WO2012005009A1 - イミダゾピリジン誘導体及びそれを含んでなる有機エレクトロルミネッセンス素子 - Google Patents

イミダゾピリジン誘導体及びそれを含んでなる有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2012005009A1
WO2012005009A1 PCT/JP2011/003920 JP2011003920W WO2012005009A1 WO 2012005009 A1 WO2012005009 A1 WO 2012005009A1 JP 2011003920 W JP2011003920 W JP 2011003920W WO 2012005009 A1 WO2012005009 A1 WO 2012005009A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
carbon atoms
ring
Prior art date
Application number
PCT/JP2011/003920
Other languages
English (en)
French (fr)
Inventor
裕勝 伊藤
河村 昌宏
祐一郎 河村
由美子 水木
博之 齊藤
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to JP2011548459A priority Critical patent/JP5315420B2/ja
Priority to US13/499,300 priority patent/US20120187392A1/en
Priority to EP11803346.3A priority patent/EP2597094A4/en
Priority to CN2011800026307A priority patent/CN102471340A/zh
Priority to KR1020117031469A priority patent/KR20120119981A/ko
Publication of WO2012005009A1 publication Critical patent/WO2012005009A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/623Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/52Ortho- or ortho- and peri-condensed systems containing five condensed rings

Definitions

  • the present invention relates to an imidazopyridine derivative and an organic electroluminescence device comprising the same.
  • an organic electroluminescence (EL) element using an organic substance is expected to be used as an inexpensive large-area full-color display element of a solid light emitting type and has been developed in many ways.
  • an organic EL element is composed of a light emitting layer and a pair of counter electrodes formed by sandwiching the light emitting layer. In light emission, when an electric field is applied between both electrodes, electrons are injected from the cathode side and holes are injected from the anode side, and the electrons recombine with holes in the light emitting layer to generate an excited state. When returning to the ground state, energy is emitted as light.
  • Patent Document 1 discloses a material having an anthracene skeleton.
  • Patent Document 1 discloses a large number of anthracene skeletons, there is no mention of the properties of, for example, a benzofluoranthene skeleton.
  • Patent Document 2 discloses many materials having a benzimidazole skeleton.
  • patent document 3 the durability of a compound is raised by using a structure with a high glass transition temperature, and the lifetime of an element is improved.
  • An object of the present invention is to provide an imidazopyridine derivative that reduces the driving voltage of an organic electroluminescence element and enables light emission with high efficiency and long life.
  • An imidazopyridine derivative represented by the following formula (1).
  • R 1 to R 12 is bonded to L by a single bond, and R 1 to R 12 other than a single bond are each a hydrogen atom, a halogen atom, a cyano group, a substituted or unsubstituted carbon atom having 1 to 10 alkyl groups, substituted or unsubstituted cycloalkyl groups having 3 to 8 carbon atoms, substituted or unsubstituted silyl groups, substituted or unsubstituted alkoxy groups having 1 to 20 carbon atoms, substituted or unsubstituted rings An aryloxy group having 6 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substitute
  • X 1 to X 4 are each a nitrogen atom or a linking group represented by C (R 23 ), and / or X 1 and X 2 , X 2 and X 3 , and X 3 and X 4 are each They are bonded to each other to form a substituted or unsubstituted aromatic ring having 6 to 18 ring carbon atoms, or a substituted or unsubstituted aromatic heterocyclic ring having 5 to 18 ring atoms.
  • the plurality of R 23 may be the same or different.
  • R 21 to R 23 is bonded to L by a single bond, and R 21 to R 23 other than the single bond are each a hydrogen atom, a halogen atom, a cyano group, a substituted or unsubstituted carbon number of 1 to 10 Alkyl group, substituted or unsubstituted cycloalkyl group having 3 to 8 carbon atoms, substituted or unsubstituted silyl group, substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted ring formation An aryloxy group having 6 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
  • L is a single bond, a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, a substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring atoms, or 2 to 3 of these 2 This is a linking group in which a valent group is bonded by a single bond.
  • the imidazopyridine derivative according to 1 or 2 represented by the following formula (3): (In the formula, X 1 to X 4 , R 1 to R 3 , R 5 to R 12 , R 22 , R 23 and L are the same as those in the formula (1).) 4). 4. The imidazopyridine derivative according to any one of 1 to 3, wherein R 7 and R 12 are each an aryl group having 6 to 30 ring carbon atoms. 5. 5. The imidazopyridine derivative according to any one of 1 to 4, which is a material for an organic electroluminescence device. 6). 6. The imidazopyridine derivative according to 5, wherein the material for an organic electroluminescence element is an electron injection material or an electron transport material. 7. 5.
  • An organic electroluminescent device in which at least one organic thin film layer including at least a light emitting layer is sandwiched between a cathode and an anode, wherein at least one of the organic thin film layers is an imidazopyridine derivative according to any one of 1 to 4
  • the organic thin film layer includes an electron injection layer or an electron transport layer, and the electron injection layer or the electron transport layer contains the imidazopyridine derivative according to any one of 1 to 4 alone or as a component of a mixture.
  • Organic electroluminescence element 9.
  • the organic electroluminescence device wherein the electron injection layer or the electron transport layer containing the imidazopyridine derivative further contains a reducing dopant.
  • the reducing dopant is an alkali metal, alkaline earth metal, rare earth metal, alkali metal oxide, alkali metal halide, alkaline earth metal oxide, alkaline earth metal halide, rare earth metal oxide.
  • the organic electroluminescence device 9, which is one or more selected from the group consisting of halides of rare earth metals, organic complexes of alkali metals, organic complexes of alkaline earth metals, and organic complexes of rare earth metals. 11.
  • the organic electroluminescence device wherein the reducing dopant is an alkali metal 8-quinolinol complex.
  • an imidazopyridine derivative that reduces the driving voltage of the organic electroluminescence element and enables light emission with high efficiency and long life.
  • the imidazopyridine derivative of the present invention is represented by the following formula (1).
  • R 1 to R 12 is bonded to L by a single bond, and R 1 to R 12 other than a single bond are each a hydrogen atom, a halogen atom, a cyano group, a substituted or unsubstituted carbon atom having 1 to 10 alkyl groups, substituted or unsubstituted cycloalkyl groups having 3 to 8 carbon atoms, substituted or unsubstituted silyl groups, substituted or unsubstituted alkoxy groups having 1 to 20 carbon atoms, substituted or unsubstituted rings An aryloxy group having 6 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
  • X 1 to X 4 are each a nitrogen atom or a linking group represented by C (R 23 ), and / or X 1 and X 2 , X 2 and X 3 , and X 3 and X 4 are each They are bonded to each other to form a substituted or unsubstituted aromatic ring having 6 to 18 ring carbon atoms, or a substituted or unsubstituted aromatic heterocyclic ring having 5 to 18 ring atoms.
  • the plurality of R 23 may be the same or different.
  • R 21 to R 23 is bonded to L by a single bond, and R 21 to R 23 other than the single bond are each a hydrogen atom, a halogen atom, a cyano group, a substituted or unsubstituted carbon number of 1 to 10 Alkyl group, substituted or unsubstituted cycloalkyl group having 3 to 8 carbon atoms, substituted or unsubstituted silyl group, substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted ring formation An aryloxy group having 6 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
  • L is a single bond, a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, a substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring atoms, or 2 to 3 of these 2
  • This is a linking group in which a valent group is linked by a single bond.
  • the imidazopyridine derivative of the present invention is considered to have a high charge transport property.
  • the benzofluoranthene skeleton has a higher charge transport property than, for example, a fluoranthene skeleton because of its high planarity.
  • the benzofluoranthene skeleton has high charge durability, and when the imidazopyridine derivative of the present invention is used in an organic EL device, an improvement in lifetime can be expected.
  • the affinity (Af) is increased.
  • the imidazopyridine derivative of the present invention having a benzofluoranthene skeleton can enable low-voltage driving of an organic EL element.
  • Nitrogen atoms have a high electronegativity and have the property of attracting carbon atoms such as adjacent benzene rings.
  • Both imidazopyridine and benzimidazole are nitrogen-containing heterocycles, but since imidazopyridine has a nitrogen atom in the six-membered ring part, for example, compared with benzimidazole that does not have a nitrogen atom in the six-membered ring part, It is thought that the electron withdrawing effect of carbon atoms in the part is high. Therefore, compared to benzimidazole, imidazopyridine, which easily collects electrons in nitrogen atoms, causes an electrical bias in the molecule, increases its polarity, and increases its affinity with the metal (cathode).
  • the nitrogen atom has a substituent, and when the benzimidazole is coordinated with a metal, the substituent may become a steric hindrance.
  • imidazopyridine can reduce the steric hindrance of the site coordinated with the metal, it is considered that the electron injection property can be improved as compared with benzimidazole.
  • the imidazopyridine derivative of the present invention having an imidazopyridine skeleton can be driven at a low voltage.
  • the imidazopyridine derivative of the present invention is a compound having a benzofluoranthene skeleton and an imidazopyridine skeleton as one body, and is a compound having excellent charge transportability, charge durability and electron injection properties at the same time.
  • the imidazopyridine derivative represented by the formula (1) is preferably an imidazopyridine derivative represented by the following formula (2), and more preferably an imidazopyridine derivative represented by the following formula (3).
  • R 3 and R 4 are active sites, and there is a tendency to improve the stability of the derivative by introducing a substituent.
  • the stability of the derivative is improved by combining R 4 with a single bond and bonding with L.
  • L of the imidazopyridine derivative of the present invention represented by the formulas (1) to (3) (hereinafter sometimes simply referred to as the imidazopyridine derivative of the present invention) is a single bond, a benzofluoranthene skeleton (charge transport site) ) And the imidazopyridine skeleton (electron injection site) are short, it is considered that the charge transfer in the molecule can be made smooth (electrons can immediately move to the charge transport site). Therefore, it is considered that the imidazopyridine derivative of the present invention in which L is a single bond can reduce the driving voltage.
  • L of the imidazopyridine derivative of the present invention contains an arylene group and / or a divalent heterocyclic group
  • the electronic contribution of the benzofluoranthene skeleton and the imidazopyridine skeleton can be reduced. Since there is a distance between the imidazopyridine skeleton and the benzofluoranthene skeleton, it may take time to move within the molecule, but the functions of the electron injection site and the charge transport site can be reduced from interfering with each other. As a result, it is considered that there is no interference at the time of intermolecular movement, and the driving voltage can be reduced.
  • R 7 and R 12 are each an aryl group having 6 to 30 ring carbon atoms (preferably 6 to 20 ring carbon atoms, more preferably 6 to 12 ring carbon atoms). Particularly preferably, R 7 and R 12 are both phenyl groups. It is considered that the planarity of the benzofluoranthene skeleton can be improved by making R 7 and R 12 each an aryl group. In the imidazopyridine derivative with improved planarity, the overlap between molecules is large, the distance between the molecules can be shortened, and the charge transport property of the imidazopyridine derivative can be improved.
  • Examples of the alkyl group having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms) of R 1 to R 12 and R 21 to R 23 include an ethyl group, a methyl group, and i-propyl.
  • Examples of the cycloalkyl group having 3 to 8 ring carbon atoms (preferably 3 to 6 ring carbon atoms) of R 1 to R 12 and R 21 to R 23 include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, 4-methylcyclohexyl group and the like can be mentioned, and a cyclobutyl group, a cyclopentyl group and a cyclohexyl group are preferable.
  • the alkoxy group having 1 to 20 carbon atoms (preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms) of R 1 to R 12 and R 21 to R 23 is a group represented by —OY.
  • Examples of Y include the same examples as the above alkyl group.
  • aryl group having 6 to 30 ring carbon atoms (preferably 6 to 20 ring carbon atoms, more preferably 6 to 12 ring carbon atoms) of R 1 to R 12 and R 21 to R 23 a phenyl group, Naphtyl group, phenanthryl group, pyrenyl group, biphenyl group, terphenyl group, anthryl group, chrysenyl group, benzophenanthryl group, benzanthryl group, benzocrisenyl group, fluorenyl group, fluoranthenyl group, naphthacenyl group, etc.
  • they are a phenyl group, a naphthyl group, a phenanthryl group, a pyrenyl group, a biphenyl group, and a terphenyl group.
  • the aryloxy group having 6 to 20 ring carbon atoms (preferably 6 to 10 ring carbon atoms) of R 1 to R 12 and R 21 to R 23 is a group represented by —OAr. Is the same as the above aryl group.
  • the heterocyclic group having 5 to 30 ring atoms (preferably 5 to 20 ring atoms, more preferably 5 to 12 ring atoms) of R 1 to R 12 and R 21 to R 23 is a pyridinyl group.
  • a pyridinyl group a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a benzofuranyl group, a dibenzofuranyl group, a furanyl group, a thiophenyl group, a benzothio group A phenyl group and a benzothiazolyl group;
  • the silyl group of R 1 to R 12 and R 21 to R 23 includes an alkylsilyl group having 3 to 30 carbon atoms and an arylsilyl group having 8 to 30 carbon atoms.
  • alkylsilyl group having 3 to 30 carbon atoms preferably 3 to 20 carbon atoms, more preferably 3 to 10 carbon atoms
  • examples of the alkylsilyl group having 3 to 30 carbon atoms include trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, Examples thereof include a propyldimethylsilyl group, and a trimethylsilyl group and a t-butyldimethylsilyl group are preferable.
  • Examples of the arylsilyl group having 8 to 30 carbon atoms include a triphenylsilyl group, a phenyldimethylsilyl group, a t-butyldiphenylsilyl group, a tolylsilylsilyl group, a trixylsilyl group, a trinaphthylsilyl group, and the like. Is a triphenylsilyl group or a phenyldimethylsilyl group.
  • Examples of the arylene group having 6 to 30 ring carbon atoms (preferably 6 to 20 ring carbon atoms, more preferably 6 to 12 ring carbon atoms) of L include a phenylene group, a naphthylene group, a biphenylene group, a terphenylene group, Anthrylene group, pentacenylene group, peryleneylene group, picenylene group, pyrenylene group, pentaphenylene group, fluorenylene group, chrysenylene group, phenanthrylene group, etc. are mentioned, preferably phenylene group, naphthylene group, biphenylene group, terphenylene group, fluorenylene group, It is a phenanthrylene group.
  • Examples of the divalent heterocyclic group having 5 to 30 ring atoms (preferably 5 to 20 ring atoms, more preferably 5 to 12 ring atoms) of L include pyridinylene group, pyrazinylene group, pyrimidinylene group, Pyridazinylene group, triazinylene group, indolinylene group, quinolinylene group, isoquinolinylene group, quinoxalinylene group, acridinylene group, pyrrolidinylene group, dioxanylene group, piperidinylene group, morpholinylene group, piperazinylene group, carbazolylene group, furanylene group, oxylene group, riphenylene group, riphenylene group, riphenylene group Group, oxadiazolylene group, benzoxazolylene group, thiazolylene group, thiadiazolylene group, benzothiophenylene group, benzothiazolylene group, triazolylene group, imid
  • halogen atom examples include fluorine, chlorine, bromine, iodine and the like, preferably a fluorine atom.
  • the substituent includes the above-described alkyl group, alkylsilyl group, halogenated alkyl group, aryl group, cycloalkyl Group, alkoxy group, heterocyclic group, aralkyl group, aryloxy group, arylthio group, alkoxycarbonyl group, halogen atom, hydroxyl group, nitro group, cyano group, carboxyl group, carbonyl group, dibenzofuranyl group, fluorenyl group, etc. Can be mentioned.
  • unsubstituted means that a hydrogen atom is substituted.
  • the hydrogen atom of the imidazopyridine derivative of the present invention includes light hydrogen and deuterium.
  • ring-forming carbon means carbon atoms constituting a saturated ring, an unsaturated ring, or an aromatic ring.
  • Ring-forming atom means a carbon atom and a hetero atom constituting a ring (including a saturated ring, an unsaturated ring, and an aromatic ring).
  • the imidazopyridine derivative of the present invention is preferably used as a material for an organic EL device, and more preferably used as an electron injection material or an electron transport material for an organic EL device. This is because the imidazopyridine group mediates the transfer of electrons from the adjacent layer. Moreover, it is thought that the imidazopyridine derivative of this invention can be used suitably also as a triplet energy barrier material from the reason mentioned later.
  • the benzofluoranthene skeleton which is the basic skeleton of the imidazopyridine derivative of the present invention has a high triplet energy and a high confinement effect of triplet excitons, for example, a material for a barrier layer in contact with a light emitting layer of an organic EL element It is considered that the TTF (triplet-triplet fusion) phenomenon can be promoted.
  • the benzofluoranthene skeleton, which is the basic skeleton of the imidazopyridine derivative of the present invention is characterized by improved molecular stacking in a thin film due to its high planarity and increased electron transport properties.
  • the imidazopyridine derivative of the present invention includes an imidazopyridine skeleton, which is a nitrogen-containing heterocyclic ring having a high electron-injecting property from a metal-containing layer such as an electrode, an organic compound with a low driving voltage can be used without further stacking an electron-injecting layer. It is considered that an EL element can be realized.
  • the imidazopyridine derivative of the present invention is a compound having both an electron injection / transport function and a triplet energy barrier function (triplet barrier function).
  • the imidazopyridine derivative of the present invention is a compound including a structural part having a triplet barrier function (triplet barrier structural part) and a structural part having an electron injection / transport function.
  • the structural moiety is an individual cyclic structure (monocyclic or condensed polycyclic excluding substituents) contained in the compound.
  • the triplet barrier structure site means a structure site having the lowest (smaller) triplet energy among the structure sites contained in the compound. That is, it is a structural site that mainly determines the triplet energy of the compound.
  • the triplet energy of the triplet barrier structure site refers to the triplet energy of an independent cyclic structure in which hydrogen is substituted at the bonding position between the structure sites except for the substituent.
  • the triplet barrier structure site must be a fused polycyclic aromatic hydrocarbon compound. The reason will be described below.
  • the transition state of a condensed ring made of hydrocarbon is based on a ⁇ - ⁇ * transition involving a ⁇ electron cloud of a cyclic structure.
  • the spread of the ⁇ electron cloud is small, and the influence on the excited state of the light emitting layer is small.
  • the transition state in the case of having an unshared electron pair at the structural site is that a strong interaction occurs with triplet excitons generated in the light-emitting layer due to the participation of the unshared electron pair, and the host 3 Promotes deactivation of doublet excitons.
  • the triplet barrier structure portion of the barrier material is preferably a condensed ring mainly composed of hydrocarbons that form an excited triplet state based on a ⁇ - ⁇ * transition.
  • the triplet energy of the barrier material is preferably larger than the triplet energy of the host of the light emitting layer.
  • the triplet barrier function of the barrier material is largely determined by the triplet barrier structure site.
  • a triplet is present in the structural part having the lowest triplet energy among the structural parts of the barrier material. Energy transitions. From this, when the triplet barrier structure site
  • the structural site where the triplet energy is the lowest (small) among the structural sites contained in the compound is not composed of carbon and hydrogen, the compound does not have a triplet barrier structural site. It becomes.
  • the TTF phenomenon is a phenomenon in which singlet excitons are generated by collisional fusion of triplet excitons. If this TTF phenomenon is used, not only the 25% singlet excitons that are generated initially but also triplet excitons are generated. Singlet excitons generated by collisional fusion of term excitons can also be used for light emission, and the light emission efficiency of the device can be increased.
  • the barrier layer containing the imidazopyridine derivative of the present invention is preferably adjacent to the light emitting layer of the fluorescent element. It is considered that a TTF phenomenon is caused by using a barrier layer containing the imidazopyridine derivative of the present invention for a fluorescent element, and a highly efficient organic EL element can be realized.
  • the barrier layer of the present invention is a layer having a barrier function against triplet energy, and the functions thereof are different from those of the hole barrier layer and the charge barrier layer.
  • the barrier layer, electron injection layer or electron transport layer containing the imidazopyridine derivative of the present invention preferably further contains a reducing dopant.
  • the reducing dopant include donor metals, donor metal compounds, and donor metal complexes. These reducing dopants may be used alone or in combination of two or more.
  • the reducing dopant is a material that donates electrons (referred to as an electron donating material).
  • This electron-donating material is an organic material that forms, together with the electron-donating material, another organic material included in the barrier layer, the electron injection layer, or the electron transport layer, or a layer adjacent to the barrier layer, the electron injection layer, or the electron transport layer.
  • the donor metal means a metal having a work function of 3.8 eV or less, preferably an alkali metal, an alkaline earth metal, or a rare earth metal, and more preferably Cs, Li, Na, Sr, K, Mg, Ca, Ba. , Yb, Eu and Ce.
  • the donor metal compound is a compound containing the above donor metal, preferably a compound containing an alkali metal, an alkaline earth metal or a rare earth metal, and more preferably a halide, oxide or carbonic acid of these metals. Salt, borate.
  • MOx M is a donor metal
  • x is 0.5 to 1.5
  • MFx x is 1 to 3
  • the donor metal complex is a complex of the above-described donor metal, and preferably an alkali metal, alkaline earth metal, or rare earth metal organometallic complex.
  • An organometallic complex represented by the following formula (I) is preferable.
  • M is a donor metal
  • Q is a ligand, preferably a carboxylic acid derivative, diketone derivative or quinoline derivative, and n is an integer of 1 to 4.
  • the donor metal complex examples include a tungsten turbine described in JP-A-2005-72012. Further, phthalocyanine compounds whose central metals are alkali metals and alkaline earth metals described in JP-A-11-345687 can also be used as donor metal complexes.
  • the reducing dopant is preferably an alkali metal, alkaline earth metal, rare earth metal, alkali metal oxide, alkali metal halide, alkaline earth metal oxide, alkaline earth metal halide, rare earth metal
  • alkali metal preferably an alkali metal, alkaline earth metal, rare earth metal, alkali metal oxide, alkali metal halide, alkaline earth metal oxide, alkaline earth metal halide, rare earth metal
  • oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes and rare earth metal organic complexes more preferably alkali metal It is an 8-quinolinol complex.
  • the triplet energy of the compound constituting the barrier layer comprising the imidazopyridine derivative of the present invention must be higher than the triplet energy of the host mainly constituting the light emitting layer.
  • the imidazopyridine derivative of the present invention contained in the barrier layer and the host and dopant contained in the light emitting layer satisfy the following formulas (1) and (2).
  • E T h, E T b and E T d represent the triplet energy of the host material, the nitrogen-containing heterocyclic derivative of the barrier layer, and the dopant, respectively.
  • FIG. 1 is a schematic configuration diagram of an organic EL element showing an example of the first embodiment of the present invention.
  • FIG. 2A schematically represents the lowest excited singlet energy and the lowest excited triplet energy of each layer.
  • the triplet energy is the difference between the energy in the lowest excited triplet state and the energy in the ground state
  • the singlet energy (sometimes referred to as an energy gap) is the lowest excited singlet state. The difference between energy and ground state energy.
  • the organic EL element of the present invention may be an element having an anode, a light emitting layer, an electron transport zone, and a cathode in this order.
  • the organic EL device shown in FIG. 20, the electron transport zone 30, and the cathode 40 are laminated in this order.
  • a hole transport zone 50 is preferably provided between the anode 10 and the light emitting layer 20.
  • the electron transport zone has a configuration including only a barrier layer.
  • the electron transport zone only needs to include the barrier layer, and the embodiment of only the barrier layer does not prevent the insertion of the electron injection layer having a higher injection property.
  • the general compound conventionally used as an electron injection layer can be used, and a hetero ring-containing compound is preferable.
  • FIG. 2A holes injected from the anode are injected into the light emitting layer through the hole transport band, and electrons injected from the cathode are injected into the light emitting layer through the electron transport band. Thereafter, holes and electrons are recombined in the light emitting layer, and singlet excitons and triplet excitons are generated.
  • the triplet energies of the host and the dopant are E T h and E T d, respectively, it is preferable that the relationship E T h ⁇ E T d is satisfied.
  • FIG. 2B triplet excitons generated by recombination on the host do not migrate to dopants with higher triplet energy.
  • Triplet excitons generated by recombination on the dopant molecule quickly transfer energy to the host molecule. That is, triplet excitons collide with each other on the host efficiently by the TTF phenomenon without the triplet excitons of the host moving to the dopant, so that singlet excitons are generated. Furthermore, since the singlet energy E S d of the dopant is smaller than the singlet energy E S h of the host, singlet excitons generated by the TTF phenomenon transfer energy from the host to the dopant, and the fluorescence of the dopant. Contributes to light emission.
  • the barrier layer prevents triplet excitons generated in the light-emitting layer from diffusing into the electron transport band, and increases the density of triplet excitons by confining the triplet excitons in the light-emitting layer. It has a function to cause a phenomenon efficiently.
  • the triplet energy E T b of the compound constituting the barrier layer may be greater than E T h and greater than E T d. preferable. Since the barrier layer prevents triplet excitons generated in the light emitting layer from diffusing into the electron transport band, the host triplet excitons efficiently become singlet excitons in the light emitting layer, The singlet exciton moves onto the dopant and is optically deactivated.
  • the material for forming the barrier layer is the imidazopyridine derivative of the present invention. Since the imidazopyridine derivative of the present invention has hole resistance, it is hardly deteriorated and the life of the device can be extended.
  • the barrier layer containing the imidazopyridine derivative of the present invention can also play a role of an electron injection / transport function, electrons injected into the barrier material are more likely to donate electrons through the electron transport structure site. That is, by moving to a structural part having a high LUMO level, it contributes to electron injection into the light emitting layer.
  • a low work function metal-containing layer may be provided between the electron transport zone and the cathode.
  • the low work function metal-containing layer is a layer containing a low work function metal or a low work function metal compound. Even if it is formed of only a low work function metal or a low work metal compound, it is formed by adding a low work function metal, a low work function metal compound, or a low work function metal complex as a donor to the material used for the electron transport layer. May be.
  • a low work function metal means a metal having a work function of 3.8 eV or less. Examples of the metal having a low work function of 3.8 eV or less include alkali metals and alkaline earth metals. Examples of the alkali metal include Li, Na, K, and Cs.
  • alkaline earth metal examples include Mg, Ca, Sr, and Ba. Other examples include Yb, Eu and Ce.
  • the oxide, halide, carbonate, borate of a low work metal function is preferable.
  • Halides include fluoride, chloride and bromide, with fluoride being preferred.
  • LiF is preferably used.
  • the low work function metal complex is a low work function metal complex, and an alkali metal, alkaline earth metal, or rare earth metal organometallic complex is preferable.
  • the light emitting layer of the organic EL device of the present invention preferably contains at least one anthracene derivative represented by the following formula (4) or a pyrene derivative represented by the following formula (5) as a host.
  • the anthracene derivative represented by the formula (4) is the following compound.
  • Ar 11 and Ar 12 are each independently a substituted or unsubstituted monocyclic group having 5 to 50 ring atoms, a substituted or unsubstituted condensed ring group having 8 to 50 ring atoms, or a monocyclic group. And a group composed of a combination of a condensed ring group.
  • R 101 to R 108 each independently represents a hydrogen atom, a substituted or unsubstituted monocyclic group having 5 to 50 ring atoms, a substituted or unsubstituted condensed ring group having 8 to 50 ring atoms, or a monocyclic ring.
  • the monocyclic group is a group composed only of a ring structure having no condensed structure.
  • monocyclic groups having 5 to 50 ring atoms include phenyl, biphenyl, terphenyl, and quarter
  • An aromatic group such as a phenyl group and a heterocyclic group such as a pyridyl group, pyrazyl group, pyrimidyl group, triazinyl group, furyl group, and thienyl group are preferable.
  • a phenyl group, a biphenyl group, and a terphenyl group are preferable.
  • the condensed ring group is a group in which two or more ring structures are condensed.
  • Specific examples of the condensed ring group having 8 to 50 ring atoms include naphthyl group, phenanthryl group, anthryl group, chrysenyl group.
  • benzoanthryl group benzophenanthryl group, triphenylenyl group, benzocrisenyl group, indenyl group, fluorenyl group, 9,9-dimethylfluorenyl group, benzofluorenyl group, dibenzofluorenyl group, fluoranthenyl Groups, condensed aromatic ring groups such as benzofluoranthenyl group, benzofuranyl group, benzothiophenyl group, indolyl group, dibenzofuranyl group, dibenzothiophenyl group, carbazolyl group, quinolyl group, phenanthrolinyl group, etc.
  • a fused heterocyclic group is preferred.
  • naphthyl group phenanthryl group, anthryl group, 9,9-dimethylfluorenyl group, fluoranthenyl group, benzoanthryl group, dibenzothiophenyl group, dibenzofuranyl group, and carbazolyl group are preferable.
  • an alkyl group having 1 to 50 carbon atoms a cycloalkyl group having 3 to 50 ring carbon atoms, an alkoxy group having 1 to 50 carbon atoms, an aryloxy group having 6 to 50 ring carbon atoms, and a substituted or unsubstituted silyl group.
  • the aralkyl group having 7 to 50 carbon atoms the aralkyl group is represented as —Y—Z.
  • Examples of Y include alkylene examples corresponding to the above alkyl examples, and examples of Z include the aryl groups described above. An example is given.
  • the aralkyl group has 7 to 50 carbon atoms (the aryl moiety has 6 to 49 carbon atoms (preferably 6 to 30, more preferably 6 to 20, particularly preferably 6 to 12), and the alkyl moiety has 1 to 44 carbon atoms. (Preferably 1-30, more preferably 1-20, still more preferably 1-10, particularly preferably 1-6)), for example, benzyl group, phenylethyl group, 2-phenylpropane-2- It is an yl group.
  • substituents of “substituted or unsubstituted” in Ar 11 , Ar 12 , R 101 to R 108 monocyclic groups, condensed ring groups, alkyl groups, cycloalkyl groups, silyl groups, alkoxy groups, cyano groups, halogens Atoms (especially fluorine) are preferred, and monocyclic groups and condensed ring groups are particularly preferred, and preferred specific substituents are the same as those for the groups in formula (4) and formula (1). It is.
  • the anthracene derivative represented by the formula (4) is preferably any of the following anthracene derivatives (A), (B), and (C), and is selected according to the configuration of the organic EL element to be applied and the required characteristics. .
  • Ar 11 and Ar 12 in the formula (4) are each independently a substituted or unsubstituted condensed ring group having 8 to 50 ring atoms.
  • the anthracene derivative can be classified into a case where Ar 11 and Ar 12 are the same substituted or unsubstituted condensed ring group and a case where they are different substituted or unsubstituted condensed ring groups.
  • Anthracene derivatives which are substituted or unsubstituted condensed ring groups in which Ar 11 and Ar 12 in formula (4) are different (including differences in substitution positions) are particularly preferred, and preferred specific examples of the condensed ring are as described above. Of these, naphthyl group, phenanthryl group, benzanthryl group, 9,9-dimethylfluorenyl group, and dibenzofuranyl group are preferable.
  • Ar 11 and Ar 12 in formula (4) are a substituted or unsubstituted monocyclic group having 5 to 50 ring atoms, and the other is a substituted or unsubstituted ring atom having 8 to 8 ring atoms. 50 condensed ring groups.
  • Ar 12 is a naphthyl group, phenanthryl group, benzoanthryl group, 9,9-dimethylfluorenyl group, dibenzofuranyl group
  • Ar 11 is a phenyl group substituted with a monocyclic group or a condensed ring group. It is a group.
  • Ar 12 is a condensed ring group
  • Ar 11 is an unsubstituted phenyl group.
  • the condensed ring group is particularly preferably a phenanthryl group, a 9,9-dimethylfluorenyl group, a dibenzofuranyl group, or a benzoanthryl group.
  • Ar 11 and Ar 12 in formula (4) are each independently a substituted or unsubstituted monocyclic group having 5 to 50 ring atoms.
  • both Ar 11 and Ar 12 are substituted or unsubstituted phenyl groups.
  • Ar 11 is an unsubstituted phenyl group
  • Ar 12 is a monocyclic group
  • Ar 11 and Ar 12 are each independently a monocyclic group. In some cases, it may be a phenyl group having a condensed ring group as a substituent.
  • a monocyclic group as a substituent is a phenyl group, a biphenyl group, and a condensed ring group is a naphthyl group, a phenanthryl group, a 9,9-dimethylfluorenyl group, a dibenzofuranyl group, or a benzoanthryl group.
  • the pyrene derivative represented by the formula (5) is the following compound.
  • Ar 111 and Ar 222 are each independently a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms.
  • L 101 and L 102 each independently represent a substituted or unsubstituted divalent aryl group or heterocyclic group having 6 to 30 ring carbon atoms.
  • m is an integer from 0 to 1
  • n is an integer from 1 to 4
  • s is an integer from 0 to 1
  • t is an integer from 0 to 3.
  • L 101 or Ar 111 is bonded to any one of the 1 to 5 positions of pyrene
  • L 102 or Ar 222 is bonded to any of the 6 to 10 positions of pyrene.
  • L 101 and L 102 in Formula (5) are preferably a substituted or unsubstituted phenylene group, a substituted or unsubstituted biphenylene group, a substituted or unsubstituted naphthylene group, a substituted or unsubstituted terphenylene group, and a substituted or unsubstituted group. It is a divalent aryl group composed of a substituted fluorenylene group and a combination of these substituents. Further, this substituent is the same as the substituent in “substituted or unsubstituted...” In the formula (1).
  • the substituent of L 101 and L 102 is preferably an alkyl group having 1 to 20 carbon atoms.
  • M in the general formula (5) is preferably an integer of 0 to 1.
  • N in the general formula (5) is preferably an integer of 1 to 2.
  • s is preferably an integer of 0 to 1.
  • T in the general formula (5) is preferably an integer of 0 to 2.
  • the aryl group of Ar 111 and Ar 222 is the same as each group in the formula (1).
  • a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms more preferably a substituted or unsubstituted aryl group having 6 to 16 ring carbon atoms, and preferred specific examples of the aryl group include a phenyl group. Naphthyl group, phenanthryl group, fluorenyl group, biphenyl group, anthryl group, pyrenyl group.
  • the light emitting layer containing the anthracene derivative represented by the formula (4) or the pyrene derivative represented by the formula (5) is preferably a barrier layer, an electron injection layer or an electron transport layer containing the imidazopyridine derivative of the present invention. It touches. When the light emitting layer is in contact with the barrier layer containing the imidazopyridine derivative of the present invention, the electron injection layer, or the electron transport layer, the TTF phenomenon can be used to increase the light emission efficiency.
  • the light emitting layer may contain a light emitting dopant (phosphorescent dopant and / or fluorescent dopant).
  • the fluorescent dopant is a compound that can emit light from singlet excitons. Fluorescent dopants are required from amine compounds, aromatic compounds, chelate complexes such as tris (8-quinolinolato) aluminum complex, coumarin derivatives, tetraphenylbutadiene derivatives, bisstyrylarylene derivatives, oxadiazole derivatives, etc.
  • a compound selected according to the emission color is preferable, a styrylamine compound, a styryldiamine compound, an arylamine compound, an aryldiamine compound, and an aromatic compound are more preferable, and a condensed polycyclic amine derivative and an aromatic compound are further preferable.
  • These fluorescent dopants may be used alone or in combination.
  • Y represents a substituted or unsubstituted condensed aryl group having 10 to 50 ring carbon atoms.
  • Ar 101 and Ar 102 each represent a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms.
  • Y include the above-mentioned condensed aryl groups, preferably a substituted or unsubstituted anthryl group, a substituted or unsubstituted pyrenyl group, or a substituted or unsubstituted chrysenyl group.
  • n is an integer of 1 to 4.
  • n is preferably an integer of 1 to 2.
  • alkyl group, alkoxy group, aryl group, aryloxy group, and heterocyclic group in the formula (12) include those exemplified above.
  • a fluoranthene compound represented by the following formula (13) is preferable.
  • X 301 to X 306 and X 308 to X 311 each independently represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted ring atom number of 5;
  • X 307 and X 312 each independently represent a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms, a substituted or unsubstituted carbon It is selected from alkyl groups having 1 to 20 and substituted or unsubstituted cycloalkyl groups having 3 to 8 ring carbon atoms.
  • X303 and X304 are mutually different substituents.
  • adjacent substituents may be bonded to each other to form a saturated or unsaturated cyclic structure, and these cyclic structures may be substituted.
  • X 303 or X 304 in formula (13) is preferably a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms. Further, a preferred substituent of “substituted or unsubstituted” in formula (13) is a cyano group or a halogen atom.
  • the dopant is preferably a dopant exhibiting fluorescence emission having a main peak wavelength of 550 nm or less, and more preferably a blue light emitting dopant.
  • the main peak wavelength refers to the peak wavelength of the emission spectrum that maximizes the emission intensity in the emission spectrum
  • the main peak wavelength of 550 nm corresponds to about green light emission.
  • WO2008 / 023759A1 WO2008 / 023759A1
  • WO2009 / 107596A1 WO2009 / 081857A1
  • US2009 / 0243473A1 US2008.
  • / 0014464A1 US2009 / 0021160A1, etc. can be appropriately selected and used.
  • the reaction solution was cooled to room temperature and extracted with toluene, and then the organic layer was washed with saturated brine.
  • the obtained organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off, and the obtained residue was purified by silica gel chromatography to obtain 3- (4-bromophenyl) -7,12-diphenylbenzo [k ] 1.30 g (yield 58%) of fluoranthene was obtained.
  • 4-bromophenacyl bromide instead of 4-bromophenacyl bromide as shown in the following scheme
  • reaction mixture was warmed to room temperature and stirred for 2.5 hours.
  • the reaction mixture was neutralized with 0.5 M hydrochloric acid while cooling in an ice-water bath, extracted with dichloromethane, washed with saturated brine, dried over anhydrous sodium sulfate, and the solvent was evaporated.
  • the obtained residue was purified by silica gel chromatography, and 1.87 g of trifluoromethanesulfonic acid 6- ⁇ 4- (imidazo [1,2-a] pyridin-2-yl) phenyl ⁇ naphthalen-2-yl (yield) 93%).
  • the produced solid was collected by filtration, washed with water and methanol, and then dried under reduced pressure.
  • the obtained solid was purified by silica gel chromatography to obtain 2.26 g of a yellow solid.
  • Example 4 Trifluoromethanesulfonic acid 6- ⁇ 4- (imidazo [1,2-a] pyridin-2-yl) phenyl ⁇ naphthalene-2 instead of 2- (4-bromophenyl) -imidazo [1,2-a] pyridine
  • the reaction was performed in the same manner as in Example 1 except that -yl was used.
  • E T triplet energy
  • ionization potential affinity of compounds 1 and 2 were evaluated by the following methods. The results are shown in Table 1.
  • Table 1 Triplet energy (E T ) Triplet energy was measured using a commercially available apparatus F-4500 (manufactured by Hitachi).
  • the ionization potential was measured using an atmospheric photoelectron spectrometer (manufactured by Riken Keiki Co., Ltd .: AC-3). Specifically, the ionization potential was measured by irradiating the obtained compound with light and measuring the amount of electrons generated by charge separation. (3) Affinity (Af) The affinity was calculated from the measured ionization potential and energy gap. The energy gap was measured from the absorption edge of the absorption spectrum in toluene. Specifically, the absorption spectrum of the obtained compound was measured using a commercially available visible / ultraviolet spectrophotometer, and calculated from the wavelength at which the spectrum started to rise.
  • Example 5 The materials used for the organic EL element are as follows.
  • a glass substrate with an ITO transparent electrode (anode) having a thickness of 25 mm ⁇ 75 mm ⁇ 1.1 mm was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes and then UV ozone cleaning for 30 minutes.
  • a glass substrate with a transparent electrode line after washing is mounted on a substrate holder of a vacuum deposition apparatus, and first, a compound HT-1 having a film thickness of 50 nm is formed so as to cover the transparent electrode on the surface on which the transparent electrode line is formed.
  • a film was formed.
  • the HT-1 film functions as a hole injection layer.
  • the compound HT-2 was vapor-deposited to form an HT-2 film having a thickness of 45 nm on the HT-1 film.
  • the HT-2 film functions as a hole transport layer.
  • Compound BH-1 (host material) and compound BD-1 (dopant material) were deposited on the HT-2 film at a film thickness ratio of 20: 1 to form a light emitting layer having a film thickness of 25 nm.
  • Compound 1 was deposited on the light emitting layer to form an electron transport layer having a thickness of 25 nm on the light emitting layer.
  • LiF was formed to a thickness of 1 nm.
  • metal Al was deposited to a thickness of 80 nm to form a metal cathode, thereby producing an organic EL device.
  • Examples 6 to 8 and Comparative Examples 1 and 2 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the electron transport layer was formed using compounds 2 to 4, ET-1 and ET-2 instead of compound 1, respectively. The results are shown in Table 2.
  • Example 9 A glass substrate with an ITO transparent electrode (anode) having a thickness of 25 mm ⁇ 75 mm ⁇ 1.1 mm was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes and then UV ozone cleaning for 30 minutes.
  • a glass substrate with a transparent electrode line after washing is mounted on a substrate holder of a vacuum deposition apparatus, and first, a compound HT-1 having a film thickness of 50 nm is formed so as to cover the transparent electrode on the surface on which the transparent electrode line is formed. A film was formed.
  • the HT-1 film functions as a hole injection layer.
  • the compound HT-2 was vapor-deposited to form an HT-2 film having a thickness of 45 nm on the HT-1 film.
  • the HT-2 film functions as a hole transport layer.
  • Compound BH-1 (host material) and compound BD-1 (dopant material) were deposited on the HT-2 film at a film thickness ratio of 20: 1 to form a light emitting layer having a film thickness of 25 nm.
  • Compound 1 and lithium quinolinolate (Liq) were vapor-deposited on the light emitting layer at a film pressure ratio of 1: 1 to form an electron transport layer having a film thickness of 25 nm on the light emitting layer.
  • metal Al was deposited to a thickness of 80 nm to form a metal cathode, thereby producing an organic EL device.
  • evaluation similar to Example 5 was performed. The results are shown in Table 3.
  • Example 10 and Comparative Examples 3-4 An organic EL device was prepared and evaluated in the same manner as in Example 5 except that Compound 2, ET-1, and ET-2 were used instead of Compound 1 to form an electron transport layer. The results are shown in Table 3.
  • Example 11 A glass substrate with an ITO transparent electrode (anode) having a thickness of 25 mm ⁇ 75 mm ⁇ 1.1 mm was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes and then UV ozone cleaning for 30 minutes.
  • a glass substrate with a transparent electrode line after washing is mounted on a substrate holder of a vacuum deposition apparatus, and first, a compound HT-1 having a film thickness of 50 nm is formed so as to cover the transparent electrode on the surface on which the transparent electrode line is formed. A film was formed.
  • the HT-1 film functions as a hole injection layer.
  • the compound HT-2 was vapor-deposited to form an HT-2 film having a thickness of 45 nm on the HT-1 film.
  • the HT-2 film functions as a hole transport layer.
  • Compound BH-1 (host material) and compound 1 (dopant material) were deposited on the HT-2 film at a film thickness ratio of 20: 1 to form a light emitting layer with a film thickness of 25 nm.
  • TB-1 was deposited on the light emitting layer to form a TB-1 layer having a thickness of 5 nm on the light emitting layer. This layer functions as a triplet exciton blocking layer.
  • ET-3 was deposited on the TB-1 film to form a 20 nm thick ET-3 layer on the light emitting layer. This layer functions as an electron transport layer. Thereafter, LiF was formed to a thickness of 1 nm. On the LiF film, metal Al was deposited to a thickness of 80 nm to form a metal cathode, thereby producing an organic EL device.
  • the TB-1 and ET-3 are compounds having the following structures, respectively.
  • the compound of the present invention can also be used as a dopant material for a blue fluorescent light-emitting device, and high luminous efficiency can be obtained.
  • the organic EL device comprising the imidazopyridine derivative of the present invention can be used for a display panel or a lighting panel for a large-sized television where low power consumption is desired.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Indole Compounds (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)

Abstract

下記式(1)で表わされるイミダゾピリジン誘導体。

Description

イミダゾピリジン誘導体及びそれを含んでなる有機エレクトロルミネッセンス素子
 本発明は、イミダゾピリジン誘導体及びそれを含んでなる有機エレクトロルミネッセンス素子に関する。
 有機物質を使用した有機エレクトロルミネッセンス(EL)素子は、固体発光型の安価な大面積フルカラー表示素子としての用途が有望視され、多くの開発が行われている。
 一般に有機EL素子は、発光層及びこれを挟持してなる一対の対向電極から構成されている。発光は、両電極間に電界が印加されると、陰極側から電子が及び陽極側から正孔が注入され、電子が発光層において正孔と再結合し、励起状態を生成し、励起状態が基底状態に戻る際にエネルギーを光として放出する。
 これら正孔注入、電子注入及び発光の全てを1層で機能させる有機EL素子の高性能化は難しく、電極間の有機層を複数層化し、機能分離させることにより、高性能化を実現している。具体的には、2つの電極間に正孔輸送層、発光層、電子輸送層等の3層以上の層を積層させた構造が一般的である。
 初期の有機EL素子は、駆動電圧、発光効率及び耐久性が不十分であり、これら問題に対して様々な技術的改良がなされてきた。例えば特許文献1~3では、電子輸送材料を改良することにより駆動電圧の低下を実現している。
 特許文献1は、アントラセン骨格を有する材料を開示する。しかし、特許文献1はアントラセン骨格を多数開示するものの、例えばベンゾフルオランテン骨格の性質については何ら言及がない。
 また、特許文献2は、ベンズイミダゾール骨格を有する材料を多数開示する。特許文献3では、ガラス転移温度の高い構造を用いることで化合物の耐久性を上げ、素子の寿命を向上させている。
特開2004-2297号公報 韓国特許出願公開第10-2009-0059849号明細書 WO09/148269
 本発明の目的は、有機エレクトロルミネッセンス素子の駆動電圧を低減し、且つ高効率で長寿命な発光を可能にするイミダゾピリジン誘導体を提供することである。
 本発明によれば、有機エレクトロルミネッセンス素子の駆動電圧を低減し、且つ高効率で長寿命な発光を可能にできる以下のイミダゾピリジン誘導体等が提供される。
1.下記式(1)で表わされるイミダゾピリジン誘導体。
Figure JPOXMLDOC01-appb-C000001
(R~R12のいずれか1つは単結合でLと結合し、単結合以外のR~R12は、それぞれ水素原子、ハロゲン原子、シアノ基、置換もしくは無置換の炭素数1~10のアルキル基、置換もしくは無置換の環形成炭素数3~8のシクロアルキル基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数6~20のアリールオキシ基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の環形成原子数5~30の複素環基である。
 X~Xは、それぞれ窒素原子、又はC(R23)で表わされる連結基である、及び/又は、XとX、XとX、及びXとXが、それぞれ互いに結合し、置換もしくは無置換の環形成炭素数6~18の芳香環を形成する、又は置換もしくは無置換の環形成原子数5~18の芳香族複素環を形成する。
 X~Xの連結基C(R23)が複数の場合、複数のR23は同じでも異なってもよい。
 R21~R23のいずれか1つは単結合でLと結合し、単結合以外のR21~R23は、それぞれ水素原子、ハロゲン原子、シアノ基、置換もしくは無置換の炭素数1~10のアルキル基、置換もしくは無置換の環形成炭素数3~8のシクロアルキル基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数6~20のアリールオキシ基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の環形成原子数5~30の複素環基である。
 Lは、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、置換もしくは無置換の環形成原子数5~30の2価の複素環基、又は2~3個のこれら2価の基が単結合で結合してなる連結基である。)
2.下記式(2)で表わされる1に記載のイミダゾピリジン誘導体。
Figure JPOXMLDOC01-appb-C000002
(式中、X~X、R~R、R~R12、R21~R23及びLは、式(1)と同様である。)
3.下記式(3)で表わされる1又は2に記載のイミダゾピリジン誘導体。
Figure JPOXMLDOC01-appb-C000003
(式中、X~X、R~R、R~R12、R22、R23及びLは、式(1)と同様である。)
4.R及びR12が、それぞれ環形成炭素数6~30のアリール基である1~3のいずれかに記載のイミダゾピリジン誘導体。
5.有機エレクトロルミネッセンス素子用材料である1~4のいずれかに記載のイミダゾピリジン誘導体。
6.前記有機エレクトロルミネッセンス素子用材料が、電子注入材料又は電子輸送材料である5に記載のイミダゾピリジン誘導体。
7.陰極と陽極の間に少なくとも発光層を含む1以上の有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、前記有機薄膜層の少なくとも1層が、1~4のいずれかに記載のイミダゾピリジン誘導体を単独もしくは混合物の成分として含有する有機エレクトロルミネッセンス素子。
8.前記有機薄膜層が電子注入層又は電子輸送層を含み、前記電子注入層又は該電子輸送層が、1~4のいずれかに記載のイミダゾピリジン誘導体を単独もしくは混合物の成分として含有する7に記載の有機エレクトロルミネッセンス素子。
9.前記イミダゾピリジン誘導体を含有する電子注入層又は電子輸送層が、還元性ドーパントをさらに含有する8に記載の有機エレクトロルミネッセンス素子。
10.前記還元性ドーパントが、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体及び希土類金属の有機錯体からなる群から選択される1種又は2種以上である9に記載の有機エレクトロルミネッセンス素子。
11.前記還元性ドーパントが、アルカリ金属の8-キノリノール錯体である10に記載の有機エレクトロルミネッセンス素子。
 本発明によれば、有機エレクトロルミネッセンス素子の駆動電圧を低減し、且つ高効率で長寿命な発光を可能にするイミダゾピリジン誘導体が提供できる。
本発明の第1の実施形態の一例を示す図である。 本発明の各層のエネルギーギャップの関係を示す図である。 本発明の各層のエネルギーギャップの関係に基づく作用を示す図である。
 本発明のイミダゾピリジン誘導体は、下記式(1)で表わされる。
Figure JPOXMLDOC01-appb-C000004
(R~R12のいずれか1つは単結合でLと結合し、単結合以外のR~R12は、それぞれ水素原子、ハロゲン原子、シアノ基、置換もしくは無置換の炭素数1~10のアルキル基、置換もしくは無置換の環形成炭素数3~8のシクロアルキル基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数6~20のアリールオキシ基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の環形成原子数5~30の複素環基である。
 X~Xは、それぞれ窒素原子、又はC(R23)で表わされる連結基である、及び/又は、XとX、XとX、及びXとXが、それぞれ互いに結合し、置換もしくは無置換の環形成炭素数6~18の芳香環を形成する、又は置換もしくは無置換の環形成原子数5~18の芳香族複素環を形成する。
 X~Xの連結基C(R23)が複数の場合、複数のR23は同じでも異なってもよい。
 R21~R23のいずれか1つは単結合でLと結合し、単結合以外のR21~R23は、それぞれ水素原子、ハロゲン原子、シアノ基、置換もしくは無置換の炭素数1~10のアルキル基、置換もしくは無置換の環形成炭素数3~8のシクロアルキル基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数6~20のアリールオキシ基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の環形成原子数5~30の複素環基である。
 Lは、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、置換もしくは無置換の環形成原子数5~30の2価の複素環基、又は2~3個のこれら2価の基が単結合で連結してなる連結基である。)
 上記式(1)において、Lを構成するアリーレン基及び複素環基は、連結基中にそれぞれ複数ある場合、互いに同じでも異なってもよい。
 ベンゾフルオランテン骨格は高い平面性を有し、分子同士がうまく重なるため、本発明のイミダゾピリジン誘導体は高い電荷輸送性を有すると考えられる。特にベンゾフルオランテン骨格はその高い平面性から、例えばフルオランテン骨格よりも高い電荷輸送性を有する。
 また、ベンゾフルオランテン骨格は電荷耐久性が高く、本発明のイミダゾピリジン誘導体を有機EL素子に用いた場合に、寿命の向上が期待できる。例えば有機EL素子の発光層に電子トラップ性のドーパントを用いると、正孔が電子注入層側まで流れてくる場合があるが、ベンゾフルオランテン骨格を有する本発明のイミダゾピリジン誘導体は正孔耐性をもつため、素子の劣化を防ぐことができると考えられる。
 本発明のイミダゾピリジン誘導体はベンゾフルオランテン骨格を有することで、アフィニティ(Af)が大きくなり、例えば電子輸送層に用いた場合には、隣接する金属錯体層又は還元性ドーパント層との相互作用が高くなり、良好な電子注入性が期待できる。
 以上の理由から、ベンゾフルオランテン骨格を有する本発明のイミダゾピリジン誘導体は、有機EL素子の低電圧駆動を可能にすることができる。
 窒素原子は電気陰性度が大きく、隣接するベンゼン環等の炭素原子の電子を引き寄せる性質を有する。イミダゾピリジンとベンズイミダゾールは共に含窒素複素環であるが、イミダゾピリジンは六員環部に窒素原子を有するため、例えば六員環部に窒素原子を有さないベンズイミダゾールと比べて、六員環部の炭素原子の電子吸引効果が高いと考えられる。従って、ベンズイミダゾールと比べて、電子が窒素原子に集まりやすいイミダゾピリジンは、分子内で電気的な偏りが生じて、極性が大きくなり、金属(陰極)との親和性が大きくなるため、高い電子注入性を有すると考えられる。
 また、ベンズイミダゾールの場合、通常、窒素原子に置換基を有し、ベンズイミダゾールが金属と配位する際、当該置換基が立体障害になる可能性がある。一方、イミダゾピリジンは、金属と配位する部位の立体障害を小さくできるので、ベンズイミダゾールよりも電子注入性を向上させることができると考えられる。
 以上の理由から、イミダゾピリジン骨格を有する本発明のイミダゾピリジン誘導体は、低電圧駆動を可能にすることができると考えられる。
Figure JPOXMLDOC01-appb-C000005
 本発明のイミダゾピリジン誘導体は、ベンゾフルオランテン骨格及びイミダゾピリジン骨格を一体として有する化合物であり、優れた電荷輸送性、電荷耐久性及び電子注入性を同時に有する化合物である。
 式(1)で表わされるイミダゾピリジン誘導体は、好ましくは下記式(2)で表わされるイミダゾピリジン誘導体であり、より好ましくは下記式(3)で表わされるイミダゾピリジン誘導体である。
Figure JPOXMLDOC01-appb-C000006
(式中、X~X、R~R、R~R12、R21~R23及びLは、式(1)と同様である。)
 式(1)で表わされるイミダゾピリジン誘導体において、R及びRは活性部位であり、置換基を導入することで誘導体の安定性を向上させる傾向がある。上記式(2)では、Rを単結合とし、Lと結合させることで誘導体の安定性を向上させている。
 安定性が向上している式(2)で表わされるイミダゾピリジン誘導体を有機EL素子に用いた場合、素子の寿命をさらに向上させる傾向がある。
Figure JPOXMLDOC01-appb-C000007
(式中、X~X、R~R、R~R12、R22、R23及びLは、式(1)と同様である。)
 上記式(3)において、R21を単結合としてLと結合させることで、例えば有機EL素子の電子輸送層に式(3)で表わされるイミダゾピリジン誘導体を用いた場合に、電極からの電子注入性を向上させることができ、駆動電圧をさらに低減させる傾向がある。さらに、Lとイミダゾピリジン部の立体障害が小さくなって平面的に配列しやすくなることで、イミダゾピリジン誘導体の電荷輸送性が高くなり、さらに低電圧化させる傾向がある。
 式(1)~(3)で表わされる本発明のイミダゾピリジン誘導体(以下、単に本発明のイミダゾピリジン誘導体という場合がある)のLが単結合である場合、ベンゾフルオランテン骨格(電荷輸送部位)及びイミダゾピリジン骨格(電子注入部位)の距離が短いため、分子内の電荷移動をスムーズとすることができると考えられる(電荷輸送部位まで電子がすぐに移動できる)。従って、Lが単結合である本発明のイミダゾピリジン誘導体は、駆動電圧の低減が可能となると考えられる。
 一方、本発明のイミダゾピリジン誘導体のLがアリーレン基及び/又は2価の複素環基を含む場合、ベンゾフルオランテン骨格とイミダゾピリジン骨格の電子的な関与を低減できる。イミダゾピリジン骨格及びベンゾフルオランテン骨格間に距離ができるため、分子内の移動には時間を要する場合があるが、電子注入部位と電荷輸送部位の機能が互いに干渉することを低減できる。その結果、分子間移動時に干渉がなくなって、駆動電圧の低減が可能になると考えられる。
 本発明のイミダゾピリジン誘導体において、好ましくはR及びR12が、それぞれ環形成炭素数6~30(好ましくは環形成炭素数6~20、より好ましくは環形成炭素数6~12)のアリール基であり、特に好ましくはR及びR12が、共にフェニル基である。
 R及びR12を、それぞれアリール基とすることで、ベンゾフルオランテン骨格の平面性を向上させることができると考えられる。平面性が向上したイミダゾピリジン誘導体では、分子同士の重なりが大きなって分子同士の距離を短くでき、イミダゾピリジン誘導体の電荷輸送性を高めることができる。
 以下、本発明のイミダゾピリジン誘導体の各置換基について説明する。
 R~R12及びR21~R23の炭素数1~10(好ましくは炭素数1~6、より好ましくは炭素数1~4)のアルキル基としては、エチル基、メチル基、i-プロピル基、n-プロピル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基等が挙げられ、好ましくはエチル基、メチル基、i-プロピル基、t-ブチル基である。
 R~R12及びR21~R23の環形成炭素数3~8(好ましくは環形成炭素数3~6)のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、4-メチルシクロヘキシル基等が挙げられ、好ましくはシクロブチル基、シクロペンチル基、シクロヘキシル基である。
 R~R12及びR21~R23の炭素数1~20(好ましくは炭素数1~10、より好ましくは炭素数1~6)のアルコキシ基は、-OYで表される基であり、Yの例としては、上記アルキル基と同様の例が挙げられる。
 R~R12及びR21~R23の環形成炭素数6~30(好ましくは環形成炭素数6~20、より好ましくは環形成炭素数6~12)のアリール基としては、フェニル基、ナフチル基、フェナントリル基、ピレニル基、ビフェニル基、ターフェニル基、アントリル基、クリセニル基、ベンゾフェナントリル基、ベンズアントリル基、ベンゾクリセニル基、フルオレニル基、フルオランテニル基、ナフタセニル基等が挙げられ、好ましくはフェニル基、ナフチル基、フェナントリル基、ピレニル基、ビフェニル基、ターフェニル基である。
 R~R12及びR21~R23の環形成炭素数6~20(好ましくは環形成炭素数6~10)のアリールオキシ基は、-OArで表される基であり、Arの例としては、上記アリール基と同様である。
 R~R12及びR21~R23の環形成原子数5~30(好ましくは環形成原子数5~20、より好ましくは環形成原子数5~12)の複素環基としては、ピリジニル基、ピラジニル基、ピリミジニル基、ピリダジニル基、トリアジニル基、インドリル基、キノリニル基、イソキノリニル基、キノキサリニル基、アクリジニル基、ピロリジニル基、ジオキサニル基、ピペリジニル基、モルフォリル基、ピペラジニル基、カルバゾリル基、フラニル基、チオフェニル基、オキサゾリル基、イソキサゾリル基、オキサジアゾリル基、ベンゾオキサゾリル基、チアゾリル基、チアジアゾリル基、ベンゾチオフェニル基、ベンゾチアゾリル基、トリアゾリル基、イミダゾリル基、ベンゾイミダゾリル基、ベンゾフラニル基、ジベンゾフラニル基、ピラゾリル基、インダゾリル基、イミダゾピリジル基、テトラゾリル基等が挙げられ、好ましくはピリジニル基、ピラジニル基、ピリミジニル基、ピリダジニル基、トリアジニル基、ベンゾフラニル基、ジベンゾフラニル基、フラニル基、チオフェニル基、ベンゾチオフェニル基、ベンゾチアゾリル基である。
 R~R12及びR21~R23のシリル基は、炭素数3~30のアルキルシリル基及び炭素数8~30のアリールシリル基を含む。
 上記炭素数3~30(好ましくは炭素数3~20、より好ましくは炭素数3~10)のアルキルシリル基としては、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、ビニルジメチルシリル基、プロピルジメチルシリル基等が挙げられ、好ましくはトリメチルシリル基、t-ブチルジメチルシリル基である。
 上記炭素数8~30のアリールシリル基としては、トリフェニルシリル基、フェニルジメチルシリル基、t-ブチルジフェニルシリル基、トリトリルシリル基、トリキシリルシリル基、トリナフチルシリル基等が挙げられ、好ましくはトリフェニルシリル基、フェニルジメチルシリル基である。
 Lの環形成炭素数6~30(好ましくは環形成炭素数6~20、より好ましくは環形成炭素数6~12)のアリーレン基としては、フェニレン基、ナフチレン基、ビフェニレン基、ターフェニレン基、アントリレン基、ペンタセニレン基、ペリレニレン基、ピセニレン基、ピレニレン基、ペンタフェニレン基、フルオレニレン基、クリセニレン基、フェナントリレン基等が挙げられ、好ましくはフェニレン基、ナフチレン基、ビフェニレン基、ターフェニレン基、フルオレニレン基、フェナントリレン基である。
 Lの環形成原子数5~30(好ましくは環形成原子数5~20、より好ましくは環形成原子数5~12)の2価の複素環基としては、ピリジニレン基、ピラジニレン基、ピリミジニレン基、ピリダジニレン基、トリアジニレン基、インドリニレン基、キノリニレン基、イソキノリニレン基、キノキサリニレン基、アクリジニレン基、ピロリジニレン基、ジオキサニレン基、ピペリジニレン基、モルフォリレン基、ピペラジニレン基、カルバゾリレン基、フラニレン基、チオフェニレン基、オキサゾリレン基、イソキサゾリレン基、オキサジアゾリレン基、ベンゾオキサゾリレン基、チアゾリレン基、チアジアゾリレン基、ベンゾチオフェニレン基、ベンゾチアゾリレン基、トリアゾリレン基、イミダゾリレン基、ベンゾイミダゾリレン基、プラニレン基、ジベンゾフラニレン基、ジベンゾチオフェニレン基、ピラゾリレン基、インダゾリレン基、イミダゾピリジレン基、テトラゾリレン基等が挙げられ、好ましくはピリジニレン基、ピラジニレン基、ピリミジニレン基、ピリダジニレン基、トリアジニレン基、ジベンゾフラニレン基、ジベンゾチオフェニレン基である。
 ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素等が挙げられ、好ましくはフッ素原子である。
 R~R12及びR21~R23及びLの各置換基がさらに置換基を有する場合、当該置換基としては、上述のアルキル基、アルキルシリル基、ハロゲン化アルキル基、アリール基、シクロアルキル基、アルコキシ基、複素環基、アラルキル基、アリールオキシ基、アリールチオ基、アルコキシカルボニル基、ハロゲン原子、ヒドロキシル基、ニトロ基、シアノ基、カルボキシル基、カルボニル基、ジベンゾフラニル基、フルオレニル基等が挙げられる。
 尚、本発明のイミダゾピリジン誘導体の各置換基について、「無置換」とは、水素原子が置換したことを意味する。また、本発明のイミダゾピリジン誘導体の水素原子には、軽水素、重水素が含まれる。
 また、本明細書において、「環形成炭素」とは飽和環、不飽和環、又は芳香環を構成する炭素原子を意味する。「環形成原子」とは環(飽和環、不飽和環、及び芳香環を含む)を構成する炭素原子及びヘテロ原子を意味する。
 本発明のイミダゾピリジン誘導体の具体例を以下に示す。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 本発明のイミダゾピリジン誘導体は、有機EL素子用材料として用いると好ましく、有機EL素子の電子注入材料又は電子輸送材料として用いるとより好ましい。これは、イミダゾピリジン基が隣接層からの電子の授受を媒介するためである。また、本発明のイミダゾピリジン誘導体は、後述する理由から、3重項エネルギー障壁材料としても好適に用いることができると考えられる。
 本発明のイミダゾピリジン誘導体の基本骨格であるベンゾフルオランテン骨格は3重項エネルギーが高く、3重項励起子の閉じ込め効果が高いため、例えば有機EL素子の発光層に接した障壁層の材料として利用することによって、TTF(Triplet-Triplet Fusion)現象を促進させることができると考えられる。また、本発明のイミダゾピリジン誘導体の基本骨格であるベンゾフルオランテン骨格は、その平面性の高さによって薄膜中での分子スタッキングが向上し、電子輸送性が大きくなるという特徴を持つため、発光層への電子注入を促進し、発光層での再結合効率を高め、TTF現象を効率的に起こすことができると考えられる。さらに、本発明のイミダゾピリジン誘導体は、電極等の金属含有層からの電子注入性の高い含窒素複素環であるイミダゾピリジン骨格を含むため、電子注入層をさらに積層させることなく低駆動電圧の有機EL素子を実現させることができると考えられる。
 このように、本発明のイミダゾピリジン誘導体は、電子注入・輸送機能及び3重項エネルギー障壁機能(トリプレット障壁機能)の両方を備える化合物である。
 上記のように、本発明のイミダゾピリジン誘導体は、トリプレット障壁機能を有する構造部位(トリプレット障壁構造部位)と電子注入・輸送機能を有する構造部位を含む化合物である。構造部位とは、化合物に含まれる個々の環式構造(置換基を除いた単環又は縮合多環)である。
 トリプレット障壁構造部位とは、化合物に含まれる構造部位の中で、3重項エネルギーが最も低くなる(小さい)構造部位をいう。つまり、化合物の3重項エネルギーを主として決定する構造部位である。トリプレット障壁構造部位の3重項エネルギーは、置換基を除き、各構造部位同士の結合位置に水素が置換された独立した環式構造の3重項エネルギーをいう。さらに、トリプレット障壁構造部位は縮合多環芳香族炭化水素化合物でなければならない。その理由を以下に説明する。
 炭化水素からなる縮合環の遷移状態は、環式構造のπ電子雲が関与するπ-π*遷移に基づく。このπ電子雲の広がりは小さく、発光層の励起状態に及ぼす影響は小さい。一方、構造部位に非共有電子対を有する場合の遷移状態は、非共有電子対が関与することで、発光層で生成した3重項励起子との間で強い相互作用が生じ、ホストの3重項励起子の失活を促進させる。この結果、TTF現象を効率的に起こすことができない。従って、障壁材料のトリプレット障壁構造部位は主にπ-π*遷移に基づく励起三重項状態を形成する炭化水素からなる縮合環であることが好ましい。
 本発明のイミダゾピリジン誘導体を障壁材料として用いる場合、障壁材料の3重項エネルギーは、発光層のホストの3重項エネルギーよりも大きいことが好ましい。
 障壁材料のトリプレット障壁機能は、トリプレット障壁構造部位によって主として決定される。一般に、発光層で生成された3重項励起子が、隣接する障壁材料へそのエネルギーを遷移させる場合、障壁材料の各構造部位のうち、最も低い3重項エネルギーを有する構造部位に3重項エネルギーが遷移する。このことから、各構造部位のうち最も低い3重項エネルギーを有するトリプレット障壁構造部位が縮合多環芳香族炭化水素化合物である場合、障壁材料はトリプレット障壁機能を効果的に発揮する。以上の理由より、化合物に含まれる構造部位の中で3重項エネルギーが最も低くなる(小さい)構造部位が炭素と水素から構成されていない場合は、当該化合物はトリプレット障壁構造部位を有しないこととなる。
 以下、TTF現象について簡単に説明をする。
 有機EL素子に電圧を印加すると、陽極、陰極から電子と正孔が注入され、注入された電子と正孔は発光層内で再結合し励起子を生成する。そのスピン状態は、1重項励起子が25%、3重項励起子が75%である。従来知られている蛍光素子においては、1重項励起子が基底状態に緩和するときに光を発するが、残りの3重項励起子については光を発することなく熱的失活過程を経て基底状態に戻る。しかしながら、S.M.Bachiloらによれば(J.Phys.Cem.A,104,7711(2000))、当初生成した75%の3重項励起子のうち、1/5が1重項励起子に変化する。
 TTF現象とは3重項励起子の衝突融合により1重項励起子が生成する現象であり、このTTF現象を利用すれば、当初生成する25%の1重項励起子だけでなく、3重項励起子の衝突融合により生じる1重項励起子も発光に利用でき、素子の発光効率を高めることができる。
 TTF現象を効率よく起こすためには、1重項励起子と比べて励起子寿命が格段に長い3重項励起子を発光層内に閉じ込めておく必要がある。
 本発明では、本発明のイミダゾピリジン誘導体を含有する障壁層を蛍光素子の発光層に隣接させることが好ましい。本発明のイミダゾピリジン誘導体を含んでなる障壁層を蛍光素子に用いることによってTTF現象を引き起こし、高効率な有機EL素子を実現することができると考えられる。
 尚、本発明の障壁層は3重項エネルギーに対する障壁機能を有する層であり、正孔障壁層及び電荷障壁層とはその機能が異なる。
 本発明のイミダゾピリジン誘導体を含有する障壁層、電子注入層又は電子輸送層は、好ましくはさらに還元性ドーパントを含有する。
 還元性ドーパントとしては、ドナー性金属、ドナー性金属化合物及びドナー性金属錯体が挙げられ、これら還元性ドーパントは1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 ここで、還元性ドーパントとは、電子を供与する材料(電子供与性材料という)である。この電子供与性材料は、当該電子供与性材料と共に障壁層、電子注入層又は電子輸送層に含まれる他の有機材料、もしくは障壁層、電子注入層又は電子輸送層に隣接する層を構成する有機材料と相互作用し、ラジカルアニオンを生じさせる材料、又は電子供与性ラジカルを有する材料である。
 ドナー性金属とは、仕事関数3.8eV以下の金属をいい、好ましくはアルカリ金属、アルカリ土類金属及び希土類金属であり、より好ましくはCs,Li,Na,Sr,K,Mg,Ca,Ba,Yb,Eu及びCeである。
 ドナー性金属化合物とは、上記のドナー性金属を含む化合物であり、好ましくはアルカリ金属、アルカリ土類金属又は希土類金属を含む化合物であり、より好ましくはこれらの金属のハロゲン化物、酸化物、炭酸塩、ホウ酸塩である。例えば、MOx(Mはドナー性金属、xは0.5~1.5)、MFx(xは1~3)、M(CO)x(xは0.5~1.5)で表される化合物である。
 ドナー性金属錯体とは、上記のドナー性金属の錯体であり、好ましくはアルカリ金属、アルカリ土類金属又は希土類金属の有機金属錯体である。好ましくは下記式(I)で表される有機金属錯体である。
Figure JPOXMLDOC01-appb-C000027
(式中、Mはドナー性金属であり、Qは配位子であり、好ましくはカルボン酸誘導体、ジケトン誘導体又はキノリン誘導体であり、nは1~4の整数である。)
 ドナー性金属錯体の具体例としては、特開2005-72012号公報に記載のタングステン水車等が挙げられる。さらに、特開平11-345687号公報に記載された中心金属がアルカリ金属、アルカリ土類金属であるフタロシアニン化合物等もドナー性金属錯体として使用できる。
 上記還元性ドーパントは、好ましくはアルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体及び希土類金属の有機錯体からなる群から選択される1種又は2種以上であり、より好ましくはアルカリ金属の8-キノリノール錯体である。
 TTF現象を利用するときは、本発明のイミダゾピリジン誘導体からなる障壁層を構成する化合物の3重項エネルギーが発光層を主として構成するホストの3重項エネルギーより高くなければならない。好ましくは、障壁層に含まれる本発明のイミダゾピリジン誘導体、発光層に含まれるホストとドーパントが下記式(1)及び(2)を満たす。
 Eb>Eh・・・(1)
 Ed>Eh・・・(2)
(Eh、Eb及びEdは、それぞれホスト材料、障壁層の含窒素複素環誘導体及びドーパントの3重項エネルギーを示す。)
 図1は、本発明の第1の実施形態の一例を示す有機EL素子の概略構成図である。図2Aは各層の最低励起1重項エネルギー及び最低励起3重項エネルギーを模式的に表す。尚、本発明で3重項エネルギーは、最低励起3重項状態におけるエネルギーと基底状態におけるエネルギーの差をいい、1重項エネルギー(エネルギーギャップという場合もある)は、最低励起1重項状態におけるエネルギーと基底状態におけるエネルギーの差をいう。
 本発明の有機EL素子は、陽極、発光層、電子輸送帯域及び陰極をこの順に備える素子であればよく、図1に示す有機EL素子は、陽極10から順に、正孔輸送帯域50、発光層20、電子輸送帯域30、陰極40の順に積層されている。陽極10と発光層20の間に正孔輸送帯域50が設けられていることが好ましい。図2Aに示す実施形態では、電子輸送帯域が障壁層のみの構成を示している。しかし、電子輸送帯域が障壁層を含めばよく、障壁層のみの実施形態はより注入性の高い電子注入層の挿入を妨げるものではない。電子注入層を形成するときは、従来電子注入層として使用されてきた一般的な化合物を使用することができ、含へテロ環化合物が好ましい。
 図2Aにおいて、陽極から注入された正孔は正孔輸送帯域を通して発光層へ注入され、陰極から注入された電子は電子輸送帯域を通して発光層へ注入される。その後、発光層で正孔と電子が再結合し、1重項励起子と3重項励起子が生成する。再結合はホスト分子上で起こる場合とドーパント分子上で起こる場合の2通りがある。本実施形態では、図2Aに示されるように、ホスト、ドーパントの3重項エネルギーをそれぞれEh、Edとするとき、Eh<Edの関係を満たすと好ましい。この関係を満たすことにより、さらに図2Bに示されるように、ホスト上で再結合し発生した3重項励起子は、より高い3重項エネルギーを持つドーパントには移動しない。
 ドーパント分子上で再結合し発生した3重項励起子は速やかにホスト分子にエネルギー移動する。即ちホストの3重項励起子がドーパントに移動することなくTTF現象によって効率的にホスト上で3重項励起子同士が衝突することで1重項励起子が生成される。さらに、ドーパントの1重項エネルギーEdは、ホストの1重項エネルギーEhより小さいため、TTF現象によって生成された1重項励起子は、ホストからドーパントへエネルギー移動しドーパントの蛍光性発光に寄与する。本来、蛍光型素子に用いられるドーパントにおいては、励起3重項状態から基底状態への遷移は禁制であり、このような遷移では3重項励起子は光学的なエネルギー失活をせず、熱的失活を起こしていた。しかし、ホストとドーパントの3重項エネルギーの関係を上記のようにすることにより、3重項励起子が熱的失活を起こす前に互いの衝突により効率的に1重項励起子を生成し発光効率が向上することになる。
 電子輸送帯域において、発光層に隣接する部分に障壁層を設けると好ましい。障壁層は、発光層で生成する3重項励起子が電子輸送帯域へ拡散することを防止し、3重項励起子を発光層内に閉じ込めることによって3重項励起子の密度を高め、TTF現象を効率よく引き起こす機能を有する。
 3重項励起子拡散防止のため、図2A,2Bに示すように、障壁層を構成する化合物の3重項エネルギーEbはEhより大きく、さらに、Edよりも大きいことが好ましい。障壁層は発光層にて生成された3重項励起子が電子輸送帯域へ拡散することを防止するので、発光層内においてホストの3重項励起子が効率的に1重項励起子となり、その1重項励起子がドーパント上へ移動して光学的なエネルギー失活をする。障壁層を形成する材料は、本発明のイミダゾピリジン誘導体である。本発明のイミダゾピリジン誘導体は耐正孔性があるので劣化し難く、素子の長寿命化が図れる。
 本発明のイミダゾピリジン誘導体を含む障壁層は、電子注入・輸送機能の役割も果たすことができるので、障壁材料に注入された電子は、電子輸送構造部位を介してより電子を供与しやすい。即ちLUMO準位の高い構造部位へと移動することによって、発光層への電子注入に寄与することとなる。
 上記電子輸送帯域と陰極の間には、低仕事関数金属含有層を有してもよい。低仕事関数金属含有層とは、低仕事関数金属や、低仕事関数金属化合物を含有する層である。低仕事関数金属や低仕事金属化合物のみで形成されても、電子輸送層として用いられる材料に、低仕事関数金属、低仕事関数金属化合物、又は低仕事関数金属錯体をドナーとして添加して形成してもよい。低仕事関数金属とは、仕事関数が3.8eV以下の金属をいう。低仕事関数が3.8eV以下の金属は、アルカリ金属、アルカリ土類金属等が挙げられる。アルカリ金属としては、Li,Na,K,Cs等が挙げられる。アルカリ土類金属としては、Mg,Ca,Sr,Ba等が挙げられる。その他としては、Yb,Eu及びCe等が挙げられる。また低仕事関数金属化合物としては、低仕事金属関数の酸化物、ハロゲン化物、炭酸塩、ホウ酸塩が好ましい。ハロゲン化物としては、フッ化物、塩化物、臭化物が挙げられるが、フッ化物が好ましい。例えばLiFが好ましいものとして用いられる。また、低仕事関数金属錯体としては、低仕事関数金属の錯体であり、アルカリ金属、アルカリ土類金属又は希土類金属の有機金属錯体が好ましい。
 尚、TTF現象を利用して効率を高めることは青色蛍光層において顕著であるが、緑色蛍光層、赤色蛍光層においても、3重項エネルギーを発光層内に閉じ込め発光効率を向上させることができる。
 本発明の有機EL素子の発光層は、好ましくは下記式(4)で表わされるアントラセン誘導体又は下記式(5)で表されるピレン誘導体を少なくとも1種をホストとして含有する。
(アントラセン誘導体)
 式(4)で表されるアントラセン誘導体は、下記化合物である。
Figure JPOXMLDOC01-appb-C000028
(Ar11及びAr12は、それぞれ独立に、置換若しくは無置換の環形成原子数5~50の単環基、置換若しくは無置換の環形成原子数8~50の縮合環基、又は単環基と縮合環基との組合せから構成される基である。
 R101~R108は、それぞれ独立に、水素原子、置換若しくは無置換の環形成原子数5~50の単環基、置換若しくは無置換の環形成原子数8~50の縮合環基、単環基と縮合環基との組合せから構成される基、置換若しくは無置換の炭素数1~50のアルキル基、置換若しくは無置換の環形成炭素数3~50のシクロアルキル基、置換若しくは無置換の炭素数1~50のアルコキシ基、置換若しくは無置換の炭素数7~50のアラルキル基、置換若しくは無置換の環形成炭素数6~50のアリールオキシ基、置換若しくは無置換のシリル基、ハロゲン原子、シアノ基から選ばれる基である。)
 式(4)における、単環基とは、縮合構造を持たない環構造のみで構成される基である。
 環形成原子数5~50の単環基(好ましくは環形成原子数5~30、より好ましくは環形成原子数5~20)として具体的には、フェニル基、ビフェニル基、ターフェニル基、クォーターフェニル基等の芳香族基と、ピリジル基、ピラジル基、ピリミジル基、トリアジニル基、フリル基、チエニル基等の複素環基が好ましい。
 中でも、フェニル基、ビフェニル基、ターフェニル基が好ましい。
 式(4)における、縮合環基とは、2環以上の環構造が縮環した基である。
 前記環形成原子数8~50の縮合環基(好ましくは環形成原子数8~30、より好ましくは環形成原子数8~20)として具体的には、ナフチル基、フェナントリル基、アントリル基、クリセニル基、ベンゾアントリル基、ベンゾフェナントリル基、トリフェニレニル基、ベンゾクリセニル基、インデニル基、フルオレニル基、9,9-ジメチルフルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、フルオランテニル基、ベンゾフルオランテニル基等の縮合芳香族環基や、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基、キノリル基、フェナントロリニル基等の縮合複素環基が好ましい。
 中でも、ナフチル基、フェナントリル基、アントリル基、9,9-ジメチルフルオレニル基、フルオランテニル基、ベンゾアントリル基、ジベンゾチオフェニル基、ジベンゾフラニル基、カルバゾリル基が好ましい。
 炭素数1~50のアルキル基、環形成炭素数3~50のシクロアルキル基、炭素数1~50のアルコキシ基、環形成炭素数6~50のアリールオキシ基及び置換若しくは無置換のシリル基の具体例については、式(1)と同様である。
 炭素数7~50のアラルキル基としては、アラルキル基は、-Y-Zと表され、Yの例として上記のアルキルの例に対応するアルキレンの例が挙げられ、Zの例として上記のアリールの例が挙げられる。アラルキル基は、炭素数7~50アラルキル基(アリール部分は炭素数6~49(好ましくは6~30、より好ましくは6~20、特に好ましくは6~12)、アルキル部分は炭素数1~44(好ましくは1~30、より好ましくは1~20、さらに好ましくは1~10、特に好ましくは1~6))であることが好ましく、例えばベンジル基、フェニルエチル基、2-フェニルプロパン-2-イル基である。
 Ar11、Ar12、R101~R108、の「置換若しくは無置換」の好ましい置換基として、単環基、縮合環基、アルキル基、シクロアルキル基、シリル基、アルコキシ基、シアノ基、ハロゲン原子(特にフッ素)が好ましく、特に好ましくは、単環基、縮合環基であり、好ましい具体的な置換基は上述の式(4)の各基及び上述の式(1)における各基と同様である。
 式(4)で表されるアントラセン誘導体は、下記アントラセン誘導体(A)、(B)、及び(C)のいずれかであることが好ましく、適用する有機EL素子の構成や求める特性により選択される。
(アントラセン誘導体(A))
 当該アントラセン誘導体は、式(4)におけるAr11及びAr12が、それぞれ独立に、置換若しくは無置換の環形成原子数8~50の縮合環基となっている。当該アントラセン誘導体としては、Ar11及びAr12が同一の置換若しくは無置換の縮合環基である場合、及び異なる置換若しくは無置換の縮合環基である場合に分けることができる。
 式(4)におけるAr11及びAr12が異なる(置換位置の違いを含む)置換若しくは無置換の縮合環基であるアントラセン誘導体が特に好ましく、縮合環の好ましい具体例は上述した通りである。中でもナフチル基、フェナントリル基、ベンズアントリル基、9,9-ジメチルフルオレニル基、ジベンゾフラニル基が好ましい。
(アントラセン誘導体(B))
 当該アントラセン誘導体は、式(4)におけるAr11及びAr12の一方が置換若しくは無置換の環形成原子数5~50の単環基であり、他方が置換若しくは無置換の環形成原子数8~50の縮合環基となっている。
 好ましい形態として、Ar12がナフチル基、フェナントリル基、ベンゾアントリル基、9,9-ジメチルフルオレニル基、ジベンゾフラニル基であり、Ar11が単環基又は縮合環基が置換されたフェニル基である。
 好ましい単環基、縮合環基の具体的な基は上述した通りである。
 別の好ましい形態として、Ar12が縮合環基であり、Ar11が無置換のフェニル基である。この場合、縮合環基として、フェナントリル基、9,9-ジメチルフルオレニル基、ジベンゾフラニル基、ベンゾアントリル基が特に好ましい。
(アントラセン誘導体(C))
 当該アントラセン誘導体は、式(4)におけるAr11及びAr12が、それぞれ独立に、置換若しくは無置換の環形成原子数5~50の単環基となっている。
 好ましい形態として、Ar11、Ar12ともに置換若しくは無置換のフェニル基である。
 さらに好ましい形態として、Ar11が無置換のフェニル基であり、Ar12が単環基、縮合環基を置換基として持つフェニル基である場合と、Ar11、Ar12がそれぞれ独立に単環基、縮合環基を置換基として持つフェニル基である場合がある。
 前記置換基としての好ましい単環基、縮合環基の具体例は上述した通りである。さらに好ましくは、置換基としての単環基としてフェニル基、ビフェニル基、縮合環基として、ナフチル基、フェナントリル基、9,9-ジメチルフルオレニル基、ジベンゾフラニル基、ベンゾアントリル基である。
(ピレン誘導体)
 式(5)で表されるピレン誘導体は、下記化合物である。
Figure JPOXMLDOC01-appb-C000029
(式中、Ar111及びAr222は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール基である。
 L101及びL102は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30の2価のアリール基又は複素環基を示す。
 mは0~1の整数、nは1~4の整数、sは0~1の整数、tは0~3の整数である。
 また、L101又はAr111はピレンの1~5位のいずれかに結合し、L102又はAr222はピレンの6~10位のいずれかに結合する。)
 式(5)におけるL101及びL102は、好ましくは置換もしくは無置換のフェニレン基、置換もしくは無置換のビフェニレン基、置換もしくは無置換のナフチレン基、置換もしくは無置換のターフェニレン基及び置換もしくは無置換のフルオレニレン基及びこれら置換基の組合せからなる2価のアリール基である。
 また、この置換基としては、式(1)における「置換もしくは無置換の・・・」における置換基と同様である。L101及びL102の置換基は、好ましくは、炭素数1~20のアルキル基である。
 一般式(5)におけるmは、好ましくは0~1の整数である。一般式(5)におけるnは、好ましくは1~2の整数である。一般式(5)におけるsは、好ましくは0~1の整数である。
 一般式(5)におけるtは、好ましくは0~2の整数である。
 Ar111及びAr222のアリール基は、式(1)における各基と同様である。
 好ましくは、置換もしくは無置換の環形成炭素数6~20のアリール基、より好ましくは、置換もしくは無置換の環形成炭素数6~16のアリール基、アリール基の好ましい具体例としては、フェニル基、ナフチル基、フェナントリル基、フルオレニル基、ビフェニル基、アントリル基、ピレニル基である。
 式(4)で表されるアントラセン誘導体、又は式(5)で表わされるピレン誘導体を含有する発光層は、好ましくは本発明のイミダゾピリジン誘導体を含有する障壁層、電子注入層又は電子輸送層と接している。発光層と本発明のイミダゾピリジン誘導体を含む障壁層、電子注入層又は電子輸送層が接しているとき、TTF現象を利用して発光効率を高めることができる。
 本発明の有機EL素子においては、発光層が、発光性ドーパント(りん光性ドーパント及び/又は蛍光性ドーパント)を含有してもよい。
 上記蛍光性ドーパントは一重項励起子から発光することのできる化合物である。蛍光性ドーパントとしては、アミン系化合物、芳香族化合物、トリス(8-キノリノラト)アルミニウム錯体等のキレート錯体、クマリン誘導体、テトラフェニルブタジエン誘導体、ビススチリルアリーレン誘導体、オキサジアゾール誘導体等から、要求される発光色に合わせて選ばれる化合物であることが好ましく、スチリルアミン化合物、スチリルジアミン化合物、アリールアミン化合物、アリールジアミン化合物、芳香族化合物がより好ましく、縮合多環アミン誘導体、芳香族化合物がさらに好ましい。これらの蛍光性ドーパントは単独でもまた複数組み合わせて使用してもよい。
 上記縮合多環アミン誘導体としては、下記式(12)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000030
(式中、Yは環形成炭素数10~50の置換もしくは無置換の縮合アリール基を示す。
 Ar101、Ar102は、それぞれ置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基を示す。
 Yの具体例としては、前述する縮合アリール基が挙げられ、好ましくは置換もしくは無置換のアントリル基、置換もしくは無置換のピレニル基、置換もしくは無置換のクリセニル基である。
 nは1~4の整数である。nは1~2の整数であることが好ましい。)
 式(12)おいて、アルキル基、アルコキシ基、アリール基、アリールオキシ基、複素環基の例として上記で例示したものが挙げられる。
 上記芳香族化合物としては、下記式(13)で表されるフルオランテン化合物が好ましい。
Figure JPOXMLDOC01-appb-C000031
(式中、X301~X306及びX308~X311は、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~10のアルキル基、置換もしくは無置換の環形成炭素数3~8のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の環形成原子数6~50のアリールオキシ基、置換もしくは無置換の環形成原子数5~50のアリールチオ基、置換もしくは無置換の炭素数2~50のアルコキシカルボニル基、置換もしくは無置換の環形成炭素数6~30のアリール基で置換されたアミノ基、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシル基及びはカルボキシル基から選ばれる。
 X307及びX312は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~20のアルキル基、及び置換もしくは無置換の環形成炭素数3~8のシクロアルキル基から選ばれる。
 但し、X303とX304は、互いに異なる置換基である。
 また、X301~X312において、隣接する置換基同士は互いに結合して飽和もしくは不飽和の環状構造を形成してもよく、これら環状構造は置換されてもよい。)
 式(13)のX303又はX304は、好ましくは置換もしくは無置換の環形成炭素数6~30のアリール基である。また、式(13)の「置換もしくは無置換」の好ましい置換基は、シアノ基又はハロゲン原子である。
 式(13)おいて、アリール基、複素環基、アルキル基、シクロアルキル基、アルコキシ基、アラルキル基、アリールオキシ基、アリールチオ基、アルコキシカルボニル基、ハロゲン原子の例として上記で例示したものが挙げられる。
 尚、TTF現象を利用するときは効率面から、ドーパントは好ましくは主ピーク波長が550nm以下の蛍光発光を示すドーパントであり、より好ましくは青色発光ドーパントである。
 主ピーク波長とは、発光スペクトラムにおける発光強度が最大となる発光スペクトルのピーク波長をいい、主ピーク波長550nmとは緑色発光程度に相当する。当該波長領域ではTTF現象を利用した蛍光発光素子の発光効率の向上が望まれる。480nm以下の青色発光を示す蛍光発光素子においては、より高い発光効率の向上が期待できる。
 本発明の有機EL素子の基板、陽極、陰極、正孔注入層、正孔輸送層等のその他の部材は、WO2008/023759A1、WO2008/023759A1、WO2009/107596A1、WO2009/081857A1、US2009/0243473A1、US2008/0014464A1、US2009/0021160A1等に記載の公知のものを適宜選択して用いることができる。
[中間体の合成]
合成例1
(a)7,12-ジフェニルベンゾ[k]フルオランテン-3-イルボロン酸の合成
 下記スキームに従って、7,12-ジフェニルベンゾ[k]フルオランテン-3-イルボロン酸を合成した。
Figure JPOXMLDOC01-appb-C000032
(a-1)5-ブロモアセナフチレンの合成
 5-ブロモアセナフテン25.4g(107.3mmol)及び脱水ベンゼン500mlに、2,3-ジクロロ-5,6-ジシアノ-1,4-ベンゾキノン(DDQ)29.2g(128.7mmol)を加え、加熱還流下、6時間攪拌した。反応混合物にDDQを6.0g(26.4mmol)加え、4時間加熱攪拌した。放冷後、沈殿物を濾別し、クロロホルムで洗浄した。濾液を合わせて、10%水酸化ナトリウム水溶液、水で洗浄した。分液後、有機相を無水硫酸ナトリウムで乾燥し、溶媒を留去した。残渣を減圧下、乾燥し、褐色の固体として5-ブロモアセナフチレン13.0g(収率51.6%)を得た。
(a-2)3-ブロモ-7,12-ジフェニルベンゾ[k]フルオランテンの合成
 1,3-ジフェニルイソベンゾフラン14.9g(55.2mmol)、5-ブロモ-アセナフチレン12.8g(55.2mmol)のトルエン50mlの混合物を加熱還流下、16時間攪拌した。溶媒を留去後、酢酸1200mlを加え、80℃に加熱した。この混合物に、48%HBr水溶液150mlを加え、80℃にて1時間攪拌した。室温まで冷却後、沈殿物を濾取し、メタノールで洗浄した。得られた黄色固体をトルエン200mlで再結晶化した。結晶を濾取し、黄色固体として3-ブロモ-7,12-ジフェニルベンゾ[k]フルオランテン19.8g(収率:74%)を得た。
(a-3)7,12-ジフェニルベンゾ[k]フルオランテン-3-イルボロン酸の合成
 3-ブロモ-7,12-ジフェニルベンゾ[k]フルオランテン30.8g(64.0mmol)を脱水テトラヒドロフラン400ml、脱水トルエン300mlに溶解させ、-70℃に冷却し、n-ブチルリチウム44.6ml(70.4mmol)を滴下して1時間撹拌し、トリイソプリピルボロン酸エステル44.0ml(192mmol)を加え、2時間かけて室温まで昇温した。10%塩酸200mlを加え、2時間撹拌した。沈殿物を濾取し、トルエンで洗浄及び減圧下で乾燥し、黄色の固体として7,12-ジフェニルベンゾ[k]フルオランテン-3-イルボロン酸25.14g(収率88%)を得た。
合成例2
(b)4-(7,12-ジフェニルベンゾ[k]フルオランテン-3-イル)フェニルボロン酸の合成
 下記スキームに従って、4-(7,12-ジフェニルベンゾ[k]フルオランテン-3-イル)フェニルボロン酸を合成した。
Figure JPOXMLDOC01-appb-C000033
(b-1)3-(4-ブロモフェニル)-7,12-ジフェニルベンゾ[k]フルオランテンの合成
 アルゴン雰囲気下、7,12-ジフェニルベンゾ[k]フルオランテン-3-イルボロン酸1.79g(4mmol)、4-ブロモヨードベンゼン1.25g(4.4mmol)、テトラキストリフェニルフォスフィンパラジウム(0)0.14g(0.12mmol)、トルエン12ml及び2M炭酸ナトリウム水溶液6mlの混合物を7時間加熱還流撹拌した。反応溶液を室温に冷却し、トルエンで抽出した後、有機層を飽和食塩水で洗浄した。得られた有機層を無水硫酸ナトリウムで乾燥させた後、溶媒を留去し、得られた残渣をシリカゲルクロマトグラフィーで精製し、3-(4-ブロモフェニル)-7,12-ジフェニルベンゾ[k]フルオランテン1.30g(収率58%)を得た。
(b-2)4-(7,12-ジフェニルベンゾ[k]フルオランテン-3-イル)フェニルボロン酸の合成
 アルゴン雰囲気下、3-(4-ブロモフェニル)-7,12-ジフェニルベンゾ[k]フルオランテン1.30g(2.32mmol)を脱水トルエン23ml及び脱水テトラヒドロフラン23mlに溶解し、-70℃に冷却し、n-ブチルリチウム1.6ml(2.55mmol)を滴下して1時間撹拌し、トリイソプリピルボロン酸エステル1.6ml(6.98mmol)を加え、-70℃で1時間撹拌した後、室温まで昇温した。反応溶液に2M塩酸を加えてトルエンで抽出を行った後、有機層を無水硫酸ナトリウムで乾燥し、溶媒を留去した。得られた残渣をヘキサンで洗浄し、4-(7,12-ジフェニルベンゾ[k]フルオランテン-3-イル)フェニルボロン酸0.75g(収率62%)を得た。
合成例3
(c)2-(4-ブロモフェニル)-イミダゾ[1,2-a]ピリジンの合成
 下記スキームに従って、2-(4-ブロモフェニル)-イミダゾ[1,2-a]ピリジンを合成した。
Figure JPOXMLDOC01-appb-C000034
 4-ブロモフェナシルブロミド11.1g(40mmol)、2-アミノピリジン4.14g(44mmol)及び炭酸水素ナトリウム5.04g(60mmol)の混合物をエタノール80ml中で5時間還流した。反応終了後、生成した結晶をろ取し、水及びアセトンで洗浄、並びに減圧下にて乾燥を行い、2-(4-ブロモフェニル)-イミダゾ[1,2-a]ピリジン9.54g(収率87%)を得た。
合成例4
(d)2-(3-ブロモフェニル)-イミダゾ[1,2-a]ピリジンの合成
 下記スキームに示されるように、4-ブロモフェナシルブロミドの代わりに3-ブロモフェナシルブロミドを用いた他は合成例3と同様に反応を行って、2-(3-ブロモフェニル)-イミダゾ[1,2-a]ピリジンを合成した。
Figure JPOXMLDOC01-appb-C000035
合成例5
(e)トリフルオロメタンスルホン酸 6-{4-(イミダゾ[1,2-a]ピリジン-2-イル)フェニル}ナフタレン-2-イルの合成
 下記スキームに従って、トリフルオロメタンスルホン酸 6-{4-(イミダゾ[1,2-a]ピリジン-2-イル)フェニル}ナフタレン-2-イルを合成した。
Figure JPOXMLDOC01-appb-C000036
(e-1)6-ヒドロキシナフタレン-2-イルボロン酸の合成
 アルゴン雰囲気下、6-ブロモ-2-ナフトール5.58g(25mmol)を脱水テトラヒドロフラン125mlに溶解し、-70℃に冷却し、n-ブチルリチウムのヘキサン溶液33ml(55mmol)を30分間かけて徐々に滴下した。-70℃で1.5時間撹拌した後、ホウ酸トリイソプロピル11.5ml(50mmol)を加えて30分間―70℃で撹拌し、その後、徐々に室温に戻しながら3時間撹拌を行った。反応混合物に2M塩酸100mlを加えて室温で2時間撹拌を行った。得られた反応溶液を分液し、水層を酢酸エチルで抽出した。有機層を一つにあわせ飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、溶媒を留去した。得られた残渣をジクロロメタンで懸濁洗浄して6-ヒドロキシナフタレン-2-イルボロン酸4.02g(収率85%)を得た。
(e-2)6-{4-(イミダゾ[1,2-a]ピリジン-2-イル)フェニル}-2-ナフトールの合成
 アルゴン雰囲気下、2-(4-ブロモフェニル)-イミダゾ[1,2-a]ピリジン1.57g(5.73mmol)、6-ヒドロキシナフタレン-2-イルボロン酸1.19g(6.30mmol)、テトラキストリフェニルフォスフィンパラジウム(0)0.20g(0.172mmol)、1,2-ジメトキシエタン20ml及び2M炭酸ナトリウム水溶液10mlの混合物を8時間加熱還流した。反応混合物を室温に冷却し、希塩酸を用いて中和を行い、生成した固体を濾取してメタノール-水混合液で洗浄し乾燥させた。得られた固体をトルエンで洗浄し、6-{4-(イミダゾ[1,2-a]ピリジン-2-イル)フェニル}-2-ナフトール1.45g(収率75%)を得た。
(e-3)トリフルオロメタンスルホン酸 6-{4-(イミダゾ[1,2-a]ピリジン-2-イル)フェニル}ナフタレン-2-イルの合成
 アルゴン雰囲気下、6-{4-(イミダゾ[1,2-a]ピリジン-2-イル)フェニル}-2-ナフトール1.45g(4.32mmol)及びジクロロメタン40mlの混合物を0℃に冷却し、ピリジン1.4ml(17.3mmol)を加え、次いでトリフルオロメタンスルホン酸無水物1.4ml(8.53mmol)を加えて10分間撹拌を行った。反応混合物を室温に昇温し、2.5時間撹拌を行った。反応混合物を氷水浴で冷却しながら、0.5M塩酸を用いて中和し、ジクロロメタンで抽出を行い飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、溶媒を留去した。得られた残渣をシリカゲルクロマトグラフィーにて精製し、トリフルオロメタンスルホン酸 6-{4-(イミダゾ[1,2-a]ピリジン-2-イル)フェニル}ナフタレン-2-イル1.87g(収率93%)を得た。
[イミダゾピリジン誘導体の合成]
実施例1
 アルゴン雰囲気下、7,12-ジフェニルベンゾ[k]フルオランテン-3-イルボロン酸1.88g(4.2mmol)、2-(4-ブロモフェニル)-イミダゾ[1,2-a]ピリジン1.09g(4.0mmol)、テトラキストリフェニルフォスフィンパラジウム(0)0.14g(0.12mmol)、1,2-ジメトキシエタン12ml及び2M炭酸ナトリウム水溶液6mlの混合物を7時間加熱還流撹拌した。反応混合物を室温まで冷却し、水を加え1時間撹拌を行った。生成した固体をろ取し、水、メタノールで洗浄後、減圧下にて乾燥を行った。得られた固体をシリカゲルクロマトグラフィーにて精製し、黄色固体2.26gを得た。得られた化合物は、マススペクトル分析の結果、化合物1であり、分子量596.23に対しm/e=596であった。また、収率は95%であった。
Figure JPOXMLDOC01-appb-C000037
実施例2
 2-(4-ブロモフェニル)-イミダゾ[1,2-a]ピリジンのかわりに2-(3-ブロモフェニル)-イミダゾ[1,2-a]ピリジンを用いた他は実施例1と同様に反応を行った。
 得られた化合物は、マススペクトル分析の結果、下記化合物2であり、分子量596.23に対しm/e=596であった。また、収率89%であった。
Figure JPOXMLDOC01-appb-C000038
実施例3
 7,12-ジフェニルベンゾ[k]フルオランテン-3-イルボロン酸のかわりに4-(7,12-ジフェニルベンゾ[k]フルオランテン-3-イル)フェニルボロン酸0.75gを用いた他は実施例1と同様に反応を行った。
 得られた化合物は、マススペクトル分析の結果、下記化合物3であり、分子量672.26に対しm/e=672であった。また、収率60%であった。
Figure JPOXMLDOC01-appb-C000039
実施例4
 2-(4-ブロモフェニル)-イミダゾ[1,2-a]ピリジンのかわりにトリフルオロメタンスルホン酸 6-{4-(イミダゾ[1,2-a]ピリジン-2-イル)フェニル}ナフタレン-2-イルを用いた他は実施例1と同様に反応を行った。
 得られた化合物は、マススペクトル分析の結果、下記化合物4であり、分子量722.27に対しm/e=722であった。また、収率75%であった。
Figure JPOXMLDOC01-appb-C000040
 化合物1及び2に関して3重項エネルギー(E)、イオン化ポテンシャル及びアフィニティを以下の方法で評価した。結果を表1に示す。
(1)3重項エネルギー(E
 市販の装置F-4500(日立社製)を用いて3重項エネルギーを測定した。ETの換算式は、以下の通りである。
 換算式 E(eV)=1239.85/λedge
 「λedge」とは、縦軸にりん光強度、横軸に波長をとって、りん光スペクトルを表したときに、りん光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸の交点の波長値を意味する。単位:nm。
(2)イオン化ポテンシャル
 大気下光電子分光装置(理研計器(株)社製:AC-3)を用いてイオン化ポテンシャルを測定した。具体的には、得られた化合物に光を照射し、その際に電荷分離によって生じる電子量を測定することにより、イオン化ポテンシャルを測定した。
(3)アフィニティ(Af)
 イオン化ポテンシャルとエネルギーギャップの測定値からアフィニティを算出した。エネルギーギャップはトルエン中の吸収スペクトルの吸収端から測定した。具体的には、市販の可視・紫外分光光度計を用いて、得られた化合物の吸収スペクトルを測定し、そのスペクトルが立ち上がり始める波長から算出した。
Figure JPOXMLDOC01-appb-T000001
[有機EL素子の作製]
実施例5
 有機EL素子に使用した材料は、以下の通りである。
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
 25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして膜厚50nmの化合物HT-1を成膜した。HT-1膜は正孔注入層として機能する。HT-1膜の成膜に続けて、化合物HT-2を蒸着してHT-1膜上に膜厚45nmのHT-2膜を成膜した。HT-2膜は正孔輸送層として機能する。
 HT-2膜上に化合物BH-1(ホスト材料)及び化合物BD-1(ドーパント材料)を20:1の膜厚比で蒸着し、膜厚25nmの発光層を成膜した。発光層の上に化合物1を蒸着して、発光層上に膜厚25nmの電子輸送層を形成した。この後、LiFを膜厚1nmで成膜した。このLiF膜上に金属Alを80nm蒸着させ金属陰極を形成し有機EL素子を作製した。
 作製した有機EL素子について、電流密度10mA/cmにおける駆動時の素子性能(駆動電圧、発光効率及び発光色)、及び電流密度8mA/cmにおいて輝度が5%減少するまでの時間(輝度95%寿命)を評価した。結果を表2に示す。
実施例6~8並びに比較例1及び2
 化合物1の代わりに化合物2~4、ET-1及びET-2をそれぞれ用いて電子輸送層を形成した他は実施例1と同様にして有機EL素子を作製し、評価した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
実施例9
 25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして膜厚50nmの化合物HT-1を成膜した。HT-1膜は正孔注入層として機能する。HT-1膜の成膜に続けて、化合物HT-2を蒸着してHT-1膜上に膜厚45nmのHT-2膜を成膜した。HT-2膜は正孔輸送層として機能する。
 HT-2膜上に化合物BH-1(ホスト材料)及び化合物BD-1(ドーパント材料)を20:1の膜厚比で蒸着し、膜厚25nmの発光層を成膜した。発光層の上に化合物1とリチウムキノリノラート(Liq)を1:1の膜圧比で蒸着して、発光層上に膜厚25nmの電子輸送層を形成した。この電子輸送層上に金属Alを80nm蒸着させ金属陰極を形成し有機EL素子を作製した。
 得られた有機EL素子について、実施例5と同様の評価を行った。結果を表3に示す。
実施例10並びに比較例3~4
 化合物1の代わりに化合物2、ET-1及びET-2をそれぞれ用いて電子輸送層を形成した他は実施例5と同様にして有機EL素子を作製し、評価した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表1~3の結果から、化合物1~4を用いることにより、低電圧、高効率且つ長寿命な素子が得られることが分かる。これは、電子注入性を高めるイミダゾピリジン構造を導入することで低電圧化を行う一方で、ベンゾフルオランテン環が高い正孔耐性を有することから、電子輸送層に流入する正孔による素子の劣化を低減することにより、素子の高効率化・発光寿命の向上を同時に実現したためと考えられる。
 また、ベンゾフルオランテン環のアフィニティが大きいことから、電子輸送層をリチウムキノレートとの共蒸着層とした際にも、駆動電圧が低い値となっていることが分かる。
 化合物1~4は、高い発光効率を実現しているが、この高効率の要因として、障壁材の効果が関与している可能性が示唆される。ホスト材料のBH-1の3重項エネルギーは、化合物1及び化合物2と同様の方法で算出すると1.83eVであり、本発明の化合物の値はこれと比べ十分に大きいことから、発光層内への3重項励起子の閉じ込め効果が生じていることが考えられる。
実施例11
 25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして膜厚50nmの化合物HT-1を成膜した。HT-1膜は正孔注入層として機能する。HT-1膜の成膜に続けて、化合物HT-2を蒸着してHT-1膜上に膜厚45nmのHT-2膜を成膜した。HT-2膜は正孔輸送層として機能する。
 HT-2膜上に化合物BH-1(ホスト材料)及び化合物1(ドーパント材料)を20:1の膜厚比で蒸着し、膜厚25nmの発光層を成膜した。発光層の上にTB-1を蒸着して、発光層上に膜厚5nmのTB-1層を形成した。この層は三重項励起子阻止層として機能する。TB-1膜上にET-3を蒸着して、発光層上に膜厚20nmのET-3層を形成した。この層は電子輸送層として機能する。この後、LiFを膜厚1nmで成膜した。このLiF膜上に金属Alを80nm蒸着させ金属陰極を形成し有機EL素子を作製した。
 尚、上記TB-1及びET-3は、それぞれ下記構造を有する化合物である。
Figure JPOXMLDOC01-appb-C000043
 作製した有機EL素子について、電流密度10mA/cmにおける駆動時の素子性能(駆動電圧、発光効率及び発光色)を評価したところ、3.5Vで駆動し、8.7cd/Aの発光効率の青色発光が得られた。
 上記のように、本発明の化合物は青色蛍光発光素子用ドーパント材料としても用いることができ、高い発光効率を得ることができる。
 本発明のイミダゾピリジン誘導体を含んでなる有機EL素子は、低消費電力化が望まれる大型テレビ向け表示パネルや照明パネル等に用いることができる。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献の内容を全てここに援用する。

Claims (11)

  1.  下記式(1)で表わされるイミダゾピリジン誘導体。
    Figure JPOXMLDOC01-appb-C000044
    (R~R12のいずれか1つは単結合でLと結合し、単結合以外のR~R12は、それぞれ水素原子、ハロゲン原子、シアノ基、置換もしくは無置換の炭素数1~10のアルキル基、置換もしくは無置換の環形成炭素数3~8のシクロアルキル基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数6~20のアリールオキシ基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の環形成原子数5~30の複素環基である。
     X~Xは、それぞれ窒素原子、又はC(R23)で表わされる連結基である、及び/又は、XとX、XとX、及びXとXが、それぞれ互いに結合し、置換もしくは無置換の環形成炭素数6~18の芳香環を形成する、又は置換もしくは無置換の環形成原子数5~18の芳香族複素環を形成する。
     X~Xの連結基C(R23)が複数の場合、複数のR23は同じでも異なってもよい。
     R21~R23のいずれか1つは単結合でLと結合し、単結合以外のR21~R23は、それぞれ水素原子、ハロゲン原子、シアノ基、置換もしくは無置換の炭素数1~10のアルキル基、置換もしくは無置換の環形成炭素数3~8のシクロアルキル基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数6~20のアリールオキシ基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の環形成原子数5~30の複素環基である。
     Lは、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、置換もしくは無置換の環形成原子数5~30の2価の複素環基、又は2~3個のこれら2価の基が単結合で結合してなる連結基である。)
  2.  下記式(2)で表わされる請求項1に記載のイミダゾピリジン誘導体。
    Figure JPOXMLDOC01-appb-C000045
    (式中、X~X、R~R、R~R12、R21~R23及びLは、式(1)と同様である。)
  3.  下記式(3)で表わされる請求項1又は2に記載のイミダゾピリジン誘導体。
    Figure JPOXMLDOC01-appb-C000046
    (式中、X~X、R~R、R~R12、R22、R23及びLは、式(1)と同様である。)
  4.  R及びR12が、それぞれ環形成炭素数6~30のアリール基である請求項1~3のいずれかに記載のイミダゾピリジン誘導体。
  5.  有機エレクトロルミネッセンス素子用材料である請求項1~4のいずれかに記載のイミダゾピリジン誘導体。
  6.  前記有機エレクトロルミネッセンス素子用材料が、電子注入材料又は電子輸送材料である請求項5に記載のイミダゾピリジン誘導体。
  7.  陰極と陽極の間に少なくとも発光層を含む1以上の有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、前記有機薄膜層の少なくとも1層が、請求項1~4のいずれかに記載のイミダゾピリジン誘導体を単独もしくは混合物の成分として含有する有機エレクトロルミネッセンス素子。
  8.  前記有機薄膜層が電子注入層又は電子輸送層を含み、前記電子注入層又は該電子輸送層が、請求項1~4のいずれかに記載のイミダゾピリジン誘導体を単独もしくは混合物の成分として含有する請求項7に記載の有機エレクトロルミネッセンス素子。
  9.  前記イミダゾピリジン誘導体を含有する電子注入層又は電子輸送層が、還元性ドーパントをさらに含有する請求項8に記載の有機エレクトロルミネッセンス素子。
  10.  前記還元性ドーパントが、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体及び希土類金属の有機錯体からなる群から選択される1種又は2種以上である請求項9に記載の有機エレクトロルミネッセンス素子。
  11.  前記還元性ドーパントが、アルカリ金属の8-キノリノール錯体である請求項10に記載の有機エレクトロルミネッセンス素子。
PCT/JP2011/003920 2010-07-09 2011-07-08 イミダゾピリジン誘導体及びそれを含んでなる有機エレクトロルミネッセンス素子 WO2012005009A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011548459A JP5315420B2 (ja) 2010-07-09 2011-07-08 イミダゾピリジン誘導体及びそれを含んでなる有機エレクトロルミネッセンス素子
US13/499,300 US20120187392A1 (en) 2010-07-09 2011-07-08 Imidazopyridine derivatives and organic electroluminescent elements containing same
EP11803346.3A EP2597094A4 (en) 2010-07-09 2011-07-08 IMIDAZOPYRIDINE DERIVATIVES AND ORGANIC ELECTROLUMINESCENE ELEMENTS THEREWITH
CN2011800026307A CN102471340A (zh) 2010-07-09 2011-07-08 咪唑并吡啶衍生物及包含它的有机电致发光元件
KR1020117031469A KR20120119981A (ko) 2010-07-09 2011-07-08 이미다조피리딘 유도체 및 그것을 포함하여 이루어지는 유기 전계 발광 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-156623 2010-07-09
JP2010156623 2010-07-09

Publications (1)

Publication Number Publication Date
WO2012005009A1 true WO2012005009A1 (ja) 2012-01-12

Family

ID=45440998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003920 WO2012005009A1 (ja) 2010-07-09 2011-07-08 イミダゾピリジン誘導体及びそれを含んでなる有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (1) US20120187392A1 (ja)
EP (1) EP2597094A4 (ja)
JP (1) JP5315420B2 (ja)
KR (1) KR20120119981A (ja)
CN (1) CN102471340A (ja)
TW (1) TW201223953A (ja)
WO (1) WO2012005009A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187258A1 (ja) * 2012-06-12 2013-12-19 東レ株式会社 発光素子材料および発光素子
US20140239263A1 (en) * 2013-02-25 2014-08-28 Samsung Display Co., Ltd. Anthracene-based compound and organic light emitting diode comprising the same
WO2015182547A1 (ja) * 2014-05-28 2015-12-03 東レ株式会社 フルオランテン誘導体、それを含有する電子デバイス、発光素子および光電変換素子
JP2015218112A (ja) * 2014-05-14 2015-12-07 ▲いく▼▲雷▼光電科技股▲分▼有限公司 有機発光デバイスに用いられる化合物およびその化合物を有する有機発光デバイス
CN108963088A (zh) * 2017-12-18 2018-12-07 广东聚华印刷显示技术有限公司 有机发光二极管及其电子注入层和应用
WO2020250979A1 (ja) * 2019-06-14 2020-12-17 株式会社Kyulux 有機発光素子、積層体および発光方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101857250B1 (ko) 2011-05-13 2018-05-14 삼성디스플레이 주식회사 축합환 화합물, 이를 포함하는 유기 발광 소자 및 평판 표시 장치
KR101910996B1 (ko) * 2011-05-13 2018-10-24 삼성디스플레이 주식회사 축합환 화합물, 이를 포함하는 유기 발광 소자 및 평판 표시 장치
JP5959970B2 (ja) * 2012-07-20 2016-08-02 出光興産株式会社 有機エレクトロルミネッセンス素子
KR101661797B1 (ko) * 2013-07-03 2016-10-04 단국대학교 산학협력단 유기금속화합물을 전자수송 도펀트로 함유하는 유기발광다이오드
KR102360782B1 (ko) * 2017-07-20 2022-02-10 삼성디스플레이 주식회사 유기 발광 소자
CN108864091A (zh) * 2018-09-03 2018-11-23 上海道亦化工科技有限公司 一种咪唑并吡啶衍生物及其用途和发光器件

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11345687A (ja) 1998-06-01 1999-12-14 Canon Inc 発光素子
JP2004002297A (ja) 2002-04-11 2004-01-08 Idemitsu Kosan Co Ltd 新規含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2005072012A (ja) 2003-08-27 2005-03-17 Novaled Gmbh 発光素子とその製造方法
US20080014464A1 (en) 2006-06-22 2008-01-17 Idemitsu Kosan Co., Ltd. Organic electroluminescent device using aryl amine derivative containing heterocycle
WO2008023759A1 (fr) 2006-08-23 2008-02-28 Idemitsu Kosan Co., Ltd. Dérivés d'amines aromatiques et dispositifs électroluminescents organiques utilisant ces mêmes amines
JP2008069128A (ja) * 2006-09-15 2008-03-27 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子用材料
WO2008102740A1 (ja) * 2007-02-19 2008-08-28 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
US20090149649A1 (en) * 2007-12-07 2009-06-11 Dong-Woo Shin Aromatic hetrocyclic compound, organic light-emitting diode including organic layer comprising the aromatic hetrocyclic compound, and method of manufacturing the organic light-emitting diode
WO2009081857A1 (ja) 2007-12-21 2009-07-02 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
JP2009152529A (ja) * 2007-11-28 2009-07-09 Idemitsu Kosan Co Ltd フルオランテン誘導体を用いた有機エレクトロルミネッセンス素子
WO2009107596A1 (ja) 2008-02-25 2009-09-03 出光興産株式会社 有機発光媒体及び有機el素子
US20090243473A1 (en) 2006-08-04 2009-10-01 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
WO2009148269A2 (ko) 2008-06-04 2009-12-10 주식회사 두산 벤조플루오란센 유도체 및 이를 이용한 유기 발광 소자
JP2010045033A (ja) * 2008-08-18 2010-02-25 Samsung Mobile Display Co Ltd 光効率改善層を具備した有機発光素子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004034751A1 (ja) * 2002-10-09 2006-02-09 出光興産株式会社 有機エレクトロルミネッセンス素子
CN101407492A (zh) * 2003-01-10 2009-04-15 出光兴产株式会社 含氮杂环衍生物以及使用该衍生物的有机电致发光元件
CN102119158B (zh) * 2008-11-03 2015-09-09 株式会社Lg化学 含氮杂环化合物及使用该化合物的有机电子器件

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11345687A (ja) 1998-06-01 1999-12-14 Canon Inc 発光素子
JP2004002297A (ja) 2002-04-11 2004-01-08 Idemitsu Kosan Co Ltd 新規含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2005072012A (ja) 2003-08-27 2005-03-17 Novaled Gmbh 発光素子とその製造方法
US20080014464A1 (en) 2006-06-22 2008-01-17 Idemitsu Kosan Co., Ltd. Organic electroluminescent device using aryl amine derivative containing heterocycle
US20090243473A1 (en) 2006-08-04 2009-10-01 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
WO2008023759A1 (fr) 2006-08-23 2008-02-28 Idemitsu Kosan Co., Ltd. Dérivés d'amines aromatiques et dispositifs électroluminescents organiques utilisant ces mêmes amines
JP2008069128A (ja) * 2006-09-15 2008-03-27 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子用材料
WO2008102740A1 (ja) * 2007-02-19 2008-08-28 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
JP2009152529A (ja) * 2007-11-28 2009-07-09 Idemitsu Kosan Co Ltd フルオランテン誘導体を用いた有機エレクトロルミネッセンス素子
KR20090059849A (ko) 2007-12-07 2009-06-11 삼성전자주식회사 방향족 복소환 화합물, 이를 포함한 유기막을 구비한 유기발광 소자 및 상기 유기발광 소자의 제조 방법
US20090149649A1 (en) * 2007-12-07 2009-06-11 Dong-Woo Shin Aromatic hetrocyclic compound, organic light-emitting diode including organic layer comprising the aromatic hetrocyclic compound, and method of manufacturing the organic light-emitting diode
WO2009081857A1 (ja) 2007-12-21 2009-07-02 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2009107596A1 (ja) 2008-02-25 2009-09-03 出光興産株式会社 有機発光媒体及び有機el素子
WO2009148269A2 (ko) 2008-06-04 2009-12-10 주식회사 두산 벤조플루오란센 유도체 및 이를 이용한 유기 발광 소자
JP2010045033A (ja) * 2008-08-18 2010-02-25 Samsung Mobile Display Co Ltd 光効率改善層を具備した有機発光素子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. M. BACHILO ET AL., J. PHYS. CHEM. A, vol. 104, 2000, pages 7711
See also references of EP2597094A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102102620B1 (ko) 2012-06-12 2020-04-21 도레이 카부시키가이샤 발광 소자 재료 및 발광 소자
KR20150029617A (ko) * 2012-06-12 2015-03-18 도레이 카부시키가이샤 발광 소자 재료 및 발광 소자
WO2013187258A1 (ja) * 2012-06-12 2013-12-19 東レ株式会社 発光素子材料および発光素子
US20140239263A1 (en) * 2013-02-25 2014-08-28 Samsung Display Co., Ltd. Anthracene-based compound and organic light emitting diode comprising the same
JP2015218112A (ja) * 2014-05-14 2015-12-07 ▲いく▼▲雷▼光電科技股▲分▼有限公司 有機発光デバイスに用いられる化合物およびその化合物を有する有機発光デバイス
WO2015182547A1 (ja) * 2014-05-28 2015-12-03 東レ株式会社 フルオランテン誘導体、それを含有する電子デバイス、発光素子および光電変換素子
JPWO2015182547A1 (ja) * 2014-05-28 2017-04-20 東レ株式会社 フルオランテン誘導体、それを含有する電子デバイス、発光素子および光電変換素子
CN108963088A (zh) * 2017-12-18 2018-12-07 广东聚华印刷显示技术有限公司 有机发光二极管及其电子注入层和应用
WO2020250979A1 (ja) * 2019-06-14 2020-12-17 株式会社Kyulux 有機発光素子、積層体および発光方法
JP2020205318A (ja) * 2019-06-14 2020-12-24 株式会社Kyulux 有機発光素子、積層体および発光方法
CN113795938A (zh) * 2019-06-14 2021-12-14 九州有机光材股份有限公司 有机发光元件、层叠体及发光方法
JP7337369B2 (ja) 2019-06-14 2023-09-04 株式会社Kyulux 有機発光素子、積層体および発光方法
CN113795938B (zh) * 2019-06-14 2024-05-28 九州有机光材股份有限公司 有机发光元件、层叠体及发光方法

Also Published As

Publication number Publication date
CN102471340A (zh) 2012-05-23
JPWO2012005009A1 (ja) 2013-09-02
EP2597094A1 (en) 2013-05-29
US20120187392A1 (en) 2012-07-26
EP2597094A4 (en) 2014-01-08
KR20120119981A (ko) 2012-11-01
TW201223953A (en) 2012-06-16
JP5315420B2 (ja) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5315420B2 (ja) イミダゾピリジン誘導体及びそれを含んでなる有機エレクトロルミネッセンス素子
JP5909179B2 (ja) ベンゾ[k]フルオランテン誘導体及びそれを含んでなる有機エレクトロルミネッセンス素子
JP5722238B2 (ja) 含窒素複素環誘導体及びそれを含んでなる有機エレクトロルミネッセンス素子
JP5964328B2 (ja) 有機発光素子及び該有機発光素子に使用されるための材料
WO2012070226A1 (ja) 含酸素縮合環誘導体及びそれを含んでなる有機エレクトロルミネッセンス素子
WO2018186396A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2012017680A1 (ja) 有機エレクトロルミネッセンス素子
WO2018151065A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
TWI588238B (zh) 苯并茀化合物、使用該化合物的發光層用材料、有機電場發光元件、顯示裝置及照明裝置
EP2617712A1 (en) Nitrogen-containing aromatic heterocyclic derivative and organic electroluminescence device using same
KR20120116269A (ko) 신규한 유기 전자재료용 화합물 및 이를 포함하는 유기 전계 발광 소자
JP5946963B2 (ja) 多環式化合物およびそれを含む有機電子素子
KR20110015836A (ko) 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
JP6158703B2 (ja) アクリダン環構造を有する化合物および有機エレクトロルミネッセンス素子
KR20190088030A (ko) 유기 발광 소자
WO2013077385A1 (ja) 芳香族アミン誘導体およびそれを用いた有機エレクトロルミネッセンス素子
JP2015214491A (ja) トリフェニレン環構造を有する化合物および有機エレクトロルミネッセンス素子
JP6014053B2 (ja) 有機発光素子及び該有機発光素子に使用されるための材料
KR20210000261A (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180002630.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011548459

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117031469

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803346

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13499300

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011803346

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE