WO2005115950A1 - 非対称ピレン誘導体及びそれを利用した有機エレクトロルミネッセンス素子 - Google Patents

非対称ピレン誘導体及びそれを利用した有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2005115950A1
WO2005115950A1 PCT/JP2005/008494 JP2005008494W WO2005115950A1 WO 2005115950 A1 WO2005115950 A1 WO 2005115950A1 JP 2005008494 W JP2005008494 W JP 2005008494W WO 2005115950 A1 WO2005115950 A1 WO 2005115950A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
pyrene
substituted
unsubstituted
asymmetric
Prior art date
Application number
PCT/JP2005/008494
Other languages
English (en)
French (fr)
Inventor
Mineyuki Kubota
Masakazu Funahashi
Chishio Hosokawa
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to EP05739101A priority Critical patent/EP1749809A4/en
Priority to JP2006519530A priority patent/JP4705914B2/ja
Priority to US11/282,582 priority patent/US7763761B2/en
Publication of WO2005115950A1 publication Critical patent/WO2005115950A1/ja
Priority to US12/795,216 priority patent/US8318995B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/38Polycyclic condensed hydrocarbons containing four rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/10Preparation of halogenated hydrocarbons by replacement by halogens of hydrogen atoms
    • C07C17/12Preparation of halogenated hydrocarbons by replacement by halogens of hydrogen atoms in the ring of aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/263Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/0805Compounds with Si-C or Si-Si linkages comprising only Si, C or H atoms
    • C07F7/0807Compounds with Si-C or Si-Si linkages comprising only Si, C or H atoms comprising Si as a ring atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • C07C2603/42Ortho- or ortho- and peri-condensed systems containing four condensed rings containing only six-membered rings
    • C07C2603/50Pyrenes; Hydrogenated pyrenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • H10K85/6565Oxadiazole compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Definitions

  • the present invention relates to an asymmetric pyrene derivative and an organic electroluminescent (EL) device using the same, and more particularly, to a long-life organic EL device having high luminous efficiency and an asymmetric pyrene derivative realizing the same. Things.
  • EL organic electroluminescent
  • An organic EL device is a self-luminous device that utilizes the principle that a fluorescent substance emits light by the recombination energy of holes injected from an anode and electrons injected from a cathode when an electric field is applied.
  • Eastman Kodak's CW Tang et al. Report on low-voltage driven organic EL devices using stacked devices (CW Tang, SA Vanslyke, Applied Physics Letters, 51, 913, 1987, etc.) Since then, research on organic EL devices using organic materials as constituent materials has been actively conducted. Tang et al. Used tris (8-hydroxyquinolinol aluminum) for the light-emitting layer and a triphenyldiamine derivative for the hole transport layer.
  • the advantages of the stacked structure include: increasing the efficiency of hole injection into the light-emitting layer; increasing the efficiency of exciton generation by blocking electrons injected from the cathode and recombining; And confining the excitons that have occurred.
  • the element structure of the organic EL element is a two-layer type including a hole transport (injection) layer and an electron transport / emission layer, or a hole transport (injection) layer, a light emitting layer, and an electron transport (injection) layer.
  • the three-layer type is well known.
  • the device structure and the forming method have been devised.
  • chelate complexes such as tris (8-quinolinolato) aluminum complex
  • light emitting materials such as coumarin derivatives, tetraphenylbutadiene derivatives, bisstyrylarylene derivatives, and oxadiazole derivatives
  • Patent Document 1 disclose devices using a symmetrical pyrene derivative as a light-emitting material
  • Patent Document 8 disclose devices using an asymmetric anthracene derivative.
  • Patent Document 1 JP-A-8-239655
  • Patent Document 2 Japanese Patent Application Laid-Open No. 7-138561
  • Patent Document 3 JP-A-3-200289
  • Patent Document 4 JP 2001-118682 A
  • Patent Document 5 JP-A-2002-63988
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2004-75567
  • Patent Document 7 Japanese Patent Application Laid-Open No. 2004-83481
  • Patent Document 8 International Publication WO04Z018587
  • the present invention has been made to solve the above problems, and has as its object to provide a long-life organic EL device having high luminous efficiency and a novel asymmetric pyrene derivative for realizing the same.
  • an asymmetric pyrene derivative represented by any one of (1) to (3) as a material for forming an organic thin film layer in an organic EL device can provide an organic EL device having high luminous efficiency and a long life. As a result, the present invention has been completed.
  • the present invention provides an asymmetric pyrene derivative represented by any of the following general formulas (1) to (3).
  • Ar and Ar are each a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms.
  • L and L are respectively a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthalene-group, a substituted or unsubstituted fluorenylene group, or a substituted or unsubstituted dibenzosilolylene group.
  • n is an integer from 1 to 4
  • s is an integer from 0 to 2
  • t is an integer from 0 to 4.
  • L or Ar binds to any of the 1 to 5 positions of pyrene, and L or Ar binds to any of the 6 to 10 positions of pyrene.
  • L or Ar binds to any of positions 2 to 10 of pyrene.
  • the present invention comprises one or more layers including at least a light emitting layer between the anode and the cathode
  • An object of the present invention is to provide an organic EL device in which an organic thin film layer is sandwiched, wherein the organic thin film layer contains at least one kind selected from the asymmetric pyrene derivatives singly or as a component of a mixture.
  • the organic EL device containing the asymmetric pyrene derivative of the present invention has high luminous efficiency and long life.
  • the asymmetric pyrene derivative of the present invention is represented by the following general formula (1).
  • Ar and Ar are each a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms.
  • aromatic group examples include phenyl, 1-naphthyl, 2-naphthyl, 1-anthryl, 2-anthryl, 9-anthryl, 9- (10-phenyl) anthryl, — (10 naphthyl-1 yl) anthryl group, 9 (10 naphthyl-2-yl) anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1 naphthase- 2-, 2-naphthacyl, 9-naphthacyl, 1-pyrroyl, 2-pyrroyl, 4-pyrroyl, 2 biphenyl-yl, 3-biphenyl-yl, 4-biphenyl- Ruyl, p-ferru 4-yl, p-ferru 3-yl, p-ferru 2-yl, m-tafer 4-yl, m-terru 3-yl group, m-
  • the aromatic group may be further substituted with a substituent, for example, an alkyl group (methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group) Group, n pentyl group, n-hexyl group, n-heptyl group, n-octyl group, hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 2-hydroxyisobutyl group, 1, 2 Dihydroxyethyl, 1,3-dihydroxyisopropyl, 2,3-dihydroxy-1-tert-butyl, 1,2,3 trihydroxypropyl, chloromethyl, 1-chloroethyl, 2-chloroethyl , 2-chloroisobutyl, 1,2-dichloroethyl, 1,3-dichloroisopropyl, 2,3-dichloro-
  • L and L are, respectively, a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthalene group, a substituted or unsubstituted fluorenylene group, or a substituted or unsubstituted dibenzosilo group.
  • a rylene group preferably a substituted or unsubstituted phenylene group or a substituted or unsubstituted fluorenylene group;
  • substituents examples include the same substituents as those described above for the aromatic group.
  • m is an integer of 0 to 2 (preferably 0 to 1)
  • n is an integer of 1 to 4 (preferably 1 to 2)
  • s is 0 to 2 (preferably 0 to 1).
  • Integer t is an integer of 0-4 (preferably 0-2).
  • L or Ar is bonded to any of the 1 to 5 positions of pyrene, and V or Ar is bonded to any of the 6 to 10 positions of pyrene.
  • Ar, Ar ′, L, L ′, m, s, and t are the same as described above, and specific examples, preferred specific examples, and substitution examples of Ar, Ar ′, L, and L ′ The same applies to examples of groups.
  • L or Ar is bonded to any of the 2 to 10 positions of pyrene.
  • asymmetric pyrene derivative of the present invention is preferably represented by the following general formula (3).
  • the asymmetric pyrene derivative of the present invention can be obtained by synthesizing a halogenated pyrene conjugate and an arylboronic acid compound, or an arylaryl compound and pyrenylboron oxide synthesized by a known method.
  • an asymmetric pyrene derivative represented by the above general formulas (1) to (3) and a precursor thereof can be obtained by a method such as Suzuki coupling reaction.
  • the asymmetric pyrene derivatives represented by the general formulas (1) to (3) can be obtained by appropriately performing a halogenation reaction, a boration reaction, and a Suzuki coupling reaction on the obtained precursor.
  • the reaction is usually carried out under normal pressure under an inert atmosphere of nitrogen, argon, helium or the like. If necessary, the reaction can also be carried out under pressurized conditions.
  • the reaction temperature is in the range of 15 to 300 ° C, particularly preferably 30 to 200 ° C.
  • reaction solvent examples include water, aromatic hydrocarbons such as benzene, toluene, and xylene; ethers such as 1,2-dimethoxyethane, getyl ether, methyl-t-butyl ether, tetrahydrofuran, and dioxane; pentane; hexane; Saturated hydrocarbons such as heptane, octane, cyclohexane, etc., dichloromethane, chloroform, carbon tetrachloride, halogens such as 1,2-dichloroethane, 1,1,1 trichloroethane, etc., acetonitrile, benzo-tolyl , Such as nitriles, such as ethyl acetate, methyl acetate, and butyl acetate, and amides, such as N, N dimethylformamide, N, N dimethylacetamide, and N-methylpyrrolidone.
  • toluene 1,2-dimethoxyethane, dioxane, and water are preferred.
  • the amount of the solvent to be used is 3 to 50 times by weight, particularly preferably 4 to 20 times by weight, relative to arylboronic acid and its derivative (or pyrenylboronic acid and its derivative).
  • Examples of the base used in the reaction include sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, sodium hydrogencarbonate, potassium hydrogencarbonate, magnesium carbonate, lithium carbonate, potassium fluoride, cesium fluoride, Cesium chloride, cesium bromide, cesium carbonate, potassium phosphate, methoxysodium, potassium t-butoxide, sodium t-butoxy, lithium t-butoxy, and the like are preferable, and sodium carbonate is preferable.
  • the use amount of these bases is usually 0.7 to 10 molar equivalents, preferably 0.9 to 6 molar equivalents to arylboronic acid and its derivative (or pyrenylboronic acid and its derivative).
  • Examples of the catalyst used in the reaction include tetrakis (triphenylphosphine) palladium, Dichlorobis (triphenylphosphine) palladium, dichloro [bis (diphenylphosphino) ethane] palladium, dichloro [bis (diphenylphosphino) propane] palladium, dichloro [bis (diphenylphosphino) butane] palladium, dichloro [bis] (Diphenylphosphino) phenol] palladium catalyst such as palladium, tetrakis (triphenylphosphine) -nickel, dichlorobis (triphenylphosphine) nickel, dichloro [bis (diphenylinolephosphino) ethane] nickel, Nickel catalysts such as dichloro [bis (diphenylphosphino) propane] nickel, dichloro [bis (diphenylenophosphino) butane
  • tetrakis g Hue - a le phosphine
  • the amount of the catalyst to be used is generally 0.001 to 1 molar equivalent, preferably 0.01 to 0.1 molar equivalent, based on the halogenated anthracene derivative.
  • the halogen in the halogenated pyrene compound and halogenated aryl compound include an iodine atom, a bromine atom and a chlorine atom, and are preferably an iodine atom and a bromine atom.
  • the halogenating agent in the halogenation reaction is not particularly limited, for example,
  • N-halogen succinimide is particularly preferably used.
  • the amount of the halogenating agent to be used is generally 0.8 to 10 molar equivalents, preferably 1 to 5 molar equivalents, relative to the substrate.
  • the reaction is usually performed in an inert solvent under an inert atmosphere such as nitrogen, argon, and helium.
  • an inert solvent for example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, dimethylsulfoxide, carbon tetrachloride, chlorobenzene, dichlorobenzene, nitrobenzene, tonolene, Examples thereof include xylene methinoreserosolv, ethyl ethyl solvent, water and the like, and preferred are N, N-dimethylformamide and N-methylpyrrolidone.
  • the amount of the solvent to be used is generally 3 to 50 times by weight, preferably 5 to 20 times by weight, relative to the substrate.
  • the reaction temperature is usually from 0 ° C to 200 ° C, preferably from 20 ° C to 120 ° C.
  • the boration reaction can be carried out by a known method (edited by Nippon Dani Gakkai, Experimental Chemistry Course, 4th edition, Vol. 24, pp. 61-90, J. Org. Chem., Vol. 60, 7508 (1995), etc.). It is possible.
  • the reaction is usually carried out in an inert atmosphere such as nitrogen, argon or helium.
  • An inert solvent is used as a reaction solvent.
  • Aromatic hydrocarbons can be used singly or as a mixed solvent, and are preferably getyl ether and toluene.
  • the amount of the solvent used is usually 3 to 50 times by weight, preferably 4 to 20 times by weight, relative to the halogenated pyridine compound (or the halogenated pyrenylyl compound).
  • alkyl metal reagents such as n-butylinolelithium, t-butylinolelithium, phenyllithium, and methyllithium, and amide bases such as lithium diisopropylamide and lithium bistrimethylsilylamide can be used. And preferably n-butyllithium.
  • the Grignard reagent can be prepared by reacting a halogenated arylyl conjugate (or a halogenated pyrenyl compound) with metallic magnesium.
  • trialkyl borate trimethyl borate, triethyl borate, triisopropyl borate, tributyl borate and the like can be used, and preferably trimethyl borate and triisopropyl borate.
  • the amounts of the lithiating agent and metallic magnesium used are usually 1 to 10 molar equivalents, preferably 1 to 2 molar equivalents, respectively, with respect to the halogenated arylyl conjugate (or the halogenated pyrenyl compound). Is usually 1 to 10 molar equivalents, preferably 1 to 5 molar equivalents, relative to the halogenated aryl compound (or halogenated pyrenyl compound).
  • the reaction temperature is between ⁇ 100 and 50 ° C., particularly preferably between ⁇ 75 and 10 ° C.
  • the asymmetric pyrene derivative of the present invention is preferably a light-emitting material for an organic EL device, and particularly preferably a host material for an organic EL device.
  • the organic EL device of the present invention is an organic electroluminescent device in which one or more organic thin film layers including at least a light emitting layer are sandwiched between an anode and a cathode, wherein the organic thin film layer has the general formula (1)
  • the light-emitting layer further contains an arylamine conjugate and Z or a styrylamine conjugate.
  • Ar 2 is a group selected from the group consisting of a phenyl group, a biphenyl group, a terphenyl group, a stilbene group, and a dimethylaryl group
  • Ar 3 and Ar 4 are each a hydrogen atom or A carbon number is an aromatic group having S6 to 20, and Ar 2 , Ar 3 and Ar 4 may be substituted, and p is an integer of 1 to 4. More preferably, at least one of Ar 3 and Ar 4 Is substituted with a styryl group.
  • examples of the aromatic group having 6 to 20 carbon atoms include a phenyl group, a naphthyl group, an anthral group, a phenanthryl group and a terphenyl group.
  • arylamine conjugate those represented by the following general formula (5) are preferred.
  • Ar to Ar 7 are a substituted or unsubstituted aryl group having 5 to 40 nuclear carbon atoms.
  • Q is an integer of 1 to 4.
  • examples of the aryl group having a nuclear carbon number of 5 to 40 include a phenyl group, a naphthyl group, a chrysyl group, a naphthacyl group, an anthral group, a phenanthryl group, and a pyrenyl group.
  • Preferred substituents of the aryl group include an alkyl group having 1 to 6 carbon atoms (ethyl group, methyl group, i-propyl group, n-propyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, Cyclo pliers Ethoxy group, methoxy group, i-propoxy group, n-propoxy group, s-butoxy group, t-butoxy group, pentoxy group, hexyloxy group , Cyclopentoxy, cyclohexyloxy, etc.), an aryl group having 5 to 40 nuclear atoms, an amino group substituted with an aryl group having 5 to 40 nuclear atoms, and an aryl group having 5 to 40 nuclear atoms.
  • Examples include an ester group, an ester group having an alkyl group having 1 to 6 carbon atoms, a cyano group, a nitro group, and a halogen atom
  • the force in which the configuration (8) is usually preferably used is not limited to these.
  • the asymmetric pyrene derivative of the present invention may be used in any of the above-mentioned organic layers, but is contained in the emission band or the hole transport band in these constituent elements.
  • the amount to be contained is preferably 30 to:
  • the LOO mol% power is also selected.
  • This organic EL element is usually manufactured on a light-transmitting substrate.
  • This light-transmitting substrate is a substrate that supports the organic EL element, and a light-transmitting substrate having a transmittance of 50% or more in the visible region of 400 to 700 nm is desired to be a smoother substrate. It is preferable to use it.
  • a glass plate, a synthetic resin plate, or the like is suitably used as such a light-transmitting substrate.
  • the glass plate include plates formed of soda-lime glass, norium-strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, norium borosilicate glass, quartz, and the like.
  • the synthetic resin plate include plates made of polycarbonate resin, acrylic resin, polyethylene terephthalate resin, polyether sulfide resin, polysulfone resin, and the like.
  • the anode plays a role of injecting holes into the hole transport layer or the light emitting layer, and it is effective that the anode has a work function of 4.5 eV or more.
  • Specific examples of the anode material used in the present invention include indium tin oxide alloy (ITO), oxidized tin (NESA), gold, silver, platinum, and copper.
  • ITO indium tin oxide alloy
  • NESA oxidized tin
  • gold gold
  • silver platinum
  • platinum platinum
  • copper copper
  • a material having a small work function is preferable for the purpose of injecting electrons into the electron transport layer or the light emitting layer.
  • the anode can be formed by forming a thin film from these electrode materials by a method such as an evaporation method or a sputtering method.
  • the transmittance of the anode with respect to the light emission be greater than 10%.
  • the sheet resistance of the anode is preferably several hundred ⁇ / square or less.
  • the thickness of the anode is selected depending on the material, usually in the range of 10 nm to 1 ⁇ m, preferably 10 to 200 nm.
  • the light emitting layer comprises:
  • Injection function a function that can inject holes from the anode or hole injection layer and apply electrons from the cathode or electron injection layer when applying an electric field.
  • the light emitting layer is particularly preferably a molecular deposition film.
  • the molecular deposition film is a thin film formed by deposition from a material compound in a gaseous state or a film formed by solidification from a material compound in a solution state or a liquid phase state.
  • the light-emitting layer can also be formed by forming a thin film.
  • the light-emitting layer may contain a known light-emitting material other than the light-emitting material comprising the asymmetric pyrene derivative of the present invention, if desired.
  • a light emitting layer containing another known light emitting material is laminated on the light emitting layer containing a material.
  • the hole injection / transport layer is a layer that assists hole injection into the light emitting layer and transports it to the light emitting region, and has a large hole mobility and an ionization energy of usually 5.5 eV or less. And small.
  • a material that transports holes to the light-emitting layer at a lower electric field strength is preferable for such a hole injection / transport layer, and furthermore, a hole mobility force, for example, when an electric field of 10 4 to 10 6 VZcm is applied, is small. even without what is 10- 4 cm 2 ZV 'seconds is preferred.
  • Examples of such a material include those commonly used as a charge transporting material for holes in addition to a photoconductive material, and those known in the art used for a hole injection layer of an organic EL device. Any one can be selected and used.
  • the above-mentioned materials can be used.
  • Porphyrin compounds (disclosed in JP-A-63-29556965, etc.), aromatic tertiary amine compounds and styrylamine compounds ( U.S. Pat.No. 4,127,412, JP-A-53-27033 No. 54-58445, No. 54-149634, No. 54-64299, No. 55-79450, No. 55-144250, No. 56-119132, No. 61-295558 Gazettes, JP-A-61-98353, JP-A-63-295695, and the like;), and in particular, aromatic tertiary amine compounds are preferably used.
  • NPD 4,4, -bis (N- (1-naphthyl) -N-phenylamino) Biphenyl
  • MTDATA tris
  • inorganic compounds such as p-type Si and p-type SiC can also be used as the material for the hole injection layer.
  • the hole injecting / transporting layer can be formed by subjecting the above-described compound to a thin film by a known method such as a vacuum evaporation method, a spin coating method, a casting method, and an LB method.
  • the thickness of the hole injection / transport layer is not particularly limited, but is usually 5 ⁇ to 5 / ⁇ .
  • the organic semiconductor layer is a layer that assists hole injection or electron injection into the light emitting layer, and preferably has a conductivity of 10 ′′ 10 SZcm or more.
  • thiophene-containing oligomers such as conductive oligomers such as arylamine-containing oligomers disclosed in JP-A-8-193191 and conductive dendrimers such as arylamine-containing dendrimers are used. Can be.
  • the electron injection layer 'transport layer is a layer that assists the injection of electrons into the light emitting layer and transports it to the light emitting region, and has a high electron mobility. It is a layer that has good adhesion to the cathode and has good material strength.
  • the electron transporting layer is suitably selected in a film thickness of several nm ⁇ number m, especially when thick film thickness, in order to avoid a voltage rise, 10 4 ⁇ 10 6 V / electron mobility when an electric field is applied in cm of at least 10- 5 cm 2 ZVS than It is preferably above.
  • a metal complex dioxaziazole derivative of 8-hydroxyquinoline or a derivative thereof is preferable.
  • the metal complex of 8-hydroxyquinoline or a derivative thereof include a metal chelate oxinoid conjugate containing a chelate of oxine (generally 8-quinolinol or 8-hydroxyquinoline), for example, tris (8-quinolinol) Aluminum can be used as the electron injection material.
  • examples of the oxadiazole derivative include an electron transfer compound represented by the following general formula.
  • Ar 1, Ar 2, Ar 3, Ar ", Ar °, Ar 9 each represent a substituted or unsubstituted Ariru group may each also being the same or different.
  • the Ar 4, Ar 7 and Ar 8 each represent a substituted or unsubstituted arylene group, which may be the same or different.
  • examples of the aryl group include a phenyl group, a biphenyl group, an anthral group, a perylenyl group and a pyrenyl group.
  • examples of the arylene group include a phenylene group, a naphthylene group, a biphenylene group, an anthracene group, a perylenylene group, and a pyrenylene group.
  • examples of the substituent include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and a cyano group.
  • the electron transfer conjugate is preferably a thin film-forming material.
  • a 1 to A 3 are each independently a nitrogen atom or a carbon atom.
  • Ar 1 is a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms or a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms
  • Ar 2 is a hydrogen atom, a substituted or unsubstituted An aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted alkyl group Is an unsubstituted alkoxy group having 1 to 20 carbon atoms or a divalent group thereof.
  • one of Ar 1 and Ar 2 is a substituted or unsubstituted fused ring group having 10 to 60 nuclear carbon atoms or a substituted or unsubstituted monohetero fused ring group having 3 to 60 nuclear carbon atoms. .
  • L 1 , L 2 and L are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroarylene group having 3 to 60 nuclear carbon atoms, or It is a substituted or unsubstituted fluorenylene group.
  • R is a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms Or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, n is an integer of 0 to 5, and when n is 2 or more, a plurality of Rs may be the same or different, and May be bonded to each other to form a carbocyclic aliphatic ring or a carbocyclic aromatic ring.
  • HAr is a nitrogen-containing heterocyclic ring having 3 to 40 carbon atoms which may have a substituent
  • L is a single bond, having 6 to 60 carbon atoms which may have a substituent.
  • Ariren group has a substituent!, it also, have a heteroarylene group or substituent to the 3 to 60 carbon atoms! /, even I! /, is a full Oreniren group
  • Ar 1 is Is a divalent aromatic hydrocarbon group having 6 to 60 carbon atoms which may have a substituent
  • Ar 2 is an aryl group having 6 to 60 carbon atoms which may have a substituent or A nitrogen-containing heterocyclic derivative having 3 to 60 carbon atoms and having a substituent.
  • X and Y each independently represent a saturated or unsaturated hydrocarbon having 1 to 6 carbon atoms
  • R independently represent a saturated or unsaturated hydrocarbon having 1 to 6 carbon atoms
  • R are each independently hydrogen, halogen 4
  • Atom substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, alkoxy group, aryloxy group, perfluoroalkyl group, perfluoroalkoxy group, amino group, alkylcarbyl group, arylcarbon -Alkyl group, alkoxycarboxy group, aryloxycarbonyl group, azo group, alkylcarboxy group, arylcarboxy group, alkoxycarboxy group, aryloxycarboxy group, sulfyl group, Sulfol group, sulfal group, silyl group, carbamoyl group, aryl group, heterocyclic group, alkenyl group, alkyl group, nitro group, formyl group, nitroso group, formyloxy group, isocyano group , Cyanate group, isocyanate group, thiosinate group, isothiosinate group or cyano group or substituted when adjacent Properly it has a
  • R to R and Z each independently represent a hydrogen atom, a saturated or unsaturated carbon atom
  • X represents a hydrogen group, an aromatic group, a heterocyclic group, a substituted amino group, a substituted boryl group, an alkoxy group or an aryloxy group, and X, Y and Z each independently represent a saturated or unsaturated carbon atom.
  • n 1
  • X, Y and R force S methyl
  • Q 1 and Q 2 each independently represent a ligand represented by the following general formula (G), and L represents a halogen atom, a substituted or unsubstituted alkyl group, A substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, OR 1 (R 1 is a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group Or a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group.) Or —O Ga Q 3 (Q 4 ) (Q 3 and Q 4 are the same as Q 1 and Q 2 ) Represents a ligand. ]
  • rings A 1 and A 2 have a 6-membered aryl ring structure which may have a substituent and are fused to each other.
  • This metal complex has a strong electron-injecting ability with a strong property as an n-type semiconductor. Furthermore, since the energy generated during complex formation is low, the bond between the metal and the ligand of the formed metal complex is strengthened, and the fluorescence quantum efficiency as a luminescent material is also increased.
  • substituents of the rings A 1 and A 2 forming the ligand of the general formula (G) include chlorine, bromine, iodine, a halogen atom of fluorine, a methyl group, an ethyl group, a propyl group, Butyl, sec butyl, tert butyl, pentyl, hexyl, heptyl, A substituted or unsubstituted alkyl group such as a octyl group, a stearyl group, a trichloromethyl group, a phenyl group, a naphthyl group, a 3-methylphenyl group, a 3-methoxyphenyl group, a 3-fluorophenyl group; Substituted or unsubstituted aryl groups such as 3-trichloromethylphenyl group, 3-trifluoromethylphenyl group, 3- trophenyl group, methoxy group, n-but
  • groups such as 3-trifluoromethylphenyloxy group Or unsubstituted groups such as phenyl, thiophenyl, p-trophenyl-thio, p-tert-butyl-fluoro-, 3-fluorophenyl-, pentafluoro-thio-, 3-trifluoromethyl-thio- Mono- or di-substituted amino groups such as arylthio group, cyano group, nitro group, amino group, methylamino group, ethylamino group, ethylamino group, acetylamino group, dipropylamino group, dibutylamino group, diphenylamino group, bis (acetoxmethyl) ) Amino group, bis (acetoxicetyl) ami Groups, bisacetoxypropyl) amino group, bis (acetoxybutyl) amino group and other acylamino groups, hydroxyl, siloxy, acyl,
  • a heterocyclic group such as a phenyl group. Further, the above substituents may be combined with each other to form a further 6-membered aryl ring or heterocyclic ring.
  • a preferred form of the organic EL device of the present invention is a device containing a reducing dopant in a region for transporting electrons or an interface region between the cathode and the organic layer.
  • a reducing dopant is defined as a substance that can reduce an electron transporting compound. Accordingly, various substances having a certain reducing property are used, for example, alkali metals, alkaline earth metals, rare earth metals, oxides of alkali metals, halides of alkali metals, and alkaline earth metals.
  • a metal oxide, a alkaline earth metal halide, a rare earth metal oxide or a rare earth metal halide, an alkali metal organic complex, an alkaline earth metal organic complex, and a rare earth metal organic complex At least one substance selected from the group can be suitably used.
  • preferable reducing dopants include Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV) and Cs (work function: 1).
  • 95 eV) force A group force of at least one selected alkali metal, Ca (work function: 2.9 eV;), Sr (work function: 2.0-2.5 eV), and Ba (work function: 2.
  • At least one alkaline earth metal selected from the group consisting of 52 eV) and a work function of 2.9 eV or less are particularly preferable.
  • more preferred reducing dopants are at least one alkali metal selected from the group consisting of K, Rb and Cs, more preferably Rb or Cs, and most preferably Cs .
  • a reducing dopant having a work function of 2.9 eV or less a combination of these two or more kinds of alkali metals is also preferable.
  • a combination containing Cs, for example, Cs and Na, Cs and K, Cs and A combination of Rb or Cs with Na and ⁇ is preferred.
  • an electron injection layer composed of an insulator or a semiconductor between a cathode and an organic layer May be further provided. At this time, current leakage can be effectively prevented, and the electron injection property can be improved.
  • an insulator it is preferable to use at least one metal compound selected from the group consisting of an alkali metal chalcogenide, an alkaline earth metal chalcogenide, an alkali metal halide and an alkaline earth metal halogenide. I like it. It is preferable that the electron injecting layer is composed of these alkali metal chalcogenides or the like, since the electron injecting property can be further improved.
  • preferred alkali metal chalcogenides include, for example, Li0, LiO, NaS, NaSe and NaO.
  • Preferred alkaline earth metal chalcogenides include, for example, CaO, BaO, Sr0, BeO, BaS, and CaSe.
  • Preferred alkali metal halides include, for example, LiF, NaF, KF, LiCl, KC1, and NaCl.
  • Preferred alkaline earth metal halides include, for example, CaF, BaF, SrF
  • fluorides such as MgF and BeF, and halides other than fluoride.
  • semiconductors constituting the electron transport layer include oxides containing at least one element of Ba, Ca, Sr, Yb, Al, Ga, In, Li, Na, Cd, Mg, Si, Ta, Sb, and Zn. , Nitride or oxynitride, etc., alone or in combination of two or more.
  • the inorganic compound constituting the electron transporting layer is a microcrystalline or amorphous insulating thin film. If the electron transport layer is composed of these insulating thin films, a more uniform thin film is formed, so that pixel defects such as dark spots can be reduced. Examples of such inorganic compounds include the above-described alkali metal chalcogenides, alkaline earth metal chalcogenides, halides of alkali metals, and halides of alkaline earth metals.
  • a cathode a metal, an alloy, an electrically conductive compound, or a mixture thereof having an electrode material having a small work function! / ⁇ (4 eV or less) is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium silver alloy, aluminum Z aluminum oxide, Al / Li O, Al / LiO, Al / LiF,
  • Lumidium Lithium alloy indium, rare earth metals, etc.
  • This cathode forms a thin film of these electrode materials by a method such as evaporation or sputtering. It can be manufactured from the following.
  • the transmittance of the cathode with respect to the light emission be greater than 10%.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / b or less, and the film thickness is usually ⁇ ! 11 ⁇ m, preferably 50-200 nm.
  • an electric field is applied to an ultra-thin film, so that pixel defects due to leaks and short circuits are likely to occur.
  • an insulating thin film layer may be inserted between the pair of electrodes.
  • Examples of the material used for the insulating layer include, for example, aluminum oxide, lithium fluoride, lithium oxide, fluorescein oxide, fluorescein acid, magnesium oxalate, magnesium fluorite, magnesium oxide, calcium sulfide, calcium fluoride, and the like.
  • Examples include aluminum nitride, titanium oxide, silicon oxide, germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, and vanadium oxide. These mixtures and laminates may be used.
  • an anode, a light-emitting layer, a hole injection layer if necessary, and an electron injection if necessary A layer may be formed, and finally a cathode may be formed.
  • an organic EL device can be manufactured in the reverse order from the cathode to the anode.
  • a thin film made of an anode material is formed on a suitable translucent substrate by a vapor deposition method or a sputtering method so as to have a thickness of 1 ⁇ m or less, preferably in a range of 10 to 200 nm.
  • a hole injection layer is provided on the anode.
  • the hole injection layer can be formed by a vacuum deposition method, a spin coating method, a casting method, an LB method, or the like, but as soon as a uniform film is obtained, pinholes are generated. It is preferable to form the film by a vacuum vapor deposition method such as a difficulty.
  • the deposition conditions vary depending on the compound used (the material of the hole injection layer), the crystal structure and the recombination structure of the target hole injection layer, etc.
  • a light emitting layer is provided on the hole injection layer.
  • This light emitting layer can also be formed by thinning the light emitting material using the light emitting material according to the present invention by a vacuum evaporation method, sputtering, spin coating method, casting method, or the like. As soon as it is obtained, pinholes are less likely to be generated.
  • the evaporation conditions vary depending on the compound to be used, but can be generally selected from the same condition range as the formation of the hole injection layer.
  • the thickness is preferably in the range of 10 to 40 nm.
  • an electron injection layer is provided on the light emitting layer. Also in this case, it is preferable to form the film by a vacuum evaporation method because it is necessary to obtain a uniform film like the hole injection layer and the light emitting layer.
  • the deposition conditions can be selected from the same condition ranges as for the hole injection layer and the light emitting layer.
  • an organic EL element can be obtained by laminating a cathode.
  • the cathode also has a metallic force, and can be formed by a vapor deposition method or sputtering.
  • a vacuum deposition method is preferred.
  • the production from the anode to the cathode is performed consistently by one evacuation.
  • the method for forming each layer of the organic EL device of the present invention is not particularly limited.
  • a conventionally known forming method such as a vacuum evaporation method and a spin coating method can be used.
  • the organic thin film layer containing the compound represented by the general formula (1) used in the organic EL device of the present invention may be formed by a vacuum evaporation method, a molecular beam evaporation method (MBE method) or a dipping method of a solution dissolved in a solvent, It can be formed by a known method such as a spin coating method, a casting method, a bar coating method, and a roll coating method.
  • each organic layer of the organic EL device of the present invention is not particularly limited, but is preferably in the range of several nm to 1 ⁇ m in order to improve defects such as pinholes and improve efficiency.
  • the target compound (AN-7) was identified (58% yield).
  • the target compound (AN-3) was identified.
  • the target compound (AN-19) was identified.
  • Synthesis Example 7 (Synthesis of Compound (AN-8)) 10 g of 2,7 Jordeau 9,9,1-dimethyl-9H-fluorene and 4.6 g of 1-naphthaleneboronic acid synthesized by a known method were dissolved in 150 ml of toluene. Further, 0.78 g of tetrakistriphenylphosphine palladium and 35 ml of 2M-sodium carbonate aqueous solution were added, and the mixture was replaced with argon. After heating under reflux for 8 hours, the mixture was allowed to cool, and an organic layer was extracted with toluene.
  • Example 1 (manufacture of organic EL device)
  • a 25 mm ⁇ 75 mm ⁇ 1.1 mm thick glass substrate with an ITO transparent electrode (manufactured by Geomatic) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, and then to UV ozone cleaning for 30 minutes.
  • the glass substrate with the transparent electrode lines after cleaning is mounted on a substrate holder of a vacuum evaporation apparatus, and first, the following N having a thickness of 60 nm is formed so as to cover the transparent electrodes on the surface on the side where the transparent electrode lines are formed.
  • N monobis (N, N, diphenyl 4-aminophenyl) N, N diphenyl—4, 4, diamino-1, 1, biphenyl film (hereinafter “TPD23 2 film”) was formed.
  • This TPD232 film functions as a hole injection layer.
  • the following N, N, ⁇ ', ⁇ , monotetra (4-biphenyl) -diaminobiphenylene layer (hereinafter referred to as “TBDB layer”) having a thickness of 20 nm was formed.
  • This film functions as a hole transport layer.
  • the compound AN-2 having a thickness of 40 nm was deposited as a host material to form a film.
  • Alq film having a thickness of lOnm was formed on this film. This functions as an electron injection layer. Thereafter, a reducing dopant Li (Li source: manufactured by SAES Getter Co.) and the following Alq were binary deposited to form an Alq: Li film (film thickness lOnm) as an electron injection layer (or cathode). Metal A1 was vapor-deposited on the Alq: Li film to form a metal cathode, thereby forming an organic EL device.
  • Li source manufactured by SAES Getter Co.
  • An organic EL device was produced in the same manner as in Example 1, except that the compounds shown in Table 1 were used instead of the compound AN-2 as the material for the light emitting layer.
  • the obtained device was subjected to a current-carrying test in the same manner as in Example 1, and the results of measuring the half-life at an initial luminance of 1 OOOcd / m 2 are shown in Table 1.
  • Example 1 the following compound an was used in place of compound AN-2 as a material for the light emitting layer.
  • An organic EL device was manufactured in the same manner except that 1 (Comparative Example 1), an-2 (Comparative Example 2), and an-3 (Comparative Example 3) were used.
  • the obtained device was subjected to a current-carrying test in the same manner as in Example 1, and the results of measuring the half-life at an initial luminance of 1 OOOcd / m 2 are shown in Table 1.
  • the organic EL element containing the asymmetric pyrene derivative of the present invention has high luminous efficiency and long life. Therefore, it is extremely useful as an organic EL element that is expected to be used for a long time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 特定構造の非対称ピレン誘導体、並びに、陽極と陰極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、前記有機薄膜層が前記非対称ピレン誘導体から選ばれる少なくとも1種類を単独もしくは混合物の成分として含有する有機エレクトロルミネッセンス素子を提供するものであり、発光効率が高く、長寿命な有機エレクトロルミネッセンス素子及びそれを実現する非対称ピレン誘導体を提供する。

Description

明 細 書
非対称ピレン誘導体及びそれを利用した有機エレクト口ルミネッセンス素 子
技術分野
[0001] 本発明は、非対称ピレン誘導体及びそれを利用した有機エレクト口ルミネッセンス( EL)素子に関し、さらに詳しくは、発光効率が高ぐ長寿命な有機 EL素子、及びそれ を実現する非対称ピレン誘導体に関するものである。
背景技術
[0002] 有機 EL素子は、電界を印加することより、陽極より注入された正孔と陰極より注入さ れた電子の再結合エネルギーにより蛍光性物質が発光する原理を利用した自発光 素子である。イーストマン 'コダック社の C. W. Tangらによる積層型素子による低電 圧駆動有機 EL素子の報告(C.W. Tang, S.A. Vanslyke,アプライドフィジックスレター ズ (Applied Physics Letters),51卷、 913頁、 1987年等)がなされて以来、有機材料 を構成材料とする有機 EL素子に関する研究が盛んに行われている。 Tangらは、トリ ス(8—ヒドロキシキノリノールアルミニウム)を発光層に、トリフエ-ルジァミン誘導体を 正孔輸送層に用いている。積層構造の利点としては、発光層への正孔の注入効率を 高めること、陰極より注入された電子をブロックして再結合により生成する励起子の生 成効率を高めること、発光層内で生成した励起子を閉じ込めること等が挙げられる。 この例のように有機 EL素子の素子構造としては、正孔輸送 (注入)層、電子輸送発 光層の 2層型、または正孔輸送 (注入)層、発光層、電子輸送 (注入)層の 3層型等が よく知られている。こうした積層型構造素子では注入された正孔と電子の再結合効率 を高めるため、素子構造や形成方法の工夫がなされている。
[0003] また、発光材料としてはトリス(8—キノリノラート)アルミニウム錯体等のキレート錯体 、クマリン誘導体、テトラフェニルブタジエン誘導体、ビススチリルァリーレン誘導体、 ォキサジァゾール誘導体等の発光材料が知られており、それらからは青色から赤色 までの可視領域の発光が得られることが報告されており、カラー表示素子の実現が 期待されている (例えば、特許文献 1、特許文献 2、特許文献 3等)。 また、発光材料として対称型ピレン誘導体を用いた素子が特許文献 4〜7に、非対 称アントラセン誘導体を用いた素子が特許文献 8に開示されている。これらの誘導体 は青色発光材料として用いられるが、素子寿命の改善が求められていた。また、酸ィ匕 安定性の低い誘導体もあったため、酸化されにくい誘導体の開発が望まれていた。
[0004] 特許文献 1 :特開平 8— 239655号公報
特許文献 2:特開平 7 - 138561号公報
特許文献 3:特開平 3 - 200289号公報
特許文献 4:特開 2001— 118682号公報
特許文献 5 :特開 2002— 63988号公報
特許文献 6:特開 2004— 75567号公報
特許文献 7:特開 2004— 83481号公報
特許文献 8:国際公開 WO04Z018587号公報
発明の開示
発明が解決しょうとする課題
[0005] 本発明は、前記の課題を解決するためなされたもので、発光効率が高ぐ長寿命な 有機 EL素子及びそれを実現する新規な非対称ピレン誘導体を提供することを目的 とする。
課題を解決するための手段
[0006] 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、下記一般式(
1)〜(3)の ヽずれかで表される非対称ピレン誘導体を有機 EL素子における有機薄 膜層の形成材料として用いると、発光効率が高ぐ寿命が長い有機 EL素子が得られ ることを見出し、本発明を完成するに至った。
[0007] すなわち、本発明は、下記一般式(1)〜(3)のいずれかで表される非対称ピレン誘 導体を提供するものである。
[化 1]
Figure imgf000004_0001
[式中、 Ar及び Ar,は、それぞれ置換もしくは無置換の核炭素数 6〜50の芳香族基 である。
L及び L,は、それぞれ置換もしくは無置換のフエ-レン基、置換もしくは無置換の ナフタレ-レン基、置換もしくは無置換のフルォレニレン基又は置換もしくは無置換 のジベンゾシロリレン基である。
mは 0〜2の整数、 nは 1〜4の整数、 sは 0〜2の整数、 tは 0〜4の整数である。 また、 L又は Arは、ピレンの 1〜5位のいずれかに結合し、 L,又は Ar,は、ピレンの 6〜10位のいずれかに結合する。
ただし、 n+tが偶数の時、 Ar, Ar' , L, L'は下記 (1)又は (2)を満たす。
(1) Ar≠Ar'及び Z又は L≠L' (ここで≠は、異なる構造の基であることを示す。 )
(2) Ar = Ar,かつ L = L,の時
(2-1) m≠s及び Z又は n≠t、又は
(2-2) m=sかつ n=tの時、
(2-2-1) L及び L'、又はピレン力 それぞれ Ar及び Ar,上の異なる結合位置に 結合している力、 (2-2-2) L及び L,、又はピレン力 Ar及び Ar,上の同じ結合位置で 結合している場合、 L及び L,又は Ar及び Ar,のピレンにおける置換位置が 1位と 6位 、又は 2位と 7位である場合はない。 ] [0009] [化 2]
Figure imgf000005_0001
[式中、 Ar、 Ar'、 L、 L'、 m、 s及び tは前記と同じである。
また、 L,又は Ar,は、ピレンの 2〜10位のいずれかに結合する。
ただし、 tが奇数の時、 Ar, Ar' , L, L'は下記 (1')又は (2')を満たす。
(l')Ar≠Ar'及び Z又は L≠L' (ここで≠は、異なる構造の基であることを示す。 )
(2')Ar=Ar,かつ L = L 'の時
(2-l')m≠s及び Z又は t≠l、又は
(2- 2')m=sかつ t= lの時、
(2-2-l')L及び L,、又はピレン力 それぞれ Ar及び Ar,上の異なる結合位置に 結合している力、(2-2-2')L及び L'、又はピレン力 S、 Ar及び Ar'上の同じ結合位置で 結合して 、る場合、 L,又は Ar,のピレンにおける置換位置が 6位である場合はな 、。
]
[0010] [化 3]
Figure imgf000005_0002
[式中、 Ar、 Ar'、 L、 L'、 m及び sは前記と同じである。 ]
また、本発明は、陽極と陰極間に少なくとも発光層を含む一層又は複数層からなる 有機薄膜層が挟持されている有機 EL素子において、前記有機薄膜層が前記非対 称ピレン誘導体から選ばれる少なくとも 1種類を単独もしくは混合物の成分として含 有する有機 EL素子を提供するものである。
発明の効果
[0012] 本発明の非対称ピレン誘導体を含有する有機 EL素子は、発光効率が高ぐ長寿 命である。
発明を実施するための最良の形態
[0013] 本発明の非対称ピレン誘導体は、下記一般式(1)で表されるものである。
[化 4]
Figure imgf000006_0001
[0014] 一般式(1)において、 Ar及び Ar,は、それぞれ置換もしくは無置換の核炭素数 6〜 50の芳香族基である。
この芳香族基の例としては、フエ-ル基、 1 ナフチル基、 2—ナフチル基、 1ーァ ントリル基、 2 アントリル基、 9 アントリル基、 9— (10—フエ-ル)アントリル基、 9— (10 ナフチルー 1 ィル)アントリル基、 9 (10 ナフチルー 2 ィル)アントリル 基、 1—フエナントリル基、 2—フエナントリル基、 3—フエナントリル基、 4—フエナントリ ル基、 9 フエナントリル基、 1 ナフタセ-ル基、 2 ナフタセ-ル基、 9 ナフタセ -ル基、 1ーピレ-ル基、 2 ピレ-ル基、 4ーピレ-ル基、 2 ビフヱ-ルイル基、 3 —ビフエ-ルイル基、 4—ビフエ-ルイル基、 p ターフェ-ルー 4—ィル基、 p ター フエ-ルー 3—ィル基、 p ターフェ-ルー 2—ィル基、 m—ターフェ-ルー 4—ィル 基、 m—ターフェ-ルー 3—ィル基、 m—ターフェ-ルー 2—ィル基、 o トリル基、 m トリル基、 ρ トリル基、 p—t—ブチルフエ-ル基、 3—メチルー 2 ナフチル基、 4 —メチル— 1 ナフチル基、 4—メチル— 1 アントリル基等が挙げられる。
これらの中でも好ましくは、フエニル基、 1—ナフチル基、 2 ナフチル基、 9— (10 —フエ-ル)アントリル基、 9— (10—ナフチル— 1—ィル)アントリル基、 9— (10—ナ フチル—2—ィル)アントリル基、 9—フエナントリル基、 1—ピレニル基、 2 ピレニル 基、 4 ピレ-ル基、 2 ビフエ-ルイル基、 3 ビフエ-ルイル基、 4 ビフエ-ルイ ル基、 o トリル基、 m—トリル基、 p トリル基、 p—t—ブチルフエ-ル基等が挙げら れる。
また、前記芳香族基は、さらに置換基で置換されていても良ぐ例えば、アルキル基 (メチル基、ェチル基、プロピル基、イソプロピル基、 n ブチル基、 s ブチル基、ィ ソブチル基、 t ブチル基、 n ペンチル基、 n—へキシル基、 n—へプチル基、 n— ォクチル基、ヒドロキシメチル基、 1ーヒドロキシェチル基、 2—ヒドロキシェチル基、 2 ーヒドロキシイソブチル基、 1, 2 ジヒドロキシェチル基、 1, 3 ジヒドロキシイソプロ ピル基、 2, 3 ジヒドロキシ一 t—ブチル基、 1, 2, 3 トリヒドロキシプロピル基、クロ ロメチル基、 1—クロ口ェチル基、 2—クロ口ェチル基、 2—クロ口イソブチル基、 1, 2 ージクロ口ェチル基、 1, 3 ジクロ口イソプロピル基、 2, 3 ジクロロー t—ブチル基、 1, 2, 3 トリクロ口プロピル基、ブロモメチル基、 1 ブロモェチル基、 2 ブロモェチ ル基、 2 ブロモイソブチル基、 1, 2 ジブロモェチル基、 1, 3 ジブロモイソプロピ ル基、 2, 3 ジブ口モー t ブチル基、 1, 2, 3 トリブロモプロピル基、ョードメチル 基、 1ーョードエチル基、 2—ョードエチル基、 2—ョードイソブチル基、 1, 2—ジョー ドエチル基、 1, 3 ジョードイソプロピル基、 2, 3 ジョードー t ブチル基、 1, 2, 3 —トリョードプロピル基、アミノメチル基、 1—アミノエチル基、 2—アミノエチル基、 2- ァミノイソブチル基、 1, 2 ジアミノエチル基、 1, 3 ジァミノイソプロピル基、 2, 3— ジァミノ— t—ブチル基、 1, 2, 3 トリァミノプロピル基、シァノメチル基、 1—シァノエ チル基、 2—シァノエチル基、 2—シァノイソブチル基、 1, 2—ジシァノエチル基、 1, 3 ジシァノイソプロピル基、 2, 3 ジシァノー t—ブチル基、 1, 2, 3 トリシアノプロ ピル基、ニトロメチル基、 1 -トロェチル基、 2— -トロェチル基、 2— -トロイソブチ ル基、 1, 2 ジ-トロェチル基、 1, 3 ジ-トロイソプロピル基、 2, 3 ジ-トロー t— ブチル基、 1, 2, 3 トリ-トロプロピル基、シクロプロピル基、シクロブチル基、シクロ ペンチル基、シクロへキシル基、 4ーメチルシクロへキシル基、 1ーァダマンチル基、 2 ーァダマンチル基、 1 ノルボル-ル基、 2 ノルボル-ル基等)、炭素数 1〜6のァ ノレコキシ基(エトキシ基、メトキシ基、 i プロポキシ基、 n プロポキシ基、 s ブトキシ 基、 t—ブトキシ基、ペントキシ基、へキシルォキシ基、シクロペントキシ基、シクロへキ シルォキシ基等)、核原子数 5〜40のァリール基、核原子数 5〜40のァリール基で 置換されたァミノ基、核原子数 5〜40のァリール基を有するエステル基、炭素数 1〜 6のアルキル基を有するエステル基、シァノ基、ニトロ基、ハロゲン原子等が挙げられ る。
一般式(1)において、 L及び L,は、それぞれ置換もしくは無置換のフエ-レン基、 置換もしくは無置換のナフタレ-レン基、置換もしくは無置換のフルォレニレン基又 は置換もしくは無置換のジベンゾシロリレン基であり、置換もしくは無置換のフエ-レ ン基又は置換もしくは無置換のフルォレニレン基が好まし 、。
また、この置換基としては、前記芳香族基で挙げたものと同様のものが挙げられる。 一般式(1)において、 mは 0〜2 (好ましくは 0〜1)の整数、 nは 1〜4 (好ましくは 1 〜2)の整数、 sは 0〜2 (好ましくは 0〜1)の整数、 tは 0〜4 (好ましくは 0〜2)の整数 である。
また、一般式(1)において、 L又は Arは、ピレンの 1〜5位のいずれかに結合し、 V 又は Ar,は、ピレンの 6〜10位のいずれかに結合する。
ただし、一般式(1)において、 n+tが偶数の時、 Ar, Ar' , L, Vは下記 (1)又は (2) を満たす。
(1) Ar≠Ar'及び Z又は L≠L' (ここで≠は、異なる構造の基であることを示す。 )
(2) Ar = Ar,かつ L = L,の時
(2-1) m≠s及び Z又は n≠t、又は
(2-2) m=sかつ n=tの時、
(2-2-1) L及び L'、又はピレン力 それぞれ Ar及び Ar,上の異なる結合位置に 結合している力、 (2-2-2) L及び L,、又はピレン力 Ar及び Ar,上の同じ結合位置で 結合している場合、 L及び L,又は Ar及び Ar,のピレンにおける置換位置が 1位と 6位 、又は 2位と 7位である場合はない。 [0017] また、本発明の非対称ピレン誘導体は、下記一般式 (2)で表されるものであっても よい。
[化 5]
Figure imgf000009_0001
[0018] 一般式(2)において、 Ar、 Ar'、 L、 L'、 m、 s及び tは前記と同じであり、 Ar、 Ar'、 L及び L'の具体例、好ましい具体例及び置換基の例も同様である。
また、一般式(2)において、 L,又は Ar,は、ピレンの 2〜 10位のいずれかに結合す る。
ただし、一般式(2)において、 tが奇数の時、 Ar, Ar' , L, Vは下記 (1')又は (2')を 満たす。
(l')Ar≠Ar,及び Ζ又は L≠L' (ここで≠は、異なる構造の基であることを示す。 ) (2')Ar=Ar,かつ L=L,の時
(2-l')m≠s及び Z又は t≠l、又は
(2- 2')m=sかつ t= lの時、
(2-2-l')L及び L'、又はピレン力 それぞれ Ar及び Ar,上の異なる結合位置に 結合している力、(2-2-2')L及び L,、又はピレン力 Ar及び Ar,上の同じ結合位置で 結合している場合、 L,又は Ar,のピレンにおける置換位置が 6位である場合はない。
[0019] さらに、本発明の非対称ピレン誘導体は、下記一般式(3)で表されるものであると 好ましい。
[化 6]
Figure imgf000010_0001
( 3 ) 一般式(3)において、 Ar、 Ar'、 L、 L'、 m及び sは前記と同じであり、 Ar、 Ar'、 L 及び L'の具体例、好ましい具体例及び置換基の例も同様である。
本発明における一般式(1)〜(3)で表される非対称ピレン誘導体の具体例を以下 に示すが、これら例示化合物に限定されるものではない。
[化 7]
Figure imgf000011_0001
[0021] [ィ匕 8]
Figure imgf000012_0001
Figure imgf000013_0001
室 §s〔
Figure imgf000014_0001
Figure imgf000014_0002
本発明の非対称ピレン誘導体の製造方法について説明する。
本発明の非対称ピレン誘導体は、公知の方法により合成したハロゲンィ匕ピレンィ匕合 物とァリールボロン酸化合物、又はハロゲン化ァリール化合物とピレニルボロン酸化 合物を出発原料として、鈴木カップリング反応等の方法により前記一般式(1)〜(3) で示される非対称ピレン誘導体、及びその前駆体を得ることができる。また、得られた 前駆体に対し、ハロゲン化反応 ·ホウ酸化反応 ·鈴木カップリング反応を適宜組合せ て行うことにより一般式(1)〜(3)で示される非対称ピレン誘導体を得ることができる。
[0025] 鈴木カップリング反応は、これまでに数多くの報告(Chem.Rev.,Vol.95,No.7,2457 ( 1995)等)がなされており、これらに記載の反応条件で実施することが出来る。
反応は、通常、常圧下、窒素、アルゴン、ヘリウム等の不活性雰囲気下で実施され る力 必要に応じて加圧条件下に実施することも出来る。反応温度は 15〜300°Cの 範囲であるが、特に好ましくは 30〜200°Cである。
反応溶媒としては、水、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、 1, 2 ージメトキシェタン、ジェチルエーテル、メチルー t ブチルエーテル、テトラヒドロフラ ン、ジォキサン等のエーテル類、ペンタン、へキサン、ヘプタン、オクタン、シクロへキ サン等の飽和炭化水素類、ジクロロメタン、クロ口ホルム、四塩化炭素、 1, 2—ジクロ ロェタン、 1, 1, 1 トリクロロェタンなどのハロゲン類、ァセトニトリル、ベンゾ-トリル 等の二トリル類、酢酸ェチル、酢酸メチル、酢酸ブチル等のエステル類、 N, N ジメ チルホルムアミド、 N, N ジメチルァセトアミド、 N—メチルピロリドン等のアミド類など を単一又は混合して使用することができる。これらの中で、好ましくは、トルエン、 1, 2 —ジメトキシェタン、ジォキサン、及び水である。溶媒の使用量はァリールボロン酸及 びその誘導体 (又は、ピレニルボロン酸及びその誘導体)に対して 3〜50重量倍、特 に好ましくは 4〜 20重量倍である。
反応に用いる塩基としては、例えば、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウ ム、水酸ィ匕カリウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸マグネシウム、、炭 酸リチウム、ふつ化カリウム、フッ化セシウム、塩化セシウム、臭化セシウム、炭酸セシ ゥム、リン酸カリウム、メトキシナトリウム、 t—ブトキシカリウム、 t—ブトキシナトリウム、 t ブトキシリチウム等が挙げられ、好ましくは炭酸ナトリウムである。これらの塩基の使 用量は、ァリールボロン酸及びその誘導体 (又は、ピレニルボロン酸及びその誘導体 )に対して、通常、 0. 7〜 10モル当量、好ましくは 0. 9〜6モル当量である。
[0026] 反応に用いる触媒としては、例えば、テトラキス(トリフエ-ルホスフィン)パラジウム、 ジクロロビス(トリフエ-ルホスフィン)パラジウム、ジクロロ [ビス(ジフエ-ルホスフイノ) ェタン]パラジウム、ジクロロ [ビス(ジフエ-ルホスフイノ)プロパン]パラジウム、ジクロ 口 [ビス(ジフエニルホスフイノ)ブタン]パラジウム、ジクロロ [ビス(ジフエ-ルホスフィ ノ)フエ口セン]パラジウム等のパラジウム触媒、テトラキス(トリフエ-ルホスフィン) -ッ ケル、ジクロロビス(トリフエ-ルホスフィン)ニッケル、ジクロロ [ビス(ジフエニノレホスフ イノ)ェタン]ニッケル、ジクロロ [ビス(ジフエ-ルホスフイノ)プロパン]ニッケル、ジクロ 口 [ビス(ジフエニノレホスフイノ)ブタン]ニッケル、ジクロロ [ビス(ジフエニノレホスフイノ) フエ口セン]ニッケル等のニッケル触媒等が挙げられ、好ましくはテトラキス(トリフエ- ルホスフィン)パラジウムである。これらの触媒の使用量はハロゲンィ匕アントラセン誘 導体に対して、通常 0. 001〜1モル当量、好ましくは 0. 01〜0. 1モル当量である。 ハロゲン化ピレン化合物、及びハロゲン化ァリール化合物のハロゲンとしてはヨウ素 原子、臭素原子、塩素原子等が挙げられ、好ましくはヨウ素原子、臭素原子である。 ハロゲン化反応におけるハロゲン化剤は特に限定されるものではないが、例えば、
N—ハロゲンィ匕コハク酸イミドが特に好適に用いられる。ハロゲン化剤の使用量は、 基質に対し通常 0. 8〜10モル当量、好ましくは 1〜5モル当量である。
反応は、通常、窒素、アルゴン、ヘリウム等の不活性雰囲気下、不活性溶媒中で実 施される。使用される不活性溶媒としては、例えば、 N, N—ジメチルホルムアミド、 N , N—ジメチルァセトアミド、 N—メチルピロリドン、ジメチルスルホキシド、四塩化炭素 、クロ口ベンゼン、ジクロロベンゼン、ニトロベンゼン、トノレェン、キシレンメチノレセロソ ルブ、ェチルセ口ソルブ、水等が挙げられ、好ましくは N, N—ジメチルホルムアミド、 N—メチルピロリドンである。溶媒の使用量は、基質に対し通常 3〜50重量倍、好ま しくは 5〜20重量倍である。反応温度は、通常 0°C〜200°Cで実施され、好ましくは 2 0°C〜120°Cである。
ホウ酸化反応は、既知の方法(日本ィ匕学会編 ·実験化学講座第 4版 24卷 61〜90 頁や J.Org.Chem.,Vol.60,7508 (1995)等)により実施することが可能である。例えば、 ノ、ロゲンィ匕ァリールイ匕合物(又はハロゲンィ匕ピレニルイ匕合物)のリチォ化もしくはダリ 二ヤール反応を経由する反応の場合、通常、窒素、アルゴン、ヘリウム等の不活性雰 囲気下で実施され、反応溶媒としては不活性溶媒が用いられる。例えば、ペンタン、 へキサン、ヘプタン、オクタン、シクロへキサン等の飽和炭化水素類、 1, 2—ジメトキ シェタン、ジェチルエーテル、メチルー t ブチルエーテル、テトラヒドロフラン、ジォ キサン等のエーテル類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類を単一 もしくは混合溶媒として用いることができ、好ましくはジェチルエーテル及びトルエン である。溶媒の使用量はハロゲンィ匕ァリールイ匕合物(又はハロゲンィ匕ピレニルイ匕合物 )に対し、通常 3〜50重量倍、好ましくは 4〜20重量倍である。
リチォ化剤としては、例えば、 n—ブチノレリチウム、 tーブチノレリチウム、フエ二ルリチ ゥム、メチルリチウム等のアルキル金属試薬、リチウムジイソプロピルアミド、リチウムビ ストリメチルシリルアミド等のアミド塩基を用いることができ、好ましくは n—ブチルリチ ゥムである。また、グリニャール試薬は、ハロゲン化ァリールイ匕合物(又はハロゲンィ匕 ピレニル化合物)と金属マグネシウムの反応により調製することができる。ホウ酸トリア ルキルとしてはホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリイソプロピル、ホウ酸トリ ブチル等を使用することができ、好ましくはホウ酸トリメチル、ホウ酸トリイソプロピルで ある。
リチォ化剤及び金属マグネシウムの使用量は、それぞれハロゲンィ匕ァリールイ匕合物 (又はハロゲン化ピレニル化合物)に対し、通常 1〜10モル当量、好ましくは 1〜2モ ル当量であり、ホウ酸トリアルキルの使用量は、ハロゲン化ァリール化合物(又はハロ ゲン化ピレニル化合物)に対し、通常 1〜 10モル当量、好ましくは 1〜5モル当量であ る。反応温度は— 100〜50°C特に好ましくは— 75〜10°Cである。
本発明の非対称ピレン誘導体は、有機 EL素子用発光材料であると好ましぐまた 有機 EL素子用ホスト材料であると特に好ま U、。
本発明の有機 EL素子は、陽極と陰極間に少なくとも発光層を含む一層又は複数 層からなる有機薄膜層が挟持されている有機エレクト口ルミネッセンス素子において、 前記有機薄膜層が前記一般式 (1)〜 (3)のいずれかに記載の非対称ピレン誘導体 カゝら選ばれる少なくとも 1種類を単独もしくは混合物の成分として含有する。
また、本発明の有機 EL素子は、前記発光層が、さらにァリールアミンィ匕合物及び Z 又はスチリルアミンィ匕合物を含有すると好ま U、。
スチリルァミン化合物としては、下記一般式 (4)で表されるものが好ま 、。 [化 11]
Figure imgf000018_0001
( 4 )
[0029] (式中、 Ar2は、フエ-ル基、ビフエ-ル基、ターフェ-ル基、スチルベン基、ジスチリ ルァリール基力も選ばれる基であり、 Ar3及び Ar4は、それぞれ水素原子又は炭素数 力 S6〜20の芳香族基であり、 Ar2、 Ar3及び Ar4は置換されていてもよい。 pは 1〜4 の整数である。さらに好ましくは Ar3又は Ar4の少なくとも一方はスチリル基で置換さ れている。)
ここで、炭素数が 6〜20の芳香族基としては、フエニル基、ナフチル基、アントラ- ル基、フエナンスリル基、ターフェ-ル基等が挙げられる。
[0030] ァリールアミンィ匕合物としては、下記一般式(5)で表されるものが好ま 、。
[化 12]
Figure imgf000018_0002
(式中、 Ar 〜 Ar7は、置換もしくは無置換の核炭素数 5〜40のァリール基である。 q は 1〜4の整数である。 )
[0031] ここで、核炭素数が 5〜40のァリール基としては、例えば、フエ-ル基、ナフチル基 、クリセ-ル基、ナフタセ-ル基、アントラ-ル基、フエナンスリル基、ピレ-ル基、コロ -ル基、ビフエ-ル基、ターフェ-ル基、ピロ一リル基、フラ-ル基、チォフエ-ル基、 ベンゾチオフ ニル基、ォキサジァゾリル基、ジフ 二ルアントラニル基、インドリル基 、カルバゾリル基、ピリジル基、ベンゾキノリル基、フルオランテュル基、ァセナフトフ ルオランテュル基、スチルベン基等が挙げられる。なお、このァリール基の好ましい 置換基としては、炭素数 1〜6のアルキル基 (ェチル基、メチル基、 i プロピル基、 n プロピル基、 s ブチル基、 t ブチル基、ペンチル基、へキシル基、シクロペンチ ル基、シクロへキシル基等)、炭素数 1〜6のアルコキシ基 (エトキシ基、メトキシ基、 i プロポキシ基、 n—プロポキシ基、 s—ブトキシ基、 t—ブトキシ基、ペントキシ基、へ キシルォキシ基、シクロペントキシ基、シクロへキシルォキシ基等)、核原子数 5〜40 のァリール基、核原子数 5〜40のァリール基で置換されたァミノ基、核原子数 5〜40 のァリール基を有するエステル基、炭素数 1〜6のアルキル基を有するエステル基、 シァノ基、ニトロ基、ハロゲン原子等が挙げられる。
以下、本発明の有機 EL素子の素子構成について説明する。
本発明の有機 EL素子の代表的な素子構成としては、
(1)陽極 Z発光層 Z陰極
(2)陽極 Z正孔注入層 Z発光層 Z陰極
(3)陽極 Z発光層 Z電子注入層 Z陰極
(4)陽極 Z正孔注入層 Z発光層 Z電子注入層 Z陰極
(5)陽極 Z有機半導体層 Z発光層 Z陰極
(6)陽極 Z有機半導体層 Z電子障壁層 Z発光層 Z陰極
(7)陽極 Z有機半導体層 Z発光層 Z付着改善層 Z陰極
(8)陽極 Z正孔注入層 Z正孔輸送層 Z発光層 Z電子注入層 Z陰極
(9)陽極 Z絶縁層 Z発光層 Z絶縁層 Z陰極
do)陽極 Z無機半導体層 Z絶縁層 Z発光層 Z絶縁層 Z陰極
(11)陽極 Z有機半導体層 Z絶縁層 Z発光層 Z絶縁層 Z陰極
(12)陽極 Z絶縁層 Z正孔注入層 Z正孔輸送層 Z発光層 Z絶縁層 Z陰極
(13)陽極 z絶縁層 Z正孔注入層 Z正孔輸送層 Z発光層 Z電子注入層 Z陰極 などの構造を挙げることができる。
これらの中で通常(8)の構成が好ましく用いられる力 これらに限定されるものでは ない。
また、本発明の有機 EL素子において、本発明の非対称ピレン誘導体は、上記のど の有機層に用いられてもよ 、が、これらの構成要素の中の発光帯域もしくは正孔輸 送帯域に含有されていることが好ましぐ含有させる量は 30〜: LOOモル%力も選ばれ る。 [0033] この有機 EL素子は、通常透光性の基板上に作製する。この透光性基板は有機 EL 素子を支持する基板であり、その透光性については、 400〜700nmの可視領域の 光の透過率が 50%以上であるものが望ましぐさらに平滑な基板を用いるのが好まし い。
このような透光性基板としては、例えば、ガラス板、合成樹脂板などが好適に用いら れる。ガラス板としては、特にソーダ石灰ガラス、ノリウム 'ストロンチウム含有ガラス、 鉛ガラス、アルミノケィ酸ガラス、ホウケィ酸ガラス、ノリウムホウケィ酸ガラス、石英な どで成形された板が挙げられる。また、合成樹脂 板としては、ポリカーボネート榭脂 、アクリル榭脂、ポリエチレンテレフタレート榭脂、ポリエーテルサルファイド榭脂、ポリ サルフォン榭脂などの板か挙げられる。
[0034] 次に、陽極は、正孔を正孔輸送層または発光層に注入する役割を担うものであり、 4. 5eV以上の仕事関数を有することが効果的である。本発明に用いられる陽極材料 の具体例としては、酸化インジウム錫合金 (ITO)、酸ィ匕錫 (NESA)、金、銀、白金、 銅等が適用できる。また陰極としては、電子輸送層または発光層に電子を注入する 目的で、仕事関数の小さい材料が好ましい。
陽極はこれらの電極物質を蒸着法やスパッタリング法等の方法で薄膜を形成させる こと〖こより作製することができる。
このように発光層からの発光を陽極から取り出す場合、陽極の発光に対する透過率 が 10%より大きくすることが好ましい。また陽極のシート抵抗は、数百 Ω Ζ口以下が 好ましい。陽極の膜厚は材料にもよる力 通常 10nm〜l μ m、好ましくは 10〜200n mの範囲で選択される。
[0035] 本発明の有機 EL素子においては、発光層は、
(i)注入機能;電界印加時に陽極又は正孔注入層より正孔を注入することができ、陰 極又は電子注入層より電子を注入することができる機能
(ii)輸送機能;注入した電荷 (電子と正孔)を電界の力で移動させる機能
(iii)発光機能;電子と正孔の再結合の場を提供し、これを発光につなげる機能 を有する。
この発光層を形成する方法としては、例えば蒸着法、スピンコート法、 LB法等の公 知の方法を適用することができる。発光層は、特に分子堆積膜であることが好ましい 。ここで分子堆積膜とは、気相状態の材料化合物から沈着され形成された薄膜や、 溶液状態または液相状態の材料化合物から固体化され形成された膜のことであり、 通常この分子堆積膜は、 LB法により形成された薄膜 (分子累積膜)とは凝集構造、 高次構造の相違や、それに起因する機能的な相違により区分することができる。 また特開昭 57— 51781号公報に開示されているように、榭脂等の結着剤と材料ィ匕 合物とを溶剤に溶力して溶液とした後、これをスピンコート法等により薄膜ィ匕すること によっても、発光層を形成することができる。
本発明の目的が損なわれない範囲で、所望により、発光層に、本発明の非対称ピ レン誘導体からなる発光材料以外の他の公知の発光材料を含有させてもよぐまた、 本発明の発光材料を含む発光層に、他の公知の発光材料を含む発光層を積層して ちょい。
[0036] 次に、正孔注入'輸送層は、発光層への正孔注入を助け、発光領域まで輸送する 層であって、正孔移動度が大きぐイオンィ匕エネルギーが通常 5. 5eV以下と小さい。 このような正孔注入 ·輸送層としてはより低い電界強度で正孔を発光層に輸送する材 料が好ましぐさらに正孔の移動度力 例えば 104〜106VZcmの電界印加時に、少 なくとも 10— 4cm2 ZV'秒であるものが好ましい。このような材料としては、従来、光導 伝材料にぉ ヽて正孔の電荷輸送材料として慣用されて ヽるものや、有機 EL素子の 正孔注入層に使用されて 、る公知のものの中から任意のものを選択して用いること ができる。
[0037] 具体例としては、例えば、トリァゾール誘導体 (米国特許 3, 112, 197号明細書等 参照)、ォキサジァゾール誘導体 (米国特許 3, 189, 447号明細書等参照)、イミダ ゾール誘導体 (特公昭 37— 16096号公報等参照)、ポリアリールアルカン誘導体( 米国特許 3, 615, 402号明細書、同第 3, 820, 989号明細書、同第 3, 542, 544 号明細書、特公昭 45— 555号公報、同 51— 10983号公報、特開昭 51— 93224号 公報、同 55— 17105号公報、同 56— 4148号公報、同 55— 108667号公報、同 55 — 156953号公報、同 56— 36656号公報等参照)、ピラゾリン誘導体およびピラゾ口 ン誘導体 (米国特許第 3, 180, 729号明細書、同第 4, 278, 746号明細書、特開 昭 55— 88064号公報、同 55— 88065号公報、同 49— 105537号公報、同 55— 5 1086号公報、同 56— 80051号公報、同 56— 88141号公報、同 57— 45545号公 報、同 54— 112637号公報、同 55— 74546号公報等参照)、フエ-レンジアミン誘 導体 (米国特許第 3, 615, 404号明細書、特公昭 51— 10105号公報、同 46— 371 2号公報、同 47— 25336号公報、特開昭 54— 53435号公報、同 54— 110536号 公報、同 54— 119925号公報等参照)、ァリールァミン誘導体 (米国特許第 3, 567, 450号明細書、同第 3, 180, 703号明細書、同第 3, 240, 597号明細書、同第 3, 658, 520号明細書、同第 4, 232, 103号明細書、同第 4, 175, 961号明細書、同 第 4, 012, 376号明細書、特公昭 49— 35702号公報、同 39— 27577号公報、特 開昭 55— 144250号公報、同 56— 119132号公報、同 56— 22437号公報、西独 特許第 1, 110, 518号明細書等参照)、ァミノ置換カルコン誘導体 (米国特許第 3, 5 26, 501号明細書等参照)、ォキサゾール誘導体 (米国特許第 3, 257, 203号明細 書等に開示のもの)、スチリルアントラセン誘導体 (特開昭 56— 46234号公報等参照 )、フルォレノン誘導体 (特開昭 54— 110837号公報等参照)、ヒドラゾン誘導体 (米 国特許第 3, 717, 462号明細書、特開昭 54— 59143号公報、同 55— 52063号公 報、同 55— 52064号公報、同 55— 46760号公報、同 55— 85495号公報、同 57— 11350号公報、同 57— 148749号公報、特開平 2— 311591号公報等参照)、スチ ルベン誘導体 (特開昭 61— 210363号公報、同第 61— 228451号公報、同 61— 1 4642号公報、同 61— 72255号公報、同 62— 47646号公報、同 62— 36674号公 報、同 62— 10652号公報、同 62— 30255号公報、同 60— 93455号公報、同 60— 94462号公報、同 60— 174749号公報、同 60— 175052号公報等参照;)、シラザ ン誘導体 (米国特許第 4, 950, 950号明細書)、ポリシラン系(特開平 2— 204996 号公報)、ァニリン系共重合体 (特開平 2— 282263号公報)、特開平 1 211399号 公報に開示されている導電性高分子オリゴマー (特にチォフェンオリゴマー)等を挙 げることがでさる。
正孔注入層の材料としては上記のものを使用することができる力 ポルフィリン化合 物 (特開昭 63— 2956965号公報等に開示のもの)、芳香族第三級ァミン化合物お よびスチリルアミン化合物(米国特許第 4, 127, 412号明細書、特開昭 53— 27033 号公報、同 54— 58445号公報、同 54— 149634号公報、同 54— 64299号公報、 同 55— 79450号公報、同 55— 144250号公報、同 56— 119132号公報、同 61— 295558号公報、同 61— 98353号公報、同 63— 295695号公報等参照;)、特に芳 香族第三級ァミン化合物を用いることが好ま 、。
また米国特許第 5, 061, 569号に記載されている 2個の縮合芳香族環を分子内に 有する、例えば 4, 4,—ビス(N— (1—ナフチル)—N—フエ-ルァミノ)ビフエ-ル( 以下 NPDと略記する)、また特開平 4— 308688号公報に記載されているトリフエ- ルァミンユニットが 3つスターバースト型に連結された 4, 4,, 4"—トリス(N— (3—メ チルフエ-ル)—N—フエ-ルァミノ)トリフエ-ルァミン(以下 MTDATAと略記する) 等を挙げることができる。
[0038] また、発光層の材料として示した前述の非対称ピレン誘導体の他、 p型 Si、 p型 SiC 等の無機化合物も正孔注入層の材料として使用することができる。
正孔注入、輸送層は上述した化合物を、例えば真空蒸着法、スピンコート法、キヤ スト法、 LB法等の公知の方法により薄膜ィ匕することにより形成することができる。正孔 注入、輸送層としての膜厚は特に制限はないが、通常は 5ηπι〜5 /ζ πιである。
[0039] また、有機半導体層は発光層への正孔注入または電子注入を助ける層であって、 10"10 SZcm以上の導電率を有するものが好適である。このような有機半導体層の材 料としては、含チオフヱンオリゴマーゃ特開平 8— 193191号公報に開示してある含 ァリールァミンオリゴマー等の導電性オリゴマー、含ァリールァミンデンドリマー等の 導電性デンドリマー等を用いることができる。
[0040] 次に、電子注入層'輸送層は、発光層への電子の注入を助け、発光領域まで輸送 する層であって、電子移動度が大きぐまた付着改善層は、この電子注入層の中で 特に陰極との付着が良い材料力もなる層である。
また、有機 EL素子は発光した光が電極 (この場合は陰極)により反射するため、直 接陽極から取り出される発光と、電極による反射を経由して取り出される発光とが干 渉することが知られている。この干渉効果を効率的に利用するため、電子輸送層は 数 nm〜数 mの膜厚で適宜選ばれるが、特に膜厚が厚いとき、電圧上昇を避ける ために、 104〜 106 V/cmの電界印加時に電子移動度が少なくとも 10— 5cm2 ZVs以 上であることが好ましい。
電子注入層に用いられる材料としては、 8—ヒドロキシキノリンまたはその誘導体の 金属錯体ゃォキサジァゾール誘導体が好適である。上記 8—ヒドロキシキノリンまたは その誘導体の金属錯体の具体例としては、ォキシン (一般に 8—キノリノール又は 8— ヒドロキシキノリン)のキレートを含む金属キレートォキシノイドィ匕合物、例えばトリス(8 —キノリノール)アルミニウムを電子注入材料として用いることができる。
[0041] 一方、ォキサジァゾール誘導体としては、以下の一般式で表される電子伝達化合 物が挙げられる。
[化 13]
Figure imgf000024_0001
(式中、 Ar1 , Ar2 , Ar3 , Ar" , Ar° , Ar9はそれぞれ置換または無置換のァリール基 を示し、それぞれ互いに同一であっても異なっていてもよい。また Ar4 , Ar7 , Ar8は 置換または無置換のァリーレン基を示し、それぞれ同一であっても異なっていてもよ い)
ここでァリール基としてはフエ-ル基、ビフエ-ル基、アントラ-ル基、ペリレニル基、 ピレニル基が挙げられる。また、ァリーレン基としてはフエ-レン基、ナフチレン基、ビ フエ-レン基、アントラ-レン基、ペリレニレン基、ピレニレン基などが挙げられる。また 、置換基としては炭素数 1〜10のアルキル基、炭素数 1〜10のアルコキシ基または シァノ基等が挙げられる。この電子伝達ィ匕合物は薄膜形成性のものが好ま 、。
[0042] 上記電子伝達性ィ匕合物の具体例としては下記のものを挙げることができる。
[化 14]
Figure imgf000025_0001
さらに、電子注入層及び電子輸送層に用いられる材料として、下記一般式 (A)〜( E)で表されるものち用いることができる。
[化 15]
Figure imgf000025_0002
(一般式 (A)及び (B)中、 A1〜A3は、それぞれ独立に、窒素原子又は炭素原子で ある。
Ar1は、置換もしくは無置換の核炭素数 6〜60のァリール基、又は置換もしくは無 置換の核炭素数 3〜60のへテロアリール基であり、 Ar2は、水素原子、置換もしくは 無置換の核炭素数 6〜60のァリール基、置換もしくは無置換の核炭素数 3〜60のへ テロアリール基、置換もしくは無置換の炭素数 1〜20のアルキル基、又は置換もしく は無置換の炭素数 1〜20のアルコキシ基、あるいはこれらの 2価の基である。ただし 、 Ar1及び Ar2のいずれか一方は、置換もしくは無置換の核炭素数 10〜60の縮合 環基、又は置換もしくは無置換の核炭素数 3〜60のモノへテロ縮合環基である。
L1、 L2及び Lは、それぞれ独立に、単結合、置換もしくは無置換の核炭素数 6〜6 0のァリーレン基、置換もしくは無置換の核炭素数 3〜60のへテロアリーレン基、又は 置換もしくは無置換のフルォレニレン基である。
Rは、水素原子、置換もしくは無置換の核炭素数 6〜60のァリール基、置換もしくは 無置換の核炭素数 3〜60のへテロアリール基、置換もしくは無置換の炭素数 1〜20 のアルキル基、又は置換もしくは無置換の炭素数 1〜20のアルコキシ基であり、 nは 0〜5の整数であり、 nが 2以上の場合、複数の Rは同一でも異なっていてもよぐまた 、隣接する複数の R基同士で結合して、炭素環式脂肪族環又は炭素環式芳香族環 を形成していてもよい。)で表される含窒素複素環誘導体。
[0044] HAr-L-Ar'-Ar2 (C)
(式中、 HArは、置換基を有していてもよい炭素数 3〜40の含窒素複素環であり、 L は、単結合、置換基を有していてもよい炭素数 6〜60のァリーレン基、置換基を有し て!、てもよ 、炭素数 3〜60のへテロアリーレン基又は置換基を有して!/、てもよ!/、フル ォレニレン基であり、 Ar1は、置換基を有していてもよい炭素数 6〜60の 2価の芳香族 炭化水素基であり、 Ar2は、置換基を有していてもよい炭素数 6〜60のァリール基又 は置換基を有して 、てもよ 、炭素数 3〜60のへテロアリール基である。 )で表される 含窒素複素環誘導体。
[0045] [化 16]
Figure imgf000026_0001
[0046] (式中、 X及び Yは、それぞれ独立に炭素数 1〜6の飽和若しくは不飽和の炭化水素 基、アルコキシ基、ァルケ-ルォキシ基、アルキ-ルォキシ基、ヒドロキシ基、置換若 しくは無置換のァリール基、置換若しくは無置換のへテロ環又は Xと Yが結合して飽 和又は不飽和の環を形成した構造であり、 R
1〜R は、それぞれ独立に水素、ハロゲ 4
ン原子、置換もしくは無置換の炭素数 1から 6までのアルキル基、アルコキシ基、ァリ ールォキシ基、パーフルォロアルキル基、パーフルォロアルコキシ基、アミノ基、アル キルカルボ-ル基、ァリールカルボ-ル基、アルコキシカルボ-ル基、ァリールォキ シカルボニル基、ァゾ基、アルキルカルボ-ルォキシ基、ァリールカルボ-ルォキシ 基、アルコキシカルボ-ルォキシ基、ァリールォキシカルボ-ルォキシ基、スルフィ- ル基、スルフォ-ル基、スルファ-ル基、シリル基、力ルバモイル基、ァリール基、へ テロ環基、ァルケ-ル基、アルキ-ル基、ニトロ基、ホルミル基、ニトロソ基、ホルミル ォキシ基、イソシァノ基、シァネート基、イソシァネート基、チオシァネート基、イソチォ シァネート基もしくはシァノ基又は隣接した場合には置換若しくは無置換の環が縮合 した構造である。 )で表されるシラシクロペンタジェン誘導体。
[0047] [化 17]
Figure imgf000027_0001
( E )
[0048] (式中、 R〜R及び Z は、それぞれ独立に、水素原子、飽和もしくは不飽和の炭化
1 8 2
水素基、芳香族基、ヘテロ環基、置換アミノ基、置換ボリル基、アルコキシ基又はァリ 一ルォキシ基を示し、 X、 Y及び Z は、それぞれ独立に、飽和もしくは不飽和の炭化
1
水素基、芳香族基、ヘテロ環基、置換アミノ基、アルコキシ基またはァリールォキシ基 を示し、 Z と Zの置換基は相互に結合して縮合環を形成してもよぐ nは 1
1 2 〜3の整数 を示し、 nが 2以上の場合、 Z は異なってもよい。但し、 nが 1、 X、 Y及び R力 Sメチル
1 2 基であって、 R力 水素原子又は置換ボリル基の場合、及び nが 3で Z 力 Sメチル基の 場合を含まない。)で表されるボラン誘導体。
[0049] [化 18]
Figure imgf000028_0001
[0050] [式中、 Q1及び Q2は、それぞれ独立に、下記一般式 (G)で示される配位子を表し、 Lは、ハロゲン原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロ アルキル基、置換もしくは無置換のァリール基、置換もしくは無置換の複素環基、 OR1 (R1は、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシ クロアルキル基、置換もしくは無置換のァリール基、置換もしくは無置換の複素環基 である。)または— O Ga Q3 (Q4 ) (Q3及び Q4は、 Q1及び Q2と同じ)で示される 配位子を表す。 ]
[0051] [化 19]
Figure imgf000028_0002
[式中、環 A1および A2は、置換基を有してよい互いに縮合した 6員ァリール環構造 である。 ]
[0052] この金属錯体は、 n型半導体としての性質が強ぐ電子注入能力が大きい。さらに は、錯体形成時の生成エネルギーも低いために、形成した金属錯体の金属と配位子 との結合性も強固になり、発光材料としての蛍光量子効率も大きくなつている。 一般式 (G)の配位子を形成する環 A1及び A2の置換基の具体的な例を挙げると、 塩素、臭素、ヨウ素、フッ素のハロゲン原子、メチル基、ェチル基、プロピル基、プチ ル基、 sec ブチル基、 tert ブチル基、ペンチル基、へキシル基、ヘプチル基、ォ クチル基、ステアリル基、トリクロロメチル基等の置換もしくは無置換のアルキル基、フ ェ-ル基、ナフチル基、 3—メチルフエ-ル基、 3—メトキシフエ-ル基、 3—フルォロ フエ-ル基、 3—トリクロロメチルフヱ-ル基、 3—トリフルォロメチルフヱ-ル基、 3— - トロフエ-ル基等の置換もしくは無置換のァリール基、メトキシ基、 n—ブトキシ基、 ter t—ブトキシ基、トリクロロメトキシ基、トリフルォロエトキシ基、ペンタフルォロプロポキ シ基、 2, 2, 3, 3—テ卜ラフルォロプロポキシ基、 1, 1, 1, 3, 3, 3 へキサフルォロ 2 プロポキシ基、 6 (パーフルォロェチル)へキシルォキシ基等の置換もしくは 無置換のアルコキシ基、フエノキシ基、 p -トロフエノキシ基、 p— tert ブチルフエ ノキシ基、 3—フルオロフエノキシ基、ペンタフルォロフエ-ル基、 3—トリフルォロメチ ルフエノキシ基等の置換もしくは無置換のァリールォキシ基、メチルチオ基、ェチル チォ基、 tert—ブチルチオ基、へキシルチオ基、ォクチルチオ基、トリフルォロメチル チォ基等の置換もしくは無置換のアルキルチオ基、フエ二ルチオ基、 p -トロフエ- ルチオ基、 ptert—ブチルフヱ-ルチオ基、 3—フルオロフヱ-ルチオ基、ペンタフル オロフェ-ルチオ基、 3—トリフルォロメチルフエ-ルチオ基等の置換もしくは無置換 のァリールチオ基、シァノ基、ニトロ基、アミノ基、メチルァミノ基、ジェチルァミノ基、 ェチルァミノ基、ジェチルァミノ基、ジプロピルアミノ基、ジブチルァミノ基、ジフエ-ル アミノ基等のモノまたはジ置換アミノ基、ビス(ァセトキシメチル)アミノ基、ビス(ァセト キシェチル)アミノ基、ビスァセトキシプロピル)アミノ基、ビス(ァセトキシブチル)ァミノ 基等のァシルァミノ基、水酸基、シロキシ基、ァシル基、メチルカルバモイル基、ジメ チルカルバモイル基、ェチルカルバモイル基、ジェチルカルバモイル基、プロイピル 力ルバモイル基、ブチルカルバモイル基、フエ-ルカルバモイル基等の力ルバモイル 基、カルボン酸基、スルフォン酸基、イミド基、シクロペンタン基、シクロへキシル基等 のシクロアルキル基、フ -ル基、ナフチル基、ビフヱ-ル基、アントラ-ル基、フエナ ントリル基、フルォレニル基、ピレニル基等のァリール基、ピリジ-ル基、ビラジニル基 、ピリミジニル基、ピリダジニル基、トリアジ-ル基、インドリニル基、キノリニル基、ァク リジニル基、ピロリジ -ル基、ジォキサ-ル基、ピベリジ-ル基、モルフオリジ-ル基、 ピペラジ-ル基、トリアチュル基、カルバゾリル基、フラ-ル基、チオフヱ-ル基、ォキ サゾリル基、ォキサジァゾリル基、ベンゾォキサゾリル基、チアゾリル基、チアジアゾリ ル基、ベンゾチアゾリル基、トリァゾリル基、イミダゾリル基、ベンゾイミダゾリル基、プラ
-ル基等の複素環基等がある。また、以上の置換基同士が結合してさらなる 6員ァリ ール環もしくは複素環を形成しても良い。
[0053] 本発明の有機 EL素子の好ま 、形態に、電子を輸送する領域または陰極と有機 層の界面領域に、還元性ドーパントを含有する素子がある。ここで、還元性ドーパント とは、電子輸送性化合物を還元ができる物質と定義される。したがって、一定の還元 性を有するものであれば、様々なものが用いられ、例えば、アルカリ金属、アルカリ土 類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲンィ匕物、アル力 リ土類金属の酸化物、アルカリ土類金属のハロゲンィ匕物、希土類金属の酸化物また は希土類金属のハロゲンィ匕物、アルカリ金属の有機錯体、アルカリ土類金属の有機 錯体、希土類金属の有機錯体からなる群から選択される少なくとも一つの物質を好 適に使用することができる。
また、より具体的に、好ましい還元性ドーパントとしては、 Na (仕事関数: 2. 36eV) 、K (仕事関数: 2. 28eV)、Rb (仕事関数: 2. 16eV)および Cs (仕事関数: 1. 95eV )力 なる群力 選択される少なくとも一つのアルカリ金属や、 Ca (仕事関数: 2. 9eV ;)、 Sr (仕事関数: 2. 0〜2. 5eV)、および Ba (仕事関数: 2. 52eV)からなる群から 選択される少なくとも一つのアルカリ土類金属が挙げられる仕事関数が 2. 9eV以下 のものが特に好ましい。これらのうち、より好ましい還元性ドーパントは、 K、 Rbおよび Csからなる群力 選択される少なくとも一つのアルカリ金属であり、さらに好ましくは、 Rbまたは Csであり、最も好ましのは、 Csである。これらのアルカリ金属は、特に還元 能力が高ぐ電子注入域への比較的少量の添加により、有機 EL素子における発光 輝度の向上や長寿命化が図られる。また、仕事関数が 2. 9eV以下の還元性ドーパ ントとして、これら 2種以上のアルカリ金属の組合わせも好ましぐ特に、 Csを含んだ 組み合わせ、例えば、 Csと Na、 Csと K、 Csと Rbあるいは Csと Naと Κとの組み合わせ であることが好ましい。 Csを組み合わせて含むことにより、還元能力を効率的に発揮 することができ、電子注入域への添加により、有機 EL素子における発光輝度の向上 や長寿命化が図られる。
[0054] 本発明においては陰極と有機層の間に絶縁体や半導体で構成される電子注入層 をさらに設けても良い。この時、電流のリークを有効に防止して、電子注入性を向上さ せることができる。このような絶縁体としては、アルカリ金属カルコゲナイド、アルカリ土 類金属カルコゲナイド、アルカリ金属のハロゲン化物およびアルカリ土類金属のハロ ゲンィ匕物からなる群力 選択される少なくとも一つの金属化合物を使用するのが好ま しい。電子注入層がこれらのアルカリ金属カルコゲナイド等で構成されていれば、電 子注入性をさらに向上させることができる点で好ましい。具体的に、好ましいアルカリ 金属カルコゲナイドとしては、例えば、 Li 0、 LiO、 Na S、 Na Seおよび NaOが挙
2 2 2
げられ、好ましいアルカリ土類金属カルコゲナイドとしては、例えば、 CaO、 BaO、 Sr 0、 BeO、 BaS、および CaSeが挙げられる。また、好ましいアルカリ金属のハロゲン 化物としては、例えば、 LiF、 NaF、 KF、 LiCl、 KC1および NaCl等が挙げられる。ま た、好ましいアルカリ土類金属のハロゲン化物としては、例えば、 CaF、 BaF 、 SrF
2 2 2
、MgFおよび BeF といったフッ化物や、フッ化物以外のハロゲン化物が挙げられ
2 2
る。
また、電子輸送層を構成する半導体としては、 Ba、 Ca、 Sr、 Yb、 Al、 Ga、 In、 Li、 Na、 Cd、 Mg、 Si、 Ta、 Sbおよび Znの少なくとも一つの元素を含む酸化物、窒化物 または酸ィ匕窒化物等の一種単独または二種以上の組み合わせが挙げられる。また、 電子輸送層を構成する無機化合物が、微結晶または非晶質の絶縁性薄膜であるこ とが好ましい。電子輸送層がこれらの絶縁性薄膜で構成されていれば、より均質な薄 膜が形成されるために、ダークスポット等の画素欠陥を減少させることができる。なお 、このような無機化合物としては、上述したアルカリ金属カルコゲナイド、アルカリ土類 金属カルコゲナイド、アルカリ金属のハロゲン化物およびアルカリ土類金属のハロゲ ン化物等が挙げられる。
次に、陰極としては、仕事関数の小さ!/ヽ (4eV以下)金属、合金、電気伝導性化合 物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具 体例としては、ナトリウム,ナトリウム—カリウム合金、マグネシウム,リチウム,マグネシ ゥム '銀合金,アルミニウム Z酸化アルミニウム, Al/Li O, Al/LiO , Al/LiF,ァ
2 2
ルミ-ゥム ·リチウム合金,インジウム,希土類金属などが挙げられる。
この陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成さ せること〖こより、作製することができる。
ここで、発光層からの発光を陰極力 取り出す場合、陰極の発光に対する透過率 は 10%より大きくすることが好ましい。また、陰極としてのシート抵抗は数百 Ω /ロ以 下が好ましぐさらに、膜厚は通常 ΙΟηπ!〜 1 μ m、好ましくは 50〜200nmである。
[0056] また、一般に、有機 EL素子は、超薄膜に電界を印可するために、リークやショート による画素欠陥が生じやすい。これを防止するために、一対の電極間に絶縁性の薄 膜層を挿入しても良い。
絶縁層に用いられる材料としては、例えば、酸ィ匕アルミニウム、弗化リチウム、酸化リ チウム、弗ィヒセシウム、酸ィヒセシウム、酸ィヒマグネシウム、弗ィヒマグネシウム、酸ィ匕カ ルシゥム、弗化カルシウム、窒化アルミニウム、酸化チタン、酸化珪素、酸化ゲルマ- ゥム、窒化珪素、窒化ホウ素、酸化モリブデン、酸化ルテニウム、酸化バナジウム等が 挙げられる。これらの混合物や積層物を用いてもよい。
[0057] 次に、本発明の有機 EL素子を作製する方法にっ 、ては、例えば上記の材料及び 方法により陽極、発光層、必要に応じて正孔注入層、及び必要に応じて電子注入層 を形成し、最後に陰極を形成すればよい。また、陰極から陽極へ、前記と逆の順序で 有機 EL素子を作製することもできる。
以下、透光性基板上に、陽極 Z正孔注入層 Z発光層 Z電子注入層 Z陰極が順次 設けられた構成の有機 EL素子の作製例について説明する。
まず、適当な透光性基板上に、陽極材料からなる薄膜を 1 μ m以下、好ましくは 10 〜200nmの範囲の膜厚になるように、蒸着法あるいはスパッタリング法により形成し 、陽極とする。次に、この陽極上に正孔注入層を設ける。正孔注入層の形成は、前述 したように真空蒸着法、スピンコート法、キャスト法、 LB法等の方法により行うことがで きるが、均質な膜が得られやすぐかつピンホールが発生しにくい等の点力 真空蒸 着法により形成することが好ましい。真空蒸着法により正孔注入層を形成する場合、 その蒸着条件は使用する化合物 (正孔注入層の材料)、目的とする正孔注入層の結 晶構造や再結合構造等により異なるが、一般に蒸着源温度 50〜450°C、真空度 10 — 7〜: LO— 3torr、蒸着速度 0. 01〜50nmZ秒、基板温度— 50〜300°C、膜厚 5nm〜 5 μ mの範囲で適宜選択することが好ましい。 [0058] 次に、この正孔注入層上に発光層を設ける。この発光層の形成も、本発明に係る 発光材料を用いて真空蒸着法、スパッタリング、スピンコート法、キャスト法等の方法 により、発光材料を薄膜ィ匕することにより形成できるが、均質な膜が得られやすぐか つピンホールが発生しにく 、等の点力 真空蒸着法により形成することが好ま U、。 真空蒸着法により発光層を形成する場合、その蒸着条件は使用する化合物により異 なるが、一般的に正孔注入層の形成と同様な条件範囲の中から選択することができ る。膜厚は 10〜40nmの範囲が好ましい。
[0059] 次に、この発光層上に電子注入層を設ける。この場合にも正孔注入層、発光層と同 様、均質な膜を得る必要から真空蒸着法により形成することが好ましい。蒸着条件は 正孔注入層、発光層と同様の条件範囲から選択することができる。
そして、最後に陰極を積層して有機 EL素子を得ることができる。陰極は金属力も構 成されるもので、蒸着法、スパッタリングを用いることができる。しかし、下地の有機物 層を製膜時の損傷力 守るためには真空蒸着法が好まし 、。
以上の有機 EL素子の作製は、一回の真空引きで、一貫して陽極から陰極まで作 製することが好ましい。
[0060] 本発明の有機 EL素子の各層の形成方法は特に限定されない。従来公知の真空 蒸着法、スピンコーティング法等による形成方法を用いることができる。本発明の有 機 EL素子に用いる、前記一般式 (1)で示される化合物を含有する有機薄膜層は、 真空蒸着法、分子線蒸着法 (MBE法)あるいは溶媒に解かした溶液のデイツビング 法、スピンコーティング法、キャスティング法、バーコート法、ロールコート法等の塗布 法による公知の方法で形成することができる。
本発明の有機 EL素子の各有機層の膜厚は特に制限されないが、ピンホール等の 欠陥や、効率を良くするため、通常は数 nmから 1 μ mの範囲が好ましい。
なお、有機 EL素子に直流電圧を印加する場合、陽極を +、陰極を一の極性にして 、 5〜40Vの電圧を印加すると発光が観測できる。また逆の極性で電圧を印加しても 電流は流れず、発光は全く生じない。さらに交流電圧を印加した場合には陽極が + 、陰極が一の極性になった時のみ均一な発光が観測される。印加する交流の波形は 任意でよい。 実施例
次に、本発明を実施例によりさらに詳細に説明する力 本発明は、これらの例によ つてなんら限定されるものではな!/、。
合成実施例 1 (化合物 (AN— 2)の合成)
(1)合成中間体 [ 1 ブロモ 6— (4 ナフタレン一 1 ィル一フエニル)ピレン]の合 成
公知の方法により合成した 4 (ナフタレン 1 ィル)フエ-ルボロン酸 7. 4g、及 び市販の 1—ブロモピレン 7. Ogをジメトキシェタン(DME) 80mlに溶解した。更にテ トラキストリフエ-ルホスフィンパラジウム 0. 58gと 2M—炭酸ナトリウム水溶液 40mlを 加え、アルゴン置換した。 8時間加熱還流した後、放冷し、トルエンで有機層を抽出し た。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、エバポレーターに て有機溶媒を留去した。残查をシリカゲルカラムクロマトグラフィー (展開溶媒:トルェ ン)にて精製することで 1— (4—ナフタレン一 1—ィル一フエ-ル)ピレン 10. Ogを得 た (収率 99%)。
得られた 1一(4 ナフタレン 1ーィルーフエ-ル)ピレン 10. Ogをジメチルホルム アミド(DMF) 100mlに分散し、 N ブロモスクシンイミド(NBS) 5. 3gの DMF溶液 を室温で滴下した。 5時間攪拌した後、一晩放置した。一晩後、水 150mlをカ卩え、析 出晶をろ別、結晶を水、エタノールで洗浄した。得られた結晶をシリカゲルカラムクロ マトグラフィー (展開溶媒:へキサン Zトルエン =2Zl)にて精製することで合成中間 体 1ーブロモー 6—(4 ナフタレン 1ーィルーフヱ-ル)ピレン 4. 5g (収率 38%)、 及び 1 ブロモ 8— (4 ナフタレン一 1 ィル一フエ-ル)ピレン 3. 8g (収率 32% )を得た。
(2)化合物 (AN— 2)の合成
公知の方法により合成した 4 (ナフタレン 2 ィル)フエ-ルボロン酸 2. 7g、及 び 1—ブロモ 6— (4 ナフタレン一 1—ィル一フエ-ル)ピレン 4. 5gを DME40ml に溶解した。更にテトラキストリフエ-ルホスフィンパラジウム 0. 22gと 2M—炭酸ナトリ ゥム水溶液 15mlをカ卩え、アルゴン置換した。 9時間加熱還流した後、放冷し、トルェ ンで有機層を抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥 後、エバポレーターにて有機溶媒を留去した。残查をシリカゲルカラムクロマトグラフ ィー (展開溶媒:へキサン Zトルエン = 1/1)にて精製することで目的の化合物 (AN - 2) 3. lgを得た。
得られたィ匕合物の FD— MS (フィールドディソープシヨンマス分析)を測定したとこ ろ、 C H =606に対し m/z = 606が得られたことから、 目的化合物 (AN— 2)と同定
48 30
した (収率 54%)。
[0062] 合成実施例 2 (化合物 (AN— 7)の合成)
公知の方法により合成した 3 (ナフタレン 2 ィル)フエ-ルボロン酸 2. 3g、及 び 1—ブロモ 8— (4 ナフタレン一 1—ィル一フエ-ル)ピレン 3. 8gを DME40ml に溶解した。更にテトラキストリフエ-ルホスフィンパラジウム 0. 19gと 2M—炭酸ナトリ ゥム水溶液 13mlをカ卩え、アルゴン置換した。 9時間加熱還流した後、放冷し、トルェ ンで有機層を抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥 後、エバポレーターにて有機溶媒を留去した。残查をシリカゲルカラムクロマトグラフ ィー (展開溶媒:へキサン Zトルエン = 1/1)にて精製することで目的の化合物 (AN — 7) 2. 7gを得た。
得られた化合物の FD— MSを測定したところ、 C H =606に対し m/z = 606が得
48 30
られたこと力ら、 目的化合物 (AN— 7)と同定した (収率 58%)。
[0063] 合成実施例 3 (化合物 (AN— 3)の合成)
(1)合成中間体 [ 1 ブロモ 6 (ナフタレン 1 ィル)ピレン]の合成
合成実施例 1の(1)において、 4— (ナフタレン一 1—ィル)フエ-ルボロン酸の代わ りに 1—ナフタレンボロン酸を用いることにより、合成中間体 1—ブロモ 6— (ナフタ レン一 1—ィル)ピレン、及び 1—ブロモ 8— (ナフタレン一 1—ィル)ピレンを得た。
(2)化合物 (AN— 3)の合成
合成実施例 1の(2)において、 4— (ナフタレン一 2—ィル)フエ-ルボロン酸及び 1 -ブロモ 6— (4 ナフタレン一 1—ィル フエ-ル)ピレンの代わりに、前記合成中 間体 1—ブロモ 6— (ナフタレン一 1—ィル)ピレン 4. Og、及び 2 ナフタレンボロン 酸 1. 85gを用いた以外は同様にして、 目的の化合物 (AN— 3) 2. 7gを淡黄色結晶 として得た。 得られた化合物の FD— MSを測定したところ、 C H =454に対し m/z=454が得
36 22
られたこと力ら、 目的化合物 (AN— 3)と同定した。
[0064] 合成実施例 4 (化合物 (AN— 19)の合成)
合成実施例 1の(2)において、 4— (ナフタレン一 2—ィル)フエ-ルボロン酸及び 1 —ブロモー 6— (4—ナフタレン一 1—ィル一フエ-ル)ピレンの代わりに、合成実施例 3の(1)で得られた 1ーブロモー 8 (ナフタレン 1 ィル)ピレン 4. Og、及び 2 ナ フタレンボロン酸 1. 85gを用いた以外は同様にして、 目的の化合物 (AN— 19) 2. 9 gを淡黄色結晶として得た。
得られた化合物の FD— MSを測定したところ、 C H =454に対し m/z=454が得
36 22
られたこと力ら、 目的化合物 (AN— 19)と同定した。
[0065] 合成実施例 5 (化合物 (AN— 20)の合成)
化合物(AN— 3) 5. Ogを DMF50mlに分散し、 NBS4. Ogの DMF溶液を室温で 滴下した。 3日間反応した後、水 100mlを加え、析出晶をろ別、結晶を水、エタノー ルで洗浄した。得られた結晶をシリカゲルカラムクロマトグラフィー(展開溶媒:へキサ ン Zトルエン =2Zl)にて精製することで合成中間体 1, 6 ジブ口モー 3 (ナフタ レン一 2—ィル) 8— (ナフタレン一 1—ィル)ピレン 4. Og (収率 60%)を得た。 得られた 1, 6 ジブ口モー 3— (ナフタレン一 2—ィル) 8 (ナフタレン一 1—ィル )ピレン 4. Og、及びフエ-ルボロン酸 1. 9gを DME60mlに溶解した。更にテトラキス トリフエ-ルホスフィンパラジウム 0. 5g、及び 2M—炭酸ナトリウム水溶液 20mlをカロえ 、アルゴン置換した。 8時間加熱還流した後、放冷し、析出晶をろ別した。結晶を水、 メタノールで洗浄した後、シリカゲルカラムクロマトグラフィー(展開溶媒:トルエン)に て精製することで目的の化合物 (AN— 20) 2. 9gを淡黄色結晶として得た。
得られた化合物の FD— MSを測定したところ、 C H =606に対し m/z = 606が得
48 30
られたこと力 、 目的化合物 (AN— 20)と同定した (収率 73%)。
[0066] 合成実施例 6 (化合物 (AN— 21)の合成)
(1)合成中間体 [1—ブロモ 3, 8 ジナフタレン一 2—ィル一 6 フエ-ルビレン] の合成
公知の方法により合成した 1, 6 ジナフタレン一 2—ィル一ピレン 8. Ogを DMF80 mlに分散し、 NBS3. 2gの DMF溶液を室温で滴下した。 3日間反応した後、水 150 mlを加え、析出晶をろ別、結晶を水、エタノールで洗浄した。得られた結晶をシリカ ゲルカラムクロマトグラフィー(展開溶媒:へキサン Zトルエン = 2Z1)にて精製するこ とで合成中間体 3 ブロモー 1, 6 ジナフタレンー2—ィルーピレン 8. 5g (収率 90 %)を得た。
得られた 3 ブロモー 1, 6 ジナフタレンー2—ィルーピレン 8. 5g、及びフエ-ル ボロン酸 2. 3gを DMElOOmlに溶解した。更にテトラキストリフエ-ルホスフィンパラ ジゥム 0. 55g、及び 2M—炭酸ナトリウム水溶液 25mlを加え、アルゴン置換した。 8 時間加熱還流した後、放冷し、析出晶をろ別した。結晶を水、メタノールで洗浄した 後、シリカゲルカラムクロマトグラフィー(展開溶媒:トルエン)にて精製することで 1, 6 -ジナフタレン 2 ィル一 3—フエ-ルビレン 5. 4gを淡黄色結晶として得た(収率 64%) o
1, 6 ジナフタレン一 2—ィル一 3—フエ-ルビレン 5. 4gを DMF60mlに分散し、 NBSl. 9gの DMF溶液を室温で滴下した。 3日間反応した後、水 150mlをカ卩え、析 出晶をろ別、結晶を水、エタノールで洗浄した。得られた結晶をシリカゲルカラムクロ マトグラフィー (展開溶媒:へキサン Zトルエン =2Zl)にて精製することで合成中間 体 1—ブロモ 3, 8 ジナフタレン一 2—ィル一 6—フエ-ルビレン 5. 9g (収率 95% )を得た。
( 2)化合物 (AN - 21)の合成
得られた 1ーブロモー 3, 8 ジナフタレンー2—ィルー 6 フエ-ルビレン 5. 9g、及 び 2 ビフエ-ルボロン酸 2. 3gを DME80mlに溶解した。更にテトラキストリフエ-ル ホスフィンパラジウム 0. 35g、及び 2M—炭酸ナトリウム水溶液 15mlを加え、ァルゴ ン置換した。 7時間加熱還流した後、放冷し、析出晶をろ別した。結晶を水、メタノー ルで洗浄した後、シリカゲルカラムクロマトグラフィー(展開溶媒:トルエン)にて精製 することで目的の化合物 (AN— 21) 4. 8gを淡黄色結晶として得た。
得られた化合物の FD— MSを測定したところ、 C H =682に対し m/z = 682が得
54 34
られたこと力 、 目的化合物 (AN— 21)と同定した (収率 73%)。
合成実施例 7 (化合物 (AN— 8)の合成) 公知の方法により合成した 2, 7 ジョードー 9, 9,一ジメチルー 9H—フルオレン 10 g、及び 1—ナフタレンボロン酸 4. 6gをトルエン 150mlに溶解した。更にテトラキストリ フエ-ルホスフィンパラジウム 0. 78gと 2M—炭酸ナトリウム水溶液 35mlを加え、アル ゴン置換した。 8時間加熱還流した後、放冷し、トルエンで有機層を抽出した。有機 層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、エバポレーターにて有機 溶媒を留去した。残查をシリカゲルカラムクロマトグラフィー (展開溶媒:へキサン Zト ルェン = 1/1)にて精製することで 2ョード 9, 9,一ジメチルー 7 ナフタレン一 1 —ィル 9H フルオレン 7. lgを得た(収率 71 %)。
得られた 2ョードー 9, 9,一ジメチルー 7 ナフタレンー1ーィルー 9H—フルオレン 7. lg、及び 1—ピレンボロン酸 4. 7gを DMElOOmlに溶解した。更にテトラキストリ フエ-ルホスフィンパラジウム 0. 55g、及び 2M—炭酸ナトリウム水溶液 25mlを加え、 アルゴン置換した。 7時間加熱還流した後、放冷し、析出晶をろ別した。結晶を水、メ タノールで洗浄した後、シリカゲルカラムクロマトグラフィー(展開溶媒:トルエン)にて 精製することで目的化合物 (AN— 8) 5. 7gを淡黄色結晶として得た。
得られた化合物の FD— MSを測定したところ、 C H =520に対し m/z = 520が得
41 28
られたこと力 、 目的化合物 (AN— 8)と同定した (収率 69%)。
実施例 1 (有機 EL素子の製造)
25mm X 75mm X 1. 1mm厚の ITO透明電極付きガラス基板(ジォマティック社製 )をイソプロピルアルコール中で超音波洗浄を 5分間行なった後、 UVオゾン洗浄を 3 0分間行なった。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホ ルダ一に装着し、まず透明電極ラインが形成されている側の面上に前記透明電極を 覆うようにして膜厚 60nmの下記 N, N,一ビス(N, N,一ジフエ-ルー 4 ァミノフエ -ル) N, N ジフエ-ル— 4, 4,—ジァミノ— 1, 1,—ビフエ-ル膜(以下「TPD23 2膜」)を成膜した。この TPD232膜は、正孔注入層として機能する。次に、この TPD 232膜上に膜厚 20nmの下記 N, N, Ν',Ν,一テトラ(4 ビフエ-ル)一ジアミノビフ ェ-レン層(以下「TBDB層」)を成膜した。この膜は正孔輸送層として機能する。さら に膜厚 40nmの前記化合物 AN— 2をホスト材料として蒸着し成膜した。同時に発光 材料として、下記のスチリル基を有するァミン化合物 BD1を AN— 2に対し、重量比 A N— 2 : BD1 =40 : 3で蒸着した。この膜は、発光層として機能する。この膜上に膜厚 lOnmの Alq膜を成膜した。これは、電子注入層として機能する。この後、還元性ド— パントである Li (Li源:サエスゲッター社製)と下記 Alqを二元蒸着させ、電子注入層 ( 又は陰極)として Alq: Li膜 (膜厚 lOnm)を形成した。この Alq: Li膜上に金属 A1を蒸 着させ金属陰極を形成し有機 EL素子を形成した。
得られた素子について通電試験を行ったところ、電圧 5. 76V、電流密度 lOmAZ cm2にて発光輝度 615cd/m2、発光効率 6. 15cdZAの青色発光が得られた。ま た、初期輝度を lOOOcdZm2にしてこの有機 EL素子の半減寿命を測定した結果を 表 1に示す。
[0069] [化 20]
Figure imgf000039_0001
T P D 2 3 2 T B D B
Figure imgf000039_0002
B D 1 A 1 q
[0070] 実施例 2〜4 (有機 EL素子の製造)
実施例 1において、発光層の材料として化合物 AN— 2の代わりに表 1に記載の化 合物を用いた以外は同様にして有機 EL素子を作製した。
得られた素子について、実施例 1と同様にして通電試験を行った結果、初期輝度 1 OOOcd/m2での半減寿命を測定した結果を表 1に示す。
[0071] 比較例 1〜3
実施例 1にお 、て、発光層の材料として化合物 AN— 2の代わりに下記化合物 an 1 (比較例 1)、 an— 2 (比較例 2)、 an— 3 (比較例 3)を用いた以外は同様にして有 機 EL素子を作製した。
得られた素子について、実施例 1と同様にして通電試験を行った結果、初期輝度 1 OOOcd/m2での半減寿命を測定した結果を表 1に示す。
[化 21]
Figure imgf000040_0001
a n - 3 [表 1] 表 1
発光層の 電圧 発光輝度 発光効率 輝度半減寿命 色度座檷 (x.y)
形成材料 (V) (cd/m2) (cd/A) (時間) 実施例 1 AN— 2 / BD1 5.76 615 6.15 (0.151,0.174) 2800 実施例 2 AN— 3 / BD1 5.79 611 6.11 (0.151,0.177) 2000 実施例 3 AN— 9 / BD1 5.64 645 6.45 (0.148,0.198) 1700 実施例 4 AN-8 / BD1 5.86 616 6.16 (0.147,0.183) 1500 比較例 1 an— 1 / BD1 6.85 531 5.31 (0.170,0.236) 490 比較例 2 an -2 / BD1 6.89 550 5.50 (0.199,0.230) 800 比較例 3 an -3 / BD1 6.89 558 5.58 (0.159,0.229) 700 産業上の利用可能性
以上、詳細に説明したように、本発明の非対称ピレン誘導体を含有する有機 EL素 子は、発光効率が高ぐ長寿命である。このため、長期間の継続使用が想定される有 機 EL素子として極めて有用である。

Claims

請求の範囲 [式中、 Ar及び Ar'は、それぞれ置換もしくは無置換の核炭素数 6〜50の芳香族基 である。 L及び L,は、それぞれ置換もしくは無置換のフエ-レン基、置換もしくは無置換の ナフタレ-レン基、置換もしくは無置換のフルォレニレン基又は置換もしくは無置換 のジベンゾシロリレン基である。 mは 0〜2の整数、 nは 1〜4の整数、 sは 0〜2の整数、 tは 0〜4の整数である。 また、 L又は Arは、ピレンの 1〜5位のいずれかに結合し、 L,又は Ar,は、ピレンの 6〜10位のいずれかに結合する。 ただし、 n+tが偶数の時、 Ar, Ar' , L, L'は下記 (1)又は (2)を満たす。
(1) Ar≠Ar,及び Z又は L≠L' (ここで≠は、異なる構造の基であることを示す。 )
(2) Ar = Ar,かつ L = L,の時
(2-1) m≠s及び Z又は n≠t、又は
(2-2) m=sかつ n=tの時、
(2-2-1) L及び L'、又はピレン力 それぞれ Ar及び Ar,上の異なる結合位置に 結合している力、 (2-2-2) L及び L,、又はピレン力 Ar及び Ar,上の同じ結合位置で 結合している場合、 L及び L,又は Ar及び Ar,のピレンにおける置換位置が 1位と 6位 、又は 2位と 7位である場合はない。 ] [2] 一般式(1)において、 Ar≠Ar'である請求項 1に記載の非対称ピレン誘導体。
[3] 一般式(1)において、 L≠L 'である請求項 1に記載の非対称ピレン誘導体。
[4] 一般式(1)において、 Ar=Ar,かつ L=L,であって、 m≠s及び Z又は n≠tである 請求項 1に記載の非対称ピレン誘導体。
[5] 一般式(1)において、 Ar=Ar,かつ L=L,であって、 m=sかつ n=tであり、下記
(2-2-1)又は (2- 2- 2)
[(2-2-1) L及び L'、又はピレン力 それぞれ Ar及び Ar'上の異なる結合位置に結合 しているか、 (2-2-2) L及び L'、又はピレン力 Ar及び Ar,上の同じ結合位置で結合 している場合、 L及び L'又は Ar及び Ar,のピレンにおける置換位置が 1位と 6位、又 は 2位と 7位である場合はない。 ]
を満たす請求項 1に記載の非対称ピレン誘導体。
[6] 下記一般式 (2)で表される非対称ピレン誘導体。
[化 2]
Figure imgf000043_0001
[式中、 Ar及び Ar'は、それぞれ置換もしくは無置換の核炭素数 6〜50の芳香族基 である。
L及び L,は、それぞれ置換もしくは無置換のフエ-レン基、置換もしくは無置換の ナフタレ-レン基、置換もしくは無置換のフルォレニレン基又は置換もしくは無置換 のジベンゾシロリレン基である。
mは 0〜2の整数、 sは 0〜2の整数、 tは 0〜4の整数である。
また、 L,又は Ar,は、ピレンの 2〜10位のいずれかに結合する。
ただし、 tが奇数の時、 Ar, Ar' , L, L'は下記 (1')又は (2')を満たす。 (l')Ar≠Ar,及び Z又は L≠L' (ここで≠は、異なる構造の基であることを示す。 ) (2')Ar=Ar,かつ L=L,の時
(2-l')m≠s及び Z又は t≠l、又は
(2- 2')m=sかつ t= lの時、
(2-2-l')L及び L'、又はピレン力 それぞれ Ar及び Ar,上の異なる結合位置に 結合している力、(2-2-2')L及び L,、又はピレン力 Ar及び Ar,上の同じ結合位置で 結合している場合、 L,又は Ar,のピレンにおける置換位置が 6位である場合はない。 ]
[7] 一般式(2)にお 、て、 Ar≠Ar'である請求項 6に記載の非対称ピレン誘導体。
[8] 一般式(2)において、 L≠L 'である請求項 6に記載の非対称ピレン誘導体。
[9] 一般式(2)において、 Ar=Ar'かつ L=L,であって、 m≠s及び Z又は t≠lである 請求項 6に記載の非対称ピレン誘導体。
[10] 一般式(2)において、 Ar=Ar,かつ L=L,であって、 m=sかつ t= lであり、下記
(2- 2-1')又は (2- 2- 2')
[(2-2-1 ')L及び L'、又はピレン力 それぞれ Ar及び Ar'上の異なる結合位置に結合 しているか、(2-2-2')L及び L,、又はピレン力 Ar及び Ar,上の同じ結合位置で結合 している場合、 L'又は Ar,のピレンにおける置換位置が 6位である場合はない。 ] を満たす請求項 6に記載の非対称ピレン誘導体。
[11] 下記一般式 (3)で表される非対称ピレン誘導体。
[化 3]
Figure imgf000044_0001
[式中、 Ar及び Ar,は、それぞれ置換もしくは無置換の核炭素数 6〜50の芳香族基 である。
L及び L,は、それぞれ置換もしくは無置換のフエ-レン基、置換もしくは無置換の ナフタレ-レン基、置換もしくは無置換のフルォレニレン基又は置換もしくは無置換 のジベンゾシロリレン基である。
mは 0〜2の整数、 sは 0〜2の整数である。 ]
[12] 有機エレクト口ルミネッセンス素子用発光材料である請求項 1〜: L 1のいずれかに記 載の非対称ピレン誘導体。
[13] 有機エレクト口ルミネッセンス素子用ホスト材料である請求項 1〜: L 1のいずれかに 記載の非対称ピレン誘導体。
[14] 陽極と陰極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟 持されている有機エレクト口ルミネッセンス素子において、前記有機薄膜層が請求項 1〜: L 1のいずれかに記載の非対称ピレン誘導体力 選ばれる少なくとも 1種類を単 独もしくは混合物の成分として含有する有機エレクト口ルミネッセンス素子。
[15] 前記発光層が請求項 1〜11のいずれかに記載の非対称ピレン誘導体をホスト材料 として含有する請求項 14に記載の有機エレクト口ルミネッセンス素子。
[16] 前記発光層が、さらにァリールアミンィ匕合物を含有する請求項 14に記載の有機ェ レクト口ルミネッセンス素子。
[17] 前記発光層が、さらにスチリルアミン化合物を含有する請求項 14に記載の有機ェ レクト口ルミネッセンス素子。
PCT/JP2005/008494 2004-05-27 2005-05-10 非対称ピレン誘導体及びそれを利用した有機エレクトロルミネッセンス素子 WO2005115950A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05739101A EP1749809A4 (en) 2004-05-27 2005-05-10 ASYMMETRIC PYRENE DERIVATIVE AND ORGANIC ELECTROLUMINESCENT DEVICE USING THIS
JP2006519530A JP4705914B2 (ja) 2004-05-27 2005-05-10 非対称ピレン誘導体及びそれを利用した有機エレクトロルミネッセンス素子
US11/282,582 US7763761B2 (en) 2004-05-27 2005-11-21 Asymmetric pyrene derivative and organic electroluminescence device employing the same
US12/795,216 US8318995B2 (en) 2004-05-27 2010-06-07 Asymmetric pyrene derivative and organic electroluminescence device employing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004157571 2004-05-27
JP2004-157571 2004-05-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/282,582 Continuation US7763761B2 (en) 2004-05-27 2005-11-21 Asymmetric pyrene derivative and organic electroluminescence device employing the same

Publications (1)

Publication Number Publication Date
WO2005115950A1 true WO2005115950A1 (ja) 2005-12-08

Family

ID=35450798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008494 WO2005115950A1 (ja) 2004-05-27 2005-05-10 非対称ピレン誘導体及びそれを利用した有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (2) US7763761B2 (ja)
EP (1) EP1749809A4 (ja)
JP (2) JP4705914B2 (ja)
KR (1) KR20070029717A (ja)
CN (1) CN1960957A (ja)
TW (1) TW200607849A (ja)
WO (1) WO2005115950A1 (ja)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006103916A1 (ja) * 2005-03-25 2006-10-05 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2007100010A1 (ja) 2006-02-28 2007-09-07 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2007099802A1 (ja) * 2006-02-23 2007-09-07 Idemitsu Kosan Co., Ltd. 赤色系有機エレクトロルミネッセンス素子
WO2007099872A1 (ja) * 2006-02-23 2007-09-07 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2007108457A1 (ja) * 2006-03-20 2007-09-27 Pioneer Corporation ピレン系有機化合物、トランジスタ材料及び発光トランジスタ素子
JP2007281039A (ja) * 2006-04-03 2007-10-25 Seiko Epson Corp 有機無機複合半導体材料、液状材料、有機発光素子、有機発光素子の製造方法、発光装置および電子機器
WO2007123137A1 (ja) 2006-04-18 2007-11-01 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2008059713A1 (en) 2006-11-15 2008-05-22 Idemitsu Kosan Co., Ltd. Fluoranthene compound, organic electroluminescent device using the fluoranthene compound, and organic electroluminescent material-containing solution
JP2008127291A (ja) * 2006-11-17 2008-06-05 Canon Inc ピレン化合物および有機発光素子
WO2008120855A1 (en) * 2007-04-02 2008-10-09 Cheil Industries Inc. Hardmask composition having antireflective property and method of patterning materials using the same
WO2008136522A1 (ja) * 2007-05-08 2008-11-13 Idemitsu Kosan Co., Ltd. ジアミノピレン誘導体、および、これを用いた有機el素子
WO2008149968A1 (ja) * 2007-06-07 2008-12-11 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及び有機エレクトロルミネッセンス素子
JP2009267378A (ja) * 2008-04-01 2009-11-12 Canon Inc 有機発光素子
WO2010001817A1 (ja) 2008-07-01 2010-01-07 東レ株式会社 発光素子
WO2010052852A1 (ja) 2008-11-10 2010-05-14 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2010067893A1 (en) * 2008-12-10 2010-06-17 Canon Kabushiki Kaisha Novel pyrene compound
WO2011077691A1 (ja) 2009-12-21 2011-06-30 出光興産株式会社 ピレン誘導体を用いた有機エレクトロルミネッセンス素子
US8192848B2 (en) 2008-01-11 2012-06-05 E I Du Pont De Nemours And Company Substituted pyrenes and associated production methods for luminescent applications
US8257836B2 (en) 2006-12-29 2012-09-04 E I Du Pont De Nemours And Company Di-substituted pyrenes for luminescent applications
JP2013505982A (ja) * 2009-09-29 2013-02-21 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ルミネセンス用途用の重水素化合物
JPWO2011077689A1 (ja) * 2009-12-21 2013-05-02 出光興産株式会社 ピレン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
US8497495B2 (en) 2009-04-03 2013-07-30 E I Du Pont De Nemours And Company Electroactive materials
JP2013173771A (ja) * 2006-12-07 2013-09-05 Mitsubishi Chemicals Corp ピレン誘導体及び有機蛍光体
KR101334204B1 (ko) 2010-10-27 2013-11-28 (주)위델소재 신규한 파이렌 화합물과, 상기 파이렌 화합물의 제조방법 및 상기 파이렌 화합물을 이용한 유기발광소자
US8759818B2 (en) 2009-02-27 2014-06-24 E I Du Pont De Nemours And Company Deuterated compounds for electronic applications
JPWO2016133058A1 (ja) * 2015-02-18 2017-11-30 Tdk株式会社 電界発光素子
JP2018125504A (ja) * 2017-02-03 2018-08-09 出光興産株式会社 有機エレクトロルミネッセンス素子、電子機器及び有機エレクトロルミネッセンス素子用材料
WO2020039708A1 (ja) 2018-08-23 2020-02-27 国立大学法人九州大学 有機エレクトロルミネッセンス素子
US11094886B2 (en) 2019-09-13 2021-08-17 Idemitsu Kosan Co., Ltd. Organic electroluminescent element and electronic device
WO2021210304A1 (ja) 2020-04-15 2021-10-21 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子及び電子機器
KR20220062618A (ko) 2019-09-13 2022-05-17 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네센스 소자 및 전자 기기
KR20220063233A (ko) 2019-09-13 2022-05-17 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네센스 소자 및 전자 기기
KR20220066099A (ko) 2019-09-13 2022-05-23 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네센스 소자 및 전자 기기
KR20220069028A (ko) 2019-09-13 2022-05-26 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네센스 소자 및 전자 기기
KR20220069030A (ko) 2019-09-13 2022-05-26 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네센스 소자 및 전자 기기
KR20220104237A (ko) 2019-11-26 2022-07-26 이데미쓰 고산 가부시키가이샤 화합물, 유기 일렉트로루미네센스 소자 및 전자 기기
KR20220141780A (ko) 2020-02-14 2022-10-20 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네센스 소자 및 전자 기기

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101192519B1 (ko) * 2004-05-12 2012-10-17 이데미쓰 고산 가부시키가이샤 방향족 아민 유도체, 이를 이용한 유기 전기 발광 소자 및방향족 아민 유도체의 제조방법
CN1960957A (zh) * 2004-05-27 2007-05-09 出光兴产株式会社 不对称芘衍生物以及使用该衍生物的有机电致发光器件
JP2007015961A (ja) * 2005-07-06 2007-01-25 Idemitsu Kosan Co Ltd ピレン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
EP2213639B1 (en) * 2007-11-19 2016-04-13 Idemitsu Kosan Co., Ltd. Monobenzochrysene derivatives and their use in materials for organic electroluminescent devices
JPWO2009066666A1 (ja) * 2007-11-20 2011-04-07 出光興産株式会社 高分子化合物及びそれを用いた有機エレクトロルミネッセンス素子
KR100901887B1 (ko) * 2008-03-14 2009-06-09 (주)그라쎌 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 발광소자
KR101494789B1 (ko) 2008-12-30 2015-02-24 엘지디스플레이 주식회사 유기발광물질 및 이를 이용한 유기발광소자
JP5627209B2 (ja) * 2009-09-14 2014-11-19 キヤノン株式会社 新規ピレン化合物およびそれを有する有機el素子
CN102596950A (zh) 2009-10-29 2012-07-18 E.I.内穆尔杜邦公司 用于电子应用的氘代化合物
WO2011068305A2 (ko) * 2009-12-03 2011-06-09 한국화학연구원 파이렌 화합물이 도입된 전도성 고분자 및 그를 이용한 유기 태양전지
KR101182447B1 (ko) * 2010-06-16 2012-09-12 삼성디스플레이 주식회사 유기 발광 소자 및 그 제조 방법
KR101547410B1 (ko) 2010-12-20 2015-08-25 이 아이 듀폰 디 네모아 앤드 캄파니 전자적 응용을 위한 조성물
JP2013253023A (ja) * 2012-06-05 2013-12-19 Canon Inc 新規ベンゾピレン化合物及びそれを有する有機発光素子
KR101918712B1 (ko) 2012-08-02 2018-11-15 삼성디스플레이 주식회사 유기 발광 장치
JP6469579B2 (ja) 2012-10-31 2019-02-13 メルク パテント ゲーエムベーハー 電子素子
KR101716069B1 (ko) 2012-11-12 2017-03-13 메르크 파텐트 게엠베하 전자 소자용 재료
JP2016506414A (ja) 2013-01-03 2016-03-03 メルク パテント ゲーエムベーハー 電子素子のための材料
WO2014106523A1 (de) 2013-01-03 2014-07-10 Merck Patent Gmbh Elektronische vorrichtung
JP6305068B2 (ja) 2013-04-30 2018-04-04 キヤノン株式会社 有機発光素子
CN107108578A (zh) 2015-01-30 2017-08-29 默克专利有限公司 电子器件的材料
US20190040034A1 (en) 2016-02-05 2019-02-07 Merck Patent Gmbh Materials for electronic devices
US9954187B2 (en) 2016-04-08 2018-04-24 Idemitsu Kosan Co., Ltd. Compound, organic electroluminescence device and electronic device
TWI764942B (zh) 2016-10-10 2022-05-21 德商麥克專利有限公司 電子裝置
DE102017008794A1 (de) 2016-10-17 2018-04-19 Merck Patent Gmbh Materialien zur Verwendung in elektronischen Vorrichtungen
WO2018083053A1 (de) 2016-11-02 2018-05-11 Merck Patent Gmbh Materialien für elektronische vorrichtungen
KR20230121632A (ko) 2016-11-08 2023-08-18 메르크 파텐트 게엠베하 전자 소자용 화합물
TW201833118A (zh) 2016-11-22 2018-09-16 德商麥克專利有限公司 用於電子裝置之材料
TWI761406B (zh) 2016-12-22 2022-04-21 德商麥克專利有限公司 電子裝置用材料
JP7069184B2 (ja) 2017-02-02 2022-05-17 メルク パテント ゲーエムベーハー 電子デバイス用材料
WO2018157981A1 (de) 2017-03-02 2018-09-07 Merck Patent Gmbh Materialien für organische elektronische vorrichtungen
KR102585423B1 (ko) 2017-04-25 2023-10-05 메르크 파텐트 게엠베하 전자 디바이스용 화합물
CN110785867B (zh) 2017-04-26 2023-05-02 Oti照明公司 用于图案化表面上覆层的方法和包括图案化覆层的装置
TW201920343A (zh) 2017-06-21 2019-06-01 德商麥克專利有限公司 電子裝置用材料
KR20200020841A (ko) 2017-06-23 2020-02-26 메르크 파텐트 게엠베하 유기 전계발광 디바이스용 재료
EP3645766A1 (en) 2017-06-26 2020-05-06 Merck Patent GmbH Homogeneous mixtures
KR20240059634A (ko) 2017-06-28 2024-05-07 메르크 파텐트 게엠베하 전자 디바이스용 재료
JP7413252B2 (ja) 2017-07-28 2024-01-15 メルク パテント ゲーエムベーハー 電子デバイスに使用するためのスピロビフルオレン誘導体
CN118405982A (zh) 2017-09-08 2024-07-30 默克专利有限公司 用于电子器件的材料
TWI815831B (zh) 2017-11-23 2023-09-21 德商麥克專利有限公司 用於電子裝置之材料
JP2021506822A (ja) 2017-12-15 2021-02-22 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセントデバイスに使用するための置換芳香族アミン
EP3728275B1 (en) 2017-12-20 2024-09-04 Merck Patent GmbH Heteroaromatic compounds
JP7340171B2 (ja) * 2018-01-24 2023-09-07 学校法人関西学院 有機電界発光素子
US11751415B2 (en) 2018-02-02 2023-09-05 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
CN111819167A (zh) 2018-03-16 2020-10-23 默克专利有限公司 用于有机电致发光器件的材料
US20220127286A1 (en) 2019-03-04 2022-04-28 Merck Patent Gmbh Ligands for nano-sized materials
CN116456753A (zh) 2019-03-07 2023-07-18 Oti照明公司 一种光电子器件
KR20220009961A (ko) 2019-04-18 2022-01-25 오티아이 루미오닉스 인크. 핵 생성 억제 코팅 형성용 물질 및 이를 포함하는 디바이스
KR20220017918A (ko) 2019-05-08 2022-02-14 오티아이 루미오닉스 인크. 핵 생성 억제 코팅 형성용 물질 및 이를 포함하는 디바이스
WO2022123431A1 (en) 2020-12-07 2022-06-16 Oti Lumionics Inc. Patterning a conductive deposited layer using a nucleation inhibiting coating and an underlying metallic coating
EP4410074A1 (de) 2021-09-28 2024-08-07 Merck Patent GmbH Materialien für elektronische vorrichtungen
KR20240075872A (ko) 2021-09-28 2024-05-29 메르크 파텐트 게엠베하 전자 디바이스용 재료
WO2023052275A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
CN118056486A (zh) 2021-09-28 2024-05-17 默克专利有限公司 用于电子器件的材料
EP4437814A1 (de) 2021-11-25 2024-10-02 Merck Patent GmbH Materialien für elektronische vorrichtungen
KR20240128020A (ko) 2021-12-21 2024-08-23 메르크 파텐트 게엠베하 중수소화 유기 화합물의 제조 방법
CN118647604A (zh) 2022-02-14 2024-09-13 默克专利有限公司 用于电子器件的材料
WO2023222559A1 (de) 2022-05-18 2023-11-23 Merck Patent Gmbh Verfahren zur herstellung von deuterierten organischen verbindungen
WO2024013004A1 (de) 2022-07-11 2024-01-18 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2024133048A1 (en) 2022-12-20 2024-06-27 Merck Patent Gmbh Method for preparing deuterated aromatic compounds
WO2024170605A1 (en) 2023-02-17 2024-08-22 Merck Patent Gmbh Materials for organic electroluminescent devices

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043349A (ja) * 2002-07-11 2004-02-12 Mitsui Chemicals Inc 炭化水素化合物、有機電界発光素子用材料および有機電界発光素子

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2897138B2 (ja) 1989-06-30 1999-05-31 株式会社リコー 電界発光素子
JPH03245490A (ja) * 1990-02-23 1991-11-01 Toshiba Corp 有機膜発光素子
JP3200889B2 (ja) 1991-10-23 2001-08-20 ソニー株式会社 画像の振動補正装置
JPH07138561A (ja) 1993-11-17 1995-05-30 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JP3506281B2 (ja) 1995-01-26 2004-03-15 出光興産株式会社 有機エレクトロルミネッセンス素子
JP3724833B2 (ja) 1995-03-06 2005-12-07 出光興産株式会社 有機エレクトロルミネッセンス素子
JP3712760B2 (ja) * 1995-05-17 2005-11-02 Tdk株式会社 有機el素子
BR9611570A (pt) 1995-11-27 1999-03-30 Idemitsu Kosan Co Derivados de triazina
JP2000273055A (ja) * 1999-03-25 2000-10-03 Idemitsu Kosan Co Ltd ジスチリルアリーレン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
KR100790663B1 (ko) * 1999-09-21 2008-01-03 이데미쓰 고산 가부시키가이샤 유기 전자발광 소자 및 유기 발광 매체
JP3905265B2 (ja) 1999-10-21 2007-04-18 富士フイルム株式会社 有機エレクトロルミネッセンス素子
JP3949363B2 (ja) * 1999-10-26 2007-07-25 富士フイルム株式会社 芳香族縮環化合物、発光素子材料およびそれを使用した発光素子
JP2002063988A (ja) 2000-08-22 2002-02-28 Toray Ind Inc 発光素子
JP3487822B2 (ja) 2000-11-27 2004-01-19 Necパーソナルプロダクツ株式会社 電子機器運動部位の保護装置、及び、その保護方法
JP3870102B2 (ja) * 2001-02-22 2007-01-17 キヤノン株式会社 有機発光素子
JP2002250684A (ja) * 2001-02-26 2002-09-06 Shimadzu Corp 材料試験機
JP4593825B2 (ja) * 2001-04-27 2010-12-08 株式会社豊田中央研究所 有機電界発光素子
JP2002334785A (ja) * 2001-05-08 2002-11-22 Fuji Photo Film Co Ltd 発光素子
JP4566453B2 (ja) * 2001-05-18 2010-10-20 株式会社豊田中央研究所 有機電界発光素子
AU2002317506A1 (en) * 2001-07-11 2003-01-29 Fuji Photo Film Co., Ltd. Light-emitting device and aromatic compound
JP4646494B2 (ja) * 2002-04-11 2011-03-09 出光興産株式会社 新規含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP4025137B2 (ja) 2002-08-02 2007-12-19 出光興産株式会社 アントラセン誘導体及びそれを利用した有機エレクトロルミネッセンス素子
JP2004075567A (ja) 2002-08-12 2004-03-11 Idemitsu Kosan Co Ltd オリゴアリーレン誘導体及びそれを利用した有機エレクトロルミネッセンス素子
KR100946476B1 (ko) 2002-08-23 2010-03-10 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자 및 안트라센 유도체
JP3902993B2 (ja) 2002-08-27 2007-04-11 キヤノン株式会社 フルオレン化合物及びそれを用いた有機発光素子
TW593624B (en) * 2002-10-16 2004-06-21 Univ Tsinghua Aromatic compounds and organic LED
EP1437395B2 (en) * 2002-12-24 2015-08-26 LG Display Co., Ltd. Organic electroluminescent device
EP1582516B1 (en) 2003-01-10 2013-07-17 Idemitsu Kosan Co., Ltd. Nitrogenous heterocyclic derivative and organic electroluminescent element employing the same
US7651788B2 (en) * 2003-03-05 2010-01-26 Lg Display Co., Ltd. Organic electroluminescent device
JP4351479B2 (ja) * 2003-06-19 2009-10-28 三井化学株式会社 五員環化合物、および該五員環化合物を含有する有機電界発光素子
EP1718124A4 (en) * 2004-02-19 2009-06-24 Idemitsu Kosan Co ORGANIC LIGHT EMITTING DEVICE WITH WHITE COLOR
US7233019B2 (en) * 2004-04-26 2007-06-19 E. I. Du Pont De Nemours And Company Electroluminescent silylated pyrenes, and devices made with such compounds
CN1960957A (zh) * 2004-05-27 2007-05-09 出光兴产株式会社 不对称芘衍生物以及使用该衍生物的有机电致发光器件

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043349A (ja) * 2002-07-11 2004-02-12 Mitsui Chemicals Inc 炭化水素化合物、有機電界発光素子用材料および有機電界発光素子

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DAUB J. ET AL: "Competition between Conformational Relaxation and Intramolecular Electron Transfer within Phenothiazine-Pyrene Dyads.", JOURNAL OF PHYSICAL CHEMISTRY A., vol. 105, no. 23, 2001, pages 5655 - 5665, XP002992973 *
See also references of EP1749809A4 *
WAHL P. ET AL: "1,8-Dipyrenylnaphthalenes: syntheses, molecular structure, and spectroscopic properties.", CHEMISCHE BERICHTE., vol. 117, no. 1, 1984, pages 260 - 276, XP002992977 *

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006103916A1 (ja) * 2005-03-25 2006-10-05 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2007099802A1 (ja) * 2006-02-23 2007-09-07 Idemitsu Kosan Co., Ltd. 赤色系有機エレクトロルミネッセンス素子
WO2007099872A1 (ja) * 2006-02-23 2007-09-07 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
EP1990844A4 (en) * 2006-02-28 2010-05-26 Idemitsu Kosan Co ORGANIC ELECTROLUMINESCENT DEVICE
WO2007100010A1 (ja) 2006-02-28 2007-09-07 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
JP5199066B2 (ja) * 2006-02-28 2013-05-15 出光興産株式会社 有機エレクトロルミネッセンス素子
US9214636B2 (en) 2006-02-28 2015-12-15 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
EP1990844A1 (en) * 2006-02-28 2008-11-12 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
WO2007108457A1 (ja) * 2006-03-20 2007-09-27 Pioneer Corporation ピレン系有機化合物、トランジスタ材料及び発光トランジスタ素子
JP2008101182A (ja) * 2006-03-20 2008-05-01 Kyoto Univ ピレン系有機化合物、トランジスタ材料及び発光トランジスタ素子
JP2007281039A (ja) * 2006-04-03 2007-10-25 Seiko Epson Corp 有機無機複合半導体材料、液状材料、有機発光素子、有機発光素子の製造方法、発光装置および電子機器
WO2007123137A1 (ja) 2006-04-18 2007-11-01 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2008059713A1 (en) 2006-11-15 2008-05-22 Idemitsu Kosan Co., Ltd. Fluoranthene compound, organic electroluminescent device using the fluoranthene compound, and organic electroluminescent material-containing solution
JP5305919B2 (ja) * 2006-11-15 2013-10-02 出光興産株式会社 フルオランテン化合物及びこのフルオランテン化合物を用いた有機エレクトロルミネッセンス素子並びに有機エレクトロルミネッセンス材料含有溶液
JP2008127291A (ja) * 2006-11-17 2008-06-05 Canon Inc ピレン化合物および有機発光素子
JP2013173771A (ja) * 2006-12-07 2013-09-05 Mitsubishi Chemicals Corp ピレン誘導体及び有機蛍光体
US8257836B2 (en) 2006-12-29 2012-09-04 E I Du Pont De Nemours And Company Di-substituted pyrenes for luminescent applications
WO2008120855A1 (en) * 2007-04-02 2008-10-09 Cheil Industries Inc. Hardmask composition having antireflective property and method of patterning materials using the same
US8420289B2 (en) 2007-04-02 2013-04-16 Cheil Industries, Inc. Aromatic ring-containing polymer, polymer mixture, antireflective hardmask composition, and associated methods
WO2008136522A1 (ja) * 2007-05-08 2008-11-13 Idemitsu Kosan Co., Ltd. ジアミノピレン誘導体、および、これを用いた有機el素子
JPWO2008136522A1 (ja) * 2007-05-08 2010-07-29 出光興産株式会社 ジアミノピレン誘導体、および、これを用いた有機el素子
US8512878B2 (en) 2007-05-08 2013-08-20 Idemitsu Kosan Co., Ltd. Diaminopyrene derivative and organic EL device using the same
WO2008149968A1 (ja) * 2007-06-07 2008-12-11 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及び有機エレクトロルミネッセンス素子
US8192848B2 (en) 2008-01-11 2012-06-05 E I Du Pont De Nemours And Company Substituted pyrenes and associated production methods for luminescent applications
US8383251B2 (en) 2008-01-11 2013-02-26 E I Du Pont De Nemours And Company Substituted pyrenes and associated production methods for luminescent applications
JP2009267378A (ja) * 2008-04-01 2009-11-12 Canon Inc 有機発光素子
KR20110040874A (ko) 2008-07-01 2011-04-20 도레이 카부시키가이샤 발광 소자
WO2010001817A1 (ja) 2008-07-01 2010-01-07 東レ株式会社 発光素子
US8502201B2 (en) 2008-07-01 2013-08-06 Toray Industries, Inc. Light-emitting element
WO2010052852A1 (ja) 2008-11-10 2010-05-14 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2010067893A1 (en) * 2008-12-10 2010-06-17 Canon Kabushiki Kaisha Novel pyrene compound
US8759818B2 (en) 2009-02-27 2014-06-24 E I Du Pont De Nemours And Company Deuterated compounds for electronic applications
US8890131B2 (en) 2009-02-27 2014-11-18 E I Du Pont De Nemours And Company Deuterated compounds for electronic applications
US8497495B2 (en) 2009-04-03 2013-07-30 E I Du Pont De Nemours And Company Electroactive materials
JP2015147776A (ja) * 2009-09-29 2015-08-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 有機電子デバイス用の重水素化合物および、それらの重水素化合物を有する有機電子デバイス。
US8431245B2 (en) 2009-09-29 2013-04-30 E. I. Du Pont De Nemours And Company Deuterated compounds for luminescent applications
JP2013505982A (ja) * 2009-09-29 2013-02-21 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ルミネセンス用途用の重水素化合物
JPWO2011077691A1 (ja) * 2009-12-21 2013-05-02 出光興産株式会社 ピレン誘導体を用いた有機エレクトロルミネッセンス素子
JPWO2011077689A1 (ja) * 2009-12-21 2013-05-02 出光興産株式会社 ピレン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP5608682B2 (ja) * 2009-12-21 2014-10-15 出光興産株式会社 ピレン誘導体を用いた有機エレクトロルミネッセンス素子
JP5645849B2 (ja) * 2009-12-21 2014-12-24 出光興産株式会社 ピレン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2011077691A1 (ja) 2009-12-21 2011-06-30 出光興産株式会社 ピレン誘導体を用いた有機エレクトロルミネッセンス素子
US9353027B2 (en) 2009-12-21 2016-05-31 Idemitsu Kosan Co., Ltd. Organic electroluminescent element using pyrene derivative
KR101334204B1 (ko) 2010-10-27 2013-11-28 (주)위델소재 신규한 파이렌 화합물과, 상기 파이렌 화합물의 제조방법 및 상기 파이렌 화합물을 이용한 유기발광소자
JPWO2016133058A1 (ja) * 2015-02-18 2017-11-30 Tdk株式会社 電界発光素子
JP2018125504A (ja) * 2017-02-03 2018-08-09 出光興産株式会社 有機エレクトロルミネッセンス素子、電子機器及び有機エレクトロルミネッセンス素子用材料
WO2020039708A1 (ja) 2018-08-23 2020-02-27 国立大学法人九州大学 有機エレクトロルミネッセンス素子
US11094886B2 (en) 2019-09-13 2021-08-17 Idemitsu Kosan Co., Ltd. Organic electroluminescent element and electronic device
KR20220062618A (ko) 2019-09-13 2022-05-17 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네센스 소자 및 전자 기기
KR20220063233A (ko) 2019-09-13 2022-05-17 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네센스 소자 및 전자 기기
KR20220066099A (ko) 2019-09-13 2022-05-23 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네센스 소자 및 전자 기기
KR20220069028A (ko) 2019-09-13 2022-05-26 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네센스 소자 및 전자 기기
KR20220069030A (ko) 2019-09-13 2022-05-26 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네센스 소자 및 전자 기기
US11839148B2 (en) 2019-09-13 2023-12-05 Idemitsu Kosan Co., Ltd. Organic electroluminescent element and electronic device
KR20220104237A (ko) 2019-11-26 2022-07-26 이데미쓰 고산 가부시키가이샤 화합물, 유기 일렉트로루미네센스 소자 및 전자 기기
KR20220141780A (ko) 2020-02-14 2022-10-20 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네센스 소자 및 전자 기기
US11552259B1 (en) 2020-02-14 2023-01-10 Idemitsu Kosan Co., Ltd. Organic electroluminescent element and electronic device
WO2021210304A1 (ja) 2020-04-15 2021-10-21 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子及び電子機器

Also Published As

Publication number Publication date
EP1749809A1 (en) 2007-02-07
JP5374486B2 (ja) 2013-12-25
JP4705914B2 (ja) 2011-06-22
EP1749809A4 (en) 2008-07-02
US8318995B2 (en) 2012-11-27
KR20070029717A (ko) 2007-03-14
US20100308718A1 (en) 2010-12-09
JPWO2005115950A1 (ja) 2008-03-27
CN1960957A (zh) 2007-05-09
US20060154107A1 (en) 2006-07-13
EP1749809A8 (en) 2007-04-25
JP2011066446A (ja) 2011-03-31
US7763761B2 (en) 2010-07-27
TW200607849A (en) 2006-03-01

Similar Documents

Publication Publication Date Title
US8318995B2 (en) Asymmetric pyrene derivative and organic electroluminescence device employing the same
KR101152999B1 (ko) 방향족 아민 유도체 및 이를 이용한 유기 전기 발광 소자
JP5213705B2 (ja) 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子用材料
JP5015459B2 (ja) 非対称モノアントラセン誘導体、有機エレクトロルミネッセンス素子用材料及びそれを利用した有機エレクトロルミネッセンス素子
EP2910619B1 (en) Light-emitting material for organic electroluminescent device, organic electroluminescent device using same, and material for organic electroluminescent device
US20090167161A1 (en) Aromatic amine derivatives and organic electroluminescence device using the same
WO2005121057A1 (ja) アントラセン誘導体及びそれを利用した有機エレクトロルミネッセンス素子
WO2007114358A1 (ja) ベンズアントラセン誘導体、及びそれを用いた有機エレクトロルミネッセンス素子
WO2006085434A1 (ja) ビスアントラセン誘導体及びそれを利用した有機エレクトロルミネッセンス素子
WO2006104044A1 (ja) アントリルアリーレン誘導体、有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子
WO2007116828A1 (ja) ビスアントラセン誘導体及びそれを利用した有機エレクトロルミネッセンス素子
WO2006073054A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP5400623B2 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007007553A1 (ja) ビフェニル誘導体、有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子
JP4667926B2 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
US20070132372A1 (en) Amine based compound and organic electroluminescence device using the same
EP1950194A1 (en) Aromatic amine derivative and organic electroluminescent element using the same
JP2007137784A (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 11282582

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006519530

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005739101

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 11282582

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067024933

Country of ref document: KR

Ref document number: 200580017149.X

Country of ref document: CN

Ref document number: 4355/CHENP/2006

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005739101

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067024933

Country of ref document: KR