WO2010001817A1 - 発光素子 - Google Patents

発光素子 Download PDF

Info

Publication number
WO2010001817A1
WO2010001817A1 PCT/JP2009/061674 JP2009061674W WO2010001817A1 WO 2010001817 A1 WO2010001817 A1 WO 2010001817A1 JP 2009061674 W JP2009061674 W JP 2009061674W WO 2010001817 A1 WO2010001817 A1 WO 2010001817A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
aryl
heteroaryl
light
derivatives
Prior art date
Application number
PCT/JP2009/061674
Other languages
English (en)
French (fr)
Inventor
和真 長尾
新井 猛
池田 武史
富永 剛
田中 大作
泰宜 市橋
耕司 上岡
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN200980125702XA priority Critical patent/CN102084514A/zh
Priority to KR1020117002440A priority patent/KR101668887B1/ko
Priority to EP09773395.0A priority patent/EP2296204B1/en
Priority to JP2009548540A priority patent/JP5299288B2/ja
Priority to US12/737,339 priority patent/US8502201B2/en
Publication of WO2010001817A1 publication Critical patent/WO2010001817A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B1/00Dyes with anthracene nucleus not condensed with any other ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/001Pyrene dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes

Definitions

  • the present invention relates to a pyrene compound or anthracene compound useful as a charge transport material, and a light emitting device using the same, and includes a display device, a flat panel display, a backlight, illumination, an interior, a sign, a signboard, an electrophotographic machine, and light
  • the present invention relates to a light-emitting element that can be used in a field such as a signal generator.
  • This light emitting element is characterized by thin light emission with high luminance under a low driving voltage and multicolor light emission by selecting a fluorescent material.
  • organic thin-film light-emitting elements can be obtained in various light-emitting colors by using various fluorescent materials for the light-emitting layer, and therefore, research for practical application to displays and the like is active.
  • the three primary color luminescent materials research on the green luminescent material is the most advanced, and at present, intensive research is being conducted to improve the characteristics of the red and blue luminescent materials.
  • Organic thin-film light-emitting elements must satisfy improved luminous efficiency, lower drive voltage, and improved durability.
  • improved luminous efficiency when the luminous efficiency is low, it is impossible to output an image that requires high luminance, and the amount of power consumed for outputting desired luminance increases.
  • various luminescent materials have been developed (see, for example, Patent Documents 1 to 5).
  • a technique of doping an alkali metal into a material used as an electron transport layer is disclosed (see Patent Documents 6 to 10).
  • Patent Documents 6 to 10 are insufficient for achieving both low voltage driving and high luminous efficiency.
  • An object of the present invention is to solve the problems of the prior art and to provide an organic thin film light emitting device that has both high luminous efficiency and low driving voltage.
  • the present invention is an organic electroluminescent device comprising a thin film layer including at least a light emitting layer and an electron transport layer on a first electrode formed on a substrate, and a second electrode formed on the thin film layer,
  • the electron transport layer includes an organic compound represented by the following general formula (1) and a donor compound.
  • Y is either substituted or unsubstituted pyrene or substituted or unsubstituted anthracene.
  • a 1 is selected from the group consisting of a single bond, an arylene group, and a heteroarylene group.
  • Ar is a carbazolyl group, a dibenzofuranyl group. And selected from the group consisting of dibenzothiophenyl groups, which may be substituted or unsubstituted, n 1 is an integer of 1 to 3.
  • an organic electroluminescent device that achieves both high luminous efficiency and low driving voltage.
  • the light-emitting element of the present invention has a first electrode, a second electrode, and an organic layer interposed therebetween, and the organic layer includes at least a light-emitting layer, and the light-emitting layer emits light by electric energy.
  • the organic layer is composed of only the light emitting layer, and 1) a hole transport layer / light emitting layer / electron transport layer, 2) a light emitting layer / electron transport layer, and 3) a hole transport layer / light emitting layer, etc.
  • Each of the layers may be a single layer or a plurality of layers.
  • the layers in contact with the electrodes may be referred to as a hole injection layer and an electron injection layer, respectively.
  • the material is included in the hole transport material, and the electron injection material is included in the electron transport material.
  • the electron transport layer in the light emitting device of the present invention contains a compound represented by the following general formula (1) and a donor compound.
  • Y is either substituted or unsubstituted pyrene or substituted or unsubstituted anthracene.
  • a 1 is selected from the group consisting of a single bond, an arylene group, and a heteroarylene group.
  • Ar is selected from the group consisting of a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group. These groups may be substituted or unsubstituted.
  • n 1 is an integer of 1 to 3.
  • the compound represented by the general formula (1) functions effectively as a light emitting material, particularly as a blue host material, as described in Patent Documents 1 to 5, for example. Function.
  • the compound represented by the general formula (1) is used in combination with a specific donor compound, whereby both high luminous efficiency and low driving voltage can be achieved.
  • an electron transport material it is necessary to efficiently transport electrons from the cathode, and it is desirable that the electron injection efficiency is high and the injected electrons are transported efficiently.
  • the material has a high electron affinity, a high electron mobility, excellent stability, and a substance that does not easily generate trapping impurities during manufacturing and use.
  • a compound having a molecular weight of 400 or more that maintains a stable film quality is preferably used because a low molecular weight compound is likely to be crystallized to deteriorate the film quality.
  • the compound represented by the general formula (1) is a compound that satisfies such a condition, and since it contains a pyrene or anthracene skeleton, it is excellent in electron transport property and electrochemical stability.
  • a substituent selected from a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group, which are bulky aromatic heterocyclic groups is introduced via an aryl group or a heteroaryl group, so that a pyrene or anthracene skeleton is formed.
  • a stable film quality can be obtained while maintaining the high electron transport capability.
  • the introduction of the substituent improves compatibility with the donor compound in a thin film state, and exhibits higher electron transport ability.
  • the compound represented by the general formula (1) has a pyrene skeleton, the following compounds are preferable.
  • R 1 to R 18 may be the same or different from each other, and may be hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, aryl thioether Selected from the group consisting of a group, an aryl group, a heteroaryl group, a halogen, a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, an amino group, a silyl group, and —P ( ⁇ O) R 19 R 20 .
  • R 19 and R 20 are an aryl group or a heteroaryl group.
  • R 1 to R 20 may form a ring with adjacent substituents.
  • n 2 is an integer of 1 to 3.
  • X 2 is selected from the group consisting of —O—, —S— and —NR 21 —.
  • R 21 is selected from the group consisting of hydrogen, alkyl groups, cycloalkyl groups, heterocyclic groups, alkenyl groups, cycloalkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, and amino groups.
  • R 21 may combine with R 11 or R 18 to form a ring.
  • a 2 is selected from the group consisting of a single bond, an arylene group, and a heteroarylene group. Any two of R 1 to R 10 and any one of R 11 to R 21 are used for connection to A 2 . However, at least one of R 3 , R 6 and R 8 is a group different from R 1 .
  • R 3 , R 6 , and R 8 are a group different from R 1 in the pyrene compound represented by the general formula (2), molecular symmetry is lowered, and a high-quality amorphous thin film can be formed. preferable.
  • R 1 is an aryl group or a heteroaryl group, and at least one of A 2 is linked at the position of R 6 or R 8 .
  • R 1 is an aryl group.
  • R 2 is an alkyl group or a cycloalkyl group, and at least one of A 2 is connected at the position of R 6 or R 8 , whereby the amorphous nature of the molecule is improved and a stable thin film can be formed.
  • a pyrene compound represented by the general formula (3) or (4) is preferable because of availability of raw materials or because synthesis is easy.
  • R 30 to R 46 may be the same as or different from each other, and hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, aryl thioether Selected from the group consisting of a group, an aryl group, a heteroaryl group, a halogen, a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, an amino group, a silyl group, and —P ( ⁇ O) R 47 R 48 .
  • R 47 and R 48 are an aryl group or a heteroaryl group.
  • R 30 to R 48 may form a ring with adjacent substituents.
  • a 3 is an arylene group or a heteroarylene group.
  • at least one of R 32 and R 34 is an aryl group or a heteroaryl group, or R 33 is an alkyl group or a cycloalkyl group.
  • R 60 to R 75 may be the same or different and are each a hydrogen atom, an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl ether group, an arylthioether Selected from the group consisting of a group, an aryl group, a heteroaryl group, a halogen, a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, an amino group, a silyl group, and —P ( ⁇ O) R 76 R 77 .
  • R 76 and R 77 are an aryl group or a heteroaryl group.
  • R 60 to R 77 may form a ring with adjacent substituents.
  • a 4 is an arylene group or a heteroarylene group.
  • at least one of R 62 and R 64 is an aryl group or a heteroaryl group, or R 63 is an alkyl group or a cycloalkyl group.
  • At least one of R 11 to R 18 in the general formula (2) or at least one of R 39 to R 46 in the general formula (3) is selected from an alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group.
  • Preferred examples include that the group is selected, R 62 and R 64 in the general formula (4) are hydrogen, R 63 is an alkyl group, and R 67 is an aryl group or a heteroaryl group. It is done.
  • at least two adjacent members out of R 11 to R 18 or at least two adjacent members out of R 39 to R 46 may be combined to form a ring. Such a structure is preferable because the interaction between pyrene compounds is suppressed, high luminous efficiency is possible, and thin film stability is also improved.
  • R 80 to R 97 may be the same or different and are each hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl ether group.
  • R 98 and R 99 are an aryl group or a heteroaryl group.
  • R 80 to R 99 may form a ring with adjacent substituents.
  • n 5 is an integer of 1 to 2.
  • X 5 is selected from the group consisting of —O—, —S— and —NR 100 —.
  • R 100 is selected from the group consisting of hydrogen, alkyl groups, cycloalkyl groups, heterocyclic groups, alkenyl groups, cycloalkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, and amino groups.
  • R 100 may combine with R 90 or R 97 to form a ring.
  • a 5 is selected from the group consisting of a single bond, an arylene group, and a heteroarylene group. Any five of R 80 to R 89 and any one of R 90 to R 100 are used for connection with A 5 .
  • R 90 to R 97 in the general formula (5) is at least one selected from hydrogen, an alkyl group, a cycloalkyl group, an alkoxy group, a phenyl group, a naphthyl group, and a heteroaryl group
  • the thin film stability thus, a light emitting element with high luminous efficiency and high luminous efficiency can be realized.
  • an anthracene compound represented by the general formula (6) or (7) is preferable because of availability of raw materials or easy synthesis.
  • R 110 to R 126 may be the same or different and are each hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, phenyl group, or alkyl-substituted.
  • Phenyl group alkoxy substituted phenyl group, aryl substituted phenyl group, naphthyl group, alkyl substituted naphthyl group, alkoxy substituted naphthyl group, aryl substituted naphthyl group, phenanthryl group, alkyl substituted phenanthryl group, alkoxy substituted phenanthryl group, aryl substituted phenanthryl group, hetero Selected from aryl group and silyl group.
  • a 6 is a heteroarylene group or an arylene group having 6 to 12 carbon atoms.
  • R 140 to R 148 may be the same or different and are each hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl ether group.
  • R 156 and R 157 are an aryl group or a heteroaryl group.
  • R 149 to R 155 may be the same or different and are selected from hydrogen, an alkyl group, a cycloalkyl group, an alkoxy group, a phenyl group, a naphthyl group, and a heteroaryl group.
  • a 7 is selected from a single bond, an arylene group, and a heteroarylene group.
  • R 114 in the general formula (6) or R 144 in the general formula (7) is hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkoxy group, alkylthio group, aryl group, heteroaryl group, amino group, silyl group.
  • a preferred form is selected from the group consisting of a ring structure formed between a group and an adjacent substituent. Such a structure is preferable because the interaction between anthracene compounds is suppressed, high luminous efficiency is possible, and thin film stability is improved.
  • the alkyl group is, for example, a saturated aliphatic carbonization such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, or a tert-butyl group.
  • a hydrogen group is shown, which may or may not have a substituent.
  • an alkyl group, an aryl group, heteroaryl group etc. can be mentioned, This point is common also in the following description.
  • the number of carbon atoms of the alkyl group is not particularly limited, but is usually in the range of 1 to 20 and more preferably 1 to 8 from the viewpoint of availability and cost.
  • the cycloalkyl group represents, for example, a saturated alicyclic hydrocarbon group such as cyclopropyl, cyclohexyl, norbornyl, adamantyl, etc., which may or may not have a substituent.
  • carbon number of an alkyl group part is not specifically limited, Usually, it is the range of 3-20.
  • the heterocyclic group refers to an aliphatic ring having atoms other than carbon, such as a pyran ring, a piperidine ring, and a cyclic amide, in the ring, which may or may not have a substituent. .
  • carbon number of a heterocyclic group is not specifically limited, Usually, it is the range of 2-20.
  • alkenyl group refers to an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group, or a butadienyl group, which may or may not have a substituent.
  • the number of carbon atoms of the alkenyl group is not particularly limited, but is usually in the range of 2-20.
  • the cycloalkenyl group refers to an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, or a cyclohexenyl group, which may have a substituent. You don't have to.
  • the alkynyl group indicates, for example, an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group, which may or may not have a substituent.
  • the number of carbon atoms of the alkynyl group is not particularly limited, but is usually in the range of 2-20.
  • the alkoxy group refers to, for example, a functional group having an aliphatic hydrocarbon group bonded through an ether bond such as a methoxy group, an ethoxy group, or a propoxy group, and the aliphatic hydrocarbon group may have a substituent. It may not have. Although carbon number of an alkoxy group is not specifically limited, Usually, it is the range of 1-20.
  • the alkylthio group is a group in which an oxygen atom of an ether bond of an alkoxy group is substituted with a sulfur atom.
  • the hydrocarbon group of the alkylthio group may or may not have a substituent. Although carbon number of an alkylthio group is not specifically limited, Usually, it is the range of 1-20.
  • An aryl ether group refers to a functional group to which an aromatic hydrocarbon group is bonded via an ether bond, such as a phenoxy group, and the aromatic hydrocarbon group may or may not have a substituent. Good. Although carbon number of an aryl ether group is not specifically limited, Usually, it is the range of 6-40.
  • the aryl thioether group is a group in which an oxygen atom of an ether bond of an aryl ether group is substituted with a sulfur atom.
  • the aromatic hydrocarbon group in the aryl ether group may or may not have a substituent. Although carbon number of an aryl ether group is not specifically limited, Usually, it is the range of 6-40.
  • An aryl group represents an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, or a terphenyl group.
  • the aryl group may or may not have a substituent.
  • the number of carbon atoms of the aryl group is not particularly limited, but is usually in the range of 6 to 40.
  • a heteroaryl group is a cyclic aromatic group having one or more atoms other than carbon, such as a pyridyl group, a quinolinyl group, a pyrazinyl group, a naphthyridyl group, a dibenzofuranyl group, a dibenzothiophenyl group, or a carbazolyl group. This can be unsubstituted or substituted.
  • the number of carbon atoms of the heteroaryl group is not particularly limited, but is usually in the range of 2 to 30.
  • the connecting position of the heteroaryl group may be any part. For example, in the case of a pyridyl group, it may be any of 2-pyridyl group, 3-pyridyl group and 4-pyridyl group.
  • the halogen atom means fluorine, chlorine, bromine or iodine.
  • the carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, and phosphine oxide group may or may not have a substituent. Examples of the substituent include an alkyl group, a cycloalkyl group, and an aryl group. Group, heteroaryl group and the like, and these substituents may be further substituted.
  • the silyl group refers to, for example, a functional group having a bond to a silicon atom such as a trimethylsilyl group, which may or may not have a substituent.
  • the carbon number of the silyl group is not particularly limited, but is usually in the range of 3-20.
  • the number of silicon is usually 1-6.
  • An arylene group refers to a divalent group derived from an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, or a terphenyl group, which has a substituent. It does not have to be.
  • the number of carbon atoms of the arylene group is not particularly limited, but is usually in the range of 6 to 40.
  • a in the general formula (1) is an arylene group, the arylene group may or may not have a substituent, but the carbon number including the substituent is in the range of 6 to 30.
  • a heteroarylene group is a cyclic aromatic group having one or more atoms other than carbon, such as a pyridyl group, a quinolinyl group, a pyrazinyl group, a naphthyridyl group, a dibenzofuranyl group, a dibenzothiophenyl group, and a carbazolyl group.
  • a divalent group to be derived is shown, which may or may not have a substituent.
  • the number of carbon atoms of the heteroarylene group is not particularly limited, but is usually in the range of 2 to 30 including the substituent.
  • any adjacent two substituents (for example, R 1 and R 2 in formula (1)) can be bonded to each other to form a conjugated or non-conjugated condensed ring.
  • a constituent element of the condensed ring in addition to carbon, nitrogen, oxygen, sulfur, phosphorus and silicon atoms may be contained, or further condensed with another ring.
  • said organic compound Specifically, the following examples are mentioned.
  • the first electrode and the second electrode have a role of supplying a sufficient current for light emission of the device, and at least one of them is transparent or translucent to extract light. It is desirable.
  • the first electrode formed on the substrate is a transparent electrode, which is an anode, and the second electrode is a cathode.
  • the material used for the first electrode may be tin oxide, indium oxide, indium tin oxide (ITO), zinc indium oxide (ITO), as long as the material can efficiently inject holes into the organic layer and is transparent or translucent to extract light.
  • IZO tin oxide
  • ITO indium tin oxide
  • ITO zinc indium oxide
  • IZO conductive metal oxides
  • metals such as gold, silver and chromium
  • inorganic conductive materials such as copper iodide and copper sulfide
  • conductive polymers such as polythiophene, polypyrrole and polyaniline
  • ITO glass or Nesa glass it is particularly desirable to use ITO glass or Nesa glass.
  • the resistance of the transparent electrode is not limited as long as a current sufficient for light emission of the element can be supplied, but it is desirable that the resistance be low from the viewpoint of power consumption of the element.
  • an ITO substrate with a resistance of 300 ⁇ / ⁇ or less will function as a device electrode, but since it is now possible to supply a substrate with a resistance of approximately 10 ⁇ / ⁇ , use a substrate with a low resistance of 20 ⁇ / ⁇ or less. Is particularly desirable.
  • the thickness of ITO can be arbitrarily selected according to the resistance value, but is usually used in a range of 100 to 300 nm.
  • the light emitting element is preferably formed over a substrate.
  • a glass substrate such as soda glass or non-alkali glass is preferably used.
  • the thickness of the glass substrate it is sufficient that the thickness is sufficient to maintain the mechanical strength.
  • alkali-free glass is preferred because it is better that there are fewer ions eluted from the glass.
  • soda lime glass provided with a barrier coat such as SiO 2 is also commercially available and can be used.
  • the substrate need not be glass, and for example, an anode may be formed on a plastic substrate.
  • the ITO film forming method is not particularly limited, such as an electron beam method, a sputtering method, and a chemical reaction method.
  • the material used for the second electrode is not particularly limited as long as it can efficiently inject electrons into the light emitting layer.
  • metals such as platinum, gold, silver, copper, iron, tin, aluminum, and indium, or alloys and multilayer stacks of these metals with low work function metals such as lithium, sodium, potassium, calcium, and magnesium Is preferred.
  • aluminum, silver, and magnesium are preferable as the main component from the viewpoints of electrical resistance, ease of film formation, film stability, luminous efficiency, and the like.
  • magnesium and silver are preferable because electron injection into the electron transport layer and the electron injection layer in the present invention is facilitated and low voltage driving is possible.
  • metals such as platinum, gold, silver, copper, iron, tin, aluminum and indium, or alloys using these metals, inorganic substances such as silica, titania and silicon nitride, polyvinyl alcohol, poly
  • an organic polymer compound such as vinyl chloride or a hydrocarbon polymer compound is laminated on the second electrode as a protective film layer.
  • the protective film layer is selected from a material that transmits light in the visible light region.
  • the production method of these electrodes is not particularly limited, such as resistance heating, electron beam, sputtering, ion plating and coating.
  • the hole transport layer is formed by a method of laminating or mixing one or more hole transport materials or a method using a mixture of a hole transport material and a polymer binder.
  • the hole transport layer may be formed by adding an inorganic salt such as iron (III) chloride to the hole transport material.
  • the hole transport material needs to efficiently transport holes from the positive electrode between electrodes to which an electric field is applied, and has a high hole injection efficiency, and it is desirable to transport the injected holes efficiently. For this purpose, it is required that the material has an appropriate ionization potential, has a high hole mobility, is excellent in stability, and does not easily generate trapping impurities during manufacture and use.
  • the substance satisfying such conditions is not particularly limited, but 4,4′-bis (N- (3-methylphenyl) -N-phenylamino) biphenyl, 4,4′-bis (N— Triphenylamine derivatives such as (1-naphthyl) -N-phenylamino) biphenyl, 4,4 ′, 4 ′′ -tris (3-methylphenyl (phenyl) amino) triphenylamine, bis (N-allylcarbazole) or Biscarbazole derivatives such as bis (N-alkylcarbazole), pyrazoline derivatives, stilbene compounds, hydrazone compounds, benzofuran derivatives and thiophene derivatives, oxadiazole derivatives, phthalocyanine derivatives, porphyrin derivatives and other heterocyclic compounds, fullerene derivatives, polymers
  • the polycarbonate having the monomer in the side chain Chromatography with or styrene derivatives, polythiophene, poly(
  • inorganic compounds such as p-type Si and p-type SiC can also be used.
  • a compound represented by the following general formula (8), tetrafluorotetracyanoquinodimethane (4F-TCNQ), or molybdenum oxide can also be used.
  • R 170 to R 175 may be the same or different and are selected from the group consisting of halogen, sulfonyl group, carbonyl group, nitro group, cyano group, and trifluoromethyl group.
  • the compound (9) (1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile
  • the hole transport layer or the hole injection layer the hole transport layer adjacent to the light emitting layer.
  • the energy barrier between the layers is relaxed, and a lower voltage drive is preferable.
  • the light emitting layer may be either a single layer or a plurality of layers, each formed of a light emitting material (host material, dopant material), which may be a mixture of a host material and a dopant material or a host material alone. It may be either. That is, in the light emitting element of the present invention, only the host material or the dopant material may emit light in each light emitting layer, or both the host material and the dopant material may emit light. From the viewpoint of efficiently using electric energy and obtaining light emission with high color purity, the light emitting layer is preferably a mixture of a host material and a dopant material. Further, the host material and the dopant material may be either one kind or a plurality of combinations, respectively.
  • a light emitting material host material, dopant material
  • the dopant material may be included in the entire host material or may be partially included.
  • the dopant material may be laminated or dispersed.
  • the dopant material can control the emission color. If the amount of the dopant material is too large, a concentration quenching phenomenon occurs, so that it is preferably used at 20% by weight or less, more preferably 10% by weight or less with respect to the host material.
  • the doping method can be formed by a co-evaporation method with a host material, but may be simultaneously deposited after being previously mixed with the host material.
  • the light-emitting material includes condensed ring derivatives such as anthracene and pyrene, which have been known as light emitters, metal chelated oxinoid compounds such as tris (8-quinolinolato) aluminum, bisstyrylanthracene derivatives and diesters.
  • condensed ring derivatives such as anthracene and pyrene, which have been known as light emitters
  • metal chelated oxinoid compounds such as tris (8-quinolinolato) aluminum, bisstyrylanthracene derivatives and diesters.
  • Bisstyryl derivatives such as styrylbenzene derivatives, tetraphenylbutadiene derivatives, indene derivatives, coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perinone derivatives, cyclopentadiene derivatives, oxadiazole derivatives, thiadiazolopyridine derivatives, dibenzofuran derivatives, carbazole
  • polyphenylene vinylene derivatives, polyparaphenylene derivatives, polythiophene derivatives, etc. can be used, but are not particularly limited. Not shall.
  • the host material contained in the light emitting material is not particularly limited, but is a compound having a condensed aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, naphthacene, triphenylene, perylene, fluoranthene, fluorene, indene, and derivatives thereof, N, Aromatic amine derivatives such as N′-dinaphthyl-N, N′-diphenyl-4,4′-diphenyl-1,1′-diamine, metal chelating oxinoids including tris (8-quinolinato) aluminum (III) Compounds, bisstyryl derivatives such as distyrylbenzene derivatives, tetraphenylbutadiene derivatives, indene derivatives, coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perinone derivatives, cyclopentadiene derivatives, pyr
  • the host used when the light emitting layer emits phosphorescence includes metal chelated oxinoid compounds, chrysene derivatives, binaphthyl derivatives, dibenzofuran derivatives, carbazole derivatives, indolocarbazole derivatives, carboline derivatives, pyridoindole derivatives, triazines. Derivatives and the like are preferably used.
  • the dopant material is not particularly limited, but a compound having a condensed aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, triphenylene, perylene, fluoranthene, fluorene, indene or a derivative thereof (for example, 2- (benzothiazol-2-yl) ) -9,10-diphenylanthracene and 5,6,11,12-tetraphenylnaphthacene), furan, pyrrole, thiophene, silole, 9-silafluorene, 9,9'-spirobisilafluorene, benzothiophene, Compounds having heteroaryl rings such as benzofuran, indole, dibenzothiophene, dibenzofuran, imidazopyridine, phenanthroline, pyridine, pyrazine, naphthyridine, qui
  • the dopant used when the light emitting layer emits phosphorescence includes iridium (Ir), ruthenium (Ru), palladium (Pd), platinum (Pt), osmium (Os), and rhenium (Re). It is preferably a metal complex compound containing at least one metal selected from the group, and the ligand preferably has a nitrogen-containing aromatic heterocycle such as a phenylpyridine skeleton or a phenylquinoline skeleton. However, it is not limited to these, and an appropriate complex is selected from the relationship with the required emission color, device performance, and host compound.
  • the compounds represented by the general formulas (1) to (7) are used in the electron transport layer as in the present invention, it is excellent in that the phosphorescent material is included in the light emitting layer among the above. It is preferable because high emission efficiency can be achieved by injection characteristics and electron transport characteristics.
  • Preferable combinations of phosphorescent materials include, for example, combinations of the above metal chelated oxinoid compounds, dibenzofuran derivatives, carbazole derivatives, indolocarbazole derivatives, carboline derivatives, pyridoindole derivatives, triazine derivatives, and the like.
  • the metal contained in the metal chelated oxinoid compound is preferably iridium, palladium, platinum or the like, with iridium being particularly preferred.
  • Preferred phosphorescent host or dopant is not particularly limited, but specific examples include the following.
  • the electron transport layer is a layer in which electrons are injected from the cathode and further transports electrons.
  • the electron transport layer has high electron injection efficiency, and it is desired to efficiently transport injected electrons. Therefore, it is desirable that the electron transport layer is made of a material having a high electron affinity, a high electron mobility, excellent stability, and a trapping impurity that is unlikely to be generated during manufacture and use.
  • the electron transport layer in the present invention includes a hole blocking layer that can efficiently block the movement of holes as the same meaning.
  • the compounds represented by the general formulas (1) to (7) are compounds satisfying the above conditions, and are preferably used as an electron transporting material because of their high electron injecting and transporting ability.
  • the compounds represented by the general formulas (1) to (7) contain a pyrene skeleton and a specific substituent, they have excellent electron injection / transport properties and electrochemical stability.
  • the introduction of the substituent improves compatibility in a thin film state with a donor compound described later, and exhibits higher electron injecting and transporting ability.
  • the transport of electrons from the cathode to the light emitting layer is promoted, and both high luminous efficiency and low driving voltage can be achieved.
  • the compounds represented by the general formulas (1) to (7) of the present invention have a substituent containing a heteroaryl ring structure having an electron-accepting nitrogen, the electron injection or electron transport ability from the cathode Are preferably used.
  • This substituent is preferably bonded to pyrene or anthracene directly or via a linking group.
  • the electron-accepting nitrogen in the present invention represents a nitrogen atom that forms a multiple bond with an adjacent atom. Since the nitrogen atom has a high electronegativity, the multiple bond has an electron accepting property. Therefore, the heteroaryl ring containing electron-accepting nitrogen has high electron affinity and excellent electron transporting ability. By using a material having this for the electron transporting layer, the driving voltage of the light-emitting element can be reduced.
  • Heteroaryl rings containing electron-accepting nitrogen include, for example, pyridine ring, pyrazine ring, pyrimidine ring, quinoline ring, quinoxaline ring, naphthyridine ring, pyrimidopyrimidine ring, benzoquinoline ring, phenanthroline ring, imidazole ring, oxazole ring, oxalate ring, Examples include a diazole ring, a triazole ring, a thiazole ring, a thiadiazole ring, a benzoxazole ring, a benzothiazole ring, a benzimidazole ring, and a phenanthrimidazole ring.
  • compounds represented by the general formulas (1) to (7) having a 6-membered ring structure such as a pyridine ring, a pyrimidine ring, and a triazine ring are preferable, and a compound having a pyridine ring is more preferable.
  • the pyridine rings it is more preferable that the 3-pyridyl group is directly bonded to pyrene or anthracene because the electron injection or electron transport capability is the highest and the driving voltage is low.
  • the linking group is preferably an arylene group or a heteroarylene group, and these are substituted with an alkyl group. May be.
  • an arylene group or heteroarylene group having 3 to 12 carbon atoms including a substituent is preferable, and a phenylene group is particularly preferable.
  • the electron transport material used in the present invention need not be limited to each of the compounds represented by the general formulas (1) to (7) of the present invention.
  • One or more electron transport materials may be mixed with the compound of the present invention as long as the effects of the present invention are not impaired.
  • the electron transport material that can be mixed is not particularly limited, but is a compound having a condensed aryl ring such as naphthalene, anthracene, or pyrene or a derivative thereof, or a styryl-based fragrance represented by 4,4′-bis (diphenylethenyl) biphenyl.
  • Ring derivatives perylene derivatives, perinone derivatives, coumarin derivatives, naphthalimide derivatives, quinone derivatives such as anthraquinone and diphenoquinone, phosphorus oxide derivatives, carbazole derivatives and indole derivatives, quinolinol complexes such as tris (8-quinolinolato) aluminum (III) and hydroxy Hydroxazole complexes such as phenyloxazole complexes, azomethine complexes, tropolone metal complexes, and flavonol metal complexes can be mentioned. It is preferable to use a compound containing a reel ring structure.
  • Examples of these compounds having a heteroaryl ring structure include benzimidazole derivatives, benzoxazole derivatives, benzthiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, pyrazine derivatives, pyridine derivatives, pyrimidine derivatives, triazine derivatives, phenanthroline.
  • Preferred examples include derivatives, quinoxaline derivatives, quinoline derivatives, benzoquinoline derivatives, oligopyridine derivatives such as bipyridine and terpyridine, quinoxaline derivatives, and naphthyridine derivatives.
  • imidazole derivatives such as tris (N-phenylbenzimidazol-2-yl) benzene, oxadiazole derivatives such as 1,3-bis [(4-tert-butylphenyl) 1,3,4-oxadiazolyl] phenylene, Triazole derivatives such as N-naphthyl-2,5-diphenyl-1,3,4-triazole, phenanthroline derivatives such as bathocuproine and 1,3-bis (1,10-phenanthroline-9-yl) benzene, 2,2 ′
  • a benzoquinoline derivative such as bis (benzo [h] quinolin-2-yl) -9,9′-spirobifluorene, 2,5-bis (6 ′-(2 ′, 2 ′′ -bipyridyl))-1, Bipyridine derivatives such as 1-dimethyl-3,4-diphenylsilole, 1,3-bis (4 ′-(2,2 )
  • the donor compound in the present invention is a compound that facilitates electron injection from the second electrode or the electron injection layer to the electron transport layer by improving the electron injection barrier, and further improves the electrical conductivity of the electron transport layer. That is, the light-emitting device of the present invention is obtained by doping an electron transport layer with a donor compound in order to improve the electron transport capability.
  • Preferred examples of the donor compound in the present invention include an alkali metal, an inorganic salt containing an alkali metal, a complex of an alkali metal and an organic substance, an alkaline earth metal, an inorganic salt containing an alkaline earth metal, or an alkaline earth metal. And a complex of organic substance.
  • alkali metals and alkaline earth metals include alkali metals such as lithium, sodium and cesium, which have a low work function and a large effect of improving the electron transport ability, and alkaline earth metals such as magnesium and calcium.
  • inorganic salts include oxides such as LiO and Li 2 O, nitrides, fluorides such as LiF, NaF, and KF, Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , Rb 2 CO 3 , Examples thereof include carbonates such as Cs 2 CO 3 .
  • a preferable example of the alkali metal or alkaline earth metal is lithium from the viewpoint that the raw materials are inexpensive and easy to synthesize.
  • Preferred examples of the organic substance in the complex with the organic substance include quinolinol, benzoquinolinol, flavonol, hydroxyimidazopyridine, hydroxybenzazole, hydroxytriazole and the like.
  • a complex of an alkali metal and an organic substance is preferable, and a complex of lithium and an organic substance is more preferable.
  • a complex of lithium and a compound having a heteroaryl ring containing electron-accepting nitrogen is preferable, and lithium quinolinol is particularly preferable.
  • the doping ratio of the donor compound in the electron transport layer when the doping ratio of the donor compound in the electron transport layer is appropriate, the injection ratio of electrons from the cathode or the electron injection layer to the electron transport layer increases, and the cathode and the electron injection layer or the electron injection layer and the electron The energy barrier between the transport layers is reduced and the driving voltage is reduced.
  • the suitable doping concentration varies depending on the material and the film thickness of the doping region, but the molar ratio of the organic compound to the donor compound is preferably in the range of 100: 1 to 1: 100, more preferably 10: 1 to 1:10.
  • the method of improving the electron transport ability by doping a donor compound in the electron transport layer is particularly effective when the thin film layer is thick. It is particularly preferably used when the total film thickness of the electron transport layer and the light emitting layer is 50 nm or more.
  • the total film thickness of the electron transport layer and the light emitting layer is 50 nm or more.
  • the total film thickness of the electron transport layer and the light-emitting layer is 50 nm or more, and in the case of long-wavelength light emission such as red, it may be a thick film near 100 nm. .
  • the film thickness of the electron transport layer to be doped may be a part or all of the electron transport layer, but the thicker the entire electron transport layer, the better the doping concentration.
  • the light emitting layer is doped with the donor compound, it is desirable to provide a non-doped region at the light emitting layer / electron transport layer interface when it adversely affects the light emission efficiency.
  • each layer constituting the light emitting element is not particularly limited, such as resistance heating vapor deposition, electron beam vapor deposition, sputtering, molecular lamination method, coating method, etc., but resistance heating vapor deposition or electron beam vapor deposition is usually used in terms of element characteristics. preferable.
  • the thickness of the organic layer is not limited because it depends on the resistance value of the luminescent material, but is preferably 1 to 1000 nm.
  • the film thicknesses of the light emitting layer, the electron transport layer, and the hole transport layer are each preferably 1 nm to 200 nm, and more preferably 5 nm to 100 nm.
  • the light emitting element of the present invention has a function of converting electrical energy into light.
  • a direct current is mainly used as the electric energy, but a pulse current or an alternating current can also be used.
  • the current value and voltage value are not particularly limited, but should be selected so that the maximum luminance can be obtained with as low energy as possible in consideration of the power consumption and lifetime of the device.
  • the light-emitting element of the present invention is suitably used as a display for displaying in a matrix and / or segment system, for example.
  • pixels for display are arranged two-dimensionally such as a lattice shape or a mosaic shape, and characters and images are displayed by a set of pixels.
  • the shape and size of the pixel are determined by the application. For example, a square pixel with a side of 300 ⁇ m or less is usually used for displaying images and characters on a personal computer, monitor, TV, and a pixel with a side of mm order for a large display such as a display panel. become.
  • monochrome display pixels of the same color may be arranged, but in color display, red, green, and blue pixels are displayed side by side. In this case, there are typically a delta type and a stripe type.
  • the matrix driving method may be either a line sequential driving method or an active matrix. Although the structure of the line sequential drive is simple, the active matrix may be superior in consideration of the operation characteristics, and it is necessary to use it depending on the application.
  • the segment system in the present invention is a system in which a pattern is formed so as to display predetermined information and an area determined by the arrangement of the pattern is caused to emit light.
  • a pattern is formed so as to display predetermined information and an area determined by the arrangement of the pattern is caused to emit light.
  • the time and temperature display in a digital clock or a thermometer can be mentioned.
  • the matrix display and the segment display may coexist in the same panel.
  • the light emitting device of the present invention is also preferably used as a backlight for various devices.
  • the backlight is used mainly for the purpose of improving the visibility of a display device that does not emit light, and is used for a liquid crystal display device, a clock, an audio device, an automobile panel, a display panel, a sign, and the like.
  • the light-emitting element of the present invention is preferably used for a backlight for a liquid crystal display device, particularly a personal computer for which a reduction in thickness is being considered, and a backlight that is thinner and lighter than conventional ones can be provided.
  • Example 1 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) having an ITO transparent conductive film deposited to 150 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less.
  • “Semico Clean 56” trade name, manufactured by Furuuchi Chemical Co., Ltd.
  • the film thickness referred to here is a crystal oscillation type film thickness monitor display value.
  • Examples 2-32 A light emitting device was produced in the same manner as in Example 1 except that the materials described in Tables 1 and 2 were used as the host material, the dopant material, and the electron transport layer. The results of each example are shown in Tables 1 and 2.
  • Comparative Example 1 A light emitting device was fabricated in the same manner as in Example 1 except that no donor compound was used as the electron transport layer. When this light emitting device was DC-driven at 10 mA / cm 2 , high-efficiency blue light emission with a driving voltage of 6.4 V and an external quantum efficiency of 4.2% was obtained.
  • Comparative Examples 2-8 A light emitting device was fabricated in the same manner as in Example 1 except that the materials listed in Tables 1 and 2 were used as the host material, dopant material, and electron transport material. The results of each comparative example are shown in Tables 1 and 2.
  • Example 33 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less.
  • “Semico Clean 56” trade name, manufactured by Furuuchi Chemical Co., Ltd.
  • 1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile is used as a hole injecting material by a resistance heating method, 10 nm, and 4,4′-bis (N- (1 -Naphthyl) -N-phenylamino) biphenyl was evaporated to 50 nm.
  • a compound (H-1) as a host material and a compound (D-2) as a dopant material were vapor-deposited on the light emitting material to a thickness of 40 nm so as to have a doping concentration of 5%.
  • the film thickness referred to here is a crystal oscillation type film thickness monitor display value.
  • Examples 34-102 A light emitting device was produced in the same manner as in Example 33 except that the materials described in Tables 3 to 6 were used as the host material, the dopant material, and the electron transport layer. The results of each example are shown in Tables 3-6.
  • Comparative Examples 9-16 A light emitting device was fabricated in the same manner as in Example 33 except that the materials described in Tables 3 to 6 were used as the host material, the dopant material, and the electron transport material. The results of each comparative example are shown in Tables 3-6.
  • the light emitting device material of the present invention can be used for a light emitting device or the like, and can provide a light emitting device material having excellent thin film stability. According to the present invention, a light emitting device having both high luminous efficiency and low driving voltage can be obtained.
  • the light-emitting element of the present invention can be used in the fields of display elements, flat panel displays, backlights, illumination, interiors, signs, signboards, electrophotographic machines, optical signal generators, and the like.

Abstract

 一般式(1)で表される有機化合物とドナー性化合物とを含むことにより、高発光効率と低駆動電圧を両立した有機薄膜発光素子を提供すること。 (Yは置換または無置換のピレンもしくは置換または無置換のアントラセンのいずれかである。Aは単結合、アリーレン基およびヘテロアリーレン基からなる群より選ばれる。Arはカルバゾリル基、ジベンゾフラニル基、およびジベンゾチオフェニル基からなる群より選ばれる。これらの基は置換されていても無置換でも良い。nは1~3の整数である。)

Description

発光素子
 本発明は、電荷輸送材として有用なピレン化合物またはアントラセン化合物、およびこれらを用いた発光素子であって、表示素子、フラットパネルディスプレイ、バックライト、照明、インテリア、標識、看板、電子写真機および光信号発生器などの分野に利用可能な発光素子に関する。
 陰極から注入された電子と陽極から注入された正孔が両極に挟まれた有機蛍光体内で再結合する際に発光するという有機薄膜発光素子の研究が、近年活発に行われている。この発光素子は、薄型でかつ低駆動電圧下での高輝度発光と、蛍光材料を選ぶことによる多色発光が特徴であり、注目を集めている。
 この研究は、コダック社のC.W.Tangらが有機薄膜素子が高輝度に発光することを示して以来、多くの研究機関が検討を行っている。コダック社の研究グループが提示した有機薄膜発光素子の代表的な構成は、ITOガラス基板上に正孔輸送性のジアミン化合物、発光層である8-ヒドロキシキノリンアルミニウム、そして陰極としてMg:Agを順次設けたものであり、10V程度の駆動電圧で1,000cd/mの緑色発光が可能であった(非特許文献1参照)。
 また、有機薄膜発光素子は、発光層に種々の蛍光材料を用いることにより、多様な発光色を得ることが可能であることから、ディスプレイなどへの実用化研究が盛んである。三原色の発光材料の中では緑色発光材料の研究が最も進んでおり、現在は赤色発光材料と青色発光材料において、特性向上を目指して鋭意研究がなされている。
 有機薄膜発光素子には、発光効率の向上、駆動電圧の低下、耐久性の向上を満たす必要がある。中でも、発光効率が低いと高輝度を要する画像の出力ができなくなり、所望の輝度を出力するための消費電力量が多くなる。発光効率を向上させるために、様々な発光材料が開発されている(例えば、特許文献1~5参照)。また、電子輸送層として用いられる材料にアルカリ金属をドープする技術が開示されている(特許文献6~10参照)。
国際公開WO2005/113531号パンフレット 国際公開WO2005/115950号パンフレット 国際公開WO2007/29798号パンフレット 国際公開WO2008/108256号パンフレット 国際公開WO2008/143229号パンフレット 特開2000-348864(請求項6) 特開2004-277377(請求項7) 特開2003-347060(請求項1) 特開2002-352961(請求項1) 特開2004-2297(請求項1,15,16)
"Applied Physics Letters",(米国),1987年,51巻,12号,p.913-915
 しかしながら、特許文献1~5のような方法では、RGBすべての発光について発光効率を改良するためには、各発光材料ごとに改良が必要になる。より簡便に発光効率を向上させるための方法の一つとして、発光層からの発光と陰極からの反射光との干渉効果を利用する方法があるが、その最適条件では薄膜層が厚膜化するため駆動電圧が上昇してしまう。
 また、特許文献6~10のような従来公知の組み合わせでは、低電圧駆動と高発光効率との両立には不十分であった。
 本発明は、かかる従来技術の問題を解決し、高発光効率と低駆動電圧を両立した有機薄膜発光素子を提供することを目的とするものである。
 本発明は、基板上に形成された第一電極上に、少なくとも発光層および電子輸送層を含む薄膜層と、薄膜層上に形成された第二電極とを含む有機電界発光素子であって、前記電子輸送層が下記一般式(1)で表される有機化合物とドナー性化合物とを含むことを特徴とする発光素子である。
Figure JPOXMLDOC01-appb-C000009
(Yは置換または無置換のピレンもしくは置換または無置換のアントラセンのいずれかである。Aは単結合、アリーレン基およびヘテロアリーレン基からなる群より選ばれる。Arはカルバゾリル基、ジベンゾフラニル基、およびジベンゾチオフェニル基からなる群より選ばれる。これらの基は置換されていても無置換でも良い。nは1~3の整数である。)
 本発明により、高発光効率と低駆動電圧を両立した有機電界発光装置を提供することができる。
 本発明の発光素子の実施の形態について詳細に説明する。本発明の発光素子は、第一電極と第二電極、およびそれらの間に介在する有機層を有し、該有機層は少なくとも発光層を含み、該発光層が電気エネルギーにより発光する。
 有機層は、発光層のみからなる構成の他に、1)正孔輸送層/発光層/電子輸送層、2)発光層/電子輸送層、および3)正孔輸送層/発光層などの積層構成が挙げられる。また、上記各層は、それぞれ単一層、複数層のいずれでもよい。正孔輸送層および電子輸送層が複数層を有する場合、電極に接する側の層をそれぞれ正孔注入層および電子注入層と呼ぶことがあるが、以下の説明では特に言及しない限りでは正孔注入材料は正孔輸送材料に、電子注入材料は電子輸送材料にそれぞれ含まれる。
 本発明の発光素子における電子輸送層は、下記一般式(1)で表される化合物とドナー性化合物を含有する。
Figure JPOXMLDOC01-appb-C000010
 Yは置換または無置換のピレンもしくは置換または無置換のアントラセンのいずれかである。Aは単結合、アリーレン基およびヘテロアリーレン基からなる群より選ばれる。Arはカルバゾリル基、ジベンゾフラニル基、およびジベンゾチオフェニル基からなる群より選ばれる。これらの基は置換されていても無置換でも良い。nは1~3の整数である。この混合物層の働きにより、陰極から発光層への電子の輸送が促進され、高発光効率と低駆動電圧を両立することができる。以下、それぞれの成分について詳細に説明する。
 一般式(1)で表される化合物は、例えば前記特許文献1~5に記載のように、発光材料として、特に青色ホスト材料として有効に機能するものであるが、本発明では電子輸送材料として機能する。そして、本発明は、一般式(1)で表される化合物が特定のドナー性化合物と組み合わせて用いられることにより、高発光効率と低駆動電圧の両立が可能となったものである。
 一般に、電子輸送材料としては、陰極からの電子を効率良く輸送することが必要で、電子注入効率が高く、注入された電子を効率良く輸送することが望ましい。そのためには電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが要求される。特に膜厚を厚く積層する場合には、低分子量の化合物は結晶化するなどして膜質が劣化しやすいため、安定な膜質を保つ分子量400以上の化合物を用いることが好ましい。一般式(1)で表される化合物は、このような条件を満たす化合物であり、ピレンまたはアントラセン骨格を含有するため電子輸送性、電気化学的安定性に優れる。また、嵩高い芳香族複素環基であるカルバゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基から選ばれる置換基がアリール基またはヘテロアリール基を介して導入されていることにより、ピレンまたはアントラセン骨格の有する高い電子輸送能を維持したまま、安定な膜質を得ることが可能となる。さらに、上記置換基の導入により、ドナー性化合物との薄膜状態における相溶性が向上し、より高い電子輸送能を発現する。
 一般式(1)で表される化合物がピレン骨格を有する場合、以下のような化合物が好ましい。
Figure JPOXMLDOC01-appb-C000011
 R~R18はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基および-P(=O)R1920からなる群より選ばれる。R19およびR20はアリール基またはヘテロアリール基である。R~R20は隣接する置換基同士で環を形成してもよい。nは1~3の整数である。Xは-O-、-S-および-NR21-からなる群より選ばれる。R21は水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アリール基、ヘテロアリール基およびアミノ基からなる群より選ばれる。R21はR11またはR18と結合し環を形成してもよい。Aは単結合、アリーレン基およびヘテロアリーレン基からなる群より選ばれる。R~R10のうちいずれかn個およびR11~R21のうちいずれか1つはAとの連結に用いられる。但し、R、R、Rのうち少なくとも1つはRと異なる基である。
 一般式(2)で表されるピレン化合物は、R、R、Rの少なくとも1つがRと異なる基であると、分子の対称性が低下し、良質なアモルファス薄膜を形成できるので好ましい。
 また、一般式(2)で表されるピレン化合物は、Rがアリール基またはヘテロアリール基であり、Aの少なくとも1つがRもしくはRの位置で連結することにより、ピレン化合物同士の相互作用が抑制され、高い発光効率が可能となるため好ましい。Rがアリール基であると、さらに好ましい。また、Rがアルキル基もしくはシクロアルキル基であり、Aの少なくとも1つがRもしくはRの位置で連結することにより、分子のアモルファス性が向上し、安定な薄膜を形成できるため好ましい。
 本発明の一般式(2)で表される化合物の中でも、原料入手の都合上、または合成が容易であることから一般式(3)もしくは(4)で表されるピレン化合物が好ましい。
Figure JPOXMLDOC01-appb-C000012
 R30~R46はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基および-P(=O)R4748からなる群より選ばれる。R47およびR48はアリール基またはヘテロアリール基である。R30~R48は隣接する置換基同士で環を形成してもよい。Aはアリーレン基またはヘテロアリーレン基である。但し、R32およびR34の少なくとも1つがアリール基またはヘテロアリール基であるか、もしくはR33がアルキル基またはシクロアルキル基である。
Figure JPOXMLDOC01-appb-C000013
 R60~R75はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基および-P(=O)R7677からなる群より選ばれる。R76およびR77はアリール基またはヘテロアリール基である。R60~R77は隣接する置換基同士で環を形成してもよい。Aはアリーレン基またはヘテロアリーレン基である。但し、R62およびR64の少なくとも1つがアリール基またはヘテロアリール基であるか、もしくはR63がアルキル基またはシクロアルキル基である。
 さらに、一般式(2)におけるR11~R18の少なくとも1つ、または一般式(3)におけるR39~R46の少なくとも1つがアルキル基、シクロアルキル基、アリール基およびヘテロアリール基の中から選ばれた基であることや、一般式(4)におけるR62およびR64が水素であり、R63がアルキル基であり、R67がアリール基またはヘテロアリール基であることも好ましい形態として挙げられる。もしくはR11~R18のうちの隣接する少なくとも2つ、または、R39~R46のうちの隣接する少なくとも2つが結合して環を形成することも好ましい形態として挙げられる。このような構造をとることにより、ピレン化合物同士の相互作用が抑制され、高い発光効率が可能となるとともに薄膜安定性も向上するため好ましい。
 また、一般式(1)で表される化合物がアントラセン骨格を有する場合、以下のような化合物が好ましい。
Figure JPOXMLDOC01-appb-C000014
 ここで、R80~R97はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、カルボニル基、エステル基、カルバモイル基、アミノ基、シリル基および-P(=O)R9899からなる群より選ばれる。R98およびR99はアリール基またはヘテロアリール基である。R80~R99は隣接する置換基同士で環を形成してもよい。nは1~2の整数である。Xは-O-、-S-および-NR100-からなる群より選ばれる。R100は水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アリール基、ヘテロアリール基およびアミノ基からなる群より選ばれる。R100はR90またはR97と結合し環を形成してもよい。Aは単結合、アリーレン基およびヘテロアリーレン基からなる群より選ばれる。R80~R89のうちいずれかn個およびR90~R100のうちいずれか1つはAとの連結に用いられる。
 中でも、一般式(5)のR90~R97が、水素、アルキル基、シクロアルキル基、アルコキシ基、フェニル基、ナフチル基、ヘテロアリール基の中から選ばれる少なくとも一つであるとき、薄膜安定性が向上し、発光効率が高い発光素子が可能となる。
 本発明の一般式(5)で表される化合物の中でも、原料入手の都合上、または合成が容易であることから一般式(6)もしくは(7)で表されるアントラセン化合物が好ましい。
Figure JPOXMLDOC01-appb-C000015
 ここで、R110~R126はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、フェニル基、アルキル置換フェニル基、アルコキシ置換フェニル基、アリール置換フェニル基、ナフチル基、アルキル置換ナフチル基、アルコキシ置換ナフチル基、アリール置換ナフチル基、フェナントリル基、アルキル置換フェナントリル基、アルコキシ置換フェナントリル基、アリール置換フェナントリル基、ヘテロアリール基、シリル基の中から選ばれる。Aはヘテロアリーレン基、または、炭素数が6以上12以下のアリーレン基である。
Figure JPOXMLDOC01-appb-C000016
 ここで、R140~R148はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、カルボニル基、エステル基、カルバモイル基、アミノ基、シリル基および-P(=O)R156157からなる群より選ばれる。R156およびR157はアリール基またはヘテロアリール基である。R149~R155それぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アルコキシ基、フェニル基、ナフチル基、ヘテロアリール基の中から選ばれる。Aは単結合、アリーレン基、ヘテロアリーレン基の中から選ばれる。
 さらに、一般式(6)におけるR114または一般式(7)におけるR144が水素、アルキル基、シクロアルキル基、複素環基、アルコキシ基、アルキルチオ基、アリール基、ヘテロアリール基、アミノ基、シリル基および隣接置換基との間に形成される環構造からなる群より選ばれることが好ましい形態として挙げられる。このような構造をとることにより、アントラセン化合物同士の相互作用が抑制され、高い発光効率が可能となるとともに薄膜安定性も向上するため好ましい。
 なお、以上の置換基のうち、アルキル基とは、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などの飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。置換されている場合の追加の置換基には特に制限は無く、例えば、アルキル基、アリール基、ヘテロアリール基等を挙げることができ、この点は、以下の記載にも共通する。また、アルキル基の炭素数は特に限定されないが、入手の容易性やコストの点から、通常1以上20以下、より好ましくは1以上8以下の範囲である。
 シクロアルキル基とは、例えば、シクロプロピル、シクロヘキシル、ノルボルニル、アダマンチルなどの飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルキル基部分の炭素数は特に限定されないが、通常、3以上20以下の範囲である。
 複素環基とは、例えば、ピラン環、ピペリジン環、環状アミドなどの炭素以外の原子を環内に有する脂肪族環を示し、これは置換基を有していても有していなくてもよい。複素環基の炭素数は特に限定されないが、通常、2以上20以下の範囲である。
 アルケニル基とは、例えば、ビニル基、アリル基、ブタジエニル基などの二重結合を含む不飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルケニル基の炭素数は特に限定されないが、通常、2~20の範囲である。
 シクロアルケニル基とは、例えば、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセニル基などの二重結合を含む不飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。
 アルキニル基とは、例えば、エチニル基などの三重結合を含む不飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルキニル基の炭素数は特に限定されないが、通常、2~20の範囲である。
 アルコキシ基とは、例えば、メトキシ基、エトキシ基、プロポキシ基などのエーテル結合を介して脂肪族炭化水素基が結合した官能基を示し、この脂肪族炭化水素基は置換基を有していても有していなくてもよい。アルコキシ基の炭素数は特に限定されないが、通常、1以上20以下の範囲である。
 アルキルチオ基とは、アルコキシ基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アルキルチオ基の炭化水素基は置換基を有していても有していなくてもよい。アルキルチオ基の炭素数は特に限定されないが、通常、1以上20以下の範囲である。
 アリールエーテル基とは、例えば、フェノキシ基など、エーテル結合を介した芳香族炭化水素基が結合した官能基を示し、芳香族炭化水素基は置換基を有していても有していなくてもよい。アリールエーテル基の炭素数は特に限定されないが、通常、6以上40以下の範囲である。
 アリールチオエーテル基とは、アリールエーテル基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アリールエーテル基における芳香族炭化水素基は置換基を有していても有していなくてもよい。アリールエーテル基の炭素数は特に限定されないが、通常、6以上40以下の範囲である。
 アリール基とは、例えば、フェニル基、ナフチル基、ビフェニル基、フェナントリル基、ターフェニル基などの芳香族炭化水素基を示す。アリール基は、置換基を有していても有していなくてもよい。アリール基の炭素数は特に限定されないが、通常、6~40の範囲である。
 ヘテロアリール基とは、ピリジル基、キノリニル基、ピラジニル基、ナフチリジル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基などの炭素以外の原子を一個または複数個環内に有する環状芳香族基を示し、これは無置換でも置換されていてもかまわない。ヘテロアリール基の炭素数は特に限定されないが、通常、2~30の範囲である。ヘテロアリール基の連結位置はどの部分でもよく、例えばピリジル基の場合、2-ピリジル基、3-ピリジル基または4-ピリジル基のいずれでもよい。
 ハロゲン原子とは、フッ素、塩素、臭素、ヨウ素を示す。カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ホスフィンオキサイド基は、置換基を有していても有していなくてもよく、置換基としては例えばアルキル基、シクロアルキル基、アリール基、ヘテロアリール基などが挙げられ、これら置換基はさらに置換されてもよい。
 シリル基とは、例えば、トリメチルシリル基などのケイ素原子への結合を有する官能基を示し、これは置換基を有していても有していなくてもよい。シリル基の炭素数は特に限定されないが、通常、3~20の範囲である。また、ケイ素数は、通常、1~6である。
 アリーレン基とは、フェニル基、ナフチル基、ビフェニル基、フェナントリル基、ターフェニル基などの芳香族炭化水素基から導かれる2価の基を示し、これは置換基を有していても有していなくてもよい。アリーレン基の炭素数は特に限定されないが、通常、6~40の範囲である。一般式(1)のAがアリーレン基の場合、該アリーレン基は置換基を有していても有していなくてもよいが、置換基も含めて炭素数は6~30の範囲である。
 ヘテロアリーレン基とは、ピリジル基、キノリニル基、ピラジニル基、ナフチリジル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基などの炭素以外の原子を一個または複数個環内に有する環状芳香族基から導かれる2価の基を示し、これは置換基を有していても有していなくてもよい。ヘテロアリーレン基の炭素数は特に限定されないが、通常、置換基も含めて2~30の範囲である。
 隣接する置換基同士で環を形成する場合、任意の隣接2置換基(例えば一般式(1)のRとR)が互いに結合して共役または非共役の縮合環を形成できる。縮合環の構成元素として、炭素以外にも窒素、酸素、硫黄、リン、ケイ素原子を含んでいてもよいし、さらに別の環と縮合してもよい。上記のような有機化合物として、特に限定されるものではないが、具体的には以下のような例が挙げられる。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
 本発明の発光素子において、第一電極と第二電極は素子の発光のために十分な電流を供給するための役割を有するものであり、光を取り出すために少なくとも一方は透明または半透明であることが望ましい。通常、基板上に形成される第一電極を透明電極とし、これを陽極、第二電極を陰極とする。
 第一電極に用いる材料は、正孔を有機層に効率よく注入できる材料、かつ光を取り出すために透明または半透明であれば、酸化錫、酸化インジウム、酸化錫インジウム(ITO)酸化亜鉛インジウム(IZO)などの導電性金属酸化物、あるいは、金、銀、クロムなどの金属、ヨウ化銅、硫化銅などの無機導電性物質、ポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマなど特に限定されるものでないが、ITOガラスやネサガラスを用いることが特に望ましい。これらの電極材料は、単独で用いてもよいが、複数の材料を積層または混合して用いてもよい。透明電極の抵抗は素子の発光に十分な電流が供給できればよいので限定されないが、素子の消費電力の観点からは低抵抗であることが望ましい。例えば300Ω/□以下のITO基板であれば素子電極として機能するが、現在では10Ω/□程度の基板の供給も可能になっていることから、20Ω/□以下の低抵抗の基板を使用することが特に望ましい。ITOの厚みは抵抗値に合わせて任意に選ぶ事ができるが、通常100~300nmの間で用いられることが多い。
 また、発光素子の機械的強度を保つために、発光素子を基板上に形成することが好ましい。基板は、ソーダガラスや無アルカリガラスなどのガラス基板が好適に用いられる。ガラス基板の厚みは、機械的強度を保つのに十分な厚みがあればよいので、0.5mm以上あれば十分である。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスの方が好ましい。または、SiOなどのバリアコートを施したソーダライムガラスも市販されているのでこれを使用することもできる。さらに、第一電極が安定に機能するのであれば、基板はガラスである必要はなく、例えば、プラスチック基板上に陽極を形成しても良い。ITO膜形成方法は、電子線ビーム法、スパッタリング法および化学反応法など特に制限を受けるものではない。
 第二電極に用いる材料は、電子を効率よく発光層に注入できる物質であれば特に限定されない。一般的には白金、金、銀、銅、鉄、錫、アルミニウム、インジウムなどの金属、またはこれらの金属とリチウム、ナトリウム、カリウム、カルシウム、マグネシウムなどの低仕事関数金属との合金や多層積層などが好ましい。中でも、主成分としてはアルミニウム、銀、マグネシウムが電気抵抗値や製膜しやすさ、膜の安定性、発光効率などの面から好ましい。特にマグネシウムと銀で構成されると、本発明における電子輸送層および電子注入層への電子注入が容易になり、低電圧駆動が可能になるため好ましい。
 さらに、第二電極保護のために白金、金、銀、銅、鉄、錫、アルミニウムおよびインジウムなどの金属、またはこれら金属を用いた合金、シリカ、チタニアおよび窒化ケイ素などの無機物、ポリビニルアルコール、ポリ塩化ビニル、炭化水素系高分子化合物などの有機高分子化合物を、保護膜層として第二電極上に積層することが好ましい例として挙げられる。ただし、第二電極側から光を取り出す素子構造(トップエミッション構造)の場合は、保護膜層は可視光領域で光透過性のある材料から選択される。これらの電極の作製法は、抵抗加熱、電子線ビーム、スパッタリング、イオンプレーティングおよびコーティングなど特に制限されない。
 正孔輸送層は、正孔輸送材料の一種または二種以上を積層または混合する方法、もしくは、正孔輸送材料と高分子結着剤の混合物を用いる方法により形成される。また、正孔輸送材料に塩化鉄(III)のような無機塩を添加して正孔輸送層を形成してもよい。正孔輸送材料は、電界を与えられた電極間において正極からの正孔を効率良く輸送することが必要で、正孔注入効率が高く、注入された正孔を効率良く輸送することが望ましい。そのためには適切なイオン化ポテンシャルを持ち、しかも正孔移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが要求される。このような条件を満たす物質として、特に限定されるものではないが、4,4’-ビス(N-(3-メチルフェニル)-N-フェニルアミノ)ビフェニル、4,4’-ビス(N-(1-ナフチル)-N-フェニルアミノ)ビフェニル、4,4’,4”-トリス(3-メチルフェニル(フェニル)アミノ)トリフェニルアミンなどのトリフェニルアミン誘導体、ビス(N-アリルカルバゾール)またはビス(N-アルキルカルバゾール)などのビスカルバゾール誘導体、ピラゾリン誘導体、スチルベン系化合物、ヒドラゾン系化合物、ベンゾフラン誘導体やチオフェン誘導体、オキサジアゾール誘導体、フタロシアニン誘導体、ポルフィリン誘導体などの複素環化合物、フラーレン誘導体、ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリチオフェン、ポリアニリン、ポリフルオレン、ポリビニルカルバゾールおよびポリシランなどが好ましい。
 さらにp型Si、p型SiC等の無機化合物も使用できる。また、下記一般式(8)で表される化合物、テトラフルオロテトラシアノキノジメタン(4F-TCNQ)または酸化モリブデンも用いることができる。
Figure JPOXMLDOC01-appb-C000054
 R170~R175はそれぞれ同じでも異なっていてもよく、ハロゲン、スルホニル基、カルボニル基、ニトロ基、シアノ基、トリフルオロメチル基からなる群より選ばれる。
 中でも、化合物(9)(1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリル)が正孔輸送層または正孔注入層に含まれると、発光層に隣接する正孔輸送層から電子を強く引き抜くため、数多くの正孔が発光層へ注入され、層間のエネルギー障壁が緩和され、より低電圧駆動となるため好ましい。
Figure JPOXMLDOC01-appb-C000055
 本発明において、発光層は単一層、複数層のどちらでもよく、それぞれ発光材料(ホスト材料、ドーパント材料)により形成され、これはホスト材料とドーパント材料との混合物であっても、ホスト材料単独であっても、いずれでもよい。すなわち、本発明の発光素子では、各発光層において、ホスト材料もしくはドーパント材料のみが発光してもよいし、ホスト材料とドーパント材料がともに発光してもよい。電気エネルギーを効率よく利用し、高色純度の発光を得るという観点からは、発光層はホスト材料とドーパント材料の混合物であることが好ましい。また、ホスト材料とドーパント材料は、それぞれ一種類であっても、複数の組み合わせであっても、いずれでもよい。ドーパント材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれでもよい。ドーパント材料は積層されていても、分散されていても、いずれでもよい。ドーパント材料は発光色の制御ができる。ドーパント材料の量は、多すぎると濃度消光現象が起きるため、ホスト材料に対して20重量%以下で用いることが好ましく、さらに好ましくは10重量%以下である。ドーピング方法は、ホスト材料との共蒸着法によって形成することができるが、ホスト材料と予め混合してから同時に蒸着してもよい。
 発光材料は、具体的には、以前から発光体として知られていたアントラセンやピレンなどの縮合環誘導体、トリス(8-キノリノラト)アルミニウムを始めとする金属キレート化オキシノイド化合物、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、インデン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、オキサジアゾール誘導体、チアジアゾロピリジン誘導体、ジベンゾフラン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、そして、ポリチオフェン誘導体などが使用できるが特に限定されるものではない。
 発光材料に含有されるホスト材料は、特に限定されないが、ナフタレン、アントラセン、フェナンスレン、ピレン、クリセン、ナフタセン、トリフェニレン、ペリレン、フルオランテン、フルオレン、インデンなどの縮合アリール環を有する化合物やその誘導体、N,N’-ジナフチル-N,N’-ジフェニル-4,4’-ジフェニル-1,1’-ジアミンなどの芳香族アミン誘導体、トリス(8-キノリナート)アルミニウム(III)をはじめとする金属キレート化オキシノイド化合物、ジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、インデン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、ピロロピロール誘導体、チアジアゾロピリジン誘導体、ジベンゾフラン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、カルボリン誘導体、ピリドインドール誘導体、トリアジン誘導体、ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、ポリチオフェン誘導体などが使用できるが特に限定されるものではない。中でも、発光層がりん光発光を行う際に用いられるホストとしては、金属キレート化オキシノイド化合物、クリセン誘導体、ビナフチル誘導体、ジベンゾフラン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、カルボリン誘導体、ピリドインドール誘導体、トリアジン誘導体などが好適に用いられる。
 ドーパント材料は、特に限定されないが、ナフタレン、アントラセン、フェナンスレン、ピレン、クリセン、トリフェニレン、ペリレン、フルオランテン、フルオレン、インデンなどの縮合アリール環を有する化合物やその誘導体(例えば2-(ベンゾチアゾール-2-イル)-9,10-ジフェニルアントラセンや5,6,11,12-テトラフェニルナフタセンなど)、フラン、ピロール、チオフェン、シロール、9-シラフルオレン、9,9’-スピロビシラフルオレン、ベンゾチオフェン、ベンゾフラン、インドール、ジベンゾチオフェン、ジベンゾフラン、イミダゾピリジン、フェナントロリン、ピリジン、ピラジン、ナフチリジン、キノキサリン、ピロロピリジン、チオキサンテンなどのヘテロアリール環を有する化合物やその誘導体、ボラン誘導体、ジスチリルベンゼン誘導体、4,4’-ビス(2-(4-ジフェニルアミノフェニル)エテニル)ビフェニル、4,4’-ビス(N-(スチルベン-4-イル)-N-フェニルアミノ)スチルベンなどのアミノスチリル誘導体、芳香族アセチレン誘導体、テトラフェニルブタジエン誘導体、スチルベン誘導体、アルダジン誘導体、ピロメテン誘導体、ジケトピロロ[3,4-c]ピロール誘導体、2,3,5,6-1H,4H-テトラヒドロ-9-(2’-ベンゾチアゾリル)キノリジノ[9,9a,1-gh]クマリンなどのクマリン誘導体、イミダゾール、チアゾール、チアジアゾール、カルバゾール、オキサゾール、オキサジアゾール、トリアゾールなどのアゾール誘導体およびその金属錯体およびN,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジフェニル-1,1’-ジアミンに代表される芳香族アミン誘導体などが挙げられる。また、発光層がりん光発光を行う際に用いられるドーパントとしては、イリジウム(Ir)、ルテニウム(Ru)、パラジウム(Pd)、白金(Pt)、オスミウム(Os)、及びレニウム(Re)からなる群から選択される少なくとも一つの金属を含む金属錯体化合物であることが好ましく、配位子は、フェニルピリジン骨格またはフェニルキノリン骨格などの含窒素芳香族複素環を有することが好ましい。しかしながら、これらに限定されるものではなく、要求される発光色、素子性能、ホスト化合物との関係から適切な錯体が選ばれる。
 本発明のように一般式(1)~(7)で表される化合物を電子輸送層に用いる場合には、上記の中でもりん光発光材料を発光層に有していることが、優れた電子注入特性と電子輸送特性により高発光効率が可能となるため好ましい。りん光発光材料の好ましい組み合せとしては、例えば、上記金属キレート化オキシノイド化合物、ジベンゾフラン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、カルボリン誘導体、ピリドインドール誘導体、トリアジン誘導体などの組み合わせが挙げられる。このような化合物を発光層に用いた場合、りん光発光の量子収率が高く、発光素子の発光効率をより向上させることができる。金属キレート化オキシノイド化合物に含まれる金属はイリジウム、パラジウム、白金などが好ましいが、中でもイリジウムが特に好ましい。
 好ましいりん光発光性ホストまたはドーパントとしては、特に限定されるものではないが、具体的には以下のような例が挙げられる。
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
 本発明において、電子輸送層とは、陰極から電子が注入され、さらに電子を輸送する層である。電子輸送層には、電子注入効率が高く、注入された電子を効率良く輸送することが望まれる。そのため電子輸送層は、電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質で構成されることが望ましい。しかしながら、正孔と電子の輸送バランスを考えた場合に、電子輸送層が陽極からの正孔が再結合せずに陰極側へ流れるのを効率よく阻止できる役割を主に果たすならば、電子輸送能力がそれ程高くない材料で構成されていても、発光効率を向上させる効果は電子輸送能力が高い材料で構成されている場合と同等となる。したがって、本発明における電子輸送層には、正孔の移動を効率よく阻止できる正孔阻止層も同義のものとして含まれる。
 一般式(1)~(7)で表される化合物は、上記条件を満たす化合物であり、高い電子注入輸送能を有することから電子輸送材料として好適に用いられる。
 一般式(1)~(7)で表される化合物は、ピレン骨格と特定置換基を含有するため電子注入輸送性、電気化学的安定性に優れる。また、上記置換基の導入により、後述のドナー性化合物との薄膜状態における相溶性が向上し、より高い電子注入輸送能を発現する。この混合物層の働きにより、陰極から発光層への電子の輸送が促進され、高発光効率と低駆動電圧を両立することができる。
 さらに、本発明の一般式(1)~(7)で表される化合物が、電子受容性窒素を有するヘテロアリール環構造を含む置換基を有すると、陰極からの電子注入または電子輸送能の点から好ましく用いられる。この置換基は、ピレンまたはアントラセンに直接または連結基を介して結合していることが好ましい。
 本発明における電子受容性窒素とは、隣接原子との間に多重結合を形成している窒素原子を表す。窒素原子が高い電子陰性度を有することから、該多重結合は電子受容的な性質を有する。それゆえ、電子受容性窒素を含むヘテロアリール環は、高い電子親和性を有し、電子輸送能に優れ、これを有する材料を電子輸送層に用いることで発光素子の駆動電圧を低減できる。電子受容性窒素を含むヘテロアリール環は、例えば、ピリジン環、ピラジン環、ピリミジン環、キノリン環、キノキサリン環、ナフチリジン環、ピリミドピリミジン環、ベンゾキノリン環、フェナントロリン環、イミダゾール環、オキサゾール環、オキサジアゾール環、トリアゾール環、チアゾール環、チアジアゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンズイミダゾール環、フェナンスロイミダゾール環などが挙げられる。
 中でも、ピリジン環、ピリミジン環、トリアジン環などの6員環構造を有する一般式(1)~(7)で表される化合物が好ましく、ピリジン環を有すると、より好ましい。ピリジン環の中でも、3-ピリジル基がピレンまたはアントラセンに直接結合すると、最も電子注入または電子輸送能が高くなり、低駆動電圧となるため、さらに好ましい。
 なお、電子受容性窒素を有するヘテロアリール環構造を含む置換基が連結基を介して結合している場合、連結基としては、アリーレン基またはヘテロアリーレン基が好ましく、これらはアルキル基で置換されていてもよい。特に、置換基も含めて炭素数3~12のアリーレン基またはヘテロアリーレン基が好ましく、フェニレン基が特に好ましい。
 本発明で用いられる電子輸送材料は、本発明の一般式(1)~(7)で表される化合物各一種のみに限る必要はなく、本発明の複数の化合物を混合して用いたり、その他の電子輸送材料の一種類以上を本発明の効果を損なわない範囲で本発明の化合物と混合して用いてもよい。混合しうる電子輸送材料としては、特に限定されないが、ナフタレン、アントラセン、ピレンなどの縮合アリール環を有する化合物やその誘導体、4,4’-ビス(ジフェニルエテニル)ビフェニルに代表されるスチリル系芳香環誘導体、ペリレン誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノンやジフェノキノンなどのキノン誘導体、リンオキサイド誘導体、カルバゾール誘導体およびインドール誘導体、トリス(8-キノリノラート)アルミニウム(III)などのキノリノール錯体やヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体およびフラボノール金属錯体が挙げられるが、駆動電圧を低減できることから、電子受容性窒素を有するヘテロアリール環構造を含む化合物を用いることが好ましい。
 これらのヘテロアリール環構造を有する化合物としては、例えば、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ピラジン誘導体、ピリジン誘導体、ピリミジン誘導体、トリアジン誘導体、フェナントロリン誘導体、キノキサリン誘導体、キノリン誘導体、ベンゾキノリン誘導体、ビピリジンやターピリジンなどのオリゴピリジン誘導体、キノキサリン誘導体およびナフチリジン誘導体などが好ましい化合物として挙げられる。
 中でも、トリス(N-フェニルベンズイミダゾール-2-イル)ベンゼンなどのイミダゾール誘導体、1,3-ビス[(4-tert-ブチルフェニル)1,3,4-オキサジアゾリル]フェニレンなどのオキサジアゾール誘導体、N-ナフチル-2,5-ジフェニル-1,3,4-トリアゾールなどのトリアゾール誘導体、バソクプロインや1,3-ビス(1,10-フェナントロリン-9-イル)ベンゼンなどのフェナントロリン誘導体、2,2’-ビス(ベンゾ[h]キノリン-2-イル)-9,9’-スピロビフルオレンなどのベンゾキノリン誘導体、2,5-ビス(6’-(2’,2”-ビピリジル))-1,1-ジメチル-3,4-ジフェニルシロールなどのビピリジン誘導体、1,3-ビス(4’-(2,2’:6’2”-ターピリジニル))ベンゼンなどのターピリジン誘導体、ビス(1-ナフチル)-4-(1,8-ナフチリジン-2-イル)フェニルホスフィンオキサイドなどのナフチリジン誘導体が、電子輸送能の点から好ましく用いられる。
 次に、ドナー性化合物について説明する。本発明におけるドナー性化合物は電子注入障壁の改善により、第二電極または電子注入層からの電子輸送層への電子注入を容易にし、さらに電子輸送層の電気伝導性を向上させる化合物である。すなわち本発明の発光素子は電子輸送能力を向上させるために電子輸送層にドナー性化合物をドーピングしたものである。
 本発明におけるドナー性化合物の好ましい例としては、アルカリ金属、アルカリ金属を含有する無機塩、アルカリ金属と有機物との錯体、アルカリ土類金属、アルカリ土類金属を含有する無機塩またはアルカリ土類金属と有機物との錯体などが挙げられる。アルカリ金属、アルカリ土類金属の好ましい種類としては、低仕事関数で電子輸送能向上の効果が大きいリチウム、ナトリウム、セシウムといったアルカリ金属や、マグネシウム、カルシウムといったアルカリ土類金属が挙げられる。
 また、真空中での蒸着が容易で取り扱いに優れることから、金属単体よりも無機塩、あるいは有機物との錯体の状態であることが好ましい。さらに、大気中での取扱を容易にし、添加濃度の制御のし易さの点で、有機物との錯体の状態にあることがより好ましい。無機塩の例としては、LiO、Li2O等の酸化物、窒化物、LiF、NaF、KF等のフッ化物、Li2CO3、Na2CO3、K2CO3、Rb2CO3、Cs2CO3等の炭酸塩などが挙げられる。また、アルカリ金属またはアルカリ土類金属の好ましい例としては、原料が安価で合成が容易な点から、リチウムが挙げられる。また、有機物との錯体における有機物の好ましい例としては、キノリノール、ベンゾキノリノール、フラボノール、ヒドロキシイミダゾピリジン、ヒドロキシベンズアゾール、ヒドロキシトリアゾールなどが挙げられる。中でも、アルカリ金属と有機物との錯体が好ましく、リチウムと有機物との錯体がより好ましい。具体的には、リチウムと電子受容性窒素を含むヘテロアリール環を有する化合物との錯体が好ましく、リチウムキノリノールが特に好ましい。
 また、電子輸送層中のドナー性化合物のドーピング割合が適切であると、陰極または電子注入層からの電子輸送層への電子の注入割合が増加し、陰極と電子注入層間または電子注入層と電子輸送層間でのエネルギー障壁が軽減され低駆動電圧化する。好適なドーピング濃度は材料やドーピング領域の膜厚によっても異なるが、有機化合物とドナー性化合物のモル比100:1~1:100の範囲が好ましく、10:1~1:10がより好ましい。
 電子輸送層にドナー性化合物をドーピングして電子輸送能を向上させる方法は、薄膜層の膜厚が厚い場合に特に効果を発揮するものである。電子輸送層および発光層の合計膜厚が50nm以上の場合に特に好ましく用いられる。例えば、発光効率を向上させるために干渉効果を利用する方法があるが、これは発光層から直接放射される光と、陰極で反射された光の位相を整合させて光の取り出し効率を向上させるものである。この最適条件は光の発光波長に応じて変化するが、電子輸送層および発光層の合計膜厚が50nm以上となり、赤色などの長波長発光の場合には100nm近くの厚膜になる場合がある。
 ドーピングする電子輸送層の膜厚は、電子輸送層の一部分または全部のどちらでも構わないが、電子輸送層全体の膜厚が厚いほどドーピングする濃度も濃い方がよい。一部分にドーピングする場合、少なくとも電子輸送層/陰極界面にはドーピング領域を設けることが望ましく、陰極界面付近にドーピングするだけでも低電圧化の効果は得られる。一方、ドナー性化合物が発光層にドーピングされると発光効率を低下させる悪影響を及ぼす場合には、発光層/電子輸送層界面にノンドープ領域を設けることが望ましい。
 発光素子を構成する上記各層の形成方法は、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、コーティング法など特に限定されないが、通常は、素子特性の点から抵抗加熱蒸着または電子ビーム蒸着が好ましい。
 有機層の厚みは、発光物質の抵抗値にもよるので限定することはできないが、1~1000nmであることが好ましい。発光層、電子輸送層、正孔輸送層の膜厚はそれぞれ、好ましくは1nm以上200nm以下であり、さらに好ましくは5nm以上100nm以下である。
 本発明の発光素子は、電気エネルギーを光に変換できる機能を有する。ここで電気エネルギーとしては主に直流電流が使用されるが、パルス電流や交流電流を用いることも可能である。電流値および電圧値は特に制限はないが、素子の消費電力や寿命を考慮すると、できるだけ低いエネルギーで最大の輝度が得られるよう選ばれるべきである。
 本発明の発光素子は、例えば、マトリクスおよび/またはセグメント方式で表示するディスプレイとして好適に用いられる。
 マトリクス方式とは、表示のための画素が格子状やモザイク状など二次元的に配置され、画素の集合で文字や画像を表示する。画素の形状やサイズは用途によって決まる。例えば、パソコン、モニター、テレビの画像および文字表示には、通常一辺が300μm以下の四角形の画素が用いられ、また、表示パネルのような大型ディスプレイの場合は、一辺がmmオーダーの画素を用いることになる。モノクロ表示の場合は、同じ色の画素を配列すればよいが、カラー表示の場合には、赤、緑、青の画素を並べて表示させる。この場合、典型的にはデルタタイプとストライプタイプがある。そして、このマトリクスの駆動方法は、線順次駆動方法やアクティブマトリクスのどちらでもよい。線順次駆動はその構造が簡単であるが、動作特性を考慮した場合、アクティブマトリクスの方が優れる場合があるので、これも用途によって使い分けることが必要である。
 本発明におけるセグメント方式とは、予め決められた情報を表示するようにパターンを形成し、このパターンの配置によって決められた領域を発光させる方式である。例えば、デジタル時計や温度計における時刻や温度表示、オーディオ機器や電磁調理器などの動作状態表示および自動車のパネル表示などが挙げられる。そして、前記マトリクス表示とセグメント表示は同じパネルの中に共存していてもよい。
本発明の発光素子は、各種機器等のバックライトとしても好ましく用いられる。バックライトは、主に自発光しない表示装置の視認性を向上させる目的に使用され、液晶表示装置、時計、オーディオ装置、自動車パネル、表示板および標識などに使用される。特に、液晶表示装置、中でも薄型化が検討されているパソコン用途のバックライトに本発明の発光素子は好ましく用いられ、従来のものより薄型で軽量なバックライトを提供できる。
 以下、実施例をあげて本発明を説明するが、本発明はこれらの実施例によって限定されるものではない。
 実施例1
 ITO透明導電膜を150nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入材料として、銅フタロシアニンを10nm、正孔輸送材料として、4,4’-ビス(N-(1-ナフチル)-N-フェニルアミノ)ビフェニルを50nm蒸着した。次に、発光材料に、ホスト材料として化合物(H-1)を、ドーパント材料として化合物(D-1)をドープ濃度が5重量%になるようにして40nmの厚さに蒸着した。次に、有機化合物(1E-1)とドナー性化合物(フッ化リチウム)を混合した層を、電子輸送層として蒸着速度比1:1(=0.05nm/s:0.05nm/s)で20nmの厚さに蒸着して積層した。
 次に、フッ化リチウムを0.5nm蒸着した後、アルミニウムを1000nm蒸着して陰極とし、5×5mm角の素子を作製した。ここで言う膜厚は、水晶発振式膜厚モニター表示値である。この発光素子を10mA/cmで直流駆動したところ、駆動電圧4.8V、外部量子効率5.3%の高効率青色発光が得られた。
 実施例2~32
 ホスト材料、ドーパント材料、電子輸送層として表1~2に記載した材料を用いた以外は、実施例1と同様にして発光素子を作製した。各実施例の結果は表1~2に示した。
 比較例1
 電子輸送層としてドナー性化合物を用いなかったこと以外は、実施例1と同様にして発光素子を作製した。この発光素子を10mA/cmで直流駆動したところ、駆動電圧6.4V、外部量子効率4.2%の高効率青色発光が得られた。
 比較例2~8
 ホスト材料、ドーパント材料、電子輸送材料として表1~2に記載した材料を用いた以外は、実施例1と同様にして発光素子を作製した。各比較例の結果は表1~2に示した。
 実施例33
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入材料として、1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリルを10nm、正孔輸送材料として、4,4’-ビス(N-(1-ナフチル)-N-フェニルアミノ)ビフェニルを50nm蒸着した。次に、発光材料に、ホスト材料として化合物(H-1)を、ドーパント材料として化合物(D-2)をドープ濃度が5%になるようにして40nmの厚さに蒸着した。次に、有機化合物(1E-1)とドナー性化合物(リチウムキノリノール)を蒸着速度比1:1(=0.05nm/s:0.05nm/s)で混合した層を、電子輸送層として10nmの厚さに積層した。
 次に、リチウムキノリノールを1nm蒸着した後、マグネシウムと銀の共蒸着膜を蒸着速度比がマグネシウム:銀=10:1(=0.5nm/s:0.05nm/s)で100nm蒸着して陰極とし、5×5mm角の素子を作製した。ここで言う膜厚は、水晶発振式膜厚モニター表示値である。この発光素子を10mA/cmで直流駆動したところ、駆動電圧4.3V、外部量子効率6.3%の高効率青色発光が得られた。
 実施例34~102
 ホスト材料、ドーパント材料、電子輸送層として表3~6に記載した材料を用いた以外は、実施例33と同様にして発光素子を作製した。各実施例の結果は表3~6に示した。
 比較例9~16
 ホスト材料、ドーパント材料、電子輸送材料として表3~6に記載した材料を用いた以外は、実施例33と同様にして発光素子を作製した。各比較例の結果は表3~6に示した。
 各実施例および比較例で用いた化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000072
 本発明の発光素子材料は、発光素子等に利用可能で、薄膜安定性に優れた発光素子材料を提供できる。本発明によれば、高い発光効率と低駆動電圧を両立した発光素子が得られる。本発明の発光素子は、表示素子、フラットパネルディスプレイ、バックライト、照明、インテリア、標識、看板、電子写真機および光信号発生器などの分野に利用可能である。

Claims (13)

  1. 基板上に形成された第一電極上に、少なくとも発光層および電子輸送層を含む薄膜層と、薄膜層上に形成された第二電極とを含む有機電界発光素子であって、前記電子輸送層が下記一般式(1)で表される有機化合物とドナー性化合物とを含むことを特徴とする発光素子。
    Figure JPOXMLDOC01-appb-C000001
    (Yは置換または無置換のピレンもしくは置換または無置換のアントラセンのいずれかである。Aは単結合、アリーレン基およびヘテロアリーレン基からなる群より選ばれる。Arはカルバゾリル基、ジベンゾフラニル基、およびジベンゾチオフェニル基からなる群より選ばれる。これらの基は置換されていても無置換でも良い。nは1~3の整数である。)
  2. ドナー性化合物がアルカリ金属、アルカリ金属を含有する無機塩、アルカリ金属と有機物との錯体、アルカリ土類金属、アルカリ土類金属を含有する無機塩またはアルカリ土類金属と有機物との錯体であることを特徴とする請求項1記載の発光素子。
  3. ドナー性化合物がアルカリ金属と有機物との錯体またはアルカリ土類金属と有機物との錯体であることを特徴とする請求項1または2記載の発光素子。
  4. 発光層がりん光発光材料を含有することを特徴とする1~3のいずれか記載の発光素子。
  5. 正孔注入・輸送層が下記一般式(8)で表される化合物を含有することを特徴とする請求項1~4のいずれか記載の発光素子。
    Figure JPOXMLDOC01-appb-C000002
    (R170~R175はそれぞれ同じでも異なっていてもよく、ハロゲン、スルホニル基、カルボニル基、ニトロ基、シアノ基、トリフルオロメチル基からなる群より選ばれる。)
  6. 前記有機化合物が下記一般式(2)で表されることを特徴とする請求項1~5のいずれか記載の発光素子。
    Figure JPOXMLDOC01-appb-C000003
    (R~R18はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基および-P(=O)R1920からなる群より選ばれる。R19およびR20はアリール基またはヘテロアリール基である。R~R20は隣接する置換基同士で環を形成してもよい。nは1~3の整数である。Xは-O-、-S-および-NR21-からなる群より選ばれる。R21は水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アリール基、ヘテロアリール基およびアミノ基からなる群より選ばれる。R21はR11またはR18と結合し環を形成してもよい。Aは単結合、アリーレン基およびヘテロアリーレン基からなる群より選ばれる。R~R10のうちいずれかn個およびR11~R21のうちいずれか1つはAとの連結に用いられる。但し、R、R、Rのうち少なくとも1つはRと異なる基である。)
  7. 前記有機化合物が下記一般式(3)で表されることを特徴とする請求項6記載の発光素子。
    Figure JPOXMLDOC01-appb-C000004
    (R30~R46はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基および-P(=O)R4748からなる群より選ばれる。R47およびR48はアリール基またはヘテロアリール基である。R30~R48は隣接する置換基同士で環を形成してもよい。Aはアリーレン基またはヘテロアリーレン基である。但し、R32およびR34の少なくとも1つがアリール基またはヘテロアリール基であるか、もしくはR33がアルキル基またはシクロアルキル基である。)
  8. 前記有機化合物が下記一般式(4)で表されることを特徴とする請求項6記載の発光素子。
    Figure JPOXMLDOC01-appb-C000005
    (R60~R75はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基および-P(=O)R7677からなる群より選ばれる。R76およびR77はアリール基またはヘテロアリール基である。R60~R77は隣接する置換基同士で環を形成してもよい。Aはアリーレン基またはヘテロアリーレン基である。但し、R62およびR64の少なくとも1つがアリール基またはヘテロアリール基であるか、もしくはR63がアルキル基またはシクロアルキル基である。)
  9. 前記有機化合物が下記一般式(5)で表されることを特徴とする請求項1~5のいずれか記載の発光素子。
    Figure JPOXMLDOC01-appb-C000006
    (ここで、R80~R97はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、カルボニル基、エステル基、カルバモイル基、アミノ基、シリル基および-P(=O)R9899からなる群より選ばれる。R98およびR99はアリール基またはヘテロアリール基である。R80~R99は隣接する置換基同士で環を形成してもよい。nは1~2の整数である。Xは-O-、-S-および-NR100-からなる群より選ばれる。R100は水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アリール基、ヘテロアリール基およびアミノ基からなる群より選ばれる。R100はR90またはR97と結合し環を形成してもよい。Aは単結合、アリーレン基およびヘテロアリーレン基からなる群より選ばれる。R80~R89のうちいずれかn個およびR90~R100のうちいずれか1つはAとの連結に用いられる。)
  10. 前記有機化合物が下記一般式(6)で表されることを特徴とする請求項9記載の発光素子。
    Figure JPOXMLDOC01-appb-C000007
    (ここで、R110~R126はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、フェニル基、アルキル置換フェニル基、アルコキシ置換フェニル基、アリール置換フェニル基、ナフチル基、アルキル置換ナフチル基、アルコキシ置換ナフチル基、アリール置換ナフチル基、フェナントリル基、アルキル置換フェナントリル基、アルコキシ置換フェナントリル基、アリール置換フェナントリル基、ヘテロアリール基、シリル基の中から選ばれる。Aはヘテロアリーレン基、または炭素数が6以上12以下のアリーレン基である。)
  11. 前記有機化合物が下記一般式(7)で表されることを特徴とする請求項9記載の発光素子。
    Figure JPOXMLDOC01-appb-C000008
    (ここで、R140~R148はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、カルボニル基、エステル基、カルバモイル基、アミノ基、シリル基および-P(=O)R156157からなる群より選ばれる。R156およびR157はアリール基またはヘテロアリール基である。R149~R155はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アルコキシ基、フェニル基、ナフチル基、ヘテロアリール基の中から選ばれる。Aは単結合、アリーレン基、ヘテロアリーレン基の中から選ばれる。)
  12. 前記有機化合物中のピレンまたはアントラセンが、電子受容性窒素を有するヘテロアリール環構造を含む置換基を有することを特徴とする請求項1~11のいずれか記載の発光素子。
  13. 第二電極がマグネシウムと銀で構成されることを特徴とする請求項1~12のいずれか記載の発光素子。
PCT/JP2009/061674 2008-07-01 2009-06-26 発光素子 WO2010001817A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200980125702XA CN102084514A (zh) 2008-07-01 2009-06-26 发光元件
KR1020117002440A KR101668887B1 (ko) 2008-07-01 2009-06-26 발광 소자
EP09773395.0A EP2296204B1 (en) 2008-07-01 2009-06-26 Light-emitting element
JP2009548540A JP5299288B2 (ja) 2008-07-01 2009-06-26 発光素子
US12/737,339 US8502201B2 (en) 2008-07-01 2009-06-26 Light-emitting element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-172125 2008-07-01
JP2008172125 2008-07-01
JP2009036213 2009-02-19
JP2009-036213 2009-02-19

Publications (1)

Publication Number Publication Date
WO2010001817A1 true WO2010001817A1 (ja) 2010-01-07

Family

ID=41465914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061674 WO2010001817A1 (ja) 2008-07-01 2009-06-26 発光素子

Country Status (7)

Country Link
US (1) US8502201B2 (ja)
EP (1) EP2296204B1 (ja)
JP (2) JP5299288B2 (ja)
KR (1) KR101668887B1 (ja)
CN (1) CN102084514A (ja)
TW (1) TWI601803B (ja)
WO (1) WO2010001817A1 (ja)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113743A1 (ja) 2009-03-30 2010-10-07 東レ株式会社 発光素子材料および発光素子
WO2011157790A1 (en) 2010-06-18 2011-12-22 Basf Se Organic electronic devices comprising a layer of a dibenzofurane compound and a 8-hydroxyquinolinolato earth alkaline metal, or alkali metal complex
WO2012008281A1 (ja) * 2010-07-13 2012-01-19 東レ株式会社 発光素子
JP2012015097A (ja) * 2010-06-03 2012-01-19 Canon Inc 表示装置
WO2012033062A1 (ja) * 2010-09-08 2012-03-15 富士フイルム株式会社 有機電界発光素子、及びジベンゾチオフェン構造又はジベンゾフラン構造を有する有機電界発光素子用材料
JP2012079915A (ja) * 2010-10-01 2012-04-19 Toray Ind Inc 発光素子材料および発光素子
WO2012124622A1 (ja) 2011-03-14 2012-09-20 東レ株式会社 発光素子材料および発光素子
WO2012153725A1 (ja) 2011-05-12 2012-11-15 東レ株式会社 発光素子材料および発光素子
WO2012173073A1 (ja) 2011-06-15 2012-12-20 東レ株式会社 発光素子材料および発光素子
JP2013048221A (ja) * 2011-07-22 2013-03-07 Semiconductor Energy Lab Co Ltd 発光素子、発光装置、表示装置、照明装置及び電子機器
JP2013063963A (ja) * 2011-08-31 2013-04-11 Semiconductor Energy Lab Co Ltd 複素環化合物、発光素子、発光装置、電子機器、及び照明装置
WO2013187258A1 (ja) 2012-06-12 2013-12-19 東レ株式会社 発光素子材料および発光素子
WO2014007287A1 (ja) 2012-07-05 2014-01-09 東レ株式会社 発光素子材料および発光素子
WO2014017484A1 (ja) 2012-07-25 2014-01-30 東レ株式会社 発光素子材料および発光素子
WO2014057874A1 (ja) 2012-10-12 2014-04-17 東レ株式会社 フルオランテン誘導体、それを含有する発光素子材料および発光素子
JP2014519189A (ja) * 2011-10-05 2014-08-07 エルジー・ケム・リミテッド 有機発光素子およびその製造方法
WO2014188947A1 (ja) * 2013-05-20 2014-11-27 保土谷化学工業株式会社 新規なピリミジン誘導体および有機エレクトロルミネッセンス素子
JP2015073110A (ja) * 2014-11-14 2015-04-16 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子、及びジベンゾチオフェン構造又はジベンゾフラン構造を有する有機電界発光素子用材
WO2015137292A1 (ja) * 2014-03-14 2015-09-17 ソニー株式会社 インク組成物、有機エレクトロルミネッセンス素子、及び電子機器
US9203037B2 (en) 2010-06-18 2015-12-01 Basf Se Organic electronic devices comprising a layer of a dibenzofurane compound and a 8-hydroxypquinolinolato earth alkaline metal, or alkali metal complex
US9209406B2 (en) 2011-11-22 2015-12-08 Idemitsu Kosan Co., Ltd. Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
WO2016056559A1 (ja) * 2014-10-07 2016-04-14 出光興産株式会社 有機エレクトロルミネッセンス素子、および電子機器
JP2016104733A (ja) * 2010-05-14 2016-06-09 メルク パテント ゲーエムベーハー 金属錯体
US9373792B2 (en) 2009-05-29 2016-06-21 Idemitsu Kosan Co., Ltd. Anthracene derivative and organic electroluminescent element using the same
KR101757444B1 (ko) * 2010-04-30 2017-07-13 삼성디스플레이 주식회사 유기 전계 발광 장치
JP2017208455A (ja) * 2016-05-19 2017-11-24 出光興産株式会社 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2019181858A1 (ja) * 2018-03-19 2019-09-26 出光興産株式会社 有機エレクトロルミネッセンス素子、及び電子機器
JP2023525358A (ja) * 2020-05-12 2023-06-15 エスエフシー カンパニー リミテッド 有機発光化合物及びこれを含む有機発光素子

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1942171B1 (en) * 2005-09-08 2018-04-18 Toray Industries, Inc. Light-emitting device material and light-emitting device
JP5587302B2 (ja) 2009-12-16 2014-09-10 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP6031030B2 (ja) * 2011-06-27 2016-11-24 新日鉄住金化学株式会社 有機電界発光素子用重合体及びそれを用いた有機電界発光素子
KR101294144B1 (ko) * 2011-07-19 2013-08-08 (주)위델소재 파이렌 유도체 및 이를 이용한 유기전계 발광 소자
KR101918953B1 (ko) 2012-03-06 2018-11-16 삼성디스플레이 주식회사 아민계 화합물, 이를 포함한 유기 발광 소자 및 이를 포함한 유기 발광 장치
KR102240991B1 (ko) 2012-09-12 2021-04-16 이데미쓰 고산 가부시키가이샤 신규 화합물, 유기 일렉트로 루미네선스 소자용 재료, 유기 일렉트로 루미네선스 소자 및 전자 기기
KR102086548B1 (ko) 2012-12-17 2020-03-10 삼성디스플레이 주식회사 파이렌계 화합물 및 이를 포함한 유기 발광 소자
KR102000208B1 (ko) 2012-12-20 2019-07-16 삼성디스플레이 주식회사 유기 발광 소자
KR101670193B1 (ko) 2013-03-15 2016-10-27 이데미쓰 고산 가부시키가이샤 안트라센 유도체 및 그것을 사용한 유기 전계 발광 소자
KR102104637B1 (ko) 2013-06-28 2020-04-27 삼성디스플레이 주식회사 유기전계발광소자
KR20150007011A (ko) 2013-07-10 2015-01-20 삼성디스플레이 주식회사 유기 발광 다이오드 및 유기 발광 표시 장치
CN104327024A (zh) * 2013-07-22 2015-02-04 东丽先端材料研究开发(中国)有限公司 一种发光元件材料及发光元件
KR102184674B1 (ko) 2013-08-09 2020-12-01 삼성디스플레이 주식회사 안트라센계 화합물 및 이를 포함한 유기 발광 소자
KR102181235B1 (ko) * 2013-08-30 2020-11-23 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
KR102167042B1 (ko) 2013-09-06 2020-10-19 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
EP2881446B1 (en) * 2013-12-05 2019-01-09 LG Display Co., Ltd. Organic compound and organic light emitting diode using the same
JP6427875B2 (ja) * 2013-12-26 2018-11-28 東ソー株式会社 有機電界発光素子
CN103700775B (zh) * 2013-12-31 2017-08-25 北京维信诺科技有限公司 一种有机电致发光器件及其制备方法
KR101537500B1 (ko) * 2014-04-04 2015-07-20 주식회사 엘지화학 유기 발광 소자
KR20230130152A (ko) * 2015-03-27 2023-09-11 이데미쓰 고산 가부시키가이샤 유기 일렉트로 루미네선스 소자, 전자 기기, 및 화합물
CN104744676B (zh) * 2015-03-30 2017-04-05 华南理工大学 含7H–吡咯并[3,4–g]喹喔啉–6,8–二酮的共轭聚合物及应用
US11018304B2 (en) 2015-11-30 2021-05-25 Samsung Display Co., Ltd. Organic light-emitting device
KR102427250B1 (ko) 2015-11-30 2022-08-01 삼성디스플레이 주식회사 유기 발광 소자
WO2018012780A1 (ko) * 2016-07-14 2018-01-18 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
US11205755B2 (en) * 2016-07-29 2021-12-21 Duk San Neolux Co., Ltd. Compound for organic electronic element, organic electronic element using same, and electronic device thereof
US11211563B2 (en) 2017-03-09 2021-12-28 Lg Chem, Ltd. Organic light emitting device
KR102084310B1 (ko) * 2017-06-20 2020-03-03 주식회사 엘지화학 화합물, 이를 포함하는 코팅조성물 및 이를 포함한 유기 발광 소자
KR102536248B1 (ko) 2017-06-21 2023-05-25 삼성디스플레이 주식회사 헤테로시클릭 화합물 및 이를 포함한 유기 발광 소자
CN109119541A (zh) * 2017-06-26 2019-01-01 东丽先端材料研究开发(中国)有限公司 量子点发光元件
KR102415376B1 (ko) 2017-08-04 2022-07-01 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
JP2021120964A (ja) * 2018-03-19 2021-08-19 出光興産株式会社 有機エレクトロルミネッセンス素子、及び電子機器

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348864A (ja) 1999-06-08 2000-12-15 Toray Ind Inc 有機電界発光素子の製造方法
JP2002352961A (ja) 2001-05-25 2002-12-06 Toray Ind Inc 有機電界発光装置
JP2003128651A (ja) * 2001-10-16 2003-05-08 Mitsui Chemicals Inc 炭化水素化合物、有機電界発光素子用材料および有機電界発光素子
JP2003238534A (ja) * 2002-02-22 2003-08-27 Idemitsu Kosan Co Ltd 新規アントラセン化合物およびそれを用いた有機エレクトロルミネッセンス素子
JP2003347060A (ja) 2002-05-28 2003-12-05 Matsushita Electric Works Ltd 有機電界発光素子
JP2004002297A (ja) 2002-04-11 2004-01-08 Idemitsu Kosan Co Ltd 新規含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2004277377A (ja) 2003-03-18 2004-10-07 Junji Kido フルオレン系化合物、およびこれを用いた有機電界発光素子
WO2005113531A1 (ja) 2004-05-21 2005-12-01 Toray Industries, Inc. 発光素子材料および発光素子
WO2005115950A1 (ja) 2004-05-27 2005-12-08 Idemitsu Kosan Co., Ltd. 非対称ピレン誘導体及びそれを利用した有機エレクトロルミネッセンス素子
WO2006128800A1 (en) * 2005-05-30 2006-12-07 Ciba Specialty Chemicals Holding Inc. Electroluminescent device
WO2007029798A1 (ja) 2005-09-08 2007-03-15 Toray Industries, Inc. 発光素子材料および発光素子
WO2007102683A1 (en) * 2006-03-06 2007-09-13 Lg Chem, Ltd. Novel anthracene derivative and organic electronic device using the same
JP2008094776A (ja) * 2006-10-13 2008-04-24 Mitsui Chemicals Inc アントラセン化合物および該化合物を含有する有機電界発光素子
WO2008108256A1 (ja) 2007-03-07 2008-09-12 Toray Industries, Inc. 発光素子材料および発光素子
WO2008143229A1 (ja) 2007-05-21 2008-11-27 Idemitsu Kosan Co., Ltd. アントラセン誘導体及びそれを利用した有機エレクトロルミネッセンス素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004096945A1 (ja) * 2003-05-01 2004-11-11 Fujitsu Limited 1,3,6,8−四置換ピレン化合物、有機el素子及び有機elディスプレイ
KR100808790B1 (ko) * 2003-05-23 2008-03-03 주식회사 엘지화학 질소 플라즈마 처리된 ito 필름 및 이를 양극으로사용한 유기 발광 소자
JP2007026978A (ja) * 2005-07-20 2007-02-01 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007169581A (ja) * 2005-11-25 2007-07-05 Toray Ind Inc 発光素子材料および発光素子
JP5076328B2 (ja) * 2006-02-06 2012-11-21 東レ株式会社 発光素子
JP4830750B2 (ja) * 2006-09-21 2011-12-07 東レ株式会社 発光素子材料および発光素子

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348864A (ja) 1999-06-08 2000-12-15 Toray Ind Inc 有機電界発光素子の製造方法
JP2002352961A (ja) 2001-05-25 2002-12-06 Toray Ind Inc 有機電界発光装置
JP2003128651A (ja) * 2001-10-16 2003-05-08 Mitsui Chemicals Inc 炭化水素化合物、有機電界発光素子用材料および有機電界発光素子
JP2003238534A (ja) * 2002-02-22 2003-08-27 Idemitsu Kosan Co Ltd 新規アントラセン化合物およびそれを用いた有機エレクトロルミネッセンス素子
JP2004002297A (ja) 2002-04-11 2004-01-08 Idemitsu Kosan Co Ltd 新規含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2003347060A (ja) 2002-05-28 2003-12-05 Matsushita Electric Works Ltd 有機電界発光素子
JP2004277377A (ja) 2003-03-18 2004-10-07 Junji Kido フルオレン系化合物、およびこれを用いた有機電界発光素子
WO2005113531A1 (ja) 2004-05-21 2005-12-01 Toray Industries, Inc. 発光素子材料および発光素子
WO2005115950A1 (ja) 2004-05-27 2005-12-08 Idemitsu Kosan Co., Ltd. 非対称ピレン誘導体及びそれを利用した有機エレクトロルミネッセンス素子
WO2006128800A1 (en) * 2005-05-30 2006-12-07 Ciba Specialty Chemicals Holding Inc. Electroluminescent device
WO2007029798A1 (ja) 2005-09-08 2007-03-15 Toray Industries, Inc. 発光素子材料および発光素子
WO2007102683A1 (en) * 2006-03-06 2007-09-13 Lg Chem, Ltd. Novel anthracene derivative and organic electronic device using the same
JP2008094776A (ja) * 2006-10-13 2008-04-24 Mitsui Chemicals Inc アントラセン化合物および該化合物を含有する有機電界発光素子
WO2008108256A1 (ja) 2007-03-07 2008-09-12 Toray Industries, Inc. 発光素子材料および発光素子
WO2008143229A1 (ja) 2007-05-21 2008-11-27 Idemitsu Kosan Co., Ltd. アントラセン誘導体及びそれを利用した有機エレクトロルミネッセンス素子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
APPLIED PHYSICS LETTERS, vol. 51, no. 12, 1987, pages 913 - 915
See also references of EP2296204A4

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113743A1 (ja) 2009-03-30 2010-10-07 東レ株式会社 発光素子材料および発光素子
US20120001161A1 (en) * 2009-03-30 2012-01-05 Toray Industries, Inc. Light emitting device material and light emitting device
US8916275B2 (en) 2009-03-30 2014-12-23 Toray Industries, Inc. Light emitting device material and light emitting device
US9373792B2 (en) 2009-05-29 2016-06-21 Idemitsu Kosan Co., Ltd. Anthracene derivative and organic electroluminescent element using the same
KR101757444B1 (ko) * 2010-04-30 2017-07-13 삼성디스플레이 주식회사 유기 전계 발광 장치
JP2016104733A (ja) * 2010-05-14 2016-06-09 メルク パテント ゲーエムベーハー 金属錯体
JP2012015097A (ja) * 2010-06-03 2012-01-19 Canon Inc 表示装置
US9203037B2 (en) 2010-06-18 2015-12-01 Basf Se Organic electronic devices comprising a layer of a dibenzofurane compound and a 8-hydroxypquinolinolato earth alkaline metal, or alkali metal complex
WO2011157790A1 (en) 2010-06-18 2011-12-22 Basf Se Organic electronic devices comprising a layer of a dibenzofurane compound and a 8-hydroxyquinolinolato earth alkaline metal, or alkali metal complex
WO2012008281A1 (ja) * 2010-07-13 2012-01-19 東レ株式会社 発光素子
JPWO2012008281A1 (ja) * 2010-07-13 2013-09-09 東レ株式会社 発光素子
WO2012033062A1 (ja) * 2010-09-08 2012-03-15 富士フイルム株式会社 有機電界発光素子、及びジベンゾチオフェン構造又はジベンゾフラン構造を有する有機電界発光素子用材料
JP2013214539A (ja) * 2010-09-08 2013-10-17 Fujifilm Corp 有機電界発光素子、及びジベンゾチオフェン構造又はジベンゾフラン構造を有する有機電界発光素子用材料
JP2012079915A (ja) * 2010-10-01 2012-04-19 Toray Ind Inc 発光素子材料および発光素子
WO2012124622A1 (ja) 2011-03-14 2012-09-20 東レ株式会社 発光素子材料および発光素子
WO2012153725A1 (ja) 2011-05-12 2012-11-15 東レ株式会社 発光素子材料および発光素子
WO2012173073A1 (ja) 2011-06-15 2012-12-20 東レ株式会社 発光素子材料および発光素子
KR20140034771A (ko) 2011-06-15 2014-03-20 도레이 카부시키가이샤 발광소자 재료 및 발광소자
JP2013048221A (ja) * 2011-07-22 2013-03-07 Semiconductor Energy Lab Co Ltd 発光素子、発光装置、表示装置、照明装置及び電子機器
JP2018085525A (ja) * 2011-07-22 2018-05-31 株式会社半導体エネルギー研究所 発光素子、発光装置、表示装置、照明装置、及び電子機器
KR102052214B1 (ko) 2011-07-22 2019-12-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 디벤조[c,g]카르바졸 화합물, 발광 소자, 발광 장치, 디스플레이 장치, 조명 장치 및 전자 장치
JP2013100341A (ja) * 2011-07-22 2013-05-23 Semiconductor Energy Lab Co Ltd 化合物
JP2017046000A (ja) * 2011-07-22 2017-03-02 株式会社半導体エネルギー研究所 発光素子、発光装置、表示装置、照明装置及び電子機器
JP2016219827A (ja) * 2011-07-22 2016-12-22 株式会社半導体エネルギー研究所 発光素子、発光装置、表示装置、照明装置及び電子機器
JP2020150259A (ja) * 2011-07-22 2020-09-17 株式会社半導体エネルギー研究所 発光素子、発光装置、表示装置、照明装置及び電子機器
KR20140026577A (ko) * 2011-07-22 2014-03-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 디벤조[c,g]카르바졸 화합물, 발광 소자, 발광 장치, 디스플레이 장치, 조명 장치 및 전자 장치
JP2013063963A (ja) * 2011-08-31 2013-04-11 Semiconductor Energy Lab Co Ltd 複素環化合物、発光素子、発光装置、電子機器、及び照明装置
JP2017057210A (ja) * 2011-08-31 2017-03-23 株式会社半導体エネルギー研究所 複素環化合物
US9887368B2 (en) 2011-10-05 2018-02-06 Lg Chem, Ltd. Organic light-emitting device and method for manufacturing same
JP2014519189A (ja) * 2011-10-05 2014-08-07 エルジー・ケム・リミテッド 有機発光素子およびその製造方法
US9893296B2 (en) 2011-11-22 2018-02-13 Idemitsu Kosan Co., Ltd. Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
EP3211682A1 (en) 2011-11-22 2017-08-30 Idemitsu Kosan Co., Ltd Aromatic heterocyclic derivative, organic electroluminescence device material and organic electroluminescence device field
US9209406B2 (en) 2011-11-22 2015-12-08 Idemitsu Kosan Co., Ltd. Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
US10199580B2 (en) 2011-11-22 2019-02-05 Idemitsu Kosan Co., Ltd. Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
US11374176B2 (en) 2011-11-22 2022-06-28 Idemitsu Kosan Co., Ltd. Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
US10418563B2 (en) 2011-11-22 2019-09-17 Idemitsu Kosan Co., Ltd. Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
KR20180008922A (ko) 2011-11-22 2018-01-24 이데미쓰 고산 가부시키가이샤 방향족 복소고리 유도체, 유기 일렉트로루미네선스 소자용 재료 및 유기 일렉트로루미네선스 소자
KR20180049266A (ko) 2011-11-22 2018-05-10 이데미쓰 고산 가부시키가이샤 방향족 복소고리 유도체, 유기 일렉트로루미네선스 소자용 재료 및 유기 일렉트로루미네선스 소자
WO2013187258A1 (ja) 2012-06-12 2013-12-19 東レ株式会社 発光素子材料および発光素子
WO2014007287A1 (ja) 2012-07-05 2014-01-09 東レ株式会社 発光素子材料および発光素子
WO2014017484A1 (ja) 2012-07-25 2014-01-30 東レ株式会社 発光素子材料および発光素子
WO2014057874A1 (ja) 2012-10-12 2014-04-17 東レ株式会社 フルオランテン誘導体、それを含有する発光素子材料および発光素子
US10096779B2 (en) 2013-05-20 2018-10-09 Hodogaya Chemical Co., Ltd. Pyrimidine derivatives and organic electroluminescent devices
WO2014188947A1 (ja) * 2013-05-20 2014-11-27 保土谷化学工業株式会社 新規なピリミジン誘導体および有機エレクトロルミネッセンス素子
US9650519B2 (en) 2014-03-14 2017-05-16 Sony Corporation Ink composition, organic electroluminescence element, and electronic apparatus
JP2015176694A (ja) * 2014-03-14 2015-10-05 出光興産株式会社 インク組成物、インク組成物を用いた有機エレクトロルミネッセンス素子、及び電子機器
WO2015137292A1 (ja) * 2014-03-14 2015-09-17 ソニー株式会社 インク組成物、有機エレクトロルミネッセンス素子、及び電子機器
WO2016056559A1 (ja) * 2014-10-07 2016-04-14 出光興産株式会社 有機エレクトロルミネッセンス素子、および電子機器
CN110233206B (zh) * 2014-10-07 2021-07-30 出光兴产株式会社 有机电致发光元件、以及电子设备
CN105684180B (zh) * 2014-10-07 2019-06-14 出光兴产株式会社 有机电致发光元件、以及电子设备
CN110233206A (zh) * 2014-10-07 2019-09-13 出光兴产株式会社 有机电致发光元件、以及电子设备
KR20170085434A (ko) * 2014-10-07 2017-07-24 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네선스 소자 및 전자 기기
KR102517591B1 (ko) * 2014-10-07 2023-04-03 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네선스 소자 및 전자 기기
CN105684180A (zh) * 2014-10-07 2016-06-15 出光兴产株式会社 有机电致发光元件、以及电子设备
JPWO2016056559A1 (ja) * 2014-10-07 2017-07-20 出光興産株式会社 有機エレクトロルミネッセンス素子、および電子機器
JP2020161843A (ja) * 2014-10-07 2020-10-01 出光興産株式会社 有機エレクトロルミネッセンス素子、および電子機器
US11043638B2 (en) 2014-10-07 2021-06-22 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and electronic device
JP2015073110A (ja) * 2014-11-14 2015-04-16 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子、及びジベンゾチオフェン構造又はジベンゾフラン構造を有する有機電界発光素子用材
JP2017208455A (ja) * 2016-05-19 2017-11-24 出光興産株式会社 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2019181858A1 (ja) * 2018-03-19 2019-09-26 出光興産株式会社 有機エレクトロルミネッセンス素子、及び電子機器
JP2023525358A (ja) * 2020-05-12 2023-06-15 エスエフシー カンパニー リミテッド 有機発光化合物及びこれを含む有機発光素子

Also Published As

Publication number Publication date
JP5299288B2 (ja) 2013-09-25
CN102084514A (zh) 2011-06-01
EP2296204A4 (en) 2011-07-27
KR20110040874A (ko) 2011-04-20
JPWO2010001817A1 (ja) 2011-12-22
EP2296204B1 (en) 2018-01-31
TWI601803B (zh) 2017-10-11
US20110121268A1 (en) 2011-05-26
JP5565494B2 (ja) 2014-08-06
TW201009045A (en) 2010-03-01
US8502201B2 (en) 2013-08-06
JP2013179320A (ja) 2013-09-09
KR101668887B1 (ko) 2016-10-24
EP2296204A1 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
JP5565494B2 (ja) 発光素子
JP5532705B2 (ja) 発光素子
JP6197265B2 (ja) 発光素子材料および発光素子
JP5397568B1 (ja) 発光素子材料および発光素子
JP6051864B2 (ja) 発光素子材料および発光素子
WO2013133219A1 (ja) 発光素子
JP6183211B2 (ja) 発光素子材料および発光素子
JP2009246354A (ja) 発光素子
WO2016009823A1 (ja) モノアミン誘導体、それを用いた発光素子材料および発光素子
JP2013183113A (ja) 発光素子材料および発光素子
JP5594031B2 (ja) 発光素子材料および発光素子
JP6269060B2 (ja) 発光素子材料および発光素子
JP6318617B2 (ja) 発光素子材料および発光素子
JP5640460B2 (ja) 発光素子および発光素子材料
JP2011204843A (ja) 発光素子
WO2014024750A1 (ja) 発光素子材料および発光素子
JP2014175590A (ja) 有機電界発光素子
JP2011204844A (ja) 発光素子
JP5561022B2 (ja) 発光素子
JP2013183047A (ja) 発光素子材料および発光素子
WO2014007022A1 (ja) 発光素子材料および発光素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980125702.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009548540

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773395

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009773395

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12737339

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117002440

Country of ref document: KR

Kind code of ref document: A