WO2012017680A1 - 有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2012017680A1
WO2012017680A1 PCT/JP2011/004458 JP2011004458W WO2012017680A1 WO 2012017680 A1 WO2012017680 A1 WO 2012017680A1 JP 2011004458 W JP2011004458 W JP 2011004458W WO 2012017680 A1 WO2012017680 A1 WO 2012017680A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
ring
carbon atoms
Prior art date
Application number
PCT/JP2011/004458
Other languages
English (en)
French (fr)
Inventor
裕勝 伊藤
博之 齊藤
由美子 水木
河村 昌宏
祐一郎 河村
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to CN2011800026082A priority Critical patent/CN102576814A/zh
Priority to JP2011548450A priority patent/JPWO2012017680A1/ja
Priority to US13/509,878 priority patent/US9512137B2/en
Priority to EP11814314.8A priority patent/EP2602839A1/en
Publication of WO2012017680A1 publication Critical patent/WO2012017680A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/50Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton to carbon atoms of non-condensed six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/50Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton to carbon atoms of non-condensed six-membered aromatic rings
    • C07C255/51Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton to carbon atoms of non-condensed six-membered aromatic rings containing at least two cyano groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/52Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton to carbon atoms of six-membered aromatic rings being part of condensed ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/623Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/24Anthracenes; Hydrogenated anthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/26Phenanthrenes; Hydrogenated phenanthrenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • C07C2603/42Ortho- or ortho- and peri-condensed systems containing four condensed rings containing only six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • C07C2603/42Ortho- or ortho- and peri-condensed systems containing four condensed rings containing only six-membered rings
    • C07C2603/48Chrysenes; Hydrogenated chrysenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • C07C2603/42Ortho- or ortho- and peri-condensed systems containing four condensed rings containing only six-membered rings
    • C07C2603/50Pyrenes; Hydrogenated pyrenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/52Ortho- or ortho- and peri-condensed systems containing five condensed rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers

Definitions

  • the present invention relates to an organic electroluminescence element.
  • an organic electroluminescence (EL) element using an organic substance is expected to be used as an inexpensive large-area full-color display element of a solid light emitting type and has been developed in many ways.
  • an organic EL element is composed of a light emitting layer and a pair of counter electrodes formed by sandwiching the light emitting layer. In light emission, when an electric field is applied between both electrodes, electrons are injected from the cathode side and holes are injected from the anode side, and the electrons recombine with holes in the light emitting layer to generate an excited state. When returning to the ground state, energy is emitted as light.
  • Patent Documents 1 and 2 disclose materials for organic electroluminescence elements aimed at improving these.
  • Patent Document 1 discloses a material having an anthracene skeleton and an imidazole skeleton as an electron injecting and transporting material that can greatly improve the lifetime and efficiency of the element.
  • Patent Document 2 discloses a nitrogen-containing heterocyclic derivative having a specific imidazole skeleton as an electron transport material capable of improving the light emission efficiency even at a low voltage.
  • the conventional electron transport material uses a nitrogen-containing heterocyclic derivative to improve the performance of the organic EL element.
  • Patent Document 3 discloses that an organic layer contains an anthracene derivative compound and an ionic metal complex, or two different types of anthracene derivative compounds in order to improve the efficiency characteristics of the lifetime, luminance and power consumption of the organic light emitting device.
  • Patent Document 4 discloses a compound having a benzofluoranthene skeleton for use as a dopant material for a light emitting layer.
  • An object of the present invention is to provide a highly efficient and long-life organic EL element.
  • the present inventors can obtain excellent effects (low voltage, high efficiency, long life) when an aromatic hydrocarbon material having a cyano group is used as an electron transport material of an organic EL device. As a result, the present invention has been completed.
  • Patent Documents 1 to 3 disclose materials that essentially include a nitrogen-containing heterocyclic substituent represented by an imidazole skeleton, or It is disclosed that a mixed layer of an aromatic hydrocarbon compound and a metal complex or the like is used as an electron transport material.
  • a material having a nitrogen-containing heterocyclic substituent typified by an imidazole skeleton exhibits excellent electron injection / transport properties, but the nitrogen-containing heterocyclic substituent is considered to have insufficient hole resistance.
  • a material that does not have a nitrogen-containing heterocyclic derivative is considered to increase the driving voltage with a single material, and it is necessary to use a metal complex or the like together, and an electron injection / transport layer is formed by using multiple materials together If so, the manufacturing process becomes complicated. Therefore, a material that can form the electron injection / transport layer with a single material, which can be further simplified, has been desired.
  • an organic EL device having a low voltage, high efficiency, and long life can be obtained by using an electron transport material having a cyano group and an aromatic ring group.
  • the following organic EL elements are provided.
  • An anode, a light emitting layer, an electron transport zone and a cathode are provided in this order, The organic electroluminescent element in which the electron transport zone includes an electron transport material having a cyano group and an aromatic ring group.
  • the electron transport material is an electron transport material having a cyano group and an aromatic monocyclic group and / or an aromatic condensed ring group.
  • 3. The organic electroluminescence device according to 1 or 2, wherein the electron transport material is represented by the following formula (ET).
  • L 1 is a single bond or a substituted or unsubstituted a + 1-valent aromatic ring group having 6 to 50 ring carbon atoms.
  • Ar 1 is a substituted or unsubstituted 1 + b valent aromatic ring group having 6 to 50 ring carbon atoms.
  • a, b and c are each an integer of 1 to 3.
  • A represents the following formulas (A-1) to (A-12) (In the formulas (A-1) to (A-12), R 1 to R 12 , R 21 to R 30 , R 31 to R 40 , R 41 to R 50 , R 51 to R 60 , R 61 to R 72 , R 73 to R 86 , R 87 to R 94 , R 95 C to R 104 , R 105 to R 114 , R 115 to R 124 or R 125 to R 134 are bonded to L 1 by a single bond, and R 1 to R 12 , R 21 to R other than a single bond are bonded.
  • R 31 to R 40 , R 41 to R 50 , R 51 to R 60 , R 61 to R 72 , R 73 to R 86 , R 87 to R 94 , R 95 to R 104 , R 105 to R 114 , R 115 to R 124 or R 125 to R 134 are each a hydrogen atom, a halogen atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted ring carbon number having 3 to 10 carbon atoms.
  • Cycloalk Group a substituted or unsubstituted silyl group, or a substituted or unsubstituted ring aryl group having 6 to 50, by bonding respective groups adjacent to form a ring.
  • a condensed aromatic ring group selected from the group consisting of: ] 4).
  • the reducing dopant is an alkali metal, alkaline earth metal, rare earth metal, alkali metal oxide, alkali metal halide, alkaline earth metal oxide, alkaline earth metal halide, rare earth metal oxide. 9.
  • E aromatic ring group represented by the following formula (ET).
  • L 1 is a single bond or a substituted or unsubstituted a + 1-valent aromatic ring group having 6 to 50 ring carbon atoms.
  • Ar 1 is a substituted or unsubstituted 1 + b valent aromatic ring group having 6 to 50 ring carbon atoms.
  • a, b and c are each an integer of 1 to 3.
  • A represents the following formulas (A-1) to (A-12) (In the formulas (A-1) to (A-12), R 1 to R 12 , R 21 to R 30 , R 31 to R 40 , R 41 to R 50 , R 51 to R 60 , R 61 to R 72 , R 73 to R 86 , R 87 to R 94 , R 95 C to R 104 , R 105 to R 114 , R 115 to R 124 or R 125 to R 134 are bonded to L 1 by a single bond, and R 1 to R 12 , R 21 to R other than a single bond are bonded.
  • R 31 to R 40 , R 41 to R 50 , R 51 to R 60 , R 61 to R 72 , R 73 to R 86 , R 87 to R 94 , R 95 to R 104 , R 105 to R 114 , R 115 to R 124 or R 125 to R 134 are each a hydrogen atom, a halogen atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted ring carbon number having 3 to 10 carbon atoms.
  • Cycloalk Group a substituted or unsubstituted silyl group, or a substituted or unsubstituted ring aryl group having 6 to 50, by bonding respective groups adjacent to form a ring.
  • a condensed aromatic ring group selected from the group consisting of: ]
  • an organic EL element having a low voltage, high efficiency, and long life is provided.
  • the organic EL device of the present invention includes at least an anode 10, a light emitting layer 20, an electron transport zone 30 and a cathode 40 in this order, and the electron transport zone 30 includes an electron transport material having a cyano group and an aromatic ring group. Yes ( Figure 1).
  • the organic EL device of the present invention may further have a hole transport zone 50 and other layers between the anode 10 and the light emitting layer 20 as required (FIG. 1).
  • the “aromatic ring group” of the electron transport material included in the electron transport band of the organic EL device of the present invention contains an oxygen atom and / or a sulfur atom. It is a group composed of a single ring or a plurality of rings (condensed rings) exhibiting good aromaticity.
  • the “aromatic ring group” includes both an aromatic monocyclic group and an aromatic condensed ring group.
  • the electron transport material of the present invention does not contain a nitrogen-containing heterocyclic group as a substituent of the above “aromatic ring group” from the viewpoint of the low voltage, high efficiency and long life of the present invention.
  • the aromatic monocyclic group is a group formed by connecting one or more ring structures having no fused ring structure.
  • the aromatic fused ring group is a group having a structure in which two or more ring structures are condensed.
  • the number of ring-forming atoms of the aromatic monocyclic group is preferably 5 to 50 (preferably 5 to 30, more preferably 5 to 20), and the number of ring-forming atoms of the aromatic condensed ring group is 8 to 50 (preferably 8 to 30, more preferably 8 to 20) is preferable.
  • aromatic monocyclic group having 5 to 50 ring atoms examples include a phenyl group, a biphenyl group, and a terphenyl group.
  • An aryl group such as a quarterphenyl group and a heterocyclic group such as a furyl group and a thienyl group are preferable.
  • an aryl group is preferable, and a phenyl group, a biphenyl group, and a terphenyl group are particularly preferable.
  • aromatic condensed ring group having 8 to 50 ring atoms include naphthyl group, phenanthryl group, anthryl group , Chrysenyl group, benzoanthryl group, benzophenanthryl group, triphenylenyl group, benzocrisenyl group, indenyl group, fluorenyl group, 9,9-dimethylfluorenyl group, benzofluorenyl group, dibenzofluorenyl group, full Examples thereof include condensed aryl groups such as olanthenyl group, benzofluoranthenyl group and pyrenyl group, and condensed heterocyclic groups such as benzofuranyl group, benzothiophenyl group, dibenzofuranyl group and dibenzothiophenyl group.
  • aromatic condensed ring groups in particular, naphthyl group, phenanthryl group, anthryl group, 9,9-dimethylfluorenyl group, fluoranthenyl group, benzoanthryl group, pyrenyl group, dibenzothiophenyl group, dibenzofuranyl Groups are preferred.
  • the aromatic ring group of the electron transport material in the present invention may be composed of an aromatic monocyclic group and an aromatic monocyclic group, or may be composed of an aromatic monocyclic group and an aromatic condensed ring group. It may be composed of an aromatic condensed ring group and an aromatic condensed ring group.
  • the electron transport material of the present invention is preferably a compound represented by the following formulas (1) to (12).
  • a, b and c are each an integer of 1 to 3, preferably any one of a and c is 1.
  • b is 1.
  • C of R 1 to R 12 are bonded to L 1 by a single bond, and preferably R 3 or R 4 is bonded to L 1 by a single bond.
  • R 1 to R 12 other than a single bond are each a hydrogen atom, a halogen atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 3 to 10 ring carbon atoms.
  • a group, a substituted or unsubstituted silyl group, or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or adjacent groups are bonded to form a ring.
  • L 1 is a single bond or a substituted or unsubstituted a + 1-valent aromatic ring group having 6 to 50 ring carbon atoms.
  • Ar 1 is a substituted or unsubstituted 1 + b valent aromatic ring group having 6 to 50 ring carbon atoms.
  • the benzofluoranthene skeletons in parentheses may be the same or different, and R 1 to R 12 bonded to L 1 may be the same or different.
  • R 1 to R 12 bonded to L 1 may be the same or different.
  • L 1 and cyanoaryl (Ar 1- (CN) b ) in parentheses may be the same or different.
  • the compound represented by the formula (1) is a compound having a benzofluoranthene skeleton and a cyano group at the same time.
  • the benzofluoranthene skeleton has high planarity, and molecules are superposed on each other. Therefore, it is considered that the benzofluoranthene skeleton has high charge transport properties.
  • the benzofluoranthene skeleton has high charge durability and can be expected to have an improved lifetime.
  • the compound represented by the formula (1) having a benzofluoranthene skeleton is: For example, since it has excellent hole resistance even compared with an imidazole skeleton, it is considered that deterioration of the element can be prevented.
  • R 7 and R 12 are each an unsubstituted phenyl group. It is considered that the planarity of the benzofluoranthene skeleton can be improved when R 7 and R 12 are each an unsubstituted phenyl group. In the compound represented by the formula (1) with improved planarity, the overlap between molecules increases, the distance between molecules can be shortened, and the charge transport property can be improved.
  • halogen atom for R 1 to R 12 include fluorine, chlorine, bromine, iodine, and the like, preferably a fluorine atom.
  • Examples of the alkyl group of 1 to 20 carbon atoms (preferably 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms) of R 1 to R 12 include an ethyl group, a methyl group, an i-propyl group, and an n-propyl group. , S-butyl group, t-butyl group, pentyl group, hexyl group and the like.
  • Examples of the cycloalkyl group having 3 to 10 ring carbon atoms (preferably 3 to 6 ring carbon atoms) of R 1 to R 12 include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a 4-methylcyclohexyl group, and the like. Is mentioned.
  • the substituted silyl group of R 1 to R 12 includes an alkylsilyl group having 3 to 30 carbon atoms and an arylsilyl group having 8 to 30 carbon atoms.
  • alkylsilyl group having 3 to 30 carbon atoms preferably 3 to 20 carbon atoms, more preferably 3 to 10 carbon atoms
  • examples of the alkylsilyl group having 3 to 30 carbon atoms include trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, Examples thereof include a propyldimethylsilyl group.
  • Examples of the arylsilyl group having 8 to 30 carbon atoms include triphenylsilyl group, phenyldimethylsilyl group, t-butyldiphenylsilyl group, tolylsilylsilyl group, trixylsilyl group, and trinaphthylsilyl group.
  • Examples of the aryl group having 6 to 50 ring carbon atoms (preferably 6 to 20 ring carbon atoms, more preferably 6 to 12 ring carbon atoms) of R 1 to R 12 include a phenyl group, a naphthyl group, a phenanthryl group, Biphenyl group, terphenyl group, anthryl group, chrycenyl group, benzophenanthryl group, benzanthryl group, benzocricenyl group, fluorenyl group, fluoranthenyl group, naphthacenyl group and the like can be mentioned.
  • a group consisting of a combination of aryl groups described herein such as a phenylnaphthyl group and a phenylnaphthylphenyl group is also preferable.
  • Examples of the a + 1 valent aromatic ring group having 6 to 50 ring carbon atoms (preferably 6 to 20 ring carbon atoms, more preferably 6 to 12 ring carbon atoms) of L 1 include a phenylene group, a naphthylene group, and phenanthrylene. Group, biphenylene group, terphenylene group, quarterphenylene group, anthrylene group, pentacenylene group, peryleneylene group, picenylene group, pyrenylene group, pentaphenylene group, fluorenylene group, chrysenylene group, etc.
  • a residue corresponding to a group consisting of a combination of aryl groups described herein such as a residue corresponding to a phenylnaphthyl group or a phenylnaphthylphenyl group, is also preferable.
  • Examples of the 1 + b valent aromatic ring group having 6 to 50 ring carbon atoms of Ar 1 include residues corresponding to the same specific examples as in the above R 1 to R 12 , preferably a phenyl group or a naphthyl group. The corresponding residue.
  • the substituent includes an alkyl group, an alkylsilyl group, a halogenated alkyl group, an aryl group, a cycloalkyl group, and an alkoxy group. And a heterocyclic group not containing a nitrogen atom, an aralkyl group, an aryloxy group, an arylthio group, an alkoxycarbonyl group, a halogen atom, a hydroxyl group, a nitro group, a cyano group, a carboxyl group, and the like, preferably an aryl group. Specific examples of the substituent are the same as the specific examples described above.
  • unsubstituted means that a hydrogen atom is substituted.
  • the hydrogen atom of the compound of the formula (1) includes light hydrogen and deuterium.
  • ring-forming carbon means carbon atoms constituting a saturated ring, an unsaturated ring, or an aromatic ring.
  • Ring-forming atom means a carbon atom and a hetero atom constituting a ring (including a saturated ring, an unsaturated ring, and an aromatic ring).
  • the compound having a cyano group and an aromatic ring group used in the present invention is an electron transport material compound.
  • the compound represented by the formula (1) having a benzofluoranthene skeleton can be suitably used as a triplet energy barrier material for the reason described later.
  • the benzofluoranthene skeleton generally has a triplet energy higher than that of an anthracene skeleton used as a fluorescent blue material, and has a higher confinement effect of triplet excitons.
  • a barrier layer in contact with a light emitting layer of an organic EL element It is considered that the TTF (triplet-triplet fusion) phenomenon can be promoted by using as a material of the above.
  • the benzofluoranthene skeleton is characterized by improved molecular stacking in the thin film due to its high planarity and increased electron transport properties, thus facilitating electron injection into the light emitting layer. It is considered that the recombination efficiency in the layer can be increased and the TTF phenomenon can be efficiently caused.
  • the compound having a cyano group and an aromatic ring group used in the present invention is represented by the following formulas (2) to (12) in addition to the compound represented by the formula (1) having the benzofluoranthene skeleton described above.
  • a compound having a structure is also preferred.
  • a, b, c, L 1 and Ar 1 are as described in the above formula (1).
  • R 21 to R 30 , R 31 to R 40 , R 41 to R 50 , R 51 to R 60 , R 61 to R 72 , R 73 to R 86 , R 87 to R 94 , R 95 to R 104 , R 105 ⁇ R 114 , R 115 ⁇ R 124 and R 125 ⁇ R 134 are the same as R 1 ⁇ R 12 in the above formula (1).
  • Compound having anthracene skeleton In the compound represented by the above formula (2), it preferably binds to L 1 at 1 to 3 positions out of R 22 , R 23 , R 26 , R 27 , R 29 , R 30 , and more preferably R 29 , R 30 is bound to L 1 at one or both.
  • the anthracene skeletons in parentheses may be the same or different, and when c is 2 or more, L 1 and cyanoaryl (Ar 1- (CN) b ) in parentheses May be the same or different.
  • Compound having pyrene skeleton In the compound represented by the formula (3), preferably binds to L 1 in the 1-3 positions of R 31, R 33, R 36 , R 38, more preferably, R 31, R 33, R 36 , R 38 are bonded to L 1 at one or two positions.
  • the pyrene skeletons in parentheses may be the same or different, and when c is 2 or more, L 1 and cyanoaryl in parentheses (Ar 1- (CN) b ) May be the same or different.
  • Compound having fluoranthene skeleton In the compound represented by the above formula (4), it preferably binds to L 1 at 1 to 2 positions out of R 43 , R 44 , R 47 , R 48 , R 49 , R 50 , and more preferably R 43 , R 44 is bonded to L 1 .
  • the fluoranthene skeletons in parentheses may be the same or different, and when c is 2 or more, L 1 and cyanoaryl (Ar 1- (CN) b ) in parentheses May be the same or different.
  • Compound having chrysene skeleton In the compound represented by the above formula (6), it preferably binds to L 1 at one or both of R 65 and R 71 .
  • the chrysene skeletons in parentheses may be the same or different, and when c is 2 or more, L 1 and cyanoaryl in parentheses (Ar 1- (CN) b ) May be the same or different.
  • the compound having a chrysene skeleton represented by the above formula (6) is preferably a compound represented by the following formula (7) having a structure in which R 71 and R 72 are bonded to each other to form a benzene ring.
  • R 77 preferably binds to L 1 .
  • the benzochrysene skeletons in parentheses may be the same or different, and when c is 2 or more, L 1 and cyanoaryl (Ar 1- (CN) b ) in parentheses May be the same or different.
  • Oxygen-containing condensed aromatic ring compound represented by the following formula (9) In the compound represented by the above formula (9), it preferably binds to L 1 at 1 to 3 positions out of R 97 , R 101 and R 104 , and more preferably binds to L 1 at R 104 .
  • formula (9) when a is 2 or more, the ladder-type dibenzofuran skeletons in parentheses may be the same or different.
  • L 1 and cyanoaryl (Ar 1- (CN) in parentheses B ) may be the same or different.
  • Oxygen-containing condensed aromatic ring compound represented by the following formula (10) In the compound represented by the above formula (10), R 108 preferably binds to L 1 .
  • formula (10) when a is 2 or more, the ladder-type dibenzofuran skeletons in parentheses may be the same or different.
  • L 1 and cyanoaryl (Ar 1- (CN) in parentheses B ) may be the same or different.
  • Oxygen-condensed aromatic ring compound represented by the following formula (11) In the compound represented by the above formula (11), it preferably binds to L 1 at 1 to 2 positions out of R 115 , R 117 , R 122 and R 124 , and more preferably any one of R 117 and R 122 Bind to L 1 on one or both.
  • the ladder-type dibenzofuran skeletons in parentheses may be the same or different.
  • L 1 and cyanoaryl (Ar 1- (CN) in parentheses B ) may be the same or different.
  • Oxygen-containing fused aromatic ring compound represented by the following formula (12) In the compound represented by the above formula (12), it preferably binds to L 1 at 1 to 2 positions out of R 125 , R 127 , R 132 and R 134 , and more preferably any one of R 127 and R 132 Bind to L 1 on one or both.
  • formula (12) when a is 2 or more, the ladder type dibenzofuran skeletons in parentheses may be the same or different.
  • L 1 and cyanoaryl (Ar 1- (CN) in parentheses B ) may be the same or different.
  • the compound represented by the above formula (1) is a known compound and can be produced by a known method.
  • the compounds represented by the above formulas (2) to (12) can be produced, for example, according to the synthesis examples described later.
  • the compound represented by the above formula (ET) is used as an electron transport material, but the compound represented by the above formula (ET) is widely used as an electron in the organic electroluminescence device. It can also be used as various materials including transport materials.
  • the barrier layer, electron injection layer, or electron transport layer (both electron transport zones) containing a compound having a cyano group and an aromatic ring group used in the present invention preferably further contains a reducing dopant.
  • the reducing dopant include donor metals, donor metal compounds, and donor metal complexes. These reducing dopants may be used alone or in combination of two or more.
  • the reducing dopant is a material that donates electrons (referred to as an electron donating material).
  • This electron-donating material is an organic material that forms, together with the electron-donating material, another organic material included in the barrier layer, the electron injection layer, or the electron transport layer, or a layer adjacent to the barrier layer, the electron injection layer, or the electron transport layer.
  • the donor metal means a metal having a work function of 3.8 eV or less, preferably an alkali metal, an alkaline earth metal, or a rare earth metal, and more preferably Cs, Li, Na, Sr, K, Mg, Ca, Ba. , Yb, Eu and Ce.
  • the donor metal compound is a compound containing the above donor metal, preferably a compound containing an alkali metal, an alkaline earth metal or a rare earth metal, and more preferably a halide, oxide or carbonic acid of these metals. Salt, borate.
  • MOx M is a donor metal
  • x is 0.5 to 1.5
  • MFx x is 1 to 3
  • the donor metal complex is a complex of the above-described donor metal, and preferably an alkali metal, alkaline earth metal, or rare earth metal organometallic complex.
  • An organometallic complex represented by the following formula (I) is preferable.
  • M is a donor metal
  • Q is a ligand, preferably a carboxylic acid derivative, diketone derivative or quinoline derivative, and n is an integer of 1 to 4.
  • the donor metal complex examples include a tungsten turbine described in JP-A-2005-72012. Further, phthalocyanine compounds whose central metals are alkali metals and alkaline earth metals described in JP-A-11-345687 can also be used as donor metal complexes.
  • the reducing dopant is preferably an alkali metal, alkaline earth metal, rare earth metal, alkali metal oxide, alkali metal halide, alkaline earth metal oxide, alkaline earth metal halide, rare earth metal
  • alkali metal preferably an alkali metal, alkaline earth metal, rare earth metal, alkali metal oxide, alkali metal halide, alkaline earth metal oxide, alkaline earth metal halide, rare earth metal
  • oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes and rare earth metal organic complexes more preferably alkali metal It is an 8-quinolinol complex.
  • a low work function metal-containing layer may be provided between the electron transport zone and the cathode.
  • the low work function metal-containing layer is a layer containing a low work function metal or a low work function metal compound. Even if it is formed of only a low work function metal or a low work metal compound, it is formed by adding a low work function metal, a low work function metal compound, or a low work function metal complex as a donor to the material used for the electron transport layer. May be.
  • a low work function metal means a metal having a work function of 3.8 eV or less. Examples of the metal having a low work function of 3.8 eV or less include alkali metals and alkaline earth metals. Examples of the alkali metal include Li, Na, K, and Cs.
  • alkaline earth metal examples include Mg, Ca, Sr, and Ba. Other examples include Yb, Eu and Ce.
  • the oxide, halide, carbonate, borate of a low work metal function is preferable.
  • Halides include fluoride, chloride and bromide, with fluoride being preferred.
  • LiF is preferably used.
  • the low work function metal complex is a low work function metal complex, and an alkali metal, alkaline earth metal, or rare earth metal organometallic complex is preferable.
  • the light emitting layer of the organic EL device of the present invention preferably contains at least one anthracene derivative represented by the following formula (4) or a pyrene derivative represented by the following formula (5) as a host.
  • the anthracene derivative represented by the formula (4) is the following compound.
  • Ar 11 and Ar 12 are each independently a substituted or unsubstituted aromatic monocyclic group having 5 to 50 ring atoms, a substituted or unsubstituted aromatic condensed ring group having 8 to 50 ring atoms, Or it is group comprised from the combination of an aromatic monocyclic group and an aromatic condensed ring group.
  • R 101 to R 108 each independently represents a hydrogen atom, a substituted or unsubstituted aromatic monocyclic group having 5 to 50 ring atoms, or a substituted or unsubstituted aromatic condensed ring having 8 to 50 ring atoms.
  • the aromatic monocyclic group is a group composed only of a ring structure having no condensed structure.
  • an aromatic monocyclic group having 5 to 50 ring atoms (preferably 5 to 30 ring atoms, more preferably 5 to 20 ring atoms) is the same as the above “aromatic ring group”
  • a heterocyclic group such as pyridyl group, pyrazyl group, pyrimidyl group, triazinyl group, furyl group, thienyl group, and the like.
  • a phenyl group, a biphenyl group, and a terphenyl group are preferable.
  • the aromatic condensed ring group is a group in which two or more ring structures are condensed.
  • Specific examples of the aromatic condensed ring group having 8 to 50 ring atoms (preferably 8 to 30 ring atoms, more preferably 8 to 20 ring atoms) include the above “aromatic ring group”.
  • the same condensed aryl groups and condensed heterocyclic groups such as benzofuranyl group, benzothiophenyl group, indolyl group, dibenzofuranyl group, dibenzothiophenyl group, carbazolyl group, quinolyl group, phenanthrolinyl group and the like are preferable.
  • naphthyl group phenanthryl group, anthryl group, 9,9-dimethylfluorenyl group, fluoranthenyl group, benzoanthryl group, dibenzothiophenyl group, dibenzofuranyl group, and carbazolyl group are preferable.
  • alkyl group having 1 to 50 carbon atoms is a group represented by —OY
  • examples of Y include the same examples as the alkyl group of formula (1).
  • the aryloxy group having 6 to 50 ring carbon atoms is a group represented by —OAr
  • examples of Ar are the same as the aryl group of formula (1).
  • the aralkyl group having 7 to 50 carbon atoms is represented as —Y—Z.
  • Examples of Y include alkylene examples corresponding to the above alkyl examples, and examples of Z include the aryl groups described above.
  • the aralkyl group has 7 to 50 carbon atoms (the aryl moiety has 6 to 49 carbon atoms (preferably 6 to 30, more preferably 6 to 20, particularly preferably 6 to 12), and the alkyl moiety has 1 to 44 carbon atoms. (Preferably 1-30, more preferably 1-20, still more preferably 1-10, particularly preferably 1-6)), for example, benzyl group, phenylethyl group, 2-phenylpropane-2- It is an yl group.
  • substituents of “substituted or unsubstituted” in Ar 11 , Ar 12 , R 101 to R 108 an aromatic monocyclic group, an aromatic condensed ring group, an alkyl group, a cycloalkyl group, a silyl group, an alkoxy group, A cyano group and a halogen atom (especially fluorine) are preferable, and an aromatic monocyclic group and an aromatic condensed ring group are particularly preferable.
  • Preferred specific substituents are each group of the above formula (4) and the above formula. This is the same as each group in (1).
  • the anthracene derivative represented by the formula (4) is preferably any of the following anthracene derivatives (A), (B), and (C), and is selected according to the configuration of the organic EL element to be applied and the required characteristics. .
  • Ar 11 and Ar 12 in the formula (4) are each independently a substituted or unsubstituted aromatic condensed ring group having 8 to 50 ring atoms.
  • the anthracene derivative can be divided into a case where Ar 11 and Ar 12 are the same substituted or unsubstituted aromatic condensed ring group and a case where they are different substituted or unsubstituted aromatic condensed ring groups.
  • Anthracene derivatives which are substituted or unsubstituted aromatic fused ring groups in which Ar 11 and Ar 12 in formula (4) are different (including differences in substitution position) are particularly preferred, and preferred specific examples of the fused ring are as described above. . Of these, naphthyl group, phenanthryl group, benzanthryl group, 9,9-dimethylfluorenyl group, and dibenzofuranyl group are preferable.
  • Ar 11 and Ar 12 in the formula (4) are a substituted or unsubstituted aromatic monocyclic group having 5 to 50 ring atoms, and the other is a substituted or unsubstituted ring forming atom number. It is an 8-50 aromatic condensed ring group.
  • Ar 12 is a naphthyl group, phenanthryl group, benzoanthryl group, 9,9-dimethylfluorenyl group, dibenzofuranyl group, and Ar 11 is an aromatic monocyclic group or an aromatic condensed ring group. It is a substituted phenyl group.
  • Ar 12 is an aromatic fused ring group
  • Ar 11 is an unsubstituted phenyl group.
  • the aromatic condensed ring group a phenanthryl group, a 9,9-dimethylfluorenyl group, a dibenzofuranyl group, and a benzoanthryl group are particularly preferable.
  • Ar 11 and Ar 12 in formula (4) are each independently a substituted or unsubstituted aromatic monocyclic group having 5 to 50 ring atoms.
  • both Ar 11 and Ar 12 are substituted or unsubstituted phenyl groups.
  • Ar 11 is an unsubstituted phenyl group
  • Ar 12 is a phenyl group having an aromatic monocyclic group or aromatic condensed ring group as a substituent
  • Ar 11 and Ar 12 are each independently Or a phenyl group having an aromatic monocyclic group or an aromatic condensed ring group as a substituent.
  • aromatic monocyclic group and aromatic condensed ring group as the substituent are as described above. More preferably, the aromatic monocyclic group as a substituent is a phenyl group, a biphenyl group, the aromatic condensed ring group is a naphthyl group, a phenanthryl group, a 9,9-dimethylfluorenyl group, a dibenzofuranyl group, a benzoan It is a tolyl group.
  • the pyrene derivative represented by the formula (5) is the following compound.
  • Ar 111 and Ar 222 are each independently a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms.
  • L 101 and L 102 each independently represent a substituted or unsubstituted divalent aryl group or heterocyclic group having 6 to 30 ring carbon atoms.
  • m is an integer from 0 to 1
  • p is an integer from 1 to 4
  • s is an integer from 0 to 1
  • t is an integer from 0 to 3.
  • L 101 or Ar 111 is bonded to any one of the 1 to 5 positions of pyrene
  • L 102 or Ar 222 is bonded to any of the 6 to 10 positions of pyrene.
  • L 101 and L 102 in Formula (5) are preferably a substituted or unsubstituted phenylene group, a substituted or unsubstituted biphenylene group, a substituted or unsubstituted naphthylene group, a substituted or unsubstituted terphenylene group, and a substituted or unsubstituted group. It is a divalent aryl group composed of a substituted fluorenylene group and a combination of these substituents. Further, this substituent is the same as the substituent in “substituted or unsubstituted...” In the formula (1).
  • the substituent of L 101 and L 102 is preferably an alkyl group having 1 to 20 carbon atoms.
  • M in the general formula (5) is preferably an integer of 0 to 1.
  • N in the general formula (5) is preferably an integer of 1 to 2.
  • s is preferably an integer of 0 to 1.
  • T in the general formula (5) is preferably an integer of 0 to 2.
  • the aryl group of Ar 111 and Ar 222 is the same as each group in the formula (1).
  • a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms more preferably a substituted or unsubstituted aryl group having 6 to 16 ring carbon atoms, and preferred specific examples of the aryl group include a phenyl group. Naphthyl group, phenanthryl group, fluorenyl group, biphenyl group, anthryl group, pyrenyl group.
  • the light emitting layer containing the anthracene derivative represented by the formula (4) or the pyrene derivative represented by the formula (5) is preferably a barrier layer, an electron injection layer or an electron transport containing the compound represented by the formula (1). It is in contact with the layer.
  • the light emitting layer is in contact with the barrier layer containing the compound represented by the formula (1), the electron injection layer, or the electron transport layer, it is considered that the light emission efficiency can be increased by using the TTF phenomenon.
  • the light emitting layer may contain a light emitting dopant (phosphorescent dopant and / or fluorescent dopant).
  • the fluorescent dopant is a compound that can emit light from singlet excitons. Fluorescent dopants are required from amine compounds, aromatic compounds, chelate complexes such as tris (8-quinolinolato) aluminum complex, coumarin derivatives, tetraphenylbutadiene derivatives, bisstyrylarylene derivatives, oxadiazole derivatives, etc.
  • a compound selected according to the emission color is preferable, a styrylamine compound, a styryldiamine compound, an arylamine compound, an aryldiamine compound, and an aromatic compound are more preferable, and a condensed polycyclic amine derivative and an aromatic compound are further preferable.
  • These fluorescent dopants may be used alone or in combination.
  • Y represents a substituted or unsubstituted condensed aryl group having 10 to 50 ring carbon atoms.
  • Ar 101 and Ar 102 each represent a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms.
  • Y include the above-mentioned condensed aryl groups, preferably a substituted or unsubstituted anthryl group, a substituted or unsubstituted pyrenyl group, or a substituted or unsubstituted chrysenyl group.
  • q is an integer of 1 to 4.
  • q is preferably an integer of 1 to 2.
  • alkyl group, alkoxy group, aryl group, aryloxy group, and heterocyclic group in the formula (12) include those exemplified above.
  • a fluoranthene compound represented by the following formula (13) is preferable.
  • X 301 to X 306 and X 308 to X 311 each independently represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted ring atom number of 5;
  • X 307 and X 312 each independently represent a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms, a substituted or unsubstituted carbon It is selected from alkyl groups having 1 to 20 and substituted or unsubstituted cycloalkyl groups having 3 to 8 ring carbon atoms.
  • X303 and X304 are mutually different substituents.
  • adjacent substituents may be bonded to each other to form a saturated or unsaturated cyclic structure, and these cyclic structures may be substituted.
  • X 303 or X 304 in formula (13) is preferably a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms. Further, a preferred substituent of “substituted or unsubstituted” in formula (13) is a cyano group or a halogen atom.
  • WO2008 / 023759A1 WO2008 / 023759A1
  • WO2009 / 107596A1 WO2009 / 081857A1
  • US2009 / 0243473A1 US2008.
  • / 0014464A1 US2009 / 0021160A1, etc. can be appropriately selected and used.
  • Example 1 A 25 mm ⁇ 75 mm ⁇ 1.1 mm thick glass substrate with ITO transparent electrode (anode) (manufactured by Geomatic) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes.
  • a glass substrate with a transparent electrode line after washing is mounted on a substrate holder of a vacuum deposition apparatus, and first, a compound A-1 having a film thickness of 50 nm is formed so as to cover the transparent electrode on the surface on which the transparent electrode line is formed. A film was formed. Subsequent to the formation of the A-1 film, a compound A-2 film having a film thickness of 45 nm was formed on the A-1 film.
  • a compound BH-1 and a compound BD-1 were formed in a film thickness ratio of 20: 1 with a film thickness of 25 nm to form a blue light emitting layer.
  • ET 1-01 was deposited as an electron transport layer with a film thickness of 25 nm by vapor deposition. Thereafter, LiF was formed to a thickness of 1 nm.
  • metal Al was deposited to a thickness of 150 nm to form a metal cathode to manufacture an organic EL device. The driving voltage, current efficiency and half life of the manufactured organic EL device were measured and evaluated by the following methods. The results are shown in Table 1.
  • Examples 2 to 9 and Comparative Examples 1 to 3 An organic EL device was produced and evaluated in the same manner as in Example 1 except that the compound shown in Table 1 was used instead of ET 1-01 as the material for the electron transport layer. The results are shown in Table 1.
  • Cyano groups especially when introduced into nitrogen-containing heterocycles, have strong electron trapping properties and prevent electron transport, so they have been known as substituents that greatly increase the driving voltage. It was found that when a group was introduced, the cyano group worked as an electron injection site, did not hinder electron transport, realized a low driving voltage, and had a long lifetime. Moreover, since the nitrogen-containing heterocyclic derivative with poor hole resistance is not used, the durability against holes is remarkably improved and the lifetime is considered to be extended.
  • Example 10 A 25 mm ⁇ 75 mm ⁇ 1.1 mm thick glass substrate with ITO transparent electrode (anode) (manufactured by Geomatic) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes.
  • a glass substrate with a transparent electrode line after washing is mounted on a substrate holder of a vacuum deposition apparatus, and first, a compound A-1 having a film thickness of 50 nm is formed so as to cover the transparent electrode on the surface on which the transparent electrode line is formed. A film was formed.
  • a compound A-2 film having a thickness of 45 nm was formed on this A-1 film.
  • a compound BH-1 and a compound BD-1 were formed in a film thickness ratio of 20: 1 with a film thickness of 25 nm to form a blue light emitting layer.
  • ET 1-01 and lithium quinolinolate (Liq) were deposited at a film thickness ratio of 1: 1 with a film thickness of 25 nm to form an electron transport layer with a film thickness of 25 nm on the light emitting layer.
  • metal Al was deposited by 150 nm to form a metal cathode to form an organic EL device. The driving voltage, current efficiency and half life of the manufactured organic EL device were evaluated. The results are shown in Table 2.
  • Examples 11-18 An organic EL device was produced and evaluated in the same manner as in Example 10 except that the compound shown in Table 2 was used instead of ET-1 as the material for the electron transport layer. The results are shown in Table 2.
  • the electron transport material used in the electron transport zone of the organic EL device of the present invention can produce a low-voltage, high-efficiency and long-life organic EL device as a mixed layer with an alkali metal organic complex. .
  • 6-bromo-2-naphthol 5.58 g was dissolved in dehydrated tetrahydrofuran (125 mL), cooled to ⁇ 70 ° C., and a hexane solution of normal butyl lithium (33 mL, 55 mmol) was gradually added over 30 minutes. It was dripped in. After stirring at ⁇ 70 ° C. for 1.5 hours, triisopropyl borate (11.5 mL) was added and stirred at ⁇ 70 ° C. for 30 minutes, and then stirred for 3 hours while gradually returning to room temperature. 2M hydrochloric acid (100 mL) was added to the reaction mixture, and the mixture was stirred at room temperature for 2 hours.
  • reaction solution was separated, and the aqueous layer was extracted with ethyl acetate.
  • organic layers were combined, washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.
  • the resulting residue was suspended and washed with dichloromethane to obtain 4.02 g (yield 85%) of the desired 6-hydroxynaphthalen-2-ylboronic acid.
  • Synthesis was performed in the same manner as in Synthesis Example 2 except that 3-cyanophenylboronic acid was used in place of 4-cyanophenylboronic acid used in Synthesis Example 2, and the target 3′-bromo-3-yl was obtained in a yield of 44%. Cyanobiphenyl was obtained.
  • the reaction mixture was acidified with 2M hydrochloric acid, extracted with dichloromethane, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.
  • the obtained residue was purified by silica gel column chromatography to obtain 5.7 g (yield 90%) of the desired 6- (4′-cyanobiphenyl-3-yl) naphthalen-2-yl trifluoromethanesulfonate.
  • the reaction solution was cooled to ⁇ 60 ° C., and a solution of triisopropyl borate (7.72 g) in dehydrated diethyl ether (10 mL) was added dropwise. Stirring was continued for 5 hours while raising the temperature of the reaction solution to room temperature. 10% Aqueous hydrochloric acid solution (50 mL) was added, and the mixture was stirred for 1 hr. The aqueous layer was removed, and the organic layer was washed with water and saturated brine, and then dried over magnesium sulfate. After filtering off magnesium sulfate, the organic layer was concentrated. The obtained solid was washed with hexane to obtain 3.18 g (yield 60%) of the target benzo [g] chrysene-10-boronic acid.
  • Trimethyl borate (24.4 g) was added dropwise to the reaction solution, and the mixture was stirred for 1 hour, returned to room temperature, and further stirred for 1 hour.
  • the reaction solution was acidified with 5M hydrochloric acid (270 mL), extracted with toluene, washed with 5% aqueous sodium bicarbonate and 5% brine, and concentrated under reduced pressure. The obtained residue was washed with toluene to obtain 31 g (yield 62%) of the target 10- [4- (1-naphthyl) phenyl] anthracen-9-ylboronic acid.
  • the obtained residue was purified by silica gel column chromatography and recrystallized to obtain 23.8 g of a solid mainly composed of the target 1,6-bis (9,9-dimethyl-9H-fluoren-2-yl) pyrene. It was.
  • the chloroform layer was washed with a saturated aqueous sodium thiosulfate solution and saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure.
  • the obtained residue was recrystallized from toluene, and the obtained crystal was washed with methanol to give the desired 3-bromo-1,6-bis (9,9-dimethyl-9H-fluoren-2-yl) pyrene. 4.9 g of a solid having a main component (purity: 85.6%) was obtained.
  • 6- (4′-cyanobiphenyl-3-yl) naphthalen-2-yl trifluoromethanesulfonate (3.63 g) obtained in Synthesis Example 4, 3-fluoranthenylboronic acid (2.17 g), A mixture of tetrakistriphenylphosphine palladium (0) (0.28 g), toluene (12 mL), 1,2-dimethoxyethane (12 mL) and 2M aqueous sodium carbonate (12 mL) was heated to reflux for 5 hours. The reaction solution was cooled to room temperature, water was added, and extraction was performed with dichloromethane.
  • Examples 19 to 30 and Comparative Examples 4 to 7 An organic EL device was produced in the same manner as in Example 1 except that the compound shown in Table 3 was used instead of ET 1-01 as the electron transport material and the compound shown in Table 3 was used as the dopant. (L / J) and half-life were evaluated. The results are shown in Table 3.
  • the aromatic ring group is not limited to a part of the structure, and widely known aromatic ring groups are widely used. It can be seen that it can be used. It can also be seen that various dopants can be used in the light emitting layer.
  • the organic EL device comprising the electron transport material of the present invention can be used for a display panel or a lighting panel for a large-sized television where low power consumption is desired.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 陽極、発光層、電子輸送帯域及び陰極をこの順に備え、前記電子輸送帯域が、シアノ基と芳香族環基を有する電子輸送材料を含む有機エレクトロルミネッセンス素子。

Description

有機エレクトロルミネッセンス素子
 本発明は、有機エレクトロルミネッセンス素子に関する。
 有機物質を使用した有機エレクトロルミネッセンス(EL)素子は、固体発光型の安価な大面積フルカラー表示素子としての用途が有望視され、多くの開発が行われている。
 一般に有機EL素子は、発光層及びこれを挟持してなる一対の対向電極から構成されている。発光は、両電極間に電界が印加されると、陰極側から電子が及び陽極側から正孔が注入され、電子が発光層において正孔と再結合し、励起状態を生成し、励起状態が基底状態に戻る際にエネルギーを光として放出する。
 これら正孔注入、電子注入及び発光の全てを1層で機能させる有機EL素子の高性能化は難しく、電極間の有機層を複数層化し、機能分離させることにより、高性能化を実現している。具体的には、2つの電極間に正孔輸送層、発光層、電子輸送層等の3層以上の層を積層させた構造が一般的である。
 初期の有機EL素子は、駆動電圧、発光効率及び耐久性が不十分であり、これらの問題に対して様々な技術的改良がなされてきた。例えば特許文献1及び2では、これらの改善を目的とした有機エレクトロルミネッセンス素子用材料を開示する。
 特許文献1には、素子の寿命と効率を大きく向上させることができる電子注入輸送材料として、アントラセン骨格とイミダゾール骨格を有する材料が開示されている。また、特許文献2には、低電圧においても発光効率を向上させることができる電子輸送材料として、特定のイミダゾール骨格を有する含窒素複素環誘導体が開示されている。
 特許文献1及び2が開示するように、従来の電子輸送材料は含窒素複素環誘導体を用いることで、有機EL素子の性能を向上させていた。
 特許文献3には、有機発光素子の寿命、輝度及び消費電力の効率特性を向上させるため、有機層にアントラセン誘導体化合物及びイオン金属錯体、又は相異なる2種のアントラセン誘導体化合物を含むことが開示されている。
 また、特許文献4は、発光層のドーパント材料としての用途でベンゾフルオランテン骨格を有する化合物が開示されている。
WO2003/060956 WO2005/097756 特開2008-258603 WO2008/059713
 本発明の目的は、高効率で長寿命な有機EL素子を提供することである。
 本発明者らは、鋭意研究した結果、シアノ基を有する芳香族炭化水素材料を有機EL素子の電子輸送材料として用いた場合に、優れた効果(低電圧、高効率、長寿命)が得られることを見出し、本発明を完成させた。
 電子輸送材料には、電子を輸送する骨格と電子を吸引する骨格の両方が必要であり、特許文献1~3は、イミダゾール骨格で代表される含窒素複素環置換基を必須とする材料、又は芳香族炭化水素化合物と金属錯体等との混合層を電子輸送材料として使用することが開示されている。
 イミダゾール骨格に代表される含窒素複素環置換基を有する材料は優れた電子注入・輸送性を示すが、含窒素複素環置換基は正孔耐性が不十分であると考えられている。また、含窒素複素環誘導体を有しない材料は、材料単体では駆動電圧を上げると考えられ、金属錯体等を併用することが必要であり、複数の材料を併用して電子注入・輸送層を形成する場合は、製造工程が複雑になってしまう。そこで、より簡略化できる、1材料単体で電子注入・輸送層を形成することができる材料が望まれていた。
 本発明者らは鋭意研究した結果、シアノ基と芳香族環基を有する電子輸送材料を用いることで、低電圧、高効率、長寿命な有機EL素子が得られることを見出した。
 本発明によれば、以下の有機EL素子が提供される。
1.陽極、発光層、電子輸送帯域及び陰極をこの順に備え、
 前記電子輸送帯域が、シアノ基と芳香族環基を有する電子輸送材料を含む有機エレクトロルミネッセンス素子。
2.前記電子輸送材料が、シアノ基と芳香族単環基及び/又は芳香族縮合環基を有する電子輸送材料である1に記載の有機エレクトロルミネッセンス素子。
3.前記電子輸送材料が下記式(ET)で表わされる1又は2に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000001
[式中、
 Lは、単結合又は置換もしくは無置換の環形成炭素数6~50のa+1価の芳香族環基である。
 Arは、置換もしくは無置換の環形成炭素数6~50の1+b価の芳香族環基である。
 a,b及びcは、それぞれ1~3の整数である。
 Aは、下記式(A-1)~(A-12)
Figure JPOXMLDOC01-appb-C000002
(式(A-1)~(A-12)中、
 R~R12、R21~R30、R31~R40、R41~R50、R51~R60、R61~R72、R73~R86、R87~R94、R95~R104、R105~R114、R115~R124又はR125~R134のうちのc個は単結合でLと結合し、単結合以外のR~R12、R21~R30、R31~R40、R41~R50、R51~R60、R61~R72、R73~R86、R87~R94、R95~R104、R105~R114、R115~R124又はR125~R134は、それぞれ水素原子、ハロゲン原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~10のシクロアルキル基、置換もしくは無置換のシリル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基であるか、隣接する各基が結合して環を形成する。)からなる群から選択される縮合芳香族環基である。]
4.前記電子輸送材料が、下記式(1)で表わされる3に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000003
(式中、a,b,c、L、Ar、及びR~R12は、請求項3で定義した通りである。)
5.R又はRが単結合でLと結合している4に記載の有機エレクトロルミネッセンス素子。
6.a=1及びc=1である4又は5に記載の有機エレクトロルミネッセンス素子。
7.R及びR12が、それぞれ無置換のフェニル基である4~6のいずれかに記載の有機エレクトロルミネッセンス素子。
8.前記電子輸送帯域が、還元性ドーパントをさらに含有する1~7に記載の有機エレクトロルミネッセンス素子。
9.前記還元性ドーパントが、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体及び希土類金属の有機錯体からなる群から選択される1種又は2種以上である8に記載の有機エレクトロルミネッセンス素子。
10.下記式(ET)で表されるシアノ基と芳香族環基を有する化合物。
Figure JPOXMLDOC01-appb-C000004
[式中、
 Lは、単結合又は置換もしくは無置換の環形成炭素数6~50のa+1価の芳香族環基である。
 Arは、置換もしくは無置換の環形成炭素数6~50の1+b価の芳香族環基である。
 a,b及びcは、それぞれ1~3の整数である。
 Aは、下記式(A-1)~(A-12)
Figure JPOXMLDOC01-appb-C000005
(式(A-1)~(A-12)中、
 R~R12、R21~R30、R31~R40、R41~R50、R51~R60、R61~R72、R73~R86、R87~R94、R95~R104、R105~R114、R115~R124又はR125~R134のうちのc個は単結合でLと結合し、単結合以外のR~R12、R21~R30、R31~R40、R41~R50、R51~R60、R61~R72、R73~R86、R87~R94、R95~R104、R105~R114、R115~R124又はR125~R134は、それぞれ水素原子、ハロゲン原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~10のシクロアルキル基、置換もしくは無置換のシリル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基であるか、隣接する各基が結合して環を形成する。)からなる群から選択される縮合芳香族環基である。]
 本発明によれば、低電圧、高効率で長寿命な有機EL素子を提供することである。
本発明の一実施形態を示す図である。
 本発明の有機EL素子は、少なくとも陽極10、発光層20、電子輸送帯域30及び陰極40をこの順に備え、電子輸送帯域30が、シアノ基と芳香族環基を有する電子輸送材料を含む素子である(図1)。
 本発明の有機EL素子は、必要に応じてさらに、陽極10と発光層20の間に正孔輸送帯域50及び他の層を有していてもよい(図1)。
 本発明の有機EL素子の電子輸送帯域が含む電子輸送材料(以下、単に本発明の電子輸送材料という場合がある)の「芳香族環基」は、酸素原子及び/又は硫黄原子を含んでいてもよい芳香族性を示す単環又は複数の環(縮合環)から構成される基である。このように「芳香族環基」は、芳香族単環基と芳香族縮合環基の両方を含む。また、本発明の電子輸送材料は、上述の本発明の低電圧、高効率且つ長寿命化の観点から、上記「芳香族環基」の置換基としても含窒素複素環基を含まない。
 上記芳香族単環基は、縮合環構造を有さない一つの環構造が、1つ又は複数連結して構成される基である。一方、上記芳香族縮合環基は、2以上の環構造が縮環した構造を有する基である。
 上記芳香族単環基の環形成原子数は、5~50(好ましくは5~30、より好ましくは5~20)であることが好ましく、上記芳香族縮合環基の環形成原子数は8~50(好ましくは8~30、より好ましくは8~20)であることが好ましい。
 環形成原子数5~50の芳香族単環基(好ましくは環形成原子数5~30、より好ましくは環形成原子数5~20)の具体的としては、フェニル基、ビフェニル基、ターフェニル基、クォーターフェニル基等のアリール基と、フリル基、チエニル基等の複素環基が好ましい。
 中でも、アリール基が好ましく、特に、フェニル基、ビフェニル基、ターフェニル基が好ましい。
 前記環形成原子数8~50の芳香族縮合環基(好ましくは環形成原子数8~30、より好ましくは環形成原子数8~20)の具体例としては、ナフチル基、フェナントリル基、アントリル基、クリセニル基、ベンゾアントリル基、ベンゾフェナントリル基、トリフェニレニル基、ベンゾクリセニル基、インデニル基、フルオレニル基、9,9-ジメチルフルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、フルオランテニル基、ベンゾフルオランテニル基、ピレニル基等の縮合アリール基や、ベンゾフラニル基、ベンゾチオフェニル基、ジベンゾフラニル基、ジベンゾチオフェニル基等の縮合複素環基が挙げられる。
 これら芳香族縮合環基の中でも、特にナフチル基、フェナントリル基、アントリル基、9,9-ジメチルフルオレニル基、フルオランテニル基、ベンゾアントリル基、ピレニル基、ジベンゾチオフェニル基、ジベンゾフラニル基が好ましい。
 本発明における電子輸送材料が有する芳香族環基は、芳香族単環基と芳香族単環基で構成されていてもよく、芳香族単環基と芳香族縮合環基で構成されていてもよく、芳香族縮合環基と芳香族縮合環基で構成されていてもよい。
 本発明の電子輸送材料は、好ましくは下記式(1)~(12)で表わされる化合物である。
Figure JPOXMLDOC01-appb-C000006
(式中、
 a,b及びcは、それぞれ1~3の整数であり、好ましくはa及びcのいずれか一方は1である。好ましくはbは1である。
 R~R12のうちのc個は単結合でLと結合し、好ましくはR又はRが単結合でLと結合する。単結合以外のR~R12は、それぞれ水素原子、ハロゲン原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~10のシクロアルキル基、置換もしくは無置換のシリル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基であるか、隣接する各基が結合して環を形成する。
 Lは、単結合又は置換もしくは無置換の環形成炭素数6~50のa+1価の芳香族環基である。
 Arは、置換もしくは無置換の環形成炭素数6~50の1+b価の芳香族環基である。)
 式(1)において、aが2以上の場合、括弧内のベンゾフルオランテン骨格は同一でも異なってもよく、Lと結合するR~R12も同一でも異なってもよい。同様に、cが2以上の場合、括弧内のL及びシアノアリール(Ar-(CN))は同一でも異なってもよい。
 式(1)で表わされる化合物は、ベンゾフルオランテン骨格とシアノ基を同時に有する化合物である。ベンゾフルオランテン骨格は高い平面性を有し、分子同士がうまく重なるため、高い電荷輸送性を有すると考えられる。また、ベンゾフルオランテン骨格は電荷耐久性が高く、寿命の向上が期待できる。例えば有機EL素子の発光層に電子トラップ性のドーパントを用いると、正孔が電子注入層側まで流れてくる場合があるが、ベンゾフルオランテン骨格を有する式(1)で表わされる化合物は、例えばイミダゾール骨格と比較しても優れた正孔耐性をもつため、素子の劣化を防ぐことができると考えられる。
 式(1)で表わされる化合物において、好ましくはR及びR12が、それぞれ無置換のフェニル基である。
 R及びR12が、それぞれ無置換のフェニル基であることで、ベンゾフルオランテン骨格の平面性を向上させることができると考えられる。平面性が向上した式(1)で表わされる化合物では、分子同士の重なりが大きくなって、分子同士の距離を短くでき、電荷輸送性を高めることができる。
 以下、式(1)で表わされる化合物の各置換基について説明する。
 R~R12のハロゲン原子としては、フッ素、塩素、臭素、ヨウ素等が挙げられ、好ましくはフッ素原子である。
 R~R12の炭素数1~20(好ましくは炭素数1~6、より好ましくは炭素数1~4)のアルキル基としては、エチル基、メチル基、i-プロピル基、n-プロピル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基等が挙げられる。
 R~R12の環形成炭素数3~10(好ましくは環形成炭素数3~6)のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、4-メチルシクロヘキシル基等が挙げられる。
 R~R12の置換シリル基は、炭素数3~30のアルキルシリル基及び炭素数8~30のアリールシリル基を含む。
 上記炭素数3~30(好ましくは炭素数3~20、より好ましくは炭素数3~10)のアルキルシリル基としては、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、ビニルジメチルシリル基、プロピルジメチルシリル基等が挙げられる。
 上記炭素数8~30のアリールシリル基としては、トリフェニルシリル基、フェニルジメチルシリル基、t-ブチルジフェニルシリル基、トリトリルシリル基、トリキシリルシリル基、トリナフチルシリル基等が挙げられる。
 R~R12の環形成炭素数6~50(好ましくは環形成炭素数6~20、より好ましくは環形成炭素数6~12)のアリール基としては、フェニル基、ナフチル基、フェナントリル基、ビフェニル基、ターフェニル基、アントリル基、クリセニル基、ベンゾフェナントリル基、ベンズアントリル基、ベンゾクリセニル基、フルオレニル基、フルオランテニル基、ナフタセニル基等が挙げられる。環形成炭素数が6~50である限り、フェニルナフチル基、フェニルナフチルフェニル基等、ここに記載のアリール基の組合せからなる基も好ましい。
 Lの環形成炭素数6~50(好ましくは環形成炭素数6~20、より好ましくは環形成炭素数6~12)のa+1価の芳香族環基としては、フェニレン基、ナフチレン基、フェナントリレン基、ビフェニレン基、ターフェニレン基、クォーターフェニレン基、アントリレン基、ペンタセニレン基、ペリレニレン基、ピセニレン基、ピレニレン基、ペンタフェニレン基、フルオレニレン基、クリセニレン基に対応する残基等や、環形成炭素数が6~50である限り、フェニルナフチル基、フェニルナフチルフェニル基に対応する残基等、ここに記載のアリール基の組合せからなる基に対応する残基も好ましい。
 Arの環形成炭素数6~50の1+b価の芳香族環基としては、上記R~R12と同様の具体例に対応する残基が挙げられ、好ましくは、フェニル基、ナフチル基に対応する残基である。
 R~R12、L及びArの各置換基がさらに置換基を有する場合、当該置換基としては、アルキル基、アルキルシリル基、ハロゲン化アルキル基、アリール基、シクロアルキル基、アルコキシ基、窒素原子を含まない複素環基、アラルキル基、アリールオキシ基、アリールチオ基、アルコキシカルボニル基、ハロゲン原子、ヒドロキシル基、ニトロ基、シアノ基、カルボキシル基等が挙げられ、好ましくはアリール基である。
 上記置換基の具体例は、上述した具体例と同様である。
 尚、式(1)の化合物の各置換基について、「無置換」とは、水素原子が置換したことを意味する。また、式(1)の化合物の水素原子には、軽水素、重水素が含まれる。
 また、本明細書において、「環形成炭素」とは飽和環、不飽和環、又は芳香環を構成する炭素原子を意味する。「環形成原子」とは環(飽和環、不飽和環、及び芳香環を含む)を構成する炭素原子及びヘテロ原子を意味する。
 以下に、式(1)で表される本発明のシアノ基と芳香族環基を有する電子輸送材料の具体例を示す。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 本発明で用いるシアノ基と芳香族環基を有する化合物は、電子輸送材料化合物である。また、ベンゾフルオランテン骨格を有する式(1)で表わされる化合物は、後述する理由から、3重項エネルギー障壁材料としても好適に用いることができると考えられる。
 ベンゾフルオランテン骨格は一般的に蛍光青色材料として用いられるアントラセン骨格よりも3重項エネルギーが高く、3重項励起子の閉じ込め効果が高いため、例えば有機EL素子の発光層に接した障壁層の材料として利用することによって、TTF(Triplet-Triplet Fusion)現象を促進させることができると考えられる。また、ベンゾフルオランテン骨格は、その平面性の高さによって薄膜中での分子スタッキングが向上し、電子輸送性が大きくなるという特徴を持つため、発光層への電子注入を促進し、発光層での再結合効率を高め、TTF現象を効率的に起こすことができると考えられる。
 本発明で用いるシアノ基と芳香族環基を有する化合物としては、上述したベンゾフルオランテン骨格を有する式(1)で表される化合物の他、下記式(2)~(12)で表される構造を有する化合物も好ましい。
 尚、下記式(2)~(12)において、a,b,c、L及びArは、上記式(1)において説明した通りである。
 R21~R30、R31~R40、R41~R50、R51~R60、R61~R72、R73~R86、R87~R94、R95~R104、R105~R114、R115~R124及びR125~R134は、上記式(1)におけるR~R12と同様である。
アントラセン骨格を有する化合物
Figure JPOXMLDOC01-appb-C000016
 上記式(2)で表される化合物において、好ましくはR22,R23,R26,R27,R29、R30のうち1~3箇所においてLと結合し、さらに好ましくは、R29、R30のいずれか一方又は両方においてLと結合する。式(2)において、aが2以上の場合、括弧内のアントラセン骨格は同一でも異なってもよく、cが2以上の場合、括弧内のL及びシアノアリール(Ar-(CN))は同一でも異なってもよい。
ピレン骨格を有する化合物
Figure JPOXMLDOC01-appb-C000017
 上記式(3)で表される化合物において、好ましくはR31,R33,R36,R38のうち1~3箇所においてLと結合し、さらに好ましくは、R31,R33,R36,R38のうち1~2箇所においてLと結合する。式(3)において、aが2以上の場合、括弧内のピレン骨格は同一でも異なってもよく、cが2以上の場合、括弧内のL及びシアノアリール(Ar-(CN))は同一でも異なってもよい。
フルオランテン骨格を有する化合物
Figure JPOXMLDOC01-appb-C000018
 上記式(4)で表される化合物において、好ましくはR43,R44,R47,R48,R49,R50のうち1~2箇所においてLと結合し、さらに好ましくは、R43,R44のいずれか一方においてLと結合する。式(4)において、aが2以上の場合、括弧内のフルオランテン骨格は同一でも異なってもよく、cが2以上の場合、括弧内のL及びシアノアリール(Ar-(CN))は同一でも異なってもよい。
フェナントレン骨格を有する化合物
Figure JPOXMLDOC01-appb-C000019
 上記式(5)で表される化合物において、好ましくはR51~R60のうちいずれか1~2箇所においてLと結合し、さらに好ましくは、R59,R60のいずれか一方においてLと結合する。式(5)において、aが2以上の場合、括弧内のフェナントレン骨格は同一でも異なってもよく、cが2以上の場合、括弧内のL及びシアノアリール(Ar-(CN))は同一でも異なってもよい。
クリセン骨格を有する化合物
Figure JPOXMLDOC01-appb-C000020
 上記式(6)で表される化合物において、好ましくはR65,R71のいずれか一方又は両方においてLと結合する。式(6)において、aが2以上の場合、括弧内のクリセン骨格は同一でも異なってもよく、cが2以上の場合、括弧内のL及びシアノアリール(Ar-(CN))は同一でも異なってもよい。
 上記式(6)で表されるクリセン骨格を有する化合物は、R71とR72が互いに結合してベンゼン環を形成した構造を有する、下記式(7)で示される化合物であることが好ましい。
ベンゾクリセン骨格を有する化合物
Figure JPOXMLDOC01-appb-C000021
 上記式(7)で表される化合物において、好ましくはR77においてLと結合する。式(7)において、aが2以上の場合、括弧内のベンゾクリセン骨格は同一でも異なってもよく、cが2以上の場合、括弧内のL及びシアノアリール(Ar-(CN))は同一でも異なってもよい。
ジベンゾフラン骨格を有する化合物
Figure JPOXMLDOC01-appb-C000022
 上記式(8)で表される化合物において、好ましくはR87、R89、R92、R94のいずれか1~2箇所においてLと結合する。式(8)において、aが2以上の場合、括弧内のジベンゾフラン骨格は同一でも異なってもよく、cが2以上の場合、括弧内のL及びシアノアリール(Ar-(CN))は同一でも異なってもよい。
下記式(9)で示される含酸素縮合芳香族環化合物
Figure JPOXMLDOC01-appb-C000023
 上記式(9)で表される化合物において、好ましくはR97,R101,R104のうち1~3箇所においてLと結合し、さらに好ましくは、R104においてLと結合する。式(9)において、aが2以上の場合、括弧内のラダータイプのジベンゾフラン骨格は同一でも異なってもよく、cが2以上の場合、括弧内のL及びシアノアリール(Ar-(CN))は同一でも異なってもよい。
下記式(10)で示される含酸素縮合芳香族環化合物
Figure JPOXMLDOC01-appb-C000024
 上記式(10)で表される化合物において、好ましくはR108においてLと結合する。式(10)において、aが2以上の場合、括弧内のラダータイプのジベンゾフラン骨格は同一でも異なってもよく、cが2以上の場合、括弧内のL及びシアノアリール(Ar-(CN))は同一でも異なってもよい。
下記式(11)で示される含酸素縮合芳香族環化合物
Figure JPOXMLDOC01-appb-C000025
 上記式(11)で表される化合物において、好ましくはR115、R117、R122、R124のうち1~2箇所においてLと結合し、さらに好ましくは、R117,R122のいずれか一方又は両方においてLと結合する。式(11)において、aが2以上の場合、括弧内のラダータイプのジベンゾフラン骨格は同一でも異なってもよく、cが2以上の場合、括弧内のL及びシアノアリール(Ar-(CN))は同一でも異なってもよい。
下記式(12)で示される含酸素縮合芳香族環化合物
Figure JPOXMLDOC01-appb-C000026
 上記式(12)で表される化合物において、好ましくはR125、R127、R132、R134のうち1~2箇所においてLと結合し、さらに好ましくは、R127,R132のいずれか一方又は両方においてLと結合する。式(12)において、aが2以上の場合、括弧内のラダータイプのジベンゾフラン骨格は同一でも異なってもよく、cが2以上の場合、括弧内のL及びシアノアリール(Ar-(CN))は同一でも異なってもよい。
 上記式(1)で表される化合物は、公知化合物であり、公知の方法によって製造することができる。
 上記式(2)~(12)で表される化合物は、例えば、後述する合成例に準じて製造することができる。
 以下に、上記式(2)で表されるアントラセン骨格を有する化合物の具体例を示す。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 以下に、上記式(3)で表されるピレン骨格を有する化合物の具体例を示す。
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 以下に、上記式(4)で表されるフルオランテン骨格を有する化合物の具体例を示す。
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
 以下に、上記式(5)で表されるフェナントレン骨格を有する化合物の具体例を示す。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
 以下に、上記式(6)で表されるクリセン骨格を有する化合物の具体例を示す。
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
 以下に、上記式(7)で表されるベンゾクリセン骨格を有する化合物の具体例を示す。
Figure JPOXMLDOC01-appb-C000042
 以下に、上記式(8)で表されるベンゾフラン骨格を有する化合物の具体例を示す。
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
 以下に、上記式(9)で表される含酸素縮合芳香族環化合物の具体例を示す。
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
 以下に、上記式(10)~(12)で表される含酸素縮合芳香族環化合物の具体例を示す。
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
 本発明の有機エレクトロルミネッセンス素子においては、上記式(ET)で表される化合物を電子輸送材料として使用しているが、上記式(ET)で表される化合物は、広く有機エレクトロルミネッセンス素子における電子輸送材料を含む各種の材料としても使用できる。
 本発明で用いるシアノ基と芳香族環基を有する化合物を含有する障壁層、電子注入層又は電子輸送層(いずれも電子輸送帯域)は、好ましくはさらに還元性ドーパントを含有する。
 還元性ドーパントとしては、ドナー性金属、ドナー性金属化合物及びドナー性金属錯体が挙げられ、これら還元性ドーパントは1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 ここで、還元性ドーパントとは、電子を供与する材料(電子供与性材料という)である。この電子供与性材料は、当該電子供与性材料と共に障壁層、電子注入層又は電子輸送層に含まれる他の有機材料、もしくは障壁層、電子注入層又は電子輸送層に隣接する層を構成する有機材料と相互作用し、ラジカルアニオンを生じさせる材料、又は電子供与性ラジカルを有する材料である。
 ドナー性金属とは、仕事関数3.8eV以下の金属をいい、好ましくはアルカリ金属、アルカリ土類金属及び希土類金属であり、より好ましくはCs,Li,Na,Sr,K,Mg,Ca,Ba,Yb,Eu及びCeである。
 ドナー性金属化合物とは、上記のドナー性金属を含む化合物であり、好ましくはアルカリ金属、アルカリ土類金属又は希土類金属を含む化合物であり、より好ましくはこれらの金属のハロゲン化物、酸化物、炭酸塩、ホウ酸塩である。例えば、MOx(Mはドナー性金属、xは0.5~1.5)、MFx(xは1~3)、M(CO)x(xは0.5~1.5)で表される化合物である。
 ドナー性金属錯体とは、上記のドナー性金属の錯体であり、好ましくはアルカリ金属、アルカリ土類金属又は希土類金属の有機金属錯体である。好ましくは下記式(I)で表される有機金属錯体である。
Figure JPOXMLDOC01-appb-C000052
(式中、Mはドナー性金属であり、Qは配位子であり、好ましくはカルボン酸誘導体、ジケトン誘導体又はキノリン誘導体であり、nは1~4の整数である。)
 ドナー性金属錯体の具体例としては、特開2005-72012号公報に記載のタングステン水車等が挙げられる。さらに、特開平11-345687号公報に記載された中心金属がアルカリ金属、アルカリ土類金属であるフタロシアニン化合物等もドナー性金属錯体として使用できる。
 上記還元性ドーパントは、好ましくはアルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体及び希土類金属の有機錯体からなる群から選択される1種又は2種以上であり、より好ましくはアルカリ金属の8-キノリノール錯体である。
 上記電子輸送帯域と陰極の間には、低仕事関数金属含有層を有してもよい。低仕事関数金属含有層とは、低仕事関数金属や、低仕事関数金属化合物を含有する層である。低仕事関数金属や低仕事金属化合物のみで形成されても、電子輸送層として用いられる材料に、低仕事関数金属、低仕事関数金属化合物、又は低仕事関数金属錯体をドナーとして添加して形成してもよい。低仕事関数金属とは、仕事関数が3.8eV以下の金属をいう。低仕事関数が3.8eV以下の金属は、アルカリ金属、アルカリ土類金属等が挙げられる。アルカリ金属としては、Li,Na,K,Cs等が挙げられる。アルカリ土類金属としては、Mg,Ca,Sr,Ba等が挙げられる。その他としては、Yb,Eu及びCe等が挙げられる。また低仕事関数金属化合物としては、低仕事金属関数の酸化物、ハロゲン化物、炭酸塩、ホウ酸塩が好ましい。ハロゲン化物としては、フッ化物、塩化物、臭化物が挙げられるが、フッ化物が好ましい。例えばLiFが好ましいものとして用いられる。また、低仕事関数金属錯体としては、低仕事関数金属の錯体であり、アルカリ金属、アルカリ土類金属又は希土類金属の有機金属錯体が好ましい。
 尚、TTF現象を利用して効率を高めることは青色蛍光層において顕著であるが、緑色蛍光層、赤色蛍光層においても、3重項エネルギーを発光層内に閉じ込め発光効率を向上させることができる。
 本発明の有機EL素子の発光層は、好ましくは下記式(4)で表わされるアントラセン誘導体又は下記式(5)で表されるピレン誘導体を少なくとも1種をホストとして含有する。
(アントラセン誘導体)
 式(4)で表されるアントラセン誘導体は、下記化合物である。
Figure JPOXMLDOC01-appb-C000053
(Ar11及びAr12は、それぞれ独立に、置換若しくは無置換の環形成原子数5~50の芳香族単環基、置換若しくは無置換の環形成原子数8~50の芳香族縮合環基、又は芳香族単環基と芳香族縮合環基との組合せから構成される基である。
 R101~R108は、それぞれ独立に、水素原子、置換若しくは無置換の環形成原子数5~50の芳香族単環基、置換若しくは無置換の環形成原子数8~50の芳香族縮合環基、芳香族単環基と芳香族縮合環基との組合せから構成される基、置換若しくは無置換の炭素数1~50のアルキル基、置換若しくは無置換の環形成炭素数3~50のシクロアルキル基、置換若しくは無置換の炭素数1~50のアルコキシ基、置換若しくは無置換の炭素数7~50のアラルキル基、置換若しくは無置換の環形成炭素数6~50のアリールオキシ基、置換若しくは無置換のシリル基、ハロゲン原子、シアノ基から選ばれる基である。)
 式(4)における、芳香族単環基とは、縮合構造を持たない環構造のみで構成される基である。
 環形成原子数5~50の芳香族単環基(好ましくは環形成原子数5~30、より好ましくは環形成原子数5~20)として具体的には、上記「芳香族環基」と同様のアリール基と、ピリジル基、ピラジル基、ピリミジル基、トリアジニル基、フリル基、チエニル基等の複素環基が好ましい。
 中でも、フェニル基、ビフェニル基、ターフェニル基が好ましい。
 式(4)における、芳香族縮合環基とは、2環以上の環構造が縮環した基である。
 前記環形成原子数8~50の芳香族縮合環基(好ましくは環形成原子数8~30、より好ましくは環形成原子数8~20)として具体的には、上記「芳香族環基」と同様の縮合アリール基や、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基、キノリル基、フェナントロリニル基等の縮合複素環基が好ましい。
 中でも、ナフチル基、フェナントリル基、アントリル基、9,9-ジメチルフルオレニル基、フルオランテニル基、ベンゾアントリル基、ジベンゾチオフェニル基、ジベンゾフラニル基、カルバゾリル基が好ましい。
 炭素数1~50のアルキル基、環形成炭素数3~50のシクロアルキル基及び置換若しくは無置換のシリル基の具体例については、式(1)と同様である。
 炭素数1~50のアルコキシ基は-OYで表される基であり、Yの例としては、式(1)のアルキル基と同様の例が挙げられる。
 環形成炭素数6~50のアリールオキシ基は-OArで表される基であり、Arの例としては、式(1)のアリール基と同様である。
 炭素数7~50のアラルキル基としては、アラルキル基は、-Y-Zと表され、Yの例として上記のアルキルの例に対応するアルキレンの例が挙げられ、Zの例として上記のアリールの例が挙げられる。アラルキル基は、炭素数7~50アラルキル基(アリール部分は炭素数6~49(好ましくは6~30、より好ましくは6~20、特に好ましくは6~12)、アルキル部分は炭素数1~44(好ましくは1~30、より好ましくは1~20、さらに好ましくは1~10、特に好ましくは1~6))であることが好ましく、例えばベンジル基、フェニルエチル基、2-フェニルプロパン-2-イル基である。
 Ar11、Ar12、R101~R108、の「置換若しくは無置換」の好ましい置換基として、芳香族単環基、芳香族縮合環基、アルキル基、シクロアルキル基、シリル基、アルコキシ基、シアノ基、ハロゲン原子(特にフッ素)が好ましく、特に好ましくは、芳香族単環基、芳香族縮合環基であり、好ましい具体的な置換基は上述の式(4)の各基及び上述の式(1)における各基と同様である。
 式(4)で表されるアントラセン誘導体は、下記アントラセン誘導体(A)、(B)、及び(C)のいずれかであることが好ましく、適用する有機EL素子の構成や求める特性により選択される。
(アントラセン誘導体(A))
 当該アントラセン誘導体は、式(4)におけるAr11及びAr12が、それぞれ独立に、置換若しくは無置換の環形成原子数8~50の芳香族縮合環基となっている。当該アントラセン誘導体としては、Ar11及びAr12が同一の置換若しくは無置換の芳香族縮合環基である場合、及び異なる置換若しくは無置換の芳香族縮合環基である場合に分けることができる。
 式(4)におけるAr11及びAr12が異なる(置換位置の違いを含む)置換若しくは無置換の芳香族縮合環基であるアントラセン誘導体が特に好ましく、縮合環の好ましい具体例は上述した通りである。中でもナフチル基、フェナントリル基、ベンズアントリル基、9,9-ジメチルフルオレニル基、ジベンゾフラニル基が好ましい。
(アントラセン誘導体(B))
 当該アントラセン誘導体は、式(4)におけるAr11及びAr12の一方が置換若しくは無置換の環形成原子数5~50の芳香族単環基であり、他方が置換若しくは無置換の環形成原子数8~50の芳香族縮合環基となっている。
 好ましい形態として、Ar12がナフチル基、フェナントリル基、ベンゾアントリル基、9,9-ジメチルフルオレニル基、ジベンゾフラニル基であり、Ar11が芳香族単環基又は芳香族縮合環基が置換されたフェニル基である。
 好ましい芳香族単環基、芳香族縮合環基の具体的な基は上述した通りである。
 別の好ましい形態として、Ar12が芳香族縮合環基であり、Ar11が無置換のフェニル基である。この場合、芳香族縮合環基として、フェナントリル基、9,9-ジメチルフルオレニル基、ジベンゾフラニル基、ベンゾアントリル基が特に好ましい。
(アントラセン誘導体(C))
 当該アントラセン誘導体は、式(4)におけるAr11及びAr12が、それぞれ独立に、置換若しくは無置換の環形成原子数5~50の芳香族単環基となっている。
 好ましい形態として、Ar11、Ar12ともに置換若しくは無置換のフェニル基である。
 さらに好ましい形態として、Ar11が無置換のフェニル基であり、Ar12が芳香族単環基、芳香族縮合環基を置換基として持つフェニル基である場合と、Ar11、Ar12がそれぞれ独立に芳香族単環基、芳香族縮合環基を置換基として持つフェニル基である場合がある。
 前記置換基としての好ましい芳香族単環基、芳香族縮合環基の具体例は上述した通りである。さらに好ましくは、置換基としての芳香族単環基としてフェニル基、ビフェニル基、芳香族縮合環基として、ナフチル基、フェナントリル基、9,9-ジメチルフルオレニル基、ジベンゾフラニル基、ベンゾアントリル基である。
(ピレン誘導体)
 式(5)で表されるピレン誘導体は、下記化合物である。
Figure JPOXMLDOC01-appb-C000054
(式中、Ar111及びAr222は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール基である。
 L101及びL102は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30の2価のアリール基又は複素環基を示す。
 mは0~1の整数、pは1~4の整数、sは0~1の整数、tは0~3の整数である。
 また、L101又はAr111はピレンの1~5位のいずれかに結合し、L102又はAr222はピレンの6~10位のいずれかに結合する。)
 式(5)におけるL101及びL102は、好ましくは置換もしくは無置換のフェニレン基、置換もしくは無置換のビフェニレン基、置換もしくは無置換のナフチレン基、置換もしくは無置換のターフェニレン基及び置換もしくは無置換のフルオレニレン基及びこれら置換基の組合せからなる2価のアリール基である。
 また、この置換基としては、式(1)における「置換もしくは無置換の・・・」における置換基と同様である。L101及びL102の置換基は、好ましくは、炭素数1~20のアルキル基である。
 一般式(5)におけるmは、好ましくは0~1の整数である。一般式(5)におけるnは、好ましくは1~2の整数である。一般式(5)におけるsは、好ましくは0~1の整数である。
 一般式(5)におけるtは、好ましくは0~2の整数である。
 Ar111及びAr222のアリール基は、式(1)における各基と同様である。
 好ましくは、置換もしくは無置換の環形成炭素数6~20のアリール基、より好ましくは、置換もしくは無置換の環形成炭素数6~16のアリール基、アリール基の好ましい具体例としては、フェニル基、ナフチル基、フェナントリル基、フルオレニル基、ビフェニル基、アントリル基、ピレニル基である。
 式(4)で表されるアントラセン誘導体、又は式(5)で表わされるピレン誘導体を含有する発光層は、好ましくは式(1)で表わされる化合物を含有する障壁層、電子注入層又は電子輸送層と接している。発光層と式(1)で表わされる化合物を含む障壁層、電子注入層又は電子輸送層が接しているとき、TTF現象を利用して発光効率を高めることができると考えられる。
 本発明の有機EL素子においては、発光層が、発光性ドーパント(りん光性ドーパント及び/又は蛍光性ドーパント)を含有してもよい。
 上記蛍光性ドーパントは一重項励起子から発光することのできる化合物である。蛍光性ドーパントとしては、アミン系化合物、芳香族化合物、トリス(8-キノリノラト)アルミニウム錯体等のキレート錯体、クマリン誘導体、テトラフェニルブタジエン誘導体、ビススチリルアリーレン誘導体、オキサジアゾール誘導体等から、要求される発光色に合わせて選ばれる化合物であることが好ましく、スチリルアミン化合物、スチリルジアミン化合物、アリールアミン化合物、アリールジアミン化合物、芳香族化合物がより好ましく、縮合多環アミン誘導体、芳香族化合物がさらに好ましい。これらの蛍光性ドーパントは単独でもまた複数組み合わせて使用してもよい。
 上記縮合多環アミン誘導体としては、下記式(12)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000055
(式中、Yは環形成炭素数10~50の置換もしくは無置換の縮合アリール基を示す。
 Ar101、Ar102は、それぞれ置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基を示す。
 Yの具体例としては、前述する縮合アリール基が挙げられ、好ましくは置換もしくは無置換のアントリル基、置換もしくは無置換のピレニル基、置換もしくは無置換のクリセニル基である。
 qは1~4の整数である。qは1~2の整数であることが好ましい。)
 式(12)おいて、アルキル基、アルコキシ基、アリール基、アリールオキシ基、複素環基の例として上記で例示したものが挙げられる。
 上記芳香族化合物としては、下記式(13)で表されるフルオランテン化合物が好ましい。
Figure JPOXMLDOC01-appb-C000056
(式中、X301~X306及びX308~X311は、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~10のアルキル基、置換もしくは無置換の環形成炭素数3~8のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の環形成原子数6~50のアリールオキシ基、置換もしくは無置換の環形成原子数5~50のアリールチオ基、置換もしくは無置換の炭素数2~50のアルコキシカルボニル基、置換もしくは無置換の環形成炭素数6~30のアリール基で置換されたアミノ基、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシル基及びはカルボキシル基から選ばれる。
 X307及びX312は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~20のアルキル基、及び置換もしくは無置換の環形成炭素数3~8のシクロアルキル基から選ばれる。
 但し、X303とX304は、互いに異なる置換基である。
 また、X301~X312において、隣接する置換基同士は互いに結合して飽和もしくは不飽和の環状構造を形成してもよく、これら環状構造は置換されてもよい。)
 式(13)のX303又はX304は、好ましくは置換もしくは無置換の環形成炭素数6~30のアリール基である。また、式(13)の「置換もしくは無置換」の好ましい置換基は、シアノ基又はハロゲン原子である。
 式(13)おいて、アリール基、複素環基、アルキル基、シクロアルキル基、アルコキシ基、アラルキル基、アリールオキシ基、アリールチオ基、アルコキシカルボニル基、ハロゲン原子の例として上記で例示したものが挙げられる。
 本発明の有機EL素子の基板、陽極、陰極、正孔注入層、正孔輸送層等のその他の部材は、WO2008/023759A1、WO2008/023759A1、WO2009/107596A1、WO2009/081857A1、US2009/0243473A1、US2008/0014464A1、US2009/0021160A1等に記載の公知のものを適宜選択して用いることができる。
 実施例及び比較例で使用した化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
実施例1
 25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板(ジオマティック社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に前記透明電極を覆うようにして膜厚50nmの化合物A-1膜を成膜した。A-1膜の成膜に続けて、このA-1膜上に膜厚45nmの化合物A-2膜を成膜した。このA-2膜上に膜厚25nmで化合物BH-1と化合物BD-1を20:1の膜厚比で成膜し青色系発光層とした。この発光層上に電子輸送層として膜厚25nmでET 1-01を蒸着により成膜した。この後、LiFを膜厚1nmで成膜した。このLiF膜上に金属Alを150nm蒸着させ金属陰極を形成し有機EL素子を製造した。
 製造した有機EL素子の駆動電圧、電流効率及び半減寿命を下記方法によって測定し評価した。結果を表1に示す。
(1)駆動電圧(V)、電流効率(L/J)
 有機EL素子に10mA/cmの直流電流を流して発光させた際の駆動電圧(V)、輝度(L)を測定した。これを基に、電流効率(L/J)を求めた。
(2)半減寿命
 各有機EL素子を電流密度8mA/cmで駆動させ、輝度の経時変化を計測し、輝度が50%に達するまでの時間を求めた。
実施例2~9及び比較例1~3
 電子輸送層の材料として、ET 1-01の代わりに表1に示す化合物を用いた他は実施例1と同様にして有機EL素子を製造し、評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から、シアノ基と芳香族環基を有する化合物を電子輸送材料として用いると、低電圧化、高効率化、長寿命化することが分かる。
 本願実施例1~9並びに比較例1及び2との比較により、シアノ置換基を有する本発明の電子輸送材料は、含窒素複素環誘導体よりも低電圧化、高効率化、長寿命化することが分かる。
 また、本願実施例1~9と比較例3との比較により、シアノ基と含窒素複素環を有する電子輸送材料は電圧が上がってしまうのに対し、シアノ基と芳香族環基を有する電子輸送材料であれば、1材料単体であっても、低電圧化、高効率化、長寿命化することが分かる。
 シアノ基は、特に含窒素複素環に導入すると、電子トラップ性が強いため、電子の輸送を妨げるため、駆動電圧が大きく上昇する置換基として知られていたが、特定の芳香族環基にシアノ基を導入すると、シアノ基が電子注入部位として働き、また電子の輸送を妨げず、低い駆動電圧を実現し、長寿命であることを見出した。また、正孔耐性に乏しい含窒素複素環誘導体を使用していないため、正孔に対する耐久性が著しく向上し、長寿命化したと考えられる。
実施例10
 25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板(ジオマティック社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に前記透明電極を覆うようにして膜厚50nmの化合物A-1膜を成膜した。このA-1膜上に膜厚45nmの化合物A-2膜を成膜した。このA-2膜上に膜厚25nmで化合物BH-1と化合物BD-1を20:1の膜厚比で成膜し青色系発光層とした。この発光層上に膜厚25nmでET 1-01とリチウムキノリノラート(Liq)を1:1の膜圧比で蒸着して、発光層上に膜厚25nmの電子輸送層を形成した。この後、金属Alを150nm蒸着させ金属陰極を形成し有機EL素子を形成した。
 製造した有機EL素子の駆動電圧、電流効率及び半減寿命を評価した。結果を表2に示す。
実施例11~18
 電子輸送層の材料として、ET-1の代わりに表2に示す化合物を用いた他は実施例10と同様にして有機EL素子を製造し、評価した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から、本発明の有機EL素子の電子輸送帯域に用いる電子輸送材料は、アルカリ金属の有機錯体との混合層としても低電圧、高効率でかつ長寿命の有機EL素子を製造できることがわかる。
合成例1 6-ヒドロキシナフタレン-2-イルボロン酸の合成
Figure JPOXMLDOC01-appb-C000059
 アルゴン雰囲気下、6-ブロモ-2-ナフトール(5.58gl)を脱水テトラヒドロフラン(125mL)に溶解し、-70℃に冷却し、ノルマルブチルリチウムのヘキサン溶液(33mL、55mmol)を30分間かけて徐々に滴下した。-70℃で1.5時間撹拌した後、ホウ酸トリイソプロピル(11.5mL)を加えて30分間-70℃で撹拌し、その後、徐々に室温に戻しながら3時間撹拌を行った。反応混合物に2M塩酸(100mL)を加えて室温で2時間撹拌を行った。得られた反応溶液を分液し、水層を酢酸エチルで抽出した。有機層を一つにあわせ飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、減圧濃縮した。得られた残渣をジクロロメタンで懸濁洗浄して目的の6-ヒドロキシナフタレン-2-イルボロン酸4.02g(収率85%)を得た。
合成例2 3’-ブロモ-4-シアノビフェニルの合成
Figure JPOXMLDOC01-appb-C000060
 アルゴン雰囲気下、3-ブロモヨードベンゼン(10.2g)、4-シアノフェニルボロン酸(4.4g)、テトラキストリフェニルフォスフィンパラジウム(0)(1.04g)、1,2-ジメトキシエタン(90mL)及び2M炭酸ナトリウム水溶液(45mL)の混合物を3時間加熱還流した。反応混合物を室温まで冷却し、水を加え1時間撹拌を行った。反応混合物を室温に冷却し、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸ナトリウムにて乾燥を行った後、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し、目的の3’-ブロモ-4-シアノビフェニル4.1g(収率53%)を得た。
合成例3 3’-ブロモ-3-シアノビフェニルの合成
Figure JPOXMLDOC01-appb-C000061
 合成例2において用いた4-シアノフェニルボロン酸のかわりに3-シアノフェニルボロン酸を用いる以外は合成例2と同様に合成を行い、収率44%にて目的の3’-ブロモ-3-シアノビフェニルを得た。
合成例4 6-(4’-シアノビフェニル-3-イル)ナフタレン-2-イル トリフルオロメタンスルホネートの合成
 下記合成スキームに従って、6-(4’-シアノビフェニル-3-イル)ナフタレン-2-イル トリフルオロメタンスルホネートを合成した。
Figure JPOXMLDOC01-appb-C000062
(4-1) 6-(4’-シアノビフェニル-3-イル)-2-ナフトールの合成
 アルゴン雰囲気下、合成例2で得た3’-ブロモ-4-シアノビフェニル(4.07g)、合成例1で得た6-ヒドロキシナフタレン-2-イルボロン酸(3.26g)、テトラキス(トリフェニルホスフィン)パラジウム(0)(0.55g)、1,2-ジメトキシエタン(48mL)及び2M炭酸ナトリウム水溶液(24mL)の混合物を4時間加熱還流した。反応混合物を室温に冷却し、2M塩酸を用いて中和した。この混合物にトルエンを加え、生成した沈殿物をろ別し、固体側を酢酸エチル及びトルエンで洗浄した。ろ液側はトルエン及び酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した後、得られた残渣をヘキサン-酢酸エチル混合溶液及びメタノールで洗浄した。得られた残渣を、最初に得られた固体と合わせてトルエンで洗浄し、目的の6-(4’-シアノビフェニル-3-イル)-2-ナフトール4.5g(収率89%)を得た。
(4-2) 6-(4’-シアノビフェニル-3-イル)ナフタレン-2-イル トリフルオロメタンスルホネートの合成
 アルゴン雰囲気下、0℃において、6-(4’-シアノビフェニル-3-イル)-2-ナフトール(4.5g)、ピリジン(4.6mL)及びジクロロメタン(100mL)の混合液にトリフルオロメタンスルホン酸無水物(4.6mL)を加え1時間撹拌した。反応液を室温に昇温し、さらに30分間撹拌した。2M塩酸を用いて反応混合物を酸性にし、ジクロロメタンで抽出を行い、無水硫酸マグネシウムで乾燥した後、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し、目的の6-(4’-シアノビフェニル-3-イル)ナフタレン-2-イル トリフルオロメタンスルホネート5.7g(収率90%)を得た。
合成例5 ベンゾ[g]クリセン-10-ボロン酸の合成
 下記合成スキームに従って、ベンゾ[g]クリセン-10-ボロン酸を合成した。
Figure JPOXMLDOC01-appb-C000063
(5-1) 9-(2-ホルミルフェニル)フェナントレンの合成
 アルゴン雰囲気下、9-ブロモフェナントレン(25.7g)、2-ホルミルフェニルボロン酸(16.5g)、及びテトラキス(トリフェニルホスフィン)パラジウム(0)(2.31g)をフラスコに仕込み、1,2-ジメトキシエタン(340mL)、2M炭酸ナトリウム水溶液(170mL)を加え、8時間加熱還流攪拌した。室温まで冷却後、水層を除去した。有機層を水、飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥させた。硫酸マグネシウムを濾別後、有機層を濃縮した。残渣をシリカゲルカラムクロマトグラフィーで精製し、目的の9-(2-ホルミルフェニル)フェナントレン25.0g(収率89%)を得た。
(5-2) 9-[1-(2-メトキシビニル)フェニル]フェナントレンの合成
 アルゴン雰囲気下、9-(2-ホルミルフェニル)フェナントレン(25.0g)、メトキシメチルトリフェニルホスフォニウムクロリド(33.4g)、及びテトラヒドロフラン(300mL)を仕込み、室温にて攪拌中に、t-ブトキシカリウム(11.9g)を加えた。室温にて2時間攪拌した後、水(200mL)を加えた。反応溶液をジエチルエーテルで抽出し、水層を除去した。有機層を水、飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥させた。硫酸マグネシウムを濾別後、有機層を濃縮した。残渣をシリカゲルカラムクロマトグラフィーで精製し、目的の9-[1-(2-メトキシビニル)フェニル]フェナントレン9-(2-ホルミルフェニル)フェナントレン24.0g(収率87%)を得た。
(5-3) ベンゾ[g]クリセンの合成
 9-[1-(2-メトキシビニル)フェニル]フェナントレン9-(2-ホルミルフェニル)フェナントレン(24.0g)、及びジクロロメタン(100mL)を仕込み、室温下攪拌中にメタンスルホン酸をパスツールピペットで6滴加えた。室温で8時間攪拌を続けた。反応終了後10%炭酸カリウム水溶液(100mL)を加えた。水層を除去し、有機層を水、飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥させた。硫酸マグネシウムを濾別後、有機層を濃縮した。残渣をシリカゲルカラムクロマトグラフィーで精製し、目的のベンゾ[g]クリセン5.21g(収率25%)を得た。
(5-4)10-ブロモベンゾ[g]クリセンの合成
 ベンゾ[g]クリセン(5.21g)、及びN,N-ジメチルホルムアミド(50mL)をフラスコに仕込み、N-ブロモスクシンイミド(4.00g)のN,N-ジメチルホルムアミド(10mL)溶液を加えた。80℃で8時間加熱攪拌した。室温まで冷却後、反応溶液を水(200mL)中に注いだ。析出した固体を濾取し、水、メタノールで洗浄した。得られた個体をシリカゲルカラムクロマトグラフィーで精製し、10-ブロモベンゾ[g]クリセン5.87g(収率88%)を得た。
(5-5)ベンゾ[g]クリセン-10-ボロン酸の合成
 アルゴン雰囲気下、10-ブロモベンゾ[g]クリセン(5.87g)をフラスコに仕込み、脱水ジエチルエーテル(100mL)を加えた。反応溶液を-40℃まで冷却し、1.6M ノルマルブチルリチウムのヘキサン溶液(11mL)を加え、0℃まで昇温し、1時間攪拌した。反応溶液を-60℃まで冷却し、ホウ酸トリイソプロピル(7.72g)の脱水ジエチルエーテル(10mL)溶液を滴下した。反応溶液を室温まで昇温しながら5時間攪拌を続けた。10%塩酸水溶液(50mL)を加え、1時間攪拌した。水層を除去し、有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥させた。硫酸マグネシウムを濾別後、有機層を濃縮した。得られた固体をヘキサンで洗浄し、目的のベンゾ[g]クリセン-10-ボロン酸3.18g(収率60%)を得た。
合成例6 ベンゾフラノ[3,2-b]ジベンゾフラン-6-ボロン酸の合成
 下記合成スキームに従って、ベンゾフラノ[3,2-b]ジベンゾフラン-6-ボロン酸を合成した。
Figure JPOXMLDOC01-appb-C000064
(6-1) 2,4-ジブロモ-1,5-ジメトキシベンゼンの合成
 1,3-ジメトキシベンゼン(53.9g)をジクロロメタン(860mL)に溶解させアルゴン置換し、氷冷下、臭素(129.3g)のジクロロメタン(150mL)溶液を2時間半かけて滴下し、3時間かけて徐々に室温まで昇温させ、さらに一日撹拌を行った。反応液を氷冷し、10%水酸化ナトリウム水溶液で中和した。ジクロロメタン層を回収し、水層をジクロロメタンで抽出し、有機層をまとめて無水硫酸ナトリウムで乾燥し、濾過した後、濾液の濃縮を行った。得られた残渣をヘキサンで分散洗浄し、生成した結晶を濾取して乾燥し、目的の2,4-ジブロモ-1,5-ジメトキシベンゼンの白色結晶110.5g(収率97%)を得た。
(6-2) 2,4-ビス(2-フルオロフェニル)-1,5-ジメトキシベンゼンの合成
 2,4-ジブロモ-1,5-ジメトキシベンゼン(88.8g)、2-フルオロフェニルボロン酸(100.74g)、2M炭酸ナトリウム水溶液(600mL)、テトラキス(トリフェニルホスフィン)パラジウム(0)(6.73g)、1,2-ジメトキシエタン(150mL)、トルエン(150mL)をフラスコに入れ、36時間還流した。反応終了後、水(500mL)とトルエン(1000mL)を加えて分液ロートに移し、トルエン相を回収した。無水硫酸マグネシウムで乾燥した後、シリカゲルショートカラムを通し原点不純物の除去を行い、溶液を濃縮した。これをトルエン/ヘキサン混合溶媒から再結晶し、目的の2,4-ビス(2-フルオロフェニル)-1,5-ジメトキシベンゼンの白色固体86.5g(収率88%)を得た。
(6-3)2,4-ビス(2-フルオロフェニル)-1,5-ジヒドロキシベンゼンの合成
 1,5-ジメトキシ-2,4-ビス(2-フルオロフェニル)ベンゼン(48.3g)、ジクロロメタン(脱水)(740mL)をフラスコに入れ、0℃に冷却した。三臭化ホウ素(89.0g)を加え、その後室温で24時間撹拌した。反応終了後、溶液を-78℃に冷却し、メタノールで慎重に失活し、さらに十分量の水で失活した。溶液を分液ロートに移し、ジクロロメタンで抽出し、無水硫酸マグネシウムで乾燥した後、シリカゲルショートカラムを通し原点不純物の除去を行い、溶液を濃縮し、得られた試料を60℃で5時間真空乾燥し、目的の2,4-ビス(2-フルオロフェニル)-1,5-ジヒドロキシベンゼンの白色固体44.1g(収率100%)を得た。
(6-4)ベンゾフラノ[3,2-b]ジベンゾフランの合成
 2,4-ビス(2-フルオロフェニル)-1,5-ジヒドロキシベンゼン(44.14g)、N-メチル-2-ピロリジノン(脱水)(888mL)、をフラスコに入れ、固体を完全に溶解させた。炭酸カリウム(81.8g)を加え、その後200℃で2時間撹拌した。反応終了後、溶液を室温まで冷却し、トルエン2Lを加え、分液ロートに移し、水で洗浄した。この溶液を無水硫酸マグネシウムで乾燥した後、シリカゲルショートカラムを通し原点不純物の除去を行い、溶液を濃縮し、トルエン/メタノール混合溶媒から再結晶し、目的のベンゾフラノ[3,2-b]ジベンゾフランの白色固体27.9g(収率73%)を得た。
(6-5)ベンゾフラノ[3,2-b]ジベンゾフラン-6-ボロン酸の合成
 ベンゾフラノ[3,2-b]ジベンゾフラン(12.9g)、テトラヒドロフラン(脱水)(300mL)をフラスコに加え、-78℃に冷却した。そこへノルマルブチルリチウム((2.63M in hexane)20.0mL)を加え、その後、室温で1時間放置した。次に再度-78℃に冷却し、ホウ酸トリメチル(10.4g)を加え、-78℃で10分間撹拌した後、室温で1時間放置した。反応終了後、エバポレータで半分程度の容量に濃縮した後、1M塩酸(200mL)を加え、室温で1時間撹拌した。その後分液ロートに移し、酢酸エチルで抽出した。この溶液を無水硫酸マグネシウムで乾燥した後、濃縮し、トルエン/ヘキサン混合溶媒で分散洗浄し、目的のベンゾフラノ[3,2-b]ジベンゾフラン-6-ボロン酸の白色固体13.7g(収率91%)を得た。
合成例7 10-[4-(1-ナフチル)フェニル]アントラセン-9-イルボロン酸の合成
 下記合成スキームに従って、10-[4-(1-ナフチル)フェニル]アントラセン-9-イルボロン酸を合成した。
Figure JPOXMLDOC01-appb-C000065
(7-1) 4-(1-ナフチル)ブロモベンゼンの合成
 窒素雰囲気下、4-ブロモヨードベンゼン(70g)、1-ナフチルボロン酸(47g)、テトラキストリフェニルフォスフィンパラジウム(0)(5.7g)、炭酸カリウム(78.5g)及びトルエン(700mL)の混合物を74℃にて44時間撹拌した。反応混合物を室温まで冷却後、水を加えて分液を行い、有機層を5%重曹水及び5%食塩水にて洗浄し、減圧濃縮を行った。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製を行い、目的の4-(1-ナフチル)ブロモベンゼン53g(収率76%)を得た。
(7-2) 9-[4-(1-ナフチル)フェニル]アントラセンの合成
 窒素雰囲気下、4-(1-ナフチル)ブロモベンゼン(53g)、9-アントリルボロン酸(45g)、テトラキストリフェニルフォスフィンパラジウム(0)(4.3g)、炭酸カリウム(59g)、1,2-ジメトキシエタン(526mL)及び水(526mL)の混合物を74℃にて19時間撹拌した。反応を室温まで冷却し、生成した固体をろ取し、水、メタノール及びヘプタンで洗浄した。得られた固体をシリカゲルカラムクロマトグラフィーで精製し、目的の9-[4-(1-ナフチル)フェニル]アントラセン58g(収率82%)を得た。
(7-3) 9-ブロモ-10-[4-(1-ナフチル)フェニル]アントラセンの合成
 窒素雰囲気下、9-[4-(1-ナフチル)フェニル]アントラセン(56g)にジメチルホルムアミド(448mL)を加え、35℃に昇温し撹拌した。反応液にN-ブロモスクシンイミド(29g)をジメチルホルムアミド(86mL)に溶解した物を滴下し、2時間攪拌を行った。反応溶液を室温に戻し、水を加え、得られた固体をろ取し水で洗浄した。得られた固体をクロロホルムに溶解し、水で洗浄し、無水硫酸マグネシウムで乾燥させた後に減圧濃縮した。得られた残渣をトルエンにて洗浄し、目的の9-ブロモ-10-[4-(1-ナフチル)フェニル]アントラセン55g(81%)を得た。
(7-4) 10-[4-(1-ナフチル)フェニル]アントラセン-9-イルボロン酸の合成
 窒素雰囲気下、9-ブロモ-10-[4-(1-ナフチル)フェニル]アントラセン(54g)をテトラヒドロフラン(540mL)に溶解し、-65℃に冷却した。反応溶液に2.44Mノルマルブチルリチウム、ヘキサン溶液(58mL)を滴下し、2時間撹拌した。反応溶液にホウ酸トリメチル(24.4g)を滴下して1時間撹拌し、室温に戻してさらに1時間撹拌した。反応溶液に5M塩酸(270mL)を滴下して酸性とし、トルエンにて抽出を行い、5%重曹水及び5%食塩水にて洗浄を行い、減圧濃縮を行った。得られた残渣をトルエンにて洗浄し、目的の10-[4-(1-ナフチル)フェニル]アントラセン-9-イルボロン酸31g(収率62%)を得た。
合成例8 ET 2-17の合成
Figure JPOXMLDOC01-appb-C000066
 アルゴン雰囲気下、合成例7で得た10-[4-(1-ナフチル)フェニル]アントラセン-9-イルボロン酸(8.5g)、4-ブロモベンゾニトリル(3.8g)、テトラキストリフェニルフォスフィンパラジウム(0)(0.4g)、トルエン(49mL)、1,2-ジメトキシエタン(21mL)及び2M炭酸ナトリウム水溶液(30mL)の混合物を7時間加熱還流した。反応溶液を分液し、トルエン抽出を行った。有機層を水及び飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥したのち減圧濃縮を行った。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し、目的のET 2-17を5.0g(収率52%)得た。このものはマススペクトル分析の結果、分子量481.18に対しm/e=481であった。
合成例9 ET 3-05の合成
Figure JPOXMLDOC01-appb-C000067
(9-1) 1,6-ジ(2-ナフチル)ピレンの合成
 アルゴン雰囲気下、1,6-ジブロモピレン(10.0g)、2-ナフチルボロン酸(11.9g)、テトラキストリフェニルフォスフィンパラジウム(0)(1.28g)、トルエン(70mL)、テトラヒドロフラン(70mL)及び2M炭酸ナトリウム水溶液(83mL)の混合物を90℃にて8時間加熱還流した。反応混合物を室温に冷却し、得られた沈殿をろ取し、水及びメタノールで洗浄した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製後、再結晶を行い、目的の1,6-ジ(2-ナフチル)ピレン11.85g(収率94%)を得た。
(9-2) 1,6-ジブロモ-3,8-ジ(2-ナフチル)ピレンの合成
 アルゴン雰囲気下、1,6-ジ(2-ナフチル)ピレン(11.8g)及びクロロホルム(370mL)の混合物に、室温にて臭素(3.3mL)を滴下し、6時間攪拌を行った。反応混合物を室温に冷却し、沈殿した生成物をろ取し、水及びメタノールで洗浄した。得られた固体を、トルエンにて繰り返し再結晶を行い、目的の1,6-ジブロモ-3,8-ジ(2-ナフチル)ピレン8.1g(収率51%)を得た。
(9-3) ET 3-05の合成
 アルゴン雰囲気下、1,6-ジブロモ-3,8-ジ(2-ナフチル)ピレン(6.0g)、3-シアノフェニルボロン酸(3.9g)、テトラキストリフェニルフォスフィンパラジウム(0)(0.45g)、トルエン(49mL)、ジメトキシエタン(49mL)及び2M炭酸ナトリウム水溶液(29mL)の混合物を8時間加熱還流した。反応混合物を室温に冷却し、生成した固体をろ取し、水及びメタノールで洗浄した。得られた残渣のシリカゲルカラムクロマトグラフィー精製を行った後、熱トルエン及び熱ジオキサンで洗浄し、目的のET 3-05を5.0g(収率74%)得た。このものはマススペクトル分析の結果、分子量656.23に対しm/e=656であった。
合成例10 ET 3-43の合成
Figure JPOXMLDOC01-appb-C000068
(10-1) 1,6-ビス(9,9-ジメチル-9H-フルオレン-2-イル)ピレンの合成
 アルゴン雰囲気下、1,6-ジブロモピレン(13.6g)、9,9-ジメチル-9H-フルオレン-2-イルボロン酸(22.5g)、テトラキストリフェニルフォスフィンパラジウム(0)(1.7g)、トルエン(95mL)、テトラヒドロフラン(95mL)及び2M炭酸ナトリウム水溶液(113mL)の混合物を85℃にて8時間撹拌した。反応混合物を室温に冷却し、生成した固体をろ取し、水及びメタノールで洗浄した。得られた残渣をシリカゲルカラムクロマトグラフィー精製、再結晶を行い、目的の1,6-ビス(9,9-ジメチル-9H-フルオレン-2-イル)ピレンを主成分とする固体23.8gを得た。
(10-2) 3-ブロモ-1,6-ビス(9,9-ジメチル-9H-フルオレン-2-イル)ピレンの合成
 アルゴン雰囲気下、(10-1)で得た1,6-ビス(9,9-ジメチル-9H-フルオレン-2-イル)ピレン(10g)及びクロロホルム(1700mL)の混合物を50℃にて加熱撹拌し、完全溶解した後、N-ブロモスクシンイミド(3.0g)及びひとかけらのヨウ素を加えて50℃にて3時間撹拌した。反応液を室温に冷却し、水を加え分液した。クロロホルム層を飽和チオ硫酸ナトリウム水溶液及び飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧濃縮した。得られた残渣をトルエンにて再結晶を行い、得られた結晶をメタノール洗浄して、目的の3-ブロモ-1,6-ビス(9,9-ジメチル-9H-フルオレン-2-イル)ピレンを主成分(純度85.6%)とする固体4.9gを得た。
(10-3) 3,8-ビス(9,9-ジメチル-9H-フルオレン-2-イル)ピレン-1-イルボロン酸 ピナコールエステルの合成
 アルゴン雰囲気下、(10-2)で得られた3-ブロモ-1,6-ビス(9,9-ジメチル-9H-フルオレン-2-イル)ピレン(4.8g)、ビス(ピナコラート)ジボロン(2.8g)、[1,1‘-ビス(ジフェニルフォスフィノ)フェロセン]ジクロロパラジウム(II)ジクロロメタン付加体(0.18g)、酢酸カリウム(1.4g)及びジメチルホルムアミド(724mL)の混合物を80℃にて8時間攪拌を行った。反応混合物を室温に冷却し、水を加えた後、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄し、無水硫酸ナトリウム水溶液で乾燥した後、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し、目的の3,8-ビス(9,9-ジメチル-9H-フルオレン-2-イル)ピレン-1-イルボロン酸 ピナコールエステル0.89gを得た。
(10-4) ET 3-43の合成
 アルゴン雰囲気下、3,8-ビス(9,9-ジメチル-9H-フルオレン-2-イル)ピレン-1-イルボロン酸 ピナコールエステル(0.89g)、4-ブロモベンゾニトリル(0.34g)、テトラキストリフェニルフォスフィンパラジウム(0)(0.065g)、トルエン(6mL)、テトラヒドロフラン(6mL)及び2M炭酸ナトリウム水溶液(2.8mL)の混合物を90℃にて7時間撹拌した。反応液を室温に冷却し、トルエンにて抽出を行い、飽和食塩水で洗浄し、無水硫酸ナトリウム水溶液で乾燥させた後、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し、目的のET 3-43を0.59g(収率68%)得た。このものはマススペクトル分析の結果、分子量687.29に対しm/e=687であった。
合成例11 ET 4-14の合成
Figure JPOXMLDOC01-appb-C000069
アルゴン雰囲気下、合成例4で得た6-(4’-シアノビフェニル-3-イル)ナフタレン-2-イル トリフルオロメタンスルホネート(3.63g)、3-フルオランテニルボロン酸(2.17g)、テトラキストリフェニルフォスフィンパラジウム(0)(0.28g)、トルエン(12mL)、1,2-ジメトキシエタン(12mL)及び2M炭酸ナトリウム水溶液(12mL)の混合物を、5時間加熱還流した。反応液を室温に冷却し、水を加え、ジクロロメタンにて抽出を行った。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、目的のET 4-14を3.45g(収率85%)得た。このものはマススペクトル分析の結果、分子量505.18に対しm/e=505であった。
合成例12 ET 6-02の合成
Figure JPOXMLDOC01-appb-C000070
 アルゴン雰囲気下、6,12-ジブロモクリセン(5.79g)、4-シアノフェニルボロン酸(5.29g)、テトラキストリフェニルフォスフィンパラジウム(0)(1.04g)、トルエン(45mL)、1,2-ジメトキシエタン(45mL)及び2M炭酸ナトリウム水溶液(45mL)の混合物を6時間加熱還流した。反応混合物を室温まで冷却し、水を加え1時間撹拌を行った。生成した固体をろ取し、水、メタノールで洗浄後、減圧下にて乾燥を行った。得られた固体を熱クロロベンゼンで繰り返し洗浄した後、昇華精製を行い、目的のET 6-02を2.57g(収率40%)得た。このものはマススペクトル分析の結果、分子量430.15に対しm/e=430であった。
合成例13 ET 7-10の合成
Figure JPOXMLDOC01-appb-C000071
 アルゴン雰囲気下、合成例2で得た3’-ブロモ-4-シアノビフェニル(1.49g)、合成例5で得たベンゾ[g]クリセン-10-ボロン酸(2.05g)、テトラキストリフェニルフォスフィンパラジウム(0)(0.20g)、1,2-ジメトキシエタン(18mL)及び2M炭酸ナトリウム水溶液(9mL)の混合物を、5.5時間加熱還流した。反応を室温に冷却し、水を加え、トルエンにて抽出を行った。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し、目的のET 7-10を1.54g(収率59%)得た。このものはマススペクトル分析の結果、分子量455.17に対しm/e=455であった。
合成例14 ET 9-08の合成
Figure JPOXMLDOC01-appb-C000072
 アルゴン雰囲気下、合成例3で得た3’-ブロモ-3-シアノビフェニル(3.0g)、合成例6で得たベンゾフラノ[3,2-b]ジベンゾフラン-6-ボロン酸(3.9g)、テトラキストリフェニルフォスフィンパラジウム(0)(0.67g)、トルエン(29mL)、1,2-ジメトキシエタン(29mL)及び2M炭酸ナトリウム水溶液(23mL)の混合物を、8時間加熱還流した。反応液を室温に冷却し、生成した固体をろ取し、水及びメタノールで洗浄した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、目的のET 9-08を2.89g(収率57%)得た。このものはマススペクトル分析の結果、分子量435.13に対しm/e=435であった。
実施例19~30及び比較例4~7
 電子輸送材料としてET 1-01の代わりに表3に示す化合物を用い、ドーパントとして表3に示す化合物を用いた他は実施例1と同様にして有機EL素子を製造し、駆動電圧、発光効率(L/J)及び半減寿命を評価した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3から、シアノ基と芳香族環基を有する化合物を電子輸送材料として用いると、低電圧化、高効率化、長寿命化することが分かる。
 これらの実施例から、本願のシアノ基と芳香族環基を有する電子輸送材料において、その芳香族環基は、一部の構造に限定されることなく、一般に良く知られる芳香族環基を広く用いることが出来ることが分かる。また、発光層に種々のドーパントを用いることができることもわかる。
 本発明の電子輸送材料を含んでなる有機EL素子は、低消費電力化が望まれる大型テレビ向け表示パネルや照明パネル等に用いることができる。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献の内容を全てここに援用する。

Claims (10)

  1.  陽極、発光層、電子輸送帯域及び陰極をこの順に備え、
     前記電子輸送帯域が、シアノ基と芳香族環基を有する電子輸送材料を含む有機エレクトロルミネッセンス素子。
  2.  前記電子輸送材料が、シアノ基と芳香族単環基及び/又は芳香族縮合環基を有する電子輸送材料である請求項1に記載の有機エレクトロルミネッセンス素子。
  3.  前記電子輸送材料が下記式(ET)で表わされる請求項1又は2に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000073
    [式中、
     Lは、単結合又は置換もしくは無置換の環形成炭素数6~50のa+1価の芳香族環基である。
     Arは、置換もしくは無置換の環形成炭素数6~50の1+b価の芳香族環基である。
     a,b及びcは、それぞれ1~3の整数である。
     Aは、下記式(A-1)~(A-12)
    Figure JPOXMLDOC01-appb-C000074
    (式(A-1)~(A-12)中、
     R~R12、R21~R30、R31~R40、R41~R50、R51~R60、R61~R72、R73~R86、R87~R94、R95~R104、R105~R114、R115~R124又はR125~R134のうちのc個は単結合でLと結合し、単結合以外のR~R12、R21~R30、R31~R40、R41~R50、R51~R60、R61~R72、R73~R86、R87~R94、R95~R104、R105~R114、R115~R124又はR125~R134は、それぞれ水素原子、ハロゲン原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~10のシクロアルキル基、置換もしくは無置換のシリル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基であるか、隣接する各基が結合して環を形成する。)からなる群から選択される縮合芳香族環基である。]
  4.  前記電子輸送材料が、下記式(1)で表わされる請求項3に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000075
    (式中、a,b,c、L、Ar、及びR~R12は、請求項3で定義した通りである。)
  5.  R又はRが単結合でLと結合している請求項4に記載の有機エレクトロルミネッセンス素子。
  6.  a=1及びc=1である請求項4又は5に記載の有機エレクトロルミネッセンス素子。
  7.  R及びR12が、それぞれ無置換のフェニル基である請求項4~6のいずれかに記載の有機エレクトロルミネッセンス素子。
  8.  前記電子輸送帯域が、還元性ドーパントをさらに含有する請求項1~7に記載の有機エレクトロルミネッセンス素子。
  9.  前記還元性ドーパントが、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体及び希土類金属の有機錯体からなる群から選択される1種又は2種以上である請求項8に記載の有機エレクトロルミネッセンス素子。
  10.  下記式(ET)で表されるシアノ基と芳香族環基を有する化合物。
    Figure JPOXMLDOC01-appb-C000076
    [式中、
     Lは、単結合又は置換もしくは無置換の環形成炭素数6~50のa+1価の芳香族環基である。
     Arは、置換もしくは無置換の環形成炭素数6~50の1+b価の芳香族環基である。
     a,b及びcは、それぞれ1~3の整数である。
     Aは、下記式(A-1)~(A-12)
    Figure JPOXMLDOC01-appb-C000077
    (式(A-1)~(A-12)中、
     R~R12、R21~R30、R31~R40、R41~R50、R51~R60、R61~R72、R73~R86、R87~R94、R95~R104、R105~R114、R115~R124又はR125~R134のうちのc個は単結合でLと結合し、単結合以外のR~R12、R21~R30、R31~R40、R41~R50、R51~R60、R61~R72、R73~R86、R87~R94、R95~R104、R105~R114、R115~R124又はR125~R134は、それぞれ水素原子、ハロゲン原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~10のシクロアルキル基、置換もしくは無置換のシリル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基であるか、隣接する各基が結合して環を形成する。)からなる群から選択される縮合芳香族環基である。]
PCT/JP2011/004458 2010-08-05 2011-08-05 有機エレクトロルミネッセンス素子 WO2012017680A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2011800026082A CN102576814A (zh) 2010-08-05 2011-08-05 有机电致发光元件
JP2011548450A JPWO2012017680A1 (ja) 2010-08-05 2011-08-05 有機エレクトロルミネッセンス素子
US13/509,878 US9512137B2 (en) 2010-08-05 2011-08-05 Organic electroluminescence device
EP11814314.8A EP2602839A1 (en) 2010-08-05 2011-08-05 Organic electroluminescent element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010176249 2010-08-05
JP2010-176249 2010-08-05

Publications (1)

Publication Number Publication Date
WO2012017680A1 true WO2012017680A1 (ja) 2012-02-09

Family

ID=45559199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004458 WO2012017680A1 (ja) 2010-08-05 2011-08-05 有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (1) US9512137B2 (ja)
EP (1) EP2602839A1 (ja)
JP (1) JPWO2012017680A1 (ja)
KR (1) KR20120104087A (ja)
CN (1) CN102576814A (ja)
TW (1) TW201213502A (ja)
WO (1) WO2012017680A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133042A1 (ja) * 2011-03-31 2012-10-04 富士フイルム株式会社 有機電界発光素子及び電荷輸送材料
EP2518038A1 (en) * 2009-12-21 2012-10-31 Idemitsu Kosan Co., Ltd. Pyrene derivative and organic electroluminescent element using the same
JP2013189426A (ja) * 2012-02-14 2013-09-26 Chemiprokasei Kaisha Ltd 新規な置換シアノフェニルピレン誘導体、発光材料及びそれを用いた有機エレクトロルミネッセンス素子
JP2013247179A (ja) * 2012-05-24 2013-12-09 Udc Ireland Ltd 有機電界発光素子、並びに該素子を用いた発光装置、表示装置及び照明装置
US20140151670A1 (en) * 2012-07-19 2014-06-05 Lg Chem, Ltd. Polycyclic compound and organic electronic device comprising the same
WO2015141608A1 (ja) * 2014-03-17 2015-09-24 Jnc株式会社 電子輸送材料およびこれを用いた有機電界発光素子
WO2016031785A1 (ja) * 2014-08-26 2016-03-03 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
KR20170013236A (ko) 2014-05-28 2017-02-06 도레이 카부시키가이샤 플루오란텐 유도체, 그것을 함유하는 전자 디바이스, 발광 소자 및 광전 변환 소자
KR20190111948A (ko) 2017-01-30 2019-10-02 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자 및 전자 기기

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101422864B1 (ko) 2006-06-22 2014-07-24 소니 주식회사 복소환 함유 아릴아민 유도체를 이용한 유기 전계발광 소자
US8883323B2 (en) * 2010-11-22 2014-11-11 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US9324950B2 (en) 2010-11-22 2016-04-26 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US20120126205A1 (en) * 2010-11-22 2012-05-24 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
CN102863391B (zh) * 2012-09-21 2015-04-15 浙江欧普光电科技有限公司 含四-n-取代苯基苯并咪唑类化合物及其制备方法
KR102104637B1 (ko) * 2013-06-28 2020-04-27 삼성디스플레이 주식회사 유기전계발광소자
KR102184674B1 (ko) 2013-08-09 2020-12-01 삼성디스플레이 주식회사 안트라센계 화합물 및 이를 포함한 유기 발광 소자
KR102181235B1 (ko) * 2013-08-30 2020-11-23 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
KR102191991B1 (ko) 2013-09-06 2020-12-17 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
KR102167042B1 (ko) 2013-09-06 2020-10-19 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
KR102167043B1 (ko) 2013-10-01 2020-10-19 삼성디스플레이 주식회사 파이렌계 화합물 및 이를 포함한 유기 발광 소자
KR102167044B1 (ko) 2013-10-31 2020-10-19 삼성디스플레이 주식회사 크라이센계 화합물 및 이를 포함한 유기 발광 소자
KR20160049500A (ko) 2014-10-27 2016-05-09 주식회사 엘지화학 유기 전계 발광 소자
JP6711566B2 (ja) * 2015-07-09 2020-06-17 キヤノン株式会社 有機発光素子、表示装置、画像情報処理装置、照明装置、画像形成装置、露光装置、有機光電変換素子
TWI564294B (zh) * 2015-08-24 2017-01-01 國立清華大學 載子產生材料與有機發光二極體
CN106478529B (zh) * 2015-08-24 2019-04-02 郑建鸿 载流子产生材料与有机发光二极管
CN107778199B (zh) * 2016-08-25 2021-04-02 武汉尚赛光电科技有限公司 具有电子供体-受体结构的7,12-二苯基苯并[k]荧蒽的衍生物、其制备方法及应用
KR102536248B1 (ko) 2017-06-21 2023-05-25 삼성디스플레이 주식회사 헤테로시클릭 화합물 및 이를 포함한 유기 발광 소자
KR102415376B1 (ko) 2017-08-04 2022-07-01 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
CN108047087B (zh) * 2018-01-18 2020-06-05 河南省科学院化学研究所有限公司 3’-(4-溴萘-1-基)[1,1’-联苯基]-4-腈及其合成方法
KR102536246B1 (ko) 2018-03-23 2023-05-25 삼성디스플레이 주식회사 헤테로고리 화합물 및 이를 포함한 유기 발광 소자
US11696495B2 (en) * 2018-08-06 2023-07-04 Lg Display Co., Ltd. Organic emitting compound, and organic light emitting diode and organic light emitting display device including the same
CN112136224B (zh) 2018-09-20 2024-08-02 株式会社Lg化学 有机发光二极管
JP7532721B2 (ja) * 2020-05-28 2024-08-14 エルジー・ケム・リミテッド 化合物およびこれを含む有機発光素子

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11345687A (ja) 1998-06-01 1999-12-14 Canon Inc 発光素子
JP2001297883A (ja) * 2000-04-17 2001-10-26 Mitsubishi Chemicals Corp 有機電界発光素子
WO2003060956A2 (en) 2002-01-18 2003-07-24 Lg Chem, Ltd. New material for transporting electrons and organic electroluminescent display using the same
JP2005072012A (ja) 2003-08-27 2005-03-17 Novaled Gmbh 発光素子とその製造方法
JP2005516061A (ja) * 2002-01-29 2005-06-02 アプライド リサーチ システムズ エーアールエス ホールディング ナームロゼ フェンノートシャップ タンパク質チロシンホスファターゼの調節因子としての置換メチレンアミド誘導体
WO2005097756A1 (ja) 2004-04-07 2005-10-20 Idemitsu Kosan Co., Ltd. 含窒素複素環誘導体およびそれを用いた有機エレクトロルミネッセンス素子
JP2006518545A (ja) * 2003-02-19 2006-08-10 エルジー エレクトロニクス インコーポレーテッド 有機電界発光素子
JP2007511067A (ja) * 2003-10-24 2007-04-26 イーストマン コダック カンパニー アントラセン誘導体ホストを伴うエレクトロルミネセント素子
US20080014464A1 (en) 2006-06-22 2008-01-17 Idemitsu Kosan Co., Ltd. Organic electroluminescent device using aryl amine derivative containing heterocycle
WO2008023759A1 (fr) 2006-08-23 2008-02-28 Idemitsu Kosan Co., Ltd. Dérivés d'amines aromatiques et dispositifs électroluminescents organiques utilisant ces mêmes amines
JP2008060379A (ja) * 2006-08-31 2008-03-13 Mitsui Chemicals Inc 有機電界発光素子および芳香族化合物
WO2008059713A1 (en) 2006-11-15 2008-05-22 Idemitsu Kosan Co., Ltd. Fluoranthene compound, organic electroluminescent device using the fluoranthene compound, and organic electroluminescent material-containing solution
JP2008258603A (ja) 2007-03-14 2008-10-23 Samsung Sdi Co Ltd アントラセン誘導体化合物を含む有機膜を備える有機発光素子
JP2008546185A (ja) * 2005-05-25 2008-12-18 イーストマン コダック カンパニー Oledの電子輸送層
WO2009081857A1 (ja) 2007-12-21 2009-07-02 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2009107596A1 (ja) 2008-02-25 2009-09-03 出光興産株式会社 有機発光媒体及び有機el素子
US20090243473A1 (en) 2006-08-04 2009-10-01 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
WO2010035723A1 (ja) * 2008-09-24 2010-04-01 保土谷化学工業株式会社 置換されたアントラセン環構造とピリドインドール環構造を有する化合物および有機エレクトロルミネッセンス素子
JP2010111621A (ja) * 2008-11-06 2010-05-20 Sony Corp 芳香族アミン化合物及びこれを用いた有機電界発光素子、並びに有機電界発光素子を用いた表示装置
WO2010074087A1 (ja) * 2008-12-26 2010-07-01 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
JP4617393B1 (ja) * 2010-01-15 2011-01-26 富士フイルム株式会社 有機電界発光素子

Family Cites Families (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4070274B2 (ja) 1996-11-07 2008-04-02 三井化学株式会社 有機電界発光素子
US6465115B2 (en) 1998-12-09 2002-10-15 Eastman Kodak Company Electroluminescent device with anthracene derivatives hole transport layer
US7083862B2 (en) * 2000-02-09 2006-08-01 Isis Innovation Limited Dendrimers
TWI290546B (en) 2000-08-10 2007-12-01 Mitsui Chemicals Inc Hydrocarbon compounds for organic electroluminescent elements and organic electroluminescent elements
JP2002063988A (ja) 2000-08-22 2002-02-28 Toray Ind Inc 発光素子
JP4871464B2 (ja) * 2001-09-28 2012-02-08 キヤノン株式会社 有機発光素子
EP1312605B1 (en) 2001-11-19 2007-04-25 Sumitomo Chemical Company, Limited Method for producing biaryl compounds
CN1239447C (zh) 2002-01-15 2006-02-01 清华大学 一种有机电致发光材料
JP5002758B2 (ja) 2002-03-11 2012-08-15 双葉電子工業株式会社 有機el素子
JP4299028B2 (ja) 2002-03-11 2009-07-22 Tdk株式会社 有機el素子
US7189989B2 (en) 2002-08-22 2007-03-13 Fuji Photo Film Co., Ltd. Light emitting element
TW593624B (en) 2002-10-16 2004-06-21 Univ Tsinghua Aromatic compounds and organic LED
JP2005063938A (ja) 2003-05-09 2005-03-10 Fuji Photo Film Co Ltd 有機電界発光素子
TWI224473B (en) 2003-06-03 2004-11-21 Chin-Hsin Chen Doped co-host emitter system in organic electroluminescent devices
JP3834647B2 (ja) 2003-06-26 2006-10-18 国立大学法人岐阜大学 アリールアントラセン化合物の製造方法
DE10342340A1 (de) 2003-09-11 2005-04-14 Basf Ag Verbindungen auf Basis von Fluoranthen und ihre Verwendung
US7056601B2 (en) 2003-10-24 2006-06-06 Eastman Kodak Company OLED device with asymmetric host
US7887931B2 (en) 2003-10-24 2011-02-15 Global Oled Technology Llc Electroluminescent device with anthracene derivative host
JP4788202B2 (ja) 2004-07-09 2011-10-05 Jnc株式会社 発光材料およびこれを用いた有機電界発光素子
US20060222886A1 (en) * 2005-04-04 2006-10-05 Raymond Kwong Arylpyrene compounds
US7479330B2 (en) * 2005-05-26 2009-01-20 Au Optronics Corporation Anthracene derivatives for organic electroluminescent device
US8092924B2 (en) 2005-05-31 2012-01-10 Universal Display Corporation Triphenylene hosts in phosphorescent light emitting diodes
CN1315764C (zh) 2005-08-25 2007-05-16 复旦大学 9-苯基-9-芘基芴取代的芘的共轭衍生物材料及其制备方法和应用
CN1737080A (zh) 2005-09-08 2006-02-22 复旦大学 一类芴的寡聚物电致发光材料及其合成方法
JP2007169581A (ja) 2005-11-25 2007-07-05 Toray Ind Inc 発光素子材料および発光素子
US20090066227A1 (en) 2005-12-20 2009-03-12 Canon Kabushiki Kaisha Organic light-emitting device
JP5017884B2 (ja) 2006-02-24 2012-09-05 東レ株式会社 発光素子材料および発光素子
US7667043B2 (en) 2006-03-20 2010-02-23 E.I. Du Pont De Nemours And Company Molecular structures with controllable electron conducting properties
JP4227628B2 (ja) 2006-04-25 2009-02-18 キヤノン株式会社 化合物および有機発光素子
JP4717703B2 (ja) 2006-04-25 2011-07-06 キヤノン株式会社 化合物および有機el素子
JP5031294B2 (ja) 2006-08-01 2012-09-19 キヤノン株式会社 アミン化合物および有機発光素子
JP5428147B2 (ja) 2006-12-07 2014-02-26 三菱化学株式会社 有機蛍光体材料
JP2008150343A (ja) 2006-12-20 2008-07-03 Toray Ind Inc ピレン誘導体の製造方法
KR20100014803A (ko) * 2007-02-19 2010-02-11 이데미쓰 고산 가부시키가이샤 유기 전계발광 소자
JP2009010181A (ja) 2007-06-28 2009-01-15 Toray Ind Inc 発光素子
CN101910357B (zh) 2007-11-22 2014-08-13 葛来西雅帝史派有限公司 高效率的蓝色电致发光化合物和使用该化合物的显示器
KR100948070B1 (ko) 2007-12-28 2010-03-16 재단법인대구경북과학기술원 피렌 유도체 및 이를 이용한 유기전계발광소자
KR101092005B1 (ko) 2008-02-11 2011-12-09 에스에프씨 주식회사 유기전계발광소자 및 이에 사용되는 화합물
KR100921783B1 (ko) 2008-02-14 2009-10-15 강원대학교산학협력단 나프틸기를 가지는 방향족 다중 고리 화합물과 이 화합물의제조방법
US8049411B2 (en) * 2008-06-05 2011-11-01 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device using the same
KR101092006B1 (ko) 2008-06-24 2011-12-09 에스에프씨 주식회사 안트라센 유도체 및 이를 포함하는 유기전계발광소자
EP2141214A3 (en) 2008-06-25 2010-02-24 Gracel Display Inc. Novel organic electroluminescent compounds and organic electroluminescent device using the same
JP2010040735A (ja) 2008-08-05 2010-02-18 Sony Corp 有機電界発光素子および表示装置
KR101551207B1 (ko) 2008-09-04 2015-09-08 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 발광재료로서 채용하고 있는 유기 발광 소자
CN101381601A (zh) 2008-09-28 2009-03-11 南京邮电大学 一种寡聚物电致蓝光材料及其合成方法
KR101178219B1 (ko) 2008-11-21 2012-08-29 롬엔드하스전자재료코리아유한회사 전기발광화합물을 발광재료로서 채용하고 있는 전기발광소자
CN101698795A (zh) 2008-11-24 2010-04-28 上海拓引数码技术有限公司 9-(6-取代-2萘基-)-10-取代蒽类衍生物的蓝光有机电致发光材料及其制备方法
JP2010150235A (ja) 2008-11-27 2010-07-08 Canon Inc 化合物の製造方法
JP2010135177A (ja) 2008-12-04 2010-06-17 Sony Corp 色変換膜、色変換基板、色変換フィルタ基板、および有機電界発光素子、並びに色変換フィルタ基板の製造方法
DE102009005746A1 (de) 2009-01-23 2010-07-29 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
JP2010185008A (ja) 2009-02-12 2010-08-26 Mitsubishi Chemicals Corp 有機電界発光素子用組成物、有機薄膜、有機電界発光素子、有機el表示装置および有機el照明
JP2010209211A (ja) 2009-03-10 2010-09-24 Mitsubishi Chemicals Corp 有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイおよび有機el照明
JP5709382B2 (ja) 2009-03-16 2015-04-30 キヤノン株式会社 新規クリセン化合物及びこれを有する有機発光素子
JP5109054B2 (ja) 2009-04-17 2012-12-26 株式会社デンソー 有機電界発光素子
KR101317511B1 (ko) 2009-04-30 2013-10-15 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 전자 소자
WO2011008169A1 (en) 2009-07-14 2011-01-20 Agency For Science, Technology And Research Organic ambipolar light emitting materials
JP2011037743A (ja) 2009-08-10 2011-02-24 Canon Inc ピレン誘導体及びこれを用いた有機発光素子
KR101616691B1 (ko) 2009-09-09 2016-05-02 에스에프씨 주식회사 유기전계발광소자
IT1396026B1 (it) 2009-10-19 2012-11-09 Eni Spa Composizioni fotoluminescenti per convertitori di spettro a migliorata efficienza
KR20110043270A (ko) 2009-10-21 2011-04-27 (주)씨에스엘쏠라 유기발광화합물 및 이를 구비한 유기발광소자
KR20110049554A (ko) 2009-11-05 2011-05-12 엘지디스플레이 주식회사 청색 형광 화합물 및 이를 포함하는 유기전계발광소자
JP4795463B2 (ja) 2009-12-02 2011-10-19 キヤノン株式会社 新規ベンゾ[c]フェナンスレン化合物及びこれを有する有機発光素子
KR101160670B1 (ko) 2009-12-07 2012-06-28 (주)씨에스엘쏠라 유기발광화합물 및 이를 구비한 유기발광소자
KR20110076017A (ko) 2009-12-29 2011-07-06 엘지디스플레이 주식회사 화합물 및 이를 이용한 유기전계 발광소자
JP4603624B1 (ja) 2010-01-20 2010-12-22 富士フイルム株式会社 有機電界発光素子
KR20110123701A (ko) 2010-05-07 2011-11-15 에스에프씨 주식회사 안트라센계 화합물 및 이를 포함하는 유기전계발광소자
KR101244599B1 (ko) 2010-05-28 2013-03-25 주식회사 두산 바이폴라 트리페닐렌계 화합물 및 이를 포함하는 유기 전계 발광 소자
JP2012028629A (ja) 2010-07-26 2012-02-09 Canon Inc 有機発光素子およびその製造方法
JP5778407B2 (ja) 2010-07-29 2015-09-16 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子及び電荷輸送材料
KR20140002614A (ko) 2010-08-11 2014-01-08 이 아이 듀폰 디 네모아 앤드 캄파니 전기활성 화합물 및 조성물, 및 그 조성물로 제조된 전자 소자
KR20120020818A (ko) 2010-08-31 2012-03-08 롬엔드하스전자재료코리아유한회사 신규한 유기 전자재료용 화합물 및 이를 포함하는 유기 전계 발광 소자
JP5623229B2 (ja) 2010-09-30 2014-11-12 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子用材料、膜、発光層、有機電界発光素子、及び有機電界発光素子の製造方法
JP5636244B2 (ja) 2010-09-30 2014-12-03 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子
KR101334204B1 (ko) 2010-10-27 2013-11-28 (주)위델소재 신규한 파이렌 화합물과, 상기 파이렌 화합물의 제조방법 및 상기 파이렌 화합물을 이용한 유기발광소자
JP2012099593A (ja) 2010-11-01 2012-05-24 Canon Inc 有機発光素子
JP5718023B2 (ja) 2010-11-08 2015-05-13 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子、及び有機電界発光素子の製造方法
KR20120051598A (ko) 2010-11-12 2012-05-22 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 전자 소자
US8883323B2 (en) 2010-11-22 2014-11-11 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US20120126205A1 (en) 2010-11-22 2012-05-24 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
JP5673043B2 (ja) 2010-12-03 2015-02-18 東洋インキScホールディングス株式会社 有機エレクトロルミネッセンス素子
KR101432600B1 (ko) 2010-12-31 2014-08-21 제일모직주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
JP5859881B2 (ja) 2011-03-31 2016-02-16 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子の発光層を形成するホスト材料の昇華精製方法
JP5872930B2 (ja) 2011-03-31 2016-03-01 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子及び電荷輸送材料
JP2012224618A (ja) 2011-04-08 2012-11-15 Fujifilm Corp 有機材料の精製方法、有機エレクトロニクス用材料、光電変換素子、光センサ、撮像素子、及び有機電界発光素子
JP6014350B2 (ja) 2011-04-12 2016-10-25 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子、有機電界発光素子用材料、膜、発光層、及び有機電界発光素子の作製方法
JP5794813B2 (ja) 2011-04-12 2015-10-14 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子、有機電界発光素子用材料、膜、及び有機電界発光素子の作製方法
JP6118036B2 (ja) 2011-04-12 2017-04-19 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子、有機電界発光素子用材料、膜、発光層、及び有機電界発光素子の作製方法
KR101888658B1 (ko) 2011-04-15 2018-08-14 에스에프씨 주식회사 신규한 화합물 및 이를 포함하는 유기전계발광소자
KR101996649B1 (ko) 2011-04-15 2019-07-04 에스에프씨 주식회사 피렌 유도체 화합물 및 이를 포함하는 유기전계발광소자
CN103649024B (zh) 2011-06-10 2016-08-17 国立大学法人名古屋大学 用芳基取代的多环芳香族化合物的制备方法

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11345687A (ja) 1998-06-01 1999-12-14 Canon Inc 発光素子
JP2001297883A (ja) * 2000-04-17 2001-10-26 Mitsubishi Chemicals Corp 有機電界発光素子
WO2003060956A2 (en) 2002-01-18 2003-07-24 Lg Chem, Ltd. New material for transporting electrons and organic electroluminescent display using the same
JP2005516061A (ja) * 2002-01-29 2005-06-02 アプライド リサーチ システムズ エーアールエス ホールディング ナームロゼ フェンノートシャップ タンパク質チロシンホスファターゼの調節因子としての置換メチレンアミド誘導体
JP2006518545A (ja) * 2003-02-19 2006-08-10 エルジー エレクトロニクス インコーポレーテッド 有機電界発光素子
JP2005072012A (ja) 2003-08-27 2005-03-17 Novaled Gmbh 発光素子とその製造方法
JP2007511067A (ja) * 2003-10-24 2007-04-26 イーストマン コダック カンパニー アントラセン誘導体ホストを伴うエレクトロルミネセント素子
WO2005097756A1 (ja) 2004-04-07 2005-10-20 Idemitsu Kosan Co., Ltd. 含窒素複素環誘導体およびそれを用いた有機エレクトロルミネッセンス素子
JP2008546185A (ja) * 2005-05-25 2008-12-18 イーストマン コダック カンパニー Oledの電子輸送層
US20080014464A1 (en) 2006-06-22 2008-01-17 Idemitsu Kosan Co., Ltd. Organic electroluminescent device using aryl amine derivative containing heterocycle
US20090243473A1 (en) 2006-08-04 2009-10-01 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
WO2008023759A1 (fr) 2006-08-23 2008-02-28 Idemitsu Kosan Co., Ltd. Dérivés d'amines aromatiques et dispositifs électroluminescents organiques utilisant ces mêmes amines
JP2008060379A (ja) * 2006-08-31 2008-03-13 Mitsui Chemicals Inc 有機電界発光素子および芳香族化合物
WO2008059713A1 (en) 2006-11-15 2008-05-22 Idemitsu Kosan Co., Ltd. Fluoranthene compound, organic electroluminescent device using the fluoranthene compound, and organic electroluminescent material-containing solution
JP2008258603A (ja) 2007-03-14 2008-10-23 Samsung Sdi Co Ltd アントラセン誘導体化合物を含む有機膜を備える有機発光素子
WO2009081857A1 (ja) 2007-12-21 2009-07-02 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2009107596A1 (ja) 2008-02-25 2009-09-03 出光興産株式会社 有機発光媒体及び有機el素子
WO2010035723A1 (ja) * 2008-09-24 2010-04-01 保土谷化学工業株式会社 置換されたアントラセン環構造とピリドインドール環構造を有する化合物および有機エレクトロルミネッセンス素子
JP2010111621A (ja) * 2008-11-06 2010-05-20 Sony Corp 芳香族アミン化合物及びこれを用いた有機電界発光素子、並びに有機電界発光素子を用いた表示装置
WO2010074087A1 (ja) * 2008-12-26 2010-07-01 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
JP4617393B1 (ja) * 2010-01-15 2011-01-26 富士フイルム株式会社 有機電界発光素子

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2518038A1 (en) * 2009-12-21 2012-10-31 Idemitsu Kosan Co., Ltd. Pyrene derivative and organic electroluminescent element using the same
EP2518038A4 (en) * 2009-12-21 2013-06-26 Idemitsu Kosan Co PYRENE DERIVATIVE AND ORGANIC ELECTROLUMINESCENT ELEMENT USING THE DERIVATIVE
JP2012216781A (ja) * 2011-03-31 2012-11-08 Fujifilm Corp 有機電界発光素子及び電荷輸送材料
WO2012133042A1 (ja) * 2011-03-31 2012-10-04 富士フイルム株式会社 有機電界発光素子及び電荷輸送材料
JP2013189426A (ja) * 2012-02-14 2013-09-26 Chemiprokasei Kaisha Ltd 新規な置換シアノフェニルピレン誘導体、発光材料及びそれを用いた有機エレクトロルミネッセンス素子
JP2013247179A (ja) * 2012-05-24 2013-12-09 Udc Ireland Ltd 有機電界発光素子、並びに該素子を用いた発光装置、表示装置及び照明装置
US9484539B2 (en) * 2012-07-19 2016-11-01 Lg Chem, Ltd. Polycyclic compound and organic electronic device comprising the same
US20140151670A1 (en) * 2012-07-19 2014-06-05 Lg Chem, Ltd. Polycyclic compound and organic electronic device comprising the same
JP2015526393A (ja) * 2012-07-19 2015-09-10 エルジー・ケム・リミテッド 多環式化合物およびそれを含む有機電子素子
EP2876104A4 (en) * 2012-07-19 2016-02-17 Lg Chemical Ltd POLYCYCLIC COMPOUND AND ORGANIC ELECTRONIC DEVICE THEREFOR
US9818951B2 (en) 2012-07-19 2017-11-14 Lg Chem, Ltd. Polycyclic compound and organic electronic device comprising the same
WO2015141608A1 (ja) * 2014-03-17 2015-09-24 Jnc株式会社 電子輸送材料およびこれを用いた有機電界発光素子
JPWO2015141608A1 (ja) * 2014-03-17 2017-04-06 Jnc株式会社 電子輸送材料およびこれを用いた有機電界発光素子
KR20170013236A (ko) 2014-05-28 2017-02-06 도레이 카부시키가이샤 플루오란텐 유도체, 그것을 함유하는 전자 디바이스, 발광 소자 및 광전 변환 소자
JPWO2016031785A1 (ja) * 2014-08-26 2017-06-08 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
WO2016031785A1 (ja) * 2014-08-26 2016-03-03 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
US9947876B2 (en) 2014-08-26 2018-04-17 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and electronic device
KR20190111948A (ko) 2017-01-30 2019-10-02 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자 및 전자 기기

Also Published As

Publication number Publication date
EP2602839A1 (en) 2013-06-12
US9512137B2 (en) 2016-12-06
JPWO2012017680A1 (ja) 2013-10-03
CN102576814A (zh) 2012-07-11
TW201213502A (en) 2012-04-01
KR20120104087A (ko) 2012-09-20
US20120256172A1 (en) 2012-10-11

Similar Documents

Publication Publication Date Title
WO2012017680A1 (ja) 有機エレクトロルミネッセンス素子
JP5909179B2 (ja) ベンゾ[k]フルオランテン誘導体及びそれを含んでなる有機エレクトロルミネッセンス素子
US9382206B2 (en) Nitrogen-containing aromatic heterocyclic derivative and organic electroluminescence device using the same
TWI485228B (zh) Organic electroluminescent elements
JP5533863B2 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
WO2012070226A1 (ja) 含酸素縮合環誘導体及びそれを含んでなる有機エレクトロルミネッセンス素子
JP5315420B2 (ja) イミダゾピリジン誘導体及びそれを含んでなる有機エレクトロルミネッセンス素子
KR20120104084A (ko) 방향족 복소환 유도체 및 이를 이용한 유기 전계 발광 소자
KR20110015836A (ko) 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20120032054A (ko) 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20110049217A (ko) 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
KR20110008784A (ko) 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
JPWO2012001969A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
KR20150047858A (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
CN114133400B (zh) 有机化合物以及使用其的电子元件和电子装置
JP2017178919A (ja) 新規な化合物
WO2012060374A1 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
KR20110049012A (ko) 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
KR20110088118A (ko) 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
KR101298349B1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
KR101614583B1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
JP2020188121A (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2013077385A1 (ja) 芳香族アミン誘導体およびそれを用いた有機エレクトロルミネッセンス素子
KR102012822B1 (ko) 화합물 및 이를 이용한 유기 전자 소자
KR101376857B1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180002608.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011548450

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117031482

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011814314

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814314

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13509878

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE