WO2007029798A1 - 発光素子材料および発光素子 - Google Patents

発光素子材料および発光素子 Download PDF

Info

Publication number
WO2007029798A1
WO2007029798A1 PCT/JP2006/317810 JP2006317810W WO2007029798A1 WO 2007029798 A1 WO2007029798 A1 WO 2007029798A1 JP 2006317810 W JP2006317810 W JP 2006317810W WO 2007029798 A1 WO2007029798 A1 WO 2007029798A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
light emitting
emitting device
compound
aryl
Prior art date
Application number
PCT/JP2006/317810
Other languages
English (en)
French (fr)
Inventor
Seiichiro Murase
Kazumasa Nagao
Kazunori Sugimoto
Takeshi Ishigaki
Takafumi Ogawa
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to KR1020137015484A priority Critical patent/KR20130079658A/ko
Priority to KR1020137015483A priority patent/KR101404299B1/ko
Priority to KR1020087008341A priority patent/KR101330953B1/ko
Priority to US11/991,461 priority patent/US8610345B2/en
Priority to CN2006800329652A priority patent/CN101258221B/zh
Priority to JP2006536976A priority patent/JP5029013B2/ja
Priority to EP06797666.2A priority patent/EP1942171B1/en
Publication of WO2007029798A1 publication Critical patent/WO2007029798A1/ja
Priority to US14/073,651 priority patent/US20140061629A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO

Definitions

  • Light emitting device material and light emitting device are Light emitting device material and light emitting device
  • the present invention relates to a light emitting device material useful as a fluorescent dye or a charge transport material, and a light emitting device using the same.
  • the light emitting device of the present invention can be used in the fields of display devices, flat panel displays, knock lights, lighting, interiors, signs, signboards, electrophotographic machines and optical signal generators.
  • organic thin-film light-emitting elements are capable of obtaining various emission colors by using various fluorescent materials in the light-emitting layer.
  • Research on green light emitting materials is the most advanced among the three primary color light emitting materials. Currently, red light emitting materials and blue light emitting materials are being studied with the aim of improving their characteristics.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-273056 (Claims 1 and 2)
  • Patent Document 2 JP 2002-63988 A (Claim 1)
  • Patent Document 3 International Publication No. 2004Z096945 Pamphlet (Claims)
  • Patent Document 4 JP-A-2004-75567 (Claims 1 to 4)
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2004-139957 (Claim 1)
  • Patent Document 6 Japanese Patent Laid-Open No. 2003-272864 (Claim 1)
  • Non-Patent Document 1 Applied Physics Letters (USA) 1987, 51 ⁇ , 12, 913-915
  • an object of the present invention is to solve the problems of the prior art, and to provide a light emitting element material that enables a blue light emitting element with high luminous efficiency and excellent durability, and a light emitting element using the same. .
  • the present invention is a light emitting device material containing a pyrene compound represented by the general formula (1).
  • R 18 may be the same or different from each other, hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkyl group, cycloalkyl group, alkyl group, alkoxy group, alkylthio group, Aryl ether group, aryl ether ether group, aryl group, heteroaryl group, halogen, carbo group, carboxyl group, oxy group, carbon It is a group selected from among a vamoyl group, an amino group, a phosphine oxide group and a silyl group. 1-8, may form a ring adjacent substituents. n is an integer from 1 to 3.
  • X is a group chosen for the medium power of —O—, —S— and —NR 19 —.
  • R 19 is a selected group of hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkyl group, cycloalkenyl group, alkyl group, aryl group, heteroaryl group and amino group.
  • R 1 9 may form a ring with R 11 or R 18.
  • Y is a single bond, an arylene group or a heteroarylene group. 1 ⁇ to 1 ⁇ one of the one force of n and R U to R 19 of the
  • the present invention is a light emitting device having at least an anode, a cathode and a light emitting layer, wherein the light emitting layer exists between the anode and the cathode, and the light emitting layer emits light by electric energy
  • the layer is a light emitting device containing a pyrene compound represented by the general formula (1).
  • the light emitting device material of the present invention can be used for a light emitting device and the like, and can provide a light emitting device material having excellent thin film stability. According to the present invention, a light emitting device having high luminous efficiency and excellent durability can be obtained.
  • the pyrene compound represented by the general formula (1) is selected from among a pyrene skeleton and an electron-donating fused aromatic dibenzofuran group, dibenzothiophene group and force rubazole group in the molecule. 1 to 3 groups, both of which are connected by a linking group Y. By having such a structure, the pyrene compound has high thin film stability and excellent heat resistance. In the general formula (1), if n is 4 or more, the stability and heat resistance of the thin film are lowered.
  • General formula (1 ) is preferably in the range of 1 to 2 because the thin film stability and heat resistance are more excellent.
  • the linking group Y is a single bond, an arylene group or a heteroarylene group.
  • the linking group Y is preferably an arylene group or a heteroarylene group.
  • the arylene group is a divalent group derived from an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, a terfel group, or a pyrel group, This may or may not have a substituent.
  • the number of carbon atoms of the arylene group is not particularly limited, but is usually in the range of 6-40.
  • the arylene group preferably has a carbon number in the range of 6 to 12 including the substituent.
  • the heteroarylene group is an aromatic group having one or more atoms other than carbon, such as a pyridyl group, a quinolinyl group, a birazinyl group, a naphthyridyl group, a dibenzofuryl group, a dibenzothiophenyl group, and a carbazolyl group.
  • the number of carbon atoms of the heteroarylene group is not particularly limited, but is usually in the range of 2 to 30, and more preferably in the range of 2 to 12 including the substituent.
  • At least one of 1 ⁇ to 1 ⁇ is preferably an aryl group or a heteroaryl group.
  • X is a group in which medium forces of —O—, —S—, and —NR 19 — are also selected.
  • R 19 is a selected group of hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkyl group, cycloalkenyl group, alkyl group, aryl group, heteroaryl group and amino group.
  • R 1 9 may form a ring with R 11 or R 18.
  • an alkyl group is, for example, a saturated fat such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n -butyl group, a sec-butyl group, or a tert-butyl group.
  • the additional substituent when it is substituted and examples thereof include an alkyl group, aryl group, heteroaryl group, etc., and this point is common to the following description.
  • the number of carbon atoms of the alkyl group is not particularly limited, but is usually in the range of 1 to 20 and more preferably 1 to 8 in view of availability and cost.
  • the cycloalkyl group refers to a saturated alicyclic hydrocarbon group such as cyclopropyl, cyclohexyl, norbornyl, adamantyl, and the like, which has a substituent. It does not have to be.
  • the number of carbon atoms of the cycloalkyl group is not particularly limited, but is usually in the range of 3 or more and 20 or less.
  • the heterocyclic group refers to an aliphatic ring having atoms other than carbon, such as a pyran ring, piperidine ring, and cyclic amide, in the ring, which has a substituent! / Have it! / You don't have to go ⁇ .
  • the number of carbon atoms of the heterocyclic group is not particularly limited, but is usually in the range of 2 or more and 20 or less.
  • the alkell group refers to, for example, an unsaturated aliphatic hydrocarbon group containing a double bond such as a bur group, a allyl group, or a butagel group, which has a substituent. It is not necessary to have it.
  • the carbon number of the alkaryl group is not particularly limited, but is usually in the range of 2-20.
  • the cycloalkenyl group refers to an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentyl group, a cyclopentagel group, a cyclohexenyl group, and the like. Even if you have a substituent, you don't have it.
  • the number of carbon atoms of the cycloalkenyl group is not particularly limited, but is usually in the range of 3 or more and 20 or less.
  • the alkynyl group refers to, for example, an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group, which may or may not have a substituent.
  • the number of carbon atoms of the alkyl group is not particularly limited, but is usually in the range of 2-20.
  • the alkoxy group refers to a functional group to which an aliphatic hydrocarbon group is bonded via an ether bond such as a methoxy group, an ethoxy group, or a propoxy group. With or without substituents.
  • the number of carbon atoms of the alkoxy group is not particularly limited, but is usually in the range of 1 or more and 20 or less.
  • the alkylthio group is a group in which an oxygen atom of an ether bond of an alkoxy group is substituted with a sulfur atom.
  • the hydrocarbon group of the alkylthio group has a substituent and may or may not have a substituent.
  • the number of carbon atoms of the alkylthio group is not particularly limited, but is usually in the range of 1 or more and 20 or less.
  • the aryl ether group refers to a functional group to which an aromatic hydrocarbon group is bonded via an ether bond, such as a phenoxy group, and the aromatic hydrocarbon group has a substituent! It does not have to be present.
  • the carbon number of the aryl ether group is not particularly limited, but is usually in the range of 6 to 40.
  • the arylthioether group is a group in which the oxygen atom of the ether bond of the aryl ether group is substituted with a sulfur atom.
  • the aromatic hydrocarbon group in the aryl ether group may have a substituent or not.
  • the number of carbon atoms of the arylthioether group is not particularly limited, but is usually in the range of 6 to 40.
  • the aryl group refers to, for example, an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, a terphenyl group, and a pyrenyl group.
  • the aryl group may or may not have a substituent.
  • the carbon number of the aryl group is not particularly limited, but is usually in the range of 6-40.
  • the heteroaryl group is a 6-membered aromatic group having one or more atoms other than carbon, such as a pyridyl group, a quinolinyl group, a birazinyl group, or a naphthyridyl group, a dibenzofuranyl group, a dibenzothiophenyl group, A strong rubazolyl group, which may be unsubstituted or substituted;
  • the number of carbon atoms of the heteroaryl group is not particularly limited, but is usually in the range of 2-30.
  • the halogen atom represents fluorine, chlorine, bromine and iodine.
  • the carbo group, carboxyl group, oxycarbol group, strong rubamoyl group, amino group and phosphine oxide group may or may not have a substituent.
  • substituent include an alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group as described above.
  • the silyl group refers to, for example, a functional group having a bond to a silicon atom such as a trimethylsilyl group, which may or may not have a substituent.
  • the carbon number of the silyl group is not particularly limited, but is usually in the range of 3-20. The key number is usually 1-6.
  • adjacent substituents form a ring
  • two adjacent adjacent substituents are bonded to each other to form a conjugated or non-conjugated condensed ring.
  • a conjugated or non-conjugated condensed ring it can.
  • an element selected from nitrogen, oxygen, sulfur, phosphorus, and key strength may be included.
  • the condensed ring may be further condensed with another ring.
  • R 3 , R 6 , and R 8 are a group different from R 1 in the pyrene compound represented by the general formula (1), the symmetry of the molecule is lowered, and a high-quality amorphous It is preferable because a thin film can be formed.
  • the pyrene compound represented by the general formula (1) is a pyrene compound in which R 1 is an aryl group or a heteroaryl group, and at least one of Y is linked at the position of R 6 or R 8 . It is preferable because the interaction between the members is suppressed and high luminous efficiency is possible. More preferably, R 1 is an aryl group. Further, R 2 is an alkyl group or a cycloalkyl group, and at least one of Y is connected at the position of R 6 or R 8 , which is preferable because the amorphous nature of the molecule is improved and a stable thin film can be formed.
  • X is —NR 19 —, that is, the electron donating condensed aromatic is a strong rubazole group, and at least one of Y is a position of R 6 or R 8 And R 19 are preferably connected. That is, the pyrene compound represented by the general formula (1) is preferably a compound represented by the general formula (2).
  • R u to R db may be the same as or different from each other, and may be hydrogen, an alkyl group, or cycloal. Kill group, heterocyclic group, alkyl group, cycloalkenyl group, alkyl group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group, heteroaryl group, halogen, carbon A group selected from among a group, a carboxyl group, an oxycarbol group, a force rubamoyl group, an amino group, a phosphine oxide group and a silyl group.
  • R 2G to R 36 may form a ring with adjacent substituents.
  • Ar is a single bond, an arylene group or a heteroarylene group.
  • Ar is preferably an arylene group or a heteroarylene group.
  • R 22 and R 24 when at least one of R 22 and R 24 is an aryl group or a heteroaryl group, the intermolecular interaction between the pyrene skeletons is suppressed, High efficiency light emission is possible, and at the same time a stable thin film can be formed, which is preferable.
  • R 24 is more preferably an aryl group or a heteroaryl group because the synthesis process becomes easy and the cost can be reduced.
  • R 23 is an alkyl group or a cycloalkyl group.
  • R 27 is preferably an aryl group or a heteroaryl group, since intermolecular interaction is suppressed and high-efficiency light emission is possible.
  • At least one R U to R 18 in the general formula (1), or the general formula in (2) at least one alkyl group R 2 9 to R 36, a cycloalkyl group, Ariru group and to A preferred form is a group selected from reel groups.
  • the pyrene compound as described above is not particularly limited, but specific examples include the following.
  • a known method can be used for the synthesis of the pyrene compound represented by the general formula (1).
  • Examples of the method for introducing a force rubazolyl group into the pyrene skeleton include, for example, a method using a coupling reaction of a halogenated pyrene derivative with force rubazole or force rubazolylaryl metal complex under a radium or nickel catalyst, or radium. Or a force using a coupling reaction between a pyrenyl metal complex and a halogenated power rubazole derivative in the presence of a nickel catalyst, but is not limited thereto.
  • the method for introducing a dibenzofuran group or dibenzothiophenyl group into the pyrene skeleton is, for example, coupling of a halogenated pyrene derivative with a dibenzofuranyl metal complex or a dibenzothiophenyl metal complex under a radium or nickel catalyst.
  • Powers including a method using a reaction, a method using a coupling reaction between a pyrenyl metal complex and a halogenated dibenzofuran derivative or a halogenated dibenzothiophene derivative under a palladium or nickel catalyst are not limited thereto.
  • the light-emitting element of the present invention includes an anode, a cathode, and an organic layer present between the anode and the cathode.
  • the organic layer includes at least a light-emitting layer, and the light-emitting layer emits light by electric energy.
  • the organic layer includes 1) a hole transport layer, a Z light emitting layer, a Z electron transport layer, and 2) a light emitting layer, a Z electron transport layer, and 3) a hole transport layer, a Z light emitting layer. And the like.
  • Each of the layers may be a single layer or a plurality of layers.
  • the layers in contact with the electrodes may be referred to as the hole injection layer and the electron injection layer, respectively.
  • the electron injection material is included in the electron transport material.
  • the light emitting device of the present invention is formed of the light emitting device material of the present invention in which the organic layer contains a pyrene compound represented by the general formula (1).
  • the light emitting element material corresponds to either a compound that emits light by itself or a substance that assists the light emission, and refers to a compound that participates in light emission. Specifically, a hole transport material, a light emitting material, and This includes electron transport materials.
  • the light emitting device material of the present invention may be used as a hole transport material or an electron transport material, but is preferably used as a light emitting material because of its high light emission performance.
  • the light emitting element material of the present invention exhibits strong light emission in the blue region, and thus is suitably used as a blue light emitting material, but can also be used as a material for green to red light emitting elements and white light emitting elements. wear.
  • the anode is not particularly limited as long as it can efficiently inject holes into the organic layer, but it is preferable to use a material having a relatively high work function.
  • the anode material include conductive metal oxides such as tin oxide, indium oxide, indium oxide zinc indium, and indium oxide tin indium (ITO), or metals such as gold, silver, and chromium, copper iodide, Inorganic conductive materials such as copper sulfide, and conductive polymers such as polythiophene, polypyrrole, and polyarine. These electrode materials may be used alone, or a plurality of materials may be laminated or mixed.
  • the resistance of the anode is preferably low from the viewpoint of power consumption of the light-emitting element as long as a current sufficient for light emission of the light-emitting element can be supplied. For example, if the resistance is 300 ⁇ or less The ability to function as an electrode if possible Since it is now possible to supply ⁇ substrates of about 10 ⁇ Z ports, it is particularly desirable to use low resistance products of 100 ⁇ / port or less.
  • the thickness of the anode can be arbitrarily selected according to the resistance value, but is usually used in the range of 100 to 300 nm.
  • the light-emitting element In order to maintain the mechanical strength of the light-emitting element, it is preferable to form the light-emitting element on a substrate.
  • a glass substrate such as soda glass or non-alkali glass is preferably used.
  • the thickness of the glass substrate it is sufficient that the thickness is sufficient to maintain the mechanical strength.
  • the glass material is preferably alkali-free glass because it is better to have less ions eluted from the glass, but a barrier coat such as SiO is applied.
  • soda lime glass is also commercially available, it can be used. Furthermore, if the anode functions stably, the substrate need not be glass.
  • an anode may be formed on a plastic substrate.
  • the method for forming the anode is not particularly limited, and for example, an electron beam method, a sputtering method, an electrochemical reaction method, or the like can be used.
  • the material used for the cathode is not particularly limited as long as it can efficiently inject electrons into the organic layer.
  • Platinum, gold, silver, copper, iron, tin, zinc, aluminum, indium, chromium, lithium examples thereof include sodium, potassium, cesium, calcium and magnesium, and alloys thereof.
  • Lithium, sodium, potassium, cesium, calcium, magnesium, or alloys containing these low work function metals are effective for increasing the electron injection efficiency and improving device characteristics.
  • these low work function metals are generally unstable in the atmosphere. Therefore, the organic layer is doped with a small amount of lithium or magnesium (less than 1 nm on the vacuum deposition film thickness display).
  • a preferable example is a method of obtaining an electrode having high stability.
  • inorganic salts such as lithium fluoride can be used.
  • metals such as platinum, gold, silver, copper, iron, tin, aluminum and indium, or alloys using these metals, inorganic substances such as silica, titania and nitrided nitride, polyvinyl alcohol Preferred examples include laminating organic polymer compounds such as polyvinyl chloride and hydrocarbon polymer compounds.
  • the method for forming these electrodes is not particularly limited, and for example, resistance heating, electron beam, spottering, ion plating and coating can be used.
  • the hole transport layer is formed by a method of laminating or mixing one kind or two or more kinds of hole transport materials, or a method using a mixture of a hole transport material and a polymer binder. Further, the hole transport layer may be formed by adding an inorganic salt such as iron (III) chloride to the hole transport material.
  • the hole transport material is not particularly limited as long as it is a compound that can form a thin film, can inject holes with an anodic force, and can further transport holes.
  • the light emitting layer may be a mixture of a host material and a dopant material, or a host material alone.
  • the host material and dopant material may be one type or a combination of two or more.
  • the dopant material may be included in the entire host material or may be included partially.
  • the dopant material may be either laminated with the host material or dispersed in the host material. If the amount of the dopant material is too large, a concentration quenching phenomenon occurs, and therefore it is preferable to use it at 20 wt% or less, more preferably 10 wt% or less, based on the total of the host material and the dopant material.
  • the dopant material may be formed by a co-evaporation method with the host material, or the host material and the dopant material may be mixed in advance and force may be deposited.
  • the pyrene compound of the present invention may be used as a dopant material, it is preferably used as a host material because of its excellent thin film stability.
  • the ionization potential of the pyrene compound of the present invention is not particularly limited, but is preferably 4.6 eV or more and 6.2 eV or less, more preferably 4.8 eV or more and 6. OeV or less.
  • the absolute value of the ion potential may vary depending on the measurement method.
  • the present invention The ON potential is 30 ⁇ on an ITO glass substrate using an atmospheric-type ultraviolet photoelectron analyzer (AC-1, manufactured by Riken Kikai Co., Ltd.). ⁇ Measured value of thin film deposited to a thickness of lOOnm.
  • the host material used in the present invention need not be limited to only one kind of pyrene compound represented by the general formula (1), and a mixture of a plurality of pyrene compounds may be used. One or more types may be mixed with the pyrene compound represented by the general formula (1).
  • the host materials that can be mixed include condensed ring derivatives such as anthracene and perylene, which are light emitters, and aromatics such as N, N, -dinaphthyl N, N, -diphenyl 4, 4'-diphenyl 2, 1'-diamine Metal derivatives, tris (8-quinolinato) aluminum (III) and other metal chelate oxinoid compounds, bisstyryl derivatives such as distyrylbenzene derivatives, tetraphenylbutadiene derivatives, indene derivatives, coumarin derivatives, oxadiazole Derivatives, Pyroguchi Pyridine Derivatives, Perinone Derivatives, Cyclopentagen Derivatives, Oxadiazole Derivatives, Forced Rubazole Derivatives, Pyrrolopyrrole Derivatives Derivative Porichiofen derivative is preferably used.
  • condensed ring derivatives such as anthracene and perylene,
  • the dopant material contained in the light-emitting material is not particularly limited, but is a compound having an aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, triphenylene, perylene, fluorene, indene or a derivative thereof (for example, 2- (Benzothiazol-2-yl) —9, 10-diphenylanthracene, 5, 6, 11, 12-tetraphenyl-naphthacene, etc.), furan, pyrrole, thiophene, silole, 9-silaffnoleolene, 9, 9'— Spirovicirafluorene, benzothiophene, benzofuran, indole, dibenzothiophene, dibenzazofuran, imidazopyridine, phenanthorin, pyrazine, naphthyridine, quinoxaline, pyrrolopyridine, thioxanthen
  • pyrene compounds having a benzoazole group represented by 1 (benzoxazole-2-yl) 3,8-bis (4 methylphenol) pyrene are particularly preferred dopants. .
  • the electron transport layer is a layer into which cathode-power electrons are injected and further transports electrons. It is desired that the electron transport layer efficiently transports the injected electrons with high electron injection efficiency. Therefore, it is desirable that the electron transport layer is made of a material having a high electron affinity and a high electron mobility, and excellent stability, and impurities that become traps are less likely to be generated during manufacture and use.
  • the electron transport layer mainly plays a role of effectively preventing the positive holes from flowing toward the cathode without recombination. If so, even if the material is not so high in the electron transport capability, the effect of improving the light emission efficiency is equivalent to that in the case of the material having a high electron transport capability.
  • the electron transport material used for the electron transport layer is not particularly limited, but is represented by a compound having a condensed aryl ring such as naphthalene or anthracene or a derivative thereof, 4, 4 'bis (diphenyl-) phenyl.
  • Styryl aromatic ring derivatives include quinolinol complexes such as III), hydroxyazole complexes such as hydroxyphenol-luoxazole complexes, azomethine complexes, trobolone metal complexes and flavonol metal complexes, and compounds having a heteroaryl ring.
  • a compound having a heteroaryl ring having electron-accepting nitrogen is preferable because it has a high electron transporting ability.
  • the electron-accepting nitrogen represents a nitrogen atom that forms a multiple bond with an adjacent atom.
  • heteroaryl rings containing electron-accepting nitrogen have a high electron affinity.
  • heteroaryl ring containing an electron-accepting nitrogen include a pyridine ring, a pyridine ring, a pyrimidine ring, a quinoline ring, a quinoxaline ring, a naphthyridine ring, a pyrimidopyrimidine ring, a benzoquinoline ring, a phenanthorin ring, an imidazole ring, and an oxazole.
  • the compound having a heteroaryl ring structure containing electron-accepting nitrogen is preferably composed of an element selected from carbon, hydrogen, nitrogen, oxygen, silicon, and phosphorus.
  • a compound having a heteroaryl ring structure containing an electron-accepting nitrogen composed of an element selected from these medium strengths has a high electron transporting ability and can significantly reduce the driving voltage of the light-emitting element.
  • Examples of such compounds include benzimidazole derivatives, benzoxazole derivatives, benzthiazole derivatives, oxadiazole derivatives, thiadiazol derivatives, triazole derivatives, pyrazine derivatives, phenanthorin derivatives, quinoxaline derivatives, quinoline derivatives, benzoquinoline derivatives.
  • Oligopyridine derivatives such as biviridine and terpyridine, quinoxaline derivatives, naphthyridine derivatives, and the like are preferable, and examples thereof include compounds.
  • imidazole derivatives such as tris (N-phenol benzimidazole-2-yl) benzene, oxadiazole derivatives such as 1,3 bis [(4-tert butylphenol) 1,3,4 oxadiazolyl] phenol, N—Naphthyl 2, 5 diphenyl— Triazole derivatives such as 1, 3, 4 triazole, phenant mouth phosphorus derivatives such as bathocuproine and 1, 3 bis (1, 10 phenantine 9-9) benzene, 2, 2 , 1 bis (benzo [h] quinoline 2-yl) 9, 9, benzoquinoline derivatives such as spirobifluorene, 2, 5 bis (6,-(2, 2, 2, -bibilidyl))-1 , 1-dimethyl-3,4-diphenyl
  • the electron transport material may be used alone, but two or more of the electron transport materials may be mixed and used, or one or more of the other electron transport materials may be mixed and used in the electron transport material. I do not care. It can also be used by mixing with metals such as alkali metals and alkaline earth metals.
  • the ionic potential of the electron transport layer is not particularly limited. Preferably, it is 5.8 eV or more and 8. OeV or less, and more preferably 6. OeV or more and 7.5 eV or less.
  • the method for forming each of the layers constituting the light emitting element is not particularly limited, such as resistance heating vapor deposition, electron beam vapor deposition, sputtering, molecular lamination method, coating method, ink jet method, printing method, laser induced thermal transfer method, etc.
  • resistance heating vapor deposition or electron beam vapor deposition is preferable from the viewpoint of device characteristics.
  • the thickness of the layer cannot be limited because it depends on the resistance value of the luminescent material, but is selected from 1-1000 nm.
  • the film thicknesses of the light-emitting layer, the electron transport layer, and the hole transport layer are each preferably 1 nm or more and 200 nm or less, and more preferably 5 nm or more and lOO nm or less.
  • the light-emitting element of the present invention has a function of converting electrical energy into light.
  • the electric energy it is possible to use a force S in which a direct current is mainly used, a pulse current or an alternating current.
  • the current value and voltage value are not particularly limited, but should be selected so that the maximum brightness can be obtained with as low energy as possible in consideration of the power consumption and lifetime of the device.
  • the light-emitting device of the present invention is suitably used as a display for displaying in a matrix and Z or segment system, for example.
  • pixels for display are arranged two-dimensionally, such as a grid or mosaic.
  • a character and an image are displayed with a set of pixels.
  • the shape and size of the pixel are determined by the application. For example, rectangular pixels with a side of 300 ⁇ m or less are usually used for images and text display on computers, monitors, and televisions. Also, for large displays such as display panels, one side is on the order of mm. Pixels are used.
  • monochrome display pixels of the same color may be arranged, but in color display, red, green, and blue pixels are displayed side by side. In the case of color display, there are typically delta type and stripe type.
  • the matrix driving method may be either line sequential driving or active matrix. In the case of line sequential driving, the structure of the light emitting element is simple, but the active matrix may be superior in consideration of operating characteristics. Use different driving methods depending on the application.
  • the segment system is a system in which a pattern is formed so as to display predetermined information and an area determined by the arrangement of the pattern is emitted. Examples include time and temperature displays on digital and thermometers, operating status displays for audio equipment and electromagnetic cookers, and car panel displays. And the matrix display and the segment display can coexist in the same panel.
  • the light-emitting device of the present invention is also preferably used as a backlight for various devices. Knocklights are mainly used for the purpose of improving the visibility of non-self-luminous display devices, and are used for liquid crystal display devices, watches, audio devices, automobile panels, display boards and signs.
  • the light-emitting element of the present invention is preferably used for a backlight for a liquid crystal display device, especially a personal computer application for which a reduction in thickness is being studied.
  • the light-emitting element of the present invention can provide a backlight that is thinner and lighter than conventional ones.
  • H-NMR was measured using a superconducting FTNMR-270 (manufactured by JEOL Ltd.) in a deuterated chloroform solution.
  • HPLC purity was determined using a high performance liquid chromatograph 1 ⁇ -10 (manufactured by Shimadzu Corporation). The measurement was performed with a lgZL black mouth form solution. As a developing solvent for the column, a mixed solution of 0.1% aqueous phosphoric acid solution and acetonitrile was used.
  • the obtained solid was washed with 30 ml of ethanol, purified by silica gel column chromatography, recrystallized from dimethylformamide, and dried under vacuum to obtain 0.69 g of white crystals.
  • the results of 1 H-NMR analysis of the obtained powder are as follows, and it was confirmed that the white crystals obtained above were a compound [30].
  • This compound [30] was subjected to sublimation purification at about 240 ° C under a pressure of 1 X 10_3 Pa using an oil diffusion pump and used as a force light emitting device material.
  • the HPLC purity (area% at a measurement wavelength of 254 ⁇ m) was 99.6% before sublimation purification and 99.7% after sublimation purification.
  • 1-Bromopyrene 45 Og, 4-Methylphenolic acid 21.7 g, Tripotassium phosphate 34.
  • a mixed solution of 0 g, tetraptyl ammonium bromide 10.3 g, palladium acetate 0.71 g and dimethylformamide 1.6 L was heated and stirred at 120 ° C. for 5 hours under a nitrogen stream. After the solution was cooled to room temperature, 1.6 L of water was injected and stirred at room temperature for 0.5 h. The precipitated solid was collected by filtration and washed twice with 200 ml of water. The obtained solid was dissolved in 500 ml of dichloromethane, dried over magnesium sulfate, and filtered through celite. The filtrate was evaporated, the residue was washed twice with 200 ml of methanol, and the precipitated solid was collected by filtration and dried under vacuum to obtain 1- (4-methylphenol) pyrene 40.
  • This compound [69] was subjected to sublimation purification at about 240 ° C under a pressure of 1 X 10_3 Pa using an oil diffusion pump and used as a force light emitting device material.
  • the HPLC purity (area% at a measurement wavelength of 254 ⁇ m) was 99.4% before sublimation purification and 99.5% after sublimation purification.
  • This compound [47] was subjected to sublimation purification at about 260 ° C under a pressure of 1 X 10 _3 Pa using an oil diffusion pump and used as a force light emitting device material.
  • the HPLC purity (area% at a measurement wavelength of 254 ⁇ m) was 99.7% before sublimation purification and 99.8% after sublimation purification.
  • This compound [29] was subjected to sublimation purification at about 250 ° C under a pressure of 1 X 10 _3 Pa using an oil diffusion pump and used as a force light emitting device material.
  • the HPLC purity (area% at a measurement wavelength of 254 ⁇ m) was 99.6% before sublimation purification and 99.8% after sublimation purification.
  • This compound [33] was subjected to sublimation purification at about 260 ° C under a pressure of 1 X 10 _3 Pa using an oil diffusion pump and used as a force light emitting device material.
  • the HPLC purity (area% at a measurement wavelength of 254 ⁇ m) was 99.8% before sublimation purification and 99.9% after sublimation purification.
  • the compound was synthesized in the same manner as in Example 4 except that phenylboronic acid was used instead of 2-biphenylboronic acid to obtain 322 mg of white crystals.
  • the results of 1 H-NMR analysis of the obtained powder are as follows, and it was confirmed that the white crystals obtained above were the compound [28].
  • This compound [28] was subjected to sublimation purification at about 240 ° C under a pressure of 1 X 10_3 Pa using an oil diffusion pump, and used as a force light emitting device material.
  • HPLC purity (measurement wavelength 254 ⁇ The area% in m) was 99.5% before sublimation purification and 99.6% after sublimation purification.
  • This compound [35] was subjected to sublimation purification at about 280 ° C under a pressure of 1 X 10_3 Pa using an oil diffusion pump and used as a force light emitting device material.
  • the HPLC purity (area% at a measurement wavelength of 254 ⁇ m) was 99.1% before sublimation purification and 99.8% after sublimation purification.
  • This compound [45] was subjected to sublimation purification at about 300 ° C under a pressure of 1 X 10_3 Pa using an oil diffusion pump and used as a force light emitting device material.
  • the HPLC purity (area% at a measurement wavelength of 254 ⁇ m) was 99.5% before sublimation purification and 99.6% after sublimation purification.
  • This compound [49] is about 270 ° C under the pressure of 1 X 10 _3 Pa using an oil diffusion pump.
  • Sublimation purification was carried out using a force light emitting device material.
  • the HPLC purity (area% at a measurement wavelength of 254 ⁇ m) was 99.7% before sublimation purification and 99.8% after sublimation purification.
  • 1-bromo 6- (4-methylphenol) pyrene 8 Og, 3,5 dichlorophenolic acid 4.5 g, tripotassium phosphate 9.2 g, tetraptyl ammonium bromide 1.4 g, paradium acetate 97 mg
  • a mixed solution of 215 ml of dimethylformamide was heated and stirred at 120 ° C for 5 hours under a nitrogen stream. After the solution was cooled to room temperature, water 1.OL was injected and extracted with 600 ml of dichloromethane. The organic layer was washed twice with 200 ml of water, dried over magnesium sulfate, and filtered through celite.
  • This compound [81] was subjected to sublimation purification at about 280 ° C under a pressure of 1 X 10 _3 Pa using an oil diffusion pump and used as a force light emitting device material.
  • the HPLC purity (area% at a measurement wavelength of 254 ⁇ m) was 99.2% before sublimation purification and 99.3% after sublimation purification.
  • the solution was cooled to room temperature, filtered, and the obtained solid was washed with 30 ml of dioxane, 50 ml of water, and 50 ml of ethanol.
  • the obtained solid was recrystallized from 100 ml of xylene and vacuum-dried to obtain 0.15 g of yellowish white crystals.
  • the results of 1 H-NMR analysis of the obtained powder are as follows, and it was confirmed that the yellowish white crystals obtained above were the compound [99].
  • the HPLC purity (area% at a measurement wavelength of 254 nm) was 99.1%.
  • This compound [104] was subjected to sublimation purification at about 280 ° C. under a pressure of 1 ⁇ 10_3 Pa using an oil diffusion pump and used as a force light emitting device material.
  • the HPLC purity (area% at a measurement wavelength of 25 4 nm) was 99.5% before sublimation purification and 99.7% after sublimation purification.
  • This compound [117] was subjected to sublimation purification at about 230 ° C under a pressure of 1 X 10 _3 Pa using an oil diffusion pump and used as a force light emitting device material.
  • the HPLC purity (area% at a measurement wavelength of 25 4 nm) was 99.7% before sublimation purification and 99.9% after sublimation purification.
  • This compound [120] was subjected to sublimation purification at about 270 ° C. under a pressure of 1 ⁇ 10_3 Pa using an oil diffusion pump and used as a force light emitting device material.
  • the HPLC purity (area% at a measurement wavelength of 25 4 nm) was 99.7% before sublimation purification and 99.9% after sublimation purification.
  • the compound was synthesized in the same manner as in Example 13 except that 4 t-butylphenol boronic acid was used in place of 4 methylphenol boronic acid to obtain 569 mg of white crystals.
  • the results of 1 H NMR analysis of the obtained powder are as follows, and it was confirmed that the white crystals obtained above were the compound [127].
  • This compound [127] was subjected to sublimation purification at about 260 ° C. under a pressure of 1 ⁇ 10 — 3 Pa using an oil diffusion pump, and used as a force light emitting device material.
  • the HPLC purity (area% at a measurement wavelength of 25 4 nm) was 99.5% before sublimation purification and 99.6% after sublimation purification.
  • Example 13 except that 9 [4- (4, 4, 5, 5-tetramethyl- [1, 3, 2,2] oxaborolane-2-yl) phenol] rubazole was used in place of 4 methylphenol boronic acid.
  • milky white crystals were obtained.
  • the results of 1 H-NMR analysis of the obtained powder are as follows, and it was confirmed that the milky white crystals obtained above were the compound [128].
  • This compound [128] was subjected to sublimation purification at about 300 ° C. under a pressure of 1 ⁇ 10 3 Pa using an oil diffusion pump and used as a force light emitting device material.
  • the HPLC purity (area% at a measurement wavelength of 25 4 nm) was 99.8% before sublimation purification and 99.9% after sublimation purification.
  • This compound [129] was subjected to sublimation purification at about 280 ° C under a pressure of 1 X 10 _3 Pa using an oil diffusion pump and used as a force light emitting device material.
  • HPLC purity (measurement wavelength 25 The area% at 4 nm) was 99.7% before sublimation purification and 99.9% after sublimation purification.
  • This compound [131] was subjected to sublimation purification at about 250 ° C under a pressure of 1 X 10 _3 Pa using an oil diffusion pump and used as a force light emitting device material.
  • the HPLC purity (area% at a measurement wavelength of 25 4 nm) was 99.8% before sublimation purification and 99.9% after sublimation purification.
  • This compound [135] was subjected to sublimation purification at about 310 ° C. under a pressure of 1 ⁇ 10_3 Pa using an oil diffusion pump and used as a force light emitting device material.
  • the HPLC purity (area% at a measurement wavelength of 25 4 nm) was 99.5% before sublimation purification and 99.9% after sublimation purification.
  • This compound [141] was subjected to sublimation purification at about 280 ° C under a pressure of 1 X 10 _3 Pa using an oil diffusion pump, and used as a force light emitting device material.
  • the HPLC purity (area% at a measurement wavelength of 25 4 nm) was 99.7% before sublimation purification and 99.9% after sublimation purification.
  • 1-bromopyrene 7g trimethylboroxine 6g, cesium carbonate 12g, PdCl (dppf) -C
  • the organic layer was washed twice with 20 ml of water, dried over magnesium sulfate and evaporated.
  • the concentrate was purified by silica force gel column chromatography and dried in vacuo to obtain 3 g of 7 t-Pitreux 1-methinorepyrene.
  • the obtained solid was washed with 30 ml of ethanol, purified by silica gel chromatography, and vacuum-dried to obtain 1.2 g of white crystals.
  • the results of 1 H-NMR analysis of the obtained powder are as follows, and it was confirmed that the white crystals obtained above were the compound [183].
  • This compound [183] was subjected to sublimation purification at about 230 ° C. under a pressure of 1 ⁇ 10 3 Pa using an oil diffusion pump and used as a force light emitting device material.
  • the HPLC purity (area% at a measurement wavelength of 25 4 nm) was 99.1% before sublimation purification and 99.3% after sublimation purification.
  • the obtained solid was washed with 40 ml of methanol and then purified by silica gel chromatography, followed by vacuum drying to obtain 2.5 g of yellowish white crystals.
  • the results of 1 H-NMR analysis of the obtained powder are as follows, and it was confirmed that the yellowish white crystals obtained above are the compound [185].
  • This compound [185] was subjected to sublimation purification at about 250 ° C. under a pressure of 1 ⁇ 10_3 Pa using an oil diffusion pump and used as a force light emitting device material.
  • the HPLC purity (area% at a measurement wavelength of 25 4 nm) was 99.4% before sublimation purification and 99.6% after sublimation purification.
  • This compound [174] was subjected to sublimation purification at about 260 ° C. under a pressure of 1 ⁇ 10 3 Pa using an oil diffusion pump, and used as a force light emitting device material.
  • the HPLC purity (area% at a measurement wavelength of 25 4 nm) was 99.4% before sublimation purification and 99.6% after sublimation purification.
  • the obtained solid was washed with 40 ml of methanol and then purified by silica gel chromatography, followed by vacuum drying to obtain 2.3 g of yellowish white crystals.
  • the results of 1 H-NMR analysis of the obtained powder are as follows, and it was confirmed that the yellowish white crystal obtained above was Compound [199].
  • This compound [199] was subjected to sublimation purification at about 230 ° C under a pressure of 1 X 10_3 Pa using an oil diffusion pump and used as a force light emitting device material.
  • the HPLC purity (area% at a measurement wavelength of 25 4 nm) was 99.4% before sublimation purification and 99.6% after sublimation purification.
  • This compound [245] was subjected to sublimation purification at about 270 ° C. under a pressure of 1 ⁇ 10 3 Pa using an oil diffusion pump and used as a force light emitting device material.
  • the HPLC purity (area% at a measurement wavelength of 25 4 nm) was 99.5% before sublimation purification and 99.6% after sublimation purification.
  • 1-bromopyrene 2. Og, 4-t-butylphenol boronic acid 1.9 g, tripotassium phosphate 3. lg, tetraptyl ammonium bromide 0.46 g, mixed solution of palladium acetate 70 mg and dimethylformamide 70 mL under nitrogen stream The mixture was stirred at 130 ° C for 2 hours. Solution at room temperature The solution was poured into 350 mL of water, and the precipitated solid was collected by filtration. The obtained solid was dissolved in dichloromethane, washed with water, dried over magnesium sulfate, and concentrated. The resulting crude product was purified by column chromatography and vacuum dried to obtain 1.9 g of 1- (4-t-butylphenol) pyrene.
  • the obtained solid was dissolved in diclonal methane, washed with water, dried over magnesium sulfate, and concentrated.
  • the obtained crude product was purified by column chromatography and vacuum-dried to obtain 0.49 g of 1- (4-t-butylphenol) 7 vinylene.
  • the obtained solid was dissolved in dichloromethane, washed with water, dried over magnesium sulfate, and concentrated.
  • the resulting crude product was purified by column chromatography and vacuum dried to obtain 0.54 g of a white solid.
  • Ethyl acetate 2 OmL was added to the obtained solid, and this suspension was heated and stirred. After cooling to room temperature, filtration and vacuum drying, 0.21 g of a white solid was obtained.
  • the results of 1 H-NMR analysis of the obtained powder are as follows, and it was confirmed that the white crystals obtained above were the compound [267].
  • the HPLC purity (area% at a measurement wavelength of 254 nm) was 99.8%.
  • This compound [283] was subjected to sublimation purification at about 270 ° C. under a pressure of 1 ⁇ 10 _3 Pa using an oil diffusion pump and used as a force light emitting device material.
  • the HPLC purity (area% at a measurement wavelength of 25 4 nm) was 99.5% before sublimation purification and 99.8% after sublimation purification.
  • a mixed solution of 5 g of 1-bromopyrene, 7.9 g of N-bromosuccinimide, and 140 ml of dimethylformamide was stirred at 80 ° C. for 10 hours under a nitrogen stream. After cooling the solution to room temperature, 40 Oml of water was injected, and the precipitate was filtered. The filtered solid was washed with 50 ml of water, 100 ml of methanol, and 200 ml of dichloromethane, and then vacuum-dried at 70 ° C. to obtain 6.1 g of 1,3,6 tribromopyrene as a light ocher powder.
  • This compound [49] was subjected to sublimation purification at about 300 ° C under a pressure of 1 X 10_3 Pa using an oil diffusion pump and used as a force light emitting device material.
  • the HPLC purity (area% at a measurement wavelength of 254 ⁇ m) was 99.3% before sublimation purification and 99.4% after sublimation purification.
  • a mixed solution of 100 g of pyrene, 55.4 g of t-butyl chloride and 400 ml of dichloromethane was cooled to 0 ° C. under an argon stream to obtain 70.4 g of salt aluminum.
  • the mixed solution was stirred at room temperature for 5 hours, poured into 500 g of ice, and stirred at room temperature for 30 minutes.
  • the mixed solution was suction filtered, and the filtrate was extracted twice with 300 ml of dichloromethane.
  • the organic layer was washed with 300 ml of water, dried over magnesium sulfate and evaporated. To the concentrated residue, 300 ml of methanol was added and stirred at 80 ° C., followed by filtration.
  • Hexane Z dichloromethane (15 ml of 30ZD) was added to the resulting crude product, stirred, filtered and dried under reduced pressure. Hexane Z dichloromethane (10 ml of 30ZD was added to the resulting solid for 30 minutes. After stirring, the mixture was filtered and dried under reduced pressure to obtain 435 mg of white powder, and the result of 1 H-NMR analysis of the obtained powder is as follows, and the obtained white powder was compound [338]. It was confirmed that.
  • a light emitting device using the compound [29] was produced as follows.
  • a glass substrate manufactured by Asahi Glass Co., Ltd., 15 ⁇ well, electron beam evaporated product
  • the ITO film was patterned by photolithography to produce a light emitting portion and an electrode lead portion.
  • the obtained substrate was ultrasonically cleaned with acetone, “Semicocrine (registered trademark) 56” (manufactured by Fruch Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. Subsequently, the substrate was ultrasonically cleaned with isopropyl alcohol for 15 minutes and then immersed in hot methanol for 15 minutes to dry. Immediately before the device was fabricated, this substrate was subjected to UV-ozone treatment for 1 hour, and then placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus was 5 X 10_4 Pa or less.
  • lithium fluoride was vapor-deposited to a thickness of 0.5 nm, and then aluminum was lOOOnm vapor-deposited as a cathode to produce a 5 ⁇ 5 mm square device.
  • the film thickness referred to here is a display value of a crystal oscillation type film thickness monitor.
  • a light emitting device was fabricated in the same manner as in Example 31 except that the materials listed in Tables 1 to 3 were used as the host material. The results of each example are shown in Tables 1-3.
  • H- :! to H-6 are compounds represented by the following formulae.
  • a light emitting device was produced in the same manner as in Example 31 except that the materials listed in Table 4 were used as the dopant material so that the doping concentration was 2%.
  • the results of each example are shown in Table 4 [Table 4]
  • D-2 to D-10 are compounds represented by the following formulae:
  • a light emitting device was fabricated in the same manner as in Example 31 except that the materials listed in Table 5 were used as the electron transporting material. The results of each example are shown in Table 5.
  • E-2 to E-8 are compounds represented by the following formulas,
  • a light emitting device was produced in the same manner as in Example 31 except that D-11 shown by the following formula was used as a dopant material so that the doping concentration was 2%.
  • this light emitting device was DC driven with lOmAZcm 2 , high efficiency green light emission with a luminous efficiency of 5.21 mZW was obtained.
  • this light emitting device was continuously driven with a direct current of lOmAZcm 2 , the luminance half-life was 4000 hours.
  • a light emitting device was produced in the same manner as in Example 31 except that D-12 represented by the following formula was used as a dopant material so that the doping concentration was 5%.
  • this light emitting device was DC driven with lOmAZcm 2 , high efficiency yellow light emission with a luminous efficiency of 5.81 mZW was obtained.
  • this light-emitting device was driven continuously with a direct current of lOmAZcm 2 , the luminance half-life was 10,000 hours.
  • the compound [29] as the host material and the compound [29] as the dopant material and D-12 as the dopant material were deposited to a thickness of 5 nm so that the dopant concentration was 5%, and then the compound [29] as the host material as the luminescent material.
  • a light emitting device was produced in the same manner as in Example 31 except that D-1 was laminated as a dopant material to a thickness of 30 nm so that the doping concentration was 2%.
  • this light-emitting device was DC-driven with lOmAZcm 2 , a high-efficiency white with a luminous efficiency of 6.51 mZW was obtained. Color emission was obtained.
  • this light emitting device was continuously driven with a direct current of lOmAZcm 2 , the luminance half time was 10,000 hours.
  • a glass substrate manufactured by Asahi Glass Co., Ltd., 15 ⁇ well, electron beam evaporated product
  • an ITO transparent conductive film was deposited to 150 nm was cut into 30 ⁇ 40 mm.
  • the ITO film was patterned into a stripe shape of 300 ⁇ m pitch (remaining width 270 m) ⁇ 32 stripes by photolithography.
  • One side of the ITO stripe in the long side direction is extended to 1.27mm pitch (opening width 800 / zm) to facilitate electrical connection to the outside.
  • the obtained substrate was ultrasonically cleaned with acetone and “Semicocrine (registered trademark) 56” (manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes, respectively, and then with ultrapure water. Subsequently, the substrate was ultrasonically cleaned with isopropyl alcohol for 15 minutes, and then immersed in hot methanol for 15 minutes and dried. This substrate was subjected to UV-ozone treatment for 1 hour immediately before the device was fabricated, and further placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus was 5 ⁇ 10 -4 Pa or less.
  • a 4,4'-bis (N— (m-tolyl) -N-phenolamino) bi-layer was first deposited as a hole transport material by resistance heating method at 150 nm. did.
  • compound [29] was deposited as a host material and D-1 was deposited as a dopant material to a thickness of 35 nm so that the doping concentration was 2%.
  • E-1 was laminated to a thickness of 20 nm as an electron transport material.
  • the film thickness referred to here is a display value of a crystal oscillation type film thickness monitor.
  • a mask with 16 250 ⁇ m openings (remaining width 50 ⁇ m, equivalent to 300 m pitch) formed by wet etching on a 50 ⁇ m thick Kovar plate is perpendicular to the ITO stripe in a vacuum.
  • the magnet was applied from the back of the substrate and fixed so that the mask and the ITO substrate were in close contact.
  • the organic layer was doped with 0.5 nm of lithium and then evaporated with 200 nm of aluminum to produce a 32 ⁇ 16 dot matrix device. When this device was driven in matrix, characters could be displayed without crosstalk.
  • the light emitting device material of the present invention can be used for a light emitting device or the like, and can provide a light emitting device material having excellent thin film stability. According to the present invention, a light emitting device having high luminous efficiency and excellent durability can be obtained.
  • the light-emitting element of the present invention includes a display element, a flat panel display, and a bar. It can be used for fields such as lighting, lighting, interiors, signs, signboards, electronic cameras and optical signal generators.

Abstract

 一般式(1)で表されるピレン化合物を含有する発光素子材料により、高効率かつ耐久性に優れた発光素子を可能にする発光素子材料、およびこれを用いた発光素子を提供する。 (R1~R18は、それぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ホスフィンオキサイド基およびシリル基の中から選ばれた基である。R1~R18は、隣接する置換基同士で環を形成してもよい。nは1~3の整数である。Xは-O-、-S-および-NR19-の中から選ばれた基である。R19は、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アリール基、ヘテロアリール基およびアミノ基の中から選ばれた基である。R19は、R11またはR18と結合し環を形成してもよい。Yは単結合、アリーレン基またはヘテロアリーレン基である。R1~R10のうちいずれかn個およびR11~R19のうちいずれか1つは、Yとの連結に用いられる。) 【化1】

Description

明 細 書
発光素子材料および発光素子
技術分野
[0001] 本発明は、蛍光色素や電荷輸送材として有用な発光素子材料およびこれを用いた 発光素子に関する。本発明の発光素子は、表示素子、フラットパネルディスプレイ、 ノ ックライト、照明、インテリア、標識、看板、電子写真機および光信号発生器などの 分野に利用可能である。
背景技術
[0002] 陰極カゝら注入された電子と陽極カゝら注入された正孔が両極に挟まれた有機発光体 内で再結合する際に発光するという有機薄膜発光素子の研究が、近年活発に行わ れている。この発光素子は、薄型で、かつ、低駆動電圧下での高輝度発光と、発光 材料を選ぶことにより多色発光が可能なことが特徴であり、注目を集めている。
[0003] イーストマンコダック社の C. W. Tangらによって有機薄膜発光素子が高輝度に発 光することが示されて以来、この技術について、多くの研究機関が検討を行っている 。コダック社の研究グループが提示した有機薄膜発光素子の代表的な構成は、 ITO ガラス基板上に、正孔輸送性のジァミンィ匕合物、発光層であるトリス (8—キノリノラー ト)アルミニウム (ΠΙ)、そして陰極として Mg :Ag (合金)を順次設けたものであり、 10V 程度の駆動電圧で l,000cd/m2の緑色発光が可能であった (非特許文献 1参照)。
[0004] また、有機薄膜発光素子は、発光層に種々の蛍光材料を用いることにより、多様な 発光色を得ることが可能であることから、ディスプレイなどへの実用ィ匕研究が盛んであ る。三原色の発光材料の中では緑色発光材料の研究が最も進んでおり、現在は赤 色発光材料と青色発光材料にぉ ヽて、特性向上を目指して鋭意研究がなされて ヽる
[0005] 有機薄膜発光素子における最大の課題の 1つは、素子の耐久性を高めることであ る。特に青色発光素子に関しては、耐久性に優れ、信頼性の高い素子を提供する青 色発光材料は少ない。例えば、ァリール基で置換されたピレンィ匕合物を用いた青色 発光素子が開示されている(特許文献 1〜5参照)。また、力ルバゾリル基を 4つ有す るピレンィ匕合物 (特許文献 6参照)を青色発光素子に用いた例も開示されているが、
V、ずれも耐久性が不十分であった。
特許文献 1:特開 2000— 273056号公報 (請求項 1〜2)
特許文献 2:特開 2002— 63988号公報 (請求項 1)
特許文献 3:国際公開第 2004Z096945号パンフレット(特許請求の範囲) 特許文献 4:特開 2004— 75567号公報 (請求項 1〜4)
特許文献 5:特開 2004— 139957号公報 (請求項 1)
特許文献 6:特開 2003— 272864号公報 (請求項 1)
非特許文献 1 :アプライド フィジックス レターズ (Applied Physics Letters) (米 国)1987年、 51卷、 12号、 913〜915頁
発明の開示
発明が解決しょうとする課題
[0006] 上述のように、従来の有機薄膜発光素子では、発光効率が高ぐかつ耐久性に優 れた青色発光素子が提供されていな力つた。そこで本発明は、従来技術の問題を解 決し、発光効率が高ぐかつ耐久性に優れた青色発光素子を可能にする発光素子 材料、およびこれを用いた発光素子を提供することを目的とする。
課題を解決するための手段
[0007] 本発明は一般式(1)で表されるピレンィ匕合物を含有する発光素子材料である。
[0008] [化 1]
Figure imgf000004_0001
(ir〜R18は、それぞれ同じでも異なっていてもよぐ水素、アルキル基、シクロアルキ ル基、複素環基、ァルケ-ル基、シクロアルケ-ル基、アルキ-ル基、アルコキシ基、 アルキルチオ基、ァリールエーテル基、ァリールチオエーテル基、ァリール基、へテ ロアリール基、ハロゲン、カルボ-ル基、カルボキシル基、ォキシカルボ-ル基、カル バモイル基、アミノ基、ホスフィンオキサイド基およびシリル基の中カゝら選ばれた基で ある。 〜 8は、隣接する置換基同士で環を形成してもよい。 nは 1〜3の整数であ る。 Xは— O—、—S—および— NR19—の中力も選ばれた基である。 R19は、水素、ァ ルキル基、シクロアルキル基、複素環基、ァルケ-ル基、シクロアルケ-ル基、アルキ -ル基、ァリール基、ヘテロァリール基およびアミノ基の中力 選ばれた基である。 R1 9は、 R11または R18と結合し環を形成してもよい。 Yは単結合、ァリーレン基またはへ テロアリーレン基である。 1^〜1^のうちいずれ力 n個および RU〜R19のうちいずれか
1つは、 Yとの連結に用いられる。)
また、本発明は、少なくとも陽極、陰極および発光層を有し、該陽極と該陰極の間 に該発光層が存在し、該発光層が電気工ネルギーにより発光する発光素子であって 、該発光層が一般式(1)で表されるピレンィ匕合物を含有する発光素子である。
発明の効果
[0010] 本発明の発光素子材料は、発光素子等に利用可能で、薄膜安定性に優れた発光 素子材料を提供できる。本発明によれば、高い発光効率と優れた耐久性を有する発 光素子が得られる。
発明を実施するための最良の形態
[0011] 一般式(1)で表されるピレンィ匕合物について詳細に説明する。
[0012] [化 2]
Figure imgf000005_0001
[0013] 一般式(1)で表されるピレンィ匕合物は、分子中にピレン骨格および電子供与性縮 合芳香族であるジベンゾフラン基、ジベンゾチォフェン基および力ルバゾール基の中 カゝら選ばれる基 1〜3個を有し、両者が、連結基 Yで結合されている。該ピレン化合物 は、このような構造を有することにより、高い薄膜安定性と優れた耐熱性を有する。一 般式(1)において、 nが 4以上であると、薄膜安定性と耐熱性が低下する。一般式(1 )において、 nは 1〜2の範囲が、薄膜安定性と耐熱性がより優れるので好ましい。
[0014] 連結基 Yは、単結合、ァリーレン基またはへテロアリーレン基である。連結基 Yは、 ァリーレン基またはへテロアリーレン基であることが好ましい。ここで、ァリーレン基と は、フエ-ル基、ナフチル基、ビフヱ-ル基、フエナントリル基、ターフェ-ル基、ピレ -ル基などの芳香族炭化水素基力 導かれる 2価の基を示し、これは置換基を有し ていても有していなくてもよい。ァリーレン基の炭素数は特に限定されないが、通常、 6〜40の範囲である。ァリーレン基は、置換基も含めて炭素数は 6〜 12の範囲がより 好ましい。
[0015] ヘテロァリーレン基とは、ピリジル基、キノリニル基、ビラジニル基、ナフチリジル基、 ジベンゾフラ -ル基、ジベンゾチオフヱ-ル基、カルバゾリル基などの炭素以外の原 子を一個または複数個環内に有する芳香族基から導かれる 2価の基を示し、これは 置換基を有して ヽても有して 、なくてもょ 、。ヘテロァリーレン基の炭素数は特に限 定されないが、通常、 2〜30の範囲であり、置換基も含めて 2〜12の範囲がより好ま しい。
[0016] 一般式(1)において、!^〜尺18は、それぞれ同じでも異なっていてもよぐ水素、ァ ルキル基、シクロアルキル基、複素環基、ァルケ-ル基、シクロアルケ-ル基、アルキ -ル基、アルコキシ基、アルキルチオ基、ァリールエーテル基、ァリールチオエーテ ル基、ァリール基、ヘテロァリール基、ハロゲン、カルボ-ル基、カルボキシル基、ォ キシカルボ-ル基、力ルバモイル基、アミノ基、ホスフィンオキサイド基およびシリル基 の中から選ばれた基である。また、 〜 8は、隣接する置換基同士で環を形成して ちょい。
[0017] 1^〜1^のうち少なくとも一つはァリール基またはへテロアリール基であることが好ま しい。
[0018] Xは— O—、—S—および— NR19—の中力も選ばれた基である。 R19は、水素、ァ ルキル基、シクロアルキル基、複素環基、ァルケ-ル基、シクロアルケ-ル基、アルキ -ル基、ァリール基、ヘテロァリール基およびアミノ基の中力 選ばれた基である。 R1 9は、 R11または R18と結合し環を形成してもよい。
[0019] !^1〜!^10のうちいずれ力 n個および RU〜R19のうちいずれか 1つは、 Yとの連結に用 いられる。 R R3、 R6および R8のうち少なくとも一つが Yとの連結に用いられることが 好ましい。
[0020] これらの置換基のうち、アルキル基とは、例えば、メチル基、ェチル基、 n—プロピル 基、イソプロピル基、 n—ブチル基、 sec—ブチル基、 tert—ブチル基などの飽和脂 肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。置換さ れている場合の追加の置換基には特に制限は無ぐ例えば、アルキル基、ァリール 基、ヘテロァリール基等を挙げることができ、この点は、以下の記載にも共通する。ま た、アルキル基の炭素数は特に限定されないが、入手の容易性やコストの点から、通 常 1以上 20以下、より好ましくは 1以上 8以下の範囲である。
[0021] シクロアルキル基とは、例えば、シクロプロピル、シクロへキシル、ノルボル-ル、ァ ダマンチルなどの飽和脂環式炭化水素基を示し、これは置換基を有して 、ても有し ていなくてもよい。シクロアルキル基の炭素数は特に限定されないが、通常、 3以上 2 0以下の範囲である。
[0022] 複素環基とは、例えば、ピラン環、ピぺリジン環、環状アミドなどの炭素以外の原子 を環内に有する脂肪族環を示し、これは置換基を有して!/ヽても有して!/ヽなくてもょ ヽ 。複素環基の炭素数は特に限定されないが、通常、 2以上 20以下の範囲である。
[0023] ァルケ-ル基とは、例えば、ビュル基、ァリル基、ブタジェ-ル基などの二重結合を 含む不飽和脂肪族炭化水素基を示し、これは置換基を有して 、ても有して 、なくて もよい。ァルケ-ル基の炭素数は特に限定されないが、通常、 2〜20の範囲である。
[0024] シクロアルケ-ル基とは、例えば、シクロペンテ-ル基、シクロペンタジェ-ル基、シ クロへキセニル基などの二重結合を含む不飽和脂環式炭化水素基を示し、これは置 換基を有して ヽても有して 、なくてもょ 、。シクロアルケ-ル基の炭素数は特に限定 されないが、通常、 3以上 20以下の範囲である。
[0025] アルキニル基とは、例えば、ェチニル基などの三重結合を含む不飽和脂肪族炭化 水素基を示し、これは置換基を有していても有していなくてもよい。アルキ-ル基の 炭素数は特に限定されないが、通常、 2〜20の範囲である。
[0026] アルコキシ基とは、例えば、メトキシ基、エトキシ基、プロポキシ基などのエーテル結 合を介して脂肪族炭化水素基が結合した官能基を示し、この脂肪族炭化水素基は 置換基を有して 、ても有して 、なくてもょ 、。アルコキシ基の炭素数は特に限定され ないが、通常、 1以上 20以下の範囲である。
[0027] アルキルチオ基とは、アルコキシ基のエーテル結合の酸素原子が硫黄原子に置換 されたものである。アルキルチオ基の炭化水素基は置換基を有して 、ても有して ヽな くてもよい。アルキルチオ基の炭素数は特に限定されないが、通常、 1以上 20以下の 範囲である。
[0028] ァリールエーテル基とは、例えば、フエノキシ基など、エーテル結合を介した芳香族 炭化水素基が結合した官能基を示し、芳香族炭化水素基は置換基を有して!/ヽても 有していなくてもよい。ァリールエーテル基の炭素数は特に限定されないが、通常、 6 以上 40以下の範囲である。
[0029] ァリールチオエーテル基とは、ァリールエーテル基のエーテル結合の酸素原子が 硫黄原子に置換されたものである。ァリールエーテル基における芳香族炭化水素基 は置換基を有して 、ても有して 、なくてもょ 、。ァリールチオエーテル基の炭素数は 特に限定されないが、通常、 6以上 40以下の範囲である。
[0030] ァリール基とは、例えば、フヱ-ル基、ナフチル基、ビフヱ-ル基、フヱナントリル基 、ターフェ-ル基、ピレニル基などの芳香族炭化水素基を示す。ァリール基は、置換 基を有して 、ても有して 、なくてもょ 、。ァリール基の炭素数は特に限定されな 、が、 通常、 6〜40の範囲である。
[0031] ヘテロァリール基とは、ピリジル基、キノリニル基、ビラジニル基、ナフチリジル基な どの炭素以外の原子を一個または複数個環内に有する 6員環芳香族基、ジベンゾフ ラニル基、ジベンゾチォフエ-ル基、力ルバゾリル基を示し、これは無置換でも置換さ れていてもかまわない。ヘテロァリール基の炭素数は特に限定されないが、通常、 2 〜30の範囲である。
[0032] ハロゲン原子とは、フッ素、塩素、臭素、およびヨウ素を示す。
[0033] カルボ-ル基、カルボキシル基、ォキシカルボ-ル基、力ルバモイル基、ァミノ基お よびホスフィンオキサイド基は、置換基を有していても有していなくてもよい。置換基と しては例えば上記のようなアルキル基、シクロアルキル基、ァリール基、ヘテロァリー ル基などが挙げられる。 [0034] シリル基とは、例えば、トリメチルシリル基などのケィ素原子への結合を有する官能 基を示し、これは置換基を有していても有していなくてもよい。シリル基の炭素数は特 に限定されないが、通常、 3〜20の範囲である。また、ケィ素数は、通常、 1〜6であ る。
[0035] 隣接する置換基同士で環を形成する場合、任意の隣接 2置換基 (例えば一般式 (1 )の R1と R2)が互いに結合して、共役または非共役の縮合環を形成できる。縮合環の 構成元素としては、炭素以外にも窒素、酸素、硫黄、リンおよびケィ素力 選ばれる 元素を含んでいてもよい。また、縮合環がさらに別の環と縮合してもよい。
[0036] 一般式(1)で表されるピレンィ匕合物は、 R3、 R6、 R8の少なくとも 1つが R1と異なる基 であると、分子の対称性が低下し、良質なアモルファス薄膜を形成できるので好まし い。
[0037] 一般式(1)で表されるピレンィ匕合物は、 R1がァリール基またはへテロアリール基で あり、 Yの少なくとも 1つが R6もしくは R8の位置で連結することにより、ピレン化合物同 士の相互作用が抑制され、高い発光効率が可能となるため好ましい。 R1がァリール 基であると、さらに好ましい。また、 R2がアルキル基もしくはシクロアルキル基であり、 Yの少なくとも 1つが R6もしくは R8の位置で連結することにより、分子のアモルファス 性が向上し、安定な薄膜を形成できるため好ましい。
[0038] 一般式(1)で表される化合物の中でも、 Xがー NR19—、すなわち電子供与性縮合 芳香族が力ルバゾール基、であり、 Yの少なくとも 1つが R6もしくは R8の位置と R19の 位置で連結していることが好ましい。すなわち、一般式(1)で表されるピレンィ匕合物 が一般式(2)で表される化合物であることが好ま 、。
[0039] [化 3]
Figure imgf000009_0001
[0040] R u〜Rdbは、それぞれ同じでも異なって 、てもよく、水素、アルキル基、シクロアル キル基、複素環基、ァルケ-ル基、シクロアルケ-ル基、アルキ-ル基、アルコキシ 基、アルキルチオ基、ァリールエーテル基、ァリールチオエーテル基、ァリール基、へ テロアリール基、ハロゲン、カルボ-ル基、カルボキシル基、ォキシカルボ-ル基、力 ルバモイル基、アミノ基、ホスフィンオキサイド基およびシリル基の中カゝら選ばれた基 である。 R2G〜R36は、隣接する置換基同士で環を形成してもよい。 Arは、単結合、ァ リーレン基またはへテロアリーレン基である。 Arは、ァリーレン基またはへテロアリーレ ン基であることが好ましい。
[0041] 各置換基の説明は、上記一般式(1)の説明と同様である。
[0042] 一般式(2)で表されるピレンィ匕合物は、 R22および R24の少なくとも 1つがァリール基 またはへテロアリール基であることにより、ピレン骨格同士の分子間相互作用が抑制 され、高効率発光が可能となると同時に安定な薄膜が形成できるため好ましい。中で も、 R24がァリール基またはへテロアリール基であることにより合成プロセスが容易にな り、コストダウンが可能となるため、さらに好ましい。
[0043] また、一般式(2)で表されるピレンィ匕合物は R23がアルキル基またはシクロアルキル 基であることが好ましい形態として挙げられる。中でも、 R27がァリール基またはへテロ ァリール基であることにより分子間相互作用が抑制され、高効率発光が可能となるた め、さらに好ましい。
[0044] さらに、一般式(1)における RU〜R18の少なくとも 1つ、または一般式(2)における R 29〜R36の少なくとも 1つがアルキル基、シクロアルキル基、ァリール基およびへテロア リール基の中から選ばれた基であることも好ましい形態として挙げられる。もしくは R11 〜R18のうちの隣接する少なくとも 2つ、または、 R29〜R36のうちの隣接する少なくとも 2つが結合して環を形成することも好ま 、形態として挙げられる。このような構造をと ることにより、ピレンィ匕合物同士の相互作用が抑制され、高い発光効率が可能となる とともに薄膜安定性も向上するため好まし ヽ。
[0045] 上記のようなピレンィ匕合物として、特に限定されるものではないが、具体的には以 下のような例が挙げられる。
[0046] [化 4]
[S^ ] [ oo]
Figure imgf000011_0001
6 86.6Z0/.00Z OAV
[9^ ] [8^00]
Figure imgf000012_0001
[6濯]
Figure imgf000013_0001
置s005
Figure imgf000014_0001
Figure imgf000015_0001
[0051] [ィ匕 9]
A O Ζ蒙0Ζ-6
£/1Γ£0/0 ε98 0Ϊ
Figure imgf000016_0001
CM
Figure imgf000017_0001
[0053] [化 11]
Figure imgf000018_0001
[0054] [化 12]
Figure imgf000019_0001
[0055] [化 13]
Figure imgf000020_0001
[0056] [化 14]
Figure imgf000021_0001
[0057] [化 15]
Figure imgf000022_0001
Figure imgf000023_0001
[8ΐ^ ] [0900]
Figure imgf000024_0001
Figure imgf000025_0001
] [i l9]
Figure imgf000026_0001
Figure imgf000026_0002
§^0063
Figure imgf000027_0001
006422
Figure imgf000028_0001
006523
Figure imgf000029_0001
006624
Figure imgf000030_0001
〔〕〔a00672
Figure imgf000031_0001
¾s006
Figure imgf000032_0001
Figure imgf000033_0001
0906
[SZ^] [OZOO]
Figure imgf000034_0001
OT8.lC/900rdf/X3d 86.6Z0/.00J OAV
Figure imgf000035_0001
[0071] [化 29]
[οε^] [szoo]
Figure imgf000036_0001
§^0073
Figure imgf000037_0001
Figure imgf000038_0001
[0074] [化 32]
S8zj/7:€900zfc1>d Z£/ 866S00 OZAV
【〕s φ〇2
Figure imgf000039_0001
§s0074Ġ
Figure imgf000040_0001
Figure imgf000041_0001
6ε 86.6Ζ0/.00Ζ OAV §¾s007
Figure imgf000042_0001
Figure imgf000043_0001
[0079] [化 37]
Figure imgf000044_0001
§§00s
//:/ O 0ϊ8/-ϊε900ί1£ 86/-6ίο/-οοίAV寸
Figure imgf000045_0001
〔§ s〕6oo
/ s8/-lf9007:zfc1£ 3-6S/ O/.0SAV-
Figure imgf000046_0001
u0soo
Figure imgf000047_0001
2 008442
Figure imgf000048_0001
s〔¾0084
Figure imgf000049_0001
Figure imgf000050_0001
§奮〕〔〕87
Figure imgf000051_0001
//:/ O 0ϊ8/-ϊε900ί1£ 86/-6ίο/-οοίAV 09
Figure imgf000052_0001
9ssoo
/ 0l8/Jf900i7:fc1>d986/.6/ OS/.00ZAV.
Figure imgf000053_0001
§6800
Figure imgf000054_0001
〔〕〔¾00914
Figure imgf000055_0001
//:/ O 0ϊ8/-ϊε900ί1£ 86/-6ίο/-οοίAV9
Figure imgf000056_0001
uosoo
0093
Figure imgf000057_0001
Figure imgf000058_0001
u009553
Figure imgf000059_0001
Figure imgf000060_0001
Figure imgf000060_0002
一般式(1)で表されるピレンィ匕合物の合成には、公知の方法を使用することができ る。ピレン骨格へ、力ルバゾリル基を導入する方法は、例えば、ノ《ラジウムやニッケル 触媒下でのハロゲン化ピレン誘導体と力ルバゾールまたは力ルバゾリルァリール金属 錯体とのカップリング反応を用いる方法、ノ ラジウムやニッケル触媒下でのピレニル 金属錯体とハロゲン化力ルバゾール誘導体とのカップリング反応を用いる方法などが 挙げられる力 これらに限定されるものではない。ピレン骨格へ、ジベンゾフラ -ル基 またはジベンゾチォフエ-ル基を導入する方法は、例えば、ノ《ラジウムやニッケル触 媒下でのハロゲン化ピレン誘導体とジベンゾフラ -ル金属錯体またはジベンゾチオフ ェニル金属錯体とのカップリング反応を用いる方法、パラジウムやニッケル触媒下で のピレニル金属錯体とハロゲン化ジベンゾフラン誘導体またはハロゲン化ジベンゾチ ォフェン誘導体とのカップリング反応を用いる方法などが挙げられる力 これらに限定 されるものではない。 [0097] 次に、本発明における発光素子の実施形態について例をあげて詳細に説明する。 本発明の発光素子は、陽極、陰極、および該陽極と該陰極の間に存在する有機層を 有し、該有機層は少なくとも発光層を含み、該発光層が電気エネルギーにより発光 する。
[0098] 有機層は、発光層のみからなる構成の他に、 1)正孔輸送層 Z発光層 Z電子輸送 層および、 2)発光層 Z電子輸送層、 3)正孔輸送層 Z発光層などの積層構成が挙 げられる。また、上記各層は、それぞれ単一層、複数層のいずれでもよい。正孔輸送 層および電子輸送層が複数層をからなる場合、電極に接する側の層をそれぞれ正 孔注入層および電子注入層と呼ぶことがあるが、以下の説明では正孔注入材料は 正孔輸送材料に、電子注入材料は電子輸送材料にそれぞれ含まれる。
[0099] 本発明の発光素子は、有機層が一般式(1)で表されるピレンィ匕合物を含む本発明 の発光素子材料により形成される。発光素子材料とは、自ら発光するもの、およびそ の発光を助けるもののいずれかに該当し、発光に関与している化合物を指すもので あり、具体的には、正孔輸送材料、発光材料および電子輸送材料などが該当する。
[0100] 本発明の発光素子材料は、正孔輸送材料や電子輸送材料として用いてもよいが、 高い発光性能を有することから発光材料として好適に用いられる。また、本発明の発 光素子材料は、青色領域に強い発光を示すことから、青色発光材料として好適に用 いられるが、緑色〜赤色発光素子や白色発光素子用の材料としても用いることがで きる。
[0101] 陽極は、正孔を有機層に効率よく注入できる材料であれば特に限定されな 、が、 比較的仕事関数の大きい材料を用いるのが好ましい。陽極の材料としては、例えば、 酸化錫、酸化インジウム、酸ィ匕亜鉛インジウム、酸ィ匕錫インジウム (ITO)などの導電 性金属酸化物、あるいは金、銀、クロムなどの金属、ヨウ化銅、硫化銅などの無機導 電性物質、ポリチォフェン、ポリピロールおよびポリア-リンなどの導電性ポリマーなど が挙げられる。これらの電極材料は、単独で用いてもよいが、複数の材料を積層また は混合して用いてもよい。
[0102] 陽極の抵抗は、発光素子の発光に十分な電流が供給できればよぐ発光素子の消 費電力の点からは低抵抗であることが望ましい。例えば、抵抗が 300 Ω Ζ口以下で あれば電極として機能する力 現在では 10 Ω Z口程度の ιτο基板の供給も可能に なっていることから、 100 Ω /口以下の低抵抗品を使用することが特に望ましい。陽 極の厚みは抵抗値に合わせて任意に選ぶことができるが、通常 100〜300nmの間 で用いられることが多い。
[0103] また、発光素子の機械的強度を保っために、発光素子を基板上に形成することが 好ましい。基板は、ソーダガラスや無アルカリガラスなどのガラス基板が好適に用いら れる。ガラス基板の厚みは、機械的強度を保つのに十分な厚みがあればよいので、 0 . 5mm以上あれば十分である。ガラスの材質については、ガラスからの溶出イオンが 少ない方がよいので無アルカリガラスの方が好ましいが、 SiOなどのバリアコートを施
2
したソーダライムガラスも市販されているのでこれを使用することもできる。さらに、陽 極が安定に機能するのであれば、基板はガラスである必要はなぐ例えば、プラスチ ック基板上に陽極を形成しても良い。陽極の形成方法は、特に制限されず、例えば、 電子線ビーム法、スパッタリング法およびィ匕学反応法などを用いることができる。
[0104] 陰極に用いられる材料は、電子を有機層に効率良く注入できる物質であれば特に 限定されないが、白金、金、銀、銅、鉄、錫、亜鉛、アルミニウム、インジウム、クロム、 リチウム、ナトリウム、カリウム、セシウム、カルシウムおよびマグネシウムならびにこれ らの合金などが挙げられる。電子注入効率をあげて素子特性を向上させるためには 、リチウム、ナトリウム、カリウム、セシウム、カルシウム、マグネシウムまたはこれら低仕 事関数金属を含む合金が有効である。しかしながら、これらの低仕事関数金属は、一 般に大気中で不安定であることが多 、ため、有機層に微量 (真空蒸着の膜厚計表示 で lnm以下)のリチウムやマグネシウムをドーピングして安定'性の高 、電極を得る方 法が好ましい例として挙げることができる。また、フッ化リチウムのような無機塩の使用 も可能である。さらに、電極保護のために白金、金、銀、銅、鉄、錫、アルミニウムおよ びインジウムなどの金属、またはこれら金属を用いた合金、シリカ、チタニアおよび窒 化ケィ素などの無機物、ポリビニルアルコール、ポリ塩化ビニル、炭化水素系高分子 化合物などの有機高分子化合物を積層することが、好ましい例として挙げられる。こ れらの電極の形成方法は、特に制限されず、例えば、抵抗加熱、電子線ビーム、ス ノ ッタリング、イオンプレーティングおよびコーティングなどを用いることができる。 [0105] 正孔輸送層は、正孔輸送材料の一種または二種以上を積層または混合する方法、 もしくは、正孔輸送材料と高分子結着剤の混合物を用いる方法により形成される。ま た、正孔輸送材料に塩化鉄 (III)のような無機塩を添加して正孔輸送層を形成しても よい。正孔輸送材料は、薄膜を形成でき、陽極力も正孔が注入できて、さらに正孔を 輸送できる化合物であれば特に限定されない。例えば、 4, 4' ビス (N—(3—メチ ルフエ-ル)—N フエ-ルァミノ)ビフエ-ル、 4, 4,—ビス(N— (1—ナフチル) N —フエ-ルァミノ)ビフエ-ル、 4, 4,, 4"—トリス(3—メチルフエ-ル(フエ-ル)ァミノ )トリフエ-ルァミンなどのトリフエ-ルァミン誘導体、ビス(N ァリルカルバゾール)ま たはビス(N アルキルカルバゾール)などのビス力ルバゾール誘導体、ピラゾリン誘 導体、スチルベン系化合物、ヒドラゾン系化合物、ベンゾフラン誘導体ゃチォフェン 誘導体、ォキサジァゾール誘導体、フタロシアニン誘導体、ポルフィリン誘導体などの 複素環化合物、ポリマー系では前記単量体を側鎖に有するポリカーボネートゃスチ レン誘導体、ポリチォフェン、ポリア-リン、ポリフルオレン、ポリビュル力ルバゾール およびポリシランなどが好まし!/、。
発光層は、ホスト材料とドーパント材料との混合物であっても、ホスト材料単独であつ ても、いずれでもよい。ホスト材料とドーパント材料は、それぞれ一種類であっても、 複数の組み合わせであってもよ 、。ドーパント材料はホスト材料の全体に含まれて ヽ ても、部分的に含まれていても、いずれでもよい。ドーパント材料はホスト材料と積層 されていても、ホスト材料中に分散されていても、いずれでもよい。ドーパント材料の 量は、多すぎると濃度消光現象が起きるため、ホスト材料とドーパント材料の合計に 対して 20重量%以下で用いることが好ましぐさらに好ましくは 10重量%以下である 。ドーピング方法は、ドーパント材料をホスト材料との共蒸着法によって形成してもよ いし、ホスト材料とドーパント材料を予め混合して力も蒸着しても良い。本発明のピレ ン化合物はドーパント材料として用いてもよいが、薄膜安定性に優れることから、ホス ト材料として好適に用 ヽられる。
[0106] 本発明のピレンィ匕合物のイオン化ポテンシャルは、特に限定されないが、好ましく は 4. 6eV以上 6. 2eV以下であり、より好ましくは 4. 8eV以上 6. OeV以下である。な お、イオンィ匕ポテンシャルの絶対値は測定方法により異なる場合がある。本発明のィ オンィ匕ポテンシャルは、大気雰囲気型紫外線光電子分析装置 (AC— 1、理研機器( 株)製)を用いて、 ITOガラス基板上に 30ηπ!〜 lOOnmの厚さに蒸着した薄膜を測 定した値である。
[0107] 本発明で用いられるホスト材料は、一般式(1)で表されるピレンィ匕合物一種のみに 限る必要はなぐ複数のピレンィ匕合物を混合して用いたり、その他のホスト材料の一 種類以上を一般式(1)で表されるピレンィ匕合物と混合して用いてもょ 、。混合しうるホ スト材料としては、発光体であるアントラセンやペリレンなどの縮合環誘導体、 N, N, ージナフチルー N, N,ージフエ二ルー 4, 4'ージフエ二ルー 1, 1 'ージァミンなどの 芳香族ァミン誘導体、トリス(8—キノリナート)アルミニウム (III)をはじめとする金属キ レートィ匕ォキシノイドィ匕合物、ジスチリルベンゼン誘導体などのビススチリル誘導体、 テトラフエニルブタジエン誘導体、インデン誘導体、クマリン誘導体、ォキサジァゾ一 ル誘導体、ピロ口ピリジン誘導体、ペリノン誘導体、シクロペンタジェン誘導体、ォキ サジァゾール誘導体、力ルバゾール誘導体、ピロロピロール誘導体、ポリマー系では 、ポリフエ-レンビ-レン誘導体、ポリパラフエ-レン誘導体、ポリフルオレン誘導体、 ポリビニルカルバゾール誘導体、ポリチォフェン誘導体が好適に用いられる。
[0108] 発光材料に含有されるドーパント材料は、特に限定されないが、ナフタレン、アント ラセン、フエナンスレン、ピレン、トリフエ二レン、ペリレン、フルオレン、インデンなどの ァリール環を有する化合物やその誘導体 (例えば 2—(ベンゾチアゾールー 2—ィル) —9, 10—ジフエ-ルアントラセンや 5, 6, 11, 12—テトラフエ-ルナフタセンなど)、 フラン、ピロール、チォフェン、シロール、 9—シラフノレオレン、 9, 9'—スピロビシラフ ルオレン、ベンゾチォフェン、ベンゾフラン、インドール、ジベンゾチォフェン、ジベン ゾフラン、イミダゾピリジン、フエナント口リン、ピラジン、ナフチリジン、キノキサリン、ピ ロロピリジン、チォキサンテンなどのへテロアリール環を有する化合物やその誘導体、 ジスチリルベンゼン誘導体、 4, 4,一ビス(2—(4ージフエ-ルァミノフエ-ル)エテュ ル)ビフエ-ル、 4, 4,—ビス(N— (スチルベン— 4—ィル)—N—フエ-ルァミノ)スチ ルベンなどのアミノスチリル誘導体、芳香族アセチレン誘導体、テトラフェニルブタジ ェン誘導体、スチルベン誘導体、アルダジン誘導体、ピロメテン誘導体、ジケトピロ口 [3, 4— c]ピロール誘導体、 2, 3, 5, 6- 1H, 4H—テトラヒドロ一 9— (2,一ベンゾ チアゾリル)キノリジノ [9, 9a, l—gh]クマリンなどのクマリン誘導体、イミダゾール、チ ァゾール、チアジアゾール、カルバゾール、ォキサゾール、ォキサジァゾール、トリア ゾールなどのァゾール誘導体およびその金属錯体および N, N,ージフエ二ルー N, N,ージ(3 メチルフエ-ル)—4, 4,ージフエ-ルー 1, 1,ージァミンに代表される 芳香族ァミン誘導体などが挙げられる。中でも、電子受容性置換基を有する縮合芳 香環誘導体をドーパントとして用いると、本発明のピレンィ匕合物が有する薄膜安定性 の効果がより顕著になるため、好ましい。具体的には、 1 (ベンゾォキサゾールー 2 ィル) 3, 8—ビス(4 メチルフエ-ル)ピレンに代表されるベンゾァゾ一ル基を有 するピレンィ匕合物が特に好ましいドーパントとして挙げられる。
[0109] 電子輸送層は、陰極力 電子が注入され、さらに電子を輸送する層である。電子輸 送層には、電子注入効率が高ぐ注入された電子を効率良く輸送することが望まれる 。そのため電子輸送層は、電子親和力が大きぐしかも電子移動度が大きぐさらに 安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質で 構成されることが望ましい。し力しながら、正孔と電子の輸送バランスを考えた場合に 、電子輸送層が陽極力ゝらの正孔が再結合せずに陰極側へ流れるのを効率よく阻止 できる役割を主に果たすならば、電子輸送能力がそれ程高くない材料で構成されて いても、発光効率を向上させる効果は電子輸送能力が高い材料で構成されている場 合と同等となる。
[0110] 電子輸送層に用いられる電子輸送材料は、特に限定されないが、ナフタレン、アン トラセンなどの縮合ァリール環を有する化合物やその誘導体、 4, 4' ビス (ジフエ- ルェテニル)ビフ ニルに代表されるスチリル系芳香環誘導体、ペリレン誘導体、ペリ ノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノンゃジフ ノキノンな どのキノン誘導体、リンオキサイド誘導体、力ルバゾール誘導体およびインドール誘 導体、トリス(8—キノリノラート)アルミニウム (III)などのキノリノール錯体ゃヒドロキシフ 工 -ルォキサゾール錯体などのヒドロキシァゾール錯体、ァゾメチン錯体、トロボロン 金属錯体およびフラボノール金属錯体、ヘテロァリール環を有する化合物などが挙 げられる。特に、電子受容性窒素を有するヘテロァリール環を有する化合物が、高い 電子輸送能を有するので好まし ヽ。 [0111] 電子受容性窒素とは、隣接原子との間に多重結合を形成している窒素原子を表す
。窒素原子が高い電子陰性度を有することから、該多重結合は電子受容的な性質を 有する。それゆえ、電子受容性窒素を含むヘテロァリール環は、高い電子親和性を 有する。電子受容性窒素を含むヘテロァリール環としては、例えば、ピリジン環、ビラ ジン環、ピリミジン環、キノリン環、キノキサリン環、ナフチリジン環、ピリミドピリミジン環 、ベンゾキノリン環、フエナント口リン環、イミダゾール環、ォキサゾール環、ォキサジァ ゾール環、トリァゾール環、チアゾール環、チアジアゾール環、ベンゾォキサゾール環 、ベンゾチアゾール環、ベンズイミダゾール環、フエナンスロイミダゾール環などが挙 げられる。
[0112] また、電子受容性窒素を含むヘテロァリール環構造を有する化合物は、炭素、水 素、窒素、酸素、ケィ素およびリンの中から選ばれる元素で構成されることが好ましい 。これらの中力 選ばれた元素で構成された電子受容性窒素を含むヘテロァリール 環構造を有する化合物は、高い電子輸送能を有し、発光素子の駆動電圧を著しく低 減できる。このような化合物としては、例えば、ベンズイミダゾール誘導体、ベンズォキ サゾール誘導体、ベンズチアゾール誘導体、ォキサジァゾール誘導体、チアジアゾ ール誘導体、トリァゾール誘導体、ピラジン誘導体、フエナント口リン誘導体、キノキサ リン誘導体、キノリン誘導体、ベンゾキノリン誘導体、ビビリジンやターピリジンなどの オリゴピリジン誘導体、キノキサリン誘導体およびナフチリジン誘導体などが好ま 、 化合物として挙げられる。中でも、トリス(N フエ-ルペンズイミダゾール— 2—ィル) ベンゼンなどのイミダゾール誘導体、 1 , 3 ビス [ (4—tert ブチルフエ-ル) 1 , 3, 4 ォキサジァゾリル]フエ-レンなどのォキサジァゾール誘導体、 N—ナフチルー 2 , 5 ジフエ-ル— 1 , 3, 4 トリァゾールなどのトリァゾール誘導体、バソクプロイン や 1 , 3 ビス(1 , 10 フエナント口リンー9 ィル)ベンゼンなどのフエナント口リン誘 導体、 2, 2,一ビス(ベンゾ [h]キノリン一 2—ィル) 9, 9,一スピロビフルオレンなど のべンゾキノリン誘導体、 2, 5 ビス(6,—(2,, 2,,—ビビリジル))—1 , 1—ジメチル - 3, 4ージフエ-ルシロールなどのビビリジン誘導体、 1 , 3 ビス(4,一(2, 2,:6, 2 "一ターピリジ-ル))ベンゼンなどのターピリジン誘導体、ビス(1 ナフチル) -4 - ( 1 , 8 ナフチリジン 2 ィル)フエ-ルホスフィンオキサイドなどのナフチリジン誘導 体力 電子輸送能の点力 好ましく用いられる。さらに、 1, 3 ビス(1, 10—フエナン トロリン一 9—ィル)ベンゼン、 2, 7 ビス(1, 10 フエナント口リン一 9—ィル)ナフタ レン、 1, 3 ビス(2 フエ-ル一 1, 10 フエナント口リン一 9—ィル)ベンゼンなどの フエナント口リン二量体、および 2, 5 ビス(6,一(2,, 2,,一ビビリジル)) 1, 1ージ メチルー 3, 4 ジフエ-ルシロールなどのビビリジン二量体は、一般式(1)で表され るピレンィ匕合物を含む発光層と組み合わせた際の耐久性向上効果が著しく高ぐ特 に好まし 、例として挙げられる。
[0113] 上記電子輸送材料は単独でも用いられるが、上記電子輸送材料の 2種以上を混合 して用いたり、その他の電子輸送材料の一種以上を上記の電子輸送材料に混合し て用いても構わない。また、アルカリ金属やアルカリ土類金属などの金属と混合して 用いることも可能である。電子輸送層のイオンィ匕ポテンシャルは、特に限定されない 力 好ましくは 5. 8eV以上 8. OeV以下であり、より好ましくは 6. OeV以上 7. 5eV以 下である。
[0114] 発光素子を構成する上記各層の形成方法は、抵抗加熱蒸着、電子ビーム蒸着、ス ノ ッタリング、分子積層法、コーティング法、インクジェット法、印刷法、レーザー誘起 熱転写法など特に限定されないが、通常は、素子特性の点から抵抗加熱蒸着または 電子ビーム蒸着が好ましい。
[0115] 層の厚みは、発光物質の抵抗値にもよるので限定することはできないが、 1-1000 nmの間から選ばれる。発光層、電子輸送層、正孔輸送層の膜厚はそれぞれ、好まし くは lnm以上 200nm以下であり、さらに好ましくは 5nm以上 lOOnm以下である。
[0116] 本発明の発光素子は、電気エネルギーを光に変換できる機能を有する。ここで電 気エネルギーとしては主に直流電流が使用される力 S、パルス電流や交流電流を用い ることも可能である。電流値および電圧値は特に制限はないが、素子の消費電力や 寿命を考慮すると、できるだけ低 、エネルギーで最大の輝度が得られるよう選ばれる べきである。
[0117] 本発明の発光素子は、例えば、マトリクスおよび Zまたはセグメント方式で表示する ディスプレイとして好適に用いられる。
[0118] マトリクス方式では、表示のための画素が格子状やモザイク状など二次元的に配置 され、画素の集合で文字や画像を表示する。画素の形状やサイズは用途によって決 まる。例えば、ノ ソコン、モニター、テレビの画像および文字表示には、通常一辺が 3 00 μ m以下の四角形の画素が用いられ、また、表示パネルのような大型ディスプレイ の場合は、一辺が mmオーダーの画素を用いることになる。モノクロ表示の場合は、 同じ色の画素を配列すればよいが、カラー表示の場合には、赤、緑、青の画素を並 ベて表示させる。カラー表示の場合、がその配列方式は、典型的にはデルタタイプと ストライプタイプがある。そして、このマトリクスの駆動方法は、線順次駆動およびァク ティブマトリクスのどちらでもよい。線順次駆動は、発光素子の構造が簡単であるが、 動作特性を考慮した場合、アクティブマトリクスの方が優れる場合がある。駆動方法 は、用途によって使い分ける。
セグメント方式とは、予め決められた情報を表示するようにパターンを形成し、このパ ターンの配置によって決められた領域を発光させる方式である。例えば、デジタル時 計や温度計における時刻や温度表示、オーディオ機器や電磁調理器などの動作状 態表示および自動車のパネル表示などが挙げられる。そして、マトリクス表示とセグメ ント表示は同じパネルの中に共存して 、てもよ 、。
[0119] 本発明の発光素子は、各種機器等のバックライトとしても好ましく用いられる。ノ ック ライトは、主に自発光しない表示装置の視認性を向上させる目的に使用され、液晶 表示装置、時計、オーディオ装置、自動車パネル、表示板および標識などに使用さ れる。特に、液晶表示装置、中でも薄型化が検討されているパソコン用途のバックラ イトに、本発明の発光素子は好ましく用いられる。本発明の発光素子により、従来の ものより薄型で軽量なバックライトを提供できる。
実施例
[0120] 以下、実施例をあげて本発明を説明するが、本発明はこれらの実施例によって限 定されない。なお、下記の各実施例にある化合物の番号は上の化学式に記載したィ匕 合物の番号を指す。また構造分析に関する評価方法を下記に示す。
[0121] H— NMRは超伝導 FTNMR ΕΧ— 270 (日本電子(株)製)を用い、重クロロホ ルム溶液にて測定を行った。
[0122] HPLC純度は、高速液体クロマトグラフ 1^ー10 ( (株)島津製作所製)を用ぃ、0. lgZLのクロ口ホルム溶液にて測定した。カラムの展開溶媒としては、 0. 1%リン酸水 溶液とァセトニトリルの混合溶液を用いた。
[0123] 実施例 1
化合物 [30]の合成
1, 6—ジブロモピレン 2g、 4— t—ブチルフエ-ルボロン酸 lg、リン酸三カリウム 2. 4 g、テトラプチルアンモ-ゥムブロミド 0. 4g、酢酸パラジウム 22mgとジメチルホルムァ ミド 60mlの混合溶液を窒素気流下、 130°Cで 6時間加熱撹拌した。溶液を室温に冷 却した後、水 30mlを注入し、ジクロロメタン 100mlで抽出した。有機層を水 50mlで 2 回洗浄し、硫酸マグネシウムで乾燥後、エバポレートした。濃縮物をシリカゲルカラム クロマトグラフィーにより精製し、真空乾燥して、 1—ブロモ— 6— (4— t—ブチルフエ -ル)ピレン 0. 7gを得た。
[0124] 次に、 1—ブロモ—6— (4— t—ブチルフエ-ル)ピレン 0. 7g、 9— [4— (4, 4, 5, 5—テトラメチルー [1, 3, 2]ジォキサボロランー2—ィル)フエ-ル]力ルバゾール 0. 74g、リン酸三カリウム 0. 85g、テトラプチルアンモ-ゥムブロミド 0. 13g、酢酸パラジ ゥム 8. Omgとジメチルホルムアミド 20mlの混合溶液を窒素気流下、 130°Cで 5時間 加熱撹拌した。溶液を室温に冷却した後、水 30mlを注入し、ろ過した。得られた固 体をエタノール 30mlで洗浄した後、シリカゲルカラムクロマトグラフィーにより精製し、 さらにジメチルホルムアミドから再結晶し、真空乾燥し、白色結晶 0. 69gを得た。得ら れた粉末の1 H— NMR分析結果は次の通りであり、上記で得られた白色結晶が化合 物 [30]であることが確認された。
'H-NMR CCDCl (d=ppm) ) : 1.47(S, 9H), 7.34(t, 2H), 7.49(t, 2H), 7.61-7.64 (m,
3
6H), 7.76-7.90 (m, 4H), 8.02—8.35 (m, 10H)
なお、この化合物 [30]は、油拡散ポンプを用いて 1 X 10_3Paの圧力下、約 240°C で昇華精製を行って力 発光素子材料として使用した。 HPLC純度 (測定波長 254η mにおける面積%)は、昇華精製前が 99. 6%、昇華精製後が 99. 7%であった。
[0125] 実施例 2
化合物 [69]の合成
1—ブロモピレン 45. Og、 4—メチルフエ-ルポロン酸 21. 7g、リン酸三カリウム 34. 0g、テトラプチルアンモ-ゥムブロミド 10. 3g、酢酸パラジウム 0. 71gとジメチルホル ムアミド 1. 6Lの混合溶液を窒素気流下、 120°Cで 5時間加熱撹拌した。溶液を室温 に冷却した後、水 1. 6Lを注入し、室温で 0. 5h撹拌した。析出した固体をろ取し、水 200mlで 2回洗浄した。得られた固体をジクロロメタン 500mlに溶解し、硫酸マグネ シゥムで乾燥後、セライトを用いてろ過した。ろ液をエバポレートし、残さをメタノール 2 00mlで 2回洗浄し、析出した固体をろ取し、真空乾燥して、 1— (4—メチルフエ-ル )ピレン 40. Ogを得た。
[0126] 次に、 1— (4—メチルフエ-ル)ピレン 40. 0g、 N ブロモスクシンイミド 24. 4gとジ メチルホルムアミド 1. 4Lの混合溶液を窒素気流下、 40°Cで 7時間加熱撹拌した。溶 液を室温に冷却後、水 1. 0Lを注入し、ジクロロメタン 500mlで抽出した。有機層を 水 200mlで 2回洗浄し、硫酸マグネシウムで乾燥後、セライトを用いてろ過した。ろ液 をエバポレートし、残さを酢酸ェチル 200mlで 2回洗浄し、析出した固体をろ取し、真 空乾燥して、 1—ブロモ—6— (4—メチルフエ-ル)ピレン 11. 4gを得た。
[0127] 次に、 1—ブロモ 6— (4—メチルフエ-ル)ピレン 6g、 9— [3— (4, 4, 5, 5—テト ラメチルー [1, 3, 2]ジォキサボロランー2 ィル)フエ-ル]力ルバゾール 7. 75g、リ ン酸三カリウム 8. 9g、テトラプチルアンモ-ゥムブロミド 1. 4g、酢酸パラジウム 94mg とジメチルホルムアミド 200mlの混合溶液を窒素気流下、 130°Cで 5時間加熱撹拌し た。溶液を室温に冷却した後、水 30mlを注入し、ろ過した。得られた固体をエタノー ル 30mlで洗浄した後、キシレン 150mlをカ卩え、 140°Cで溶解させた。 100°Cまで冷 却した後、セライトを用いてろ過した。ろ液をエバポレートし、シクロペンチルメチルェ 一テル 50mlをカ卩ぇ 120°Cで加熱撹拌した。溶液を室温まで冷却後、ろ過し、真空乾 燥して、黄白色結晶 4. 4gを得た。得られた粉末の1 H—NMR分析結果は次の通り であり、上記で得られた黄白色結晶が化合物 [69]であることが確認された。
'H-NMR CCDCl (d=ppm) ) : 2.50(s, 3H), 7.27-8.32(m, 24H)
3
なお、この化合物 [69]は、油拡散ポンプを用いて 1 X 10_3Paの圧力下、約 240°C で昇華精製を行って力 発光素子材料として使用した。 HPLC純度 (測定波長 254η mにおける面積%)は昇華精製前が 99. 4%、昇華精製後が 99. 5%であった。
[0128] 実施例 3 化合物 [47]の合成
1ーブロモピレン 59g、 p クロ口フエ-ルボロン酸 40g、リン酸三カリウム 108g、テト ラブチルアンモ-ゥムブロミド 16. 4g、酢酸パラジウム 1. 15gとジメチルホルムアミド 1 250mlの混合溶液を窒素気流下、 130°Cで 3時間加熱撹拌した。溶液を室温に冷 却した後、水 1000mlを注入し、ろ過した。得られた固体をメタノール 200mlで洗浄し た後、ジクロロメタン 1000mlに溶解させ、硫酸マグネシウムで乾燥後、セライトを用い てろ過し、エバポレートした。得られた固体をメタノール 200mlで洗浄し、真空乾燥し て、 1— (4—クロ口フエ-ル)ピレン 58. 2gを得た。
[0129] 次に、 1— (4 クロ口フエ-ノレ)ピレン 58. 2g、 N—ブロモスクシンイミド 36. 4gとジメ チルホルムアミド 1900mlの混合溶液を窒素気流下、 40°Cで 6時間加熱撹拌した。 溶液を室温に冷却した後、水 500mlを注入し、ろ過した。メタノール 200mlで洗浄し 、真空乾燥して、 1—ブロモ 6— (4—クロ口フエ-ル)ピレンと 1—ブロモ 8— (4— クロ口フエ-ル)ピレンの混合物を得た。
[0130] 次に、 1—ブロモ 6— (4 クロ口フエ-ノレ)ピレンと 1—ブロモ 8— (4 クロ口フエ -ル)ピレンの混合物とジクロロメタン 500mlの混合溶液を窒素気流下、還流しなが ら 30分加熱撹拌した。溶液を撹拌しながら室温に冷却した後、さらに 30分撹拌し、 沈殿物をろ過した。得られた沈殿物とジクロロメタン 300mlの混合溶液を窒素気流下 、還流しながら 1時間加熱撹拌した。溶液を撹拌しながら室温に冷却した後、さらに 3 0分撹拌し、沈殿物をろ過し、真空乾燥して、 1 プロモー 6—(4 クロ口フエニル)ピ レン 15gを得た。
[0131] 次に、 1—ブロモ 6— (4 クロ口フエ-ル)ピレン 4. 9g、 2 ビフエ-ルボロン酸 3 . 7g、リン酸三カリウム 8. 0g、テトラプチルアンモ-ゥムブロミド 1. 2g、酢酸パラジゥ ム 84mgとジメチルホルムアミド 125mlの混合溶液を窒素気流下、 130°Cで 6時間加 熱撹拌した。溶液を室温に冷却した後、水 100mlを注入し、ろ過した。得られた固体 をメタノール 50mlで洗浄した後、ジクロロメタン 100mlに溶解させ、硫酸マグネシウム で乾燥後、ろ過し、エバポレートした。濃縮物をシリカゲルカラムクロマトグラフィーに より精製し、真空乾燥した後、 1— (ビフエ-ル— 2—ィル)—6— (4—クロ口フエ-ル) ピレン 3. 6gを得た。 [0132] 次に、 1— (ビフエ-ル一 2—ィル) 6— (4 クロ口フエ-ル)ピレン 3. 6g、力ルバ ゾール 1. 54g、ナトリウム t—ブトキシド 884mg、トリ— t—ブチルホスフィンテトラフル 才ロボレート 200mg、ビス(ジベンジリデンアセトン)パラジウム 440mgと m—キシレン 77mlの混合溶液を窒素気流下、 140°Cで 6時間加熱撹拌した。溶液を室温に冷却 した後、水 100mlを注入し、酢酸ェチル 50mlで抽出した。有機層を水 50mlで 2回 洗浄し、硫酸マグネシウムで乾燥後、エバポレートにより濃縮した。得られた固体をシ リカゲルクロマトグラフィーにより精製し、真空乾燥して、白色結晶 3. 9gを得た。得ら れた粉末の1 H— NMR分析結果は次の通りであり、上記で得られた白色結晶が化合 物 [47]であることが確認された。
'H-NMR CCDCl (d=ppm) ) : 6.95— 7.05(m, 3H), 7.05— 7.15(m, 2H), 7.30-7.70(m, 1
3
OH), 7.83(dd, 4H), 8.00— 8.15(m, 5H), 8.17— 8.32(m, 5H)
なお、この化合物 [47]は、油拡散ポンプを用いて 1 X 10_3Paの圧力下、約 260°C で昇華精製を行って力 発光素子材料として使用した。 HPLC純度 (測定波長 254η mにおける面積%)は昇華精製前が 99. 7%、昇華精製後が 99. 8%であった。
[0133] 実施例 4
化合物 [29]の合成
1—ブロモ 6— (4 クロ口フエ-ル)ピレン 3. 5g、 4—メチルフエ-ルボロン酸 1. 6g、リン酸三カリウム 4. 9g、テトラプチルアンモ-ゥムブロミド 0. 75g、酢酸パラジゥ ム 52mgとジメチルホルムアミド 30mlの混合溶液を窒素気流下、 130°Cで 3時間加 熱撹拌した。溶液を室温に冷却した後、水 100mlを注入し、ろ過した。得られた固体 をジクロロメタン 100mlに溶解し、セライトを用いてろ過した。ろ液をエバポレートし、 得られた固体を酢酸ェチル 30mlで洗浄した。真空乾燥して、 1一(4 メチルフエ- ル)一 6— (4 クロ口フエ-ル)ピレン 2. 6gを得た。
[0134] 次に、 1— (4—メチルフエ-ル) 6— (4 クロ口フエ-ル)ピレン 2. 6g、カルバゾ ール 1. 4g、ナトリウム t ブトキシド 820mg、トリ一 t—ブチルホスフィンテトラフルォロ ボレート 145mg、ビス(ジベンジリデンアセトン)パラジウム 320mgと m—キシレン 50 mlの混合溶液を窒素気流下、 140°Cで 6時間加熱撹拌した。溶液を室温に冷却した 後、セライトを用いてろ過し、エバポレートにより濃縮した。得られた固体をシリカゲル クロマトグラフィーにより精製し、真空乾燥して、白色固体 2. 3gを得た。得られた粉末 の1 H— NMR分析結果は次の通りであり、上記で得られた白色固体が化合物 [29]で あることが確認された。
'H-NMR CCDCl (d=ppm) ) : 2.42(s, 3H), 7.31— 7.43(m, 4H) , 7.47-7.53(m, 2H) ,
3
7.55(d, 2H) , 7.63(d, 2H) , 7.79(d, 2H) , 7.89(d, 2H) , 8.02(d, 1H) , 8.05- 8.16(m, 3 H) , 8.18- 8.29(m, 5H) , 8.34(d, 1H)
なお、この化合物 [29]は、油拡散ポンプを用いて 1 X 10_3Paの圧力下、約 250°C で昇華精製を行って力 発光素子材料として使用した。 HPLC純度 (測定波長 254η mにおける面積%)は昇華精製前が 99. 6%、昇華精製後が 99. 8%であった。
[0135] 実施例 5
化合物 [33]の合成
2—ビフエ-ルボロン酸の代わりに 3— t—ブチルフエ-ルボロン酸を用いた以外は 実施例 4と同様の方法で合成し、黄白色結晶 1. 2gを得た。得られた粉末の1 H—N MR分析結果は次の通りであり、上記で得られた黄白色結晶が化合物 [33]であること が確認された。
一 NMR (CDC1 (d=ppm) ) : 1.41-1.44(m, 9H), 7.30- 7.91(m, 14H), 8.03— 8.35(m,
3
10H)
なお、この化合物 [33]は、油拡散ポンプを用いて 1 X 10_3Paの圧力下、約 260°C で昇華精製を行って力 発光素子材料として使用した。 HPLC純度 (測定波長 254η mにおける面積%)は昇華精製前が 99. 8%、昇華精製後が 99. 9%であった。
[0136] 実施例 6
化合物 [28]の合成
2—ビフエニルボロン酸の代わりにフエニルボロン酸を用いた以外は実施例 4と同様 の方法で合成し、白色結晶 322mgを得た。得られた粉末の1 H— NMR分析結果は 次の通りであり、上記で得られた白色結晶が化合物 [28]であることが確認された。
— NMR (CDC1 (d=ppm) ) : 7.26- 8.36(m, 25H)
3
なお、この化合物 [28]は、油拡散ポンプを用いて 1 X 10_3Paの圧力下、約 240°C で昇華精製を行って力 発光素子材料として使用した。 HPLC純度 (測定波長 254η mにおける面積%)は昇華精製前が 99. 5%、昇華精製後が 99. 6%であった。
[0137] 実施例 7
化合物 [35]の合成
2 -ビフエ-ルボロン酸の代わりに 2—ナフタレンボロン酸を用 V、た以外は実施例 4 と同様の方法で合成し、黄白色結晶を得た。得られた粉末の1 H— NMR分析結果は 次の通りであり、上記で得られた黄白色結晶が化合物 [35]であることが確認された。
— NMR (CDC1 (d=ppm) ) : 7.33- 8.36(m, 27H)
3
なお、この化合物 [35]は、油拡散ポンプを用いて 1 X 10_3Paの圧力下、約 280°C で昇華精製を行って力 発光素子材料として使用した。 HPLC純度 (測定波長 254η mにおける面積%)は昇華精製前が 99. 1%、昇華精製後が 99. 8%であった。
[0138] 実施例 8
化合物 [45]の合成
2—ビフエ-ルボロン酸の代わりに 1一べンゾフランボロン酸を用いた以外は実施例 4と同様の方法で合成し、白色結晶を得た。得られた粉末の1 H— NMR分析結果は 次の通りであり、上記で得られた白色結晶が化合物 [45]であることが確認された。 'H-NMR CCDCl (d=ppm) ) : 7.33- 8.41(m, 27H)
3
なお、この化合物 [45]は、油拡散ポンプを用いて 1 X 10_3Paの圧力下、約 300°C で昇華精製を行って力 発光素子材料として使用した。 HPLC純度 (測定波長 254η mにおける面積%)は昇華精製前が 99. 5%、昇華精製後が 99. 6%であった。
[0139] 実施例 9
化合物 [49]の合成
2 -ビフエ-ルボロン酸の代わりに 2— (4—ビフエ-ル)フエ-ルボロン酸を用 、た 以外は実施例 4と同様の方法で合成し、黄白色結晶 0. 40gを得た。得られた粉末の ¾一 NMR分析結果は次の通りであり、上記で得られた黄白色結晶が化合物 [49]で あることが確認された。
'H-NMR CCDCl (d=ppm) ) : 7.15-7.70(m, 19H), 7.83(dd, 4H), 8.00— 8.15(m, 5H),
3
8.17-8.32(m, 5H)
なお、この化合物 [49]は、油拡散ポンプを用いて 1 X 10_3Paの圧力下、約 270°C で昇華精製を行って力 発光素子材料として使用した。 HPLC純度 (測定波長 254η mにおける面積%)は昇華精製前が 99. 7%、昇華精製後が 99. 8%であった。
[0140] 実施例 10
化合物 [81]の合成
1—ブロモ 6— (4—メチルフエ-ル)ピレン 8. Og、 3, 5 ジクロロフエ-ルポロン 酸 4. 5g、リン酸三カリウム 9. 2g、テトラプチルアンモ-ゥムブロミド 1. 4g、酢酸パラ ジゥム 97mgとジメチルホルムアミド 215mlの混合溶液を窒素気流下、 120°Cで 5時 間加熱撹拌した。溶液を室温に冷却した後、水 1. OLを注入し、ジクロロメタン 600ml で抽出した。有機層を水 200mlで 2回洗浄し、硫酸マグネシウムで乾燥後、セライト を用いてろ過した。ろ液をエバポレートし、残さを酢酸ェチル 200mlで 2回洗浄し、析 出した固体をろ取した。析出した固体をジメチルホルムアミド 100mlで再結晶し、真 空乾燥して、 1— (3, 5 ジクロロフエ-ル)一 6— (4—メチルフエ-ル)ピレン 5. 5gを 得た。
[0141] 1— (3, 5 ジクロロフエ-ル) 6— (4—メチルフエ-ル)ピレン 0. 85g、カルバゾ ール 0. 97g、 t ブトキシナトリウム 0. 56g、 (トリス一 t—ブチルホスフィン)テトラフル ォロホウ酸塩 0. l lg、ビス(ジベンジリデンアセトン)パラジウム(0) 0. 22gと m—キシ レン 39mlの混合溶液を窒素気流下、 140°Cで 3時間加熱撹拌した。溶液を室温に 冷却した後、水 50mlを注入し、ジクロロメタン 200mlで抽出した。有機層を水 50ml で 2回洗浄し、硫酸マグネシウムで乾燥後、エバポレートした。濃縮物をシリカゲル力 ラムクロマトグラフィーにより精製し、真空乾燥して、黄白色結晶 0. 87gを得た。得ら れた粉末の1 H— NMR分析結果は次の通りであり、上記で得られた黄白色結晶が化 合物 [81]であることが確認された。
'H-NMR CCDCl (d=ppm) ) : 2.51(s, 3H), 7.30— 8.50(m, 31H)
3
なお、この化合物 [81]は、油拡散ポンプを用いて 1 X 10_3Paの圧力下、約 280°C で昇華精製を行って力 発光素子材料として使用した。 HPLC純度 (測定波長 254η mにおける面積%)は昇華精製前が 99. 2%、昇華精製後が 99. 3%であった。
[0142] 実施例 11
化合物 [99]の合成 1—ブロモ 6— (4 クロ口フエ-ル)ピレン 4. 0g、 4— t—ブチルフエ-ルボロン酸 2. 0g、リン酸三カリウム 4. 8g、テ卜ラブチルアンモ-ゥムブロミド 0. 72g、酢酸パラジ ゥム 52mgとジメチルホルムアミド 100mlの混合溶液を窒素気流下、 130°Cで 3時間 加熱撹拌した。溶液を室温に冷却した後、水 100mlを注入し、ろ過した。得られた固 体にキシレン 100mlを加え、 140°Cで溶解させた。溶液を 100°Cに冷却後、セライト を用いてろ過した。ろ液をエバポレートし、得られた固体をメタノール 50mlで洗浄し、 真空乾燥して、 1一(4 t—ブチルフエ-ル)ー6—(4 クロ口フエ-ル)ピレン 3. Og を得た。
[0143] 1一(4 t—ブチルフエ-ル)ー6—(4 クロ口フエ-ル)ピレン 0. 8g、 9 [4一(4 , 4, 5, 5—テトラメチルー [1, 3, 2]ジォキサボロランー2 ィル)フエ-ル]カルバゾ ール 1. Og、炭酸カリウム 1. lg、ビス(ジベンジリデンアセトン)パラジウム(0) 47mg、 (トリス t ブチルホスフィン)テトラフルォロホウ酸塩 23mgとジォキサン 50mlの混 合溶液を窒素気流下、 110°Cで 8時間加熱撹拌した。溶液を室温に冷却した後、ろ 過し、得られた固体をジォキサン 30ml、水 50ml、エタノール 50mlそれぞれで洗浄 した。得られた固体をキシレン 100mlから再結晶し、真空乾燥して、黄白色結晶 0. 1 5gを得た。得られた粉末の1 H—NMR分析結果は次の通りであり、上記で得られた 黄白色結晶が化合物 [99]であることが確認された。
'H-NMR CCDCl (d=ppm) ) : 1.47(S, 9H), 7.30- 8.31(m, 28H)
3
HPLC純度 (測定波長 254nmにおける面積%)は 99. 1%であった。
[0144] 実施例 12
化合物 [104]の合成
1— (3, 5 ジクロロフエ-ル)一 6— (4—メチルフエ-ル)ピレン 0. 88g、 2 ナフ チルボロン酸 0. 35g、炭酸セシウム 2. 9g、 (トリス— t—ブチルホスフィン)テトラフル ォロホウ酸塩 58mg、ビス(ジベンジリデンアセトン)パラジウム(0) 0. 12gと 1, 4ージ ォキサン 20mlの混合溶液を窒素気流下、 90°Cで 4時間加熱撹拌した。溶液を室温 に冷却した後、水 50mlを注入し、ジクロロメタン 100mlで抽出した。有機層を水 20m 1で 2回洗浄し、硫酸マグネシウムで乾燥後、エバポレートした。濃縮物をシリカゲル力 ラムクロマトグラフィーにより精製し、真空乾燥して、 1— {3 クロ口一 5— (2 ナフチ ル)フエ-ル} 6— (4 メチルフエ-ル)ピレン 0. 40gを得た。
[0145] 次に、 1 {3—クロロー5—(2—ナフチル)フェ-ル}ー6—(4ーメチルフェ-ル)ピ レン 0. 36g、カルノ ゾール 0. 17g、 t—ブトキシナトリウム 98mg、(トリス— t—ブチル ホスフィン)テトラフルォロホウ酸塩 20mg、ビス(ジベンジリデンアセトン)パラジウム(0 ) 39mgと m—キシレン 7mlの混合溶液を窒素気流下、 140°Cで 3時間加熱撹拌した 。溶液を室温に冷却した後、水 20mlを注入し、ジクロロメタン 100mlで抽出した。有 機層を水 20mlで 2回洗浄し、硫酸マグネシウムで乾燥後、エバポレートした。濃縮物 をシリカゲルカラムクロマトグラフィーにより精製し、真空乾燥して、黄白色結晶 0. 40 gを得た。得られた粉末の1 H—NMR分析結果は次の通りであり、上記で得られた黄 白色結晶が化合物 [104]であることが確認された。
'H-NMR CCDCl (d=ppm) ) : 2.51(s, 3H), 7.30— 8.45(m, 30H)
3
なお、この化合物 [104]は、油拡散ポンプを用いて 1 X 10_3Paの圧力下、約 280 °Cで昇華精製を行って力 発光素子材料として使用した。 HPLC純度 (測定波長 25 4nmにおける面積%)は昇華精製前が 99. 5%、昇華精製後が 99. 7%であった。
[0146] 実施例 13
化合物 [117]の合成
2 ブロモニトロベンゼン 10g、 4 メチルフエ-ルボロン酸 8. 2g、リン酸三カリウム 25. 4g、テトラプチルアンモ-ゥムブロミド 3. 9g、酢酸パラジウム 270mgとジメチル ホルムアミド 150mlの混合溶液を窒素気流下、 130°Cで 3時間加熱撹拌した。溶液 を室温に冷却した後、水 100mlを注入し、酢酸ェチル 150mlで抽出した。有機層を 水 100mlで 2回洗浄し、硫酸マグネシウムで乾燥後、エバポレートした。濃縮物をシリ 力ゲルカラムクロマトグラフィーで精製し、真空乾燥して、 2— (4—メチルフエニル)二 卜口ベンゼン 8. 6gを得た o
[0147] 2- (4—メチルフエ-ル)ニトロベンゼン 3g、亜リン酸トリェチル 20mlを 160°Cで 6 時間加熱撹拌した。亜リン酸トリェチルを減圧留去後、メタノール 10ml加え、ろ過し た。得られた固体を真空乾燥して、 2—メチルカルバゾール 1. 5gを得た。
[0148] 1一 (4一メチルフエ-ル)一 6—(4一クロ口フエ-ル)ピレン 0. 8g、 2—メチルカルバ ゾール 0. 58g、 t ブトキシナトリウム 0. 23g、 (トリス一 t—ブチルホスフィン)テトラフ ルォロホウ酸塩 45mg、ビス(ジベンジリデンアセトン)パラジウム(0) 99mgと m—キシ レン 30mlの混合溶液を窒素気流下、 140°Cで 3時間加熱撹拌した。溶液を室温に 冷却した後、セライトを用いてろ過した。ろ液をエバポレートし、濃縮物をシリカゲル力 ラムクロマトグラフィーにより精製し、真空乾燥して、乳白色結晶 0. 36gを得た。得ら れた粉末の1 H— NMR分析結果は次の通りであり、上記で得られた乳白色結晶が化 合物 [117]であることが確認された。
一 NMR(CDC1 (d=ppm) ) : 2.52(s, 3H), 2.57(s, 3H), 7.17(d, 1H), 7.29— 7.60(m,
3
9H), 7.77(d, 2H), 7.89(d, 2H), 8.00- 8.37(m, 9H)
なお、この化合物 [117]は、油拡散ポンプを用いて 1 X 10_3Paの圧力下、約 230 °Cで昇華精製を行って力 発光素子材料として使用した。 HPLC純度 (測定波長 25 4nmにおける面積%)は昇華精製前が 99. 7%、昇華精製後が 99. 9%であった。
[0149] 実施例 14
化合物 [120]の合成
4 メチルフエ-ルボロン酸の代わりに 4 ビフエ-ルボロン酸を用 、た以外は実施 例 13と同様の方法で合成し、乳白色結晶を得た。得られた粉末の1 H— NMR分析 結果は次の通りであり、上記で得られた乳白色結晶が化合物 [120]であることが確認 された。
'H-NMRCCDCl (d=ppm) ) :2.52(s, 3H), 7.36— 8.37(m, 28H)
3
なお、この化合物 [120]は、油拡散ポンプを用いて 1 X 10_3Paの圧力下、約 270 °Cで昇華精製を行って力 発光素子材料として使用した。 HPLC純度 (測定波長 25 4nmにおける面積%)は昇華精製前が 99. 7%、昇華精製後が 99. 9%であった。
[0150] 実施例 15
化合物 [123]の合成
4 メチルフエ-ルボロン酸の代わりに 1 ナフタレンボロン酸を用 V、た以外は実施 例 13と同様の方法で合成し、乳白色結晶を得た。得られた粉末の1 H— NMR分析 結果は次の通りであり、上記で得られた乳白色結晶が化合物 [123]であることが確認 された。
'H-NMR CCDCI (d=ppm) ) : 2.51(s, 3H), 7.36— 8.31(m, 30H) なお、この化合物 [123]は、油拡散ポンプを用いて 1 X 10_3Paの圧力下、約 290 °Cで昇華精製を行って力 発光素子材料として使用した。 HPLC純度 (測定波長 25 4nmにおける面積%)は昇華精製前が 99. 6%、昇華精製後が 99. 9%であった。
[0151] 実施例 16
化合物 [127]の合成
4 メチルフエ-ルボロン酸の代わりに 4 t ブチルフエ-ルボロン酸を用いた以 外は実施例 13と同様の方法で合成し、白色結晶 569mgを得た。得られた粉末の1 H NMR分析結果は次の通りであり、上記で得られた白色結晶が化合物 [127]である ことが確認された。
1H—NMR (CDC1 (d=ppm) ) : 1.45(s, 9H), 2.52(s, 3H), 7.26— 8.38(m, 26H)
3
なお、この化合物 [127]は、油拡散ポンプを用いて 1 X 10_3Paの圧力下、約 260 °Cで昇華精製を行って力 発光素子材料として使用した。 HPLC純度 (測定波長 25 4nmにおける面積%)は昇華精製前が 99. 5%、昇華精製後が 99. 6%であった。
[0152] 実施例 17
化合物 [128]の合成
4 メチルフエ-ルボロン酸の代わりに 9 [4— (4, 4, 5, 5—テトラメチルー [1, 3 , 2]ジォキサボロラン— 2 ィル)フエ-ル]力ルバゾールを用 、た以外は実施例 13 と同様の方法で合成し、乳白色結晶を得た。得られた粉末の1 H— NMR分析結果は 次の通りであり、上記で得られた乳白色結晶が化合物 [128]であることが確認された
'H-NMR CCDCl (d=ppm) ) : 2.50(s, 3H), 7.27— 8.39(m, 31H)
3
なお、この化合物 [128]は、油拡散ポンプを用いて 1 X 10_3Paの圧力下、約 300 °Cで昇華精製を行って力 発光素子材料として使用した。 HPLC純度 (測定波長 25 4nmにおける面積%)は昇華精製前が 99. 8%、昇華精製後が 99. 9%であった。
[0153] 実施例 18
化合物 [129]の合成
2 ブロモニトロベンゼン 10g、 4 クロ口フエ-ルボロン酸 8. 5g、リン酸三カリウム 2 5. 4g、テトラプチルアンモ-ゥムブロミド 3. 9g、酢酸パラジウム 270mgとジメチルホ ルムアミド 150mlの混合溶液を窒素気流下、 130°Cで 3時間加熱撹拌した。溶液を 室温に冷却した後、水 100mlを注入し、酢酸ェチル 150mlで抽出した。有機層を水 100mlで 2回洗浄し、硫酸マグネシウムで乾燥後、エバポレートした。濃縮物をシリカ ゲルカラムクロマトグラフィーで精製し、真空乾燥して、 2— (4—クロ口フエニル)ニトロ ベンゼン 8. 6gを得た。
[0154] 2- (4 クロ口フエ-ル)ニトロベンゼン 2. 0g、ジフエ-ルァミン 1. 7g、 t—ブトキシ ナトリウム 0. 99g、(トリス— t—ブチルホスフィン)テトラフルォロホウ酸塩 0. 19g、ビス (ジベンジリデンアセトン)パラジウム(0) 0. 43gと m—キシレン 30mlの混合溶液を窒 素気流下、 140°Cで 5時間加熱撹拌した。溶液を室温に冷却した後、セライトを用い てろ過した。ろ液をエバポレートし、濃縮物をシリカゲルカラムクロマトグラフィーにより 精製し、真空乾燥して、 2— (4 ジフエ-ルァミノフエ-ル)ニトロベンゼン 1. 5gを得 た。
[0155] 2- (4 ジフエ-ルァミノフエ-ル)ニトロベンゼン 1. 5g、亜リン酸トリェチル 20ml を 160°Cで 8時間加熱撹拌した。亜リン酸トリェチルを減圧留去後、メタノール 10ml 加え、ろ過した。得られた固体を真空乾燥して、 2—ジフエ-ルァミノ力ルバゾール 1. 2gを得た。
[0156] 1— (4—メチルフエ-ル) 6— (4 クロ口フエ-ル)ピレン 0. 6g、 2 ジフエ-ルァ ミノ力ルバゾール 0. 6g、 t—ブトキシナトリウム 0. 17g、(トリス t ブチルホスフィン) テトラフルォロホウ酸塩 33mg、ビス(ジベンジリデンアセトン)パラジウム(0) 74mgと m—キシレン 20mlの混合溶液を窒素気流下、 140°Cで 5時間加熱撹拌した。溶液を 室温に冷却した後、セライトを用いてろ過した。ろ液をエバポレートし、濃縮物をシリカ ゲルカラムクロマトグラフィーにより精製し、真空乾燥して、黄白色結晶 0. 65gを得た 。得られた粉末の1 H—NMR分析結果は次の通りであり、上記で得られた黄白色結 晶が化合物 [129]であることが確認された。
一 NMR (CDC1 (d=ppm) ) : 2.51(s, 3H), 6.99— 7.58(m, 19H), 7.67(d, 2H), 7.78(d,
3
2H), 7.98-8.28(m, lOh)
なお、この化合物 [129]は、油拡散ポンプを用いて 1 X 10_3Paの圧力下、約 280 °Cで昇華精製を行って力 発光素子材料として使用した。 HPLC純度 (測定波長 25 4nmにおける面積%)は昇華精製前が 99. 7%、昇華精製後が 99. 9%であった。
[0157] 実施例 19
化合物 [131]の合成
フエ-ルヒドラジン 7. 4g、テトラロン 10gと酢酸 25mlの混合溶液を窒素気流下、 13 0°Cで 1時間加熱撹拌した。溶液を室温に冷却した後、水 30mlをカ卩え、ろ過した。得 られた固体を水 Zメタノール (1Z1)混合溶媒 20mlに分散し、 1時間撹拌後、ろ過し 、真空乾燥して、 1, 2 べンゾ 3, 4 ジヒドロ力ルバゾール 5. Ogを得た。
[0158] 1, 2 べンゾ 3, 4 ジヒドロ力ルバゾール 5. 0g、クロラ-ル 5. 6gと m—キシレン 100mlの混合溶媒を 140°Cで 1時間加熱撹拌した。溶液を室温に冷却した後、ろ過 し、キシレン 30mlで洗浄した。得られた固体を m—キシレン 100mlから再結晶し、ろ 過後、エタノール 20mlで洗浄し、真空乾燥して、 1, 2 べンゾカルバゾール 3. 5gを 得た。
[0159] 1— (4—メチルフエ-ル) 6— (4 クロ口フエ-ル)ピレン 0. 8g、 1, 2 ベンゾカ ルバゾール 0. 43g、 t—ブトキシナトリウム 0. 23g、(トリス t—ブチルホスフィン)テト ラフルォロホウ酸塩 45mg、ビス(ジベンジリデンアセトン)パラジウム(0) 99mgと m— キシレン 30mlの混合溶液を窒素気流下、 140°Cで 12時間加熱撹拌した。溶液を室 温に冷却した後、セライトを用いてろ過した。ろ液をエバポレートし、濃縮物をシリカゲ ルカラムクロマトグラフィーにより精製し、真空乾燥して、黄白色結晶 0. 30gを得た。 得られた粉末の1 H—NMR分析結果は次の通りであり、上記で得られた黄白色結晶 が化合物 [131]であることが確認された。
'H-NMR CCDCl (d=ppm) ) : 2.53(s, 3H), 7.35— 8.39(m, 26H)
3
なお、この化合物 [131]は、油拡散ポンプを用いて 1 X 10_3Paの圧力下、約 250 °Cで昇華精製を行って力 発光素子材料として使用した。 HPLC純度 (測定波長 25 4nmにおける面積%)は昇華精製前が 99. 8%、昇華精製後が 99. 9%であった。
[0160] 実施例 20
化合物 [135]の合成
2 ブロモニトロベンゼン 1. 5g、 2—(9 フエナンスレン) 4, 4, 5, 5—テトラメチ ルー 1, 3, 2 ジォキサボロラン 2. 5g、リン酸三カリウム 3. 4g、テトラプチルアンモ- ゥムブロミド 716mg、酢酸パラジウム 50mgとジメチルホルムアミド 70mlの混合溶液 を窒素気流下、 130°Cで 6時間加熱撹拌した。溶液を室温に冷却した後、水 50mlを 注入し、トルエン 50mlで抽出した。有機層を水 50mlで 2回洗浄し、硫酸マグネシゥ ムで乾燥後、エバポレートにより濃縮した。シリカゲルクロマトグラフィーにより精製し、 真空乾燥した後、 9— (2— -トロフエ-ル)フエナンスレン 2. Ogを得た。
[0161] 次に、 9— (2— -トロフエ-ル)フエナンスレン 2. 0g、亜リン酸トリェチル 40mlの混 合溶液を窒素気流下、 150°Cで 8時間加熱撹拌した。室温に冷却した後、水 50mlを 注入し、トルエン 50mlで抽出した。有機層を水 50mlで 2回洗浄し、硫酸マグネシゥ ムで乾燥後、エバポレートにより濃縮した。濃縮物をシリカゲルクロマトグラフィーによ り精製し、真空乾燥して、 13H— 13—ァザインデノ [1, 2— 1]フエナンスレン 840mg を得た。
[0162] 次に、 1— (4—クロ口フエ-ル)一 6— p—トリルピレン 975mg、 13H— 13—ァザィ ンデノ [1, 2— 1]フエナンスレン 840mg、ナトリウム t—ブトキシド 349mg、トリ一 t—ブ チルホスフィンテトラフルォロボレート 63mg、ビス(ジベンジリデンアセトン)パラジウム 139mgと m—キシレン 25mlの混合溶液を窒素気流下、 140°Cで 3時間加熱撹拌し た。溶液を 80°Cに冷却した後、セライトを用いてろ過し、エバポレートした。得られた 固体をメタノール 50mlで洗浄した後、 m—キシレン力も再結晶し、真空乾燥して、緑 白色結晶 1. Ogを得た。得られた粉末の1 H—NMR分析結果は次の通りであり、上記 で得られた緑白色結晶が化合物 [135]であることが確認された。
一 NMR (CDC1 (d=ppm) ) : 2.52(s, 3H), 7.39— 8.38(m, 24H), 8.70— 9.01(m, 4H)
3
なお、この化合物 [135]は、油拡散ポンプを用いて 1 X 10_3Paの圧力下、約 310 °Cで昇華精製を行って力 発光素子材料として使用した。 HPLC純度 (測定波長 25 4nmにおける面積%)は昇華精製前が 99. 5%、昇華精製後が 99. 9%であった。
[0163] 実施例 21
化合物 [141]の合成
1—ブロモ— 2— -トロベンゼン 1. 0g、 3—ビフエ-ルボロン酸 1. 2g、リン酸三カリ ゥム 2. 2g、テトラプチルアンモ-ゥムブロミド 0. 33mg、酢酸パラジウム 48mgとジメ チルホルムアミド 50mLの混合溶液を窒素気流下、 130°Cで 4. 5時間加熱撹拌した 。溶液を室温に冷却した後、酢酸ェチル 50mLをカ卩え、室温でしばらく攪拌した後、 ろ過し、ろ物を酢酸ェチル 50mLで洗浄した。ろ液に酢酸ェチル 50mLを加え、水( 150mL、 2 X 50mL)で洗浄し、硫酸マグネシウムで乾燥後、濃縮した。得られた粗 生成物をカラムクロマトグラフィーにより精製し、 1— (3—ビフエ-ル) 2— -トロベン ゼン 1. 4g得た。
[0164] 1— (3 ビフエ-ル)— 2 -トロベンゼン 1. 4gと亜リン酸トリェチル 10mLの混合 溶液を窒素気流下、 160°Cで 20時間加熱撹拌した。溶液を室温に冷却した後、酢 酸ェチル 50mLをカ卩え、水(3 X 50mL)で洗浄し、硫酸マグネシウムで乾燥後、濃縮 した。得られた粗生成物をカラムクロマトグラフィーにより精製し、真空乾燥して、 3— フエ-ルカルバゾール 0. 31g得た。
[0165] 1— (4 クロ口フエ-ル) 6— p トリルピレン 0. 41g、 3 フエ-ルカルバゾール 0 . 31g、トリ t ブチルホスホ-ゥム テトラフルォロボレート 31mg、ナトリウム t ブト キシド 0. 15g、ビス(ジベンジリデンアセトン)パラジウム(0) 59mgと m—キシレン 10 mLの混合溶液を窒素気流下、 130°Cで 5時間加熱撹拌した。溶液を室温に冷却し た後、ジクロロメタン 10mLをカ卩え、室温でしばらく攪拌したのち、ろ過し、ろ物をジク ロロメタンで洗浄した。ろ液を集め、水で洗浄し、硫酸マグネシウムで乾燥後、濃縮し た。得られた粗生成物をカラムクロマトグラフィーにより精製し、真空乾燥して、化合物 [14110. 50gを白桃色固体として得た。
[0166] なお、この化合物 [141]は、油拡散ポンプを用いて 1 X 10_3Paの圧力下、約 280 °Cで昇華精製を行って力 発光素子材料として使用した。 HPLC純度 (測定波長 25 4nmにおける面積%)は昇華精製前が 99. 7%、昇華精製後が 99. 9%であった。
[0167] 実施例 22
化合物 [183]の合成
1—ブロモピレン 7g、トリメチルボロキシン 6g、炭酸セシウム 12g、 PdCl (dppf) -C
2
H CI 2gとジメチルホルムアミド 80mlと蒸留水 8mlの混合溶液を窒素気流下、 80°C
2 2
で 7時間加熱撹拌した。溶液を室温に冷却した後、水 50mlを注入し、ろ過した。得ら れた固体をシリカゲルカラムクロマトグラフィーにより精製し、真空乾燥して、 1—メチ ノレピレン 4. 4gを得た。 [0168] 次に、 1—メチルビレン 4. 4g、 t—ブチルクロリド 2gとジクロロメタン 33mlの混合溶 液を窒素気流下、 0°Cに冷却し、塩ィ匕アルミニウム 2. 7gをカ卩えた。この混合溶液を室 温で 3時間撹拌した後、水 30mlを注入し、ジクロロメタン 30mlで抽出した。有機層を 水 20mlで 2回洗浄し、硫酸マグネシウムで乾燥後、エバポレートした。濃縮物をシリ 力ゲルカラムクロマトグラフィーにより精製し、真空乾燥して、 7 t—プチルー 1ーメチ ノレピレン 3gを得た。
[0169] 次に、 7— t—ブチル 1—メチルビレン 3g、ジクロロメタン 130mlとメタノール 43ml の混合溶液を窒素気流下、 0°Cに冷却し、ジクロロメタン 5mlに溶解させたベンジルト リメチルアンモ -ゥムトリブロマイド 4. 3gを滴下した。この混合溶液を室温で 4時間撹 拌した後、水 50mlを注入し、ジクロロメタン 50mlで抽出した。有機層を水 50mlで 2 回洗浄し、硫酸マグネシウムで乾燥後、エバポレートした。濃縮物をシリカゲルカラム クロマトグラフィーにより精製し、真空乾燥して、 1—ブロモ 7— t—ブチル 3—メチ ノレピレン 3. 4gを得た。
[0170] 次に、 1—ブロモ 7— t—ブチル 3—メチルビレン lg、 9- [4- (4, 4, 5, 5—テ トラメチルー [1, 3, 2]ジォキサボロラン 2 ィル)フエ-ル]力ルバゾール 1. 3g、リ ン酸三カリウム 1. 5g、テトラプチルアンモ-ゥムブロミド 0. 22g、酢酸パラジウム 16m gとジメチルホルムアミド 30mlの混合溶液を窒素気流下、 130°Cで 2時間加熱撹拌し た。溶液を室温に冷却した後、水 30mlを注入し、ろ過した。得られた固体をエタノー ル 30mlで洗浄した後、シリカゲルクロマトグラフィーにより精製し、真空乾燥して、白 色結晶 1. 2gを得た。得られた粉末の1 H—NMR分析結果は次の通りであり、上記で 得られた白色結晶が化合物 [183]であることが確認された。
'H-NMR CCDCl (d=ppm) ) : 1.61(S, 9H), 3.05(S, 3H), 7.23— 8.30(m, 19H)
3
なお、この化合物 [183]は、油拡散ポンプを用いて 1 X 10_3Paの圧力下、約 230 °Cで昇華精製を行って力 発光素子材料として使用した。 HPLC純度 (測定波長 25 4nmにおける面積%)は昇華精製前が 99. 1%、昇華精製後が 99. 3%であった。
[0171] 実施例 23
化合物 [185]の合成
ピレン 4. lg、 t—ブチルクロリド 2gとジクロロメタン 33mlの混合溶液を窒素気流下、 0°Cに冷却し、塩ィ匕アルミニウム 2. 7gをカ卩えた。この混合溶液を室温で 3時間撹拌し た後、水 30mlを注入し、ジクロロメタン 30mlで抽出した。有機層を水 20mlで 2回洗 浄し、硫酸マグネシウムで乾燥後、エバポレートした。濃縮物をシリカゲルカラムクロ マトグラフィ一により精製し、真空乾燥して、 2— t—プチルビレン 3g (含有率 65%)を 得た。
[0172] 次に、 2— t—ブチルビレン 3g (含有率 65%)、ジクロロメタン 50mlとメタノール 15m 1の混合溶液を窒素気流下、 0°Cに冷却し、ジクロロメタン 10mlに溶解させたベンジ ルトリメチルアンモ -ゥムトリブロマイド 3. 3gを滴下した。この混合溶液を室温で 2時 間撹拌した後、水 50mlを注入し、ジクロロメタン 50mlで抽出した。有機層を水 50ml で 2回洗浄し、硫酸マグネシウムで乾燥後、エバポレートした。得られた固体にメタノ ール 10mlをカ卩え、 10分撹拌した後、ろ過した。さらにへキサン 30mlをカ卩え、 30分撹 拌した後、ろ過し、真空乾燥して、 1—ブロモ—7— t—プチルビレン 2. 3gを得た。
[0173] 次に、 1—ブロモ 7— t—ブチルピレン 2. 3g、フエ-ルボロン酸 1. lg、リン酸三力 リウム 3. 8g、テトラプチルアンモ-ゥムブロミド 0. 58g、酢酸パラジウム 12mgとジメチ ルホルムアミド 30mlの混合溶液を窒素気流下、 130°Cで 2時間加熱撹拌した。溶液 を室温に冷却した後、水 30mlを注入し、ジクロロメタン 50mlで抽出した。有機層を水 20mlで 2回洗浄し、硫酸マグネシウムで乾燥後、エバポレートした。濃縮物をシリカ ゲルカラムクロマトグラフィーにより精製し、真空乾燥して、 7— t—ブチル 1—フエ- ノレピレン 1. 5gを得た。
[0174] 次に、 7— t—ブチル 1—フエ-ルビレン 1. 5g、ジクロロメタン 25mlとメタノール 8 mlの混合溶液を窒素気流下、 0°Cに冷却し、ジクロロメタン 5mlに溶解させたベンジ ルトリメチルアンモ -ゥムトリブロマイド 1. 7gを滴下した。この混合溶液を室温で 2時 間撹拌した後、水 20mlを注入し、ジクロロメタン 20mlで抽出した。有機層を水 20ml で 2回洗浄し、硫酸マグネシウムで乾燥後、エバポレートした。得られた固体にメタノ ール 10mlをカ卩え、一晩放置した。析出した固体をろ過し、真空乾燥して、 1—ブロモ — 7— t ブチル 3 フエ-ルビレン 1. 9gを得た。
[0175] 次に、 1—ブロモ—7— t—ブチル—3—フエ-ルビレン 1. 9g、 9— [4— (4, 4, 5, 5—テトラメチルー [1, 3, 2]ジォキサボロランー2 ィル)フエ-ル]力ルバゾール 2. 2g、リン酸三カリウム 2. 5g、テトラプチルアンモ-ゥムブロミド 0. 38g、酢酸パラジゥ ム 27mgとジメチルホルムアミド 40mlの混合溶液を窒素気流下、 130°Cで 2時間加 熱撹拌した。溶液を室温に冷却した後、水 40mlを注入し、ろ過した。得られた固体を メタノール 40mlで洗浄した後、シリカゲルクロマトグラフィーにより精製し、真空乾燥し て、黄白色結晶 2. 5gを得た。得られた粉末の1 H—NMR分析結果は次の通りであり 、上記で得られた黄白色結晶が化合物 [185]であることが確認された。
'H-NMR CCDCl (d=ppm) ) : 1.61(S, 9H), 7.30- 8.35(m, 24H)
3
なお、この化合物 [185]は、油拡散ポンプを用いて 1 X 10_3Paの圧力下、約 250 °Cで昇華精製を行って力 発光素子材料として使用した。 HPLC純度 (測定波長 25 4nmにおける面積%)は昇華精製前が 99. 4%、昇華精製後が 99. 6%であった。
[0176] 実施例 24
化合物 [174]の合成
1—ブロモ—7— t—ブチルピレン 2. 3g、 4—メチルフエ-ルボロン酸 1. 2g、リン酸 三カリウム 3. 8g、テトラプチルアンモ-ゥムブロミド 0. 58g、酢酸パラジウム 12mgと ジメチルホルムアミド 30mlの混合溶液を窒素気流下、 130°Cで 2時間加熱撹拌した 。溶液を室温に冷却した後、水 30mlを注入し、ジクロロメタン 50mlで抽出した。有機 層を水 20mlで 2回洗浄し、硫酸マグネシウムで乾燥後、エバポレートした。濃縮物を シリカゲルカラムクロマトグラフィーにより精製し、真空乾燥して、 7— t—ブチル 1— (4—メチルフエ-ル)ピレン 1. 5gを得た。
[0177] 次に、 7— t—ブチル 1— (4—メチルフエ-ル)ピレン 1. 5g、ジクロロメタン 25mlと メタノール 8mlの混合溶液を窒素気流下、 0°Cに冷却し、ジクロロメタン 5mlに溶解さ せたベンジルトリメチルアンモ -ゥムトリブロマイド 1. 7gを滴下した。この混合溶液を 室温で 2時間撹拌した後、水 20mlを注入し、ジクロロメタン 20mlで抽出した。有機層 を水 20mlで 2回洗浄し、硫酸マグネシウムで乾燥後、エバポレートした。得られた固 体にメタノール 10mlをカ卩え、一晩放置した。析出した固体をろ過し、真空乾燥して、 1—ブロモ 7— t—ブチル 3— (4—メチルフエ-ル)ピレン 1. 9gを得た。
[0178] 次に、 1—ブロモ—7— t—ブチル—3— (4—メチルフエ-ル)ピレン 1. 9g、 9— [4 一(4, 4, 5, 5—テトラメチルー [1, 3, 2]ジォキサボロランー2 ィル)フエ-ル]カル ノ ゾール 2. 2g、リン酸三カリウム 2. 5g、テ卜ラブチルアンモ-ゥムブロミド 0. 38g、酢 酸パラジウム 27mgとジメチルホルムアミド 40mlの混合溶液を窒素気流下、 130°Cで 2時間加熱撹拌した。溶液を室温に冷却した後、水 40mlを注入し、ろ過した。得られ た固体をメタノール 40mlで洗浄した後、シリカゲルクロマトグラフィーにより精製し、真 空乾燥して、黄白色結晶 2. 4gを得た。得られた粉末の1 H— NMR分析結果は次の 通りであり、上記で得られた黄白色結晶が化合物 [174]であることが確認された。 1H—NMR (CDC1 (d=ppm) ) : 1.61(s, 9H), 2.51(s, 3H), 7.30— 8.34(m, 23H)
3
なお、この化合物 [174]は、油拡散ポンプを用いて 1 X 10_3Paの圧力下、約 260 °Cで昇華精製を行って力 発光素子材料として使用した。 HPLC純度 (測定波長 25 4nmにおける面積%)は昇華精製前が 99. 4%、昇華精製後が 99. 6%であった。
[0179] 実施例 25
化合物 [199]の合成
1—ブロモ—7— t—ブチル—3— (4—メチルフエ-ル)ピレン 1. 9g、 9— [3— (4, 4, 5, 5—テトラメチルー [1, 3, 2]ジォキサボロラン 2 ィル)フエ-ル]カルバゾー ル 2. 2g、リン酸三カリウム 2. 5g、テ卜ラブチルアンモ-ゥムブロミド 0. 38g、酢酸パラ ジゥム 27mgとジメチルホルムアミド 40mlの混合溶液を窒素気流下、 130°Cで 2時間 加熱撹拌した。溶液を室温に冷却した後、水 40mlを注入し、ろ過した。得られた固 体をメタノール 40mlで洗浄した後、シリカゲルクロマトグラフィーにより精製し、真空 乾燥して、黄白色結晶 2. 3gを得た。得られた粉末の1 H—NMR分析結果は次の通 りであり、上記で得られた黄白色結晶が化合物 [199]であることが確認された。
'H-NMR CCDCl (d=ppm) ) : 1.59(S, 9H), 2.49(S, 3H), 7.26- 8.31(m, 23H)
3
なお、この化合物 [199]は、油拡散ポンプを用いて 1 X 10_3Paの圧力下、約 230 °Cで昇華精製を行って力 発光素子材料として使用した。 HPLC純度 (測定波長 25 4nmにおける面積%)は昇華精製前が 99. 4%、昇華精製後が 99. 6%であった。
[0180] 実施例 26
化合物 [245]の合成
1, 6 ジブロモピレン 4g、 4—メチルフエ-ルボロン酸 3. 8g、リン酸三カリウム 12g 、テトラプチルアンモ-ゥムブロミド 2g、酢酸パラジウム 30mgとジメチルホルムアミド 6 Omlの混合溶液を窒素気流下、 130°Cで 6時間加熱撹拌した。溶液を室温に冷却し た後、水 60mlを注入し、ろ過した。得られた固体をエタノール 60mlで洗浄した後、ト ルェン力 再結晶し、真空乾燥して、 1, 6 ビス(4—メチルフエ-ル)ピレン 2. 6gを 得た。
[0181] 次に、 1, 6 ビス(4—メチルフエ-ル)ピレン 2. 6gと N—ブロモスクシンイミド 1. 2g とジメチルホルムアミド 60mlの混合溶液を窒素気流下、 60°Cで 5時間撹拌した。溶 液を室温に冷却した後、水 60mlを注入し、ジクロロメタン 100mlで抽出した。有機層 を水 50mlで 2回洗浄し、硫酸マグネシウムで乾燥後、エバポレートした。得られた固 体をトルエン力 再結晶し、真空乾燥して、 3 ブロモ 1, 6 ビス (4—メチルフエ- ノレ)ピレン 1. 4gを得た。
[0182] 次に、 3 ブロモ 1, 6 ビス(4—メチルフエ-ル)ピレン 1. 0g、 9— [4— (4, 4, 5, 5—テトラメチルー [1, 3, 2]ジォキサボロラン 2 ィル)フエ-ル]力ルバゾール 1. 04g、リン酸三カリウム 1. 2g、テ卜ラブチルアンモ-ゥムブロミド 0. 18g、酢酸パラ ジゥム 10mgとジメチルホルムアミド 20mlの混合溶液を窒素気流下、 130°Cで 5時間 加熱撹拌した。溶液を室温に冷却した後、水 30mlを注入し、ろ過した。得られた固 体をエタノール 30mlで洗浄した後、シリカゲルクロマトグラフィーにより精製し、真空 乾燥して、淡黄色結晶を得た。得られた粉末の1 H—NMR分析結果は次の通りであ り、上記で得られた淡黄色結晶が化合物 [245]であることが確認された。
'H-NMR CCDCl (d=ppm) ) : 2.50(ss, 6H), 7.29-7.49(m, 8H), 7.53- 7.63(m, 6H), 7
3
.72-7.90 (m, 4H), 7.99-8.09 (m, 3H), 8.16-8.30 (m, 6H)
なお、この化合物 [245]は、油拡散ポンプを用いて 1 X 10_3Paの圧力下、約 270 °Cで昇華精製を行って力 発光素子材料として使用した。 HPLC純度 (測定波長 25 4nmにおける面積%)は昇華精製前が 99. 5%、昇華精製後が 99. 6%であった。
[0183] 実施例 27
化合物 [267]の合成
1—ブロモピレン 2. Og、 4— t—ブチルフエ-ルボロン酸 1. 9g、リン酸三カリウム 3. lg、テトラプチルアンモ-ゥムブロミド 0. 46g、酢酸パラジウム 70mgとジメチルホル ムアミド 70mLの混合溶液を窒素気流下、 130°Cで 2時間加熱撹拌した。溶液を室温 に冷却した後、水 350mLに注入し、析出した固体をろ取した。得られた固体をジクロ ロメタンに溶解し、水で洗浄し、硫酸マグネシウムで乾燥後、濃縮した。得られた粗生 成物をカラムクロマトグラフィーにより精製し、真空乾燥して、 1— (4— t—ブチルフエ -ル)ピレン 1. 9g得た。
[0184] 1一(4 t—ブチルフエ-ル)ピレン 1. 9gとシクロへキサン 60mLの混合溶液を窒 素気流下、 80°Cで加熱攪拌して溶解し、ジー μーメトキシビス [ ( r?ーシクロオタター 1, 5 ジェン)イリジウム (I) ]0. 19gを加え、窒素気流下、 80°Cで 5分間加熱攪拌し 、 4, 4 '—ジ t—ブチル—2, 2'—ビビリジン 0. 16gを加え、窒素気流下、 80。Cで 9. 5時間加熱攪拌した。溶液を室温に冷却した後、濃縮した。得られた粗生成物をカラ ムクロマトグラフィーにより精製し、真空乾燥して、 2— [1— (4— t—ブチルフエ-ル) ピレン— 7—ィル]—4, 4, 5, 5—テトラメチル 1, 3, 2 ジォキサボロラン 0. 61g得 た。
[0185] 2— [1— (4 t—ブチルフエ-ル)ピレン一 7—ィル ]—4, 4, 5, 5—テトラメチル 1, 3, 2 ジォキサボロラン 0. 61g、ブロモベンゼン 0. 28mL、リン酸三カリウム 1. 2g、 テトラプチルアンモ-ゥムブロミド 0. 18g、酢酸パラジウム 14mgとジメチルホルムアミ ド 15mLの混合溶液を窒素気流下、 130°Cで 8時間加熱撹拌した。溶液を室温に冷 却した後、水 75mLに注入し、析出した固体をろ取した。得られた固体をジクロ口メタ ンに溶解し、水で洗浄し、硫酸マグネシウムで乾燥後、濃縮した。得られた粗生成物 をカラムクロマトグラフィーにより精製し、真空乾燥して、 1— (4— t—ブチルフエ-ル) 7 フエ二ルビレン 0. 49g得た。
[0186] 1— (4— t—ブチルフエ-ル) 7—フエ-ルビレン 0. 49g、ジクロロメタン 120mlと メタノール 40mlの混合溶液を窒素気流下、 0°Cに冷却し、ジクロロメタン 10mlに溶解 させたベンジルトリメチルアンモ -ゥムトリブロマイド 0. 52gを滴下した。この混合溶液 を室温で 5時間撹拌した後、ジクロロメタン lOOmLを加え、水(200mL, 2 X lOOmL )で洗浄し、硫酸マグネシウムで乾燥後、濃縮した。得られた粗生成物をカラムクロマ トグラフィ一により精製し、真空乾燥して、 1一(4 t—ブチルフエ-ル)ー3 ブロモ - 7—フエ-ルビレンと位置異性体の混合物 0. 52gを得た。
[0187] 1一(4 t—ブチルフエ-ル) 3 ブロモー 7 フエ-ルビレンと位置異性体の混 合物 0. 52g、 9- [4- (4, 4, 5, 5—テトラメチルー [1, 3, 2]ジォキサボロランー2 ィル)フエ-ル]力ルバゾール 0. 59g、リン酸三カリウム 0. 45g、テトラプチルアンモ ユウムブロミド 72mg、酢酸パラジウム 10mgとジメチルホルムアミド 20mLの混合溶液 を窒素気流下、 130°Cで 5時間加熱撹拌した。室温に冷却した後、水 75mLに注入 し、析出した固体をろ取した。得られた固体をジクロロメタンに溶解し、水で洗浄し、 硫酸マグネシウムで乾燥後、濃縮した。得られた粗生成物をカラムクロマトグラフィー により精製し、真空乾燥して、白色固体 0. 54gを得た。得られた固体に酢酸ェチル 2 OmLを加え、この懸濁液を加熱攪拌した。室温に冷却した後、ろ過し、真空乾燥した 後、白色固体 0. 21gを得た。得られた粉末の1 H—NMR分析結果は次の通りであり 、上記で得られた白色結晶が化合物 [267]であることが確認された。
'H-NMR CCDCl (d=ppm) ) : 8.34— 8.03(m, 9H), 7.62-7.28(m, 19H), 1.47(s, 9H)
3
HPLC純度(測定波長 254nmにおける面積%)は 99. 8%であった。
[0188] 実施例 28
化合物 [283]の合成
1, 6 ジブロモピレン 2g、 4ーメチルー 1 ナフタレンボロン酸 2g、リン酸三カリウム 2. 9g、テトラプチルアンモ-ゥムブロミド 0. 59g、酢酸パラジウム 40mgとジメチルホ ルムアミド 100mlとの混合溶液を窒素気流下、 130°Cで 9時間加熱撹拌した。溶液を 室温に冷却した後、水 500mlを注入し、ジクロロメタン 200mlで抽出した。有機層を 水 100mlで 2回洗浄し、硫酸マグネシウムで乾燥後、エバポレ—トにより濃縮した。得 られた濃縮物をトルエンで再結晶し、 70°C下で真空乾燥して、 1, 6 ジ (4—メチル ナフタレン一 1—ィル)ピレン 1. 7gを乳白色粉末として得た。
[0189] 上記 1. 7gの 1, 6 ジ(4—メチルナフタレン一 1—ィル)ピレン、 N ブロモスクシン イミド 0. 54g、ジメチルホルムアミド 30mlの混合溶液を窒素気流下、 60°Cで 6時間 撹拌した。溶液を室温に冷却した後、水 50mlを注入し、ジクロロメタン 100mlで抽出 した。有機層を水 50mlで 2回洗浄し、硫酸マグネシウムで乾燥後、エバポレ—トによ り濃縮した。得られた濃縮物をトルエンで再結晶し、 70°C下で真空乾燥して、 1—ブ 口モー 3, 8 ジ (4ーメチルナフタレンー1 ィル)ピレン 1. 5gを淡黄色粉末として得 [0190] 上記 lgの 1—ブロモ 3, 8 ジ(4—メチルナフタレン一 1—ィル)ピレン、 4 ジべ ンゾフランボロン酸 0. 4g、リン酸三カリウム 0. 66g、テトラプチルアンモ-ゥムブロミド 0. lg、酢酸パラジウム 7mgとジメチルホルムアミド 16mlとの混合溶液を窒素気流下 、 130°Cで 6時間加熱撹拌した。溶液を室温に冷却した後、水 50mlを注入し、ジクロ ロメタン 70mlで抽出した。有機層を水 20mlで 2回洗浄し、硫酸マグネシウムで乾燥 後、エバポレートにより濃縮した。濃縮物をシリカゲルカラムクロマトグラフィーにより精 製し、 70°C下で真空乾燥して、淡黄色結晶 0. 61gを得た。得られた粉末の1 H—N MR分析結果は次の通りであり、上記で得られた淡黄色結晶が化合物 [283]であるこ とが確認された。
1H—NMR (CDC1 (d=ppm) ) : 2.65 (ss, 6H) , 7.05— 8.15(m, 25H), 8.26(s, 1H)
3
なお、この化合物 [283]は、油拡散ポンプを用いて 1 X 10_3Paの圧力下、約 270 °Cで昇華精製を行って力 発光素子材料として使用した。 HPLC純度 (測定波長 25 4nmにおける面積%)は昇華精製前が 99. 5%、昇華精製後が 99. 8%であった。
[0191] 実施例 29
化合物 [312]の合成
1—ブロモピレン 5g、 N ブロモスクシンイミド 7. 9g、ジメチルホルムアミド 140mlの 混合溶液を窒素気流下、 80°Cで 10時間撹拌した。溶液を室温に冷却した後、水 40 Omlを注入し、析出物をろ過した。ろ別した固体を水 50ml、メタノール 100ml、ジクロ ロメタン 200mlで洗浄した後、 70°C下で真空乾燥し、 1, 3, 6 トリブロモピレン 6. 1 gを淡黄土色粉末として得た。
[0192] 上記 4gの 1, 3, 6 トリブロモピレン、 4ージベンゾフランボロン酸 7. 7g、リン酸三力 リウム 11. 6g、テトラプチルアンモ-ゥムブロミド 1. 8g、酢酸パラジウム 0. 12gとジメ チルホルムアミド 270mlとの混合溶液を窒素気流下、 130°Cで 9時間加熱撹拌した。 溶液を室温に冷却した後、水 800mlを注入し、ジクロロメタン 200mlで抽出した。有 機層を水 100mlで 2回洗浄し、硫酸マグネシウムで乾燥後、エバポレートにより濃縮 した。濃縮物をシリカゲルカラムクロマトグラフィーにより精製し、 70°C下で真空乾燥 し、化合物 [48]4gを淡黄色粉末として得た。
得られた粉末の1 H—NMR分析結果は次の通りである。 H-NMR (CDC1 (d=ppm) ) : 7.28— 7.85(m, 15H), 7.92-8.17(m, 10H), 8.28(dd, 2
3
H), 8.37(s, 1H)
なお、この化合物 [49]は、油拡散ポンプを用いて 1 X 10_3Paの圧力下、約 300°C で昇華精製を行って力 発光素子材料として使用した。 HPLC純度 (測定波長 254η mにおける面積%)は昇華精製前が 99. 3%、昇華精製後が 99. 4%であった。
[0193] 実施例 30
化合物 [338]の合成
ピレン 100g、 t ブチルクロリド 55. 4gとジクロロメタン 400mlの混合溶液をァルゴ ン気流下、 0°Cに冷却し、塩ィ匕アルミニウム 70. 4gをカ卩えた。この混合溶液を室温で 5時間撹拌した後、氷 500gへ注入し、室温で 30分間撹拌した。混合溶液を吸引ろ 過した後、ろ液をジクロロメタン 300mlで 2回抽出した。有機層を水 300mlで洗浄し、 硫酸マグネシウムで乾燥後、エバポレートした。濃縮残渣にメタノール 300mlをカロえ 、 80°Cにて撹拌した後、ろ過した。さらにメタノール 300mlをカロえ、 80°Cにて撹拌し た後、ろ過した。真空乾燥して得られた粗生成物 110. 7gのうち、 59. lgにメタノー ル 150mlをカ卩え、 85°Cにて 1時間撹拌した後、ろ過し、真空乾燥して、 2— t—プチ ルビレン 5〇. 3g (含有率83%)を得た。
[0194] 次に、 2— t—ブチルビレン 45. Og (含有率 83%)、ジクロロメタン 660mlとメタノー ル 220mlの混合溶液をアルゴン気流下、 0°Cに冷却し、ジクロロメタン 100ml〖こ溶解 させたベンジルトリメチルアンモ -ゥムトリブロマイド 56. 4gを滴下した。この混合溶液 を室温で 2. 5時間撹拌した後、ベンジルトリメチルアンモ -ゥムトリブロマイド 5. 64g を追加し、さらに 1. 5時間撹拌した。この混合溶液に水 250mlを注入し、有機層を分 離後、水層をジクロロメタン 250mlで 2回抽出した。有機層を合わせて水 300mlで洗 浄し、硫酸マグネシウムで乾燥後、エバポレートした。得られた固体にメタノール 300 mlを加え、撹拌した後、ろ過した。得られた固体にへキサン 200mlを加え、撹拌した 後、ろ過し、真空乾燥して、 1—ブロモ—7— t—ブチルビレン 44. 5gを得た。
[0195] 次に、 1—ブロモ—7— t—ブチルビレン 11. 0g、 4—メチルフエ-ルボロン酸 5. 78 g、リン酸三カリウム 18. 05g、テトラプチルアンモ-ゥムブロミド 2. 74g、酢酸パラジゥ ム 19 lmgとジメチルホルムアミド 220mlの混合溶液をアルゴン気流下、 130°Cで 14 時間加熱撹拌した。溶液を室温に冷却した後、水 250mlを注入し、ジクロロメタン 25 Omlで抽出した。有機層を水 250mlで 3回洗浄し、硫酸マグネシウムで乾燥後、エバ ポレートした。濃縮物をシリカゲルカラムクロマトグラフィーにより精製し、真空乾燥し て、 7— t—ブチル—1— (4—メチルフエ-ル)ピレン 7. 63gを得た。
[0196] 次に、 7— t—ブチル 1— (4—メチルフエ-ル)ピレン 7. 63g、ジクロロメタン 105 mlとメタノール 35mlの混合溶液をアルゴン気流下、 0°Cに冷却し、ベンジルトリメチ ルアンモ -ゥムトリブロマイド 8. 54gを 5分間で添カロした。この混合溶液を室温で 4時 間撹拌した後、ベンジルトリメチルアンモ -ゥムトリブロマイド 0. 85gを追カ卩し、さらに 1. 5時間撹拌した。反応溶液に水 40mlを注入し、ジクロロメタン 80mlで 2回抽出し た。有機層を合わせて水 50mlで洗浄し、硫酸マグネシウムで乾燥後、エバポレート した。得られた固体にメタノール 25mlを加え、 1時間撹拌してろ過し、真空乾燥して、 1—ブロモ 7— t—ブチル 3— (4—メチルフエ-ル)ピレン 8. 91gを得た。
[0197] 次に、 1—ブロモ 7— t—ブチル 3— (4—メチルフエ-ル)ピレン 1. 00g、 4 ジ ベンゾフランボロン酸 645mg、リン酸三カリウム 1. 29g、テトラプチルアンモ-ゥムブ ロミド 196mg、酢酸パラジウム 13. 7mgとジメチルホルムアミド 23. 5mlの混合溶液 をアルゴン気流下、 130°Cで 3時間加熱撹拌した。溶液を室温に冷却した後、水 60 mlを注入し、 10分間撹拌した。析出した固体をろ過し、水 20mlで 3回洗浄、さらにメ タノール 20mLで 4回洗浄した後、真空乾燥した。得られた粗生成物にへキサン Zジ クロロメタン(30ZD 15mlを加え、撹拌した後、ろ過し、減圧乾燥した。得られた固 体にへキサン Zジクロロメタン(30ZD 10mlをカ卩え、 30分間撹拌した後、ろ過し、減 圧乾燥して、白色粉末 435mgを得た。得られた粉末の1 H— NMR分析結果は次の 通りであり、上記で得られた白色粉末が化合物 [338]であることが確認された。
一 NMR (CDC1 (d=ppm) ) : 1.59(s, 9H), 2.49(s, 3H) , 7.34— 7.43(m, 5H) , 7.55(t,
3
1H) , 7.62(d, 2H) , 7.69(dd, 1H) , 7.93(d, 1H) , 7.97(d, 1H) , 8.04— 8.13(m, 4H) , 8. 20-8.28(m, 3H)
なお、この化合物 [338]は、油拡散ポンプを用いて 1 X 10_3Paの圧力下、約 250 °Cで昇華精製を行って力 発光素子材料として使用した。 HPLC純度 (測定波長 25 4nmにおける面積%)は昇華精製前が 99. 3%、昇華精製後が 99. 5%であった。 [0198] 実施例 31
化合物 [29]を用いた発光素子を次のように作製した。 ITO透明導電膜を 150nm堆 積させたガラス基板 (旭硝子 (株)製、 15 Ω Ζ口、電子ビーム蒸着品)を 30 X 40mm に切断した。 ITO膜をフォトリソグラフィ法によりパターンカ卩ェして、発光部分および電 極引き出し部分を作製した。得られた基板をアセトン、 "セミコクリン (登録商標) 56" ( フルゥチ化学 (株)製)で 15分間超音波洗浄してから、超純水で洗浄した。続いて、 基板をイソプロピルアルコールで 15分間超音波洗浄してから、熱メタノールに 15分 間浸漬させて乾燥させた。素子を作製する直前にこの基板を 1時間 UV—オゾン処 理し、さらに真空蒸着装置内に設置して、装置内の真空度が 5 X 10_4Pa以下になる まで排気した。
[0199] 前記基板の ITO膜上に、抵抗加熱法によって、まず正孔注入材料として、銅フタ口 シァニンを 10nm、正孔輸送材料として、 4, 4,—ビス(N— (1—ナフチル)— N—フ ェ-ルァミノ)ビフエ-ルを 50nm蒸着した。次に、発光材料として、ホスト材料として、 化合物 [29]を、またドーパント材料として下記式に示す D—1を、ドープ濃度が 2%に なるように 35nmの厚さに蒸着した。次に、電子輸送材料として、下記式に示す E— 1 を 20nmの厚さに積層した。以上のように形成した有機層上に、フッ化リチウムを 0. 5 nmの厚さに蒸着した後、アルミニウムを lOOOnm蒸着して陰極とし、 5 X 5mm角の 素子を作製した。ここで言う膜厚は、水晶発振式膜厚モニターの表示値である。この 発光素子を lOmAZcm2で直流駆動したところ、発光効率 4. 8mZWの高効率青色 発光が得られた。この発光素子を lOmAZcm2の直流で連続駆動したところ、輝度 半減時間は 7000時間であった。
[0200] [化 54]
Figure imgf000095_0001
Figure imgf000095_0002
[0201] 実施例 32〜122、比較例 1〜6
ホスト材料として表 1〜 3に記載した材料を用いた以外は、実施例 31と同様にして 発光素子を作製した。各実施例の結果は表 1〜3に示した。
[0202] [表 1]
表 1
Figure imgf000096_0001
2] 表 2
Figure imgf000097_0001
3] 表 3
Figure imgf000098_0001
[0205] なお表 3の H—:!〜 H— 6は下記式で表される化合物である。
[0206] [化 55]
Figure imgf000099_0001
実施例 123〜133
ドーパント材料として表 4に記載した材料をドープ濃度が 2%となるように用いた以 外は、実施例 31と同様にして発光素子を作製した。各実施例の結果は表 4に示した [表 4]
表 4
Figure imgf000100_0001
[0209] なお、表 4の D— 2〜D— 10は下記式で表される化合物である
[0210] [化 56]
Figure imgf000101_0001
[0211] [化 57]
Figure imgf000101_0002
[0212] 実施例 134〜140
電子輸送材料として表 5に記載した材料を用いた以外は、実施例 31と同様にして 発光素子を作製した。各実施例の結果は表 5に示した。
[0213] [表 5]
表 5
Figure imgf000102_0002
[0214] なお、表 5の E— 2〜E— 8は下記式で表される化合物である,
[0215] [化 58]
Figure imgf000102_0001
[0216] 実施例 141
ドーパント材料として下記式に示す D— 11をドープ濃度が 2%となるように用いた以 外は、実施例 31と同様にして発光素子を作製した。この発光素子を lOmAZcm2で 直流駆動したところ、発光効率 5. 21mZWの高効率緑色発光が得られた。この発光 素子を lOmAZcm2の直流で連続駆動したところ、輝度半減時間は 4000時間であ つた o
[0217] [化 59]
Figure imgf000103_0001
[0218] 実施例 142
ドーパント材料として下記式に示す D— 12をドープ濃度が 5%となるように用いた以 外は、実施例 31と同様にして発光素子を作製した。この発光素子を lOmAZcm2で 直流駆動したところ、発光効率 5. 81mZWの高効率黄色発光が得られた。この発光 素子を lOmAZcm2の直流で連続駆動したところ、輝度半減時間は 10000時間で めつに。
[0219] [化 60]
Figure imgf000103_0002
[0220] 実施例 143
発光材料として、ホスト材料として化合物 [29]を、ドーパント材料として D— 12をドー プ濃度が 5%になるように 5nmの厚さに蒸着したのち、さらに発光材料として、ホスト 材料として化合物 [29]を、ドーパント材料として D— 1をドープ濃度が 2%になるように 30nmの厚さに積層した以外は、実施例 31と同様にして発光素子を作製した。この 発光素子を lOmAZcm2で直流駆動したところ、発光効率 6. 51mZWの高効率白 色発光が得られた。この発光素子を lOmAZcm2の直流で連続駆動したところ、輝 度半減時間は 10000時間であった。
[0221] 実施例 144
ITO透明導電膜を 150nm堆積させたガラス基板 (旭硝子 (株)製、 15 ΩΖ口、電 子ビーム蒸着品)を 30 X 40mmに切断した。 ITO膜をフォトリソグラフィ法によって 30 0 μ mピッチ(残り幅 270 m) X 32本のストライプ状にパターン加工した。 ITOストラ イブの長辺方向片側は、外部との電気的接続を容易にするために、 1. 27mmピッチ (開口部幅 800 /z m)まで広げてある。得られた基板をアセトン、 "セミコクリン (登録商 標) 56" (フルゥチ化学 (株)製)で各々 15分間超音波洗浄してから、超純水で洗浄し た。続いて、基板をイソプロピルアルコールで 15分間超音波洗浄してから、熱メタノ ールに 15分間浸漬させて乾燥させた。この基板を素子を作製する直前に 1時間 UV —オゾン処理し、さらに真空蒸着装置内に設置して、装置内の真空度が 5 X 10_4Pa 以下になるまで排気した。
[0222] 前記基板の ITO膜上に、抵抗加熱法によって、まず正孔輸送材料として 4, 4'—ビ ス(N— (m—トリル)— N—フエ-ルァミノ)ビフエ-ルを 150nm蒸着した。次に、ホス ト材料として化合物 [29]を、またドーパント材料として D— 1をドープ濃度が 2%になる ように 35nmの厚さに蒸着した。次に、電子輸送材料として、 E— 1を 20nmの厚さに 積層した。ここで言う膜厚は、水晶発振式膜厚モニターの表示値である。次に、厚さ 5 0 μ mのコバール板にウエットエッチングによって 16本の 250 μ m開口部(残り幅 50 μ m、 300 mピッチに相当)を設けたマスクを、真空中で ITOストライプに直交する ように配置し、マスクと ITO基板が密着するように、基板の裏面から磁石をあてて固定 した。そして有機層にリチウムを 0. 5nmドーピングした後、アルミニウムを 200nm蒸 着して 32 X 16ドットマトリクス素子を作製した。本素子をマトリクス駆動させたところ、 クロストークなく文字表示できた。 産業上の利用可能性
[0223] 本発明の発光素子材料は、発光素子等に利用可能で、薄膜安定性に優れた発光 素子材料を提供できる。本発明によれば、高い発光効率と優れた耐久性を有する発 光素子が得られる。本発明の発光素子は、表示素子、フラットパネルディスプレイ、バ ックライト、照明、インテリア、標識、看板、電子写真機および光信号発生器などの分 野に利用可能である。

Claims

請求の範囲 一般式 (1)で表されるピレンィ匕合物を含有する発光素子材料。
[化 1]
Figure imgf000106_0001
1〜!^18は、それぞれ同じでも異なっていてもよぐ水素、アルキル基、シクロアルキ ル基、複素環基、ァルケ-ル基、シクロアルケ-ル基、アルキ-ル基、アルコキシ基、 アルキルチオ基、ァリールエーテル基、ァリールチオエーテル基、ァリール基、へテ ロアリール基、ハロゲン、カルボ-ル基、カルボキシル基、ォキシカルボ-ル基、カル バモイル基、アミノ基、ホスフィンオキサイド基およびシリル基の中カゝら選ばれた基で ある。 〜 8は、隣接する置換基同士で環を形成してもよい。 nは 1〜3の整数であ る。 Xは— O—、—S—および— NR19—の中力も選ばれた基である。 R19は、水素、ァ ルキル基、シクロアルキル基、複素環基、ァルケ-ル基、シクロアルケ-ル基、アルキ -ル基、ァリール基、ヘテロァリール基およびアミノ基の中力 選ばれた基である。 R1 9は、 R11または R18と結合し環を形成してもよい。 Yは単結合、ァリーレン基またはへ テロアリーレン基である。 1^〜1^のうちいずれ力 n個および RU〜R19のうちいずれか
1つは、 Yとの連結に用いられる。)
[2] R3、 R6および R8のうち少なくとも 1つは、 R1と異なる基である請求項 1記載の発光素 子材料。
[3] R1がァリール基またはへテロアリール基であり、 Yの少なくとも 1つが R6もしくは の 位置で連結する請求項 1または 2に記載の発光素子材料。
[4] R2がアルキル基またはシクロアルキル基であり、 Yの少なくとも 1つが R6もしくは の 位置で連結する請求項 1〜3のいずれかに記載の発光素子材料。
[5] 一般式(1)における RU〜R18の少なくとも 1つがアルキル基、シクロアルキル基、ァリ ール基およびへテロアリール基の中力 選ばれた基である力、もしくは 1〜!^18のう ちの隣接する少なくとも 2つが結合して環を形成して 、る請求項 1〜4の 、ずれかに 記載の発光素子材料。
ピレン化合物が、一般式 (2)で表される化合物である請求項 1記載の発光素子材料
[化 2]
Figure imgf000107_0001
(R 〜 bは、それぞれ同じでも異なっていてもよぐ水素、アルキル基、シクロアル キル基、複素環基、ァルケ-ル基、シクロアルケ-ル基、アルキ-ル基、アルコキシ 基、アルキルチオ基、ァリールエーテル基、ァリールチオエーテル基、ァリール基、へ テロアリール基、ハロゲン、カルボ-ル基、カルボキシル基、ォキシカルボ-ル基、力 ルバモイル基、アミノ基、ホスフィンオキサイド基およびシリル基の中カゝら選ばれた基 である。 R2G〜R36は、隣接する置換基同士で環を形成してもよい。 Arは、単結合、ァ リーレン基またはへテロアリーレン基である。 )
[7] Arがァリーレン基またはへテロアリーレン基である請求項 6記載の発光素子材料。
[8] R22および R24の少なくとも 1つがァリール基またはへテロアリール基である請求項 6ま たは 7に記載の発光素子材料。
[9] R23がアルキル基またはシクロアルキル基である請求項 6〜8の!、ずれかに記載の発 光素子材料。
[10] 一般式(2)における R29〜R36の少なくとも 1つがアルキル基、シクロアルキル基、ァリ ール基およびへテロアリール基の中力 選ばれた基である力、もしくは R29〜R36のう ちの隣接する少なくとも 2つが結合して環を形成している請求項 6〜9のいずれかに 記載の発光素子材料。
[11] 陽極、陰極および該陽極と該陰極の間に存在する有機層を有し、該有機層は少なく とも発光層を含み、該発光層が電気エネルギーにより発光する発光素子であって、 該有機層が一般式 (1)で表されるピレン化合物を含有する発光素子。
[12] 発光層がホスト材料とドーパント材料を含み、かつ、ホスト材料が一般式(1)で表され るピレンィ匕合物である請求項 11に記載の発光素子。
[13] 発光層と陰極の間にさらに電子輸送層が存在し、該電子輸送層が、電子受容性窒 素を含み、さらに炭素、水素、窒素、酸素、ケィ素およびリンの中から選ばれる元素で 構成されるへテロァリール環構造を有する化合物を含有する請求項 11または 12〖こ 記載の発光素子。
PCT/JP2006/317810 2005-09-08 2006-09-08 発光素子材料および発光素子 WO2007029798A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020137015484A KR20130079658A (ko) 2005-09-08 2006-09-08 발광 소자 재료 및 발광 소자
KR1020137015483A KR101404299B1 (ko) 2005-09-08 2006-09-08 발광 소자 재료 및 발광 소자
KR1020087008341A KR101330953B1 (ko) 2005-09-08 2006-09-08 발광 소자 재료 및 발광 소자
US11/991,461 US8610345B2 (en) 2005-09-08 2006-09-08 Light-emitting device material and light-emitting device
CN2006800329652A CN101258221B (zh) 2005-09-08 2006-09-08 发光元件材料和发光元件
JP2006536976A JP5029013B2 (ja) 2005-09-08 2006-09-08 発光素子材料および発光素子
EP06797666.2A EP1942171B1 (en) 2005-09-08 2006-09-08 Light-emitting device material and light-emitting device
US14/073,651 US20140061629A1 (en) 2005-09-08 2013-11-06 Light-emitting device material and light-emitting device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-260247 2005-09-08
JP2005260247 2005-09-08
JP2005264773 2005-09-13
JP2005-264773 2005-09-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/991,461 A-371-Of-International US8610345B2 (en) 2005-09-08 2006-09-08 Light-emitting device material and light-emitting device
US14/073,651 Division US20140061629A1 (en) 2005-09-08 2013-11-06 Light-emitting device material and light-emitting device

Publications (1)

Publication Number Publication Date
WO2007029798A1 true WO2007029798A1 (ja) 2007-03-15

Family

ID=37835913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317810 WO2007029798A1 (ja) 2005-09-08 2006-09-08 発光素子材料および発光素子

Country Status (7)

Country Link
US (2) US8610345B2 (ja)
EP (3) EP2463352B1 (ja)
JP (1) JP5029013B2 (ja)
KR (3) KR101404299B1 (ja)
CN (2) CN103193697B (ja)
TW (1) TWI408208B (ja)
WO (1) WO2007029798A1 (ja)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007145799A (ja) * 2005-11-01 2007-06-14 Canon Inc フルオレン化合物及び有機発光素子
WO2008108256A1 (ja) * 2007-03-07 2008-09-12 Toray Industries, Inc. 発光素子材料および発光素子
JP2009010181A (ja) * 2007-06-28 2009-01-15 Toray Ind Inc 発光素子
JP2009246354A (ja) * 2008-03-10 2009-10-22 Toray Ind Inc 発光素子
JP2009267378A (ja) * 2008-04-01 2009-11-12 Canon Inc 有機発光素子
WO2010001817A1 (ja) 2008-07-01 2010-01-07 東レ株式会社 発光素子
WO2010067893A1 (en) * 2008-12-10 2010-06-17 Canon Kabushiki Kaisha Novel pyrene compound
JP2010150168A (ja) * 2008-12-24 2010-07-08 Tosoh Corp アミン誘導体及びその用途
US20100244676A1 (en) * 2009-03-31 2010-09-30 Fujifilm Corporation Organic electroluminescent device
EP2100941A3 (en) * 2008-03-14 2010-10-06 Gracel Display Inc. Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2010113743A1 (ja) 2009-03-30 2010-10-07 東レ株式会社 発光素子材料および発光素子
WO2010122810A1 (ja) * 2009-04-24 2010-10-28 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2011001475A (ja) * 2009-06-19 2011-01-06 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用材料およびその用途
JP2011014886A (ja) * 2009-06-03 2011-01-20 Toray Ind Inc 発光素子および発光素子材料
EP2301926A1 (en) 2008-06-05 2011-03-30 Idemitsu Kosan Co., Ltd. Halogen compound, polycyclic compound, and organic electroluminescence element comprising the polycyclic compound
WO2011077689A1 (ja) * 2009-12-21 2011-06-30 出光興産株式会社 ピレン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2011077691A1 (ja) * 2009-12-21 2011-06-30 出光興産株式会社 ピレン誘導体を用いた有機エレクトロルミネッセンス素子
US8007927B2 (en) 2007-12-28 2011-08-30 Universal Display Corporation Dibenzothiophene-containing materials in phosphorescent light emitting diodes
US20110210318A1 (en) * 2008-08-22 2011-09-01 Lg Chem, Ltd. Material for organic electronic device, and organic electronic device using same
US20110253995A1 (en) * 2008-06-05 2011-10-20 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device using the same
WO2011149284A2 (ko) * 2010-05-26 2011-12-01 덕산하이메탈(주) 헤테로 원자를 포함하는 카바졸과 플루오렌이 융합된 화합물 및 이를 이용한 유기전기소자, 그 단말
JP2012001538A (ja) * 2010-06-21 2012-01-05 Samsung Mobile Display Co Ltd 有機発光素子
US8221905B2 (en) 2007-12-28 2012-07-17 Universal Display Corporation Carbazole-containing materials in phosphorescent light emitting diodes
JP2012520872A (ja) * 2009-03-20 2012-09-10 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 新規有機電界発光化合物およびこれを使用する有機電界発光素子
WO2012173073A1 (ja) 2011-06-15 2012-12-20 東レ株式会社 発光素子材料および発光素子
JP2013505982A (ja) * 2009-09-29 2013-02-21 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ルミネセンス用途用の重水素化合物
JP2013082742A (ja) * 2010-09-27 2013-05-09 Semiconductor Energy Lab Co Ltd 化合物
JP2013087090A (ja) * 2011-10-18 2013-05-13 Idemitsu Kosan Co Ltd 芳香族アミン誘導体およびそれを用いた有機エレクトロルミネッセンス素子
US20130153874A1 (en) * 2008-06-05 2013-06-20 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device using the same
US8512875B2 (en) * 2007-05-21 2013-08-20 Idemitsu Kosan Co., Ltd. Anthracene derivative and organic electroluminescence device using the same
JP2013535106A (ja) * 2010-06-18 2013-09-09 ビーエーエスエフ ソシエタス・ヨーロピア ジベンゾフラン化合物と8−ヒドロキシキノリノラトアルカリ土類金属錯体または8−ヒドロキシキノリノラトアルカリ金属錯体との層を含む、有機電子デバイス
JP5290581B2 (ja) * 2005-12-15 2013-09-18 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
JP2014506232A (ja) * 2010-10-15 2014-03-13 メルク パテント ゲーエムベーハー 電子素子のための化合物
WO2015152634A1 (ko) * 2014-04-04 2015-10-08 주식회사 엘지화학 유기 발광 소자
JP2016189468A (ja) * 2010-07-30 2016-11-04 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 発光材料として電界発光化合物を使用する電界発光素子
US10033004B2 (en) 2015-06-01 2018-07-24 Universal Display Corporation Organic electroluminescent materials and devices
JP2019131542A (ja) * 2018-02-02 2019-08-08 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 多環化合物及びこれを含む有機電界発光素子
US10381572B2 (en) 2014-04-04 2019-08-13 Lg Chem, Ltd. Heterocyclic compound and organic light-emitting element comprising same
US10418568B2 (en) 2015-06-01 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
US10468609B2 (en) 2016-06-02 2019-11-05 Universal Display Corporation Organic electroluminescent materials and devices
US10964892B2 (en) 2014-04-04 2021-03-30 Lg Chem, Ltd. Heterocyclic compound and organic light-emitting device comprising same
WO2021210304A1 (ja) * 2020-04-15 2021-10-21 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子及び電子機器
USRE49118E1 (en) 2005-12-15 2022-06-28 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and electroluminescence device employing the same
US11542252B2 (en) 2018-12-28 2023-01-03 Samsung Electronics Co., Ltd. Heterocyclic compound, composition including the same, and organic light-emitting device including the heterocyclic compound
WO2023048118A1 (ja) * 2021-09-21 2023-03-30 保土谷化学工業株式会社 化合物および有機エレクトロルミネッセンス素子

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101378047B1 (ko) * 2006-06-15 2014-03-27 도레이 카부시키가이샤 발광소자재료 및 발광소자
KR20080047210A (ko) * 2006-11-24 2008-05-28 삼성전자주식회사 유기 발광 화합물 및 이를 구비한 유기 발광 소자
WO2010131855A2 (ko) * 2009-05-13 2010-11-18 덕산하이메탈(주) 오원자 헤테로고리를 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
KR101144358B1 (ko) * 2009-05-13 2012-05-11 덕산하이메탈(주) 오원자 헤테로 고리를 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
US10020452B2 (en) * 2011-12-15 2018-07-10 Samsung Mobile Display Co., Ltd. Compound containing a 5-membered heterocycle and organic light-emitting diode using same, and terminal for same
DE102009023155A1 (de) * 2009-05-29 2010-12-02 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
JP2012530158A (ja) * 2009-06-15 2012-11-29 マツクス−プランク−ゲゼルシャフト ツール フエルデルング デル ヴイツセンシャフテン エー フアウ 有機発光ダイオード(oled)用のピレン系ポリマー
KR101108154B1 (ko) * 2009-08-10 2012-02-08 삼성모바일디스플레이주식회사 축합환 화합물 및 이를 포함한 유기층을 구비한 유기 발광 소자
KR101202347B1 (ko) * 2009-10-09 2012-11-16 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기층을 구비한 유기 발광 소자
CN102471353A (zh) * 2009-12-21 2012-05-23 出光兴产株式会社 芘衍生物及使用了其的有机电致发光元件
KR20110077871A (ko) * 2009-12-30 2011-07-07 주식회사 두산 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
US8637857B2 (en) 2010-04-06 2014-01-28 Basf Se Substituted carbazole derivatives and use thereof in organic electronics
JP5760779B2 (ja) * 2010-08-06 2015-08-12 株式会社リコー 発光素子及び表示装置
US8546793B2 (en) 2010-10-26 2013-10-01 Samsung Display Co., Ltd. Organic light-emitting device
KR101486561B1 (ko) * 2010-12-31 2015-01-26 제일모직 주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
KR101497127B1 (ko) * 2011-08-08 2015-03-06 덕산네오룩스 주식회사 2개 이상의 오원자 헤테로고리 가지는 화합물 및 이를 이용한 유기전기소자, 그 단말
CN103814453B (zh) * 2011-09-16 2016-12-28 东丽株式会社 发光元件材料及发光元件
KR101497133B1 (ko) * 2011-12-23 2015-02-27 제일모직 주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
KR101407588B1 (ko) 2011-12-27 2014-06-13 에스에프씨 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
KR101497123B1 (ko) * 2011-12-30 2015-03-09 덕산네오룩스 주식회사 오원자 헤테로 고리를 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
KR20130134205A (ko) * 2012-05-30 2013-12-10 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
CN103664748B (zh) 2012-09-03 2016-05-11 乐金显示有限公司 芘化合物以及包含该化合物的有机发光二极管设备
KR102086548B1 (ko) 2012-12-17 2020-03-10 삼성디스플레이 주식회사 파이렌계 화합물 및 이를 포함한 유기 발광 소자
KR102090707B1 (ko) * 2013-02-25 2020-03-19 삼성디스플레이 주식회사 파이렌계 화합물 및 이를 포함한 유기 발광 소자
CN103539725B (zh) * 2013-05-17 2016-02-10 Tcl集团股份有限公司 四芳基芘类衍生物、制备方法和应用及电致发光器件
EP3015457B1 (en) 2013-06-26 2020-10-28 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
CN104327024A (zh) * 2013-07-22 2015-02-04 东丽先端材料研究开发(中国)有限公司 一种发光元件材料及发光元件
KR101627740B1 (ko) * 2013-08-23 2016-06-07 제일모직 주식회사 화합물, 이를 포함하는 유기 광전자 소자 및 표시장치
CN103554114A (zh) * 2013-10-14 2014-02-05 Tcl集团股份有限公司 二取代芘并二喔啉类衍生物、制备方法、应用和电致发光器件
CN104650117B (zh) * 2013-12-26 2017-08-01 北京鼎材科技有限公司 一种有机化合物及其在有机电致发光器件中的应用
US10707423B2 (en) * 2014-02-21 2020-07-07 Universal Display Corporation Organic electroluminescent materials and devices
KR20160004466A (ko) * 2014-07-02 2016-01-13 삼성디스플레이 주식회사 유기 발광 소자
KR102322761B1 (ko) * 2014-07-03 2021-11-08 삼성디스플레이 주식회사 유기 발광 소자
US10164194B2 (en) * 2015-01-26 2018-12-25 Luminescence Technology Corporation Compound for organic electroluminescent device
CN106279148A (zh) * 2015-05-22 2017-01-04 上海和辉光电有限公司 提升oled器件高温、高电流密度表现的材料及其应用
KR20170053205A (ko) 2015-11-05 2017-05-16 삼성디스플레이 주식회사 유기 발광 소자
CN105924682A (zh) * 2016-05-16 2016-09-07 天津纽威特橡胶制品股份有限公司 一种具备发光功能的新型棒球
CN109119541A (zh) * 2017-06-26 2019-01-01 东丽先端材料研究开发(中国)有限公司 量子点发光元件
CN108863871B (zh) * 2018-07-25 2020-12-01 华南协同创新研究院 一类芘衍生物的电致发光材料及其制备方法与应用
US11437581B2 (en) * 2019-05-24 2022-09-06 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Blue fluorescent material and display panel
KR20220087894A (ko) * 2020-12-18 2022-06-27 삼성전자주식회사 유기 발광 소자
CN113234008A (zh) * 2021-04-27 2021-08-10 太原理工大学 一种荧光有机物、荧光染料和序列色发光调控的方法
KR20230133787A (ko) * 2022-03-11 2023-09-19 에스에프씨 주식회사 유기 화합물 및 이를 포함하는 유기발광소자

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003272864A (ja) * 2002-03-15 2003-09-26 Fujitsu Ltd 有機el素子及び有機elディスプレイ
WO2004096945A1 (ja) * 2003-05-01 2004-11-11 Fujitsu Limited 1,3,6,8−四置換ピレン化合物、有機el素子及び有機elディスプレイ
JP2006151845A (ja) * 2004-11-26 2006-06-15 Canon Inc フルオレン化合物及び有機発光素子
US20060240283A1 (en) * 2005-04-21 2006-10-26 Au Optronics Corp. Light-emitting material and organic electroluminescent device using the same

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4769292A (en) * 1987-03-02 1988-09-06 Eastman Kodak Company Electroluminescent device with modified thin film luminescent zone
JP4429438B2 (ja) 1999-01-19 2010-03-10 出光興産株式会社 アミノ化合物及びそれを用いた有機エレクトロルミネッセンス素子
US6660410B2 (en) * 2000-03-27 2003-12-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence element
JP2002063988A (ja) 2000-08-22 2002-02-28 Toray Ind Inc 発光素子
JP2003138251A (ja) 2001-10-30 2003-05-14 Canon Inc 有機発光素子
JP2004075567A (ja) 2002-08-12 2004-03-11 Idemitsu Kosan Co Ltd オリゴアリーレン誘導体及びそれを利用した有機エレクトロルミネッセンス素子
TW593624B (en) 2002-10-16 2004-06-21 Univ Tsinghua Aromatic compounds and organic LED
JPWO2004074399A1 (ja) * 2003-02-20 2006-06-01 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
JP2005126431A (ja) * 2003-10-03 2005-05-19 Semiconductor Energy Lab Co Ltd ピレン誘導体、発光素子、および発光装置、並びに電気器具
US7232619B2 (en) * 2003-10-03 2007-06-19 Semiconductor Energy Laboratory Co., Ltd. Pyrene derivative, light emitting element, and light emitting device
JP4846982B2 (ja) * 2004-01-26 2011-12-28 三井化学株式会社 アントラセン化合物、および該アントラセン化合物を含有する有機電界発光素子
TW200613288A (en) 2004-10-19 2006-05-01 Hirose Engineering Co Ltd Light emitting compound, light emitting high molecular compound and light emitting device
JP4955971B2 (ja) * 2004-11-26 2012-06-20 キヤノン株式会社 アミノアントリル誘導基置換ピレン化合物および有機発光素子
TWI305798B (en) * 2005-02-05 2009-02-01 Au Optronics Corp Compound and organic light emitting diode and display comprising the compound
JP4962314B2 (ja) * 2005-02-25 2012-06-27 東レ株式会社 発光素子材料および発光素子
JP4848134B2 (ja) * 2005-04-18 2011-12-28 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
CN100503770C (zh) 2005-05-11 2009-06-24 友达光电股份有限公司 发光材料及应用其的有机电激发光器件
ATE455162T1 (de) * 2005-05-30 2010-01-15 Basf Se Elektrolumineszenz-gerät
WO2006137210A1 (ja) * 2005-06-24 2006-12-28 Idemitsu Kosan Co., Ltd. ベンゾチオフェン誘導体及びそれを利用した有機エレクトロルミネッセンス素子
KR100786947B1 (ko) 2005-06-30 2007-12-17 주식회사 엘지화학 파이렌 유도체 및 파이렌 유도체를 이용한 유기전자소자
JP5326568B2 (ja) * 2007-03-07 2013-10-30 東レ株式会社 発光素子材料および発光素子
EP2296204B1 (en) * 2008-07-01 2018-01-31 Toray Industries, Inc. Light-emitting element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003272864A (ja) * 2002-03-15 2003-09-26 Fujitsu Ltd 有機el素子及び有機elディスプレイ
WO2004096945A1 (ja) * 2003-05-01 2004-11-11 Fujitsu Limited 1,3,6,8−四置換ピレン化合物、有機el素子及び有機elディスプレイ
JP2006151845A (ja) * 2004-11-26 2006-06-15 Canon Inc フルオレン化合物及び有機発光素子
US20060240283A1 (en) * 2005-04-21 2006-10-26 Au Optronics Corp. Light-emitting material and organic electroluminescent device using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1942171A4 *

Cited By (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007145799A (ja) * 2005-11-01 2007-06-14 Canon Inc フルオレン化合物及び有機発光素子
USRE49118E1 (en) 2005-12-15 2022-06-28 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and electroluminescence device employing the same
JP5290581B2 (ja) * 2005-12-15 2013-09-18 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
US7989802B2 (en) 2007-03-07 2011-08-02 Toray Industries, Inc. Light emitting device material and light emitting device
WO2008108256A1 (ja) * 2007-03-07 2008-09-12 Toray Industries, Inc. 発光素子材料および発光素子
EP2128217A1 (en) * 2007-03-07 2009-12-02 Toray Industries, Inc. Light-emitting device material and light-emitting device
EP2128217A4 (en) * 2007-03-07 2011-01-19 Toray Industries LIGHT EMITTING DEVICE MATERIAL AND LIGHT EMITTING DEVICE
US9461251B2 (en) 2007-05-21 2016-10-04 Idemitsu Kosan Co., Ltd. Anthracene derivative and organic electroluminescence device using the same
US8512875B2 (en) * 2007-05-21 2013-08-20 Idemitsu Kosan Co., Ltd. Anthracene derivative and organic electroluminescence device using the same
JP2009010181A (ja) * 2007-06-28 2009-01-15 Toray Ind Inc 発光素子
US8221905B2 (en) 2007-12-28 2012-07-17 Universal Display Corporation Carbazole-containing materials in phosphorescent light emitting diodes
US8007927B2 (en) 2007-12-28 2011-08-30 Universal Display Corporation Dibenzothiophene-containing materials in phosphorescent light emitting diodes
US9997726B2 (en) 2007-12-28 2018-06-12 Universal Display Corporation Dibenzothiophene-containing materials in phosphorescent light emitting diodes
US8580402B2 (en) 2007-12-28 2013-11-12 Universal Display Corporation Dibenzothiophene-containing materials in phosphorescent light emitting diodes
US9123903B2 (en) 2007-12-28 2015-09-01 Universal Display Corporation Dibenzothiophene-containing materials in phosphorescent light emitting diodes
JP2009246354A (ja) * 2008-03-10 2009-10-22 Toray Ind Inc 発光素子
EP2100941A3 (en) * 2008-03-14 2010-10-06 Gracel Display Inc. Novel organic electroluminescent compounds and organic electroluminescent device using the same
JP2009267378A (ja) * 2008-04-01 2009-11-12 Canon Inc 有機発光素子
US9056870B2 (en) * 2008-06-05 2015-06-16 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device using the same
US9847493B2 (en) 2008-06-05 2017-12-19 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device using the same
US11895917B2 (en) 2008-06-05 2024-02-06 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device using the same
EP2301926A1 (en) 2008-06-05 2011-03-30 Idemitsu Kosan Co., Ltd. Halogen compound, polycyclic compound, and organic electroluminescence element comprising the polycyclic compound
US9660203B2 (en) 2008-06-05 2017-05-23 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device using the same
US8927118B2 (en) * 2008-06-05 2015-01-06 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device using the same
US20130153874A1 (en) * 2008-06-05 2013-06-20 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device using the same
US20110253995A1 (en) * 2008-06-05 2011-10-20 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device using the same
KR101523124B1 (ko) * 2008-06-05 2015-05-26 이데미쓰 고산 가부시키가이샤 할로젠 화합물, 다환계 화합물 및 그것을 사용한 유기 전기발광 소자
US11069862B2 (en) 2008-06-05 2021-07-20 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device using the same
US10020454B2 (en) 2008-06-05 2018-07-10 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device using the same
US10026907B2 (en) 2008-06-05 2018-07-17 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device using the same
EP2301926B1 (en) * 2008-06-05 2018-11-21 Idemitsu Kosan Co., Ltd. Halogen compound, polycyclic compound, and organic electroluminescence element comprising the polycyclic compound
US20120104943A1 (en) * 2008-06-05 2012-05-03 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device using the same
KR20110040874A (ko) 2008-07-01 2011-04-20 도레이 카부시키가이샤 발광 소자
JP5299288B2 (ja) * 2008-07-01 2013-09-25 東レ株式会社 発光素子
WO2010001817A1 (ja) 2008-07-01 2010-01-07 東レ株式会社 発光素子
JP2013179320A (ja) * 2008-07-01 2013-09-09 Toray Ind Inc 発光素子
CN102084514A (zh) * 2008-07-01 2011-06-01 东丽株式会社 发光元件
US8502201B2 (en) 2008-07-01 2013-08-06 Toray Industries, Inc. Light-emitting element
US20140231783A1 (en) * 2008-08-22 2014-08-21 Lg Chem, Ltd. Material for organic electronic device, and organic electronic device using same
US9196845B2 (en) * 2008-08-22 2015-11-24 Lg Chem, Ltd. Material for organic electronic device, and organic electronic device using same
US9190618B2 (en) 2008-08-22 2015-11-17 Lg Chem, Ltd. Material for organic electronic device, and organic electronic device using same
US20110210318A1 (en) * 2008-08-22 2011-09-01 Lg Chem, Ltd. Material for organic electronic device, and organic electronic device using same
WO2010067893A1 (en) * 2008-12-10 2010-06-17 Canon Kabushiki Kaisha Novel pyrene compound
JP2010150168A (ja) * 2008-12-24 2010-07-08 Tosoh Corp アミン誘導体及びその用途
JP2015122508A (ja) * 2009-03-20 2015-07-02 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 新規有機電界発光化合物およびこれを使用する有機電界発光素子
JP2015120702A (ja) * 2009-03-20 2015-07-02 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 新規有機電界発光化合物およびこれを使用する有機電界発光素子
JP2012520872A (ja) * 2009-03-20 2012-09-10 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 新規有機電界発光化合物およびこれを使用する有機電界発光素子
US20120001161A1 (en) * 2009-03-30 2012-01-05 Toray Industries, Inc. Light emitting device material and light emitting device
JP5012998B2 (ja) * 2009-03-30 2012-08-29 東レ株式会社 発光素子材料および発光素子
KR101195655B1 (ko) 2009-03-30 2012-10-30 도레이 카부시키가이샤 발광 소자 재료 및 발광 소자
WO2010113743A1 (ja) 2009-03-30 2010-10-07 東レ株式会社 発光素子材料および発光素子
US8916275B2 (en) 2009-03-30 2014-12-23 Toray Industries, Inc. Light emitting device material and light emitting device
US20100244676A1 (en) * 2009-03-31 2010-09-30 Fujifilm Corporation Organic electroluminescent device
US8361637B2 (en) * 2009-03-31 2013-01-29 Udc Ireland Limited Organic electroluminescent device including substituted N-phenylcarbazole-containing compound
JP2010245063A (ja) * 2009-03-31 2010-10-28 Fujifilm Corp 有機電界発光素子
JP2013080961A (ja) * 2009-04-24 2013-05-02 Idemitsu Kosan Co Ltd 芳香族アミン誘導体及びアントラセン誘導体を用いた有機エレクトロルミネッセンス素子
CN102232068A (zh) * 2009-04-24 2011-11-02 出光兴产株式会社 芳香族胺衍生物和使用其的有机电致发光元件
US10263191B2 (en) 2009-04-24 2019-04-16 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element comprising the same
US9166179B2 (en) 2009-04-24 2015-10-20 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element comprising the same
WO2010122810A1 (ja) * 2009-04-24 2010-10-28 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
KR101217979B1 (ko) * 2009-04-24 2013-01-02 이데미쓰 고산 가부시키가이샤 방향족 아민 유도체를 이용한 유기 전계 발광 소자
CN102232068B (zh) * 2009-04-24 2015-02-25 出光兴产株式会社 芳香族胺衍生物和使用其的有机电致发光元件
US9741938B2 (en) 2009-04-24 2017-08-22 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element comprising the same
US9466800B2 (en) 2009-04-24 2016-10-11 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element comprising the same
US11024806B2 (en) 2009-04-24 2021-06-01 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element comprising the same
US10686137B2 (en) 2009-04-24 2020-06-16 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element comprising the same
US8431250B2 (en) 2009-04-24 2013-04-30 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element comprising the same
JP2011014886A (ja) * 2009-06-03 2011-01-20 Toray Ind Inc 発光素子および発光素子材料
JP2011001475A (ja) * 2009-06-19 2011-01-06 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用材料およびその用途
JP2013505982A (ja) * 2009-09-29 2013-02-21 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ルミネセンス用途用の重水素化合物
KR101790854B1 (ko) * 2009-09-29 2017-10-26 이 아이 듀폰 디 네모아 앤드 캄파니 발광 응용을 위한 중수소화된 화합물
JP5608682B2 (ja) * 2009-12-21 2014-10-15 出光興産株式会社 ピレン誘導体を用いた有機エレクトロルミネッセンス素子
JP5645849B2 (ja) * 2009-12-21 2014-12-24 出光興産株式会社 ピレン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2011077689A1 (ja) * 2009-12-21 2011-06-30 出光興産株式会社 ピレン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JPWO2011077689A1 (ja) * 2009-12-21 2013-05-02 出光興産株式会社 ピレン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JPWO2011077691A1 (ja) * 2009-12-21 2013-05-02 出光興産株式会社 ピレン誘導体を用いた有機エレクトロルミネッセンス素子
WO2011077691A1 (ja) * 2009-12-21 2011-06-30 出光興産株式会社 ピレン誘導体を用いた有機エレクトロルミネッセンス素子
US9353027B2 (en) 2009-12-21 2016-05-31 Idemitsu Kosan Co., Ltd. Organic electroluminescent element using pyrene derivative
WO2011149284A3 (ko) * 2010-05-26 2012-04-19 덕산하이메탈(주) 헤테로 원자를 포함하는 카바졸과 플루오렌이 융합된 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2011149284A2 (ko) * 2010-05-26 2011-12-01 덕산하이메탈(주) 헤테로 원자를 포함하는 카바졸과 플루오렌이 융합된 화합물 및 이를 이용한 유기전기소자, 그 단말
JP2013535106A (ja) * 2010-06-18 2013-09-09 ビーエーエスエフ ソシエタス・ヨーロピア ジベンゾフラン化合物と8−ヒドロキシキノリノラトアルカリ土類金属錯体または8−ヒドロキシキノリノラトアルカリ金属錯体との層を含む、有機電子デバイス
JP2012001538A (ja) * 2010-06-21 2012-01-05 Samsung Mobile Display Co Ltd 有機発光素子
JP2016189468A (ja) * 2010-07-30 2016-11-04 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 発光材料として電界発光化合物を使用する電界発光素子
US20170162798A1 (en) 2010-09-27 2017-06-08 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
US9614164B2 (en) 2010-09-27 2017-04-04 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
US10497880B2 (en) 2010-09-27 2019-12-03 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
JP2013082742A (ja) * 2010-09-27 2013-05-09 Semiconductor Energy Lab Co Ltd 化合物
US9040720B2 (en) 2010-09-27 2015-05-26 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
US10263195B2 (en) 2010-09-27 2019-04-16 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
JP2014506232A (ja) * 2010-10-15 2014-03-13 メルク パテント ゲーエムベーハー 電子素子のための化合物
WO2012173073A1 (ja) 2011-06-15 2012-12-20 東レ株式会社 発光素子材料および発光素子
KR20140034771A (ko) 2011-06-15 2014-03-20 도레이 카부시키가이샤 발광소자 재료 및 발광소자
JP2013087090A (ja) * 2011-10-18 2013-05-13 Idemitsu Kosan Co Ltd 芳香族アミン誘導体およびそれを用いた有機エレクトロルミネッセンス素子
JP2017513224A (ja) * 2014-04-04 2017-05-25 エルジー・ケム・リミテッド 有機発光素子
US11271167B2 (en) 2014-04-04 2022-03-08 Lg Chem, Ltd. Organic light-emitting device
WO2015152634A1 (ko) * 2014-04-04 2015-10-08 주식회사 엘지화학 유기 발광 소자
US10381572B2 (en) 2014-04-04 2019-08-13 Lg Chem, Ltd. Heterocyclic compound and organic light-emitting element comprising same
US10510963B2 (en) 2014-04-04 2019-12-17 Lg Chem, Ltd. Heterocyclic compound and organic light-emitting element comprising same
CN106164215B (zh) * 2014-04-04 2018-02-23 株式会社Lg化学 有机发光器件
US10916710B2 (en) 2014-04-04 2021-02-09 Lg Chem, Ltd. Heterocyclic compound and organic light-emitting element comprising same
US10964892B2 (en) 2014-04-04 2021-03-30 Lg Chem, Ltd. Heterocyclic compound and organic light-emitting device comprising same
US11877510B2 (en) 2014-04-04 2024-01-16 Lg Chem, Ltd. Heterocyclic compound and organic light-emitting element comprising same
CN106164215A (zh) * 2014-04-04 2016-11-23 株式会社Lg化学 有机发光器件
US11362280B2 (en) 2014-04-04 2022-06-14 Lg Chem, Ltd. Organic light-emitting device
US11342508B2 (en) 2014-04-04 2022-05-24 Lg Chem, Ltd. Organic light-emitting device
US10418568B2 (en) 2015-06-01 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
US10033004B2 (en) 2015-06-01 2018-07-24 Universal Display Corporation Organic electroluminescent materials and devices
US10468609B2 (en) 2016-06-02 2019-11-05 Universal Display Corporation Organic electroluminescent materials and devices
US11655211B2 (en) 2018-02-02 2023-05-23 Samsung Display Co., Ltd. Polycyclic compound and organic electroluminescence device including the same
JP7324585B2 (ja) 2018-02-02 2023-08-10 三星ディスプレイ株式會社 有機電界発光素子
JP2019131542A (ja) * 2018-02-02 2019-08-08 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 多環化合物及びこれを含む有機電界発光素子
US11542252B2 (en) 2018-12-28 2023-01-03 Samsung Electronics Co., Ltd. Heterocyclic compound, composition including the same, and organic light-emitting device including the heterocyclic compound
WO2021210304A1 (ja) * 2020-04-15 2021-10-21 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子及び電子機器
WO2023048118A1 (ja) * 2021-09-21 2023-03-30 保土谷化学工業株式会社 化合物および有機エレクトロルミネッセンス素子

Also Published As

Publication number Publication date
EP2463352A3 (en) 2012-06-27
CN103193697B (zh) 2015-11-18
CN101258221B (zh) 2013-04-03
EP2463351A3 (en) 2012-06-27
KR101404299B1 (ko) 2014-06-05
EP2463352A2 (en) 2012-06-13
JP5029013B2 (ja) 2012-09-19
US8610345B2 (en) 2013-12-17
KR20130079657A (ko) 2013-07-10
TWI408208B (zh) 2013-09-11
KR20130079658A (ko) 2013-07-10
JPWO2007029798A1 (ja) 2009-03-19
CN101258221A (zh) 2008-09-03
KR101330953B1 (ko) 2013-11-18
EP2463352B1 (en) 2018-05-02
EP1942171A4 (en) 2009-12-02
TW200714691A (en) 2007-04-16
KR20080055891A (ko) 2008-06-19
US20140061629A1 (en) 2014-03-06
EP2463351A2 (en) 2012-06-13
EP1942171B1 (en) 2018-04-18
EP1942171A1 (en) 2008-07-09
CN103193697A (zh) 2013-07-10
US20090096356A1 (en) 2009-04-16

Similar Documents

Publication Publication Date Title
WO2007029798A1 (ja) 発光素子材料および発光素子
JP4830750B2 (ja) 発光素子材料および発光素子
JP4962314B2 (ja) 発光素子材料および発光素子
TWI582074B (zh) 1,2-苯并苊衍生物、含有其的發光元件材料及發光元件
JP5326280B2 (ja) 発光素子材料および発光素子
JP4968333B2 (ja) 発光素子材料および発光素子
JP5168787B2 (ja) 発光素子材料および発光素子
JP2004204140A (ja) 発光素子用材料およびそれを用いた発光素子
JP2007169581A (ja) 発光素子材料および発光素子
JP6269060B2 (ja) 発光素子材料および発光素子
JPWO2014057873A1 (ja) ホスフィンオキサイド誘導体およびそれを有する発光素子
JP2007131723A (ja) 発光素子材料および発光素子
TWI579285B (zh) 發光元件材料以及發光元件
JP2007077185A (ja) ピレン化合物を用いた発光素子材料および発光素子
JP2014138006A (ja) 発光素子材料および発光素子
JP4552417B2 (ja) 発光素子材料およびこれを用いた発光素子
JP2001332384A (ja) 発光素子
JP5017884B2 (ja) 発光素子材料および発光素子
JP2001332385A (ja) 発光素子
JP2009096946A (ja) 発光素子材料および発光素子
JP5194649B2 (ja) 発光素子材料および発光素子
JP2006265515A (ja) 発光素子材料および発光素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680032965.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006536976

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006797666

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11991461

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020087008341

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1020137015483

Country of ref document: KR

Ref document number: 1020137015484

Country of ref document: KR