WO2013187258A1 - 発光素子材料および発光素子 - Google Patents

発光素子材料および発光素子 Download PDF

Info

Publication number
WO2013187258A1
WO2013187258A1 PCT/JP2013/065213 JP2013065213W WO2013187258A1 WO 2013187258 A1 WO2013187258 A1 WO 2013187258A1 JP 2013065213 W JP2013065213 W JP 2013065213W WO 2013187258 A1 WO2013187258 A1 WO 2013187258A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
light emitting
substituted
emitting device
Prior art date
Application number
PCT/JP2013/065213
Other languages
English (en)
French (fr)
Inventor
市橋泰宜
田中大作
上岡耕司
富永剛
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP13804629.7A priority Critical patent/EP2860784B1/en
Priority to CN201380030421.2A priority patent/CN104350627B/zh
Priority to JP2013526030A priority patent/JP6269060B2/ja
Priority to KR1020147032054A priority patent/KR102102620B1/ko
Publication of WO2013187258A1 publication Critical patent/WO2013187258A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/623Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers

Definitions

  • the present invention relates to a light emitting element capable of converting electric energy into light and a material used therefor.
  • the present invention can be used in fields such as display elements, flat panel displays, backlights, lighting, interiors, signs, signboards, electrophotographic machines, and optical signal generators.
  • This light-emitting element is characterized by being thin and capable of high-intensity light emission under a low driving voltage and multicolor light emission by selecting a fluorescent material.
  • Organic thin-film light-emitting elements must satisfy improved luminous efficiency, lower drive voltage, and improved durability.
  • the compatibility between luminous efficiency and durability is a major issue.
  • a material having a benzofluoranthene skeleton (Patent Document 1) and a material having a nitrogen-containing heterocyclic ring (Patent Document 2) have been developed in order to improve luminous efficiency and durability life.
  • An object of the present invention is to provide an organic thin-film light-emitting element that solves the problems of the prior art and has improved luminous efficiency, driving voltage, and durability life.
  • the present invention is a light emitting device material having a compound represented by the following general formula (1).
  • Ar represents a group containing a benzofluoranthene skeleton
  • Z is represented by the following general formula (2).
  • L is a single bond, a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group.
  • n is 1 or 2. When n is 2, two Zs may be the same or different.
  • ring A and ring B are each a substituted or unsubstituted benzene ring, a substituted or unsubstituted condensed aromatic hydrocarbon ring, a substituted or unsubstituted monocyclic aromatic heterocyclic ring, or a substituted or unsubstituted ring Represents a fused aromatic heterocycle. However, at least one atom constituting ring A and ring B is electron-accepting nitrogen.
  • R 1 are an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl, respectively. It is selected from the group consisting of an ether group, an arylthioether group, an aryl group, a heteroaryl group, a halogen, a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, and —P ( ⁇ O) R 2 R 3 .
  • R 1 may be hydrogen.
  • R 2 and R 3 are an aryl group or a heteroaryl group.
  • R 2 and R 3 may be condensed to form a ring. However, it is connected to L at any position among R 1 , ring A and ring B.
  • n is 2, the positions at which two Z are connected to L may be the same or different.
  • an organic thin film light emitting device that achieves both luminous efficiency, driving voltage, and durability.
  • Ar represents a group containing a benzofluoranthene skeleton
  • Z is represented by the following general formula (2).
  • L is a single bond, a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group.
  • n is 1 or 2. When n is 2, two Zs may be the same or different.
  • ring A and ring B are each a substituted or unsubstituted benzene ring, a substituted or unsubstituted condensed aromatic hydrocarbon ring, a substituted or unsubstituted monocyclic aromatic heterocyclic ring, or a substituted or unsubstituted ring Represents a fused aromatic heterocycle. However, at least one atom constituting ring A and ring B is electron-accepting nitrogen.
  • R 1 are an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl, respectively. It is selected from the group consisting of an ether group, an arylthioether group, an aryl group, a heteroaryl group, a halogen, a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, and —P ( ⁇ O) R 2 R 3 .
  • R 1 may be hydrogen.
  • R 2 and R 3 are an aryl group or a heteroaryl group.
  • R 2 and R 3 may be condensed to form a ring. However, it is connected to L at any position among R 1 , ring A and ring B.
  • n is 2, the positions at which two Z are connected to L may be the same or different.
  • the alkyl group represents, for example, a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, or a tert-butyl group. It may or may not have a substituent. There is no restriction
  • the number of carbon atoms of the alkyl group is not particularly limited, but is preferably 1 or more and 20 or less, more preferably 1 or more and 8 or less, from the viewpoint of availability and cost.
  • the cycloalkyl group refers to, for example, a saturated alicyclic hydrocarbon group such as a cyclopropyl group, a cyclohexyl group, a norbornyl group, an adamantyl group, which may or may not have a substituent.
  • the number of carbon atoms in the alkyl group moiety is not particularly limited, but is preferably in the range of 3 or more and 20 or less.
  • the heterocyclic group refers to an aliphatic ring having atoms other than carbon, such as a pyran ring, a piperidine ring, and a cyclic amide, in the ring, which may or may not have a substituent. .
  • carbon number of a heterocyclic group is not specifically limited, Preferably it is the range of 2-20.
  • alkenyl group refers to an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group, or a butadienyl group, which may or may not have a substituent.
  • carbon number of an alkenyl group is not specifically limited, Preferably it is the range of 2-20.
  • the cycloalkenyl group refers to an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, or a cyclohexenyl group, which may have a substituent. You don't have to.
  • the alkynyl group indicates, for example, an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group, which may or may not have a substituent.
  • the number of carbon atoms of the alkynyl group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
  • the alkoxy group refers to, for example, a functional group having an aliphatic hydrocarbon group bonded through an ether bond such as a methoxy group, an ethoxy group, or a propoxy group, and the aliphatic hydrocarbon group may have a substituent. It may not have.
  • carbon number of an alkoxy group is not specifically limited, Preferably it is the range of 1-20.
  • the alkylthio group is a group in which an oxygen atom of an ether bond of an alkoxy group is substituted with a sulfur atom.
  • the hydrocarbon group of the alkylthio group may or may not have a substituent. Although carbon number of an alkylthio group is not specifically limited, Preferably it is the range of 1-20.
  • An aryl ether group refers to a functional group to which an aromatic hydrocarbon group is bonded via an ether bond, such as a phenoxy group, and the aromatic hydrocarbon group may or may not have a substituent. Good. Although carbon number of an aryl ether group is not specifically limited, Preferably, it is the range of 6-40.
  • the aryl thioether group is a group in which an oxygen atom of an ether bond of an aryl ether group is substituted with a sulfur atom.
  • the aromatic hydrocarbon group in the aryl ether group may or may not have a substituent. Although carbon number of an aryl ether group is not specifically limited, Preferably, it is the range of 6-40.
  • the aryl group represents an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, a terphenyl group, a pyrenyl group, or a fluoranthenyl group.
  • the aryl group may or may not have a substituent. Although carbon number of an aryl group is not specifically limited, Preferably, it is the range of 6-40.
  • a heteroaryl group is a furanyl group, thiophenyl group, pyridyl group, quinolinyl group, isoquinolinyl group, pyrazinyl group, pyrimidyl group, naphthyridyl group, benzofuranyl group, benzothiophenyl group, indolyl group, dibenzofuranyl group, dibenzothiophenyl group And a cyclic aromatic group having one or more atoms other than carbon in the ring, such as a carbazolyl group, which may be unsubstituted or substituted.
  • carbon number of heteroaryl group is not specifically limited, Preferably it is the range of 2-30.
  • Halogen refers to an atom selected from fluorine, chlorine, bromine and iodine.
  • the carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group and phosphine oxide group may or may not have a substituent.
  • substituents include an alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group, and these substituents may be further substituted.
  • An arylene group refers to a divalent or trivalent group derived from an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, or a biphenyl group, which may or may not have a substituent.
  • L in the general formula (1) is an arylene group, the number of nuclear carbon atoms is preferably in the range of 6 to 30.
  • arylene group examples include 1,4-phenylene group, 1,3-phenylene group, 1,2-phenylene group, 4,4′-biphenylylene group, 4,3′-biphenylylene group, 3,3 Examples include '-biphenylylene group, 1,4-naphthylene group, 1,5-naphthylene group, 2,5-naphthylene group, 2,6-naphthylene group, 2,7-naphthylene group and the like. More preferred are a 1,4-phenylene group and a 1,3-phenylene group.
  • the heteroarylene group is an aromatic group having one or more atoms other than carbon such as pyridyl group, quinolinyl group, pyrimidinyl group, pyrazinyl group, naphthyridyl group, dibenzofuranyl group, dibenzothiophenyl group, carbazolyl group in the ring.
  • a divalent or trivalent group derived from a group is shown, which may or may not have a substituent.
  • the number of carbon atoms of the heteroarylene group is not particularly limited, but is preferably in the range of 2-30.
  • the condensed aromatic hydrocarbon ring is, for example, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, triphenylene ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthene ring, naphthacene ring, Examples include a pentacene ring, a perylene ring, a pentaphen ring, a picene ring, a pyranthrene ring, and an anthraanthrene ring. Furthermore, the condensed aromatic hydrocarbon ring may have a substituent.
  • Examples of the monocyclic aromatic heterocycle include a furan ring, a thiophene ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, an oxadiazole ring, a triazole ring, an imidazole ring, a pyrazole ring, and a thiazole ring.
  • the monocyclic aromatic heterocycle may have a substituent.
  • the condensed aromatic heterocycle includes, for example, a quinoline ring, isoquinoline ring, quinoxaline ring, benzimidazole ring, indole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, phthalazine ring, carbazole ring, And a carboline ring, a diazacarbazole ring (indicating a ring in which one of the carbon atoms of the hydrocarbon ring constituting the carboline ring is further substituted with a nitrogen atom).
  • the fused aromatic heterocycle may have a substituent.
  • L is a single bond, a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group.
  • the group represented by Z represented by the general formula (2) is linked to L at any position among R 1 , ring A and ring B. Connecting to L at any position among R 1 , ring A and ring B means the following. First, the coupling with L at a position of R 1 refers to the nitrogen atom and L that R 1 is linked directly binds. Further, linking to L at any position of ring A and ring B means that when ring A is a benzene ring, L is directly bonded to any of the carbon atoms constituting the benzene ring. .
  • L is not particularly limited, but is preferably a single bond or a substituted or unsubstituted arylene group.
  • L is a single bond or a substituted or unsubstituted arylene group, conjugation spreads, and high carrier mobility and high electron acceptability are expressed. As a result, the light emitting element can be driven at a lower voltage, and the light emission efficiency can be further improved.
  • L is not particularly limited, but is preferably a substituted or unsubstituted arylene group.
  • L is a substituted or unsubstituted arylene group
  • conjugation is further expanded, and high carrier mobility and high electron acceptability are expressed.
  • the light emitting element can be driven at a lower voltage, and the light emission efficiency can be further improved.
  • the crystallinity can be lowered and the glass transition temperature can be increased and the stability of the film is improved, the lifetime can be further improved when used in a light-emitting element.
  • n is 1 or 2. That is, the compound represented by the general formula (1) has one or two groups represented by Z, so that the crystallinity is lowered or the glass transition temperature is increased. , The stability of the film is further improved. n is preferably 1. When n is 1, sublimation property and deposition stability are further improved.
  • Ar is a group containing a benzofluoranthene skeleton, and the light-emitting element material of the present invention has a benzofluoranthene skeleton.
  • the benzofluoranthene skeleton has a 5-membered 5-membered ring structure.
  • the 5 ⁇ -electron five-membered ring structure becomes a 6 ⁇ -electron system when one electron enters (reduced), and aromatic stabilization occurs (Hückel rule). For this reason, the 5-membered 5-membered ring structure exhibits high electron affinity, and the benzofluoranthene skeleton of the present invention also has high electron affinity.
  • anthracene and pyrene which are generally well-known condensed aromatic skeletons, do not have a 5-membered 5-membered ring structure, there is no increase in electron affinity due to aromatic stabilization by reduction, and these phenomena Is characteristic of a skeleton having a 5-membered 5-membered ring structure. Therefore, when the light-emitting element material of the present invention is used for a light-emitting element, for example, when used for an electron transport layer, it exhibits good electron injection from the electrode, and the driving voltage of the light-emitting element can be lowered. . As a result, the light emission efficiency of the light emitting element can be improved. In addition, it contributes to extending the life of the light emitting element.
  • the benzofluoranthene skeleton has high planarity, and since the molecules overlap each other well, it has a high charge transport property.
  • the benzofluoranthene skeleton has a higher charge transport property than, for example, fluoranthene because of its high planarity.
  • the benzofluoranthene skeleton has high charge stability and can be smoothly and repeatedly reduced by electrons and oxidized by holes.
  • the lifetime can be improved.
  • At least one atom constituting ring A and ring B is electron-accepting nitrogen.
  • the electron-accepting nitrogen represents a nitrogen atom that forms a multiple bond with an adjacent atom. Since the nitrogen atom has high electronegativity, the multiple bond has an electron accepting property. Therefore, Z having electron-accepting nitrogen has a high electron affinity. Therefore, when the light emitting device material of the present invention is used for a light emitting layer or an electron transport layer, good electron injection properties from the electrode can be exhibited, and the driving voltage of the light emitting device can be lowered. As a result, the light emission efficiency of the light emitting element can be improved. In addition, it contributes to extending the life of the light emitting element.
  • the number of electron accepting nitrogens constituting the ring A and the ring B is one.
  • Z when there is one electron-accepting nitrogen constituting ring A and ring B, when used for the electron transport layer, both electron injection from the electrode and electron injection into the light-emitting layer can be achieved.
  • the driving voltage of the light emitting element can be further reduced. As a result, the light emission efficiency of the light emitting element can be improved.
  • the group represented by Z has electron donating nitrogen.
  • the electron-donating nitrogen represents a nitrogen atom in which all the bonds between adjacent atoms are single bonds. In the group represented by Z, this corresponds to the nitrogen atom to which R 1 is bonded. Electron-donating nitrogen has high stability against holes and can be smoothly and repeatedly oxidized by holes. Therefore, when the compound represented by the general formula (1) of the present invention is used for the hole transport layer, the lifetime can be improved.
  • the light emitting device material of the present invention has a group represented by Z, the sublimation property, the deposition stability, the crystallinity is lowered, and the stability of the film due to a high glass transition temperature is improved. Thereby, when the light emitting element material of this invention is used for a light emitting element, the lifetime can be improved.
  • the light emitting device material of the present invention has high electron injecting and transporting properties, electrochemical properties by having Ar and Z groups containing a benzofluoranthene skeleton in the molecule. Combines stability, good sublimation, good deposition stability, good film quality and high glass transition temperature. Accordingly, when the light-emitting element material of the present invention is used in any layer constituting the light-emitting element, an organic thin-film light-emitting element that achieves both high luminous efficiency, low driving voltage, and durability life can be achieved.
  • benzofluoranthene skeleton examples include benzo [k] fluoranthene skeleton (8,9-benzofluoranthene skeleton), benzo [j] fluoranthene skeleton (7,8-benzofluoranthene skeleton), and benzo [a] fluoranthene skeleton.
  • examples of the group containing benzofluoranthene skeleton include benzofluoranthene skeleton If included, it may be further modified with a condensed ring.
  • a benzo [k] fluoranthene skeleton is preferable. That is, Ar is preferably a group represented by the following general formula (3).
  • the benzofluoranthene skeleton is represented by the general formula (3), the conjugated system spreads moderately. This makes it more electrochemically stable and further improves the charge transport property.
  • each of R 4 to R 15 may be the same or different, and is hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group. , Arylthioether group, aryl group, heteroaryl group, halogen, carbonyl group, carboxyl group, oxycarbonyl group, and carbamoyl group.
  • R 4 to R 15 may form a ring with adjacent substituents. However, it is connected to L at any one position among R 4 to R 15 .
  • R 4 to R 15 are preferably selected from the group consisting of hydrogen, an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, and a halogen.
  • R 4 to R 15 are selected from the group consisting of hydrogen, an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, and a halogen.
  • the glass transition temperature is increased and the thin film stability is improved.
  • the thin film stability is improved, the deterioration of the film is suppressed even when the light emitting element is driven for a long time, so that the durability is further improved.
  • the heat resistance is further improved.
  • the decomposition of the material can be suppressed at the time of device fabrication, so that the durability is improved.
  • it is an aryl group or a heteroaryl group, conjugation spreads, so that it becomes more electrochemically stable and the charge transport property is further improved.
  • R 8 and R 13 in the general formula (3) are preferably substituted or unsubstituted aryl groups.
  • R 8 and R 13 are substituted or unsubstituted aryl groups, it is possible to moderately avoid overlapping of ⁇ conjugate planes between molecules.
  • heat resistance improves more because R ⁇ 8 > and R ⁇ 13> is a substituted or unsubstituted aryl group.
  • it without impairing the high charge transport property of the benzofluoranthene compound, it contributes to the improvement of sublimation, the improvement of vapor deposition stability, the reduction of crystallinity and the improvement of thin film stability due to a high glass transition temperature.
  • R 8 and R 13 in the general formula (3) are more preferably a substituted or unsubstituted phenyl group.
  • R 8 and R 13 are substituted or unsubstituted phenyl groups, it is possible to moderately avoid overlapping of ⁇ conjugate planes between molecules. Moreover, since it becomes a moderate molecular weight, sublimation property and vapor deposition stability further improve.
  • the compound represented by the general formula (1) is preferably a compound represented by the following general formula (4).
  • conjugation easily spreads at the positions of R 4 and R 5 , and conjugation efficiently spreads when R 4 is used for linking with L.
  • the compound represented by the general formula (4) becomes more electrochemically stable, and the charge transport property is further improved.
  • each of R 5 to R 15 may be the same or different, and is hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group. , Arylthioether group, aryl group, heteroaryl group, halogen, carbonyl group, carboxyl group, oxycarbonyl group, and carbamoyl group.
  • R 5 to R 15 may form a ring with adjacent substituents.
  • L, Z and n are the same as in the general formula (1).
  • R 5 to R 15 in the general formula (4) are preferably selected from the group consisting of hydrogen, an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, and a halogen among the above.
  • R 5 to R 15 are selected from the group consisting of hydrogen, an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, and a halogen
  • the glass transition temperature becomes higher and the thin film stability is further improved.
  • it since it is a substituent which is hard to decompose even at high temperatures, the heat resistance is further improved.
  • Z is preferably a group represented by any one of the following general formulas (5) to (9).
  • Z is a group represented by any one of the following general formulas (5) to (9).
  • Z is a group represented by any one of the following general formulas (5) to (9)
  • high electron mobility and high electron acceptability can be expressed, and the driving voltage of the light emitting element can be further reduced.
  • the light emission efficiency of the light emitting element can be further improved.
  • it contributes to extending the life of the light emitting element.
  • ring B represents a substituted or unsubstituted benzene ring, a substituted or unsubstituted condensed aromatic hydrocarbon ring, a substituted or unsubstituted monocyclic aromatic heterocyclic ring, or a substituted or unsubstituted condensed aromatic heterocyclic ring.
  • ring B is a substituted or unsubstituted monocyclic aromatic heterocyclic ring, or a substituted or unsubstituted condensed aromatic heterocyclic ring, and at least one of constituting ring B The atom is electron-accepting nitrogen.
  • R 16 to R 31 are each hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group, hetero It is selected from the group consisting of an aryl group, halogen, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group and —P ( ⁇ O) R 2 R 3 .
  • Ring B preferably has a structure represented by any of the following general formulas (10) to (13).
  • the ring B has a structure represented by any one of the following general formulas (10) to (13)
  • high carrier mobility and high electron acceptability are expressed.
  • the light emitting element can be driven at a lower voltage, and the light emission efficiency can be improved.
  • it contributes to the improvement of sublimation property, the improvement of vapor deposition stability, the deterioration of crystallinity, and the stability of the film due to a high glass transition temperature.
  • B 1 to B 22 represent C—R 32 or N.
  • Z is a group represented by the general formula (5)
  • B 1 to B 22 are substituted, the substituent is the same as in the general formula (2).
  • R 32 is hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group, heteroaryl group, It is selected from the group consisting of halogen, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group and —P ( ⁇ O) R 2 R 3 .
  • Ring B is not particularly limited, but a structure represented by any one of formulas (11) to (13) is more preferable.
  • ring B has a structure represented by any one of the general formulas (11) to (13), conjugation is further expanded, and high carrier mobility and high electron acceptability are expressed. As a result, the light emitting element can be driven at a lower voltage, and the light emission efficiency can be further improved.
  • R 1 is the same as in the general formula (2).
  • the light emitting device material of the present invention is not particularly limited, but specific examples include the following.
  • a known method can be used.
  • a method for introducing Z into the benzofluoranthene skeleton for example, there is a method using a coupling reaction of a substituted or unsubstituted halogenated benzofluoranthene derivative with a substituted or unsubstituted Z under a palladium catalyst or a nickel catalyst.
  • Z is introduced into the benzofluoranthene skeleton via an arylene group or heteroarylene group
  • an arylboronic acid or heteroarylboronic acid substituted with Z may be used.
  • boronic acid esters may be used in place of the various boronic acids described above.
  • the light emitting device material of the present invention represents a material used for any layer of the light emitting device, and is a material used for a layer selected from a hole transport layer, a light emitting layer and an electron transport layer, as will be described later.
  • the material used for the protective film of a cathode is also included.
  • the light emitting device of the present invention has an anode and a cathode, and an organic layer interposed between the anode and the cathode, and the organic layer includes at least a light emitting layer and an electron transport layer, and the light emitting layer emits light by electric energy. To do.
  • the organic layer is composed of only the light emitting layer / electron transport layer, 1) hole transport layer / light emitting layer / electron transport layer and 2) hole transport layer / light emitting layer / electron transport layer / electron injection layer, 3) Laminate structure such as hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer can be mentioned.
  • Each of the layers may be a single layer or a plurality of layers.
  • the light emitting device material of the present invention may be used in any layer in the above device configuration, but has high electron injection and transport capability, fluorescence quantum yield, and thin film stability. It is preferable to use for a layer or an electron carrying layer. In particular, since it has an excellent electron injecting and transporting capability, it is more preferably used for the electron transporting layer.
  • the anode and the cathode have a role of supplying a sufficient current for light emission of the device, and at least one of them is preferably transparent or translucent in order to extract light.
  • the anode formed on the substrate is a transparent electrode.
  • the material used for the anode is a material that can efficiently inject holes into the organic layer, and is transparent or translucent to extract light.
  • Tin oxide, indium oxide, indium tin oxide (ITO) indium zinc oxide (IZO) Although not particularly limited, such as conductive metal oxides such as, metals such as gold, silver and chromium, inorganic conductive materials such as copper iodide and copper sulfide, conductive polymers such as polythiophene, polypyrrole and polyaniline It is particularly preferable to use ITO glass or Nesa glass. These electrode materials may be used alone, or a plurality of materials may be laminated or mixed.
  • the resistance of the transparent electrode is not limited as long as it can supply a sufficient current for light emission of the element, but it is preferably low resistance from the viewpoint of power consumption of the element.
  • an ITO substrate with a resistance of 300 ⁇ / ⁇ or less will function as a device electrode, but since it is now possible to supply a substrate with a resistance of approximately 10 ⁇ / ⁇ , use a substrate with a low resistance of 20 ⁇ / ⁇ or less. Is particularly preferred.
  • the thickness of ITO can be arbitrarily selected according to the resistance value, but is usually used in a range of 100 to 300 nm.
  • the light emitting element is preferably formed over a substrate.
  • a glass substrate such as soda glass or non-alkali glass is preferably used.
  • the thickness of the glass substrate it is sufficient that the thickness is sufficient to maintain the mechanical strength.
  • alkali-free glass is preferred because it is better that there are fewer ions eluted from the glass.
  • soda lime glass provided with a barrier coat such as SiO 2 is also commercially available and can be used.
  • the substrate need not be glass, and for example, an anode may be formed on a plastic substrate.
  • the ITO film forming method is not particularly limited, such as an electron beam method, a sputtering method, and a chemical reaction method.
  • the material used for the cathode is not particularly limited as long as it can efficiently inject electrons into the light emitting layer.
  • metals such as platinum, gold, silver, copper, iron, tin, aluminum, and indium, or alloys and multilayer stacks of these metals with low work function metals such as lithium, sodium, potassium, calcium, and magnesium Is preferred.
  • aluminum, silver, and magnesium are preferable as the main component from the viewpoints of electrical resistance, ease of film formation, film stability, luminous efficiency, and the like.
  • magnesium and silver are preferable because electron injection into the electron transport layer and the electron injection layer in the present invention becomes easier and further low-voltage driving is possible.
  • metals such as platinum, gold, silver, copper, iron, tin, aluminum and indium, or alloys using these metals, inorganic materials such as silica, titania and silicon nitride, polyvinyl alcohol, polyvinyl chloride
  • an organic polymer compound such as a hydrocarbon polymer compound is laminated on the cathode as a protective film layer.
  • the light emitting device material of the present invention can also be used as this protective film layer.
  • the protective film layer is selected from materials that are light transmissive in the visible light region.
  • the production method of these electrodes is not particularly limited, such as resistance heating, electron beam, sputtering, ion plating and coating.
  • the hole transport layer is formed by a method of laminating or mixing one or more hole transport materials or a method using a mixture of a hole transport material and a polymer binder.
  • the hole transport material needs to efficiently transport holes from the positive electrode between electrodes to which an electric field is applied, has high hole injection efficiency, and can efficiently transport injected holes. preferable.
  • the material has an appropriate ionization potential, has a high hole mobility, is excellent in stability, and does not easily generate trapping impurities during manufacture and use.
  • a substance satisfying such conditions is not particularly limited.
  • the light-emitting element material of the present invention can also be used as a hole transport material because of its high hole mobility and excellent electrochemical stability.
  • the light emitting device material of the present invention may be used as a hole injecting material. However, since it has a high hole mobility, it is preferably used as a hole transporting material.
  • the light emitting device material of the present invention has excellent electron injecting and transporting properties, there is a concern that when this is used for an electron transporting layer, electrons do not recombine in the light emitting layer and partly escape to the hole transporting layer. is there. Therefore, it is preferable to use a compound having an excellent electron blocking property for the hole transport layer.
  • a compound containing a carbazole skeleton is preferable because it has excellent electron blocking properties and can contribute to the improvement in efficiency of the light-emitting element.
  • the compound containing a carbazole skeleton preferably contains a carbazole dimer, a carbazole trimer, or a carbazole tetramer skeleton. This is because they have both a good electron blocking property and a hole injection / transport property.
  • the light emitting layer to be combined contains a phosphorescent light emitting material described later.
  • the above compound having a carbazole skeleton also has a high triplet exciton blocking function and can increase the light emission efficiency when combined with a phosphorescent material.
  • the compound containing a carbazole skeleton or the compound containing a triphenylene skeleton may be used alone as a hole transport layer, or may be used as a mixture with each other. Further, other materials may be mixed within a range not impairing the effects of the present invention.
  • the hole transport layer is composed of a plurality of layers, any one layer may contain a compound containing a carbazole skeleton or a compound containing a triphenylene skeleton.
  • a hole injection layer may be provided between the anode and the hole transport layer.
  • the hole injection layer By providing the hole injection layer, the light emitting element is further driven at a lower driving voltage, and the durability life is further improved.
  • a material having a smaller ionization potential than that of the material normally used for the hole transport layer is preferably used.
  • a benzidine derivative such as TPD232 and a starburst arylamine material group can be used, and a phthalocyanine derivative can also be used.
  • the hole injection layer is composed of an acceptor compound alone or that the acceptor compound is doped with another hole transport material.
  • acceptor compounds include metal chlorides such as iron (III) chloride, aluminum chloride, gallium chloride, indium chloride, antimony chloride, metal oxides such as molybdenum oxide, vanadium oxide, tungsten oxide, ruthenium oxide, A charge transfer complex such as tris (4-bromophenyl) aminium hexachloroantimonate (TBPAH).
  • metal chlorides such as iron (III) chloride, aluminum chloride, gallium chloride, indium chloride, antimony chloride, metal oxides such as molybdenum oxide, vanadium oxide, tungsten oxide, ruthenium oxide,
  • a charge transfer complex such as tris (4-bromophenyl) aminium hexachloroantimonate (TBPAH).
  • organic compounds having a nitro group, cyano group, halogen or trifluoromethyl group in the molecule quinone compounds, acid anhydride compounds, fullerenes, and the like are also preferably used.
  • these compounds include hexacyanobutadiene, hexacyanobenzene, tetracyanoethylene, tetracyanoquinodimethane (TCNQ), tetrafluorotetracyanoquinodimethane (F4-TCNQ), 2, 3, 6, 7 , 10,11-hexacyano-1,4,5,8,9,12-hexaazatriphenylene (HAT-CN6), p-fluoranyl, p-chloranil, p-bromanyl, p-benzoquinone, 2,6-dichlorobenzoquinone 2,5-dichlorobenzoquinone, tetramethylbenzoquinone, 1,2,4,5-tetracyanobenzene, o-dicyanobenzene, p-dicyanobenzene, 1,4-dicyanotetrafluorobenzene, 2,3-dichloro-5 , 6-Dicyanobenzoquinone, p-
  • metal oxides and cyano group-containing compounds are preferable because they are easy to handle and can be easily deposited, so that the above-described effects can be easily obtained.
  • preferred metal oxides include molybdenum oxide, vanadium oxide, or ruthenium oxide.
  • cyano group-containing compounds (a) a compound having in the molecule at least one electron-accepting nitrogen other than the nitrogen atom of the cyano group, and (b) a compound having both a halogen and a cyano group in the molecule (C) a compound having both a carbonyl group and a cyano group in the molecule, or (d) at least one electron other than the nitrogen atom of the cyano group, having both a halogen and a cyano group in the molecule.
  • a compound having an accepting nitrogen is more preferable because it becomes a strong electron acceptor. Specific examples of such a compound include the following compounds.
  • the hole injection layer is composed of an acceptor compound alone or when the hole injection layer is doped with an acceptor compound
  • the hole injection layer may be a single layer, A plurality of layers may be laminated.
  • the hole injection material used in combination when the acceptor compound is doped is the same compound as the compound used for the hole transport layer from the viewpoint that the hole injection barrier to the hole transport layer can be relaxed. Is more preferable.
  • the light emitting layer may be either a single layer or a plurality of layers, each formed by a light emitting material (host material, dopant material), which may be a mixture of a host material and a dopant material or a host material alone, Either is acceptable. That is, in the light emitting element of the present invention, only the host material or the dopant material may emit light in each light emitting layer, or both the host material and the dopant material may emit light. From the viewpoint of efficiently using electric energy and obtaining light emission with high color purity, the light emitting layer is preferably composed of a mixture of a host material and a dopant material. Further, the host material and the dopant material may be either one kind or a plurality of combinations, respectively.
  • a light emitting material host material, dopant material
  • the dopant material may be included in the entire host material or may be partially included.
  • the dopant material may be laminated or dispersed.
  • the dopant material can control the emission color. If the amount of the dopant material is too large, a concentration quenching phenomenon occurs, so that it is preferably used at 20% by weight or less, more preferably 10% by weight or less with respect to the host material.
  • the doping method can be formed by a co-evaporation method with a host material, but may be simultaneously deposited after being previously mixed with the host material.
  • the light-emitting material includes condensed ring derivatives such as anthracene and pyrene, which have been known as light emitters, metal chelated oxinoid compounds such as tris (8-quinolinolato) aluminum, bisstyrylanthracene derivatives and diesters.
  • condensed ring derivatives such as anthracene and pyrene, which have been known as light emitters
  • metal chelated oxinoid compounds such as tris (8-quinolinolato) aluminum, bisstyrylanthracene derivatives and diesters.
  • Bisstyryl derivatives such as styrylbenzene derivatives, tetraphenylbutadiene derivatives, indene derivatives, coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perinone derivatives, cyclopentadiene derivatives, oxadiazole derivatives, thiadiazolopyridine derivatives, dibenzofuran derivatives, carbazole
  • polyphenylene vinylene derivatives, polyparaphenylene derivatives, polythiophene derivatives, etc. can be used, but are not particularly limited. Not shall.
  • the host material contained in the light emitting material is not particularly limited, but is a compound having a condensed aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, naphthacene, triphenylene, perylene, fluoranthene, fluorene, indene, and derivatives thereof, N, Aromatic amine derivatives such as N′-dinaphthyl-N, N′-diphenyl-4,4′-diphenyl-1,1′-diamine, metal chelating oxinoids including tris (8-quinolinato) aluminum (III) Compounds, bisstyryl derivatives such as distyrylbenzene derivatives, tetraphenylbutadiene derivatives, indene derivatives, coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perinone derivatives, cyclopentadiene derivatives, pyr
  • the dopant material is not particularly limited, but is a compound having a condensed aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, triphenylene, perylene, fluoranthene, fluorene, indene or a derivative thereof (for example, 2- (benzothiazole-2) -Yl) -9,10-diphenylanthracene, 5,6,11,12-tetraphenylnaphthacene), furan, pyrrole, thiophene, silole, 9-silafluorene, 9,9'-spirobisilafluorene, benzo Compounds with heteroaryl rings such as thiophene, benzofuran, indole, dibenzothiophene, dibenzofuran, imidazopyridine, phenanthroline, pyridine, pyrazine, naphthyridine
  • a phosphorescent material may be included in the light emitting layer.
  • a phosphorescent material is a material that exhibits phosphorescence even at room temperature. When a phosphorescent material is used as a dopant, it is basically necessary to obtain phosphorescence even at room temperature, but there is no particular limitation, and iridium (Ir), ruthenium (Ru), rhodium (Rh), An organometallic complex compound containing at least one metal selected from the group consisting of palladium (Pd), platinum (Pt), osmium (Os), and rhenium (Re) is preferable.
  • an organometallic complex having iridium or platinum is more preferable.
  • Hosts used in combination with a phosphorescent dopant include indole derivatives, carbazole derivatives, indolocarbazole derivatives, pyridine, pyrimidine, nitrogen-containing aromatic compound derivatives having a triazine skeleton, polyarylbenzene derivatives, spirofluorene derivatives, Aromatic hydrocarbon compound derivatives such as truxene derivatives and triphenylene derivatives, compounds containing chalcogen elements such as dibenzofuran derivatives and dibenzothiophene derivatives, and organometallic complexes such as beryllium quinolinol complexes are preferably used.
  • triplet light-emitting dopants may be contained, or two or more host materials may be contained. Further, one or more triplet light emitting dopants and one or more fluorescent light emitting dopants may be contained.
  • Preferred phosphorescent host or dopant is not particularly limited, but specific examples include the following.
  • the light-emitting element material of the present invention can also be used as a light-emitting material because it has high light-emitting performance. Since the light emitting device material of the present invention exhibits strong light emission in the ultraviolet to blue region (300 to 500 nm region), it can be suitably used as a blue light emitting material.
  • the light-emitting device material of the present invention may be used as a host material, but is preferably used as a dopant material because it has a high fluorescence quantum yield.
  • the electron transport layer is a layer in which electrons are injected from the cathode and further transports electrons.
  • the electron transport layer has high electron injection efficiency, and it is desired to efficiently transport injected electrons. Therefore, the electron transport layer is preferably made of a material having a high electron affinity, a high electron mobility, excellent stability, and impurities that are traps are less likely to be generated during manufacture and use.
  • the electron transport layer in the present invention includes a hole blocking layer that can efficiently block the movement of holes as the same meaning.
  • Examples of the electron transport material used for the electron transport layer include condensed polycyclic aromatic derivatives such as naphthalene and anthracene, styryl aromatic ring derivatives represented by 4,4′-bis (diphenylethenyl) biphenyl, anthraquinone and diphenoquinone Quinoline derivatives, phosphorus oxide derivatives, quinolinol complexes such as tris (8-quinolinolato) aluminum (III), benzoquinolinol complexes, hydroxyazole complexes, azomethine complexes, tropolone metal complexes, and flavonol metal complexes.
  • An aromatic heterocycle containing electron-accepting nitrogen has high electron affinity.
  • An electron transport material having electron-accepting nitrogen makes it easier to receive electrons from a cathode having a high electron affinity, and can be driven at a lower voltage.
  • the number of electrons supplied to the light emitting layer increases and the recombination probability increases, the light emission efficiency is further improved.
  • heteroaryl ring containing an electron-accepting nitrogen examples include, for example, a pyridine ring, pyrazine ring, pyrimidine ring, quinoline ring, quinoxaline ring, naphthyridine ring, pyrimidopyrimidine ring, benzoquinoline ring, phenanthroline ring, imidazole ring, oxazole ring, Examples thereof include an oxadiazole ring, a triazole ring, a thiazole ring, a thiadiazole ring, a benzoxazole ring, a benzothiazole ring, a benzimidazole ring, and a phenanthrimidazole ring.
  • Examples of these compounds having a heteroaryl ring structure include benzimidazole derivatives, benzoxazole derivatives, benzthiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, pyrazine derivatives, phenanthroline derivatives, quinoxaline derivatives, quinoline derivatives, benzoins.
  • Preferred compounds include quinoline derivatives, oligopyridine derivatives such as bipyridine and terpyridine, quinoxaline derivatives and naphthyridine derivatives.
  • imidazole derivatives such as tris (N-phenylbenzimidazol-2-yl) benzene, oxadiazole derivatives such as 1,3-bis [(4-tert-butylphenyl) 1,3,4-oxadiazolyl] phenylene, Triazole derivatives such as N-naphthyl-2,5-diphenyl-1,3,4-triazole, phenanthroline derivatives such as bathocuproine and 1,3-bis (1,10-phenanthroline-9-yl) benzene, 2,2 ′
  • a benzoquinoline derivative such as bis (benzo [h] quinolin-2-yl) -9,9′-spirobifluorene, 2,5-bis (6 ′-(2 ′, 2 ′′ -bipyridyl))-1, Bipyridine derivatives such as 1-dimethyl-3,4-diphenylsilole, 1,3-bis (4 ′-(2,2 )
  • the condensed polycyclic aromatic skeleton is particularly preferably an anthracene skeleton, a pyrene skeleton or a phenanthroline skeleton.
  • the electron transport material may be used alone, but two or more of the electron transport materials may be mixed and used, or one or more of the other electron transport materials may be mixed with the electron transport material.
  • the preferred electron transport material is not particularly limited, but specific examples include the following.
  • the light emitting device material of the present invention is also suitably used as an electron transport material because it has a high electron injection transport capability.
  • the light emitting device material of the present invention When the light emitting device material of the present invention is used, it is not necessary to limit to only one of them, and a mixture of a plurality of benzofluoranthene compounds of the present invention is used, or one or more other electron transport materials are used. You may mix and use with the benzofluoranthene compound of this invention in the range which does not impair the effect of this invention.
  • the electron transport material that can be mixed is not particularly limited, but is a compound having a condensed aryl ring such as naphthalene, anthracene, or pyrene or a derivative thereof, or a styryl-based fragrance represented by 4,4′-bis (diphenylethenyl) biphenyl.
  • Ring derivatives perylene derivatives, perinone derivatives, coumarin derivatives, naphthalimide derivatives, quinone derivatives such as anthraquinone and diphenoquinone, phosphorus oxide derivatives, carbazole derivatives and indole derivatives, quinolinol complexes such as tris (8-quinolinolato) aluminum (III) and hydroxy Examples include hydroxyazole complexes such as phenyloxazole complexes, azomethine complexes, tropolone metal complexes, and flavonol metal complexes.
  • the electron transport material may be used alone, but two or more of the electron transport materials may be mixed and used, or one or more of the other electron transport materials may be mixed and used in the electron transport material.
  • a donor material may be contained.
  • the donor material is a compound that makes it easier to inject electrons from the cathode or the electron injection layer into the electron transport layer by improving the electron injection barrier, and further improves the electrical conductivity of the electron transport layer.
  • Preferred examples of the donor material in the present invention include an alkali metal, an inorganic salt containing an alkali metal, a complex of an alkali metal and an organic material, an alkaline earth metal, an inorganic salt containing an alkaline earth metal, or an alkaline earth metal And a complex of organic substance.
  • Preferable types of alkali metals and alkaline earth metals include alkali metals such as lithium, sodium and cesium, which have a low work function and a large effect of improving the electron transport ability, and alkaline earth metals such as magnesium and calcium.
  • inorganic salts include oxides such as LiO and Li 2 O, nitrides, fluorides such as LiF, NaF, and KF, Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , Rb 2 CO 3 , Examples thereof include carbonates such as Cs 2 CO 3 .
  • a preferable example of the alkali metal or alkaline earth metal is lithium from the viewpoint that the raw materials are inexpensive and easy to synthesize.
  • Preferred examples of the organic substance in the complex with the organic substance include quinolinol, benzoquinolinol, flavonol, hydroxyimidazopyridine, hydroxybenzazole, hydroxytriazole and the like.
  • a complex of an alkali metal and an organic substance is preferable, a complex of lithium and an organic substance is more preferable, and lithium quinolinol is particularly preferable. Two or more of these donor materials may be mixed and used.
  • the suitable doping concentration varies depending on the material and the film thickness of the doping region.
  • the deposition rate ratio of the electron transport material and the donor compound is 10,000: It is preferable to use an electron transport layer by co-evaporation so as to be in the range of 1 to 2: 1.
  • the deposition rate ratio is more preferably 100: 1 to 5: 1, and further preferably 100: 1 to 10: 1.
  • the donor material is a complex of a metal and an organic material
  • the electron transport layer and the donor material are co-deposited so that the deposition rate ratio of the electron transport material and the donor material is in the range of 100: 1 to 1: 100. Is preferred.
  • the deposition rate ratio is more preferably 10: 1 to 1:10, and more preferably 7: 3 to 3: 7.
  • the electron transport layer in which the light emitting device material of the present invention is doped with a donor material as described above may be used as a charge generation layer in a tandem structure type device connecting a plurality of light emitting devices.
  • the method for improving the electron transport ability by doping a donor material into the electron transport layer is particularly effective when the thin film layer is thick. It is particularly preferably used when the total film thickness of the electron transport layer and the light emitting layer is 50 nm or more.
  • the total film thickness of the electron transport layer and the light emitting layer is 50 nm or more.
  • the total film thickness of the electron transport layer and the light-emitting layer is 50 nm or more, and in the case of long-wavelength light emission such as red, it may be a thick film near 100 nm. .
  • the thickness of the electron transport layer to be doped may be a part or all of the electron transport layer.
  • the donor material is in direct contact with the light emitting layer, it may adversely affect the light emission efficiency. In that case, it is preferable to provide a non-doped region at the light emitting layer / electron transport layer interface.
  • an electron injection layer may be provided between the cathode and the electron transport layer.
  • the electron injection layer is inserted for the purpose of assisting injection of electrons from the cathode to the electron transport layer, but in the case of insertion, a compound having a heteroaryl ring structure containing electron-accepting nitrogen may be used. Alternatively, a layer containing the above donor material may be used.
  • the light emitting device material of the present invention may be contained in the electron injection layer.
  • An insulator or a semiconductor inorganic substance can also be used for the electron injection layer. Use of these materials is preferable because a short circuit of the light emitting element can be effectively prevented and the electron injection property can be improved.
  • an insulator it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides. If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is more preferable because the electron injection property can be further improved.
  • preferred alkali metal chalcogenides include, for example, Li 2 O, Na 2 S, and Na 2 Se
  • preferred alkaline earth metal chalcogenides include, for example, CaO, BaO, SrO, BeO, BaS, and CaSe. Is mentioned.
  • preferable alkali metal halides include, for example, LiF, NaF, KF, LiCl, KCl, and NaCl.
  • preferable alkaline earth metal halides include fluorides such as CaF 2 , BaF 2 , SrF 2 , MgF 2 and BeF 2 , and halides other than fluorides.
  • a complex of an organic substance and a metal is also preferably used.
  • a complex of an organic substance and a metal is used for the electron injection layer, it is more preferable because the film thickness can be easily adjusted.
  • organometallic complexes include quinolinol, benzoquinolinol, pyridylphenol, flavonol, hydroxyimidazopyridine, hydroxybenzazole, hydroxytriazole and the like as preferred examples of the organic substance in a complex with an organic substance.
  • a complex of an alkali metal and an organic substance is preferable, a complex of lithium and an organic substance is more preferable, and lithium quinolinol is particularly preferable.
  • each layer constituting the light emitting element is not particularly limited, such as resistance heating vapor deposition, electron beam vapor deposition, sputtering, molecular lamination method, coating method, etc., but resistance heating vapor deposition or electron beam vapor deposition is usually used in terms of element characteristics. preferable.
  • the thickness of the organic layer is not limited because it depends on the resistance value of the luminescent material, but is preferably 1 to 1000 nm.
  • the film thicknesses of the light emitting layer, the electron transport layer, and the hole transport layer are each preferably 1 nm to 200 nm, and more preferably 5 nm to 100 nm.
  • the light emitting element of the present invention has a function of converting electrical energy into light.
  • a direct current is mainly used as the electric energy, but a pulse current or an alternating current can also be used.
  • the current value and voltage value are not particularly limited, but should be selected so that the maximum luminance can be obtained with as low energy as possible in consideration of the power consumption and lifetime of the device.
  • the light-emitting element of the present invention is suitably used as a display for displaying in a matrix and / or segment system, for example.
  • pixels for display are arranged two-dimensionally such as a lattice shape or a mosaic shape, and characters and images are displayed by a set of pixels.
  • the shape and size of the pixel are determined by the application. For example, a square pixel with a side of 300 ⁇ m or less is usually used for displaying images and characters on a personal computer, monitor, TV, and a pixel with a side of mm order for a large display such as a display panel. become.
  • monochrome display pixels of the same color may be arranged. However, in color display, red, green, and blue pixels are displayed side by side. In this case, there are typically a delta type and a stripe type.
  • the matrix driving method may be either a line sequential driving method or an active matrix. Although the structure of the line sequential drive is simple, the active matrix may be superior in consideration of the operation characteristics, and it is necessary to use it depending on the application.
  • the segment system in the present invention is a system in which a pattern is formed so as to display predetermined information and a region determined by the arrangement of the pattern is caused to emit light.
  • a pattern is formed so as to display predetermined information and a region determined by the arrangement of the pattern is caused to emit light.
  • the time and temperature display in a digital clock or a thermometer the operation state display of an audio device or an electromagnetic cooker, the panel display of an automobile, etc.
  • the matrix display and the segment display may coexist in the same panel.
  • the light-emitting element of the present invention is also preferably used as a backlight for various devices.
  • the backlight is used mainly for the purpose of improving the visibility of a display device that does not emit light, and is used for a liquid crystal display device, a clock, an audio device, an automobile panel, a display panel, a sign, and the like.
  • the light-emitting element of the present invention is preferably used for a backlight for a liquid crystal display device, particularly a personal computer for which a reduction in thickness is being considered, and a backlight that is thinner and lighter than conventional ones can be provided.
  • Synthesis example 1 Synthesis of Compound [1] 14.0 g of acenaphthylene, 25.0 g of diphenylisobenzofuran and 200 ml of o-xylene were mixed and heated to reflux under a nitrogen stream. After 2 hours, after cooling to room temperature, the solvent was distilled off and 300 mL of ether was added. The resulting precipitate was filtered and vacuum dried to obtain 27.7 g of intermediate A (yield 71%).
  • intermediate E19.4 g, potassium acetate 9.6 g, and dimethylformamide 82 mL were mixed and purged with nitrogen.
  • To this mixed solution were added 0.29 g of palladium acetate and 0.85 g of triphenylphosphine, and the mixture was heated to reflux. After 3 hours, after cooling to room temperature, 300 mL of water was added. Aqueous potassium hydroxide was added until basic, and the precipitate was filtered and dried in a vacuum dryer. The obtained solid was recrystallized with butyl acetate, filtered, and then vacuum-dried to obtain 11.0 g of Intermediate F (yield 77%).
  • Compound [1] was used as a light emitting device material after sublimation purification at about 340 ° C. under a pressure of 1 ⁇ 10 ⁇ 3 Pa using an oil diffusion pump.
  • the HPLC purity (area% at a measurement wavelength of 254 nm) was 99.9% before sublimation purification and 99.9% after sublimation purification.
  • Example 1 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less.
  • “Semico Clean 56” trade name, manufactured by Furuuchi Chemical Co., Ltd.
  • HAT-CN6 was deposited as a hole injection layer at a thickness of 5 nm and HT-1 as a hole transport layer was deposited at a thickness of 80 nm by a resistance heating method.
  • a host material H-1 and a dopant material D-1 were vapor-deposited to a thickness of 40 nm as a light emitting layer so that the doping concentration was 5% by weight.
  • Compound [1] was deposited as an electron transport layer to a thickness of 30 nm and laminated.
  • 1000 nm of aluminum was vapor-deposited to form a cathode, and a 5 ⁇ 5 mm square device was fabricated.
  • the film thickness referred to here is a crystal oscillation type film thickness monitor display value.
  • the characteristics of this light emitting element at 1000 cd / m 2 were a driving voltage of 4.6 V and an external quantum efficiency of 4.8%. Further, when the initial luminance was set to 1000 cd / m 2 and driving at constant current, the luminance half time for decreasing the luminance by 50% was 1100 hours.
  • HAT-CN6, HT-1, H-1, and D-1 are the compounds shown below.
  • Examples 2 to 17 A light emitting device was prepared and evaluated in the same manner as in Example 1 except that the compounds listed in Table 1 were used for the electron transport layer. The results are shown in Table 1. Compounds [2] to [17] are the compounds shown below.
  • Comparative Examples 1-6 A light emitting device was prepared and evaluated in the same manner as in Example 1 except that the compounds listed in Table 1 were used for the electron transport layer. The results are shown in Table 1. E-1 to E-6 are the compounds shown below.
  • Example 18 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less.
  • “Semico Clean 56” trade name, manufactured by Furuuchi Chemical Co., Ltd.
  • HAT-CN6 was deposited as a hole injection layer at a thickness of 5 nm and HT-1 as a hole transport layer was deposited at a thickness of 80 nm by a resistance heating method.
  • a host material H-1 and a dopant material D-1 were vapor-deposited to a thickness of 40 nm as a light emitting layer so that the doping concentration was 5% by weight.
  • the compound [1] was deposited to a thickness of 10 nm as a first electron transport layer and laminated.
  • compound [1] is used as the second electron transporting layer as the electron transporting material
  • cesium is used as the donor material
  • the deposition rate ratio of compound [1] and cesium is 20: 1 so that the thickness is 20 nm. did.
  • 1000 nm of aluminum was vapor-deposited to form a cathode, and a 5 ⁇ 5 mm square device was fabricated.
  • the characteristics of this light emitting element at 1000 cd / m 2 were a driving voltage of 4.2 V and an external quantum efficiency of 5.6%.
  • the luminance half time for decreasing the luminance by 50% was 1500 hours.
  • Examples 19-34 A light emitting device was prepared and evaluated in the same manner as in Example 18 except that the compounds shown in Table 2 were used for the electron transport layer. The results are shown in Table 2.
  • Comparative Examples 7-12 A light emitting device was prepared and evaluated in the same manner as in Example 18 except that the compounds shown in Table 2 were used for the electron transport layer. The results are shown in Table 2.
  • Example 35 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less.
  • “Semico Clean 56” trade name, manufactured by Furuuchi Chemical Co., Ltd.
  • HAT-CN6 was deposited as a hole injection layer at a thickness of 5 nm and HT-1 as a hole transport layer was deposited at a thickness of 80 nm by a resistance heating method.
  • a host material H-1 and a dopant material D-1 were vapor-deposited to a thickness of 40 nm as a light emitting layer so that the doping concentration was 5% by weight.
  • the compound [1] is used as the electron transport material for the electron transport layer
  • 2E-1 is used as the donor material
  • the thickness of the compound [1] and 2E-1 is set to 30 nm so that the deposition rate ratio is 1: 1.
  • Laminated. This electron transport layer is shown as a second electron transport layer in Table 2.
  • Examples 36-51 A light emitting device was prepared and evaluated in the same manner as in Example 35 except that the compounds described in Table 3 were used as the electron transport layer and the donor material. The results are shown in Table 3. 2E-1 is a compound shown below.
  • Comparative Examples 13-18 A light emitting device was prepared and evaluated in the same manner as in Example 35 except that the compounds described in Table 3 were used as the electron transport layer and the donor material. The results are shown in Table 3.
  • Example 52 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less.
  • “Semico Clean 56” trade name, manufactured by Furuuchi Chemical Co., Ltd.
  • HAT-CN6 was deposited as a hole injection layer at a thickness of 5 nm and HT-1 as a hole transport layer was deposited at a thickness of 80 nm by a resistance heating method. This hole transport layer is shown in Table 3 as the first hole transport layer.
  • a host material H-2 and a dopant material D-2 were deposited to a thickness of 40 nm so that the doping concentration was 10 wt%.
  • Compound [1] was deposited as an electron transport layer to a thickness of 30 nm and laminated.
  • the film thickness referred to here is a crystal oscillation type film thickness monitor display value.
  • the characteristics of this light emitting device at 4000 cd / m 2 were a driving voltage of 4.2 V and an external quantum efficiency of 12.1%.
  • the luminance half time was 1200 hours.
  • H-2 and D-2 are the compounds shown below.
  • Example 53 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less.
  • “Semico Clean 56” trade name, manufactured by Furuuchi Chemical Co., Ltd.
  • HAT-CN6 was deposited as a hole injection layer at 5 nm and HT-1 as a first hole transport layer was deposited at 70 nm by a resistance heating method. Furthermore, 10 nm of HT-2 was deposited as a second hole transport layer. Next, as a light emitting layer, a host material H-2 and a dopant material D-2 were deposited to a thickness of 40 nm so that the doping concentration was 10 wt%. Next, Compound [1] was deposited as an electron transport layer to a thickness of 30 nm and laminated.
  • the film thickness referred to here is a crystal oscillation type film thickness monitor display value.
  • the characteristics of this light emitting element at 4000 cd / m 2 were a driving voltage of 4.3 V and an external quantum efficiency of 14.2%.
  • the luminance half time was 1700 hours.
  • HT-2 is a compound shown below.
  • Examples 54 and 55 A light emitting device was prepared and evaluated in the same manner as in Example 53 except that the compounds described in Table 4 were used as the second hole transport layer. The results are shown in Table 4.
  • HT-3 and HT-4 are the compounds shown below.
  • Example 56 A light emitting device was prepared and evaluated in the same manner as in Example 52 except that the compound [2] was used as the electron transport layer. The results are shown in Table 4.
  • Examples 57-59 An element was prepared and evaluated in the same manner as in Example 53 except that the compounds shown in Table 4 were used as the second hole transport layer and the compound [2] was used as the electron transport layer. The results are shown in Table 4.
  • Comparative Examples 19 and 23 A light emitting device was prepared and evaluated in the same manner as in Example 52 except that the compounds listed in Table 4 were used as the electron transport layer. The results are shown in Table 4.
  • Comparative Examples 20-22, 24-26 A device was prepared and evaluated in the same manner as in Example 53 except that the compounds shown in Table 3 were used as the second hole transport layer and the electron transport layer. The results are shown in Table 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

 本発明の目的は発光効率、駆動電圧、耐久寿命の全てを改善した有機薄膜発光素子を提供することであり、本発明の発光素子材料はベンゾフルオランテン骨格を含む特定の化合物を有することを特徴とする。

Description

発光素子材料および発光素子
 本発明は、電気エネルギーを光に変換できる発光素子およびそれに用いられる材料に関する。本発明は、表示素子、フラットパネルディスプレイ、バックライト、照明、インテリア、標識、看板、電子写真機および光信号発生器などの分野に利用可能である。
 陰極から注入された電子と陽極から注入された正孔が両極に挟まれた有機蛍光体内で再結合する際に発光するという有機薄膜発光素子の研究が、近年活発に行われている。この発光素子は、薄型で、かつ、低駆動電圧下での高輝度発光と、蛍光材料を選ぶことにより多色発光が可能であることが特徴であり、注目を集めている。
 この研究は、コダック社のC.W.Tangらによって有機薄膜素子が高輝度に発光することが示されて以来、多数の実用化検討がなされており、有機薄膜発光素子は、携帯電話のメインディスプレイなどに採用されるなど着実に実用化が進んでいる。しかし、まだ技術的な課題も多く、中でも素子の高効率化と長寿命化の両立は大きな課題のひとつである。
 有機薄膜発光素子には、発光効率の向上、駆動電圧の低下、耐久性の向上を満たす必要がある。中でも、発光効率と耐久寿命の両立が大きな課題となっている。例えば、発光効率、並びに耐久寿命を向上させるために、ベンゾフルオランテン骨格を有する材料(特許文献1)や含窒素複素環を有する材料(特許文献2)が開発されている。
国際公開第2012/046839号 国際公開第2010/114264号
 しかしながら、従来の技術では素子の駆動電圧を十分に下げることは困難であり、また駆動電圧を下げることができたとしても、素子の発光効率、耐久寿命が不十分であった。このように、高い発光効率、低駆動電圧、さらに耐久寿命も両立させる技術は未だ見出されていない。
 本発明は、かかる従来技術の問題を解決し、発光効率、駆動電圧、耐久寿命の全てを改善した有機薄膜発光素子を提供することを目的とするものである。
 本発明は、下記一般式(1)で表される化合物を有することを特徴とする発光素子材料である。
Figure JPOXMLDOC01-appb-C000007
 式中、Arはベンゾフルオランテン骨格を含む基を表し、Zは下記一般式(2)で表される。Lは単結合、置換もしくは無置換のアリーレン基、または置換もしくは無置換のヘテロアリーレン基である。nは1もしくは2である。nが2のとき2つのZは同じでも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000008
 式中、環Aおよび環Bは、それぞれ、置換もしくは無置換のベンゼン環、置換もしくは無置換の縮合芳香族炭化水素環、置換もしくは無置換の単環芳香族複素環、または置換もしくは無置換の縮合芳香族複素環を表す。但し、環Aおよび環Bを構成する少なくとも1つの原子は電子受容性窒素である。環Aおよび環Bが置換されている場合の置換基、ならびにRは、それぞれ、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基および-P(=O)Rからなる群より選ばれる。Rは水素であってもよい。RおよびRはアリール基またはヘテロアリール基である。またRおよびRが縮合して環を形成していてもよい。但し、R1、環Aおよび環Bのうちいずれかの位置でLと連結する。nが2のとき、2個のZがLと連結する位置はそれぞれ同じでも異なっていてもよい。
 本発明により、発光効率、駆動電圧、耐久寿命を両立した有機薄膜発光素子を提供することができる。
 一般式(1)で表される化合物について詳細に説明する。
Figure JPOXMLDOC01-appb-C000009
 式中、Arはベンゾフルオランテン骨格を含む基を表し、Zは下記一般式(2)で表される。Lは単結合、置換もしくは無置換のアリーレン基、または置換もしくは無置換のヘテロアリーレン基である。nは1もしくは2である。nが2のとき2つのZは同じでも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000010
 式中、環Aおよび環Bは、それぞれ、置換もしくは無置換のベンゼン環、置換もしくは無置換の縮合芳香族炭化水素環、置換もしくは無置換の単環芳香族複素環、または置換もしくは無置換の縮合芳香族複素環を表す。但し、環Aおよび環Bを構成する少なくとも1つの原子は電子受容性窒素である。環Aおよび環Bが置換されている場合の置換基、ならびにRは、それぞれ、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基および-P(=O)Rからなる群より選ばれる。Rは水素であってもよい。RおよびRはアリール基またはヘテロアリール基である。またRおよびRが縮合して環を形成していてもよい。但し、R1、環Aおよび環Bのうちいずれかの位置でLと連結する。nが2のとき、2個のZがLと連結する位置はそれぞれ同じでも異なっていてもよい。
 上記の全ての基において、水素は重水素であってもよい。また、アルキル基とは、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などの飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。置換されている場合の追加の置換基には特に制限は無く、例えば、アルキル基、アリール基、ヘテロアリール基等を挙げることができ、この点は、以下の記載にも共通する。また、アルキル基の炭素数は特に限定されないが、入手の容易性やコストの点から、好ましくは1以上20以下、より好ましくは1以上8以下の範囲である。
 シクロアルキル基とは、例えば、シクロプロピル基、シクロヘキシル基、ノルボルニル基、アダマンチル基などの飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルキル基部分の炭素数は特に限定されないが、好ましくは、3以上20以下の範囲である。
 複素環基とは、例えば、ピラン環、ピペリジン環、環状アミドなどの炭素以外の原子を環内に有する脂肪族環を示し、これは置換基を有していても有していなくてもよい。複素環基の炭素数は特に限定されないが、好ましくは、2以上20以下の範囲である。
 アルケニル基とは、例えば、ビニル基、アリル基、ブタジエニル基などの二重結合を含む不飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルケニル基の炭素数は特に限定されないが、好ましくは、2以上20以下の範囲である。
 シクロアルケニル基とは、例えば、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセニル基などの二重結合を含む不飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。
 アルキニル基とは、例えば、エチニル基などの三重結合を含む不飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルキニル基の炭素数は特に限定されないが、好ましくは、2以上20以下の範囲である。
 アルコキシ基とは、例えば、メトキシ基、エトキシ基、プロポキシ基などのエーテル結合を介して脂肪族炭化水素基が結合した官能基を示し、この脂肪族炭化水素基は置換基を有していても有していなくてもよい。アルコキシ基の炭素数は特に限定されないが、好ましくは、1以上20以下の範囲である。
 アルキルチオ基とは、アルコキシ基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アルキルチオ基の炭化水素基は置換基を有していても有していなくてもよい。アルキルチオ基の炭素数は特に限定されないが、好ましくは、1以上20以下の範囲である。
 アリールエーテル基とは、例えば、フェノキシ基など、エーテル結合を介した芳香族炭化水素基が結合した官能基を示し、芳香族炭化水素基は置換基を有していても有していなくてもよい。アリールエーテル基の炭素数は特に限定されないが、好ましくは、6以上40以下の範囲である。
 アリールチオエーテル基とは、アリールエーテル基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アリールエーテル基における芳香族炭化水素基は置換基を有していても有していなくてもよい。アリールエーテル基の炭素数は特に限定されないが、好ましくは、6以上40以下の範囲である。
 アリール基とは、例えば、フェニル基、ナフチル基、ビフェニル基、フェナントリル基、ターフェニル基、ピレニル基、フルオランテニル基などの芳香族炭化水素基を示す。アリール基は、置換基を有していても有していなくてもよい。アリール基の炭素数は特に限定されないが、好ましくは、6以上40以下の範囲である。
 ヘテロアリール基とは、フラニル基、チオフェニル基、ピリジル基、キノリニル基、イソキノリニル基、ピラジニル基、ピリミジル基、ナフチリジル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基などの炭素以外の原子を一個または複数個環内に有する環状芳香族基を示し、これは無置換でも置換されていてもかまわない。ヘテロアリール基の炭素数は特に限定されないが、好ましくは、2以上30以下の範囲である。
 ハロゲンとは、フッ素、塩素、臭素およびヨウ素から選ばれる原子を示す。
 カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基およびホスフィンオキサイド基は、置換基を有していても有していなくてもよい。ここで、置換基としては、例えばアルキル基、シクロアルキル基、アリール基、ヘテロアリール基などが挙げられ、これら置換基はさらに置換されてもよい。
 アリーレン基とは、フェニル基、ナフチル基、ビフェニル基などの芳香族炭化水素基から導かれる2価もしくは3価の基を示し、これは置換基を有していても有していなくてもよい。一般式(1)のLがアリーレン基の場合、核炭素数は6以上30以下の範囲が好ましい。アリーレン基としては、具体的には、1,4-フェニレン基、1,3-フェニレン基、1,2-フェニレン基、4,4’-ビフェニリレン基、4,3’-ビフェニリレン基、3,3’-ビフェニリレン基、1,4-ナフチレン基、1,5-ナフチレン基、2,5-ナフチレン基、2,6-ナフチレン基、2,7-ナフチレン基などが挙げられる。より好ましくは1,4-フェニレン基、1,3-フェニレン基である。
 ヘテロアリーレン基とは、ピリジル基、キノリニル基、ピリミジニル基、ピラジニル基、ナフチリジル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基などの炭素以外の原子を一個または複数個環内に有する芳香族基から導かれる2価もしくは3価の基を示し、これは置換基を有していても有していなくてもよい。ヘテロアリーレン基の炭素数は特に限定されないが、好ましくは、2~30の範囲である。
 縮合芳香族炭化水素環とは、例えば、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、アセナフテン環、コロネン環、フルオレン環、フルオランテン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピラントレン環、アンスラアントレン環等が挙げられる。更に、前記縮合芳香族炭化水素環は置換基を有していてもよい。
 単環芳香族複素環とは、フラン環、チオフェン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環等が挙げられる。更に、前記単環芳香族複素環は置換基を有していてもよい。 
 縮合芳香族複素環とは、例えば、キノリン環、イソキノリン環、キノキサリン環、ベンゾイミダゾール環、インドール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭化水素環の炭素原子の一つが更に窒素原子で置換されている環を示す)等が挙げられる。更に、前記縮合芳香族複素環は置換基を有していてもよい。
 上記一般式(1)で表される化合物において、Lは単結合、置換もしくは無置換のアリーレン基、または置換もしくは無置換のヘテロアリーレン基である。上記一般式(2)で表されるZで表される基は、R1、環Aおよび環Bのうちいずれかの位置でLと連結する。R1、環Aおよび環Bのうちいずれかの位置でLと連結するとは次のようなことをいう。まず、R1の位置でLと連結するとは、Rが連結している窒素原子とLが直接結合することをいう。また、環Aおよび環Bのうちいずれかの位置でLと連結するとは、例えば環Aがベンゼン環であるとすると、そのベンゼン環を構成する炭素原子のいずれかとLが直接結合することをいう。
 Lは特に限定されないが、単結合あるいは置換もしくは無置換のアリーレン基であると好ましい。Lが単結合あるいは置換もしくは無置換のアリーレン基であることで、共役が広がり、高いキャリア移動度および高い電子受容性を発現する。その結果、発光素子のさらなる低電圧駆動が可能となり、発光効率をより向上させることができる。
 Lは特に限定されないが、置換もしくは無置換のアリーレン基であると好ましい。Lが置換もしくは無置換のアリーレン基であることで、共役がより広がり、高いキャリア移動度および高い電子受容性を発現する。その結果、発光素子のさらなる低電圧駆動が可能となり、発光効率をより向上させることができる。また、結晶性の低下やガラス転移温度を高くすることができ、膜の安定性が向上するため、発光素子に用いた場合に、さらなる寿命の向上が可能となる。
 上記一般式(1)で表される化合物においてnは1もしくは2である。すなわち、一般式(1)で表される化合物は、Zで表される基を1個もしくは2個有しており、そのことで、結晶性が低下したりガラス転移温度が高くなったりするため、膜の安定性がより向上する。nは1であることが好ましい。nが1であることで、昇華性、蒸着安定性がより向上する。
 一般式(1)で表される化合物においてArはベンゾフルオランテン骨格を含む基であり、本発明の発光素子材料は、ベンゾフルオランテン骨格を有する。ベンゾフルオランテン骨格は、5π電子系の5員環構造を有する。5π電子系の5員環構造は、電子が1つ入る(還元される)と、6π電子系となり芳香族安定化が起こる(ヒュッケル則)。このため、5π電子系の5員環構造は高い電子親和性を示し、本発明のベンゾフルオランテン骨格も高い電子親和性を備える。一般的に有名な縮環芳香族骨格であるアントラセンやピレンは5π電子系の5員環構造をもたないため、還元による芳香族安定化に起因する電子親和性の増大はなく、これらの現象は5π電子系の5員環構造を有する骨格特有の性質である。このため本発明の発光素子材料を発光素子に用いた場合に、例えば電子輸送層に用いた場合には、電極からの良好な電子注入性を示し、発光素子の駆動電圧を低くすることができる。この結果、発光素子の発光効率を向上させることができる。また、発光素子の長寿命化にも寄与する。
 また、ベンゾフルオランテン骨格は、高い平面性を有し、分子同士がうまく重なるため、高い電荷輸送性を有する。特にベンゾフルオランテン骨格はその高い平面性から、例えばフルオランテンよりも高い電荷輸送性を有する。このため本発明の発光素子材料を発光素子を構成するいずれかの層に用いた場合に、陰極から発生した電子や陽極から発生した正孔を効率よく輸送できるので、素子の駆動電圧を低下させることができる。この結果、発光素子の発光効率を向上させることができる。また、発光素子の長寿命化にも寄与する。
 また、ベンゾフルオランテン骨格は電荷に対する安定性が高く、電子による還元や、正孔による酸化をスムーズに繰り返し行うことができる。本発明の発光素子材料を発光素子に用いた場合に、寿命の向上が可能となる。
 上記一般式(2)で表されるZにおいて、環Aおよび環Bを構成する少なくとも1つの原子は電子受容性窒素である。ここで、電子受容性窒素とは、隣接原子との間に多重結合を形成している窒素原子を表す。窒素原子が高い電気陰性度を有することから、該多重結合は電子受容的な性質を有する。それゆえ、電子受容性窒素を有するZは、高い電子親和性をもつ。このため本発明の発光素子材料を発光層や電子輸送層に用いた場合には、電極からの良好な電子注入性を示し、発光素子の駆動電圧を低くすることができる。この結果、発光素子の発光効率を向上させることができる。また、発光素子の長寿命化にも寄与する。
 Zで表される基において、環Aおよび環Bを構成する電子受容性窒素は1つであることが好ましい。Zにおいて、環Aおよび環Bを構成する電子受容性窒素が1つであると、電子輸送層に用いた場合に、電極からの電子注入性と発光層への電子注入性を両立できるため、発光素子の駆動電圧をより低くすることができる。この結果、発光素子の発光効率を向上させることができる。
 また、Zで表される基は、電子供与性窒素を有している。ここで、電子供与性窒素とは、隣接原子との間の結合がすべて単結合である窒素原子を表す。Zで表される基においては、Rが結合している窒素原子がこれに該当する。電子供与性窒素は正孔に対する安定性が高く、正孔による酸化をスムーズに繰り返し行うことができる。よって、本発明の一般式(1)で表される化合物を正孔輸送層に用いた場合に、寿命の向上が可能となる。
 また、本発明の発光素子材料が、Zで表される基を有することで昇華性、蒸着安定性及び結晶性の低下や高いガラス転移温度による膜の安定性が向上する。これにより、本発明の発光素子材料を発光素子に用いた場合に、寿命の向上が可能となる。
 以上より、本発明の発光素子材料は、分子中にベンゾフルオランテン骨格を含む基であるArとZで表される基とを有していることにより、高い電子注入輸送性、電気化学的安定性、良好な昇華性、良好な蒸着安定性、良好な膜質、高いガラス転移温度を併せ持つ。これらによって、本発明の発光素子材料を発光素子を構成するいずれかの層に用いた場合に、高発光効率、低駆動電圧および耐久寿命を両立した有機薄膜発光素子が可能となる。
 ベンゾフルオランテン骨格としては、ベンゾ[k]フルオランテン骨格(8,9-ベンゾフルオランテン骨格)やベンゾ[j]フルオランテン骨格(7,8-ベンゾフルオランテン骨格)、ベンゾ[a]フルオランテン骨格(1,2-ベンゾフルオランテン骨格)ベンゾ[b]フルオランテン骨格(2,3-ベンゾフルオランテン骨格)、があげられ、ベンゾフルオランテン骨格を含む基としては、ベンゾフルオランテン骨格を含んでいれば、さらに縮合環によりにより修飾されていても構わない。この中でも、ベンゾ[k]フルオランテン骨格が好ましい。すなわち、Arは下記一般式(3)で表される基であることが好ましい。ベンゾフルオランテン骨格が一般式(3)で表される場合、適度に共役系が広がる。これにより、電気化学的により安定になり、さらに電荷輸送性がより向上する。
Figure JPOXMLDOC01-appb-C000011
 式中、R~R15はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基およびカルバモイル基からなる群より選ばれる。R~R15は隣接する置換基同士で環を形成していてもよい。但し、R~R15のうちいずれか一つの位置でLと連結する。
 一般式(3)におけるR~R15は上記の中でも水素、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基およびハロゲンからなる群より選ばれることが好ましい。R~R15が水素、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基およびハロゲンからなる群より選ばれることで、ガラス転移温度が高くなり、薄膜安定性が向上する。薄膜安定性が向上すると、発光素子において長時間駆動しても膜の変質が抑制されるため、耐久性がより向上する。また、高温下でも分解しにくい置換基であるため、耐熱性がより向上する。耐熱性が向上すると、素子作製時に材料の分解を抑制できるため、耐久性が向上する。さらに、アリール基やヘテロアリール基であると、共役が広がるため、電気化学的により安定になり、且つ、電荷輸送性がより向上する。
 一般式(3)におけるRおよびR13は置換もしくは無置換のアリール基であることが好ましい。RおよびR13が置換もしくは無置換のアリール基であることで、分子間におけるπ共役平面の重なりを適度に回避することが可能となる。また、RおよびR13が置換もしくは無置換のアリール基であることで耐熱性がより向上する。その結果、ベンゾフルオランテン化合物の高い電荷輸送性を損なうことなく、昇華性の向上、蒸着安定性の向上、結晶性の低下及び高いガラス転移温度による薄膜安定性の向上に寄与する。
 一般式(3)におけるRおよびR13は置換もしくは無置換のフェニル基であることがより好ましい。RおよびR13が置換もしくは無置換のフェニル基であることで、分子間におけるπ共役平面の重なりを適度に回避することが可能となる。また、適度な分子量になるため、昇華性、蒸着安定性がさらに向上する。
 一般式(1)で表される化合物は下記一般式(4)で表される化合物であることが好ましい。ベンゾフルオランテンはRおよびRの位置で共役が広がりやすく、RがLとの連結に用いられることで、効率的に共役が広がる。これにより、一般式(4)で表される化合物は、電気化学的により安定になり、さらに電荷輸送性が向上する。
Figure JPOXMLDOC01-appb-C000012
 式中、R~R15はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基およびカルバモイル基からなる群より選ばれる。R~R15は隣接する置換基同士で環を形成していてもよい。L、Zおよびnは前記一般式(1)と同様である。
 一般式(4)におけるR~R15は上記の中でも水素、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基およびハロゲンからなる群より選ばれることが好ましい。R~R15が水素、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基およびハロゲンからなる群より選ばれることで、ガラス転移温度がより高くなり、薄膜安定性がより向上する。また、高温下でも分解しにくい置換基であるため、耐熱性がより向上する。さらに、アリール基やヘテロアリール基であると、共役が広がるため、電気化学的により安定になり、且つ、電荷輸送性がより向上する。
 Zは下記一般式(5)~(9)のいずれかで表される基であることが好ましい。Zが下記一般式(5)~(9)のいずれかで表される基であると、高い電子移動度および高い電子受容性を発現し、発光素子の駆動電圧をより低くすることができる。この結果、発光素子の発光効率をより向上させることができる。また、発光素子の長寿命化にも寄与する。
Figure JPOXMLDOC01-appb-C000013
 式中、環Bは置換もしくは無置換のベンゼン環、置換もしくは無置換の縮合芳香族炭化水素環、置換もしくは無置換の単環芳香族複素環、または置換もしくは無置換の縮合芳香族複素環を表す。但し、一般式(5)の場合は、環Bは置換もしくは無置換の単環芳香族複素環、または置換もしくは無置換の縮合芳香族複素環であり、かつ、環Bを構成する少なくとも1つの原子は電子受容性窒素である。環Bが置換されている場合の置換基、ならびにRは、前記一般式(2)と同様である。R16~R31は、それぞれ、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基および-P(=O)Rからなる群より選ばれる。ただし、一般式(5)の場合はR1、R16~R19、環Bのうちいずれかの位置で、一般式(6)の場合はR1、R20~R22、環Bのうちいずれかの位置で、一般式(7)の場合はR1、R23~R25、環Bのうちいずれかの位置で、一般式(8)の場合はR1、R26~R28、環Bのうちいずれかの位置で、一般式(9)の場合はR1、R29~R31、環Bのうちいずれかの位置で、Lと連結する。
 環Bは下記一般式(10)~(13)のいずれかで表される構造であることが好ましい。環Bが下記一般式(10)~(13)のいずれかで表される構造であると、高いキャリア移動度および高い電子受容性を発現する。その結果、発光素子のさらなる低電圧駆動が可能となり、発光効率を向上させることができる。また、昇華性の向上、蒸着安定性の向上及び結晶性の低下や高いガラス転移温度による膜の安定性に寄与する。
Figure JPOXMLDOC01-appb-C000014
 式中、B~B22はC-R32、またはNを表す。但し、Zが一般式(5)で表される基の場合は、環Bに含まれるB(k=1~22)の少なくとも1つは電子受容性窒素である。B~B22が置換されている場合の置換基は前記一般式(2)と同様である。R32は、それぞれ、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基および-P(=O)Rからなる群より選ばれる。
 環Bは特に限定されないが、一般式(11)~(13)のいずれかで表される構造であることがより好ましい。環Bが一般式(11)~(13)のいずれかで表される構造であることで、共役がより広がり、高いキャリア移動度および高い電子受容性を発現する。その結果、発光素子のさらなる低電圧駆動が可能となり、発光効率をより向上させることができる。
 Zで表される基としては、特に限定されるものではないが、具体的には以下のような一般式が挙げられる。ここでRは前記一般式(2)と同様である。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 本発明の発光素子材料としては、特に限定されるものではないが、具体的には以下のような例が挙げられる。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 本発明の発光素子材料の合成には、公知の方法を使用することができる。ベンゾフルオランテン骨格へZを導入する方法としては、例えば、パラジウム触媒やニッケル触媒下で置換もしくは無置換のハロゲン化ベンゾフルオランテン誘導体と置換もしくは無置換のZのカップリング反応を用いる方法が挙げられるが、これらに限定されるものではない。なお、Zをアリーレン基やヘテロアリーレン基を介してベンゾフルオランテン骨格へ導入する場合は、Zが置換したアリールボロン酸やヘテロアリールボロン酸を用いてもよい。また、上記の各種ボロン酸に代えて、ボロン酸エステルを用いてもよい。
 本発明の発光素子材料は、発光素子のいずれかの層に使用される材料を表し、後述するように、正孔輸送層、発光層および電子輸送層から選ばれた層に使用される材料であるほか、陰極の保護膜に使用される材料も含む。本発明の発光素子材料を、発光素子のいずれかの層に使用することにより、高い発光効率が得られ、かつ低駆動電圧および高耐久性の発光素子が得られる。
 次に、本発明の発光素子の実施の形態について詳細に説明する。本発明の発光素子は、陽極と陰極、およびそれら陽極と陰極との間に介在する有機層を有し、該有機層は少なくとも発光層と電子輸送層を含み、該発光層が電気エネルギーにより発光する。
 有機層は、発光層/電子輸送層のみからなる構成の他に、1)正孔輸送層/発光層/電子輸送層および2)正孔輸送層/発光層/電子輸送層/電子注入層、3)正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層などの積層構成が挙げられる。また、上記各層は、それぞれ単一層、複数層のいずれでもよい。
 本発明の発光素子材料は、上記の素子構成において、いずれの層に用いられてもよいが、高い電子注入輸送能、蛍光量子収率および薄膜安定性を有しているため、発光素子の発光層または電子輸送層に用いることが好ましい。特に、優れた電子注入輸送能を有していることから、電子輸送層に用いることがより好ましい。
 本発明の発光素子において、陽極と陰極は素子の発光のために十分な電流を供給するための役割を有するものであり、光を取り出すために少なくとも一方は透明または半透明であることが好ましい。通常、基板上に形成される陽極を透明電極とする。
 陽極に用いる材料は、正孔を有機層に効率よく注入できる材料、かつ光を取り出すために透明または半透明であれば、酸化錫、酸化インジウム、酸化錫インジウム(ITO)酸化亜鉛インジウム(IZO)などの導電性金属酸化物、あるいは、金、銀、クロムなどの金属、ヨウ化銅、硫化銅などの無機導電性物質、ポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマーなど特に限定されるものでないが、ITOガラスやネサガラスを用いることが特に好ましい。これらの電極材料は、単独で用いてもよいが、複数の材料を積層または混合して用いてもよい。透明電極の抵抗は素子の発光に十分な電流が供給できればよいので限定されないが、素子の消費電力の観点からは低抵抗であることが好ましい。例えば300Ω/□以下のITO基板であれば素子電極として機能するが、現在では10Ω/□程度の基板の供給も可能になっていることから、20Ω/□以下の低抵抗の基板を使用することが特に好ましい。ITOの厚みは抵抗値に合わせて任意に選ぶ事ができるが、通常100~300nmの間で用いられることが多い。
 また、発光素子の機械的強度を保つために、発光素子を基板上に形成することが好ましい。基板は、ソーダガラスや無アルカリガラスなどのガラス基板が好適に用いられる。ガラス基板の厚みは、機械的強度を保つのに十分な厚みがあればよいので、0.5mm以上あれば十分である。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスの方が好ましい。または、SiOなどのバリアコートを施したソーダライムガラスも市販されているのでこれを使用することもできる。さらに、第一電極が安定に機能するのであれば、基板はガラスである必要はなく、例えば、プラスチック基板上に陽極を形成しても良い。ITO膜形成方法は、電子線ビーム法、スパッタリング法および化学反応法など特に制限を受けるものではない。
 陰極に用いる材料は、電子を効率よく発光層に注入できる物質であれば特に限定されない。一般的には白金、金、銀、銅、鉄、錫、アルミニウム、インジウムなどの金属、またはこれらの金属とリチウム、ナトリウム、カリウム、カルシウム、マグネシウムなどの低仕事関数金属との合金や多層積層などが好ましい。中でも、主成分としてはアルミニウム、銀、マグネシウムが電気抵抗値や製膜しやすさ、膜の安定性、発光効率などの面から好ましい。特にマグネシウムと銀で構成されると、本発明における電子輸送層および電子注入層への電子注入がより容易になり、さらなる低電圧駆動が可能になるため好ましい。
 さらに、陰極保護のために白金、金、銀、銅、鉄、錫、アルミニウムおよびインジウムなどの金属、またはこれら金属を用いた合金、シリカ、チタニアおよび窒化ケイ素などの無機物、ポリビニルアルコール、ポリ塩化ビニル、炭化水素系高分子化合物などの有機高分子化合物を、保護膜層として陰極上に積層することが好ましい例として挙げられる。また、本発明の発光素子材料もこの保護膜層として利用できる。ただし、陰極側から光を取り出す素子構造(トップエミッション構造)の場合は、保護膜層は可視光領域で光透過性のある材料から選択される。これらの電極の作製法は、抵抗加熱、電子線ビーム、スパッタリング、イオンプレーティングおよびコーティングなど特に制限されない。
 正孔輸送層は、正孔輸送材料の一種または二種以上を積層または混合する方法、もしくは、正孔輸送材料と高分子結着剤の混合物を用いる方法により形成される。また、正孔輸送材料は、電界を与えられた電極間において正極からの正孔を効率良く輸送することが必要で、正孔注入効率が高く、注入された正孔を効率良く輸送することが好ましい。そのためには適切なイオン化ポテンシャルを持ち、しかも正孔移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが要求される。このような条件を満たす物質として、特に限定されるものではないが、例えば、4,4’-ビス(N-(3-メチルフェニル)-N-フェニルアミノ)ビフェニル(TPD)、4,4’-ビス(N-(1-ナフチル)-N-フェニルアミノ)ビフェニル(NPD)、4,4’-ビス(N,N-ビス(4-ビフェニリル)アミノ)ビフェニル(TBDB),ビス(N,N’-ジフェニル-4-アミノフェニル)-N,N-ジフェニル-4,4’-ジアミノ-1,1’-ビフェニル(TPD232)といったベンジジン誘導体、4,4’,4”-トリス(3-メチルフェニル(フェニル)アミノ)トリフェニルアミン(m-MTDATA)、4,4’,4”-トリス(1-ナフチル(フェニル)アミノ)トリフェニルアミン(1-TNATA)などのスターバーストアリールアミンと呼ばれる材料群、カルバゾール骨格を有する材料、中でもカルバゾール多量体、具体的にはビス(N-アリルカルバゾール)またはビス(N-アルキルカルバゾール)などのカルバゾール2量体の誘導体、カルバゾール3量体の誘導体、カルバゾール4量体の誘導体、トリフェニレン化合物、ピラゾリン誘導体、スチルベン系化合物、ヒドラゾン系化合物、ベンゾフラン誘導体やチオフェン誘導体、オキサジアゾール誘導体、フタロシアニン誘導体、ポルフィリン誘導体などの複素環化合物、フラーレン誘導体、ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリチオフェン、ポリアニリン、ポリフルオレン、ポリビニルカルバゾールおよびポリシランなどが好ましい。さらにp型Si、p型SiC等の無機化合物も使用できる。
 本発明の発光素子材料も、正孔移動度が大きく、さらに電気化学的安定性に優れているため、正孔輸送材料として用いることができる。本発明の発光素子材料は、正孔注入材料として用いてもよいが、高い正孔移動度をもつことから、正孔輸送材料として好適に用いられる。
 本発明の発光素子材料は電子注入輸送特性が優れているので、これを電子輸送層に用いた場合、電子が発光層で再結合せず、一部正孔輸送層までもれてしまう懸念がある。そのため正孔輸送層には電子ブロック性の優れた化合物を用いるのが好ましい。中でも、カルバゾール骨格を含有する化合物は電子ブロック性に優れ、発光素子の高効率化に寄与できるので好ましい。さらに上記カルバゾール骨格を含有する化合物が、カルバゾール2量体、カルバゾール3量体、またはカルバゾール4量体骨格を含有することが好ましい。これらは良好な電子ブロック性と、正孔注入輸送特性を併せ持っているためである。
 さらに、正孔輸送層にカルバゾール骨格を含有する化合物を用いた場合、組み合わせる発光層が後述するリン光発光材料を含んでいることがより好ましい。上記カルバゾール骨格を有する化合物は高い三重項励起子ブロック機能も有しており、リン光発光材料と組み合わせた場合に高発光効率化できるためである。また高い正孔移動度を有する点で優れているトリフェニレン骨格を含有する化合物を正孔輸送層に用いると、キャリアバランスが向上し、発光効率向上、耐久寿命向上といった効果が得られるので好ましい。トリフェニレン骨格を含有する化合物が2つ以上のジアリールアミノ基を有していると、さらに好ましい。上記カルバゾール骨格を含有する化合物、またはトリフェニレン骨格を含有する化合物はそれぞれ単独で正孔輸送層として用いてもよいし、互いに混合して用いてもよい。また本発明の効果を損なわない範囲で他の材料が混合されていてもよい。また正孔輸送層が複数層で構成されている場合は、いずれか1層にカルバゾール骨格を含有する化合物、あるいは、トリフェニレン骨格を含有する化合物が含まれていればよい。
 陽極と正孔輸送層の間に正孔注入層を設けてもよい。正孔注入層を設けることで発光素子がさらに低駆動電圧化し、耐久寿命もより向上する。正孔注入層には通常正孔輸送層に用いる材料よりもイオン化ポテンシャルの小さい材料が好ましく用いられる。具体的には、上記TPD232のようなベンジジン誘導体、スターバーストアリールアミン材料群が挙げられる他、フタロシアニン誘導体等も用いることができる。また正孔注入層がアクセプター性化合物単独で構成されているか、またはアクセプター性化合物が別の正孔輸送材料にドープされて用いられていることも好ましい。アクセプター性化合物の例としては、塩化鉄(III)、塩化アルミニウム、塩化ガリウム、塩化インジウム、塩化アンチモンのような金属塩化物、酸化モリブデン、酸化バナジウム、酸化タングステン、酸化ルテニウムのような金属酸化物、トリス(4-ブロモフェニル)アミニウムヘキサクロロアンチモネート(TBPAH)のような電荷移動錯体が挙げられる。また分子内にニトロ基、シアノ基、ハロゲンまたはトリフルオロメチル基を有する有機化合物や、キノン系化合物、酸無水物系化合物、フラーレンなども好適に用いられる。
 これらの化合物の具体的な例としては、ヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン(TCNQ)、テトラフルオロテトラシアノキノジメタン(F4-TCNQ)、2,3,6,7,10,11-ヘキサシアノ-1,4,5,8,9,12-ヘキサアザトリフェニレン(HAT-CN6)、p-フルオラニル、p-クロラニル、p-ブロマニル、p-ベンゾキノン、2,6-ジクロロベンゾキノン、2,5-ジクロロベンゾキノン、テトラメチルベンゾキノン、1,2,4,5-テトラシアノベンゼン、o-ジシアノベンゼン、p-ジシアノベンゼン、1,4-ジシアノテトラフルオロベンゼン、2,3-ジクロロ-5,6-ジシアノベンゾキノン、p-ジニトロベンゼン、m-ジニトロベンゼン、o-ジニトロベンゼン、p-シアノニトロベンゼン、m-シアノニトロベンゼン、o-シアノニトロベンゼン、1,4-ナフトキノン、2,3-ジクロロナフトキノン、1-ニトロナフタレン、2-ニトロナフタレン、1,3-ジニトロナフタレン、1,5-ジニトロナフタレン、9-シアノアントラセン、9-ニトロアントラセン、9,10-アントラキノン、1,3,6,8-テトラニトロカルバゾール、2,4,7-トリニトロ-9-フルオレノン、2,3,5,6-テトラシアノピリジン、マレイン酸無水物、フタル酸無水物、C60、およびC70などが挙げられる。
 これらの中でも、金属酸化物やシアノ基含有化合物が取り扱いやすく、蒸着もしやすいことから、容易に上述した効果が得られるので好ましい。好ましい金属酸化物の例としては酸化モリブデン、酸化バナジウム、または酸化ルテニウムがあげられる。シアノ基含有化合物の中では、(a)分子内に、シアノ基の窒素原子以外に少なくとも1つの電子受容性窒素有する化合物、(b)分子内にハロゲンとシアノ基の両方を有している化合物、(c)分子内にカルボニル基とシアノ基の両方を有している化合物、または(d)分子内にハロゲンとシアノ基の両方を有し、さらにシアノ基の窒素原子以外に少なくとも1つの電子受容性窒素を有する化合物が強い電子アクセプターとなるためより好ましい。このような化合物として具体的には以下のような化合物があげられる。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
 正孔注入層がアクセプター性化合物単独で構成される場合、または正孔注入層にアクセプター性化合物がドープされている場合のいずれの場合も、正孔注入層は1層であってもよいし、複数の層が積層されていてもよい。またアクセプター化合物がドープされている場合に組み合わせて用いる正孔注入材料は、正孔輸送層への正孔注入障壁が緩和できるという観点から、正孔輸送層に用いる化合物と同一の化合物であることがより好ましい。
 発光層は単一層、複数層のどちらでもよく、それぞれ発光材料(ホスト材料、ドーパント材料)により形成され、これはホスト材料とドーパント材料との混合物であっても、ホスト材料単独であっても、いずれでもよい。すなわち、本発明の発光素子では、各発光層において、ホスト材料もしくはドーパント材料のみが発光してもよいし、ホスト材料とドーパント材料がともに発光してもよい。電気エネルギーを効率よく利用し、高色純度の発光を得るという観点からは、発光層はホスト材料とドーパント材料の混合からなることが好ましい。また、ホスト材料とドーパント材料は、それぞれ一種類であっても、複数の組み合わせであっても、いずれでもよい。ドーパント材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれでもよい。ドーパント材料は積層されていても、分散されていても、いずれでもよい。ドーパント材料は発光色の制御ができる。ドーパント材料の量は、多すぎると濃度消光現象が起きるため、ホスト材料に対して20重量%以下で用いることが好ましく、さらに好ましくは10重量%以下である。ドーピング方法は、ホスト材料との共蒸着法によって形成することができるが、ホスト材料と予め混合してから同時に蒸着してもよい。
 発光材料は、具体的には、以前から発光体として知られていたアントラセンやピレンなどの縮合環誘導体、トリス(8-キノリノラト)アルミニウムを始めとする金属キレート化オキシノイド化合物、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、インデン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、オキサジアゾール誘導体、チアジアゾロピリジン誘導体、ジベンゾフラン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、そして、ポリチオフェン誘導体などが使用できるが特に限定されるものではない。
 発光材料に含有されるホスト材料は、特に限定されないが、ナフタレン、アントラセン、フェナンスレン、ピレン、クリセン、ナフタセン、トリフェニレン、ペリレン、フルオランテン、フルオレン、インデンなどの縮合アリール環を有する化合物やその誘導体、N,N’-ジナフチル-N,N’-ジフェニル-4,4’-ジフェニル-1,1’-ジアミンなどの芳香族アミン誘導体、トリス(8-キノリナート)アルミニウム(III)をはじめとする金属キレート化オキシノイド化合物、ジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、インデン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、ピロロピロール誘導体、チアジアゾロピリジン誘導体、ジベンゾフラン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、トリアジン誘導体、ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、ポリチオフェン誘導体などが使用できるが特に限定されるものではない。
 またドーパント材料には、特に限定されないが、ナフタレン、アントラセン、フェナンスレン、ピレン、クリセン、トリフェニレン、ペリレン、フルオランテン、フルオレン、インデンなどの縮合アリール環を有する化合物やその誘導体(例えば2-(ベンゾチアゾール-2-イル)-9,10-ジフェニルアントラセンや5,6,11,12-テトラフェニルナフタセンなど)、フラン、ピロール、チオフェン、シロール、9-シラフルオレン、9,9’-スピロビシラフルオレン、ベンゾチオフェン、ベンゾフラン、インドール、ジベンゾチオフェン、ジベンゾフラン、イミダゾピリジン、フェナントロリン、ピリジン、ピラジン、ナフチリジン、キノキサリン、ピロロピリジン、チオキサンテンなどのヘテロアリール環を有する化合物やその誘導体、ボラン誘導体、ジスチリルベンゼン誘導体、4,4’-ビス(2-(4-ジフェニルアミノフェニル)エテニル)ビフェニル、4,4’-ビス(N-(スチルベン-4-イル)-N-フェニルアミノ)スチルベンなどのアミノスチリル誘導体、芳香族アセチレン誘導体、テトラフェニルブタジエン誘導体、スチルベン誘導体、アルダジン誘導体、ピロメテン誘導体、ジケトピロロ[3,4-c]ピロール誘導体、2,3,5,6-1H,4H-テトラヒドロ-9-(2’-ベンゾチアゾリル)キノリジノ[9,9a,1-gh]クマリンなどのクマリン誘導体、イミダゾール、チアゾール、チアジアゾール、カルバゾール、オキサゾール、オキサジアゾール、トリアゾールなどのアゾール誘導体およびその金属錯体およびN,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジフェニル-1,1’-ジアミンに代表される芳香族アミン誘導体などを用いることができる。
 また発光層にリン光発光材料が含まれていてもよい。リン光発光材料とは、室温でもリン光発光を示す材料である。ドーパントしてリン光発光材料を用いる場合は基本的に室温でもリン光発光が得られる必要があるが、特に限定されるものではなく、イリジウム(Ir)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、白金(Pt)、オスミウム(Os)、及びレニウム(Re)からなる群から選択される少なくとも一つの金属を含む有機金属錯体化合物であることが好ましい。中でも室温でも高いリン光発光収率を有するという観点から、イリジウム、もしくは白金を有する有機金属錯体がより好ましい。リン光発光性のドーパントと組み合わせて用いられるホストとしては、インドール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ピリジン、ピリミジン、トリアジン骨格を有する含窒素芳香族化合物誘導体、ポリアリールベンゼン誘導体、スピロフルオレン誘導体、トルキセン誘導体、トリフェニレン誘導体といった芳香族炭化水素化合物誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体といったカルコゲン元素を含有する化合物、ベリリウムキノリノール錯体といった有機金属錯体などが好適に用いられるが、基本的に用いるドーパントよりも三重項エネルギーが大きく、電子、正孔がそれぞれの輸送層から円滑に注入され、また輸送するものであればこれらに限定されるものではない。また2種以上の三重項発光ドーパントが含有されていてもよいし、2種以上のホスト材料が含有されていてもよい。さらに1種以上の三重項発光ドーパントと1種以上の蛍光発光ドーパントが含有されていてもよい。
 好ましいリン光発光性ホストまたはドーパントとしては、特に限定されるものではないが、具体的には以下のような例が挙げられる。
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 本発明の発光素子材料も、高い発光性能を有することから、発光材料として用いることができる。本発明の発光素子材料は、紫外~青色領域(300~500nm領域)に強い発光を示すことから、青色発光材料として好適に用いることができる。本発明の発光素子材料は、ホスト材料として用いてもよいが、高い蛍光量子収率をもつことから、ドーパント材料として好適に用いられる。
 本発明において、電子輸送層とは、陰極から電子が注入され、さらに電子を輸送する層である。電子輸送層には、電子注入効率が高く、注入された電子を効率良く輸送することが望まれる。そのため電子輸送層は、電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質で構成されることが好ましい。しかしながら、正孔と電子の輸送バランスを考えた場合に、電子輸送層が陽極からの正孔が再結合せずに陰極側へ流れるのを効率よく阻止できる役割を主に果たすならば、電子輸送能力がそれ程高くない材料で構成されていても、発光効率を向上させる効果は電子輸送能力が高い材料で構成されている場合と同等となる。したがって、本発明における電子輸送層には、正孔の移動を効率よく阻止できる正孔阻止層も同義のものとして含まれる。
 電子輸送層に用いられる電子輸送材料としては、ナフタレン、アントラセンなどの縮合多環芳香族誘導体、4,4’-ビス(ジフェニルエテニル)ビフェニルに代表されるスチリル系芳香環誘導体、アントラキノンやジフェノキノンなどのキノン誘導体、リンオキサイド誘導体、トリス(8-キノリノラート)アルミニウム(III)などのキノリノール錯体、ベンゾキノリノール錯体、ヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体およびフラボノール金属錯体などの各種金属錯体が挙げられるが、駆動電圧を低減し、高効率発光が得られることから、炭素、水素、窒素、酸素、ケイ素、リンの中から選ばれる元素で構成され、電子受容性窒素を含むヘテロアリール環構造を有する化合物を用いることが好ましい。
 電子受容性窒素を含む芳香族複素環は、高い電子親和性を有する。電子受容性窒素を有する電子輸送材料は、高い電子親和力を有する陰極からの電子を受け取りやすくし、より低電圧駆動が可能となる。また、発光層への電子の供給が多くなり、再結合確率が高くなるので発光効率がより向上する。
 電子受容性窒素を含むヘテロアリール環としては、例えば、ピリジン環、ピラジン環、ピリミジン環、キノリン環、キノキサリン環、ナフチリジン環、ピリミドピリミジン環、ベンゾキノリン環、フェナントロリン環、イミダゾール環、オキサゾール環、オキサジアゾール環、トリアゾール環、チアゾール環、チアジアゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンズイミダゾール環、フェナンスロイミダゾール環などが挙げられる。
 これらのヘテロアリール環構造を有する化合物としては、例えば、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ピラジン誘導体、フェナントロリン誘導体、キノキサリン誘導体、キノリン誘導体、ベンゾキノリン誘導体、ビピリジンやターピリジンなどのオリゴピリジン誘導体、キノキサリン誘導体およびナフチリジン誘導体などが好ましい化合物として挙げられる。
 中でも、トリス(N-フェニルベンズイミダゾール-2-イル)ベンゼンなどのイミダゾール誘導体、1,3-ビス[(4-tert-ブチルフェニル)1,3,4-オキサジアゾリル]フェニレンなどのオキサジアゾール誘導体、N-ナフチル-2,5-ジフェニル-1,3,4-トリアゾールなどのトリアゾール誘導体、バソクプロインや1,3-ビス(1,10-フェナントロリン-9-イル)ベンゼンなどのフェナントロリン誘導体、2,2’-ビス(ベンゾ[h]キノリン-2-イル)-9,9’-スピロビフルオレンなどのベンゾキノリン誘導体、2,5-ビス(6’-(2’,2”-ビピリジル))-1,1-ジメチル-3,4-ジフェニルシロールなどのビピリジン誘導体、1,3-ビス(4’-(2,2’:6’2”-ターピリジニル))ベンゼンなどのターピリジン誘導体、ビス(1-ナフチル)-4-(1,8-ナフチリジン-2-イル)フェニルホスフィンオキサイドなどのナフチリジン誘導体が、電子輸送能の観点から好ましく用いられる。
 また、これらの誘導体が、縮合多環芳香族骨格を有していると、ガラス転移温度が向上すると共に、電子移動度も大きくなり発光素子の低電圧化の効果が大きいのでより好ましい。さらに、素子耐久寿命がより向上し、合成のし易さ、原料入手が容易であることを考慮すると、縮合多環芳香族骨格はアントラセン骨格、ピレン骨格またはフェナントロリン骨格であることが特に好ましい。上記電子輸送材料は単独でも用いられるが、上記電子輸送材料の2種以上を混合して用いたり、その他の電子輸送材料の一種以上を上記の電子輸送材料に混合して用いても構わない。
 好ましい電子輸送材料としては、特に限定されるものではないが、具体的には以下のような例が挙げられる。
Figure JPOXMLDOC01-appb-C000030
 これら以外にも、国際公開第2004/63159号、国際公開第2003/60956号、Appl. Phys. Lett. 74, 865 (1999)、Org. Electron. 4, 113 (2003)、国際公開第2010-113743号、国際公開第2010/1817号等に開示された電子輸送材料も用いることができる。
 また、本発明の発光素子材料も高い電子注入輸送能を有することから電子輸送材料として好適に用いられる。
 本発明の発光素子材料が用いられる場合には、その各一種のみに限る必要はなく、本発明の複数のベンゾフルオランテン化合物を混合して用いたり、その他の電子輸送材料の一種類以上を本発明の効果を損なわない範囲で本発明のベンゾフルオランテン化合物と混合して用いてもよい。混合しうる電子輸送材料としては、特に限定されないが、ナフタレン、アントラセン、ピレンなどの縮合アリール環を有する化合物やその誘導体、4,4’-ビス(ジフェニルエテニル)ビフェニルに代表されるスチリル系芳香環誘導体、ペリレン誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノンやジフェノキノンなどのキノン誘導体、リンオキサイド誘導体、カルバゾール誘導体およびインドール誘導体、トリス(8-キノリノラート)アルミニウム(III)などのキノリノール錯体やヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体およびフラボノール金属錯体が挙げられる。
 上記電子輸送材料は単独でも用いられるが、上記電子輸送材料の2種以上を混合して用いたり、その他の電子輸送材料の一種以上を上記の電子輸送材料に混合して用いても構わない。また、ドナー性材料を含有してもよい。ここで、ドナー性材料とは電子注入障壁の改善により、陰極または電子注入層からの電子輸送層への電子注入をより容易にし、さらに電子輸送層の電気伝導性をより向上させる化合物である。
 本発明におけるドナー性材料の好ましい例としては、アルカリ金属、アルカリ金属を含有する無機塩、アルカリ金属と有機物との錯体、アルカリ土類金属、アルカリ土類金属を含有する無機塩またはアルカリ土類金属と有機物との錯体などが挙げられる。アルカリ金属、アルカリ土類金属の好ましい種類としては、低仕事関数で電子輸送能向上の効果が大きいリチウム、ナトリウム、セシウムといったアルカリ金属や、マグネシウム、カルシウムといったアルカリ土類金属が挙げられる。
 また、真空中での蒸着が容易で取り扱いに優れることから、金属単体よりも無機塩、あるいは有機物との錯体の状態であることが好ましい。さらに、大気中での取扱を容易にし、添加濃度の制御のし易さの点で、有機物との錯体の状態にあることがより好ましい。無機塩の例としては、LiO、Li2O等の酸化物、窒化物、LiF、NaF、KF等のフッ化物、Li2CO3、Na2CO3、K2CO3、Rb2CO3、Cs2CO3等の炭酸塩などが挙げられる。また、アルカリ金属またはアルカリ土類金属の好ましい例としては、原料が安価で合成が容易な点から、リチウムが挙げられる。また、有機物との錯体における有機物の好ましい例としては、キノリノール、ベンゾキノリノール、フラボノール、ヒドロキシイミダゾピリジン、ヒドロキシベンズアゾール、ヒドロキシトリアゾールなどが挙げられる。中でも、アルカリ金属と有機物との錯体が好ましく、リチウムと有機物との錯体がより好ましく、リチウムキノリノールが特に好ましい。これらのドナー性材料を2種以上混合して用いてもよい。
 好適なドーピング濃度は材料やドーピング領域の膜厚によっても異なるが、例えばドナー性材料がアルカリ金属、アルカリ土類金属といった無機材料の場合は、電子輸送材料とドナー性化合物の蒸着速度比が10000:1~2:1の範囲となるようにして共蒸着して電子輸送層としたものが好ましい。蒸着速度比は100:1~5:1がより好ましく、100:1~10:1がさらに好ましい。またドナー性材料が金属と有機物との錯体である場合は、電子輸送材料とドナー性材料の蒸着速度比が100:1~1:100の範囲となるようにして共蒸着して電子輸送層としたものが好ましい。蒸着速度比は10:1~1:10がより好ましく、7:3~3:7がより好ましい。
 また、上記のような本発明の発光素子材料にドナー性材料がドープされた電子輸送層は、複数の発光素子を連結するタンデム構造型素子における電荷発生層として用いられていてもよい。
 電子輸送層にドナー性材料をドーピングして電子輸送能を向上させる方法は、薄膜層の膜厚が厚い場合に特に効果を発揮するものである。電子輸送層および発光層の合計膜厚が50nm以上の場合に特に好ましく用いられる。例えば、発光効率を向上させるために干渉効果を利用する方法があるが、これは発光層から直接放射される光と、陰極で反射された光の位相を整合させて光の取り出し効率を向上させるものである。この最適条件は光の発光波長に応じて変化するが、電子輸送層および発光層の合計膜厚が50nm以上となり、赤色などの長波長発光の場合には100nm近くの厚膜になる場合がある。
 ドーピングする電子輸送層の膜厚は、電子輸送層の一部分または全部のどちらでも構わない。一部分にドーピングする場合、少なくとも電子輸送層/陰極界面にはドーピング領域を設けることが望ましく、陰極界面付近にドーピングするだけでも低電圧化の効果は得られる。一方、ドナー性材料が発光層に直接接していると発光効率を低下させる悪影響を及ぼす場合があり、その場合には発光層/電子輸送層界面にノンドープ領域を設けることが好ましい。
 本発明において、陰極と電子輸送層の間に電子注入層を設けてもよい。一般的に電子注入層は陰極から電子輸送層への電子の注入を助ける目的で挿入されるが、挿入する場合は、電子受容性窒素を含むヘテロアリール環構造を有する化合物を用いてもよいし、上記のドナー性材料を含有する層を用いてもよい。本発明の発光素子材料が電子注入層に含まれていてもよい。また電子注入層に絶縁体や半導体の無機物を用いることもできる。これらの材料を用いることで発光素子の短絡を有効に防止して、かつ電子注入性を向上させることができるので好ましい。このような絶縁体としては、アルカリ金属カルコゲナイド、アルカリ土類金属カルコゲナイド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物からなる群から選択される少なくとも一つの金属化合物を使用するのが好ましい。電子注入層がこれらのアルカリ金属カルコゲナイド等で構成されていれば、電子注入性をさらに向上させることができる点でより好ましい。
 具体的に、好ましいアルカリ金属カルコゲナイドとしては、例えば、LiO、NaS及びNaSeが挙げられ、好ましいアルカリ土類金属カルコゲナイドとしては、例えば、CaO、BaO、SrO、BeO、BaS及びCaSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物としては、例えば、LiF、NaF、KF、LiCl、KCl及びNaCl等が挙げられる。また、好ましいアルカリ土類金属のハロゲン化物としては、例えば、CaF、BaF、SrF、MgF及びBeF等のフッ化物や、フッ化物以外のハロゲン化物が挙げられる。さらに有機物と金属の錯体も好適に用いられる。電子注入層に有機物と金属の錯体を用いる場合は膜厚調整が容易であるのでより好ましい。このような有機金属錯体の例としては有機物との錯体における有機物の好ましい例としては、キノリノール、ベンゾキノリノール、ピリジルフェノール、フラボノール、ヒドロキシイミダゾピリジン、ヒドロキシベンズアゾール、ヒドロキシトリアゾールなどが挙げられる。中でも、アルカリ金属と有機物との錯体が好ましく、リチウムと有機物との錯体がより好ましく、リチウムキノリノールが特に好ましい。
 発光素子を構成する上記各層の形成方法は、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、コーティング法など特に限定されないが、通常は、素子特性の点から抵抗加熱蒸着または電子ビーム蒸着が好ましい。
 有機層の厚みは、発光物質の抵抗値にもよるので限定することはできないが、1~1000nmであることが好ましい。発光層、電子輸送層、正孔輸送層の膜厚はそれぞれ、好ましくは1nm以上200nm以下であり、さらに好ましくは5nm以上100nm以下である。
 本発明の発光素子は、電気エネルギーを光に変換できる機能を有する。ここで電気エネルギーとしては主に直流電流が使用されるが、パルス電流や交流電流を用いることも可能である。電流値および電圧値は特に制限はないが、素子の消費電力や寿命を考慮すると、できるだけ低いエネルギーで最大の輝度が得られるよう選ばれるべきである。
 本発明の発光素子は、例えば、マトリクスおよび/またはセグメント方式で表示するディスプレイとして好適に用いられる。
 マトリクス方式とは、表示のための画素が格子状やモザイク状など二次元的に配置され、画素の集合で文字や画像を表示する。画素の形状やサイズは用途によって決まる。例えば、パソコン、モニター、テレビの画像および文字表示には、通常一辺が300μm以下の四角形の画素が用いられ、また、表示パネルのような大型ディスプレイの場合は、一辺がmmオーダーの画素を用いることになる。モノクロ表示の場合は、同じ色の画素を配列すればよいが、カラー表示の場合には、赤、緑、青の画素を並べて表示させる。この場合、典型的にはデルタタイプとストライプタイプがある。そして、このマトリクスの駆動方法は、線順次駆動方法やアクティブマトリクスのどちらでもよい。線順次駆動はその構造が簡単であるが、動作特性を考慮した場合、アクティブマトリクスの方が優れる場合があるので、これも用途によって使い分けることが必要である。
 本発明におけるセグメント方式とは、予め決められた情報を表示するようにパターンを形成し、このパターンの配置によって決められた領域を発光させる方式である。例えば、デジタル時計や温度計における時刻や温度表示、オーディオ機器や電磁調理器などの動作状態表示および自動車のパネル表示などが挙げられる。そして、前記マトリクス表示とセグメント表示は同じパネルの中に共存していてもよい。
 本発明の発光素子は、各種機器等のバックライトとしても好ましく用いられる。バックライトは、主に自発光しない表示装置の視認性を向上させる目的に使用され、液晶表示装置、時計、オーディオ装置、自動車パネル、表示板および標識などに使用される。特に、液晶表示装置、中でも薄型化が検討されているパソコン用途のバックライトに本発明の発光素子は好ましく用いられ、従来のものより薄型で軽量なバックライトを提供できる。
 以下、実施例をあげて本発明を説明するが、本発明はこれらの実施例によって限定されるものではない。
 合成例1
 化合物[1]の合成
 アセナフチレン14.0g、ジフェニルイソベンゾフラン25.0gおよびo-キシレン200mlを混合し、窒素気流下で加熱還流した。2時間後、室温に冷ました後、溶媒を留去し、エーテル300mLを加えた。得られた析出物をろ過し、真空乾燥することにより、中間体A27.7g(収率71%)を得た。
 次に、中間体A27.7g、酢酸200mLの混合し、48%臭化水素水20mLを加え、加熱還流した。3時間後、反応混合物を室温に冷却した後、ろ過し、水とメタノールで洗浄した。得られた固体を真空乾燥することにより、中間体B25.8g(収率96%)を得た。
 次に、中間体B25.8g、N-ブロモスクシイミド11.3g、クロロホルム318mLを混合し、加熱還流した。1時間後、N-ブロモスクシイミド3.4gを追加し、さらに加熱還流した。2時間後、室温に冷却した後、クロロホルム溶液を水とチオ硫酸ナトリウム水溶液で洗浄した。有機層を硫酸マグネシウムで乾燥し、活性炭3gを加えた後、ろ過し、溶媒を留去した。得られた固体を、酢酸ブチル800mLで再結晶し、ろ過した後、真空乾燥することにより、中間体C26.9g(収率87%)を得た。
 次に、中間体C9.0g、p-クロロフェニルボロン酸3.2g、ジメトキシエタン93mL、1.5M炭酸ナトリウム水溶液27mlを混合し、窒素置換した。この混合溶液にビス(トリフェニルホスフィン)パラジウムジクロリド130mgを加え、加熱還流した。3時間後、室温に冷却した後、水93mlを加え、析出物をろ過し、真空乾燥機で乾燥した。ろ過物をシリカゲルカラムクロマトグラフィーにより精製し、溶出液をエバポレートした。得られた固体に、メタノールを加え、析出物をろ過した後、真空乾燥することにより、中間体D8.4g(収率87%)を得た。
 次に、5-アミノキノリン10.4g、2-ブロモヨードベンゼン21.6g、ナトリウム-t-ブトキシド9.3g、トルエン174mLを混合し、窒素置換した。この混合溶液にビス(ジベンジリデンアセトン)パラジウム(0)0.80g、ビス(ジフェニルホスフィノ)フェロセン0.77gを加え、加熱還流した。3時間後、室温に冷却した後、セライトろ過し、ろ液の溶媒を留去した。シリカゲルカラムクロマトグラフィーにより精製し、溶出液をエバポレートし、真空乾燥することにより、中間体Eを19.4g(収率93%)得た。
 次に、中間体E19.4g、酢酸カリウム9.6g、ジメチルホルムアミド82mLを混合し、窒素置換した。この混合溶液に酢酸パラジウム0.29g、トリフェニルホスフィン0.85gを加え、加熱還流した。3時間後、室温に冷却した後、水300mLを加えた。水酸化カリウム水溶液を塩基性になるまで加え、析出物をろ過し、真空乾燥機で乾燥した。得られた固体を、酢酸ブチルで再結晶し、ろ過した後、真空乾燥することにより、中間体Fを11.0g(収率77%)得た。
 次に、中間体D5.4g、中間体F2.5g、ナトリウム-t-ブトキシド1.4g、o-キシレン53mLを混合し、窒素置換した。この混合溶液にビス(ジベンジリデンアセトン)パラジウム(0)60mg、XPhos100mgを加え、加熱還流した。2時間後、室温に冷却した後、セライトろ過し、ろ液の溶媒を留去した。ピリジン150mLを加え溶解した後、活性炭とQuadraSil(登録商標)を加え、シリカパッドでろ過した。ろ液の溶媒を留去した後、シリカゲルカラムクロマトグラフィーにより精製し、溶出液をエバポレートした。得られた固体を、o-キシレン120mLで再結晶し、ろ過した後、真空乾燥することにより、化合物[1]の黄色固体を4.74g(収率64%)得た。
 得られた黄色固体のH-NMR分析結果は次の通りであり、上記で得られた黄色固体が化合物[1]であることが確認された。
化合物[1]: H-NMR (CDCl(d=ppm)) δ 6.75(t,2H),7.22(dd,1H),7.34-7.54(m,7H),7.61-7.78(m,15H),7.83-7.99(m,4H),8.06(d,1H),8.27(dd,1H),8.51(d,1H),8.89(dd,1H)。
 なお、化合物[1]は、油拡散ポンプを用いて1×10-3Paの圧力下、約340℃で昇華精製を行ってから発光素子材料として使用した。HPLC純度(測定波長254nmにおける面積%)は昇華精製前が99.9%、昇華精製後が99.9%であった。
Figure JPOXMLDOC01-appb-C000031
 実施例1
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を“セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、HAT-CN6を5nm、正孔輸送層として、HT-1を80nm蒸着した。次に、発光層として、ホスト材料H-1、ドーパント材料D-1をドープ濃度が5重量%になるようにして40nmの厚さに蒸着した。次に、電子輸送層として化合物[1]を30nmの厚さに蒸着して積層した。次に、フッ化リチウムを0.5nm蒸着した後、アルミニウムを1000nm蒸着して陰極とし、5×5mm角の素子を作製した。ここで言う膜厚は、水晶発振式膜厚モニター表示値である。この発光素子の1000cd/m時の特性は、駆動電圧4.6V、外部量子効率4.8%であった。また初期輝度を1000cd/mに設定し、定電流駆動させたところ輝度50%低下する輝度半減時間は1100時間であった。なおHAT-CN6、HT-1、H-1、D-1は以下に示す化合物である。
Figure JPOXMLDOC01-appb-C000032
 実施例2~17
 電子輸送層に表1に記載した化合物を用いた以外は実施例1と同様にして発光素子を作成し、評価した。結果を表1に示す。なお、化合物[2]~[17]は下記に示す化合物である。
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
 比較例1~6
 電子輸送層に表1に記載した化合物を用いた以外は実施例1と同様にして発光素子を作成し、評価した。結果を表1に示す。なお、E-1~E-6は以下に示す化合物である。
Figure JPOXMLDOC01-appb-C000035
 実施例18
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を“セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、HAT-CN6を5nm、正孔輸送層として、HT-1を80nm蒸着した。次に、発光層として、ホスト材料H-1、ドーパント材料D-1をドープ濃度が5重量%になるようにして40nmの厚さに蒸着した。次に、第1電子輸送層として化合物[1]を10nmの厚さに蒸着して積層した。さらに第2電子輸送層として電子輸送材料に化合物[1]を、ドナー性材料としてセシウムを用い、化合物[1]とセシウムの蒸着速度比が20:1になるようにして20nmの厚さに積層した。次に、フッ化リチウムを0.5nm蒸着した後、アルミニウムを1000nm蒸着して陰極とし、5×5mm角の素子を作製した。この発光素子の1000cd/m時の特性は、駆動電圧4.2V、外部量子効率5.6%であった。また初期輝度を1000cd/mに設定し、定電流駆動させたところ輝度50%低下する輝度半減時間は1500時間であった。
 実施例19~34
 電子輸送層に表2に記載した化合物を用いた以外は実施例18と同様にして発光素子を作成し、評価した。結果を表2に示す。
 比較例7~12
 電子輸送層に表2に記載した化合物を用いた以外は実施例18と同様にして発光素子を作成し、評価した。結果を表2に示す。
 実施例35
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を“セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、HAT-CN6を5nm、正孔輸送層として、HT-1を80nm蒸着した。次に、発光層として、ホスト材料H-1、ドーパント材料D-1をドープ濃度が5重量%になるようにして40nmの厚さに蒸着した。さらに電子輸送層として電子輸送材料に化合物[1]を、ドナー性材料として2E-1を用い、化合物[1]と2E-1の蒸着速度比が1:1になるようにして30nmの厚さに積層した。この電子輸送層は表2では第2電子輸送層として示す。次に、フッ化リチウムを0.5nm蒸着した後、アルミニウムを1000nm蒸着して陰極とし、5×5mm角の素子を作製した。この発光素子の1000cd/m時の特性は、駆動電圧3.9V、外部量子効率6.0%であった。また初期輝度を1000cd/mに設定し、定電流駆動させたところ輝度50%低下する輝度半減時間は1800時間であった。
 実施例36~51
 電子輸送層、ドナー性材料として表3に記載した化合物を用いた以外は実施例35と同様にして発光素子を作成し、評価した。結果を表3に示す。2E-1は下記に示す化合物である。
Figure JPOXMLDOC01-appb-C000036
 比較例13~18
 電子輸送層、ドナー性材料として表3に記載した化合物を用いた以外は実施例35と同様にして発光素子を作成し、評価した。結果を表3に示す。
 実施例52
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を“セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、HAT-CN6を5nm、正孔輸送層として、HT-1を80nm蒸着した。この正孔輸送層は表3では第1正孔輸送層として示す。次に、発光層として、ホスト材料H-2、ドーパント材料D-2をドープ濃度が10重量%になるようにして40nmの厚さに蒸着した。次に、電子輸送層として化合物[1]を30nmの厚さに蒸着して積層した。次に、フッ化リチウムを0.5nm蒸着した後、アルミニウムを1000nm蒸着して陰極とし、5×5mm角の素子を作製した。ここで言う膜厚は、水晶発振式膜厚モニター表示値である。この発光素子の4000cd/m時の特性は、駆動電圧4.2V、外部量子効率12.1%であった。また初期輝度を4000cd/mに設定し、定電流駆動させたところ輝度半減時間は1200時間であった。なおH-2、D-2は以下に示す化合物である。
Figure JPOXMLDOC01-appb-C000037
 実施例53
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を“セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、HAT-CN6を5nm、第1正孔輸送層として、HT-1を70nm蒸着した。さらに第2正孔輸送層としてHT-2を10nm蒸着した。次に、発光層として、ホスト材料H-2、ドーパント材料D-2をドープ濃度が10重量%になるようにして40nmの厚さに蒸着した。次に、電子輸送層として化合物[1]を30nmの厚さに蒸着して積層した。次に、フッ化リチウムを0.5nm蒸着した後、アルミニウムを1000nm蒸着して陰極とし、5×5mm角の素子を作製した。ここで言う膜厚は、水晶発振式膜厚モニター表示値である。この発光素子の4000cd/m時の特性は、駆動電圧4.3V、外部量子効率14.2%であった。また初期輝度を4000cd/mに設定し、定電流駆動させたところ輝度半減時間は1700時間であった。なお、HT-2は以下に示す化合物である。
Figure JPOXMLDOC01-appb-C000038
 実施例54、55
 第2正孔輸送層として表4に記載した化合物を用いた以外は、実施例53と同様にして発光素子を作成し、評価した。結果を表4に示す。なおHT-3、HT-4は以下に示す化合物である。
Figure JPOXMLDOC01-appb-C000039
 実施例56
 電子輸送層として化合物[2]を用いた以外は実施例52と同様に発光素子を作成し、評価した。結果を表4に示す。
 実施例57~59
 第2正孔輸送層として表4記載の化合物を用い、電子輸送層として化合物[2]を用いた以外は、実施例53と同様にして素子を作成し、評価した。結果を表4に示す。
 比較例19、23
 電子輸送層として表4記載の化合物を用いた以外は実施例52と同様に発光素子を作成し、評価した。結果を表4に示す。
 比較例20~22、24~26
 第2正孔輸送層および電子輸送層として表3記載の化合物を用いた以外は、実施例53と同様にして素子を作成し、評価した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043

Claims (15)

  1. 下記一般式(1)で表される化合物を有することを特徴とする発光素子材料。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Arはベンゾフルオランテン骨格を含む基を表し、Zは下記一般式(2)で表される。Lは単結合、置換もしくは無置換のアリーレン基、または置換もしくは無置換のヘテロアリーレン基である。nは1もしくは2である。nが2のとき2つのZは同じでも異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、環Aおよび環Bは、それぞれ、置換もしくは無置換のベンゼン環、置換もしくは無置換の縮合芳香族炭化水素環、置換もしくは無置換の単環芳香族複素環、または置換もしくは無置換の縮合芳香族複素環を表す。但し、環Aおよび環Bを構成する少なくとも1つの原子は電子受容性窒素である。環Aおよび環Bが置換されている場合の置換基、ならびにRは、それぞれ、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基および-P(=O)Rからなる群より選ばれる。Rは水素であってもよい。RおよびRはアリール基またはヘテロアリール基である。またRおよびRが縮合して環を形成していてもよい。但し、R1、環Aおよび環Bのうちいずれかの位置でLと連結する。nが2のとき、2個のZがLと連結する位置はそれぞれ同じでも異なっていてもよい。)
  2. Arが下記一般式(3)で表される請求項1記載の発光素子材料。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R~R15はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基およびカルバモイル基からなる群より選ばれる。R~R15は隣接する置換基同士で環を形成していてもよい。但し、R~R15のうちいずれか一つの位置でLと連結する。)
  3. 前記一般式(1)で表される化合物が下記一般式(4)で表される化合物である請求項2に記載の発光素子材料。
    Figure JPOXMLDOC01-appb-C000004
    (式中、R~R15はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基およびカルバモイル基からなる群より選ばれる。R~R15は隣接する置換基同士で環を形成していてもよい。L、Zおよびnは前記一般式(1)と同様である。)
  4. nが1である請求項1に記載の発光素子材料。
  5. およびR13が置換もしくは無置換のアリール基である請求項2に記載の発光素子材料。
  6. およびR13がフェニル基である請求項5に記載の発光素子材料。
  7. Zが下記一般式(5)~(9)のいずれかで表される請求項1~6のいずれかに記載の発光素子材料。
    Figure JPOXMLDOC01-appb-C000005
    (式中、環Bは置換もしくは無置換のベンゼン環、置換もしくは無置換の縮合芳香族炭化水素環、置換もしくは無置換の単環芳香族複素環、または置換もしくは無置換の縮合芳香族複素環を表す。但し、一般式(5)の場合は、環Bは置換もしくは無置換の単環芳香族複素環、または置換もしくは無置換の縮合芳香族複素環であり、かつ、環Bを構成する少なくとも1つの原子は電子受容性窒素である。環Bが置換されている場合の置換基、ならびにRは、前記一般式(2)と同様である。R16~R31は、それぞれ、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基および-P(=O)Rからなる群より選ばれる。ただし、一般式(5)の場合はR1、R16~R19、環Bのうちいずれかの位置で、一般式(6)の場合はR1、R20~R22、環Bのうちいずれかの位置で、一般式(7)の場合はR1、R23~R25、環Bのうちいずれかの位置で、一般式(8)の場合はR1、R26~R28、環Bのうちいずれかの位置で、一般式(9)の場合はR1、R29~R31、環Bのうちいずれかの位置で、Lと連結する。nが2のとき2つのZは同じでも異なっていてもよい。)
  8. 環Bが下記一般式(10)~(13)のいずれかで表される構造である請求項7記載の発光素子材料。
    Figure JPOXMLDOC01-appb-C000006
    (式中、B~B22はC-R32、またはNを表す。但し、Zが一般式(5)で表される基の場合は、環Bに含まれるB(k=1~22)の少なくとも1つは電子受容性窒素である。B~B22が置換されている場合の置換基は前記一般式(2)と同様である。)R32は、それぞれ、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基および-P(=O)Rからなる群より選ばれる。
  9. 陽極と陰極の間に有機層が存在し、電気エネルギーにより発光する発光素子であって、前記有機層に請求項1~8のいずれか記載の発光素子材料を含有することを特徴とする発光素子。
  10. 前記有機層が電子輸送層を含み、前記請求項1~8のいずれか記載の発光素子材料が前記電子輸送層に含まれる請求項9記載の発光素子。
  11. 前記電子輸送層がさらにドナー性材料を含む請求項10記載の発光素子。
  12. 前記ドナー性材料がアルカリ金属、アルカリ金属を含有する無機塩、アルカリ金属と有機物との錯体、アルカリ土類金属、アルカリ土類金属を含有する無機塩またはアルカリ土類金属と有機物との錯体である請求項11記載の発光素子。
  13. 前記ドナー性材料がアルカリ金属と有機物との錯体またはアルカリ土類金属と有機物との錯体である請求項12記載の発光素子。
  14. 陽極と陰極の間にさらに正孔輸送層を含み、前記正孔輸送層がカルバゾール骨格を有する材料を含有する請求項9~13のいずれか記載の発光素子。
  15. 前記カルバゾール骨格を有する材料がカルバゾール多量体である請求項14記載の発光素子。
PCT/JP2013/065213 2012-06-12 2013-05-31 発光素子材料および発光素子 WO2013187258A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13804629.7A EP2860784B1 (en) 2012-06-12 2013-05-31 Material for light-emitting element and light-emitting element
CN201380030421.2A CN104350627B (zh) 2012-06-12 2013-05-31 发光元件材料及发光元件
JP2013526030A JP6269060B2 (ja) 2012-06-12 2013-05-31 発光素子材料および発光素子
KR1020147032054A KR102102620B1 (ko) 2012-06-12 2013-05-31 발광 소자 재료 및 발광 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-132511 2012-06-12
JP2012132511 2012-06-12

Publications (1)

Publication Number Publication Date
WO2013187258A1 true WO2013187258A1 (ja) 2013-12-19

Family

ID=49758086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065213 WO2013187258A1 (ja) 2012-06-12 2013-05-31 発光素子材料および発光素子

Country Status (6)

Country Link
EP (1) EP2860784B1 (ja)
JP (1) JP6269060B2 (ja)
KR (1) KR102102620B1 (ja)
CN (1) CN104350627B (ja)
TW (1) TWI558705B (ja)
WO (1) WO2013187258A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015137269A (ja) * 2014-01-24 2015-07-30 ▲いく▼▲雷▼光電科技股▲分▼有限公司 電子輸送化合物、及びその化合物を用いた有機エレクトロルミネッセントデバイス
KR20150121400A (ko) * 2014-04-18 2015-10-29 (주)더블유에스 플루오란텐 유도체 및 이를 포함한 유기 전계발광 소자
WO2015182547A1 (ja) * 2014-05-28 2015-12-03 東レ株式会社 フルオランテン誘導体、それを含有する電子デバイス、発光素子および光電変換素子
WO2016163372A1 (ja) * 2015-04-08 2016-10-13 出光興産株式会社 化合物、これを用いた有機エレクトロルミネッセンス素子用材料、及びこれを用いた有機エレクトロルミネッセンス素子並びに電子機器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018103745A1 (zh) * 2016-12-08 2018-06-14 广州华睿光电材料有限公司 咔唑类化合物及其应用
CN111233826A (zh) * 2018-11-29 2020-06-05 昱镭光电科技股份有限公司 含荧蒽基的二苯并噻吩化合物及其有机电致发光器件
WO2021020872A1 (ko) * 2019-07-31 2021-02-04 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003060956A2 (en) 2002-01-18 2003-07-24 Lg Chem, Ltd. New material for transporting electrons and organic electroluminescent display using the same
WO2004063159A1 (ja) 2003-01-10 2004-07-29 Idemitsu Kosan Co., Ltd. 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2008059713A1 (en) * 2006-11-15 2008-05-22 Idemitsu Kosan Co., Ltd. Fluoranthene compound, organic electroluminescent device using the fluoranthene compound, and organic electroluminescent material-containing solution
JP2008156315A (ja) * 2006-12-26 2008-07-10 Canon Inc ベンゾフルオランテン化合物及びこれを使用した有機発光素子
WO2008102740A1 (ja) * 2007-02-19 2008-08-28 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
KR20090114008A (ko) * 2008-04-29 2009-11-03 주식회사 엘지화학 신규한 이미다졸 유도체 및 이를 이용한 유기전자소자
WO2010001817A1 (ja) 2008-07-01 2010-01-07 東レ株式会社 発光素子
WO2010114264A2 (en) 2009-03-31 2010-10-07 Dow Advanced Display Materials,Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2010113743A1 (ja) 2009-03-30 2010-10-07 東レ株式会社 発光素子材料および発光素子
JP2010254610A (ja) * 2009-04-23 2010-11-11 Canon Inc 新規有機化合物および発光素子および画像表示装置
JP2011249653A (ja) * 2010-05-28 2011-12-08 Tdk Corp 有機el素子
WO2012005009A1 (ja) * 2010-07-09 2012-01-12 出光興産株式会社 イミダゾピリジン誘導体及びそれを含んでなる有機エレクトロルミネッセンス素子
KR20120020816A (ko) * 2010-08-31 2012-03-08 롬엔드하스전자재료코리아유한회사 신규한 유기 전자재료용 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2012046839A1 (ja) 2010-10-08 2012-04-12 出光興産株式会社 ベンゾ[k]フルオランテン誘導体及びそれを含んでなる有機エレクトロルミネッセンス素子
US20120112179A1 (en) * 2009-10-26 2012-05-10 Idemitsu Kosan Co., Ltd. Fluoranthene compound and organic electroluminescence device using same
US20120187381A1 (en) * 2011-01-24 2012-07-26 Universal Display Corporation Electron Transporting Compounds

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080047209A (ko) 2006-11-24 2008-05-28 삼성전자주식회사 유기 발광 화합물 및 이를 구비한 유기 발광 소자

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003060956A2 (en) 2002-01-18 2003-07-24 Lg Chem, Ltd. New material for transporting electrons and organic electroluminescent display using the same
WO2004063159A1 (ja) 2003-01-10 2004-07-29 Idemitsu Kosan Co., Ltd. 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2008059713A1 (en) * 2006-11-15 2008-05-22 Idemitsu Kosan Co., Ltd. Fluoranthene compound, organic electroluminescent device using the fluoranthene compound, and organic electroluminescent material-containing solution
JP2008156315A (ja) * 2006-12-26 2008-07-10 Canon Inc ベンゾフルオランテン化合物及びこれを使用した有機発光素子
WO2008102740A1 (ja) * 2007-02-19 2008-08-28 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
KR20090114008A (ko) * 2008-04-29 2009-11-03 주식회사 엘지화학 신규한 이미다졸 유도체 및 이를 이용한 유기전자소자
WO2010001817A1 (ja) 2008-07-01 2010-01-07 東レ株式会社 発光素子
WO2010113743A1 (ja) 2009-03-30 2010-10-07 東レ株式会社 発光素子材料および発光素子
WO2010114264A2 (en) 2009-03-31 2010-10-07 Dow Advanced Display Materials,Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
JP2010254610A (ja) * 2009-04-23 2010-11-11 Canon Inc 新規有機化合物および発光素子および画像表示装置
US20120112179A1 (en) * 2009-10-26 2012-05-10 Idemitsu Kosan Co., Ltd. Fluoranthene compound and organic electroluminescence device using same
JP2011249653A (ja) * 2010-05-28 2011-12-08 Tdk Corp 有機el素子
WO2012005009A1 (ja) * 2010-07-09 2012-01-12 出光興産株式会社 イミダゾピリジン誘導体及びそれを含んでなる有機エレクトロルミネッセンス素子
KR20120020816A (ko) * 2010-08-31 2012-03-08 롬엔드하스전자재료코리아유한회사 신규한 유기 전자재료용 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2012046839A1 (ja) 2010-10-08 2012-04-12 出光興産株式会社 ベンゾ[k]フルオランテン誘導体及びそれを含んでなる有機エレクトロルミネッセンス素子
US20120187381A1 (en) * 2011-01-24 2012-07-26 Universal Display Corporation Electron Transporting Compounds

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
APPL. PHYS. LETT., vol. 74, 1999, pages 865
ORG. ELECTRON., vol. 4, 2003, pages 113
PAYAL TYAGI ET AL.: "Solution Processable Indoloquinoxaline Derivatives Containing Bulky Polyaromatic Hydrocarbons: Synthesis, Optical Spectra, and Electroluminescence", THE JOURNAL OF ORGANIC CHEMISTRY, vol. 76, 2011, pages 4571 - 4581, XP055171236 *
See also references of EP2860784A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015137269A (ja) * 2014-01-24 2015-07-30 ▲いく▼▲雷▼光電科技股▲分▼有限公司 電子輸送化合物、及びその化合物を用いた有機エレクトロルミネッセントデバイス
KR20150121400A (ko) * 2014-04-18 2015-10-29 (주)더블유에스 플루오란텐 유도체 및 이를 포함한 유기 전계발광 소자
KR101581948B1 (ko) * 2014-04-18 2016-01-04 (주)더블유에스 플루오란텐 유도체 및 이를 포함한 유기 전계발광 소자
WO2015182547A1 (ja) * 2014-05-28 2015-12-03 東レ株式会社 フルオランテン誘導体、それを含有する電子デバイス、発光素子および光電変換素子
CN106458899A (zh) * 2014-05-28 2017-02-22 东丽株式会社 荧蒽衍生物、含有其的电子设备、发光元件及光电转换元件
JPWO2015182547A1 (ja) * 2014-05-28 2017-04-20 東レ株式会社 フルオランテン誘導体、それを含有する電子デバイス、発光素子および光電変換素子
WO2016163372A1 (ja) * 2015-04-08 2016-10-13 出光興産株式会社 化合物、これを用いた有機エレクトロルミネッセンス素子用材料、及びこれを用いた有機エレクトロルミネッセンス素子並びに電子機器
US10629821B2 (en) 2015-04-08 2020-04-21 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent elements using same, and organic electroluminescent element and electronic device each using same

Also Published As

Publication number Publication date
JP6269060B2 (ja) 2018-01-31
EP2860784B1 (en) 2016-11-02
KR20150029617A (ko) 2015-03-18
EP2860784A4 (en) 2015-12-09
JPWO2013187258A1 (ja) 2016-02-04
KR102102620B1 (ko) 2020-04-21
CN104350627B (zh) 2016-05-18
EP2860784A1 (en) 2015-04-15
TW201402571A (zh) 2014-01-16
CN104350627A (zh) 2015-02-11
TWI558705B (zh) 2016-11-21

Similar Documents

Publication Publication Date Title
JP6183214B2 (ja) フルオランテン誘導体、それを含有する発光素子材料および発光素子
JP6627507B2 (ja) フルオランテン誘導体、それを含有する電子デバイス、発光素子および光電変換素子
WO2016121597A1 (ja) フェナントロリン誘導体、それを含有する電子デバイス、発光素子および光電変換素子
JP6051864B2 (ja) 発光素子材料および発光素子
JP6183211B2 (ja) 発光素子材料および発光素子
JP6269060B2 (ja) 発光素子材料および発光素子
WO2016009823A1 (ja) モノアミン誘導体、それを用いた発光素子材料および発光素子
JP6020173B2 (ja) 発光素子材料および発光素子
WO2014057873A1 (ja) ホスフィンオキサイド誘導体およびそれを有する発光素子
JP6318617B2 (ja) 発光素子材料および発光素子
WO2016152855A1 (ja) 化合物、ならびにそれを含有する電子デバイス、発光素子、光電変換素子およびイメージセンサ
JP2014138006A (ja) 発光素子材料および発光素子
JP2016160208A (ja) 化合物、それを含有する発光素子、光電変換素子およびイメージセンサ
JP2014175590A (ja) 有機電界発光素子
WO2014024750A1 (ja) 発光素子材料および発光素子
JP2017084859A (ja) 発光素子、それを含む表示装置および照明装置
WO2018180709A1 (ja) 化合物、それを含有する電子デバイス、有機薄膜発光素子、表示装置および照明装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013526030

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804629

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013804629

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013804629

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147032054

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE