WO2017081840A1 - 固体撮像装置及び固体撮像機器 - Google Patents

固体撮像装置及び固体撮像機器 Download PDF

Info

Publication number
WO2017081840A1
WO2017081840A1 PCT/JP2016/004586 JP2016004586W WO2017081840A1 WO 2017081840 A1 WO2017081840 A1 WO 2017081840A1 JP 2016004586 W JP2016004586 W JP 2016004586W WO 2017081840 A1 WO2017081840 A1 WO 2017081840A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
state imaging
imaging device
shield
package
Prior art date
Application number
PCT/JP2016/004586
Other languages
English (en)
French (fr)
Inventor
敦士 塚田
栄一郎 岸田
大輔 中津留
博幸 加治
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN201680064291.8A priority Critical patent/CN108352389B/zh
Priority to US15/772,584 priority patent/US10506186B2/en
Publication of WO2017081840A1 publication Critical patent/WO2017081840A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils

Definitions

  • the present technology relates to a solid-state imaging device and a solid-state imaging device including the same.
  • Solid-state imaging devices using solid-state imaging devices such as CCD (charge coupled device) and CMOS (complementary metal oxide semiconductor) sensors are installed in products such as still cameras, video cameras, and surveillance cameras, and are used in various environments. ing. In recent years, in order to realize high sensitivity and high resolution, such a solid-state imaging device is required to take measures for reducing the influence of fluctuations in electromagnetic waves and magnetic fields from the outside.
  • CCD charge coupled device
  • CMOS complementary metal oxide semiconductor
  • Patent Document 1 discloses a solid-state imaging device in which a conductor is provided on the outer periphery of a package on which a semiconductor element (solid-state imaging element) is mounted. As a result, the package has high electromagnetic shielding performance, and the electromagnetic wave resistance from the outside of the solid-state imaging device is improved.
  • an object of the present technology is to provide a solid-state imaging device in which deterioration of characteristics of a solid-state imaging element due to the influence of magnetic lines of force provided in a package is prevented, and a solid-state imaging apparatus having the solid-state imaging device.
  • a solid-state imaging device includes a package, a seal glass, a solid-state imaging device, and a shield.
  • the package includes wiring therein and is provided with a recess.
  • the seal glass is bonded to the package and closes the recess.
  • the solid-state imaging device is accommodated in a space formed by the concave portion and the seal glass.
  • the shield is accommodated in the space and disposed in the package. The shield prevents magnetic lines of force generated in the wiring from reaching the solid-state imaging device.
  • the shield is housed in a space formed by the recess and the seal glass together with the solid-state imaging device, and is arranged in a package in which wiring is provided.
  • the shield prevents the magnetic field lines generated in the wiring from reaching the solid-state imaging device. Therefore, according to the present technology, it is possible to provide a solid-state imaging device in which the deterioration of the characteristics of the solid-state imaging device due to the influence of the magnetic lines of force from the wiring provided in the package is prevented.
  • the shield may be provided between the solid-state imaging device and the package.
  • the shield may be provided around the solid-state image sensor.
  • the shield includes a first shield and a second shield,
  • the first shield and the second shield may be arranged with an interval between the solid-state imaging device and the package.
  • the magnetic shield may be used as the shield.
  • the shield By using the shield as a magnetic material, the shield attracts magnetic lines of force generated from the wiring, and can prevent the magnetic lines of force from reaching the solid-state imaging device. Thereby, characteristic deterioration of the solid-state imaging device due to the influence of the magnetic lines of force is prevented.
  • the shield may be a conductor made of copper or iron.
  • the magnetic field lines generated from the wiring are canceled out by the magnetic field lines generated from the conductor such as copper or iron (the magnetic field lines rotating in the direction opposite to the rotation direction of the magnetic field lines generated from the wiring), and solid-state imaging of the magnetic field lines generated from the wiring is performed. Reaching the element is prevented. Therefore, even if the shield is a conductor made of copper or iron, the solid-state imaging device can be protected from the magnetic field lines generated from the wiring.
  • the shield is a die bonding film containing a magnetic material, and the solid-state imaging device may be bonded to the package.
  • This not only prevents the magnetic lines of force generated in the wiring from reaching the solid-state image sensor, but also eliminates the step of adhering the solid-state image sensor and the shield when designing the solid-state image sensor. Therefore, it is possible to improve productivity in manufacturing the solid-state imaging device.
  • the shield is a die bonding film containing a conductor made of copper or iron, and the solid-state imaging device may be bonded to the package.
  • a solid-state imaging device includes a solid-state imaging device and an imaging optical system.
  • the solid-state imaging device is housed in a package having wiring therein and provided with a recess, a seal glass bonded to the package and closing the recess, and a space formed by the recess and the seal glass.
  • the imaging optical system condenses incident light on the solid-state imaging device.
  • FIG. 1 is a cross-sectional view of the solid-state imaging device 100
  • FIG. 2 is a plan view of the solid-state imaging device 100.
  • the X direction, the Y direction, and the Z direction are three directions orthogonal to each other.
  • the solid-state imaging device 100 includes a package 10, a seal glass 20, a solid-state imaging element 30, and a shield 40.
  • Package 10 has a recess 11 as shown in FIG.
  • the recess 11 is formed in the package 10 so as to be deeper than the thickness (distance in the Z direction) of the solid-state imaging device 30 and the shield 40 as shown in FIG.
  • package wiring 12 is provided inside the package 10 as shown in FIG.
  • the package 10 is, for example, a laminated package such as LTCC (law temperature co-fired ceramics) or HTCC (high temperature co-fired ceramics), and the package wiring 12 is provided between each layer constituting the package. It can be.
  • the package wiring 12 electrically connects an external terminal (not shown) provided in the package 10 and the solid-state imaging device 30.
  • the package wiring 12 is electrically connected to the solid-state imaging device 30 by wire bonding, for example.
  • the material of the package wiring 12 is not particularly limited, and for example, tungsten or copper is adopted.
  • the package 10 can be made of a material such as synthetic resin or ceramic.
  • the material of the package 10 is not particularly limited as long as it is an insulating material.
  • the seal glass 20 is bonded to the package 10 with an adhesive or the like and closes the recess 11.
  • the seal glass 20 is light transmissive, and has a function of preventing scratches, dust, and the like from adhering to the solid-state imaging device 30.
  • the material of the seal glass 20 is preferably borosilicate glass, quartz glass, non-alkali glass, Pyrex (registered trademark) glass, or the like.
  • the solid-state imaging device 100 can use an IR cut filter, a crystal low-pass filter, or the like instead of the seal glass 20.
  • the solid-state imaging device 30 is accommodated in a space 13 formed by the seal glass 20 and the recess 11.
  • the solid-state imaging device 30 has a signal processing area and a circuit area arranged around the signal processing area.
  • the signal processing area includes a pixel area in which photodiodes that convert light into electric signals are arranged one-dimensionally or two-dimensionally, and an amplifier circuit and a memory arranged around the pixel area.
  • the type of the solid-state imaging device 100 is not particularly limited, and for example, a CCD (charge coupled device) sensor, a CMOS (complementary metal oxide semiconductor) sensor, or the like can be used.
  • a CCD charge coupled device
  • CMOS complementary metal oxide semiconductor
  • the shield 40 is accommodated in the space 13 as shown in FIG. Further, the shield 40 is provided between the solid-state imaging device 30 and the package 10 as shown in FIG.
  • the material of the shield 40 can be a magnetic body or a conductor such as copper or iron, and preferably an iron-nickel soft magnetic material is used.
  • iron-nickel-based soft magnetic material for example, PB, PC, PD, PE, or PF-based permalloy material defined in JIS C-2531 can be used.
  • FIG. 3 is a schematic diagram of a solid-state imaging device 200 according to a comparative example
  • FIG. 4 is a schematic diagram of the solid-state imaging device 100 according to the present embodiment.
  • the solid-state imaging device 200 includes a package 210 having a recess 211, a seal glass 220, and a solid-state imaging element 230.
  • a package wiring 212 is provided inside the package 210 in the solid-state imaging device 200 and is disposed directly below the solid-state imaging device 230.
  • the solid-state imaging device 200 is not provided with a shield, as shown in FIG.
  • the magnetic force lines M generated from the package wiring 212 may reach the solid-state image sensor 230, and the characteristics of the solid-state image sensor 230 may deteriorate. .
  • the shield 40 is provided between the solid-state imaging device 30 and the package 10 as illustrated in FIGS. 1 and 2.
  • the shield 40 is made of a ferromagnetic material, even if a large current flows through the package wiring 12, the magnetic force lines M generated from the package wiring 12 are attracted to the shield 40 as shown in FIG. 4. .
  • the shield 40 made of a ferromagnetic material between the solid-state imaging device 30 and the package 10 it is possible to prevent the magnetic lines of force M generated in the package wiring 12 from reaching the solid-state imaging device 30. Thereby, the characteristic deterioration of the solid-state imaging device 30 due to the influence of the magnetic lines of force M generated from the package wiring 12 can be prevented.
  • the shield 40 may be made of a conductor such as copper or iron as described above.
  • the magnetic force lines M generated from the package wiring 12 are canceled out by the magnetic force lines (magnetic field lines rotating in the direction opposite to the rotation direction of the magnetic force lines M) generated from a conductor such as copper or iron, and the magnetic force lines M are transferred to the solid-state imaging device 30. Reach is prevented. Therefore, even if the shield 40 is a conductor such as copper or iron, it is possible to prevent deterioration of characteristics due to the influence of the magnetic force lines M of the solid-state imaging device 30.
  • the package wiring 12 is subjected to a process for shielding electromagnetic waves, or the arrangement of the package wiring 12 in the package 10 is devised. Since this is not necessary, a degree of freedom in designing the solid-state imaging device 100 can be ensured. Therefore, the solid-state imaging device 100 of the present embodiment can be downsized compared to the conventional solid-state imaging devices.
  • FIG. 5 is a cross-sectional view of the solid-state imaging device 100 according to the first modification
  • FIG. 6 is a plan view of the solid-state imaging device 100 according to the first modification.
  • the solid-state imaging device 100 is not limited to the configuration illustrated in FIGS. 1 and 2, and may be configured such that the shield 40 is provided around the solid-state imaging device 30 as illustrated in FIGS. 5 and 6.
  • the material of the shield 40 is a ferromagnetic material.
  • the solid-state imaging device 100 can prevent the deterioration of the characteristics of the solid-state imaging device 30 due to the influence of the magnetic force lines M even when the configuration shown in FIGS. 5 and 6 is adopted.
  • FIG. 7 is a cross-sectional view of the solid-state imaging device 100 according to the second modification
  • FIG. 8 is a plan view of the solid-state imaging device 100 according to the second modification.
  • the shield 40 in the solid-state imaging device 100, the shield 40 includes a first shield 40a and a second shield 40b, and the first shield 40a and the second shield 40b are connected to the solid-state imaging device 30 and the package 10. It can also be set as the structure arrange
  • the material of the shield 40 (the first shield 40a and the second shield 40b) is a ferromagnetic material or a conductor such as copper or iron.
  • the package wiring 12 is provided inside the package 10 so as to be disposed immediately below the solid-state imaging device 30 as shown in FIG. 7, if the shield 40 is a ferromagnetic material, the package wiring 12 As shown in FIG. 7, the magnetic force lines M generated from 12 are attracted to the shield 40, and the magnetic force lines M are prevented from reaching the solid-state imaging device.
  • the solid-state imaging device 100 can prevent the deterioration of the characteristics of the solid-state imaging device 30 due to the influence of the magnetic force lines M.
  • the shield 40 is a conductor such as copper or iron, the magnetic force lines M are canceled out, and the characteristic deterioration of the solid-state imaging element 30 due to the influence of the magnetic force lines M can be prevented. Is possible.
  • FIG. 9 is a cross-sectional view of the solid-state imaging device 100 according to the third modification
  • FIG. 10 is a plan view of the solid-state imaging device 100 according to the third modification.
  • the solid-state imaging device 100 may have a configuration in which the distance L1 in the X direction of the shield 40 is longer than the distance L2 in the X direction of the solid-state imaging element 30.
  • the area of the surface 40 c (front surface) in contact with the solid-state image sensor 30 in the shield 40 is larger than the area of the surface 30 a (back surface) in contact with the shield 40 in the solid-state image sensor 30. It may be. Thereby, it is possible to further improve the shielding performance of shielding the solid-state imaging device 30 of the shield 40 from the magnetic force lines M generated from the package wiring 12.
  • the shield 40 is a die bonding film in which magnetic particles or conductive particles such as copper or iron are contained in an adhesive resin, and the solid-state imaging device 30 can be bonded to the package 10. Or it can also be set as the die-bonding paste by which the particle
  • This not only prevents the magnetic lines of force M generated in the package wiring 12 from reaching the solid-state imaging device, but also eliminates the step of bonding the solid-state imaging device 30 and the shield 40 when designing the solid-state imaging device 100. it can. Therefore, it is possible to improve productivity in manufacturing the solid-state imaging device 100.
  • FIGS. 11 to 13 are plan views of the solid-state imaging device 100, and are schematic diagrams showing variations in the shape of the shield 40 in the solid-state imaging device 100.
  • FIG. The shape of the shield 40 according to the present embodiment is not limited to the shapes shown in FIGS. 1, 2, and 5 to 10, and can be any shape.
  • FIG. 11 it may be circular. Or, as shown in FIG. Between the solid-state image sensor 30 and the package 10, it may be arranged along the periphery of the solid-state image sensor 30 and may have a shape having a rectangular hole 40d. Or as shown in FIG. 13, a cross shape may be sufficient.
  • FIG. 14 is a schematic diagram of a solid-state imaging device 300 according to the present embodiment.
  • the solid-state imaging device 300 includes an imaging optical system 110 and a solid-state imaging device 100.
  • the imaging optical system 110 is an optical system that condenses incident light R on the solid-state imaging device 30 as shown in FIG.
  • the solid-state imaging device 300 is not particularly limited, and can be, for example, a still camera, a video camera, an FA (focus camera) camera, a surveillance camera, a microscope, or the like. Note that the solid-state imaging device 300 on which the solid-state imaging device 100 is mounted is not limited to those listed above.
  • the present technology can be configured as follows.
  • the shield is provided between the solid-state imaging device and the package.
  • the shield is provided around the solid-state image sensor.
  • the shield includes a first shield and a second shield, The first shield and the second shield are disposed with a space between the solid-state imaging device and the package.
  • the solid-state imaging device according to any one of (1) to (4) above,
  • the shield is a magnetic body.
  • the solid-state imaging device according to any one of (1) to (4) above,
  • the shield is a conductor made of copper or iron.
  • the shield is a die bonding film containing a magnetic material.
  • the shield is a die bonding film containing a conductor made of copper or iron.
  • a package provided with a wiring therein and provided with a recess; a seal glass bonded to the package and closing the recess; a solid-state imaging device housed in a space formed by the recess and the seal glass; A solid-state imaging device having a shield housed in space and disposed in the package, the shield preventing magnetic field lines generated in the wiring from reaching the solid-state imaging device;
  • An imaging optical system comprising: an imaging optical system that collects incident light on the solid-state imaging device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】パッケージ内に設けられた配線からの磁力線の影響による固体撮像素子の特性劣化が防止された固体撮像装置及びこれを有する固体撮像機器を提供すること。 【解決手段】本技術に係る固体撮像装置は、パッケージと、シールガラスと、固体撮像素子と、シールドとを備える。パッケージは、内部に配線を備え、凹部が設けられる。シールガラスは、パッケージに接合され、凹部を閉塞する。固体撮像素子は、凹部とシールガラスにより形成された空間に収容される。シールドは、空間に収容され、パッケージに配置される。シールドは、配線において生じる磁力線の固体撮像素子への到達を防止する。

Description

固体撮像装置及び固体撮像機器
 本技術は、固体撮像装置及びこれを備える固体撮像機器に関する。
 CCD(charge coupled device)やCMOS(complementary metal oxide semiconductor)センサ等の固体撮像素子を用いた固体撮像装置は、スチルカメラ、ビデオカメラ、監視カメラ等の製品に搭載され、様々な環境下で使用されている。そして、近年では、このような固体撮像装置は、高感度、高解像度を実現するために、外界からの電磁波や磁場の変動に対して、その影響を小さくするための対策が求められている。
 そこで、例えば特許文献1では、半導体素子(固体撮像素子)が搭載されたパッケージの外周に導電体が設けられた固体撮像装置が開示されている。これにより、当該パッケージが高い電磁遮蔽性能を有するようになり、固体撮像装置の外界からの電磁波耐性が向上するものとしている。
特開2014-150150号公報
 しかしながら、近年の固体撮像装置は、大電流を流す仕様が増えている。これにより、特許文献1に記載の発明のように、パッケージの外周に導電体を設ける技術を適用したとしても、パッケージ内に設けられた配線からの磁力線の影響による固体撮像素子の特性劣化を防止できないおそれがある。
 以上のような事情に鑑み、本技術の目的は、パッケージ内に設けられた配線からの磁力線の影響による固体撮像素子の特性劣化が防止された固体撮像装置及びこれを有する固体撮像機器を提供することにある。
 上記目的を達成するため、本技術の一形態に係る固体撮像装置は、パッケージと、シールガラスと、固体撮像素子と、シールドとを備える。
 上記パッケージは、内部に配線を備え、凹部が設けられる。
 上記シールガラスは、上記パッケージに接合され、上記凹部を閉塞する。
 上記固体撮像素子は、上記凹部と上記シールガラスにより形成された空間に収容される。
 上記シールドは、上記空間に収容され、上記パッケージに配置される。
 上記シールドは、上記配線において生じる磁力線の上記固体撮像素子への到達を防止する。
 この構成によれば、シールドが、固体撮像素子と共に、凹部とシールガラスにより形成された空間に収容され、内部に配線が設けられたパッケージに配置される。ここで、シールドは、配線において生じる磁力線の固体撮像素子への到達を防止する。従って、本技術により、パッケージ内に設けられた配線からの磁力線の影響による固体撮像素子の特性劣化が防止された固体撮像装置を提供することができる。
 上記シールドは、上記固体撮像素子と上記パッケージの間に設けられていてもよい。
 これにより、配線が固体撮像素子の直下に配置されるようにパッケージの内部に設けられたとしても、配線から生じた磁力線はシールドに引き寄せられ、当該磁力線の固体撮像素子への到達が防止される。従って、磁力線の影響による固体撮像素子の特性劣化を防止することができる。
 上記シールドは、上記固体撮像素子の周囲に設けられてもよい。
 上記シールドは、第1のシールドと第2のシールドとを含み、
 上記第1のシールドと上記第2のシールドは、上記固体撮像素子と上記パッケージの間で間隔を空けて配置されてもよい。
 上記シールドは、磁性体であってもよい。
 シールドを磁性体とすることにより、シールドは配線から生じた磁力線を引き寄せ、当該磁力線の固体撮像素子への到達を防止することができる。これにより、磁力線の影響による固体撮像素子の特性劣化が防止される。
 上記シールドは、銅又は鉄からなる導電体であってもよい。
 これにより、配線から生じた磁力線は、銅又は鉄等の導電体から生じた磁力線(配線から生じた磁力線の回転方向と逆方向に回転する磁力線)により打ち消され、配線から生じた磁力線の固体撮像素子への到達が防止される。従って、シールドが銅又は鉄からなる導電体であっても、配線から生じた磁力線から固体撮像素子を保護することができる。
 上記シールドは、磁性体が含有されたダイボンディングフィルムであり、上記固体撮像素子を上記パッケージに接着してもよい。
 これにより、配線において生じる磁力線の固体撮像素子への到達を防止することができるだけではなく、固体撮像装置を設計する際に、固体撮像素子とシールドを接着する工程を省くことができる。従って、固体撮像装置を製造する上での生産性の向上を図ることが可能となる。
 上記シールドは、銅又は鉄からなる導電体が含有されたダイボンディングフィルムであり、上記固体撮像素子を上記パッケージに接着してもよい。
 上記目的を達成するため、本技術の一形態に係る固体撮像機器は、固体撮像装置と、撮像光学系とを備える。
 上記固体撮像装置は、内部に配線を備え、凹部が設けられたパッケージと、上記パッケージに接合され、上記凹部を閉塞するシールガラスと、上記凹部と上記シールガラスにより形成された空間に収容された固体撮像素子と、上記空間に収容され、上記パッケージに配置されたシールドであって、上記配線において生じる磁力線の上記固体撮像素子への到達を防止するシールドとを有する。
 上記撮像光学系は、上記固体撮像素子に入射光を集光する。
 以上のように、本技術によれば、パッケージに内に設けられた配線からの磁力線の影響による固体撮像素子の特性劣化が防止された固体撮像装置及びこれを有する固体撮像機器を提供することができる。
本技術の実施形態に係る固体撮像装置の断面図である。 同固体撮像装置の模式図である。 本技術の比較例に係る固体撮像装置の模式図である。 本技術の実施形態に係る固体撮像装置の模式図である。 同実施形態の変形例1に係る固体撮像装置の断面図である。 同固体撮像装置の平面図である。 同実施形態の変形例2に係る固体撮像装置の断面図である。 同固体撮像装置の平面図である。 同実施形態の変形例3に係る固体撮像装置の断面図である。 同固体撮像装置の平面図である。 同実施形態に係るシールドの形状のバリエーションを示す模式図である。 同実施形態に係るシールドの形状のバリエーションを示す模式図である。 同実施形態に係るシールドの形状のバリエーションを示す模式図である。 本技術の実施形態に係る固体撮像機器の模式図である。
 以下、本技術の実施形態に係る固体撮像装置について説明する。
 [固体撮像装置の構成]
 図1は固体撮像装置100の断面図であり、図2は固体撮像装置100の平面図である。以下の図において、X方向、Y方向及びZ方向は相互に直交する3方向である。
 本実施形態に係る固体撮像装置100は、図1に示すように、パッケージ10と、シールガラス20と、固体撮像素子30と、シールド40とを有する。
 パッケージ10は、図1に示すように凹部11を有する。凹部11は、図1に示すように固体撮像素子30及びシールド40の厚み(Z方向の距離)より深くなるようにパッケージ10に形成されている。
 また、パッケージ10の内部には、図1に示すように、パッケージ配線12が設けられている。パッケージ10は例えば、LTCC(law temperature co-fired ceramics)やHTCC(high temperature co-fired ceramics)等の積層型のパッケージであり、パッケージ配線12はパッケージを構成する各層の間に設けられているものとすることができる。
 パッケージ配線12は、パッケージ10に設けられている外部端子(図示略)と、固体撮像素子30とを電気的に接続する。パッケージ配線12は、例えばワイヤボンディングにより固体撮像素子30と電気的に接続されている。パッケージ配線12の材料は、特に限定されないが、例えば、タングステン又は銅等が採用される。
 パッケージ10は、例えば、合成樹脂やセラミック等の材料からなるものとすることができる。なお、パッケージ10の材料は、絶縁性を有する材料であれば特に限定されない。
 シールガラス20は、図1に示すように、接着剤等によりパッケージ10に接合され、凹部11を閉塞する。シールガラス20は、光透過性を有し、固体撮像素子30に傷や埃等が付着するのを防止する機能を有する。
 シールガラス20の材料は、好適にはホウケイ酸ガラス、石英ガラス、無アルカリガラス又はパイレックス(登録商標)ガラス等が採用される。なお、固体撮像装置100は、シールガラス20の代わりにIRカットフィルターや、水晶ローパスフィルター等を用いることもできる。
 固体撮像素子30は、図1に示すように、シールガラス20と、凹部11により形成された空間13に収容される
 固体撮像素子30は、信号処理領域と、当該信号処理領域の周辺に配置された回路領域とを有する。信号処理領域は、光を電気信号に変換するフォトダイオードが一次元又は二次元的に配置された画素領域と、当該画素領域の周辺に配置された増幅回路やメモリ等を有する。
 固体撮像装置100の種類は特に限定されないが、例えば、CCD(charge coupled device)センサや、CMOS(complementary metal oxide semiconductor)センサ等とすることができる。
 シールド40は、図1に示すように空間13に収容され、パッケージ10に配置される。また、シールド40は、同図に示すように固体撮像素子30とパッケージ10の間に設けられる。シールド40の材料は、磁性体あるいは銅又は鉄等の導電体とすることができ、好適には鉄ニッケル系軟磁性材料が採用される。
 鉄ニッケル系軟磁性材料は、例えば、JIS C 2531で規定されているPB、PC、PD、PE又はPF系のパーマロイ材料を利用することができる。
 [シールドの効果]
 シールド40の効果について比較例を用いて説明する。図3は比較例に係る固体撮像装置200の模式図であり、図4は本実施形態に係る固体撮像装置100の模式図である。図3に示すように、固体撮像装置200は、凹部211を有するパッケージ210と、シールガラス220と、固体撮像素子230とを有する。
 固体撮像装置200におけるパッケージ210には、図3に示すように、パッケージ配線212が内部に設けられ、固体撮像素子230に直下に配置される。ここで、同図に示すように、固体撮像装置200は、本実施形態に係る固体撮像装置100とは異なり、シールドが設けられていない。
 これにより、パッケージ配線212に大電流が流されると、図3に示すように、パッケージ配線212から生じた磁力線Mが固体撮像素子230に到達し、固体撮像素子230の特性が劣化するおそれがある。
 しかしながら、本技術に係る固体撮像装置100は、図1及び図2に示すように、シールド40が固体撮像素子30とパッケージ10との間に設けられる。ここで、シールド40の材料を強磁性体とすることにより、パッケージ配線12に大電流が流されたとしても、図4に示すように、パッケージ配線12から生じた磁力線Mがシールド40に引き寄せられる。
 つまり、強磁性体からなるシールド40を固体撮像素子30と、パッケージ10との間に設けることにより、パッケージ配線12において生じる磁力線Mの固体撮像素子30への到達を防止することができる。これにより、パッケージ配線12から生じた磁力線Mの影響による固体撮像素子30の特性劣化を防止することができる。
 また、シールド40は、上述のように銅又は鉄等の導電体からなるものとすることもできる。これにより、パッケージ配線12から生じた磁力線Mは、銅又は鉄等の導電体から生じた磁力線(磁力線Mの回転方向と逆方向に回転する磁力線)により打ち消され、磁力線Mの固体撮像素子30への到達が防止される。従って、シールド40は、銅又は鉄等の導電体であったとしても、固体撮像素子30の磁力線Mの影響による特性劣化を防止することができる。
 このように、磁力線Mの影響による固体撮像素子30の特性劣化を防止するために、パッケージ配線12に電磁波をシールドする処理を施したり、パッケージ10内でのパッケージ配線12の配置を工夫したりする必要がなくなる為、固体撮像装置100を設計する上での自由度を確保することができる。従って、本実施形態の固体撮像装置100は、これまでの固体撮像装置よりも小型化を図ることが可能となる。
 [変形例]
 次に、固体撮像装置100の構成に係る変形例について説明する。
 (変形例1)
 図5は変形例1に係る固体撮像装置100の断面図であり、図6は変形例1に係る固体撮像装置100の平面図である。固体撮像装置100は、図1及び図2に示す構成に限られず、図5及び図6に示すように、シールド40が固体撮像素子30の周囲に設けられた構成とすることもできる。この場合、シールド40の材料は強磁性体である。
 これにより、パッケージ配線12が、図5に示すように、固体撮像素子30の直下に配置されるようにパッケージ10の内部に設けられたとしても、パッケージ配線12から生じた磁力線Mは、同図に示すように、シールド40に引き寄せられる。よって、磁力線Mの固体撮像素子30への到達が防止される。従って、固体撮像装置100は、図5及び図6に示す構成が採用されたとしても、磁力線Mの影響による固体撮像素子30の特性劣化を防止することができる。
 (変形例2)
 図7は変形例2に係る固体撮像装置100の断面図であり、図8は変形例2に係る固体撮像装置100の平面図である。固体撮像装置100は、図7及び図8に示すように、シールド40が第1シールド40aと第2シールド40bとを含み、第1シールド40aと第2シールド40bが、固体撮像素子30とパッケージ10との間で、間隔を空けて配置された構成とすることもできる。この場合、シールド40(第1シールド40a及び第2シールド40b)の材料は、強磁性体あるいは銅又は鉄等の導電体である。
 これにより、パッケージ配線12が、図7に示すように固体撮像素子30の直下に配置されるようにパッケージ10の内部に設けられたとしても、シールド40が強磁性体である場合は、パッケージ配線12から生じた磁力線Mが、図7に示すようにシールド40に引き寄せられ、磁力線Mの固体撮像素子への到達が防止される。
 従って、固体撮像装置100は、図7及び図8に示す構成が採用されたとしても、磁力線Mの影響による固体撮像素子30の特性劣化を防止することができる。なお、変形例2に係る固体撮像装置100は、シールド40が銅又は鉄等の導電体であっても磁力線Mが打ち消され、磁力線Mの影響による固体撮像素子30の特性劣化を防止することが可能である。
 (変形例3)
 図9は変形例3に係る固体撮像装置100の断面図であり、図10は変形例3に係る固体撮像装置100の平面図である。固体撮像装置100は、図9に示すように、シールド40のX方向の距離L1が、固体撮像素子30のX方向の距離L2より長い構成とすることもできる。
 換言すれば、図9に示すように、シールド40における固体撮像素子30と接触する面40c(表面)の面積が、固体撮像素子30におけるシールド40と接触する面30a(裏面)の面積より大きい構成であってもよい。これにより、シールド40の固体撮像素子30をパッケージ配線12から生じた磁力線Mから遮蔽する遮蔽性能をより向上させることが可能となる。
 (変形例4)
 シールド40は、接着樹脂に磁性体あるいは銅又は鉄等の導電体の粒子が含有されたダイボンディングフィルムであり、固体撮像素子30をパッケージ10に接着するものとすることもできる。または、銀ペーストに磁性体あるいは銅又は鉄等の導電体の粒子が含有されたダイボンディングペーストとすることもできる。
 これにより、パッケージ配線12において生じる磁力線Mの固体撮像素子への到達が防止されるだけではなく、固体撮像装置100を設計する際に、固体撮像素子30とシールド40を接着する工程を省くことができる。従って、固体撮像装置100を製造する上での生産性の向上を図ることが可能となる。
 (シールドの形状について)
 図11~図13は、固体撮像装置100の平面図であり、固体撮像装置100におけるシールド40の形状のバリエーションを示す模式図である。本実施形態に係るシールド40の形状は図1、図2、図5~図10に示す形状に限定されるものではなく、任意の形状とすることができる。
 例えば、図11に示すように、円形であってもよい。もしくは、図12に示すように、
固体撮像素子30とパッケージ10の間において、固体撮像素子30の周縁に沿うように配置され、矩形孔40dを有する形状であってもよい。又は、図13に示すように、十字型であってもよい。
 [固体撮像機器について]
 図14は、本実施形態に係る固体撮像機器300の模式図である。同図に示すように、固体撮像機器300は、撮像光学系110及び固体撮像装置100を具備する。撮像光学系110は、同図に示すように、固体撮像素子30に入射光Rを集光する光学系である。
 固体撮像機器300は、特に限定されないが、例えばスチルカメラ、ビデオカメラ、FA(focus aid)カメラ、監視カメラ又は顕微鏡等とすることができる。なお、固体撮像装置100が搭載される固体撮像機器300は、上記で列挙したものに限定されるものではない。
 以上、本技術の実施形態について説明したが、本技術は上述の実施形態にのみ限定されるものではなく種々変更を加え得ることは勿論である。
 例えば、本技術は以下のような構成もとることができる。
 (1)
 内部に配線を備え、凹部が設けられたパッケージと、
 上記パッケージに接合され、上記凹部を閉塞するシールガラスと、
 上記凹部と上記シールガラスにより形成された空間に収容された固体撮像素子と、
 上記空間に収容され、上記パッケージに配置されたシールドであって、上記配線において生じる磁力線の上記固体撮像素子への到達を防止するシールドと
 を具備する固体撮像装置。
 (2)
 上記(1)に記載の固体撮像装置であって、
 上記シールドは、上記固体撮像素子と上記パッケージの間に設けられている
 固体撮像装置。
 (3)
 上記(1)に記載の固体撮像装置であって、
 上記シールドは、上記固体撮像素子の周囲に設けられている
 固体撮像装置。
 (4)
 上記(1)又は(2)に記載の固体撮像装置であって、
 上記シールドは、第1のシールドと第2のシールドとを含み、
 上記第1のシールドと上記第2のシールドは、上記固体撮像素子と上記パッケージの間で、間隔を空けて配置されている
 固体撮像装置。
 (5)
 上記(1)から(4)のうちいずれか一つに記載の固体撮像装置であって、
 上記シールドは、磁性体である
 固体撮像装置。
 (6)
 上記(1)から(4)のうちいずれか一つに記載の固体撮像装置であって、
 上記シールドは、銅又は鉄からなる導電体である
 固体撮像装置。
 (7)
 上記(1)から(4)のうちいずれか一つに記載の固体撮像装置であって、
 上記シールドは、磁性体が含有されたダイボンディングフィルムである
 固体撮像装置。
 (8)
 上記(1)から(4)のうちいずれか一つに記載の固体撮像装置であって、
 上記シールドは、銅又は鉄からなる導電体が含有されたダイボンディングフィルムである
 固体撮像装置。
 (9)
 内部に配線を備え、凹部が設けられたパッケージと、上記パッケージに接合され、上記凹部を閉塞するシールガラスと、上記凹部と上記シールガラスにより形成された空間に収容された固体撮像素子と、上記空間に収容され、上記パッケージに配置されたシールドであって、上記配線において生じる磁力線の上記固体撮像素子への到達を防止するシールドとを有する固体撮像装置と、
 上記固体撮像素子に入射光を集光する撮像光学系と
 を具備する固体撮像機器。
 100・・・固体撮像装置
 10・・・パッケージ
 11・・・凹部
 12・・・パッケージ配線
 13・・・空間
 20・・・シールガラス
 30・・・固体撮像素子
 40・・・シールド
 M・・・・磁力線

Claims (9)

  1.  内部に配線を備え、凹部が設けられたパッケージと、
     前記パッケージに接合され、前記凹部を閉塞するシールガラスと、
     前記凹部と前記シールガラスにより形成された空間に収容された固体撮像素子と、
     前記空間に収容され、前記パッケージに配置されたシールドであって、前記配線において生じる磁力線の前記固体撮像素子への到達を防止するシールドと
     を具備する固体撮像装置。
  2.  請求項1に記載の固体撮像装置であって、
     前記シールドは、前記固体撮像素子と前記パッケージの間に設けられている
     固体撮像装置。
  3.  請求項1に記載の固体撮像装置であって、
     前記シールドは、前記固体撮像素子の周囲に設けられている
     固体撮像装置。
  4.  請求項1に記載の固体撮像装置であって、
     前記シールドは、第1のシールドと第2のシールドとを含み、
     前記第1のシールドと前記第2のシールドは、前記固体撮像素子と前記パッケージの間で間隔を空けて配置されている
     固体撮像装置。
  5.  請求項1に記載の固体撮像装置であって、
     前記シールドは、磁性体である
     固体撮像装置。
  6.  請求項1に記載の固体撮像装置であって、
     前記シールドは、銅又は鉄からなる導電体である
     固体撮像装置。
  7.  請求項1に記載の固体撮像素子であって、
     前記シールドは、磁性体が含有されたダイボンディングフィルムであり、前記固体撮像素子を前記パッケージに接着する
     固体撮像装置。
  8.  請求項1に記載の固体撮像装置であって、
     前記シールドは、銅又は鉄からなる導電体が含有されたダイボンディングフィルムであり、前記固体撮像素子を前記パッケージに接着する
     固体撮像装置。
  9.  内部に配線を備え、凹部が設けられたパッケージと、前記パッケージに接合され、前記凹部を閉塞するシールガラスと、前記凹部と前記シールガラスにより形成された空間に収容された固体撮像素子と、前記空間に収容され、前記パッケージに配置されたシールドであって、前記配線において生じる磁力線の前記固体撮像素子への到達を防止するシールドとを有する固体撮像装置と、
     前記固体撮像素子に入射光を集光する撮像光学系と
     を具備する固体撮像機器。
PCT/JP2016/004586 2015-11-12 2016-10-14 固体撮像装置及び固体撮像機器 WO2017081840A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680064291.8A CN108352389B (zh) 2015-11-12 2016-10-14 固态成像装置与固态成像设备
US15/772,584 US10506186B2 (en) 2015-11-12 2016-10-14 Solid-state imaging device and solid-state imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-222165 2015-11-12
JP2015222165 2015-11-12

Publications (1)

Publication Number Publication Date
WO2017081840A1 true WO2017081840A1 (ja) 2017-05-18

Family

ID=58696019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004586 WO2017081840A1 (ja) 2015-11-12 2016-10-14 固体撮像装置及び固体撮像機器

Country Status (3)

Country Link
US (1) US10506186B2 (ja)
CN (1) CN108352389B (ja)
WO (1) WO2017081840A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090219A1 (ja) * 2018-10-29 2020-05-07 ソニーセミコンダクタソリューションズ株式会社 撮像素子および撮像装置
WO2020241068A1 (ja) * 2019-05-30 2020-12-03 ソニーセミコンダクタソリューションズ株式会社 半導体パッケージ、および、半導体パッケージの製造方法
US12132063B2 (en) 2019-05-30 2024-10-29 Sony Semiconductor Solutions Corporation Semiconductor package and method for manufacturing semiconductor package

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032970A (ja) * 2003-07-11 2005-02-03 Mitsui Chemicals Inc 半導体素子接着用電磁波遮断シートおよび半導体装置
JP2005086100A (ja) * 2003-09-10 2005-03-31 Fuji Photo Film Co Ltd 固体撮像装置
JP2012009547A (ja) * 2010-06-23 2012-01-12 Sony Corp 固体撮像装置、電子機器
JP2012122058A (ja) * 2010-11-18 2012-06-28 Nitto Denko Corp ダイボンドフィルム、ダイシング・ダイボンドフィルム、ダイボンドフィルムの製造方法、及び、ダイボンドフィルムを有する半導体装置
JP2012124466A (ja) * 2010-11-18 2012-06-28 Nitto Denko Corp 半導体装置用接着フィルム、及び、半導体装置
JP2013021031A (ja) * 2011-07-07 2013-01-31 Sony Corp 固体撮像装置、電子機器
WO2013118501A1 (ja) * 2012-02-07 2013-08-15 株式会社ニコン 撮像ユニットおよび撮像装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4532782B2 (ja) * 2000-07-04 2010-08-25 キヤノン株式会社 放射線撮像装置及びシステム
JP2003035778A (ja) * 2001-07-19 2003-02-07 Canon Inc 光電変換装置および放射線撮像装置
JP2005147822A (ja) * 2003-11-14 2005-06-09 Canon Inc X線画像撮影装置
JP2005249658A (ja) * 2004-03-05 2005-09-15 Shimadzu Corp 光または放射線検出装置および光または放射線検出制御システム
JP4270455B2 (ja) * 2004-03-26 2009-06-03 富士フイルム株式会社 固体撮像装置
JP2009031140A (ja) * 2007-07-27 2009-02-12 Fujifilm Corp 放射線画像検出器
JP4876173B2 (ja) * 2008-01-25 2012-02-15 イビデン株式会社 多層配線板およびその製造方法
JP5344336B2 (ja) * 2008-02-27 2013-11-20 株式会社ザイキューブ 半導体装置
WO2009119261A1 (ja) * 2008-03-24 2009-10-01 京セラ株式会社 撮像モジュール
US20090243012A1 (en) * 2008-03-28 2009-10-01 Micron Technology, Inc. Electromagnetic interference shield structures for semiconductor components
JP4832500B2 (ja) * 2008-12-01 2011-12-07 シャープ株式会社 電子素子ウエハモジュールの製造方法および光学素子ウエハモジュールの製造方法
SG178475A1 (en) * 2009-08-17 2012-03-29 Panasonic Corp Infrared sensor
US8351219B2 (en) * 2009-09-03 2013-01-08 Visera Technologies Company Limited Electronic assembly for an image sensing device
JP2011142270A (ja) * 2010-01-08 2011-07-21 Toshiba Corp 撮像デバイス及び撮像モジュール
JP5356264B2 (ja) * 2010-01-18 2013-12-04 シャープ株式会社 カメラモジュールおよびその製造方法、電子情報機器
JP2012094720A (ja) * 2010-10-27 2012-05-17 Sony Corp 固体撮像装置、半導体装置、固体撮像装置の製造方法、半導体装置の製造方法、及び電子機器
JP2013041878A (ja) * 2011-08-11 2013-02-28 Sony Corp 撮像装置およびカメラモジュール
US20130083229A1 (en) * 2011-09-30 2013-04-04 Omnivision Technologies, Inc. Emi shield for camera module
JP2013174465A (ja) * 2012-02-23 2013-09-05 Canon Inc 放射線検出装置
US20140048955A1 (en) * 2012-08-14 2014-02-20 Bridge Semiconductor Corporation Semiconductor assembly board with back-to-back embedded semiconductor devices and built-in stoppers
JP6238525B2 (ja) 2013-01-31 2017-11-29 キヤノン株式会社 半導体パッケージおよび電子機器
JP2014187261A (ja) * 2013-03-25 2014-10-02 Toshiba Corp 固体撮像装置
JP6232789B2 (ja) * 2013-07-08 2017-11-22 株式会社ニコン 撮像ユニット及び撮像装置
JP6197632B2 (ja) * 2013-12-20 2017-09-20 株式会社村田製作所 撮像装置
KR102374110B1 (ko) * 2014-08-22 2022-03-14 삼성전자주식회사 쉴딩 구조를 갖는 이미지 센서
US10264188B2 (en) * 2015-09-30 2019-04-16 Apple Inc. Mobile zoom using multiple optical image stabilization cameras

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032970A (ja) * 2003-07-11 2005-02-03 Mitsui Chemicals Inc 半導体素子接着用電磁波遮断シートおよび半導体装置
JP2005086100A (ja) * 2003-09-10 2005-03-31 Fuji Photo Film Co Ltd 固体撮像装置
JP2012009547A (ja) * 2010-06-23 2012-01-12 Sony Corp 固体撮像装置、電子機器
JP2012122058A (ja) * 2010-11-18 2012-06-28 Nitto Denko Corp ダイボンドフィルム、ダイシング・ダイボンドフィルム、ダイボンドフィルムの製造方法、及び、ダイボンドフィルムを有する半導体装置
JP2012124466A (ja) * 2010-11-18 2012-06-28 Nitto Denko Corp 半導体装置用接着フィルム、及び、半導体装置
JP2013021031A (ja) * 2011-07-07 2013-01-31 Sony Corp 固体撮像装置、電子機器
WO2013118501A1 (ja) * 2012-02-07 2013-08-15 株式会社ニコン 撮像ユニットおよび撮像装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090219A1 (ja) * 2018-10-29 2020-05-07 ソニーセミコンダクタソリューションズ株式会社 撮像素子および撮像装置
WO2020241068A1 (ja) * 2019-05-30 2020-12-03 ソニーセミコンダクタソリューションズ株式会社 半導体パッケージ、および、半導体パッケージの製造方法
JP7561733B2 (ja) 2019-05-30 2024-10-04 ソニーセミコンダクタソリューションズ株式会社 半導体パッケージ、および、半導体パッケージの製造方法
US12132063B2 (en) 2019-05-30 2024-10-29 Sony Semiconductor Solutions Corporation Semiconductor package and method for manufacturing semiconductor package

Also Published As

Publication number Publication date
CN108352389A (zh) 2018-07-31
CN108352389B (zh) 2022-09-27
US10506186B2 (en) 2019-12-10
US20190098237A1 (en) 2019-03-28

Similar Documents

Publication Publication Date Title
US9587978B2 (en) Infrared sensor
KR100592368B1 (ko) 반도체 소자의 초박형 모듈 제조 방법
JP4702366B2 (ja) 赤外線センサ
JPS63308375A (ja) 固体撮像装置
WO2001065839A1 (fr) Petit module de prise d'images
CN102903726B (zh) 图像传感器的晶圆级封装方法
US20210366992A1 (en) Imaging device
JP2005348275A (ja) 撮像素子およびカメラモジュール
JP2008148222A (ja) 固体撮像装置とその製造方法
JP2010213034A (ja) 撮像装置
WO2017081840A1 (ja) 固体撮像装置及び固体撮像機器
WO2017094502A1 (ja) 固体撮像装置およびその製造方法、並びに電子機器
US10078007B2 (en) Infrared sensor
JP2005086100A (ja) 固体撮像装置
US9111826B2 (en) Image pickup device, image pickup module, and camera
JP5570163B2 (ja) 固体撮像装置
US20210105387A1 (en) Imaging device
US20210392253A1 (en) Imaging element and imaging apparatus
JP2010050391A (ja) 半導体装置及びそれを用いた電子機器
US20200351422A1 (en) Imager and imaging device
WO2006112122A1 (ja) 赤外線センサ
US12051707B2 (en) Imaging element unit and imaging device
JP2014229674A (ja) 固体撮像装置及び電子カメラ
JP2005285848A (ja) 固体撮像装置
KR101055549B1 (ko) 카메라 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16863807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16863807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP