あるいは凹部の内側を吸収損失が大きい材料で、外側を内側の層より吸収損失が小さい材料で形成した場合は、いずれかの材料で単層の導体層を形成した場合に比べ、導体層は高いシールド効果を有する。
 さらに、凹部を形成する2層以上の層の内のいずれかを凹部の底面側にある絶縁層を挟んで対向する導体層よりも電磁波の反射損失が小さい材料で形成した場合、あるいは電磁波の吸収損失が大きい材料で形成した場合も、いずれかの材料で単層の導体層を形成した場合に比べ、導体層は高いシールド効果を有する。
(実施の形態1の変形例)
 図7は、凹部の電磁シールドにフィルドビアを用いる構成で、1つの絶縁層に2つの凹部を形成する場合の多層配線板1の構成の一例を示す断面図である。1つの絶縁層14に2つの凹部22、23を同時に形成する。凹部22、23にそれぞれ、底面の導体層32、33を形成する。また、凹部22、23の周囲にフィルドビア42、43を配列して電磁シールドとする。それぞれの凹部22、23に電子部品4B、4Cを収容することができる。
 図8は、図7の多層配線板の凹部21、22、23の位置関係の例を示す平面図である。図8に示すように、2つの凹部が重なっていない部分があっても、凹部21、22、23の底面側は導体層31、32、33で隔てられ、それぞれの周囲はフィルドビア41、42、43で囲まれているので、凹部どうしは電磁シールドされている。また、多層配線板1の表層に実装された電子部品5と、下側の2つの凹部22、23に埋め込まれた電子部品4B、4Cとは互いに電磁シールドされている。
(実施の形態2の変形例)
 図9は、凹部の電磁シールドに凹部側面の導体層を用いる構成で、1つの絶縁層に2つの凹部を形成する場合の多層配線板1の構成の一例を示す断面図である。1つの絶縁層14に2つの凹部22、23を同時に形成する。凹部22、23にそれぞれ、底面の導体層32、33と、側面の導体層52、53を形成する。それぞれの凹部22、23に電子部品4B、4Cを収容することができる。
 凹部23に近い側にある、凹部22の側面の導体層52に、粗化処理を施している。表面を粗化する方法は、黒化処理、化学エッチング処理、つや消し処理法やサンドブラスト法などがある。導体層52を表面粗化処理することで、凹部22に埋め込まれた電子部品4Bから放射された電磁波が鏡面反射するのを抑え、電子部品4Bおよび凹部23に内蔵した電子部品4Cへの電磁波の影響を低減することができる。
 また、導体層52は、電磁波の反射損失が導体層53より小さい材料で形成する、もしくは、電磁波の吸収損失が導体層53より大きい材料で形成してもよい。電子部品4Bの放射する電磁波を低減し、凹部22の側面側にある同一絶縁層内で対向する位置にある電子部品4Cからの電磁波の影響を抑え、電磁シールド効果を有する。例えば、反射損失を考えて材料選択した場合は、導体層53は銅、導体層52はニッケルや金である。別の組合せとしては、導体層53は銀やアルミニウム、導体層52は鉄などの組合せでもよい。吸収損失を考えて材料選択した場合は、導体層53は銅、導体層52は銀や鉄など、もしくは、導体層53はニッケルやアルミニウム、導体層52は銅の組合せでもよい。
 導体層52と導体層53において、電磁波の反射損失および吸収損失の大小を考慮して材料選択を行う場合は、電磁波による干渉などから、凹部22、23に内蔵する電子部品4B、4Cを保護できる組合せであればよい。材料選択と、導体層52、53の表面粗化処理を合わせることで、電磁シールド効果を高めることも可能である。
 この場合も、実施の形態1の変形例と同じく、例えば図8に示すように、2つの凹部が重なっていない部分があっても、凹部21、22、23の周囲は導体層31、32、33、51、52、53で囲まれているので、凹部どうしは電磁シールドされている。また、多層配線板1の表層に実装された電子部品5と、下側の2つの凹部22、23に埋め込まれた電子部品4B、4Cとは互いに電磁シールドされている。
 以上説明したように、本発明に係る多層配線板1は、電子部品4A、4Bを収容する凹部21、22を2つ以上形成し、それぞれの凹部21、22の底面と側面に電磁シールド層を形成したので、凹部21、22に収容された電子部品どうしが電磁干渉することがない。また、多層配線板の1つの凹部22の底面側に対向する表層に実装された電子部品5は、その凹部22との間が電磁シールドされているので、凹部22に収容された電子部品4Bと、その凹部22の底面側に対向する表面に実装された電子部品5との間の電磁干渉を防止することができる。
 実施の形態1および実施の形態2において、凹部の表層に現れる底面および側面の導体層を粗化してもよく、凹部を形成する底面および周辺に形成された電磁シールド層を2層以上にしてもよい。より好ましくは、2層以上で形成された電磁シールド層の凹部の表層を粗化することである。粗化を行う面は、底面もしくは側面のいずれか一方でもよいが、電磁シールド効果を高くするには、両方を粗化することが望ましい。さらに、2層以上で形成された電磁シールド層の、凹部の表層に現れた層は、2層以上の表層以外の層より、電磁波の反射損失が小さい材料、もしくは、電磁波の吸収損失が大きい材料で形成することで、より高い電磁シールド効果を得ることができる。
 また、2層以上で形成された凹部の電磁シールド層のいずれかは、電磁波の吸収損失が導体回路を形成する配線材料より大きい材料で形成し、かつ、凹部の底面側にある絶縁層を挟んで対向する他の電磁シールド層は、電磁波の反射損失が導体回路を形成する配線材料と同等もしくはそれ以上の材料で形成する。
 さらに、2層以上で形成された凹部の電磁シールド層のいずれかは、凹部の底面側にある前記絶縁層を挟んで対向する他の電磁シールド層より電磁波の反射損失が小さい材料、もしくは電磁波の吸収損失が大きい材料で形成する。このとき、対向する他の電磁シールド層は、別の凹部を形成していてもよい。
 また、実施の形態1では、凹部21、22の周囲の電磁シールドをフィルドビア41、42で形成するので、導体回路を接続するビアと同時に加工することができる。凹部の側面に金属めっき等で導体層を形成する必要がなく、電磁シールドのために工程を増加することがない。さらに、フィルドビア41、42による放熱効果も期待できる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
(実施例)
 本実施の形態にある表面粗化処理を施した銅張積層板(以下、実施例という)と、未処理の銅張積層板(以下、比較例という)とで、表面形状、断面形状および電磁波吸収特性の比較を行った。実施例は、黒色酸化処理を施した銅張積層板(以下、実施例1という)、化学エッチング処理を施した銅張積層板(以下、実施例2という)、表面に金めっきを施した銅張積層板(以下、実施例3という)の3種類を用いた。実施例3については、電磁波吸収特性についてのみ比較を行った。
 図10は実施例1の表面形状をFE-SEM(装置:JEOL、加速電圧:3kV)で観察(撮影倍率2000倍)したものである。図11は実施例2、図12は比較例のものである。図13は実施例1の断面形状をFE-SEM(装置:JSM-7500F、加速電圧:7kV)で観察(撮影倍率5000倍)したものである。図14は実施例2、図15は比較例のものである。断面形状を撮影するにあたり、各試料をエポキシ樹脂で包埋し、整面処理を行っている。
 図16は、表面粗さパラメータの算出結果である。図13、図14、図15の断面像を2値化処理し、表面プロファイルを抽出した。引き続き、表面プロファイルの傾き補正処理を行った後、表面粗さパラメータRa(算術平均粗さ)、RMS(2乗平均粗さ)と表面長を算出した。effect1は実施例1、effect2は実施例2、compareは比較例、Surface lengthは表面長を表す。
 表面形状および断面形状を観察した結果、図10および図13より実施例1の表面では、大きさが10~20nmの粒状の形態に覆われてなる0.1~1.0μmの樹状の粗面が形成されており、表面長が比較例よりも顕著に大きいことが確認できた。また、図11および図14のように実施例2の表面では、0.1~5.0μmの鋭角的な凹凸のある粗面が形成されており、図16より、RMS(2乗平均粗さ)の値が比較例よりも大きいことが確認できた。
 電磁波吸収特性の測定は、円筒型空洞共振器のベクトルネットワークアナライザ(装置名:Wiltron37225、測定周波数:1GHz付近)に接続された高周波ループアンテナを円筒形の筐体内に設置して磁界結合させた後、周波数をスイープさせた状態で筐体内に各試料を配置し、試料を配置する前と後での筐体内のQ値を測定して比較を行った。試料は1辺25mmの正方形の大きさのものを用いた。
 試料を配置するとQ値は低くなり共振振幅が減少する。実施例1、2、3は、比較例よりも試料配置前と後でのQ値の差が大きく共振振幅の減少が大きいことを示し、特に実施例2において、電波吸収特性があることを確認できた。
 本発明に係る多層配線板では、凹部ごとに電磁シールドで分離されるので相互の電磁干渉が防止され、1つの多層配線板の中に、ディジタル信号回路、アナログ信号回路およびメモリ回路などを混在させることができる。その結果、異なる性質の回路を1つの多層配線板に集積することができるので、より高密度に電子回路を構成することができる。これにより、携帯端末などを小さくすることが可能となる。

Claims (20)

  1.  導体回路と絶縁層が形成されて、前記絶縁層で隔てられた前記導体回路どうしがビアを介して電気接続される多層配線基板と、
     前記絶縁層に形成された凹部と、
     前記凹部の底面と側面の少なくとも一方に形成され表面が粗化された電磁シールド層と、
     前記凹部に収容された電子部品と、
    を備えることを特徴とする多層配線板。
  2.  前記凹部の底面に形成される電磁シールド層は、前記多層配線基板の絶縁層の表面に形成された導体層で構成されることを特徴とする請求項1に記載の多層配線板。
  3. 前記電磁シールド層は、金属で形成されることを特徴とする請求項1または2に記載の多層配線板。
  4.  前記凹部の底面と側面の両方もしくは一方の電磁シールド層は、吸収損失が前記導体回路を形成する配線材料より大きい材料で形成され、かつ、前記凹部の底面側にある前記絶縁層を挟んで対向する他の電磁シールド層は、反射損失が前記導体回路を形成する配線材料と同等もしくはそれ以上の材料で形成されることを特徴とする請求項1ないし3のいずれか1項に記載の多層配線板。
  5.  前記凹部の底面に形成され表面が粗化された電磁シールド層は、前記凹部の底面側にある前記絶縁層を挟んで対向する他の電磁シールド層より電磁波の反射損失が小さい材料で形成されることを特徴とする請求項1ないし4のいずれか1項に記載の多層配線板。
  6.  前記凹部の底面に形成され表面が粗化された電磁シールド層は、前記凹部の底面側にある前記絶縁層を挟んで対向する他の電磁シールド層より電磁波の吸収損失が大きい材料で形成されることを特徴とする請求項1ないし4のいずれか1項に記載の多層配線板。
  7.  前記凹部の側面の少なくとも一方に形成され表面が粗化された電磁シールド層は、前記凹部の側面側にある同一絶縁層内で対向する他の電磁シールド層より電磁波の反射損失が小さい材料で形成されることを特徴とする請求項1ないし6のいずれか1項に記載の多層配線板。
  8.  前記凹部の側面の少なくとも一方に形成され表面が粗化された電磁シールド層は、前記凹部の側面側にある同一絶縁層内で対向する他の電磁シールド層より電磁波の吸収損失が大きい材料で形成されることを特徴とする請求項1ないし6のいずれか1項に記載の多層配線板。
  9.  導体回路と絶縁層が形成されて、前記絶縁層で隔てられた前記導体回路どうしがビアを介して電気接続される多層配線基板と、
     前記絶縁層に形成された凹部と、
     前記凹部の底面と側面の少なくとも一方に2層以上の層で形成された電磁シールド層と、
     前記凹部に収容された電子部品と、
    を備えることを特徴とする多層配線板。
  10.  前記2層以上の層で形成された電磁シールド層の少なくとも1層は、金属で形成されることを特徴とする請求項9に記載の多層配線板。
  11.  前記凹部の底面に形成された電磁シールド層は、前記凹部の底面側にある前記絶縁層を挟んで対向する他の電磁シールド層より電磁波の反射損失が小さい材料で形成されることを特徴とする請求項9または10に記載の多層配線板。
  12.  前記凹部の底面に形成された電磁シールド層は、前記凹部の底面側にある前記絶縁層を挟んで対向する他の電磁シールド層より電磁波の吸収損失が大きい材料で形成されることを特徴とする請求項9または10に記載の多層配線板。
  13.  前記凹部の側面の少なくとも一方に形成された電磁シールド層のいずれかの層は、前記凹部の側面側にある同一絶縁層内で対向する他の電磁シールド層より電磁波の反射損失が小さい材料で形成されることを特徴とする請求項9ないし12のいずれか1項に記載の多層配線板。
  14.  前記凹部の側面の少なくとも一方に形成された電磁シールド層のいずれかの層は、前記凹部の側面側にある同一絶縁層内で対向する他の電磁シールド層より電磁波の吸収損失が大きい材料で形成されることを特徴とする請求項9ないし12のいずれか1項に記載の多層配線板。
  15.  前記凹部の底面と側面の少なくとも一方に2層以上の層で形成された電磁シールド層の表層に現れた電磁シールド層は、前記2層以上の層の表層以外の電磁シールド層より電磁波の反射損失が小さい材料で形成されることを特徴とする請求項9ないし14のいずれか1項に記載の多層配線板。
  16.  前記凹部の底面と側面の少なくとも一方に2層以上の層で形成された電磁シールド層の表層に現れた電磁シールド層は、前記2層以上の層の表層以外の電磁シールド層より電磁波の吸収損失が大きい材料で形成されることを特徴とする請求項9ないし14のいずれか1項に記載の多層配線板。
  17.  前記凹部の底面と側面の少なくとも一方の表層に現れた電磁シールド層の表面は粗化されることを特徴とする請求項9ないし16のいずれか1項に記載の多層配線板。
  18.  導体回路と絶縁層が形成されて、前記絶縁層で隔てられた前記導体回路どうしがビアを介して電気接続される多層配線基板を含む多層配線板の製造方法であって、
     前記多層配線基板の絶縁層に凹部を形成する工程と、
     前記凹部の底面と側面の少なくとも一方に電磁シールド層を形成するシールド層形成工程と、
     前記凹部の底面と側面の少なくとも一方に形成された電磁シールド層の表面を粗化する工程と、
     前記凹部に電子部品を埋め込む工程と、
    を備えることを特徴とする多層配線板の製造方法。
  19.  導体回路と絶縁層が形成されて、前記絶縁層で隔てられた前記導体回路どうしがビアを介して電気接続される多層配線基板を含む多層配線板の製造方法であって、
     前記多層配線基板の絶縁層に凹部を形成する工程と、
     前記凹部の底面と側面の少なくとも一方に第1の電磁シールド層を形成する第1のシールド層形成工程と、
     前記第1の電磁シールド層の少なくとも一部の該第1の電磁シールド層よりも凹部の表層側に、該第1の電磁シールド層よりも電磁波の反射損失が小さい材料もしくは電磁波の吸収損失が大きい材料で第2の電磁シールド層を形成する工程と、
     前記凹部に電子部品を埋め込む工程と、
    を備えることを特徴とする多層配線板の製造方法。
  20.  前記第2の電磁シールド層の表面を粗化する工程を備えることを特徴とする請求項19に記載の多層配線板の製造方法。
PCT/JP2008/054903 2008-01-25 2008-03-17 多層配線板およびその製造方法 WO2009093343A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2008800110574A CN101653053B (zh) 2008-01-25 2008-03-17 多层线路板及其制造方法
EP08722297A EP2136610A4 (en) 2008-01-25 2008-03-17 MULTILAYER CONDUCTOR PLATE AND METHOD FOR THE PRODUCTION THEREOF
JP2009550417A JP4876173B2 (ja) 2008-01-25 2008-03-17 多層配線板およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US2352308P 2008-01-25 2008-01-25
US61/023,523 2008-01-25

Publications (1)

Publication Number Publication Date
WO2009093343A1 true WO2009093343A1 (ja) 2009-07-30

Family

ID=40898066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/054903 WO2009093343A1 (ja) 2008-01-25 2008-03-17 多層配線板およびその製造方法

Country Status (6)

Country Link
US (1) US8168893B2 (ja)
EP (1) EP2136610A4 (ja)
JP (1) JP4876173B2 (ja)
CN (1) CN101653053B (ja)
TW (1) TW200934342A (ja)
WO (1) WO2009093343A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012015239A (ja) * 2010-06-30 2012-01-19 Denso Corp 部品内蔵配線基板
JP2012195468A (ja) * 2011-03-17 2012-10-11 Murata Mfg Co Ltd 多層基板
JP2012209527A (ja) * 2011-03-30 2012-10-25 Tdk Corp 部品内蔵基板及びその製造方法
JP2013045849A (ja) * 2011-08-23 2013-03-04 Dainippon Printing Co Ltd チップインダクタ内蔵配線基板
WO2013187117A1 (ja) * 2012-06-14 2013-12-19 株式会社村田製作所 高周波モジュール
WO2014069107A1 (ja) * 2012-10-31 2014-05-08 株式会社村田製作所 部品内蔵基板および通信端末装置
JP2014203951A (ja) * 2013-04-04 2014-10-27 大日本印刷株式会社 部品実装多層配線基板
JP6004078B2 (ja) * 2013-02-15 2016-10-05 株式会社村田製作所 積層回路基板、積層回路基板の製造方法
JP2016531437A (ja) * 2013-08-21 2016-10-06 インテル・コーポレーション バンプレスビルドアップ層(bbul)用のバンプレスダイ−パッケージインターフェース
WO2016181954A1 (ja) * 2015-05-11 2016-11-17 株式会社村田製作所 高周波モジュール
JP2017027970A (ja) * 2015-07-15 2017-02-02 株式会社村田製作所 電子部品
JP2017183531A (ja) * 2016-03-30 2017-10-05 Tdk株式会社 電子部品搭載基板
JP2019102536A (ja) * 2017-11-29 2019-06-24 Tdk株式会社 多層回路基板
JP2021132139A (ja) * 2020-02-20 2021-09-09 上銀科技股▲分▼有限公司 回路基板装置
US20210351511A1 (en) * 2017-09-27 2021-11-11 Intel Corporation Differential on-chip loop antenna
JP2022013543A (ja) * 2020-06-29 2022-01-18 珠海越亜半導体股▲分▼有限公司 集積パッシブデバイスパッケージ構造及びその製造方法、基板
JP2022522938A (ja) * 2019-01-07 2022-04-21 テスラ,インコーポレイテッド 構成要素の埋め込みアレイを有するパッケージデバイス

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8101868B2 (en) 2005-10-14 2012-01-24 Ibiden Co., Ltd. Multilayered printed circuit board and method for manufacturing the same
JP5188816B2 (ja) 2005-12-16 2013-04-24 イビデン株式会社 多層プリント配線板およびその製造方法
JP3942190B1 (ja) * 2006-04-25 2007-07-11 国立大学法人九州工業大学 両面電極構造の半導体装置及びその製造方法
US8877074B2 (en) * 2006-12-15 2014-11-04 The Regents Of The University Of California Methods of manufacturing microdevices in laminates, lead frames, packages, and printed circuit boards
TWI349994B (en) * 2008-01-30 2011-10-01 Advanced Semiconductor Eng Package process for embedded semiconductor device
JP5138459B2 (ja) * 2008-05-15 2013-02-06 新光電気工業株式会社 配線基板の製造方法
JP5193898B2 (ja) * 2009-02-12 2013-05-08 新光電気工業株式会社 半導体装置及び電子装置
WO2011040393A1 (ja) 2009-09-30 2011-04-07 株式会社村田製作所 回路基板及びその製造方法
AT12317U1 (de) * 2010-04-13 2012-03-15 Austria Tech & System Tech Verfahren zur integration eines elektronischen bauteils in eine leiterplatte sowie leiterplatte mit einem darin integrierten elektronischen bauteil
AT12737U1 (de) * 2010-09-17 2012-10-15 Austria Tech & System Tech Verfahren zum herstellen einer aus mehreren leiterplattenbereichen bestehenden leiterplatte sowie leiterplatte
CN103416112B (zh) * 2011-03-10 2016-09-07 株式会社村田制作所 电气元件内置型多层基板及其制造方法
JP5757163B2 (ja) * 2011-06-02 2015-07-29 ソニー株式会社 多層配線基板およびその製造方法、並びに半導体装置
KR101358939B1 (ko) * 2012-05-23 2014-02-06 한국과학기술연구원 고밀도 실장용 박막 콘덴서, 그 제조방법 및 고밀도 실장 기판
US9064878B2 (en) 2012-08-14 2015-06-23 Bridge Semiconductor Corporation Wiring board with shielding lid and shielding slots as electromagnetic shields for embedded device
US9113574B2 (en) * 2012-10-25 2015-08-18 Ibiden Co., Ltd. Wiring board with built-in electronic component and method for manufacturing the same
JP2015038912A (ja) * 2012-10-25 2015-02-26 イビデン株式会社 電子部品内蔵配線板およびその製造方法
CN102905478B (zh) * 2012-11-14 2016-12-28 江苏普诺威电子股份有限公司 多层印刷板内埋元器件工艺
JP5664829B2 (ja) * 2012-11-29 2015-02-04 株式会社村田製作所 高周波モジュール
US9653370B2 (en) * 2012-11-30 2017-05-16 Infineon Technologies Austria Ag Systems and methods for embedding devices in printed circuit board structures
WO2014103530A1 (ja) * 2012-12-26 2014-07-03 株式会社村田製作所 部品内蔵基板
CN103904048B (zh) * 2012-12-27 2017-03-01 欣兴电子股份有限公司 内置式芯片封装结构
JP5427305B1 (ja) * 2013-02-19 2014-02-26 株式会社フジクラ 部品内蔵基板及びその製造方法並びに実装体
US9324664B2 (en) * 2013-02-22 2016-04-26 Unimicron Technology Corp. Embedded chip package structure
CN104051405A (zh) * 2013-03-11 2014-09-17 欣兴电子股份有限公司 嵌埋有电子组件的线路板结构及其制法
JP5761248B2 (ja) * 2013-04-11 2015-08-12 株式会社村田製作所 電子部品
CN205093051U (zh) 2013-05-14 2016-03-16 株式会社村田制作所 部件内置基板以及通信模块
US9485869B2 (en) * 2013-08-23 2016-11-01 Raytheon Company RF printed circuit board including vertical integration and increased layout density
JP2015106610A (ja) * 2013-11-29 2015-06-08 イビデン株式会社 電子部品内蔵基板、電子部品内蔵基板の製造方法
JP2015146346A (ja) * 2014-01-31 2015-08-13 イビデン株式会社 多層配線板
TWI683603B (zh) * 2014-02-17 2020-01-21 韓商Lg伊諾特股份有限公司 印刷電路板及其製造方法
US20150245548A1 (en) * 2014-02-26 2015-08-27 Sparton Corporation Control of electric field effects in a printed circuit board assembly using embedded nickel-metal composite materials
US10070547B2 (en) * 2014-02-26 2018-09-04 Sparton Corporation Control of electric field effects in a printed circuit board assembly using embedded nickel-metal composite materials
CN103887256B (zh) * 2014-03-27 2017-05-17 江阴芯智联电子科技有限公司 一种高散热芯片嵌入式电磁屏蔽封装结构及其制作方法
WO2015149364A1 (zh) * 2014-04-04 2015-10-08 史利利 印制线路板
WO2015156021A1 (ja) * 2014-04-10 2015-10-15 株式会社村田製作所 部品内蔵基板
KR102268388B1 (ko) 2014-08-11 2021-06-23 삼성전기주식회사 인쇄회로기판 및 그 제조방법
JP2016066699A (ja) * 2014-09-25 2016-04-28 京セラサーキットソリューションズ株式会社 複合配線基板およびその実装構造体
CN104576563A (zh) * 2014-12-30 2015-04-29 华天科技(西安)有限公司 一种埋入式传感芯片系统封装结构
WO2016195026A1 (ja) * 2015-06-04 2016-12-08 株式会社村田製作所 高周波モジュール
KR102327738B1 (ko) * 2015-06-18 2021-11-17 삼성전기주식회사 반도체 패키지 및 반도체 패키지의 제조 방법
TWI621378B (zh) * 2015-07-29 2018-04-11 乾坤科技股份有限公司 具有電磁屏蔽結構的電子模組及其製造方法
WO2017081840A1 (ja) * 2015-11-12 2017-05-18 ソニー株式会社 固体撮像装置及び固体撮像機器
JP6922887B2 (ja) * 2016-03-01 2021-08-18 ソニーグループ株式会社 半導体装置、電子モジュール、電子機器、および半導体装置の製造方法
WO2017178382A2 (en) * 2016-04-11 2017-10-19 At&S Austria Technologie & Systemtechnik Aktiengesellschaft Mbh Batch manufacture of component carriers
JP6512366B2 (ja) * 2016-04-20 2019-05-15 富士通株式会社 回路基板、回路基板の製造方法及び電子装置
CN107404804B (zh) * 2016-05-20 2020-05-22 鹏鼎控股(深圳)股份有限公司 电路板及其制作方法
US10170410B2 (en) * 2016-08-18 2019-01-01 Samsung Electro-Mechanics Co., Ltd. Semiconductor package with core substrate having a through hole
CN107809852A (zh) * 2016-09-08 2018-03-16 鹏鼎控股(深圳)股份有限公司 无导线表面电镀方法及由该方法制得的电路板
CN106783765A (zh) * 2017-01-23 2017-05-31 合肥雷诚微电子有限责任公司 一种小型化高散热性的线性功率放大器结构及其制作方法
CN206451500U (zh) * 2017-02-06 2017-08-29 京东方科技集团股份有限公司 显示装置控制单元和显示装置
US10512167B2 (en) * 2017-09-19 2019-12-17 Schlage Lock Company Llc Removing unwanted flux from an integrated circuit package
JP2019067858A (ja) * 2017-09-29 2019-04-25 イビデン株式会社 プリント配線板及びその製造方法
KR20190075647A (ko) * 2017-12-21 2019-07-01 삼성전자주식회사 팬-아웃 반도체 패키지
EP3522685B1 (en) * 2018-02-05 2021-12-08 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Metallic layer as carrier for component embedded in cavity of component carrier
KR102163059B1 (ko) 2018-09-07 2020-10-08 삼성전기주식회사 연결구조체 내장기판
CN112740844B (zh) * 2018-10-05 2023-10-24 株式会社村田制作所 模块
CN109698188B (zh) * 2018-12-29 2020-08-04 江苏长电科技股份有限公司 封装结构的成型方法
JP7231428B2 (ja) * 2019-02-12 2023-03-01 日本ピラー工業株式会社 高周波回路基板の製造方法、及び高周波回路基板
TWI686108B (zh) 2019-02-26 2020-02-21 嘉聯益科技股份有限公司 線路板模組及其散熱板結構
CN112020222A (zh) * 2019-05-30 2020-12-01 鹏鼎控股(深圳)股份有限公司 内埋电路板及其制作方法
CN112153801B (zh) * 2019-06-28 2022-03-08 庆鼎精密电子(淮安)有限公司 电路板及其制作方法
CN112654129B (zh) * 2019-10-10 2021-11-16 庆鼎精密电子(淮安)有限公司 抗电磁干扰电路板及其制作方法
KR20210076585A (ko) * 2019-12-16 2021-06-24 삼성전기주식회사 전자부품 내장기판
KR20210076586A (ko) * 2019-12-16 2021-06-24 삼성전기주식회사 전자부품 내장기판
EP3855872A1 (en) 2020-01-22 2021-07-28 Delta Electronics (Shanghai) Co., Ltd. Carrier board comprising a metal block
US11350519B2 (en) 2020-01-22 2022-05-31 Delta Electronics (Shanghai) Co., Ltd. Power module
US20210144844A1 (en) * 2021-01-21 2021-05-13 Intel Corporation Metallic regions to shield a magnetic field source
JP2022154937A (ja) * 2021-03-30 2022-10-13 株式会社デンソー 回路基板内に電気部品を内蔵する半導体装置
CN113613383A (zh) * 2021-07-28 2021-11-05 深圳市景旺电子股份有限公司 一种屏蔽基板、电路板及屏蔽基板和电路板的制作方法
CN113808957B (zh) * 2021-09-17 2024-05-03 成都奕成集成电路有限公司 芯片封装方法、芯片封装结构及电子设备
EP4276887A1 (en) * 2022-05-13 2023-11-15 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Ic substrate with support structure and functional inlays therein

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ8100U1 (cs) 1998-10-27 1998-12-08 Luboš Jandejsek Rádýlko na těsto
JP2001274034A (ja) 2000-01-20 2001-10-05 Shinko Electric Ind Co Ltd 電子部品パッケージ
JP2002050874A (ja) 2000-02-25 2002-02-15 Ibiden Co Ltd 多層プリント配線板および多層プリント配線板の製造方法
JP2006019342A (ja) 2004-06-30 2006-01-19 Tdk Corp 半導体ic内蔵基板
WO2007069789A1 (ja) * 2005-12-16 2007-06-21 Ibiden Co., Ltd. 多層プリント配線板およびその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5306670A (en) * 1993-02-09 1994-04-26 Texas Instruments Incorporated Multi-chip integrated circuit module and method for fabrication thereof
US6204454B1 (en) * 1997-12-27 2001-03-20 Tdk Corporation Wiring board and process for the production thereof
JP4854845B2 (ja) 2000-02-25 2012-01-18 イビデン株式会社 多層プリント配線板
JP2002016327A (ja) * 2000-04-24 2002-01-18 Ngk Spark Plug Co Ltd 配線基板およびその製造方法
CN100550355C (zh) * 2002-02-06 2009-10-14 揖斐电株式会社 半导体芯片安装用基板及其制造方法和半导体模块
JP2003243797A (ja) * 2002-02-19 2003-08-29 Matsushita Electric Ind Co Ltd モジュール部品
JP4175351B2 (ja) * 2005-08-26 2008-11-05 松下電工株式会社 凹凸多層回路板モジュール及びその製造方法
US8101868B2 (en) * 2005-10-14 2012-01-24 Ibiden Co., Ltd. Multilayered printed circuit board and method for manufacturing the same
JP5567243B2 (ja) * 2006-03-10 2014-08-06 信越ポリマー株式会社 多層プリント回路基板およびその製造方法
KR100770874B1 (ko) * 2006-09-07 2007-10-26 삼성전자주식회사 매설된 집적회로를 구비한 다층 인쇄회로기판
KR100819278B1 (ko) * 2006-11-22 2008-04-02 삼성전자주식회사 인쇄회로 기판 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ8100U1 (cs) 1998-10-27 1998-12-08 Luboš Jandejsek Rádýlko na těsto
JP2001274034A (ja) 2000-01-20 2001-10-05 Shinko Electric Ind Co Ltd 電子部品パッケージ
JP2002050874A (ja) 2000-02-25 2002-02-15 Ibiden Co Ltd 多層プリント配線板および多層プリント配線板の製造方法
JP2006019342A (ja) 2004-06-30 2006-01-19 Tdk Corp 半導体ic内蔵基板
WO2007069789A1 (ja) * 2005-12-16 2007-06-21 Ibiden Co., Ltd. 多層プリント配線板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2136610A4 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012015239A (ja) * 2010-06-30 2012-01-19 Denso Corp 部品内蔵配線基板
JP2012195468A (ja) * 2011-03-17 2012-10-11 Murata Mfg Co Ltd 多層基板
JP2012209527A (ja) * 2011-03-30 2012-10-25 Tdk Corp 部品内蔵基板及びその製造方法
JP2013045849A (ja) * 2011-08-23 2013-03-04 Dainippon Printing Co Ltd チップインダクタ内蔵配線基板
WO2013187117A1 (ja) * 2012-06-14 2013-12-19 株式会社村田製作所 高周波モジュール
US9013882B2 (en) 2012-06-14 2015-04-21 Murata Manufacturing Co., Ltd. High-frequency module
US9699908B2 (en) 2012-10-31 2017-07-04 Murata Manufacturing Co., Ltd. Component-embedded board and communication terminal device
WO2014069107A1 (ja) * 2012-10-31 2014-05-08 株式会社村田製作所 部品内蔵基板および通信端末装置
JP6004078B2 (ja) * 2013-02-15 2016-10-05 株式会社村田製作所 積層回路基板、積層回路基板の製造方法
US9980383B2 (en) 2013-02-15 2018-05-22 Murata Manufacturing Co., Ltd. Laminated circuit substrate
JP2014203951A (ja) * 2013-04-04 2014-10-27 大日本印刷株式会社 部品実装多層配線基板
JP2016531437A (ja) * 2013-08-21 2016-10-06 インテル・コーポレーション バンプレスビルドアップ層(bbul)用のバンプレスダイ−パッケージインターフェース
WO2016181954A1 (ja) * 2015-05-11 2016-11-17 株式会社村田製作所 高周波モジュール
JPWO2016181954A1 (ja) * 2015-05-11 2018-02-15 株式会社村田製作所 高周波モジュール
US10772244B2 (en) 2015-05-11 2020-09-08 Murata Manufacturing Co., Ltd. High-frequency module
JP2017027970A (ja) * 2015-07-15 2017-02-02 株式会社村田製作所 電子部品
JP2017183531A (ja) * 2016-03-30 2017-10-05 Tdk株式会社 電子部品搭載基板
US10512163B2 (en) 2016-03-30 2019-12-17 Tdk Corporation Electronic component mounting board
US11955728B2 (en) * 2017-09-27 2024-04-09 Intel Corporation Differential on-chip loop antenna
US20210351511A1 (en) * 2017-09-27 2021-11-11 Intel Corporation Differential on-chip loop antenna
JP2019102536A (ja) * 2017-11-29 2019-06-24 Tdk株式会社 多層回路基板
JP2022522938A (ja) * 2019-01-07 2022-04-21 テスラ,インコーポレイテッド 構成要素の埋め込みアレイを有するパッケージデバイス
JP7478742B2 (ja) 2019-01-07 2024-05-07 テスラ,インコーポレイテッド 構成要素の埋め込みアレイを有するパッケージデバイス
JP2021132139A (ja) * 2020-02-20 2021-09-09 上銀科技股▲分▼有限公司 回路基板装置
JP7485517B2 (ja) 2020-02-20 2024-05-16 上銀科技股▲分▼有限公司 回路基板装置
JP7058310B2 (ja) 2020-06-29 2022-04-21 珠海越亜半導体股▲分▼有限公司 集積パッシブデバイスパッケージ構造及びその製造方法、基板
JP2022013543A (ja) * 2020-06-29 2022-01-18 珠海越亜半導体股▲分▼有限公司 集積パッシブデバイスパッケージ構造及びその製造方法、基板

Also Published As

Publication number Publication date
JPWO2009093343A1 (ja) 2011-05-26
JP4876173B2 (ja) 2012-02-15
US20090188703A1 (en) 2009-07-30
EP2136610A4 (en) 2011-07-13
TW200934342A (en) 2009-08-01
US8168893B2 (en) 2012-05-01
CN101653053B (zh) 2012-04-04
TWI345940B (ja) 2011-07-21
EP2136610A1 (en) 2009-12-23
CN101653053A (zh) 2010-02-17

Similar Documents

Publication Publication Date Title
JP4876173B2 (ja) 多層配線板およびその製造方法
KR101049390B1 (ko) 다층 프린트 배선판 및 그 제조 방법
US8692132B2 (en) Multilayered printed circuit board and method for manufacturing the same
US8481424B2 (en) Multilayer printed wiring board
WO2008053833A1 (fr) Tableau de câblage imprimé multicouche
JP2004179578A (ja) 配線基板及びその製造方法
JP2005277389A (ja) 多層配線基板及び半導体パッケージ
JP2005183466A (ja) 多層プリント配線板
JP2000261147A (ja) 多層配線基板及びその製造方法
KR100694668B1 (ko) 도금 인입선 없는 패키지 기판 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880011057.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009550417

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08722297

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008722297

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE