WO2018151065A1 - 有機エレクトロルミネッセンス素子及び電子機器 - Google Patents

有機エレクトロルミネッセンス素子及び電子機器 Download PDF

Info

Publication number
WO2018151065A1
WO2018151065A1 PCT/JP2018/004785 JP2018004785W WO2018151065A1 WO 2018151065 A1 WO2018151065 A1 WO 2018151065A1 JP 2018004785 W JP2018004785 W JP 2018004785W WO 2018151065 A1 WO2018151065 A1 WO 2018151065A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
ring
unsubstituted
carbon atoms
Prior art date
Application number
PCT/JP2018/004785
Other languages
English (en)
French (fr)
Inventor
良多 高橋
聡美 田崎
祐一郎 河村
池田 秀嗣
裕基 中野
舟橋 正和
加藤 朋希
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/476,682 external-priority patent/US9954187B2/en
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to US16/485,132 priority Critical patent/US12029119B2/en
Priority to EP18754903.5A priority patent/EP3584850A4/en
Priority to CN201880011725.7A priority patent/CN110291654B/zh
Priority to JP2018568509A priority patent/JPWO2018151065A1/ja
Priority to KR1020197023511A priority patent/KR102547448B1/ko
Publication of WO2018151065A1 publication Critical patent/WO2018151065A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/16Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/12Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
    • C07D491/16Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/22Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/22Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes

Definitions

  • the present invention relates to an organic electroluminescence element and an electronic device.
  • an organic electroluminescence (hereinafter, “electroluminescence” may be abbreviated as EL) element is composed of an anode, a cathode, and one or more organic thin film layers sandwiched between the anode and the cathode.
  • EL organic electroluminescence
  • organic EL elements can be obtained in various light emitting colors by using various light emitting materials for the light emitting layer, and therefore, researches for practical application to displays and the like are active. For example, red, green, and blue light-emitting materials with three primary colors are actively researched, and extensive research has been conducted with the aim of improving characteristics.
  • materials for organic EL devices for example, compounds described in Patent Documents 1 to 6 are known.
  • Non-Patent Document 1 relates to a dopant used for an organic EL element, and discloses 5-ring substituted perylene as a blue dopant material.
  • JP 2014-73965 A International Publication No. 2016/006925 Chinese Patent No. 104119347 International Publication No. 2011/128017 Korean Patent No. 10-2015-0135125 International Publication No. 2013/077344
  • Non-Patent Document 1 when perylene is used as a dopant, there is a problem that a significant shift in chromaticity coordinates occurs due to packing of perylene molecules. It is reported that it can be solved by introducing it as a group.
  • a highly planar skeleton composed of ⁇ -conjugated systems with carbon-carbon double bonds such as perylene is rigid and can suppress skeletal vibration, easily achieving high PLQY and a narrow half-value width.
  • the potential performance of is a high skeleton.
  • packing is likely to occur due to the flatness that is a feature of the ⁇ -conjugated system.
  • An object of the present invention is to provide an organic EL element exhibiting excellent performance, and an electronic apparatus including the organic EL element.
  • the present inventors have found that the first compound represented by the following formula (P) and the second compound that is not the same as the first compound described later It has been found that the above-mentioned problems can be solved by using an organic EL element as a fluorescent light emitting layer of an organic EL element.
  • an organic electroluminescence device having a cathode, an anode, and an organic layer present between the cathode and the anode, wherein the organic layer includes a fluorescent light-emitting layer.
  • the fluorescent light-emitting layer includes a first compound represented by the following formula (P) and a second compound that is not the same as the first compound.
  • Z is CR A or N.
  • ⁇ 1 is a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 ring carbon atoms or a substituted or unsubstituted aromatic heterocyclic ring having 5 to 50 ring atoms.
  • ⁇ 2 is a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 ring carbon atoms or a substituted or unsubstituted aromatic heterocyclic ring having 5 to 50 ring atoms.
  • R A , R B and R C each independently represent a hydrogen atom or a substituent, and when R A , R B and R C represent a substituent, R A , R B and R C are each independently Halogen atom, cyano group, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkenyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkynyl group having 1 to 20 carbon atoms, substituted or Unsubstituted cycloalkyl group having 3 to 20 carbon atoms, amino group, substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted fluoroalkyl group having 1 to 20 carbon atoms, substituted or unsubstituted A substituted fluoroalkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 50
  • R 101 to R 105 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, a substituted or unsubstituted group.
  • n and m are integers of 1 or more and 4 or less. Adjacent RA's may be bonded to each other to form a ring structure, and may not be bonded to each other to form a ring.
  • Z 1 is CR 1 or N
  • Z 2 is CR 2 or N
  • Z 3 is CR 3 or N
  • Z 4 is CR 4 or N
  • Z 5 is CR 5 or N
  • Z 6 is CR 6 or N
  • Z 7 Is CR 7 or N
  • Z 8 is CR 8 or N
  • Z 9 is CR 9 or N
  • Z 10 is CR 10 or N
  • Z 11 is CR 11 or N.
  • R 1 to R 11 each independently represents a hydrogen atom or a substituent.
  • R 1 to R 11 represent a substituent, each independently represents a halogen atom, a cyano group, a substituted or unsubstituted carbon number of 1 -20 alkyl group, substituted or unsubstituted alkenyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkynyl group having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms Amino group, substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted fluoroalkyl group having 1 to 20 carbon atoms, substituted or unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms, substituted or Unsubstituted aryloxy group having 6 to 50 carbon atoms, substituted or unsubstituted alkylthio group having 1 to 20 carbon atoms, substituted or unsubsti
  • R 101 to R 105 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, a substituted or unsubstituted group.
  • adjacent substituents may be bonded to each other to form a ring structure, or may not be bonded to each other to form a ring.
  • adjacent substituents may be bonded to each other to form a ring structure, and may not be bonded to each other to form a ring.
  • adjacent substituents may be bonded to each other to form a ring structure, or may not be bonded to each other to form a ring.
  • the first compound represented by the formula (P) includes the compound represented by the following formula (1), described in the above [1] or [2]
  • the organic electroluminescence device is provided.
  • R n and R n + 1 (n represents an integer selected from 1, 2, 4 to 6, and 8 to 10) are bonded to each other, and R n and R n + 1 are bonded 2
  • a ring structure having 3 or more atoms composed of carbon atom, oxygen atom, sulfur atom and nitrogen atom may be formed together with one ring-forming carbon atom, or R n and R n + 1 are not bonded to each other, May not be formed.
  • an atom that may have a substituent has a hydrogen atom or a substituent, and each of the substituents is independently a halogen atom, a cyano group, a substituted or unsubstituted carbon number of 1 -20 alkyl group, substituted or unsubstituted alkenyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkynyl group having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms Amino group, substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted fluoroalkyl group having 1 to 20 carbon atoms, substituted or unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms, substituted or Unsubstituted aryloxy group having 6 to 50 ring carbon atoms
  • R 1 to R 11 that do not form a ring structure having 3 or more atoms represent a hydrogen atom or a substituent.
  • R 1 to R 11 represent a substituent
  • R 1 to R 11 are the same as described above.
  • an electronic device including the organic electroluminescence element according to [1].
  • the obtained organic EL device has excellent performance.
  • the organic EL device of the present invention is useful as an electronic device.
  • FIG. 4 is a graph showing a photoluminescence spectrum of compound 2 in Example 41.
  • FIG. 4 is a graph showing an absorption spectrum of compound 2 in Example 41.
  • FIG. 4 is a graph showing an absorption spectrum of compound 2 in Example 41.
  • the “carbon number XX to YY” in the expression “substituted or unsubstituted ZZ group having XX to YY” represents the number of carbon atoms in the case where the ZZ group is unsubstituted. The carbon number of the substituent in the case where it is present is not included.
  • “atom number XX to YY” in the expression “ZZ group of substituted or unsubstituted atoms XX to YY” represents the number of atoms when the ZZ group is unsubstituted. In the case of substitution, the number of substituent atoms is not included.
  • the number of ring-forming carbon atoms constitutes the ring itself of a compound having a structure in which atoms are bonded cyclically (for example, a monocyclic compound, a condensed ring compound, a bridged compound, a carbocyclic compound, or a heterocyclic compound). Represents the number of carbon atoms in the atom.
  • the carbon contained in the substituent is not included in the number of ring-forming carbons.
  • the “ring-forming carbon number” described below is the same unless otherwise specified.
  • the benzene ring has 6 ring carbon atoms
  • the naphthalene ring has 10 ring carbon atoms
  • the pyridinyl group has 5 ring carbon atoms
  • the furanyl group has 4 ring carbon atoms.
  • the carbon number of the alkyl group is not included in the number of ring-forming carbons.
  • the carbon number of the fluorene ring as a substituent is not included in the number of ring-forming carbons.
  • the number of ring-forming atoms refers to a compound (for example, a monocyclic compound, a condensed ring compound, a bridged compound, or a carbocyclic compound) having a structure in which atoms are bonded in a cyclic manner (for example, a single ring, a condensed ring, or a ring assembly).
  • a heterocyclic compound represents the number of atoms constituting the ring itself. Atoms that do not constitute a ring or atoms included in a substituent when the ring is substituted by a substituent are not included in the number of ring-forming atoms.
  • the “number of ring-forming atoms” described below is the same unless otherwise specified.
  • the number of ring-forming atoms in the pyridine ring is 6, the number of ring-forming atoms in the quinazoline ring is 10, and the number of ring-forming atoms in the furan ring is 5.
  • a hydrogen atom bonded to a carbon atom of a pyridine ring or a quinazoline ring or an atom constituting a substituent is not included in the number of ring-forming atoms.
  • a fluorene ring is bonded to the fluorene ring as a substituent (including a spirofluorene ring)
  • the number of atoms of the fluorene ring as a substituent is not included in the number of ring-forming atoms.
  • hydrogen atom includes isotopes having different numbers of neutrons, that is, light hydrogen (protium), deuterium (deuterium), and tritium (tritium).
  • the “heteroaryl group”, “heteroarylene group” and “heterocyclic group” are groups containing at least one heteroatom as a ring-forming atom, and the heteroatom is a nitrogen atom , Oxygen atom, sulfur atom, silicon atom and selenium atom are preferable.
  • the “substituted or unsubstituted carbazolyl group” means the following carbazolyl group, And a substituted carbazolyl group having an optional substituent with respect to the above group.
  • the substituted carbazolyl group may be condensed by bonding arbitrary substituents to each other, and may contain a hetero atom such as a nitrogen atom, an oxygen atom, a sulfur atom, a silicon atom and a selenium atom, The bonding position may be any of the 1st to 9th positions. Specific examples of such a substituted carbazolyl group include the groups shown below.
  • substituted or unsubstituted dibenzofuranyl group and “substituted or unsubstituted dibenzothiophenyl group” include the following dibenzofuranyl group and dibenzothiophenyl group, And a substituted dibenzofuranyl group and a substituted dibenzothiophenyl group further having an optional substituent with respect to the above group.
  • the substituted dibenzofuranyl group and the substituted dibenzothiophenyl group may be bonded to each other and condensed to form a heterocycle such as a nitrogen atom, an oxygen atom, a sulfur atom, a silicon atom, and a selenium atom.
  • An atom may be contained, and the bonding position may be any of the 1st to 8th positions.
  • Specific examples of such a substituted dibenzofuranyl group and a substituted dibenzothiophenyl group include the following groups.
  • X represents an oxygen atom or a sulfur atom
  • Y represents an oxygen atom, a sulfur atom, NH, NR a (R a is an alkyl group or an aryl group), CH 2 , or CR b 2 ( R b represents an alkyl group or an aryl group. ]
  • the substituent has 1 to 50 carbon atoms (preferably 1 to 18, more preferably 1 to 8).
  • substituents may be further substituted with the above-mentioned arbitrary substituents.
  • substituents may be bonded to each other to form a ring.
  • unsubstituted in the case of “substituted or unsubstituted” means that a hydrogen atom is bonded without being substituted with the substituent.
  • a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms preferably 1 to 18, more preferably 1 to 8
  • substituted or unsubstituted ring carbon atoms having 3 to 50 carbon atoms preferably 1 to 18, more preferably 1 to 8.
  • cycloalkyl group substituted or unsubstituted 6 to 50 ring carbon atoms (preferably 6 to 25, more preferably 6 to 6) 18) an aryl group, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms (preferably 1 to 18, more preferably 1 to 8), and a substituted or unsubstituted ring carbon atom number 6 to 50 (preferably 6).
  • alkyl group having 1 to 50 carbon atoms examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group (isomer) Body group), hexyl group (including isomer group), heptyl group (including isomer group), octyl group (including isomer group), nonyl group (including isomer group), decyl group (isomer) Body group), undecyl group (including isomer group), dodecyl group (including isomer group), and the like.
  • a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, a t-butyl group, and a pentyl group (including an isomer group) are preferable.
  • Ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group and t-butyl group are more preferable, and methyl group, ethyl group, isopropyl group and t-butyl group are particularly preferable.
  • Examples of the cycloalkyl group having 3 to 50 ring carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and an adamantyl group. Among these, a cyclopentyl group and a cyclohexyl group are preferable.
  • aryl group having 6 to 50 ring carbon atoms examples include phenyl, biphenylyl, terphenylyl, naphthyl, acenaphthylenyl, anthryl, benzoanthryl, aceanthryl, phenanthryl, and benzo [c].
  • Phenanthryl group phenalenyl group, fluorenyl group, picenyl group, pentaphenyl group, pyrenyl group, chrysenyl group, benzo [g] chrysenyl group, s-indacenyl group, as-indacenyl group, fluoranthenyl group, benzo [k] fluorane Examples include a tenenyl group, a triphenylenyl group, a benzo [b] triphenylenyl group, and a perylenyl group.
  • a phenyl group, a biphenylyl group, a terphenylyl group, a naphthyl group, an anthryl group, a pyrenyl group, and a fluoranthenyl group are preferable
  • a phenyl group, a biphenylyl group, and a terphenylyl group are more preferable
  • a phenyl group is more preferable.
  • Specific examples of the aralkyl group having 7 to 51 carbon atoms and the aryl group having 6 to 50 ring carbon atoms include those in which the aryl group site is a specific example of the aryl group having 6 to 50 ring carbon atoms.
  • alkyl group moiety is a specific example of the alkyl group having 1 to 50 carbon atoms.
  • Preferable examples of the aralkyl group having 7 to 51 carbon atoms include those in which the aryl group site is a preferable example of the aryl group having 6 to 50 ring carbon atoms, and the alkyl group site is 1 carbon atom.
  • Preferred examples of the alkyl group having ⁇ 50 are mentioned. The same applies to more preferred specific examples and even more preferred specific examples.
  • an aryl group moiety has the ring forming carbon number 6
  • Specific examples of the aryl group having ⁇ 50 are mentioned, and those where the alkyl group part is a specific example of the alkyl group having 1 to 50 carbon atoms are mentioned.
  • the aryl group moiety has the ring forming carbon number.
  • examples thereof are preferable examples of 6 to 50 aryl groups, and examples in which the alkyl group moiety is a preferable example of the alkyl group having 1 to 50 carbon atoms. The same applies to more preferable specific examples, further preferable specific examples, and particularly preferable specific examples.
  • alkoxy group having an alkyl group having 1 to 50 carbon atoms include those in which the alkyl group site is a specific example of the alkyl group having 1 to 50 carbon atoms.
  • Preferable examples of the alkoxy group having an alkyl group having 1 to 50 carbon atoms include those in which the alkyl group site is a preferable example of the alkyl group having 1 to 50 carbon atoms.
  • Specific examples of the aryloxy group having an aryl group having 6 to 50 ring carbon atoms include those in which the aryl group site is a specific example of the aryl group having 6 to 50 ring carbon atoms.
  • aryloxy group having an aryl group having 6 to 50 ring carbon atoms include those in which the aryl group site is a preferable example of the aryl group having 6 to 50 ring carbon atoms. The same applies to more preferred specific examples and even more preferred specific examples.
  • Examples of the mono-substituted, di-substituted or tri-substituted silyl group having a substituent selected from an alkyl group having 1 to 50 carbon atoms and an aryl group having 6 to 50 ring carbon atoms include a monoalkylsilyl group, a dialkylsilyl group, Alkylsilyl group; monoarylsilyl group, diarylsilyl group, triarylsilyl group; monoalkyldiarylsilyl group, dialkylmonoarylsilyl group, and the like. Specific examples of the aryl group having 6 to 50 carbon atoms and the alkyl group having 1 to 50 carbon atoms can be given.
  • Preferred examples of the mono-substituted, di-substituted or tri-substituted silyl group having a substituent selected from the above alkyl group having 1 to 50 carbon atoms and the aryl group having 6 to 50 ring carbon atoms include a monoalkylsilyl group, Dialkylsilyl group, trialkylsilyl group; monoarylsilyl group, diarylsilyl group, triarylsilyl group; alkyl group part and aryl part of monoalkyldiarylsilyl group, dialkylmonoarylsilyl group, respectively, the ring-forming carbon number Preferred examples include 6 to 50 aryl groups and alkyl groups having 1 to 50 carbon atoms.
  • heteroaryl group having 5 to 50 ring atoms include, for example, pyrrolyl group, furyl group, thienyl group, pyridyl group, imidazopyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazinyl group, imidazolyl group, oxazolyl group , Thiazolyl group, pyrazolyl group, isoxazolyl group, isothiazolyl group, oxadiazolyl group, thiadiazolyl group, triazolyl group, tetrazolyl group, indolyl group, isoindolyl group, benzofuranyl group, isobenzofuranyl group, benzothiophenyl group, isobenzothiophenyl group , Indolizinyl group, quinolidiny
  • pyridyl group imidazopyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazinyl group, benzimidazolyl group, dibenzofuranyl group, dibenzothiophenyl group, carbazolyl group, 9-phenylcarbazolyl group, phenant A rolinyl group and a quinazolinyl group are preferable.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • haloalkyl group having 1 to 50 carbon atoms include an example in which a hydrogen atom of the alkyl group having 1 to 50 carbon atoms is substituted with the halogen atom.
  • a preferable alkyl group is the carbon atom described above.
  • Those which are preferred examples of the alkyl group having 1 to 50 are listed. The same applies to more preferable specific examples, further preferable specific examples, and particularly preferable specific examples.
  • the group site include the aryl group having 6 to 50 ring carbon atoms and the alkyl group having 1 to 50 carbon atoms, respectively.
  • Preferable examples of the disubstituted phosphoryl group, alkylsulfonyloxy group, arylsulfonyloxy group, alkylcarbonyloxy group, arylcarbonyloxy group, alkyl-substituted or aryl-substituted carbonyl group having a substituent selected from an aryl group include each aryl A group part and an alkyl group part are preferable examples of the aryl group having 6 to 50 ring carbon atoms and the alkyl group having 1 to 50 carbon atoms. The same applies to more preferable specific examples, further preferable specific examples, and particularly preferable specific examples.
  • preferred embodiments eg. compounds, various groups, numerical ranges, etc.
  • any other embodiments eg. compounds, various groups, numerical ranges, etc.
  • the combination of the embodiments including more preferred embodiments, further preferred embodiments, and particularly preferred embodiments is more preferred.
  • Organic electroluminescent element having a cathode according to one embodiment of the present invention, an anode, and an organic layer present between the cathode and the anode, wherein the organic layer includes one or more layers including a fluorescent light-emitting layer.
  • the fluorescent light-emitting layer includes a first compound represented by the following formula (P) and a second compound described later that is not the same as the first compound.
  • Z is CR A or N.
  • ⁇ 1 is a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 ring carbon atoms or a substituted or unsubstituted aromatic heterocyclic ring having 5 to 50 ring atoms.
  • ⁇ 2 is a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 ring carbon atoms or a substituted or unsubstituted aromatic heterocyclic ring having 5 to 50 ring atoms.
  • R A , R B and R C each independently represent a hydrogen atom or a substituent, and when R A , R B and R C represent a substituent, R A , R B and R C are each independently Halogen atom, cyano group, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkenyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkynyl group having 1 to 20 carbon atoms, substituted or Unsubstituted cycloalkyl group having 3 to 20 carbon atoms, amino group, substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted fluoroalkyl group having 1 to 20 carbon atoms, substituted or unsubstituted A substituted fluoroalkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 50
  • R 101 to R 105 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, a substituted or unsubstituted group.
  • R A , R B and R C are the same as R 1 to R 11 described later, and specific examples, preferred carbon numbers, atomic numbers and preferred groups are also the same.
  • n and m are integers of 1 or more and 4 or less.
  • Adjacent RA's may be bonded to each other to form a ring structure, and may not be bonded to each other to form a ring. It is also possible to form a bonded adjacent R B each other each other to form a ring structure, without binding together may not form a ring. Furthermore, they may form a bonded R C, where adjacent ring structure, without being coupled together may not form a ring. ]
  • ⁇ 1 and ⁇ 2 are aromatic hydrocarbon rings having 6 to 50 ring carbon atoms (preferably 6 to 24, more preferably 6 to 18), or 5 to 50 ring atoms (preferably 5 to 24, more preferably Is an aromatic heterocycle of 5 to 13).
  • Each R B is bonded to any one of carbons forming a ⁇ 1 aromatic hydrocarbon ring or to atoms forming a ⁇ 1 aromatic heterocyclic ring.
  • Each R C is bonded to any one of carbons forming a ⁇ 2 aromatic hydrocarbon ring or to atoms forming a ⁇ 1 aromatic heterocyclic ring.
  • aromatic hydrocarbon ring having 6 to 50 ring carbon atoms include benzene ring, naphthalene ring, anthracene ring, benzoanthracene ring, phenanthrene ring, benzophenanthrene ring, fluorene ring, benzofluorene ring, dibenzofluorene ring , Picene ring, tetracene ring, pentacene ring, pyrene ring, chrysene ring, benzochrysene ring, s-indacene ring, as-indacene ring, fluoranthene ring, benzofluoranthene ring, triphenylene ring, benzotriphenylene ring, perylene ring, coronene ring And dibenzoanthracene ring.
  • aromatic heterocyclic ring having 5 to 50 ring atoms include pyrrole ring, pyrazole ring, isoindole ring, benzofuran ring, benzothiophene ring, isobenzofuran ring, dibenzothiophene ring, isoquinoline ring, cinnoline ring, Quinoxaline ring, phenanthridine ring, phenanthroline ring, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, triazine ring, imidazopyridine ring, indole ring, indazole ring, benzimidazole ring, quinoline ring, acridine ring, pyrrolidine ring, dioxane Ring, piperidine ring, morpholine ring, piperazine ring, carbazole ring, furan ring, thiophene ring, o
  • the first compound represented by the formula (P) according to the present invention includes a compound represented by the following formula (P-1).
  • Z 4 is CR 4 or N
  • Z 5 is CR 5 or N
  • Z 6 is CR 6 or N
  • Z 7 is CR 7 or N.
  • R 4 to R 7 each independently represents a hydrogen atom or a substituent.
  • R 4 to R 7 represent a substituent, each independently represents a halogen atom, a cyano group, a substituted or unsubstituted carbon number of 1 -20 alkyl group, substituted or unsubstituted alkenyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkynyl group having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms Amino group, substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted fluoroalkyl group having 1 to 20 carbon atoms, substituted or unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms, substituted or Unsubstituted aryloxy group having 6 to 50 ring carbon atoms, substituted or unsubstituted alkylthio group having 1 to 20 carbon atoms, substituted or un
  • R 101 to R 105 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, a substituted or unsubstituted group.
  • Specific examples of R 4 to R 7 preferred carbon number, atomic number and preferred group are as described later.
  • adjacent substituents may be bonded to each other to form a ring structure, and may not be bonded to each other to form a ring.
  • Z, ⁇ 2, Rc and n are the same as in the formula (P). ]
  • the first compound represented by the formula (P) according to the present invention includes a compound represented by the following formula (P-2).
  • the first compound represented by the formula (P) according to the present invention includes a compound represented by the following formula (Q).
  • Z 1 is CR 1 or N
  • Z 2 is CR 2 or N
  • Z 3 is CR 3 or N
  • Z 4 is CR 4 or N
  • Z 5 is CR 5 or N
  • Z 6 is CR 6 or N
  • Z 7 Is CR 7 or N
  • Z 8 is CR 8 or N
  • Z 9 is CR 9 or N
  • Z 10 is CR 10 or N
  • Z 11 is CR 11 or N.
  • R 1 to R 11 each independently represents a hydrogen atom or a substituent.
  • R 1 to R 11 represent a substituent, each independently represents a halogen atom, a cyano group, a substituted or unsubstituted carbon number of 1 -20 alkyl group, substituted or unsubstituted alkenyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkynyl group having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms Amino group, substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted fluoroalkyl group having 1 to 20 carbon atoms, substituted or unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms, substituted or Unsubstituted aryloxy group having 6 to 50 carbon atoms, substituted or unsubstituted alkylthio group having 1 to 20 carbon atoms, substituted or unsubsti
  • R 101 to R 105 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, a substituted or unsubstituted group.
  • Specific examples of R 1 to R 11 preferred carbon number, atomic number and preferred group are as described later.
  • adjacent substituents may be bonded to each other to form a ring structure, or may not be bonded to each other to form a ring.
  • adjacent substituents may be bonded to each other to form a ring structure, and may not be bonded to each other to form a ring.
  • adjacent substituents may be bonded to each other to form a ring structure, or may not be bonded to each other to form a ring.
  • the first compound represented by the formula (P) according to the present invention includes a compound represented by the following formula (1).
  • R n and R n + 1 (n represents an integer selected from 1, 2, 4 to 6, and 8 to 10) are bonded to each other, and R n and R n + 1 are bonded 2
  • a ring structure having 3 or more atoms composed of carbon atom, oxygen atom, sulfur atom and nitrogen atom may be formed together with one ring-forming carbon atom, or R n and R n + 1 are not bonded to each other, May not be formed.
  • an atom that may have a substituent has a hydrogen atom or a substituent, and each of the substituents is independently a halogen atom, a cyano group, a substituted or unsubstituted carbon number of 1 -20 alkyl group, substituted or unsubstituted alkenyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkynyl group having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms Amino group, substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted fluoroalkyl group having 1 to 20 carbon atoms, substituted or unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms, substituted or Unsubstituted aryloxy group having 6 to 50 ring carbon atoms
  • R 1 to R 11 that do not form a ring structure having 3 or more atoms represent a hydrogen atom or a substituent.
  • R 1 to R 11 represent a substituent, R 1 to R 11 are the same as described above. ]
  • R n and R n + 1 (n represents an integer selected from 1, 2, 4 to 6 and 8 to 10) in the previous paragraph are bonded to each other, and R n and R n + 1 are combined.
  • R 1 to R 11 represent a hydrogen atom or a substituent, or one atom selected from a carbon atom, an oxygen atom, a sulfur atom, and a nitrogen atom or a plurality of bonded atoms.
  • R 1 to R 11 represent one atom selected from a carbon atom, an oxygen atom, a sulfur atom, or a nitrogen atom or a plurality of bonded atoms
  • R n and R n + 1 (n is 1, 2, 4 and 6, and represents an integer selected from 8-10) described above with is bonded to each other, one represented by any atom and R n + 1 represented by R n These atoms are connected to each other.
  • "any of the atoms represented by R n" where R n represents one atom means the one atom, when R n represents a plurality of mutually bonded atoms of R It means an atom at the end of n or an atom other than the end.
  • the bond is, for example, a single bond, a double bond, or a bond having a bond order between 1 and 2.
  • the first compound of the formula (1) includes the ring structure (R 1 and R 2 , R 2 and R 3 , R 4 and R 5 , R 5 of the formula (1) In each of the pairs selected from R 6 , R 6 and R 7 , R 8 and R 9 , R 9 and R 10 , and R 10 and R 11 , R n and R n + 1 (n is 1, 2, 4 to An atom composed of a carbon atom, an oxygen atom, a sulfur atom, and a nitrogen atom together with two ring-forming carbon atoms to which R n and R n + 1 are bonded. It is preferable to have two ring structures having a number of 3 or more.
  • R n and R n + 1 (n represents an integer selected from 4 to 6 and 8 to 10) are bonded to each other, and together with the two ring-forming carbon atoms to which R n and R n + 1 are bonded,
  • the formation of a ring structure having 3 or more atoms composed of atoms, sulfur atoms, and nitrogen atoms can be mentioned.
  • the compound of the formula (1) preferably has three of the ring structures. In that case, it is particularly preferable that each of the ring structures has a different benzene ring on the mother skeleton of formula (1), that is, one for each of ring A, ring B, and ring C. In one embodiment of the present invention, the compound of the formula (1) preferably has four or more of the ring structures.
  • the compound of the formula (1) includes a compound in which R 1 to R 3 represent a hydrogen atom or a substituent, and R 1 to R 3 represent a substituent, R 1 to R 3 Each independently represents a halogen atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkenyl group having 1 to 20 carbon atoms, a substituted or unsubstituted carbon group having 1 to 20 carbon atoms.
  • the pair consisting of 11 preferably does not form a ring structure simultaneously.
  • each pair when two or more pairs of each pair form a ring structure, each pair includes two or three rings selected from ring A, ring B, and ring C.
  • ring structure having 3 or more atoms composed of an oxygen atom, a sulfur atom, and a nitrogen atom, and when the two or three rings have two or more ring structures, the ring structure May be the same or different.
  • the alkyl group having 1 to 20 carbon atoms (preferably 1 to 10, more preferably 1 to 6) represented by R 1 to R 11 include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n- Butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group (including isomer group), hexyl group (including isomer group), heptyl group (including isomer group), octyl group (isomer) Nonyl group (including isomer group), decyl group (including isomer group), undecyl group (including isomer group), dodecyl group (including isomer group), and the like.
  • a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, a t-butyl group, and a pentyl group (including an isomer group) are preferable.
  • Ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group and t-butyl group are more preferable, and methyl group, ethyl group, isopropyl group and t-butyl group are more preferable.
  • Examples of the alkenyl group having 1 to 20 carbon atoms (preferably 1 to 10, more preferably 1 to 6) represented by R 1 to R 11 include a vinyl group, a 2-propenyl group, a 2-butenyl group, a 3-butenyl group, Examples include 4-pentenyl group, 2-methyl-2-propenyl group, 2-methyl-2-butenyl group, and 3-methyl-2-butenyl group.
  • Examples of the alkynyl group having 1 to 20 carbon atoms (preferably 1 to 10, more preferably 1 to 6) represented by R 1 to R 11 include 2-propynyl group, 2-butynyl group, 3-butynyl group, 4-pentynyl Group, 5-hexynyl group, 1-methyl-2-propynyl group, 1-methyl-2-butynyl group, 1,1-dimethyl-2-propynyl group and the like.
  • Examples of the cycloalkyl group having 3 to 20 ring carbon atoms (preferably 3 to 6, more preferably 5 or 6) represented by R 1 to R 11 include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, A cycloheptyl group, a cyclooctyl group, an adamantyl group, etc. are mentioned. Among these, a cyclopentyl group and a cyclohexyl group are preferable.
  • Examples of the alkoxy group having 1 to 20 carbon atoms (preferably 1 to 10, more preferably 1 to 6) represented by R 1 to R 11 include an alkoxy group in which the alkyl group portion is the alkyl group having 1 to 20 carbon atoms. Can be mentioned. Specific examples of preferred alkoxy groups include those in which the alkyl group moiety is a preferred example of the alkyl group having 1 to 50 carbon atoms. The same applies to more preferred specific examples and even more preferred specific examples.
  • Examples of the fluoroalkyl group having 1 to 20 carbon atoms (preferably 1 to 10, more preferably 1 to 6) represented by R 1 to R 11 include groups in which a hydrogen atom of the alkyl group is substituted with fluorine, Preferred haloalkyl groups include those that are the preferred alkyl groups. The same applies to more preferred specific examples and even more preferred specific examples.
  • Examples of the fluoroalkoxy group having 1 to 20 carbon atoms (preferably 1 to 10, more preferably 1 to 6) represented by R 1 to R 11 include groups in which a hydrogen atom of the alkoxy group is substituted with fluorine, Preferred examples of the alkoxy group include the preferred alkoxy groups. The same applies to more preferred specific examples and even more preferred specific examples.
  • the aryloxy group having 6 to 50 ring carbon atoms (preferably 6 to 30, more preferably 6 to 24, still more preferably 6 to 18) represented by R 1 to R 11
  • the aryl group moiety is R described later.
  • examples thereof include an aryl group having 1 to R 11 and 6 to 50 ring carbon atoms.
  • Specific examples of preferred aryloxy groups include those in which the aryl group moiety is a preferred example of an aryl group having 6 to 50 ring carbon atoms, which will be described later. The same applies to more preferred specific examples and even more preferred specific examples.
  • the alkylthio group having 1 to 20 carbon atoms (preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms) represented by R 1 to R 11
  • the alkyl group moiety is the alkyl group having 1 to 20 carbon atoms. Some are listed. Specific examples of preferred alkylthio groups include those in which the alkyl group moiety is the preferred alkyl group. The same applies to more preferred specific examples and even more preferred specific examples.
  • the arylthio group having 6 to 50 ring carbon atoms (preferably 6 to 30, more preferably 6 to 24, still more preferably 6 to 18) represented by R 1 to R 11
  • the aryl group moiety is R 1 described later.
  • aryl group having 6 to 50 ring carbon atoms of R 11 an aryl group having 6 to 50 ring carbon atoms of R 11 .
  • preferred arylthio groups include those in which the aryl group moiety is a preferred example of an aryl group having 6 to 50 ring carbon atoms, which will be described later. The same applies to more preferred specific examples and even more preferred specific examples.
  • R 1 to R 11 Specific examples of the “group represented by —Si (R 101 ) (R 102 ) (R 103 )” represented by R 1 to R 11 include a monoalkylsilyl group, a dialkylsilyl group, and a trialkylsilyl group; A monoarylsilyl group, a diarylsilyl group, a triarylsilyl group; a monoalkyldiarylsilyl group, a dialkylmonoarylsilyl group.
  • the carbon number of the alkyl group moiety is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 6, respectively.
  • the number of ring-forming carbon atoms in the aryl group moiety is preferably 6 to 50, more preferably 6 to 30, still more preferably 6 to 24, and particularly preferably 6 to 18.
  • a trialkylsilyl group and a triarylsilyl group are preferable, and a trimethylsilyl group, a triethylsilyl group, a triisopropylsilyl group, a t-butyldimethylsilyl group, a triphenylsilyl group, and a tolylsilylsilyl group are more preferable.
  • R 1 to R 11 Specific examples of the “group represented by —N (R 104 ) (R 105 )” represented by R 1 to R 11 include a monoalkylamino group, a dialkylamino group, a monoarylamino group, a diarylamino group, Examples include a monoheteroarylamino group, a diheteroarylamino group, a monoalkylmonoarylamino group, a monoalkylmonoheteroarylamino group, and a monoarylmonoheteroarylamino group.
  • the aryl group site in these substituted amino groups may be substituted with an alkyl group having 1 to 20 carbon atoms (preferably 1 to 10, more preferably 1 to 6).
  • the carbon number of the alkyl group moiety is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 6, respectively.
  • the number of ring-forming carbon atoms in the aryl group moiety is preferably 6 to 50, more preferably 6 to 30, still more preferably 6 to 24, and particularly preferably 6 to 18.
  • the number of ring-forming atoms at the heteroaryl group site is preferably 5 to 50, more preferably 5 to 30, still more preferably 5 to 18, and particularly preferably 5 to 13.
  • a dialkylamino group, a diarylamino group, a diheteroarylamino group, and a monoarylmonoheteroarylamino group are preferable, and a dimethylamino group, a diethylamino group, a diisopropylamino group, a diphenylamino group, and a bis (alkyl-substituted phenyl) amino group. And more preferably a bis (aryl-substituted phenyl) amino group.
  • Specific examples of the alkyl group moiety include specific examples of the alkyl group having 1 to 20 carbon atoms.
  • Preferable examples of the alkyl group moiety include preferable examples of the alkyl group having 1 to 20 carbon atoms. The same applies to more preferred specific examples and even more preferred specific examples.
  • Specific examples of the aryl group moiety include specific examples of an aryl group having 6 to 50 ring carbon atoms, which will be described later.
  • Preferable specific examples of the aryl group moiety include preferable specific examples of the aryl group having 6 to 50 ring carbon atoms described later.
  • Specific examples of the heteroaryl group moiety include specific examples of the heteroaryl group having 5 to 50 ring atoms described later.
  • heteroaryl group moiety examples include preferable specific examples of the heteroaryl group having 5 to 50 ring atoms described later. The same applies to more preferred specific examples and even more preferred specific examples.
  • —Si R 101
  • R 102 R 102
  • R 63 a plurality of groups represented by —Si (R 101 ) (R 102 ) (R 63 )
  • these may be the same as or different from each other.
  • the group represented by -N (R 104) (R 105) there are multiple they may be the same or different from each other.
  • An aryl group having 6 to 50 ring carbon atoms (preferably 6 to 30, more preferably 6 to 24, still more preferably 6 to 18) represented by R 1 to R 11 is a condensed ring or a non-condensed ring.
  • the aryl group include a phenyl group, a biphenylyl group, a terphenylyl group, a naphthyl group, an acenaphthylenyl group, an anthryl group, a benzoanthryl group, an aceanthryl group, a phenanthryl group, a benzo [c] phenanthryl group, a phenalenyl group, and a fluorenyl group.
  • Picenyl group pentaphenyl group, pyrenyl group, chrysenyl group, benzo [g] chrysenyl group, s-indacenyl group, as-indacenyl group, fluoranthenyl group, benzo [k] fluoranthenyl group, triphenylenyl group, benzo [ b] A triphenylenyl group, a perylenyl group, and the like.
  • a phenyl group, a biphenylyl group, a terphenylyl group, a naphthyl group, an anthryl group, a pyrenyl group, and a fluoranthenyl group are preferable, a phenyl group, a biphenylyl group, and a terphenylyl group are more preferable, and a phenyl group is more preferable.
  • R 1 to R 11 represent at least one heteroaryl group having 5 to 50 ring atoms (preferably 5 to 30, more preferably 5 to 18, particularly preferably 5 to 13), preferably 1 to 5 , More preferably 1 to 4, even more preferably 1 to 3 heteroatoms.
  • this hetero atom a nitrogen atom, a sulfur atom, and an oxygen atom are mentioned, for example, A nitrogen atom and an oxygen atom are preferable.
  • heteroaryl group examples include pyrrolyl group, furyl group, thienyl group, pyridyl group, imidazopyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazinyl group, imidazolyl group, oxazolyl group, thiazolyl group, pyrazolyl group, isoxazolyl group.
  • pyridyl group imidazopyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazinyl group, benzimidazolyl group, dibenzofuranyl group, dibenzothiophenyl group, carbazolyl group, 9-phenylcarbazolyl group, phenant A rolinyl group and a quinazolinyl group are preferable.
  • a ring in the case of forming a ring structure having 3 or more atoms composed of carbon atom, oxygen atom, sulfur atom and nitrogen atom together with two ring-forming carbon atoms to which R n and R n + 1 are bonded A halogen atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkenyl group having 1 to 20 carbon atoms, a substituted or unsubstituted carbon number 1 represented by a substituent of the structure -20 alkynyl group, substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, amino group, substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted 1 to 20 carbon atoms A fluoroalkyl group, a substituted or unsubstituted fluoroalkoxy
  • the ring structure having 3 or more atoms composed of a carbon atom, an oxygen atom, a sulfur atom, and a nitrogen atom together with two ring-forming carbon atoms to which R n and R n + 1 are bonded is not particularly limited. Is preferably a ring having 3 to 7 atoms, particularly preferably a ring having 5 or 6 atoms.
  • a ring having 3 or more atoms composed of a carbon atom, an oxygen atom, a sulfur atom, and a nitrogen atom together with two ring-forming carbon atoms to which R n and R n + 1 are bonded is represented by the following formula: It is also preferably any ring selected from (2) to (8), and is preferably any group selected from (9) to (11).
  • * 14 represents each of the two ring-forming carbon atoms to which R n and R n + 1 are bonded, and the ring-forming carbon atoms to which R n is bonded are * 1, * 2, * 3, * 4, * 5, and Any of the two ring-forming carbon atoms represented by * 6, * 7 and * 8, * 9 and * 10, * 11 and * 12, and * 13 and * 14 may be used.
  • X is selected from C (R 23 ) (R 24 ), NR 25 , O, and S.
  • R 12 to R 25 are the same as R 1 to R 11 .
  • R 12 to R 17 and R 23 to R 24 may be bonded to each other at adjacent groups to form a ring structure.
  • R 12 to R 25 are the same as R 1 to R 11 in the formula (1), and specific examples and preferred groups thereof are also the same.
  • each of * 1 and * 2, and * 3 and * 4 represents the two ring carbon atoms of R n and R n + 1 is bound, R n is attached
  • the ring-forming carbon atom may be any of the two ring-forming carbon atoms represented by * 1 and * 2, or * 3 and * 4.
  • R 31 to R 37 and R 41 to R 44 are the same as R 12 to R 25
  • X is the same as X.
  • R 31 to R 37 and R 41 to R 44 may be bonded to each other at adjacent groups to form a ring structure.
  • Examples of R 23 to R 25 , R 31 to R 37 and R 41 to R 44 contained in X are the same as R 1 to R 11 in the formula (1), and specific examples and preferred groups thereof are also the same. Things.
  • R 2 , R 4 , R 5 , R 10 and R 11 is a ring A group which does not form a structure, and is a halogen atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkenyl group having 1 to 20 carbon atoms, a substituted or unsubstituted carbon number
  • R 1 to R 11 that does not form the ring structure in formula (1), (iii) R 12 to R 22 , R in formula (2) to (11) 31 to R 37 and R 41 to R 44 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a group represented by —N (R 104 ) (R 105 ), Alternatively, the aryl group is preferably an unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms, or a group selected from the following group.
  • R c is independently the same as R 1 to R 11 above.
  • X is the same as above.
  • p1 is an integer from 0 to 5
  • p2 is an integer from 0 to 4
  • p3 is an integer from 0 to 3
  • p4 is an integer from 0 to 7.
  • Examples of R 23 to R 25 and R c contained in X are the same as R 1 to R 11 in the formula (1), and specific examples and preferred groups thereof are also the same.
  • the compound of the formula (1) is preferably represented by any of the following formulas (1-1) to (1-6), and the formulas (1-1) to (1-3) and (1-5) More preferably, it is represented by any one of formulas (1-1) and (1-5).
  • R 1 ⁇ R 11 is the same as defined above, examples, preferable number of carbon atoms, atoms and preferable groups are also the same.
  • Ring a ⁇ f is Each ring is independently a ring structure composed of carbon atom, oxygen atom, sulfur atom and nitrogen atom, having 3 or more atoms, and this ring may further have a substituent, and these substituents are bonded to each other.
  • the substituent which may further be present is the same as in the case where R 1 to R 11 represent a substituent, and the ring having 3 or more atoms is further substituted.
  • the ring structure having 3 or more atoms composed of carbon atom, oxygen atom, sulfur atom, and nitrogen atom represented by rings a to f is not particularly limited.
  • a ring having 3 to 7 atoms is preferable, and a ring having 5 or 6 atoms is particularly preferable.
  • any ring selected from the formulas (2) to (8) is preferable, and any group selected from (9) to (11) is also preferable.
  • examples of the substituent that may be further included include specific examples similar to the examples of each group described above for R 1 to R 11. The same applies to the number of atoms and preferred groups.
  • the compound of the formula (1) is preferably represented by any of the following formulas (2-1) to (2-6), and represented by any of the formulas (2-2) and (2-5) It is more preferable.
  • R 1 and R 3 to R 11 are the same as described above, and specific examples, preferable carbon numbers, atomic numbers, and preferable groups are also the same.
  • c and g to h are each independently a ring structure composed of carbon atom, oxygen atom, sulfur atom and nitrogen atom having 3 or more atoms, which ring may further have a substituent.
  • the substituents may be bonded to each other to form a ring structure, and the substituents that may be further included are the same as those in the case where R 1 to R 11 represent a substituent, and the number of atoms is 3
  • the above rings do not include the number of further substituted atoms.
  • the ring structures represented by the rings a to c and g to h, each consisting of a carbon atom, an oxygen atom, a sulfur atom, and a nitrogen atom and having 3 or more atoms Although not particularly limited, a ring having 3 to 7 atoms is preferable, and a ring having 5 or 6 atoms is particularly preferable.
  • any ring selected from the formulas (2) to (8) is preferable, and any group selected from (9) to (11) is also preferable.
  • examples of the substituent that may be further included include specific examples similar to the examples of each group described above for R 1 to R 11. The same applies to the number of atoms and preferred groups.
  • the compound of the formula (1) is preferably represented by any of the following formulas (3-1) to (3-9), and more preferably represented by the formula (3-1).
  • R 1 and R 3 to R 11 are the same as described above, and specific examples, preferable carbon numbers, atomic numbers, and preferable groups are also the same.
  • h is each independently a ring structure of 3 or more atoms composed of a carbon atom, an oxygen atom, a sulfur atom, and a nitrogen atom, and this ring may further have a substituent.
  • the substituents that may be further present are the same as those in the case where R 1 to R 11 represent a substituent, and the ring having 3 or more atoms is And does not include the number of further substituted substituent atoms.)
  • the ring structure having 3 or more atoms composed of carbon atom, oxygen atom, sulfur atom and nitrogen atom represented by the rings a to h is not particularly limited.
  • a ring having 3 to 7 atoms is preferable, and a ring having 5 or 6 atoms is particularly preferable.
  • any ring selected from the formulas (2) to (8) is preferable, and any group selected from (9) to (11) is also preferable.
  • the ring structure having 3 or more atoms composed of carbon atoms, oxygen atoms, sulfur atoms and nitrogen atoms represented by the rings a to h is, for example, a carbon atom.
  • the hetero atom contained in the said heteroaryl group of the substituent in case the said ring g or h has a substituent is a sulfur atom and / or an oxygen atom, for example.
  • examples of the substituent that may further include specific examples similar to the examples of each group described above for R 1 to R 11 include a preferable carbon number. The same applies to the number of atoms and preferred groups.
  • the rings a to h further have a substituent.
  • R 1 to R 11 that do not form the substituents or rings a to h are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, —N (R 104 ) (R 105 ) Any one of a group represented by the following group, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms, or the following group: Is preferable.
  • R c is independently the same as R 1 to R 11 above.
  • X is the same as above.
  • p1 is an integer from 0 to 5
  • p2 is an integer from 0 to 4
  • p3 is an integer from 0 to 3
  • p4 is an integer from 0 to 7.
  • Examples of R 23 to R 25 and R c contained in X are the same as R 1 to R 11 in the formula (1), and specific examples and preferred groups thereof are also the same.
  • substituents when the ring g or h further has a substituent include, for example, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, Or any of the group selected from the following group is mentioned.
  • R c is independently the same as R 1 to R 11 described above).
  • p1 is an integer from 0 to 5
  • p2 is an integer from 0 to 4
  • p4 is an integer from 0 to 7.
  • the compound of the formula (1) is preferably represented by any of the following formulas (4-1) to (4-4).
  • X is selected from C (R 23 ) (R 24 ), NR 25 , O, S.
  • R 1 to R 5 , R 7 to R 11 , R 41 to R 48 and R 23 to R 25 are the same as R 1 to R 11 above.
  • Examples of R 1 to R 5 , R 7 to R 11 , R 41 to R 48 and R 23 to R 25 are the same as R 1 to R 11 in the formula (1), and specific examples and preferred groups are also included. The same thing is mentioned.
  • the compound of the formula (1) is preferably represented by the following formula (5-1).
  • X is selected from C (R 23 ) (R 24 ), NR 25 , O, and S.
  • R 3 , R 4 , R 7 , R 8 , R 11 , R 41 to R 52 and R 23 to R 25 are the same as R 1 to R 11.
  • Examples of R 3 , R 4 , R 7 , R 8 , R 11 , R 41 to R 52 and R 23 to R 25 are the same as R 1 to R 11 in the formula (1), and specific examples and Preferable groups include the same.
  • R 25 is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • the half width of the photoluminescence spectrum of the first compound is preferably 30 nm or less, more preferably 25 nm or less, for example 20 nm or less. When the half width is in the above range, high color purity is obtained.
  • the half width of the photoluminescence spectrum of the compound was calculated by measuring the fluorescence intensity as follows using a fluorescence measuring apparatus or the like. The compound was dissolved in a solvent (toluene) (sample 5 [ ⁇ mol / mL]) to obtain a sample for fluorescence measurement.
  • a sample for fluorescence measurement placed in a quartz cell is irradiated with excitation light at room temperature (300 [K]), and fluorescence intensity (that is, photoluminescence spectrum, vertical axis: fluorescence intensity, horizontal axis: wavelength) is measured while changing the wavelength.
  • fluorescence intensity that is, photoluminescence spectrum, vertical axis: fluorescence intensity, horizontal axis: wavelength
  • Examples of the fluorescent device include a spectrofluorophotometer F-7000 manufactured by Hitachi High-Tech Science Co., Ltd.
  • a second compound that is not the same as the first compound (hereinafter sometimes referred to as “second compound”) is contained in the light emitting layer together with the first compound.
  • the second compound As one mode of the second compound, it is contained in the light emitting layer together with the first compound and used as a host material of the light emitting layer.
  • the second compound include a polycyclic aromatic skeleton-containing compound, a condensed polycyclic aromatic skeleton-containing compound is preferable, and a compound containing a condensed polycyclic aromatic skeleton having three or more rings is more preferable.
  • an anthracene skeleton-containing compound a chrysene skeleton-containing compound, a pyrene skeleton-containing compound, or a fluorene skeleton-containing compound is preferable, and among these, an anthracene skeleton-containing compound is more preferable.
  • an anthracene skeleton-containing compound represented by the following formula (19) can be used as the second compound.
  • R 101 to R 110 are each independently a hydrogen atom or a substituent, and the substituent is the same as those described above for R 1 to R 11 , or (—L— Ar).
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • at least one of R 101 to R 110 is represented by (—L—Ar), wherein L is independently selected from a single bond and a linking group, and the linking group is a substituted or unsubstituted ring.
  • the monocyclic group in formula (19) is a group composed only of a ring structure having no fused ring structure.
  • Specific examples of the monocyclic group having 5 to 50 ring atoms include aromatic groups such as phenyl group, biphenylyl group, terphenylyl group, quarterphenylyl group, pyridyl group, pyrazyl group, pyrimidyl group, triazinyl group, furyl group.
  • heterocyclic groups such as a thienyl group are preferred.
  • a phenyl group, a biphenylyl group, and a terphenylyl group are preferable.
  • the condensed ring group is a group in which two or more ring structures are condensed.
  • the condensed ring group having 8 to 50 ring atoms include naphthyl group, phenanthryl group, anthryl group, chrysenyl group, benzoanthryl group, benzophenanthryl group, triphenylenyl group, benzocrienyl group, indenyl group, Condensed aromatic ring groups such as fluorenyl group, 9,9-dimethylfluorenyl group, benzofluorenyl group, dibenzofluorenyl group, fluoranthenyl group, benzofluoranthenyl group, benzofuranyl group, benzothiophenyl Group, indolyl group, dibenzofuranyl group, dibenzothiophenyl group, carbazolyl group, quinolyl group, phenanthrolinyl group and other condensed heterocyclic groups are preferred.
  • condensed ring group examples include naphthyl group, phenanthryl group, anthryl group, 9,9-dimethylfluorenyl group, fluoranthenyl group, benzoanthryl group, dibenzothiophenyl group, dibenzofuranyl group, and carbazolyl group. Is preferred.
  • Ar has a substituent, the above-mentioned monocyclic group or condensed ring group is preferable.
  • the arylene group is phenyl group, naphthylphenyl group, biphenylyl group, terphenylyl group, naphthyl group, acenaphthylenyl group, anthryl group, benzoanthryl Group, aceanthryl group, phenanthryl group, benzo [c] phenanthryl group, phenalenyl group, fluorenyl group, picenyl group, pentaphenyl group, pyrenyl group, chrysenyl group, benzo [g] chrysenyl group, s-indacenyl group, as-indacenyl group A divalent group obtained by removing one hydrogen atom from an aryl group selected from a group, a fluoranthenyl group, a benzo [k] fluoranthenyl group, a trip
  • the heteroarylene group has at least 1, preferably 1 to 5 heteroatoms such as nitrogen atom, sulfur atom and oxygen.
  • aromatic heterocyclic compound examples include pyrrole, furan, thiophene, pyridine, pyridazine, pyrimidine, pyrazine, triazine, imidazole, oxazole, thiazole, pyrazole, isoxazole, isothiazole, oxadiazole, thiadiazole, triazole, tetrazole, and indole.
  • Isoindole benzofuran, isobenzofuran, benzothiophene, isobenzothiophene, indolizine, quinolidine, quinoline, isoquinoline, cinnoline, phthalazinin, quinazoline, quinoxaline, benzimidazole, benzoxazole, benzthiazole, indazole, benzisoxazole, benz Isothiazole, dibenzofuran, dibenzothiophene, carbazole, phenanthridine, acridine, phen Ntororin, phenazine, phenothiazine, phenoxazine, xanthene, and the like.
  • the heteroarylene group is preferably a divalent group obtained by removing two hydrogen atoms from furan, thiophene, pyridine, pyridazine, pyrimidine, pyrazine, triazine, benzofuran, benzothiophene, dibenzofuran, dibenzothiophene, A divalent group obtained by removing two hydrogen atoms from benzothiophene, dibenzofuran or dibenzothiophene is more preferred.
  • the compound of the formula (19) is more preferably an anthracene derivative represented by the following formula (20).
  • R 101 to R 108 are each independently a hydrogen atom or a substituent, and the substituent is the same as those described above for R 1 to R 11 .
  • L 1 is the same as L in the formula (19), and specific examples, preferable carbon numbers, atomic numbers, and preferable groups are also the same.
  • Ar 11 and Ar 12 are the same as Ar in the formula (19).
  • the anthracene derivative represented by the formula (20) is preferably any of the following anthracene derivatives (A), (B), and (C), and is selected depending on the configuration of the organic EL element to be applied and the required characteristics.
  • Anthracene derivative (A) in the anthracene derivative Ar 11 and Ar 12 in the formula (20) are each independently a substituted or unsubstituted condensed ring group having 8 to 50 ring atoms. As the anthracene derivative, Ar 11 and Ar 12 may be the same or different.
  • Anthracene derivatives which are substituted or unsubstituted condensed ring groups in which Ar 11 and Ar 12 in formula (20) are different (including the difference in the position to which the anthracene ring is bonded) are particularly preferred, and preferred specific examples of the condensed ring are as described above. It is. Of these, naphthyl group, phenanthryl group, benzanthryl group, 9,9-dimethylfluorenyl group, and dibenzofuranyl group are preferable.
  • Anthracene derivative (B) In the anthracene derivative, one of Ar 11 and Ar 12 in formula (20) is a substituted or unsubstituted monocyclic group having 5 to 50 ring atoms, and the other is a substituted or unsubstituted ring atom having 8 to 8 ring atoms. 50 condensed ring groups.
  • Ar 12 is a naphthyl group, phenanthryl group, benzoanthryl group, 9,9-dimethylfluorenyl group, dibenzofuranyl group, and Ar 11 is an unsubstituted phenyl group, a monocyclic group or a condensed group.
  • a phenyl group substituted with a ring group for example, a phenyl group, a biphenyl group, a naphthyl group, a phenanthryl group, a 9,9-dimethylfluorenyl group, a dibenzofuranyl group.
  • a ring group for example, a phenyl group, a biphenyl group, a naphthyl group, a phenanthryl group, a 9,9-dimethylfluorenyl group, a dibenzofuranyl group.
  • a ring group for example, a phenyl group, a biphenyl group, a naphthyl group, a phenanthryl group, a 9,9-dimethylfluorenyl group, a dibenzofuranyl group.
  • Ar 11 and Ar 12 in the formula (20) are each independently a substituted or unsubstituted monocyclic group having 5 to 50 ring atoms.
  • both Ar 11 and Ar 12 are substituted or unsubstituted phenyl groups.
  • Ar 11 and Ar 12 are each independently a monocyclic group or It may be a phenyl group substituted with a condensed ring group.
  • a monocyclic group as a substituent is a phenyl group, a biphenyl group, and a condensed ring group is a naphthyl group, a phenanthryl group, a 9,9-dimethylfluorenyl group, a dibenzofuranyl group, or a benzoanthryl group.
  • the compound of the formula (19) is more preferably an anthracene derivative represented by the following formulas (21) to (24).
  • Ar 13 is an unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • L 11 is each independently a single bond or an unsubstituted arylene group having 6 to 30 ring atoms.
  • Examples of the unsubstituted aryl group having 6 to 50 ring carbon atoms include phenyl, biphenylyl, terphenylyl, naphthyl, acenaphthylenyl, anthryl, benzoanthryl, aceanthryl, phenanthryl, benzo [ c] Phenanthryl group, phenenyl group, fluorenyl group, picenyl group, pentaphenyl group, pyrenyl group, chrysenyl group, benzo [g] chrysenyl group, s-indacenyl group, as-indacenyl group, fluoranthenyl group, benzo [k] Examples include fluoranthenyl group, triphenylenyl group, benzo [b] triphenylenyl group, and perylenyl group.
  • a phenyl group, a biphenylyl group, a terphenylyl group, a naphthyl group, an anthryl group, a pyrenyl group, and a fluoranthenyl group are preferable, a phenyl group, a biphenylyl group, and a terphenylyl group are more preferable, and a phenyl group is more preferable.
  • the arylene group includes, for example, a phenyl group, a naphthylphenyl group, a biphenylyl group, a terphenylyl group, a naphthyl group, an acenaphthylenyl group, an anthryl group, a benzoan group Tolyl group, aceanthryl group, phenanthryl group, benzo [c] phenanthryl group, phenalenyl group, fluorenyl group, picenyl group, pentaphenyl group, pyrenyl group, chrysenyl group, benzo [g] chrysenyl group, s-indacenyl group, as- A divalent group obtained by removing one hydrogen atom from an aryl group selected from an indacenyl group, a fluoranthenyl group,
  • the compound of the formula (19) is more preferably an anthracene derivative represented by the following formulas (25) to (32).
  • Ar 13 and L 11 are the same as Ar 13 and L 11 in the formula (21) to (24).
  • anthracene derivatives represented by the formula (19), the formula (20), the formula (21) to the formula (24), and the formula (25) to the formula (32) include the following.
  • all 6-membered rings are benzene rings.
  • chrysene skeleton-containing compound for example, a compound represented by the following formula (21) is preferably used.
  • R 201 to R 212 each independently represents a hydrogen atom or a substituent, and the substituent is the same as those described above for R 1 to R 11 , or (—L 2 -Ar 21 ).
  • at least one of R 201 to R 212 is represented by (-L 2 -Ar 21 ), and L 2 and Ar 21 are the same as L and Ar in the formula (19), and specific examples, The same applies to the preferred number of carbon atoms, the number of atoms and the preferred group.
  • One of R 204 and R 210, both of R 204 and R 210 is - is preferably (L 2 -Ar 21).
  • chrysene derivative represented by the formula (21) include those shown below, but are not particularly limited thereto.
  • R 301 to R 310 are each independently a hydrogen atom or a substituent, and the substituent is the same as those described above for R 1 to R 11 , or (-L 3 -Ar 31 ).
  • at least one of R 301 to R 310 is represented by (-L 3 -Ar 31 ), and L 3 and Ar 31 are the same as L and Ar in the formula (19), and specific examples, The same applies to the preferred number of carbon atoms, the number of atoms and the preferred group.
  • Any one or more of R 301 , R 303 , R 306 , and R 308 are preferably (—L 3 —Ar 31 ).
  • pyrene derivative represented by the formula (22) examples include those shown below, but are not particularly limited thereto.
  • all 6-membered rings are benzene rings.
  • fluorene derivative for example, it is preferable to use one represented by the following formula (23).
  • R 401 to R 410 are each independently a hydrogen atom or a substituent, and the substituent is the same as those described above for R 1 to R 11 , or (-L 4 -Ar 41 ).
  • at least one of R 401 to R 410 is represented by (-L 4 -Ar 41 ).
  • L 4 and Ar 41 are the same as L and Ar in the formula (19), and specific examples, preferred carbon numbers, atomic numbers and preferred groups are also the same.
  • R 401 and R 402 , R 402 and R 403 , R 403 and R 404 , R 405 and R 406 , R 406 and R 407 , and R 407 and R 408 are combined with each other.
  • R 402 and R 407 are preferably (—L 4 —Ar 41 ).
  • R 409 and R 410 are preferably a substituted or unsubstituted alkyl group, or (—L 4 —Ar 41 ).
  • fluorene derivative represented by the formula (23) include those shown below, but are not particularly limited thereto.
  • all 6-membered rings are benzene rings.
  • the 1st compound which concerns on this invention of 1 aspect of the said invention, and the 2nd compound which is not the same as this 1st compound are useful as an organic EL element material.
  • the first compound according to the present invention is used as a fluorescent dopant material for a light emitting layer of an organic EL element.
  • the dopant material of the light emitting layer of the organic EL element the fluorescence quantum yield (PLQY) and the shape (half width) of the fluorescence emission spectrum are regarded as important from the viewpoint of light emission efficiency.
  • PLQY fluorescence quantum yield
  • the shape (half width) of the fluorescence emission spectrum are regarded as important from the viewpoint of light emission efficiency.
  • the light of the three primary colors of red, green, and blue used in full-color displays, plus four colors such as yellow, to the target color gamut it can be cut with a color filter or with a microcavity structure. The light is extracted outside after being subjected to amplification of light of wavelength and attenuation of other light.
  • a material having a sharper emission spectrum shape is advantageous in terms of efficiency because there is less energy loss because the wavelength range to be cut is smaller.
  • a dopant material exhibiting a sharp emission spectrum a chemical structure with little structural change between the ground state and the excited state and a small vibration level is considered suitable.
  • the first compound according to the present invention has a rigid structure centered on a condensed ring structure of an aromatic ring, so that there is little structural change between the ground state and the excited state.
  • the condensed ring structure having high symmetry means, for example, a condensed ring structure having line symmetry with respect to a straight line connecting the N atom of the skeleton and R 2 in the formula (1).
  • the asymmetric condensed ring structure means, for example, a condensed ring structure that is not line symmetric when a straight line connecting the N atom of the skeleton and R 2 in the formula (1) is used as an axis.
  • the organic EL device of the present invention is an organic electroluminescence device having a cathode, an anode, and an organic layer present between the cathode and the anode, and the organic layer includes a fluorescent light emitting layer.
  • the fluorescent light-emitting layer includes one or a plurality of layers, and the first compound represented by the formula (1) described above and the second compound described above that is not the same as the first compound.
  • the organic EL element of the present invention includes those that can be driven at a low voltage and those that have a long element lifetime.
  • the organic EL element includes one that can emit light with high blue purity.
  • the 1st compound concerning this invention is contained in a light emitting layer with a 2nd compound, and is contained in a light emitting layer as a dopant material especially.
  • it is preferably contained in the light emitting layer as a dopant material of the light emitting layer using fluorescent light emission, and is also contained in the light emitting layer as a dopant material of the light emitting layer using a thermally activated delayed fluorescence (Thermal Activated Delayed Fluorescence) mechanism.
  • the fluorescent light emitting layer according to the present invention does not include a heavy metal complex having phosphorescent property or the like.
  • the heavy metal include iridium, platinum, osmium, rhenium, and ruthenium.
  • the organic EL device of the present invention may be a monochromatic light emitting device using a fluorescent emission type or a thermally activated delayed fluorescence mechanism, or may be a hybrid white light emitting device as described above, or a single type.
  • a simple type having a plurality of light emitting units or a tandem type having a plurality of light emitting units may be used.
  • the “light emitting unit” refers to a minimum unit that includes one or more organic layers, one of which is a light emitting layer, and can emit light by recombination of injected holes and electrons.
  • typical element configurations of simple organic EL elements include the following element configurations.
  • the case where the fluorescent light emitting layer is not included is excluded.
  • the light emitting unit may be a phosphorescent light emitting layer, a fluorescent light emitting layer, or a laminated type having a plurality of light emitting layers using a thermally activated delayed fluorescence mechanism.
  • a space layer may be provided between the layers in order to prevent excitons generated in the phosphorescent light emitting layer from diffusing into the fluorescent light emitting layer.
  • a typical layer structure of the light emitting unit is shown below.
  • A Hole transport layer / light emitting layer (/ electron transport layer)
  • B Hole transport layer / first fluorescent light emitting layer / second fluorescent light emitting layer (/ electron transport layer)
  • C Hole transport layer / phosphorescent layer / space layer / fluorescent layer (/ electron transport layer)
  • D Hole transport layer / first phosphorescent light emitting layer / second phosphorescent light emitting layer / space layer / fluorescent light emitting layer (/ electron transport layer)
  • E Hole transport layer / first phosphorescent light emitting layer / space layer / second phosphorescent light emitting layer / space layer / fluorescent light emitting layer (/ electron transport layer)
  • F Hole transport layer / phosphorescent layer / space layer / first fluorescent layer / second fluorescent layer (/ electron transport layer)
  • Each phosphorescent or fluorescent light-emitting layer may have a different emission color.
  • a layer structure such as an electron transport layer can be used.
  • An electron barrier layer may be appropriately provided between each light emitting layer and the hole transport layer or space layer.
  • a hole blocking layer may be appropriately provided between each light emitting layer and the electron transport layer.
  • the following element structure can be mentioned as a typical element structure of a tandem type organic EL element.
  • the intermediate layer is generally called an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, or an intermediate insulating layer, and has electrons in the first light emitting unit and holes in the second light emitting unit.
  • a known material structure to be supplied can be used.
  • FIG. 1 shows a schematic configuration of an example of the organic EL element of the present invention.
  • the organic EL element 1 includes a substrate 2, an anode 3, a cathode 4, and a light emitting unit (organic thin film layer) 10 disposed between the anode 3 and the cathode 4.
  • the light emitting unit 10 includes a light emitting layer 5 including at least one fluorescent light emitting layer including a fluorescent host material and a fluorescent dopant material.
  • a hole injection layer / hole transport layer 6 or the like may be formed between the light emitting layer 5 and the anode 3, and an electron injection layer / electron transport layer 7 or the like may be formed between the light emitting layer 5 and the cathode 4.
  • an electron barrier layer may be provided on the anode 3 side of the light emitting layer 5, and a hole barrier layer may be provided on the cathode 4 side of the light emitting layer 5.
  • a host material combined with a fluorescent dopant material is referred to as a fluorescent host material
  • a host material combined with a phosphorescent dopant material is referred to as a phosphorescent host material.
  • the fluorescent host material and the phosphorescent host material are not classified only by the molecular structure. That is, the fluorescent host material means a material constituting the fluorescent light emitting layer containing the fluorescent dopant material, and does not mean that it cannot be used as a material constituting the phosphorescent light emitting layer. The same applies to the phosphorescent host material.
  • the organic EL element of the present invention is produced on a translucent substrate.
  • the light-transmitting substrate is a substrate that supports the organic EL element, and is preferably a smooth substrate having a light transmittance in the visible region of 400 nm to 700 nm of 50% or more.
  • a glass plate, a polymer plate, etc. are mentioned.
  • the glass plate include those using soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, quartz and the like as raw materials.
  • the polymer plate include those using polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, polysulfone and the like as raw materials.
  • the anode of the organic EL element plays a role of injecting holes into the hole transport layer or the light emitting layer, and it is effective to use a material having a work function of 4.5 eV or more.
  • Specific examples of the anode material include indium tin oxide alloy (ITO), tin oxide (NESA), indium zinc oxide, gold, silver, platinum, and copper.
  • ITO indium tin oxide alloy
  • NESA tin oxide
  • the anode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. When light emitted from the light emitting layer is extracted from the anode, it is preferable that the transmittance of light in the visible region of the anode is greater than 10%.
  • the sheet resistance of the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness of the anode depends on the material, but is usually selected in the range of 10 nm to 1 ⁇ m, preferably 10 nm to 200 nm.
  • the cathode plays a role of injecting electrons into the electron injection layer, the electron transport layer or the light emitting layer, and is preferably formed of a material having a small work function.
  • the cathode material is not particularly limited, and specifically, indium, aluminum, magnesium, magnesium-indium alloy, magnesium-aluminum alloy, aluminum-lithium alloy, aluminum-scandium-lithium alloy, magnesium-silver alloy and the like can be used.
  • the cathode can also be produced by forming a thin film by a method such as vapor deposition or sputtering. Moreover, you may take out light emission from the cathode side as needed.
  • the light emitting layer includes a fluorescent light emitting layer containing the first compound and the second compound according to the present invention.
  • An organic layer having a light emitting function includes a host material and a dopant material.
  • the host material mainly has a function of encouraging recombination of electrons and holes and confining excitons in the light emitting layer, and the dopant material efficiently emits excitons obtained by recombination. It has a function.
  • the host material mainly has a function of confining excitons generated from the dopant material in the light emitting layer.
  • the light emitting layer may employ a double dopant material that emits light from each dopant material by adding two or more kinds of dopant materials having a high quantum yield.
  • the host material, the red dopant material, and the green dopant material may be co-evaporated to form a common light emitting layer and realize yellow light emission.
  • the above light-emitting layer is a laminate in which a plurality of light-emitting layers are stacked, so that electrons and holes are accumulated at the light-emitting layer interface, and the recombination region is concentrated at the light-emitting layer interface to improve quantum efficiency. Can do.
  • the ease of injecting holes into the light emitting layer may be different from the ease of injecting electrons, and the hole transport ability and electron transport ability expressed by the mobility of holes and electrons in the light emitting layer may be different. May be different.
  • the light emitting layer can be formed by a known method such as a vapor deposition method, a spin coating method, or an LB method.
  • the light emitting layer can also be formed by thinning a solution obtained by dissolving a binder such as a resin and a material compound in a solvent by a spin coating method or the like.
  • the light emitting layer is preferably a molecular deposited film.
  • the molecular deposited film is a thin film formed by deposition from a material compound in a gas phase state or a film formed by solidifying from a material compound in a solution state or a liquid phase state.
  • the thin film (molecular accumulation film) formed by the LB method can be classified by the difference in the aggregation structure and the higher-order structure, and the functional difference resulting therefrom.
  • the thickness of the light emitting layer is preferably 5 to 50 nm, more preferably 7 to 50 nm, and still more preferably 10 to 50 nm. When the thickness is 5 nm or more, it is easy to form a light emitting layer, and when the thickness is 50 nm or less, an increase in driving voltage can be avoided.
  • the fluorescent dopant material (fluorescent light-emitting material) forming the light-emitting layer is a compound that can emit light from a singlet excited state and is not particularly limited as long as it emits light from a singlet excited state.
  • a fluoranthene derivative, a styrylarylene derivative, and a pyrene derivative Arylacetylene derivatives, fluorene derivatives, boron complexes, perylene derivatives, oxadiazole derivatives, anthracene derivatives, styrylamine derivatives, arylamine derivatives, etc., preferably anthracene derivatives, fluoranthene derivatives, styrylamine derivatives, arylamine derivatives , Styrylarylene derivatives, pyrene derivatives, boron complexes, more preferably anthracene derivatives, fluoranthene derivatives, styrylamine derivatives, arylamine derivatives, boron complex compounds.
  • the content of the fluorescent dopant material in the light emitting layer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is preferably 0.1 to 70% by mass, more preferably 0.1 to 30% by mass, Is more preferably from 30 to 30% by weight, still more preferably from 1 to 20% by weight, even more preferably from 1 to 10% by weight.
  • the content of the fluorescent dopant material is 0.1% by mass or more, sufficient light emission can be obtained, and when it is 70% by mass or less, concentration quenching can be avoided.
  • the organic EL device of the present invention preferably has an electron donating dopant material in the interface region between the cathode and the light emitting unit. According to such a configuration, it is possible to improve the light emission luminance and extend the life of the organic EL element.
  • the electron donating dopant material means a material containing a metal having a work function of 3.8 eV or less, and specific examples thereof include alkali metals, alkali metal complexes, alkali metal compounds, alkaline earth metals, alkaline earths. And at least one selected from the group consisting of an alkali metal complex, an alkaline earth metal compound, a rare earth metal, a rare earth metal complex, and a rare earth metal compound.
  • alkali metal examples include Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV), Cs (work function: 1.95 eV), and the like.
  • a function of 2.9 eV or less is particularly preferable.
  • examples of the alkaline earth metal include Ca (work function: 2.9 eV), Sr (work function: 2.0 eV to 2.5 eV), Ba (work function: 2.52 eV), and the like.
  • the thing below 9 eV is especially preferable.
  • the rare earth metal examples include Sc, Y, Ce, Tb, and Yb, and those having a work function of 2.9 eV or less are particularly preferable.
  • alkali metal compound examples include alkali oxides such as Li 2 O, Cs 2 O, and K 2 O, and alkali halides such as LiF, NaF, CsF, and KF, and LiF, Li 2 O, and NaF are preferable.
  • alkaline earth metal compound examples include BaO, SrO, CaO, and Ba x Sr 1-x O (0 ⁇ x ⁇ 1), Ba x Ca 1-x O (0 ⁇ x ⁇ 1) mixed with these. BaO, SrO, and CaO are preferable.
  • the rare earth metal compound, YbF 3, ScF 3, ScO 3, Y 2 O 3, Ce 2 O 3, GdF 3, etc. TbF 3 are exemplified, YbF 3, ScF 3, TbF 3 are preferable.
  • the alkali metal complex, alkaline earth metal complex, and rare earth metal complex are not particularly limited as long as each metal ion contains at least one of an alkali metal ion, an alkaline earth metal ion, and a rare earth metal ion.
  • the ligands include quinolinol, benzoquinolinol, acridinol, phenanthridinol, hydroxyphenyl oxazole, hydroxyphenyl thiazole, hydroxydiaryl thiadiazole, hydroxydiaryl thiadiazole, hydroxyphenylpyridine, hydroxyphenylbenzimidazole, hydroxybenzotriazole, Examples thereof include hydroxyfulborane, bipyridyl, phenanthroline, phthalocyanine, porphyrin, cyclopentadiene, ⁇ -diketones, azomethines, and derivatives thereof.
  • the electron donating dopant material it is preferable to form a layered or island shape in the interface region.
  • a forming method while depositing an electron donating dopant material by resistance heating vapor deposition, an organic compound (light emitting material or electron injecting material) that forms an interface region is simultaneously deposited, and the electron donating dopant material is dispersed in the organic compound.
  • the reducing dopant material is vapor-deposited alone by resistance heating vapor deposition, preferably the layer It is formed with a thickness of 0.1 nm to 15 nm.
  • the electron donating dopant material is vapor-deposited by a resistance heating vapor deposition method alone, The island is formed with a thickness of 0.05 nm to 1 nm.
  • an organic layer close to the cathode may be defined as an electron injection layer.
  • the electron injection layer has a function of efficiently injecting electrons from the cathode into the organic layer unit.
  • an aromatic heterocyclic compound containing one or more heteroatoms in the molecule is preferably used, and a nitrogen-containing ring derivative is particularly preferable.
  • the nitrogen-containing ring derivative is preferably an aromatic ring having a nitrogen-containing 6-membered ring or 5-membered ring skeleton, or a condensed aromatic ring compound having a nitrogen-containing 6-membered ring or 5-membered ring skeleton.
  • a nitrogen-containing ring metal chelate complex represented by the following formula (A) is preferable.
  • R 2 to R 7 in the formula (A) are each independently a hydrogen atom, a halogen atom, an oxy group, an amino group, 1 to 40 carbon atoms (preferably 1 to 20, more preferably 1 to 10, more preferably 1 to 6) hydrocarbon group, 1 to 40 carbon atoms (preferably 1 to 20, more preferably 1 to 10 and even more preferably 1 to 6) alkoxy group, and 6 to 40 ring carbon atoms (preferably 6 carbon atoms).
  • aryloxy group 2-40 carbon atoms (preferably 2-20, more preferably 2-10, more preferably 2-5) alkoxycarbonyl groups or ring-forming atoms 9 to 40 (preferably 9 to 30, more preferably 9 to 20) aromatic heterocyclic groups, which may be substituted.
  • M is aluminum (Al), gallium (Ga) or indium (In), preferably In.
  • L is a group represented by the following formula (A ′) or (A ′′).
  • R 8 to R 12 are each independently a hydrogen atom or a substituted or unsubstituted carbon number of 1 to 40 (preferably 1 to 20, more preferably 1 to 10, more preferably 1). To 6), and the groups adjacent to each other may form a cyclic structure.
  • R 13 to R 27 are each independently a hydrogen atom or a substituted or unsubstituted carbon number of 1 to 40 (preferably 1 to 20, more preferably 1 to 10, more preferably Are hydrocarbon groups of 1 to 6), and groups adjacent to each other may form a cyclic structure.
  • Examples of the hydrocarbon group having 1 to 40 carbon atoms represented by R 8 to R 12 and R 13 to R 27 in the formula (A ′) and the formula (A ′′) include R 2 to R 7 in the formula (A).
  • examples of the divalent group include a tetramethylene group, a pentamethylene group, a hexamethylene group, diphenylmethane-2,2 Examples include a '-diyl group, a diphenylethane-3,3'-diyl group, and a diphenylpropane-4,4'-diyl group.
  • 8-hydroxyquinoline or a metal complex of its derivative, an oxadiazole derivative, or a nitrogen-containing heterocyclic derivative is preferable.
  • electron transfer compounds those having good thin film forming properties are preferably used.
  • Specific examples of these electron transfer compounds include the following.
  • nitrogen-containing heterocyclic derivative as the electron transfer compound examples include nitrogen-containing compounds that are not metal complexes.
  • a compound having a nitrogen-containing heterocyclic group represented by the following formula is preferably exemplified.
  • R is an aromatic hydrocarbon group or condensed aromatic hydrocarbon group having 6 to 40 carbon atoms, an aromatic heterocyclic group having 3 to 40 carbon atoms or a condensed aromatic heterocyclic group.
  • the electron transport layer of the organic EL device of the present invention particularly preferably contains at least one nitrogen-containing heterocyclic derivative represented by the following formulas (60) to (62).
  • Z ⁇ 11 >, Z ⁇ 12 > and Z ⁇ 13 > are a nitrogen atom or a carbon atom each independently.
  • R A and R B are each independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms (preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12), A heterocyclic group having 5 to 50 unsubstituted ring atoms (preferably 5 to 30, more preferably 5 to 20 and even more preferably 5 to 12), substituted or unsubstituted carbon atoms having 1 to 20 (preferably 1) -10, more preferably 1-6) alkyl group, substituted or unsubstituted haloalkyl group of 1-20 (preferably 1-10, more preferably 1-6) or substituted or unsubstituted 1 carbon atom.
  • n is an integer of 0 to 5, and when n is an integer of 2 or more, a plurality of R A may be the same or different from each other. Moreover, by combining two R A, where adjacent, they may form a substituted or unsubstituted hydrocarbon ring.
  • Ar 11 represents a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms (preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12), or a substituted or unsubstituted ring atom number. 5 to 50 (preferably 5 to 30, more preferably 5 to 20, and still more preferably 5 to 12) heterocyclic groups.
  • Ar 12 is a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms (preferably 1 to 10, more preferably 1 to 6), a substituted or unsubstituted carbon atom having 1 to 20 carbon atoms (preferably 1 to 1 carbon atoms).
  • any one of Ar 11 and Ar 12 is a substituted or unsubstituted condensed aromatic group having 10 to 50 ring carbon atoms (preferably 10 to 30, more preferably 10 to 20, more preferably 10 to 14).
  • Ar 13 represents a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms (preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12) or a substituted or unsubstituted ring-forming atom number. 5-50 (preferably 5-30, more preferably 5-20, still more preferably 5-12) heteroarylene groups.
  • L 11 , L 12 and L 13 are each independently a single bond, a substituted or unsubstituted ring-forming carbon number of 6 to 50 (preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12). Or a divalent condensed aromatic heterocyclic group having 9 to 50 (preferably 9 to 30, more preferably 9 to 20, more preferably 9 to 14) ring-forming atoms that are substituted or unsubstituted. . )
  • nitrogen-containing heterocyclic derivative represented by the above formulas (60) to (62) include the following.
  • the electron transport layer of the organic EL device of the present invention may have a two-layer structure of a first electron transport layer (anode side) and a second electron transport layer (cathode side).
  • the thickness of the electron transport layer is not particularly limited, but is preferably 1 nm to 100 nm.
  • the thickness of the first electron transport layer is preferably 5 to 60 nm. More preferably, the thickness is 10 to 40 nm, and the film thickness of the second electron transport layer is preferably 1 to 20 nm, more preferably 1 to 10 nm.
  • an insulator or a semiconductor as an inorganic compound in addition to the nitrogen-containing ring derivative as a constituent component of the electron injection layer that can be provided adjacent to the electron transport layer. If the electron injection layer is made of an insulator or a semiconductor, current leakage can be effectively prevented and the electron injection property can be improved.
  • an insulator it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides. If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injection property can be further improved.
  • preferable alkali metal chalcogenides include, for example, Li 2 O, K 2 O, Na 2 S, Na 2 Se, and Na 2 O
  • preferable alkaline earth metal chalcogenides include, for example, CaO, BaO. , SrO, BeO, BaS and CaSe.
  • preferable alkali metal halides include, for example, LiF, NaF, KF, LiCl, KCl, and NaCl.
  • preferable alkaline earth metal halides include fluorides such as CaF 2 , BaF 2 , SrF 2 , MgF 2 and BeF 2 , and halides other than fluorides.
  • the inorganic compound constituting the electron injection layer is preferably a microcrystalline or amorphous insulating thin film. If the electron injection layer is composed of these insulating thin films, a more uniform thin film is formed, so that pixel defects such as dark spots can be reduced. Examples of such inorganic compounds include alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides.
  • the preferred thickness of the layer is about 0.1 nm to 15 nm.
  • the electron injection layer in the present invention is preferable even if it contains the aforementioned electron donating dopant material.
  • an organic layer close to the anode may be defined as a hole injection layer.
  • the hole injection layer has a function of efficiently injecting holes from the anode into the organic layer unit.
  • an aromatic amine compound for example, an aromatic amine derivative represented by the following formula (I) is preferably used.
  • Ar 1 to Ar 4 are substituted or unsubstituted aromatic carbon atoms having 6 to 50 ring carbon atoms (preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12).
  • L represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 50 ring carbon atoms (preferably 6 to 30, more preferably 6 to 20, and further preferably 6 to 12).
  • a condensed aromatic hydrocarbon group having 6 to 50 ring carbon atoms (preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12) which may have a substituent, or a substituted or unsubstituted ring Aromatic heterocyclic group having 5 to 50 substituted ring atoms (preferably 5 to 30, more preferably 5 to 20 and even more preferably 5 to 12) or substituted or unsubstituted ring atoms having 5 to 50 ( It preferably represents a condensed aromatic heterocyclic group of 5 to 30, more preferably 5 to 20, and still more preferably 5 to 12.
  • an aromatic amine of the following formula (II) is also preferably used for forming the hole transport layer.
  • the hole transport layer of the organic EL device of the present invention may have a two-layer structure of a first hole transport layer (anode side) and a second hole transport layer (cathode side).
  • the film thickness of the hole transport layer is not particularly limited, but is preferably 10 to 200 nm.
  • the thickness of the first hole transport layer is preferably 50 to The thickness is 150 nm, more preferably 50 to 110 nm, and the thickness of the second hole transport layer is preferably 5 to 50 nm, more preferably 5 to 30 nm.
  • a layer containing an acceptor material may be bonded to the anode side of the hole transport layer or the first hole transport layer. This is expected to reduce drive voltage and manufacturing costs.
  • the thickness of the layer containing the acceptor material is not particularly limited, but is preferably 5 to 20 nm.
  • n doping is a method of doping an electron transport material with a metal such as Li or Cs
  • p doping is a method of doping an acceptor material such as F 4 TCNQ into a hole transport material. Is mentioned.
  • the space layer is a fluorescent layer for the purpose of adjusting the carrier balance so that excitons generated in the phosphorescent layer are not diffused into the fluorescent layer. It is a layer provided between the layer and the phosphorescent light emitting layer.
  • the space layer can be provided between the plurality of phosphorescent light emitting layers. Since the space layer is provided between the light emitting layers, a material having both electron transport properties and hole transport properties is preferable. In order to prevent diffusion of triplet energy in the adjacent phosphorescent light emitting layer, the triplet energy is preferably 2.6 eV or more. Examples of the material used for the space layer include the same materials as those used for the above-described hole transport layer.
  • the organic EL device of the present invention preferably has a barrier layer such as an electron barrier layer, a hole barrier layer, or a triplet barrier layer in a portion adjacent to the light emitting layer.
  • the electron barrier layer is a layer that prevents electrons from leaking from the light emitting layer to the hole transporting layer, and is a layer provided between the light emitting layer and the hole transporting layer.
  • the hole blocking layer is a layer that prevents holes from leaking from the light emitting layer to the electron transporting layer, and is a layer provided between the light emitting layer and the electron transporting layer.
  • the triplet barrier layer prevents the triplet excitons generated in the light emitting layer from diffusing into the surrounding layers, and confines the triplet excitons in the light emitting layer, thereby emitting the triplet excitons. It has a function of suppressing energy deactivation on the molecule of the electron transport layer other than the dopant material.
  • the electron injection layer is desirably 10 ⁇ 6 cm 2 / Vs or more in the range of electric field strength of 0.04 to 0.5 MV / cm. This facilitates the injection of electrons from the cathode into the electron transport layer, and also promotes the injection of electrons into the adjacent barrier layer and the light emitting layer, thereby enabling driving at a lower voltage.
  • the organic EL element obtained by using the compound of the present invention has excellent performance
  • display components such as an organic EL panel module
  • display devices such as televisions, mobile phones, personal computers
  • light emitting devices for lighting and vehicle lamps Can be used for electronic devices.
  • the obtained solid was recrystallized from toluene (40 mL) to obtain yellow plate crystals (1.14 g, yield 54%).
  • the obtained solid was the target compound, Compound 51.
  • m / e 627 with respect to the molecular weight of 627.77.
  • Example 1 A glass substrate (manufactured by Geomat Co.) with an ITO transparent electrode (anode) having a thickness of 25 mm ⁇ 75 mm ⁇ 1.1 mm was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes. The film thickness of ITO was 130 nm. The cleaned glass substrate is mounted on a substrate holder of a vacuum evaporation apparatus, and first, compound HI-1 is deposited on the surface on which the transparent electrode line is formed so as to cover the transparent electrode, and the film thickness is 5 nm. A hole injection layer was formed.
  • Compound HT-1 was vapor-deposited to form a first hole transport layer having a thickness of 80 nm.
  • Compound HT-2 was vapor-deposited on the first hole transport layer to form a second hole transport layer having a thickness of 10 nm.
  • Compound BH-1 and Compound 2 (dopant material) obtained in Synthesis Example 1 were co-evaporated on the second hole transport layer to form a light emitting layer having a thickness of 25 nm.
  • the concentration of Compound 2 (dopant material) in the light emitting layer was 4 mass%.
  • ET-1 was vapor-deposited on the light emitting layer to form a first electron transport layer having a thickness of 10 nm.
  • ET-2 was vapor-deposited on the first electron transport layer to form a second electron transport layer having a thickness of 15 nm.
  • lithium fluoride (LiF) was deposited on the second electron transport layer to form an electron injecting electrode having a thickness of 1 nm.
  • metal aluminum (Al) was vapor-deposited on this electron injecting electrode, and the metal cathode with a film thickness of 80 nm was formed.
  • the organic EL element of Example 1 has the following configuration.
  • Example 2 An organic EL device was produced in the same manner as in Example 1 except that Compound 5 obtained in Synthesis Example 2 was used instead of Compound 2 (dopant material) in the light emitting layer of Example 1.
  • the organic EL element of Example 2 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-1: Compound 5 (25: 4% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 3 An organic EL device was produced in the same manner as in Example 1 except that BH-2 was used in place of BH-1 (host material) in the light emitting layer of Example 1.
  • the organic EL element of Example 3 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-2: Compound 2 (25: 4% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 4 An organic EL device was produced in the same manner as in Example 2 except that BH-2 was used in place of BH-1 (host material) in the light emitting layer of Example 2.
  • the organic EL element of Example 4 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-2: Compound 5 (25: 4% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 5 An organic EL device was produced in the same manner as in Example 1 except that BH-3 was used in place of BH-1 (host material) in the light emitting layer of Example 1.
  • the organic EL element of Example 5 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-3: Compound 2 (25: 4% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 6 An organic EL device was produced in the same manner as in Example 2 except that BH-3 was used in place of BH-1 (host material) in the light emitting layer of Example 2.
  • the organic EL element of Example 6 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-3: Compound 5 (25: 4% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 7 An organic EL device was produced in the same manner as in Example 1 except that BH-4 was used in place of BH-1 (host material) in the light emitting layer of Example 1.
  • the organic EL element of Example 7 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-4: Compound 2 (25: 4% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 8 An organic EL device was produced in the same manner as in Example 2 except that the concentration of Compound 2 (dopant material) in the light emitting layer of Example 2 was changed to 2% by mass instead of 4% by mass.
  • the organic EL element of Example 8 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-1: Compound 5 (25: 2% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 9 An organic EL device was produced in the same manner as in Example 8 except that BH-2 was used in place of BH-1 (host material) in the light emitting layer of Example 8.
  • the organic EL element of Example 9 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-2: Compound 5 (25: 2% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 10 An organic EL device was produced in the same manner as in Example 8, except that BH-5 was used instead of BH-1 (host material) in the light emitting layer of Example 8.
  • the organic EL element of Example 10 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-5: Compound 5 (25: 2% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 11 An organic EL device was produced in the same manner as in Example 8, except that BH-6 was used in place of BH-1 (host material) in the light emitting layer of Example 8.
  • the organic EL element of Example 11 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-6: Compound 5 (25: 2% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 12 An organic EL device was produced in the same manner as in Example 8, except that BH-7 was used instead of BH-1 (host material) in the light emitting layer of Example 8.
  • the organic EL element of Example 12 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-7: Compound 5 (25: 2% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 13 An organic EL device was produced in the same manner as in Example 8, except that BH-8 was used in place of BH-1 (host material) in the light emitting layer of Example 8.
  • the organic EL element of Example 13 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-8: Compound 5 (25: 2% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 14 An organic EL device was produced in the same manner as in Example 8 except that BH-9 was used in place of BH-1 (host material) in the light emitting layer of Example 8.
  • the organic EL element of Example 14 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-9: Compound 5 (25: 2% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 15 An organic EL device was produced in the same manner as in Example 8, except that BH-10 was used instead of BH-1 (host material) in the light emitting layer of Example 8.
  • the organic EL element of Example 15 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-10: Compound 5 (25: 2% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 16 An organic EL device was produced in the same manner as in Example 8, except that BH-11 was used instead of BH-1 (host material) in the light emitting layer of Example 8.
  • the organic EL element of Example 16 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-11: Compound 5 (25: 2% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 17 An organic EL device was produced in the same manner as in Example 8, except that BH-12 was used instead of BH-1 (host material) in the light emitting layer of Example 8.
  • the organic EL element of Example 17 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-12: Compound 5 (25: 2% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 18 An organic EL device was produced in the same manner as in Example 8 except that BH-13 was used instead of BH-1 (host material) in the light emitting layer of Example 8.
  • the organic EL element of Example 18 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-13: Compound 5 (25: 2% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 19 An organic EL device was produced in the same manner as in Example 8, except that BH-14 was used instead of BH-1 (host material) in the light emitting layer of Example 8.
  • the organic EL element of Example 19 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-14: Compound 5 (25: 2% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 20 An organic EL device was produced in the same manner as in Example 8, except that BH-15 was used instead of BH-1 (host material) in the light emitting layer of Example 8.
  • the organic EL element of Example 20 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-15: Compound 5 (25: 2% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 21 An organic EL device was produced in the same manner as in Example 8, except that BH-16 was used instead of BH-1 (host material) in the light emitting layer of Example 8.
  • the organic EL element of Example 21 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-16: Compound 5 (25: 2% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 22 It replaced with the compound 2 (dopant material) in the light emitting layer of Example 1, and it used similarly to Example 1 except having used the compound 7 obtained by the synthesis example 3, and having set the density
  • An organic EL element was produced.
  • the organic EL element of Example 22 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-1: Compound 7 (25: 2% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 23 Instead of compound 2 (dopant material) in the light-emitting layer of Example 1, compound 9 obtained in Synthesis Example 4 was used, and the concentration of compound 9 was changed to 2% by mass in the same manner as in Example 1. An organic EL element was produced.
  • the organic EL element of Example 23 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-1: Compound 9 (25: 2% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 24 It replaced with the compound 2 (dopant material) in the light emitting layer of Example 1, and it used similarly to Example 1 except having used the compound 11 obtained by the synthesis example 5, and having set the density
  • An organic EL element was produced.
  • the organic EL element of Example 24 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-1: Compound 11 (25: 2% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 25 It replaced with the compound 2 (dopant material) in the light emitting layer of Example 1, and was using the compound 17 obtained by the synthesis example 6, and having carried out similarly to Example 1 except having made the density
  • An organic EL element was produced.
  • the organic EL element of Example 25 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-1: Compound 17 (25: 2% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 26 It replaced with the compound 2 (dopant material) in the light emitting layer of Example 1, and was using the compound 22 obtained by the synthesis example 7, and having carried out similarly to Example 1 except having set the density
  • An organic EL element was produced.
  • the organic EL element of Example 26 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-1: Compound 22 (25: 2% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 27 Example 1 except that the compound 38 (dopant material) obtained in Synthesis Example 8 was used in place of the compound 2 (dopant material) in the light emitting layer of Example 1, and the concentration of the compound 38 was set to 2% by mass.
  • the organic EL element of Example 27 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-1: Compound 38 (25: 2% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 28 Example 1 except that the compound 41 (dopant material) obtained in Synthesis Example 9 was used in place of the compound 2 (dopant material) in the light emitting layer of Example 1, and the concentration of the compound 41 was set to 2% by mass.
  • the organic EL element of Example 28 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-1: Compound 41 (25: 2% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 29 Example 1 except that the compound 43 (dopant material) obtained in Synthesis Example 10 was used in place of the compound 2 (dopant material) in the light emitting layer of Example 1, and the concentration of the compound 43 was set to 2% by mass.
  • the organic EL element of Example 29 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-1: Compound 43 (25: 2% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 30 Example 1 except that the compound 48 (dopant material) obtained in Synthesis Example 11 was used in place of the compound 2 (dopant material) in the light emitting layer of Example 1, and the concentration of the compound 48 was set to 2% by mass.
  • the organic EL element of Example 30 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-1: Compound 48 (25: 2% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 31 Example 1 except that the compound 51 (dopant material) obtained in Synthesis Example 12 was used in place of the compound 2 (dopant material) in the light emitting layer of Example 1, and the concentration of the compound 51 was set to 2% by mass.
  • the organic EL element of Example 31 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-1: Compound 51 (25: 2% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 32 Instead of compound 2 (dopant material) in the light-emitting layer of Example 1, compound 60 (dopant material) obtained in Synthesis Example 13 was used, and the organic content was the same as in Example 1 except that the amount was 2% by mass. An EL element was produced.
  • the organic EL element of Example 32 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-1: Compound 60 (25: 2% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 33 The following compound HI-2 was used instead of compound HI-1 in the hole injection layer of Example 1, and 2% by mass of the following compound 61 was used instead of compound 2 (dopant material) in the light-emitting layer.
  • An organic EL device was produced in the same manner as in Example 1 except that it was used.
  • the organic EL element of Example 33 has the following configuration. ITO (130) / HI-2 (5) / HT-1 (80) / HT-2 (10) / BH-1: Compound 61 (25: 2% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 34 Example 1 except that compound HI-2 was used instead of compound HI-1 in the hole injection layer of Example 1 and compound 61 was used instead of compound 2 (dopant material) in the light emitting layer In the same manner as in Example 1, an organic EL device was produced.
  • the organic EL element of Example 34 has the following configuration. ITO (130) / HI-2 (5) / HT-1 (80) / HT-2 (10) / BH-1: Compound 61 (25: 4% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 35 An organic EL device was produced in the same manner as in Example 33 except that BH-2 was used in place of BH-1 in the light emitting layer of Example 33.
  • the organic EL element of Example 35 has the following configuration. ITO (130) / HI-2 (5) / HT-1 (80) / HT-2 (10) / BH-2: Compound 61 (25: 2% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 36 An organic EL device was produced in the same manner as in Example 34 except that BH-2 was used in place of BH-1 in the light emitting layer of Example 34.
  • the organic EL element of Example 36 has the following configuration. ITO (130) / HI-2 (5) / HT-1 (80) / HT-2 (10) / BH-2: Compound 61 (25: 4% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 37 The compound HI-2 was used in place of the compound HI-1 in the hole injection layer of Example 1, and 2% by mass of the following compound 62 was used in place of the compound 2 (dopant material) in the light emitting layer. Except for this, an organic EL device was produced in the same manner as in Example 1.
  • the organic EL element of Example 37 has the following configuration. ITO (130) / HI-2 (5) / HT-1 (80) / HT-2 (10) / BH-1: Compound 62 (25: 2% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 38 Example 1 except that compound HI-2 was used instead of compound HI-1 in the hole injection layer of Example 1 and compound 62 was used instead of compound 2 (dopant material) in the light emitting layer In the same manner as in Example 1, an organic EL device was produced.
  • the organic EL element of Example 38 has the following configuration. ITO (130) / HI-2 (5) / HT-1 (80) / HT-2 (10) / BH-1: Compound 62 (25: 4% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 39 An organic EL device was produced in the same manner as in Example 37 except that BH-2 was used instead of BH-1 in the light emitting layer of Example 37.
  • the organic EL element of Example 39 has the following configuration. ITO (130) / HI-2 (5) / HT-1 (80) / HT-2 (10) / BH-2: Compound 62 (25: 2% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Example 40 An organic EL device was produced in the same manner as in Example 38 except that BH-2 was used in place of BH-1 in the light emitting layer of Example 38.
  • the organic EL element of Example 40 has the following configuration. ITO (130) / HI-2 (5) / HT-1 (80) / HT-2 (10) / BH-2: Compound 62 (25: 4% by mass) / ET-1 (10) / ET-2 (15) / LiF (1) / Al (80)
  • Comparative Example 1 An organic EL device was produced in the same manner as in Example 1 except that Comparative Compound 1 was used instead of Compound 1 (dopant material) in the light emitting layer of Example 1.
  • the organic EL element of Comparative Example 1 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-1: Comparative compound 1 (25: 4% by mass) / ET-1 (10) / ET- 2 (15) / LiF (1) / Al (80)
  • Comparative Example 2 An organic EL device was produced in the same manner as in Comparative Example 1 except that Comparative Compound 2 was used instead of Comparative Compound 1 (dopant material) in the light emitting layer of Comparative Example 1.
  • the organic EL element of Comparative Example 2 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-1: Comparative compound 2 (25: 4% by mass) / ET-1 (10) / ET- 2 (15) / LiF (1) / Al (80)
  • Comparative Example 3 An organic EL device was produced in the same manner as in Comparative Example 2 except that BH-2 was used in place of BH-1 (host material) in the light emitting layer of Comparative Example 2.
  • the organic EL element of Comparative Example 3 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-2: Comparative compound 2 (25: 4% by mass) / ET-1 (10) / ET- 2 (15) / LiF (1) / Al (80)
  • Comparative Example 4 An organic EL device was produced in the same manner as in Comparative Example 2 except that BH-3 was used instead of BH-1 (host material) in the light emitting layer of Comparative Example 2.
  • the organic EL element of Comparative Example 4 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-3: Comparative compound 2 (25: 4% by mass) / ET-1 (10) / ET- 2 (15) / LiF (1) / Al (80)
  • Comparative Example 5 An organic EL device was produced in the same manner as in Comparative Example 2 except that BH-4 was used instead of BH-1 (host material) in the light emitting layer of Comparative Example 2.
  • the organic EL element of Comparative Example 5 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-4: Comparative compound 2 (25: 4% by mass) / ET-1 (10) / ET- 2 (15) / LiF (1) / Al (80)
  • Comparative Example 6 An organic EL device was produced in the same manner as in Comparative Example 1 except that the concentration of Comparative Compound 1 (dopant material) in the light emitting layer of Comparative Example 1 was changed to 2% by mass instead of 4% by mass.
  • the organic EL element of Comparative Example 6 has the following configuration. ITO (130) / HI-1 (5) / HT-1 (80) / HT-2 (10) / BH-1: Comparative compound 1 (25: 2% by mass) / ET-1 (10) / ET- 2 (15) / LiF (1) / Al (80)
  • Comparative Compound 1 has a high CIEy value of 0.29. This is due to an increase in the emission peak in the green region due to the interaction between molecules within the film. Such an increase in light emission on the long wavelength side is a phenomenon that is generally observed in molecules with high planarity, and it is known that it can be suppressed by introducing a sterically hindered group as in Comparative Compound 2. However, it was confirmed that Compound 2 having a structure containing a nitrogen atom in a highly planar skeleton can suppress interaction between molecules in the film without introducing a steric hindrance group. It can be judged from the value of chromaticity that the same effect can be obtained in the compound 5 into which a substituent is introduced.
  • Example 41 When Compound 2 obtained in Synthesis Example 1 was measured using a spectrophotometer U-3310 manufactured by Hitachi High-Tech Science Co., an absorption peak wavelength was observed at 423 nm. Further, when this compound 2 was measured using a spectrofluorophotometer F-7000 manufactured by Hitachi High-Tech Science Co., Ltd., a fluorescence emission peak wavelength upon excitation at 349 nm was observed at 432 nm. Moreover, the half width was measured as follows. Compound 2 was dissolved in a solvent (toluene) (sample 5 [ ⁇ mol / mL]) to obtain a sample for fluorescence measurement.
  • a solvent toluene
  • the fluorescence measurement sample placed in the quartz cell was irradiated with excitation light at room temperature (300 [K]), and the fluorescence intensity was measured while changing the wavelength.
  • the vertical axis represents fluorescence intensity and the horizontal axis represents wavelength.
  • the apparatus used for fluorescence measurement is Hitachi High-Tech Science spectrofluorometer F-7000. From this photoluminescence spectrum, the full width at half maximum (nm) of Compound 2 was measured. The photoluminescence spectrum measurement results are shown in FIG. As a result, the full width at half maximum of Compound 2 was 16 nm.
  • PLQY was measured as follows.
  • Compound 2 was measured with a toluene solution at a concentration of 5 [ ⁇ mol / mL] using an absolute PL quantum yield measuring device Quantaurus-QY manufactured by Hamamatsu Photonics Co. As a result, the PLQY value was 83%. Moreover, the singlet energy EgS was calculated
  • Compound 2 of the present application has a narrow half width, high color purity, and a sharp spectrum. Moreover, the compound 2 of this application shows high PLQY, without having a substituent. Further, Compound 2 of the present application exhibits deep blue emission at 432 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

優れた性能を示す有機EL素子、及び当該有機EL素子を備える電子機器を提供する。 陰極と、陽極と、該陰極と陽極の間に存在する有機層とを有する有機EL素子であって、該有機層は蛍光発光層を含む1又は複数の層を有し、該蛍光発光層が、下記式(P)で表される第1の化合物及び該第1の化合物と同一ではない第2の化合物を含む有機EL素子、該有機EL素子を備えた電子機器。 (上記式中、π1、π2、Z、R、R、m、nは明細書中で定義したとおりである。)

Description

有機エレクトロルミネッセンス素子及び電子機器
 本発明は、有機エレクトロルミネッセンス素子及び電子機器に関する。
 一般に有機エレクトロルミネッセンス(以下、「エレクトロルミネッセンス」をELと略記することがある。)素子は、陽極、陰極、及び陽極と陰極に挟まれた1層以上の有機薄膜層から構成されている。両電極間に電圧が印加されると、陰極側から電子、陽極側から正孔が発光領域に注入され、注入された電子と正孔は発光領域において再結合して励起状態を生成し、励起状態が基底状態に戻る際に光を放出する。
 また、有機EL素子は、発光層に種々の発光材料を用いることにより、多様な発光色を得ることが可能であることから、ディスプレイなどへの実用化研究が盛んである。例えば赤色、緑色、青色の三原色の発光材料の研究が活発であり、特性向上を目指して鋭意研究がなされている。
 有機EL素子用の材料として、例えば特許文献1~6に記載の化合物などが知られている。
 また、非特許文献1は、有機EL素子に用いるドーパントに関するものであり、青色ドーパント材料として5環の置換ペリレンが開示されている。
特開2014-73965号公報 国際公開第2016/006925号 中国特許第104119347号公報 国際公開第2011/128017号 韓国特許第10-2015-0135125号公報 国際公開第2013/077344号
Mi et al.,Applied Physics Letters Volume 75, Number 26
 非特許文献1では、ペリレンをドーパントとして用いた場合には、ペリレン分子のパッキングにより大幅な色度座標のシフトが起こってしまうという問題があるところ、このパッキングによる悪影響をt-Bu基を立体障害基として導入することで解決できることを報告している。
 ペリレンのような炭素―炭素二重結合を連ねたπ共役系で構成される平面性の高い骨格は剛直であるため骨格振動が抑えられ、高いPLQYと狭い半値幅を達成しやすく、発光材料としての潜在的な性能は高い骨格である。
 しかし、そのπ共役系の特徴である平面性が故にパッキングを起こしやすくなってしまうという問題も抱えている。パッキングの解決方法の一つである母骨格への立体障害基の導入では、置換基の位置や構造が限定されてしまうため、分子設計の観点からは大きな制約となってしまう。そのため、π共役系で構成される剛直な骨格と低パッキング性を置換基に依らずに両立できる母骨格が求められている。
 本発明の目的は、優れた性能を示す有機EL素子、及び当該有機EL素子を備える電子機器を提供することである。
 本発明者らは、前記課題を解決するために、鋭意研究を重ねた結果、下記式(P)で表される第1の化合物と後述する該第1の化合物と同一ではない第2の化合物とを有機EL素子の蛍光発光層として用い有機EL素子とすることで、上記課題を解決し得ることを見出した。
 本発明には、下記[1]~[4]の態様が含まれる。
[1]本発明の一態様によれば、陰極と、陽極と、該陰極と陽極の間に存在する有機層とを有する有機エレクトロルミネッセンス素子であって、該有機層は蛍光発光層を含む1又は複数の層を有し、該蛍光発光層が、下記式(P)で表される第1の化合物及び該第1の化合物と同一ではない第2の化合物を含む有機エレクトロルミネッセンス素子が提供される。
Figure JPOXMLDOC01-appb-C000023
[式中、式(P)において、Zは、CRまたはNである。
 π1は、置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は置換もしくは無置換の環形成原子数5~50の芳香族複素環である。
 π2は、置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は置換もしくは無置換の環形成原子数5~50の芳香族複素環である。
 R、R及びRは、それぞれ独立に、水素原子または置換基を表し、R、R及びRが置換基を表す場合、R、R及びRはそれぞれ独立に、ハロゲン原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数1~20のアルケニル基、置換もしくは無置換の炭素数1~20のアルキニル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、アミノ基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の炭素数1~20のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、-Si(R101)(R102)(R103)で表される基、-N(R104)(R105)で表される基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である。
 R101~R105は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である。n、mは1以上4以下の整数である。
 隣接するR同士が互いに結合して環構造を形成してもよく、互いに結合することなく、環を形成しなくてもよい。また、隣接するR同士が互いに結合して環構造を形成してもよく、互いに結合することなく、環を形成しなくてもよい。さらに、隣接するR同士が互いに結合して環構造を形成してもよく、互いに結合することなく、環を形成しなくてもよい。]
[2]本発明の一態様によれば、前記式(P)で表される第1の化合物が、下記式(Q)で表される化合物を含む、上記[1]に記載の有機エレクトロルミネッセンス素子が提供される。
Figure JPOXMLDOC01-appb-C000024
[式中、式(Q)において、
 ZはCR又はN、ZはCR又はN、ZはCR又はN、ZはCR又はN、ZはCR又はN、ZはCR又はN、ZはCR又はN、ZはCR又はN、ZはCR又はN、Z10はCR10又はN、Z11はCR11又はNである。
 R~R11は、それぞれ独立に、水素原子または置換基を表し、R~R11が置換基を表す場合は、それぞれ独立に、ハロゲン原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数1~20のアルケニル基、置換もしくは無置換の炭素数1~20のアルキニル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、アミノ基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の炭素数1~20のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、-Si(R101)(R102)(R103)で表される基、-N(R104)(R105)で表される基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である。
 R101~R105は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である。
 R~Rにおいて、隣接する置換基同士が互いに結合して環構造を形成してもよく、互いに結合することなく、環を形成しなくてもよい。R~Rにおいて、隣接する置換基同士が互いに結合して環構造を形成してもよく、互いに結合することなく、環を形成しなくてもよい。R~R11において、隣接する置換基同士が互いに結合して環構造を形成してもよく、互いに結合することなく、環を形成しなくてもよい。]
[3]本発明の一態様によれば、前記式(P)で表される第1の化合物が、下記式(1)で表される化合物を含む、上記[1]又は[2]に記載の有機エレクトロルミネッセンス素子が提供される。
Figure JPOXMLDOC01-appb-C000025
[式中、式(1)において、
 RとR、RとR、RとR、RとR、RとR、RとR、RとR10、及び、R10とR11から選ばれる各対のそれぞれにおいて、RとRn+1(nは1、2、4~6、及び8~10から選ばれる整数を表す)は互いに結合して、RとRn+1が結合する2つの環形成炭素原子と共に、炭素原子、酸素原子、硫黄原子、窒素原子から構成される原子数3以上の環構造を形成してもよく、又はRとRn+1は互いに結合することなく、環を形成しなくてもよい。この環構造を構成する原子のうち、置換基を有しうる原子は水素原子または置換基を有し、該置換基は、それぞれ独立に、ハロゲン原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数1~20のアルケニル基、置換もしくは無置換の炭素数1~20のアルキニル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、アミノ基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の炭素数1~20のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、-Si(R101)(R102)(R103)で表される基、-N(R104)(R105)で表される基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基から選ばれる。それら置換基同士が結合してさらなる環構造を形成してもよい。なお、前記原子数3以上の環の原子数には、前記置換基の原子数は含まない。
 前記原子数3以上の環構造を形成しないR~R11は、水素原子または置換基を表し、R~R11が置換基を表す場合、R~R11は前記と同じである。]
[4]本発明の一態様によれば、上記[1]に記載の有機エレクトロルミネッセンス素子を備えた電子機器が提供される。
 本発明に係る第1の化合物及び該第1の化合物と同一ではない第2の化合物を有機EL素子用材料として用いると、得られる有機EL素子は、優れた性能を有する。本発明の有機EL素子は電子機器として有用である。
本発明の実施形態に係る有機エレクトロルミネッセンス素子の一例の構成を示す概略図である。 実施例41における化合物2のフォトルミネッセンススペクトルを示す図である。 実施例41における化合物2の吸収スペクトルを示す図である。
 本明細書において、「置換もしくは無置換の炭素数XX~YYのZZ基」という表現における「炭素数XX~YY」は、ZZ基が無置換である場合の炭素数を表すものであり、置換されている場合の置換基の炭素数は含めない。
 また、本明細書において、「置換もしくは無置換の原子数XX~YYのZZ基」という表現における「原子数XX~YY」は、ZZ基が無置換である場合の原子数を表すものであり、置換されている場合の置換基の原子数は含めない。
 本明細書において、環形成炭素数とは、原子が環状に結合した構造の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子のうちの炭素原子の数を表す。当該環が置換基によって置換される場合、置換基に含まれる炭素は環形成炭素数には含まない。以下で記される「環形成炭素数」については、特筆しない限り同様とする。例えば、ベンゼン環は環形成炭素数が6であり、ナフタレン環は環形成炭素数が10であり、ピリジニル基は環形成炭素数5であり、フラニル基は環形成炭素数4である。また、ベンゼン環やナフタレン環に置換基として例えばアルキル基が置換している場合、当該アルキル基の炭素数は、環形成炭素数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の炭素数は環形成炭素数の数に含めない。
 また、本明細書において、環形成原子数とは、原子が環状に結合した構造(例えば単環、縮合環、環集合)の化合物(例えば単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子の数を表す。環を構成しない原子や、当該環が置換基によって置換される場合の置換基に含まれる原子は環形成原子数には含まない。以下で記される「環形成原子数」については、特筆しない限り同様とする。例えば、ピリジン環の環形成原子数は6であり、キナゾリン環の環形成原子数は10であり、フラン環の環形成原子数は5である。ピリジン環やキナゾリン環の炭素原子にそれぞれ結合している水素原子や置換基を構成する原子については、環形成原子数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の原子数は環形成原子数の数に含めない。
 また、本明細書において、「水素原子」とは、中性子数が異なる同位体、すなわち、軽水素(protium)、重水素(deuterium)及び三重水素(tritium)を包含する。
 本明細書中において、「ヘテロアリール基」、「ヘテロアリーレン基」及び「複素環基」は、環形成原子として、少なくとも1つのヘテロ原子を含む基であり、該へテロ原子としては、窒素原子、酸素原子、硫黄原子、ケイ素原子及びセレン原子から選ばれる1種以上であることが好ましい。
 本明細書中において、「置換もしくは無置換のカルバゾリル基」は、下記のカルバゾリル基、
Figure JPOXMLDOC01-appb-C000026

及び上記の基に対して、さらに任意の置換基を有する置換カルバゾリル基を表す。
 なお、当該置換カルバゾリル基は、任意の置換基同士が互いに結合して縮環してもよく、窒素原子、酸素原子、硫黄原子、ケイ素原子及びセレン原子等のヘテロ原子を含んでもよく、また、結合位置は1位~9位のいずれであってもよい。このような置換カルバゾリル基の具体例として、例えば、下記に示す基が挙げられる。
Figure JPOXMLDOC01-appb-C000027
 本明細書において、「置換もしくは無置換のジベンゾフラニル基」及び「置換もしくは無置換のジベンゾチオフェニル基」は、下記のジベンゾフラニル基及びジベンゾチオフェニル基、
Figure JPOXMLDOC01-appb-C000028

及び上記の基に対して、さらに任意の置換基を有する置換ジベンゾフラニル基及び置換ジベンゾチオフェニル基を表す。
 なお、当該置換ジベンゾフラニル基及び置換ジベンゾチオフェニル基は、任意の置換基同士が互いに結合して縮環してもよく、窒素原子、酸素原子、硫黄原子、ケイ素原子及びセレン原子等のヘテロ原子を含んでもよく、また、結合位置は1位~8位のいずれであってもよい。
 このような置換ジベンゾフラニル基及び置換ジベンゾチオフェニル基の具体例として、例えば、下記に示す基が挙げられる。
Figure JPOXMLDOC01-appb-C000029

[上記式中、Xは酸素原子又は硫黄原子を表し、Yは酸素原子、硫黄原子、NH、NR(Rはアルキル基又はアリール基である。)、CH、又は、CR (Rはアルキル基又はアリール基である。)を表す。]
 また、「置換基」、又は「置換もしくは無置換」との記載における置換基としては、別段の定めのない限り、炭素数1~50(好ましくは1~18、より好ましくは1~8)のアルキル基;環形成炭素数3~50(好ましくは3~10、より好ましくは3~8、さらに好ましくは5又は6)のシクロアルキル基;環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基;環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基を有する炭素数7~51(好ましくは7~30、より好ましくは7~20)のアラルキル基;アミノ基;炭素数1~50(好ましくは1~18、より好ましくは1~8)のアルキル基及び環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基から選ばれる置換基を有するモノ置換又はジ置換アミノ基;炭素数1~50(好ましくは1~18、より好ましくは1~8)のアルキル基を有するアルコキシ基;環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基を有するアリールオキシ基;炭素数1~50(好ましくは1~18、より好ましくは1~8)のアルキル基及び環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基から選ばれる置換基を有するモノ置換、ジ置換又はトリ置換シリル基;環形成原子数5~50(好ましくは5~24、より好ましくは5~13)のヘテロアリール基;炭素数1~50(好ましくは1~18、より好ましくは1~8)のハロアルキル基;ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子);シアノ基;ニトロ基;炭素数1~50(好ましくは1~18、より好ましくは1~8)のアルキル基及び環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基から選ばれる置換基を有するスルホニル基;炭素数1~50(好ましくは1~18、より好ましくは1~8)のアルキル基及び環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基から選ばれる置換基を有するジ置換ホスフォリル基;アルキルスルホニルオキシ基;アリールスルホニルオキシ基;アルキルカルボニルオキシ基;アリールカルボニルオキシ基;ホウ素含有基;亜鉛含有基;スズ含有基;ケイ素含有基;マグネシウム含有基;リチウム含有基;ヒドロキシ基;アルキル置換又はアリール置換カルボニル基;カルボキシル基;ビニル基;(メタ)アクリロイル基;エポキシ基;並びにオキセタニル基からなる群より選ばれる少なくとも1つが好ましいが、特にこれらに制限されるものではない。
 これらの置換基は、さらに上述の任意の置換基により置換されていてもよい。また、これらの置換基は、複数の置換基が互いに結合して環を形成していてもよい。
 「置換もしくは無置換の」という場合における「無置換」とは前記置換基で置換されておらず、水素原子が結合していることを意味する。
 上記置換基の中でも、より好ましくは、置換もしくは無置換の炭素数1~50(好ましくは1~18、より好ましくは1~8)のアルキル基、置換もしくは無置換の環形成炭素数3~50(好ましくは3~10、より好ましくは3~8、さらに好ましくは5又は6)のシクロアルキル基、置換もしくは無置換の環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基、置換もしくは無置換の炭素数1~50(好ましくは1~18、より好ましくは1~8)のアルキル基及び置換もしくは無置換の環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基から選ばれる置換基を有するモノ置換又はジ置換アミノ基、置換もしくは無置換の環形成原子数5~50(好ましくは5~24、より好ましくは5~13)のヘテロアリール基、ハロゲン原子、シアノ基である。
 前記炭素数1~50のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基(異性体基を含む)、ヘキシル基(異性体基を含む)、ヘプチル基(異性体基を含む)、オクチル基(異性体基を含む)、ノニル基(異性体基を含む)、デシル基(異性体基を含む)、ウンデシル基(異性体基を含む)、及びドデシル基(異性体基を含む)などが挙げられる。これらの中でも、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基及びペンチル基(異性体基を含む)が好ましく、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基及びt-ブチル基がより好ましく、メチル基、エチル基、イソプロピル基及びt-ブチル基が特に好ましい。
 前記環形成炭素数3~50のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、アダマンチル基などが挙げられる。これらの中でも、シクロペンチル基、シクロヘキシル基が好ましい。
 前記環形成炭素数6~50のアリール基としては、例えば、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アセナフチレニル基、アントリル基、ベンゾアントリル基、アセアントリル基、フェナントリル基、ベンゾ[c]フェナントリル基、フェナレニル基、フルオレニル基、ピセニル基、ペンタフェニル基、ピレニル基、クリセニル基、ベンゾ[g]クリセニル基、s-インダセニル基、as-インダセニル基、フルオランテニル基、ベンゾ[k]フルオランテニル基、トリフェニレニル基、ベンゾ[b]トリフェニレニル基及びペリレニル基などが挙げられる。これらの中でも、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントリル基、ピレニル基、フルオランテニル基が好ましく、フェニル基、ビフェニリル基、ターフェニリル基がより好ましく、フェニル基がさらに好ましい。
 前記環形成炭素数6~50のアリール基を有する炭素数7~51のアラルキル基の具体例としては、アリール基部位が前記環形成炭素数6~50のアリール基の具体例であるものが挙げられ、アルキル基部位が前記炭素数1~50のアルキル基の具体例であるものが挙げられる。前記炭素数7~51のアラルキル基の好ましい例としては、前記アリール基部位が前記環形成炭素数6~50のアリール基の好ましい例であるものが挙げられ、前記アルキル基部位が前記炭素数1~50のアルキル基の好ましい例であるものが挙げられる。より好ましい具体例、さらに好ましい具体例についても同様である。
 前記炭素数1~50のアルキル基及び環形成炭素数6~50のアリール基から選ばれる置換基を有するモノ置換又はジ置換アミノ基の具体例としては、アリール基部位が前記環形成炭素数6~50のアリール基の具体例であるものが挙げられ、アルキル基部位が前記炭素数1~50のアルキル基の具体例であるものが挙げられる。前記炭素数1~50のアルキル基及び環形成炭素数6~50のアリール基から選ばれる置換基を有するモノ置換又はジ置換アミノ基の好ましい例としては、前記アリール基部位が前記環形成炭素数6~50のアリール基の好ましい例であるものが挙げられ、前記アルキル基部位が前記炭素数1~50のアルキル基の好ましい例であるものが挙げられる。より好ましい具体例、さらに好ましい具体例、特に好ましい具体例についても同様である。
 前記炭素数1~50のアルキル基を有するアルコキシ基の具体例としては、アルキル基部位が前記炭素数1~50のアルキル基の具体例であるものが挙げられる。前記炭素数1~50のアルキル基を有するアルコキシ基の好ましい例としては、前記アルキル基部位が前記炭素数1~50のアルキル基の好ましい例であるものが挙げられる。より好ましい具体例、さらに好ましい具体例、特に好ましい具体例についても同様である。
 前記環形成炭素数6~50のアリール基を有するアリールオキシ基の具体例としては、アリール基部位が前記環形成炭素数6~50のアリール基の具体例であるものが挙げられる。前記環形成炭素数6~50のアリール基を有するアリールオキシ基の好ましい例としては、前記アリール基部位が前記環形成炭素数6~50のアリール基の好ましい例であるものが挙げられる。より好ましい具体例、さらに好ましい具体例についても同様である。
 前記炭素数1~50のアルキル基及び環形成炭素数6~50のアリール基から選ばれる置換基を有するモノ置換、ジ置換又はトリ置換シリル基としては、モノアルキルシリル基、ジアルキルシリル基、トリアルキルシリル基;モノアリールシリル基、ジアリールシリル基、トリアリールシリル基;モノアルキルジアリールシリル基、ジアルキルモノアリールシリル基が挙げられ、これらのアルキル基部位及びアリール部位を、それぞれ、前記環形成炭素数6~50のアリール基、炭素数1~50のアルキル基の具体例とした例が挙げられる。また、前記炭素数1~50のアルキル基及び環形成炭素数6~50のアリール基から選ばれる置換基を有するモノ置換、ジ置換又はトリ置換シリル基の好ましい例としては、モノアルキルシリル基、ジアルキルシリル基、トリアルキルシリル基;モノアリールシリル基、ジアリールシリル基、トリアリールシリル基;モノアルキルジアリールシリル基、ジアルキルモノアリールシリル基のアルキル基部位及びアリール部位が、それぞれ、前記環形成炭素数6~50のアリール基、炭素数1~50のアルキル基の好ましい例であるものが挙げられる。より好ましい具体例、さらに好ましい具体例、特に好ましい具体例についても同様である。
 前記環形成原子数5~50のヘテロアリール基としては、例えば、ピロリル基、フリル基、チエニル基、ピリジル基、イミダゾピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ピラゾリル基、イソオキサゾリル基、イソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、トリアゾリル基、テトラゾリル基、インドリル基、イソインドリル基、ベンゾフラニル基、イソベンゾフラニル基、ベンゾチオフェニル基、イソベンゾチオフェニル基、インドリジニル基、キノリジニル基、キノリル基、イソキノリル基、シンノリル基、フタラジニル基、キナゾリニル基、キノキサリニル基、ベンズイミダゾリル基、ベンズオキサゾリル基、ベンズチアゾリル基、インダゾリル基、ベンズイソキサゾリル基、ベンズイソチアゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基、9-フェニルカルバゾリル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基及びキサンテニル基などが挙げられる。これらの中でも、ピリジル基、イミダゾピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、ベンズイミダゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基、9-フェニルカルバゾリル基、フェナントロリニル基、キナゾリニル基が好ましい。
 前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 前記炭素数1~50のハロアルキル基の具体例としては、前記炭素数1~50のアルキル基の水素原子が前記ハロゲン原子で置換された例が挙げられ、その場合の好ましいアルキル基は、前記炭素数1~50のアルキル基の好ましい例であるものが挙げられる。より好ましい具体例、さらに好ましい具体例、特に好ましい具体例についても同様である。
 前記炭素数1~50のアルキル基及び環形成炭素数6~50のアリール基から選ばれる置換基を有するスルホニル基、前記炭素数1~50のアルキル基及び環形成炭素数6~50のアリール基から選ばれる置換基を有するジ置換ホスフォリル基、アルキルスルホニルオキシ基、アリールスルホニルオキシ基、アルキルカルボニルオキシ基、アリールカルボニルオキシ、アルキル置換又はアリール置換カルボニル基の例としては、それぞれのアリール基部位とアルキル基部位を、それぞれ、前記環形成炭素数6~50のアリール基、炭素数1~50のアルキル基の具体例とした例が挙げられる。また、前記炭素数1~50のアルキル基及び環形成炭素数6~50のアリール基から選ばれる置換基を有するスルホニル基、前記炭素数1~50のアルキル基及び環形成炭素数6~50のアリール基から選ばれる置換基を有するジ置換ホスフォリル基、アルキルスルホニルオキシ基、アリールスルホニルオキシ基、アルキルカルボニルオキシ基、アリールカルボニルオキシ基、アルキル置換又はアリール置換カルボニル基の好ましい例としては、それぞれのアリール基部位とアルキル基部位が、それぞれ、前記環形成炭素数6~50のアリール基、炭素数1~50のアルキル基の好ましい例であるものが挙げられる。より好ましい具体例、さらに好ましい具体例、特に好ましい具体例についても同様である。
 本明細書中、好ましいとする態様(例えば、化合物、各種基、数値範囲等)は、他のあらゆる態様(例えば、化合物、各種基、数値範囲等)と任意に組み合わせることができ、また、好ましいとする態様(より好ましい態様、更に好ましい態様、特に好ましい態様を含む。)の組み合わせはより好ましいと言える。
[有機EL素子]
(第1の化合物)
 本発明の一態様に係る陰極と、陽極と、該陰極と陽極の間に存在する有機層とを有する有機エレクトロルミネッセンス素子であって、該有機層は蛍光発光層を含む1又は複数の層を有し、該蛍光発光層が、下記式(P)で表される第1の化合物及び該第1の化合物と同一ではない後述する第2の化合物を含む。
Figure JPOXMLDOC01-appb-C000030
[式中、式(P)において、Zは、CRまたはNである。
 π1は、置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は置換もしくは無置換の環形成原子数5~50の芳香族複素環である。
 π2は、置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は置換もしくは無置換の環形成原子数5~50の芳香族複素環である。
 R、R及びRは、それぞれ独立に、水素原子または置換基を表し、R、R及びRが置換基を表す場合、R、R及びRはそれぞれ独立に、ハロゲン原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数1~20のアルケニル基、置換もしくは無置換の炭素数1~20のアルキニル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、アミノ基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の炭素数1~20のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、-Si(R101)(R102)(R103)で表される基、-N(R104)(R105)で表される基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である。
 R101~R105は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である。上記R、R及びRは、後述するR~R11と同じであり、具体例、好ましい炭素数、原子数及び好ましい基も同様である。
 n、mは1以上4以下の整数である。
 隣接するR同士が互いに結合して環構造を形成してもよく、互いに結合することなく、環を形成しなくてもよい。また、隣接するR同士が互いに結合して環構造を形成してもよく、互いに結合することなく、環を形成しなくてもよい。さらに、隣接するR同士が互いに結合して環構造を形成してもよく、互いに結合することなく、環を形成しなくてもよい。]
 π1及びπ2は、環形成炭素数6~50(好ましくは6~24、より好ましくは6~18)の芳香族炭化水素環、又は環形成原子数5~50(好ましくは5~24、より好ましくは5~13)の芳香族複素環である。
 前記Rはそれぞれ、π1の芳香族炭化水素環を形成する炭素のいずれか、あるいはπ1の芳香族複素環を形成する原子のいずれかに結合する。
 前記Rはそれぞれ、π2の芳香族炭化水素環を形成する炭素のいずれか、あるいはπ1の芳香族複素環を形成する原子のいずれかに結合する。
 上記環形成炭素数6~50の芳香族炭化水素環の具体例としては、ベンゼン環、ナフタレン環、アントラセン環、ベンゾアントラセン環、フェナントレン環、ベンゾフェナントレン環、フルオレン環、ベンゾフルオレン環、ジベンゾフルオレン環、ピセン環、テトラセン環、ペンタセン環、ピレン環、クリセン環、ベンゾクリセン環、s-インダセン環、as-インダセン環、フルオランテン環、ベンゾフルオランテン環、トリフェニレン環、ベンゾトリフェニレン環、ペリレン環、コロネン環、ジベンゾアントラセン環等が挙げられる。
 上記環形成原子数5~50の芳香族複素環の具体例としては、ピロール環、ピラゾール環、イソインドール環、ベンゾフラン環、ベンゾチオフェン環、イソベンゾフラン環、ジベンゾチオフェン環、イソキノリン環、シンノリン環、キノキサリン環、フェナントリジン環、フェナントロリン環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環、イミダゾピリジン環、インドール環、インダゾール環、ベンズイミダゾール環、キノリン環、アクリジン環、ピロリジン環、ジオキサン環、ピペリジン環、モルフォリン環、ピペラジン環、カルバゾール環、フラン環、チオフェン環、オキサゾール環、オキサジアゾール環、ベンゾオキサゾール環、チアゾール環、チアジアゾール環、ベンゾチアゾール環、トリアゾール環、イミダゾール環、ベンゾイミダゾール環、ピラン環、ジベンゾフラン環、ベンゾ[c]ジベンゾフラン環、プリン環、アクリジン環等が挙げられる。
 本発明に係る前記式(P)で表される第1の化合物が、下記式(P-1)で表される化合物を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000031
[式(P-1)において、ZはCR又はN、ZはCR又はN、ZはCR又はN、ZはCR又はNである。
 R~Rは、それぞれ独立に、水素原子または置換基を表し、R~Rが置換基を表す場合は、それぞれ独立に、ハロゲン原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数1~20のアルケニル基、置換もしくは無置換の炭素数1~20のアルキニル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、アミノ基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の炭素数1~20のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、-Si(R101)(R102)(R103)で表される基、-N(R104)(R105)で表される基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である。
 R101~R105は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である。
 R~Rの具体例、好ましい炭素数、原子数及び好ましい基は後述するとおりである。
 R~Rにおいて、隣接する置換基同士が互いに結合して環構造を形成してもよく、互いに結合することなく、環を形成しなくてもよい。
 Z、π2、Rc及びnは、式(P)と同じである。]
 本発明に係る前記式(P)で表される第1の化合物が、下記式(P-2)で表される化合物を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000032
[式(P-2)において、π2、Rc及びnは、式(P)と同じである。]
 本発明に係る前記式(P)で表される第1の化合物が、下記式(Q)で表される化合物を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000033
[式中、式(Q)において、
 ZはCR又はN、ZはCR又はN、ZはCR又はN、ZはCR又はN、ZはCR又はN、ZはCR又はN、ZはCR又はN、ZはCR又はN、ZはCR又はN、Z10はCR10又はN、Z11はCR11又はNである。
 R~R11は、それぞれ独立に、水素原子または置換基を表し、R~R11が置換基を表す場合は、それぞれ独立に、ハロゲン原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数1~20のアルケニル基、置換もしくは無置換の炭素数1~20のアルキニル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、アミノ基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の炭素数1~20のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、-Si(R101)(R102)(R103)で表される基、-N(R104)(R105)で表される基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である。
 R101~R105は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である。
 R~R11の具体例、好ましい炭素数、原子数及び好ましい基は後述するとおりである。
 R~Rにおいて、隣接する置換基同士が互いに結合して環構造を形成してもよく、互いに結合することなく、環を形成しなくてもよい。R~Rにおいて、隣接する置換基同士が互いに結合して環構造を形成してもよく、互いに結合することなく、環を形成しなくてもよい。R~R11において、隣接する置換基同士が互いに結合して環構造を形成してもよく、互いに結合することなく、環を形成しなくてもよい。]
 本発明に係る前記式(P)で表される第1の化合物が、下記式(1)で表される化合物を含むことがより好ましい。
Figure JPOXMLDOC01-appb-C000034
[式中、式(1)において、
 RとR、RとR、RとR、RとR、RとR、RとR、RとR10、及び、R10とR11から選ばれる各対のそれぞれにおいて、RとRn+1(nは1、2、4~6、及び8~10から選ばれる整数を表す)は互いに結合して、RとRn+1が結合する2つの環形成炭素原子と共に、炭素原子、酸素原子、硫黄原子、窒素原子から構成される原子数3以上の環構造を形成してもよく、又はRとRn+1は互いに結合することなく、環を形成しなくてもよい。この環構造を構成する原子のうち、置換基を有しうる原子は水素原子または置換基を有し、該置換基は、それぞれ独立に、ハロゲン原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数1~20のアルケニル基、置換もしくは無置換の炭素数1~20のアルキニル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、アミノ基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の炭素数1~20のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、-Si(R101)(R102)(R103)で表される基、-N(R104)(R105)で表される基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基から選ばれる。それら置換基同士が結合してさらなる環構造を形成してもよい。なお、前記原子数3以上の環の原子数には、前記置換基の原子数は含まない。
 前記原子数3以上の環構造を形成しないR~R11は、水素原子または置換基を表し、R~R11が置換基を表す場合、R~R11は前記と同じである。]
 本段落では、前段落における、「RとRn+1(nは1、2、4~6、及び8~10から選ばれる整数を表す)は互いに結合して、RとRn+1が結合する2つの環形成炭素原子と共に、炭素原子、酸素原子、硫黄原子、窒素原子から構成される原子数3以上の環構造を形成する」の意味を詳述する。
 R~R11は、水素原子または置換基を表すか、炭素原子、酸素原子、硫黄原子、窒素原子から選ばれる1つの原子または複数個の互いに結合した原子を表す。
 R~R11が、炭素原子、酸素原子、硫黄原子、窒素原子から選ばれる1つの原子または複数個の互いに結合した原子を表す場合は、RとR、RとR、RとR、RとR、RとR、RとR、RとR10、及び、R10とR11から選ばれる各対のそれぞれにおいて、RとRn+1(nは1、2、4~6、及び8~10から選ばれる整数を表す)は互いに結合して、RとRn+1が結合する2つの環形成炭素原子と共に、炭素原子、酸素原子、硫黄原子及び窒素原子から選ばれる原子から構成される原子数3以上の環構造を形成する。
 上記したRとRn+1(nは1、2、4~6、及び8~10から選ばれる整数を表す)が互いに結合するとは、Rが表すいずれかの原子とRn+1が表すいずれかの原子が、互いに連結している状態を示す。ここで、「Rが表すいずれかの原子」は、Rが1つの原子を表す場合には該1つの原子を意味し、Rが複数個の互いに結合した原子を表す場合にはRの末端の原子または末端以外の原子を意味する。前記「Rn+1が表すいずれかの原子」についても同様である。
 該結合は、例えば単結合、二重結合、または1~2の間の結合次数を有する結合である。R、Rn+1が複数個の互いに結合した原子を表す場合の「結合」についても、同様である。
 本発明の一様態において、前記式(1)の第1の化合物は、前記の環構造(式(1)のRとR、RとR、RとR、RとR、RとR、RとR、RとR10、及び、R10とR11から選ばれる対のそれぞれにおいて、RとRn+1(nは1、2、4~6、及び8~10から選ばれる整数を表す)が互いに結合して、RとRn+1が結合する2つの環形成炭素原子と共に、炭素原子、酸素原子、硫黄原子、窒素原子から構成する原子数3以上の環構造)を2つ有することは、好ましい。例えば、RとR、RとR、RとR、RとR、RとR10、及び、R10とR11から選ばれる2つ以上の対のそれぞれにおいて、RとRn+1(nは4~6、及び8~10から選ばれる整数を表す)は互いに結合して、RとRn+1が結合する2つの環形成炭素原子と共に、炭素原子、酸素原子、硫黄原子、窒素原子から構成される原子数3以上の環構造を形成することが挙げられる。本発明の一様態において、式(1)のRとR、RとR、RとR、RとR、RとR10、及び、R10とR11から選ばれる2つの対において、前記環構造を有することが挙げられる。
 また、本発明の一様態において、前記式(1)の化合物は、該環構造を3つ有することもまた、好ましい。その場合、該環構造は、それぞれ前記式(1)の母骨格上の異なるベンゼン環、すなわち、環A、環B、環Cのそれぞれに1つずつ、該環構造があることが特に好ましい。
 また、本発明の一様態において、前記式(1)の化合物は、該環構造を4つ以上有することも好ましい。
 また、本発明の一態様において、前記式(1)の化合物は、R~Rが、水素原子または置換基を表し、R~Rが置換基を表す場合、R~Rはそれぞれ独立に、ハロゲン原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数1~20のアルケニル基、置換もしくは無置換の炭素数1~20のアルキニル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、アミノ基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の炭素数1~20のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、-Si(R101)(R102)(R103)で表される基、-N(R104)(R105)で表される基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基であることが、好ましい。
 本発明の一様態において、前記式(1)において、RとRからなる対とRとRからなる対;RとRからなる対とRとRからなる対;RとRからなる対とRとRからなる対;RとRからなる対とRとR10からなる対;及びRとR10からなる対とR10とR11からなる対は環構造を同時に形成しないことが好ましい。
 本発明の一様態において、前記各対のうち2以上の対が環構造を形成する時、前記各対は、環A、環B及び環Cから選ばれる2又は3つの環が、前記炭素原子、酸素原子、硫黄原子、窒素原子から構成される原子数3以上の環構造を有するように選ばれることが好ましく、前記2又は3つの環が2つ以上の環構造を有する時、該環構造は同一でも異なっていてもよい。
 式(1)中、R~R11が示すハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 R~R11が示す炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基(異性体基を含む)、ヘキシル基(異性体基を含む)、ヘプチル基(異性体基を含む)、オクチル基(異性体基を含む)、ノニル基(異性体基を含む)、デシル基(異性体基を含む)、ウンデシル基(異性体基を含む)、及びドデシル基(異性体基を含む)などが挙げられる。これらの中でも、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基及びペンチル基(異性体基を含む)が好ましく、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基及びt-ブチル基がより好ましく、メチル基、エチル基、イソプロピル基及びt-ブチル基がさらに好ましい。
 R~R11が示す炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルケニル基としては、ビニル基、2-プロペニル基、2-ブテニル基、3-ブテニル基、4-ペンテニル基、2-メチル-2-プロペニル基、2-メチル-2-ブテニル基、3-メチル-2-ブテニル基等が挙げられる。
 R~R11が示す炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルキニル基としては、2-プロピニル基、2-ブチニル基、3-ブチニル基、4-ペンチニル基、5-ヘキシニル基、1-メチル-2-プロピニル基、1-メチル-2-ブチニル基、1,1-ジメチル-2-プロピニル基等が挙げられる。
 R~R11が示す環形成炭素数3~20(好ましくは3~6、より好ましくは5又は6)のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、アダマンチル基などが挙げられる。これらの中でも、シクロペンチル基、シクロヘキシル基が好ましい。
 R~R11が示す炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルコキシ基としては、アルキル基部位が前記炭素数1~20のアルキル基であるアルコキシ基が挙げられる。好ましいアルコキシ基の具体例としては、アルキル基部位が前記炭素数1~50のアルキル基の好ましい例であるものが挙げられる。より好ましい具体例、さらに好ましい具体例についても同様である。
 R~R11が示す炭素数1~20(好ましくは1~10、より好ましくは1~6)のフルオロアルキル基としては、前記アルキル基の水素原子がフッ素で置換された基が挙げられ、好ましいハロアルキル基としては前記好ましいアルキル基であるものが挙げられる。より好ましい具体例、さらに好ましい具体例についても同様である。
 R~R11が示す炭素数1~20(好ましくは1~10、より好ましくは1~6)のフルオロアルコキシ基としては、前記アルコキシ基の水素原子がフッ素で置換された基が挙げられ、好ましいアルコキシ基としては前記好ましいアルコキシ基が挙げられる。より好ましい具体例、さらに好ましい具体例についても同様である。
 R~R11が示す環形成炭素数6~50(好ましくは6~30、より好ましくは6~24、さらに好ましくは6~18)のアリールオキシ基としては、アリール基部位が、後述するR~R11の環形成炭素数6~50のアリール基であるものが挙げられる。好ましいアリールオキシ基の具体例としては、アリール基部位が、後述の環形成炭素数6~50のアリール基の好ましい例であるものが挙げられる。より好ましい具体例、さらに好ましい具体例についても同様である。
 R~R11が示す炭素数1~20(好ましくは炭素数1~10、より好ましくは炭素数1~6)のアルキルチオ基としては、アルキル基部位が前記炭素数1~20のアルキル基であるものが挙げられる。好ましいアルキルチオ基の具体例としては、アルキル基部位が、前記好ましいアルキル基であるものが挙げられる。より好ましい具体例、さらに好ましい具体例についても同様である。
 R~R11が示す環形成炭素数6~50(好ましくは6~30、より好ましくは6~24、さらに好ましくは6~18)のアリールチオ基としては、アリール基部位が、後述するR~R11の環形成炭素数6~50のアリール基であるものが挙げられる。好ましいアリールチオ基の具体例としては、アリール基部位が、後述の環形成炭素数6~50のアリール基の好ましい例であるものが挙げられる。より好ましい具体例、さらに好ましい具体例についても同様である。
 R~R11が示す「-Si(R101)(R102)(R103)で表される基」としては、具体的には、モノアルキルシリル基、ジアルキルシリル基、トリアルキルシリル基;モノアリールシリル基、ジアリールシリル基、トリアリールシリル基;モノアルキルジアリールシリル基、ジアルキルモノアリールシリル基が挙げられる。
 これら置換シリル基において、アルキル基部位の炭素数は、それぞれ、好ましくは1~20、より好ましくは1~10、さらに好ましくは1~6である。アリール基部位の環形成炭素数は、それぞれ、好ましくは6~50、より好ましくは6~30、さらに好ましくは6~24、特に好ましくは6~18である。
 これらの中でも、トリアルキルシリル基、トリアリールシリル基が好ましく、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、t-ブチルジメチルシリル基、トリフェニルシリル基、トリトリルシリル基がより好ましい。
 R~R11が示す「-N(R104)(R105)で表される基」としては、具体的には、モノアルキルアミノ基、ジアルキルアミノ基、モノアリールアミノ基、ジアリールアミノ基、モノヘテロアリールアミノ基、ジヘテロアリールアミノ基、モノアルキルモノアリールアミノ基、モノアルキルモノヘテロアリールアミノ基、モノアリールモノヘテロアリールアミノ基が挙げられる。これら置換アミノ基中のアリール基部位は、炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルキル基などが置換していてもよい。
 これら置換アミノ基において、アルキル基部位の炭素数は、それぞれ、好ましくは1~20、より好ましくは1~10、さらに好ましくは1~6である。アリール基部位の環形成炭素数は、それぞれ、好ましくは6~50、より好ましくは6~30、さらに好ましくは6~24、特に好ましくは6~18である。ヘテロアリール基部位の環形成原子数は、それぞれ、好ましくは5~50、より好ましくは5~30、さらに好ましくは5~18、特に好ましくは5~13である。
 これらの中でも、ジアルキルアミノ基、ジアリールアミノ基、ジヘテロアリールアミノ基、モノアリールモノヘテロアリールアミノ基が好ましく、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基、ジフェニルアミノ基、ビス(アルキル置換フェニル)アミノ基、ビス(アリール置換フェニル)アミノ基がより好ましい。
 また、アルキル基部位の具体例としては、前記炭素数1~20のアルキル基の具体例が挙げられる。アルキル基部位の好ましい例としては、前記炭素数1~20のアルキル基の好ましい例が挙げられる。より好ましい具体例、さらに好ましい具体例についても同様である。
 アリール基部位の具体例としては、後述する環形成炭素数6~50のアリール基の具体例が挙げられる。アリール基部位の好ましい具体例としては、後述する環形成炭素数6~50のアリール基の好ましい具体例が挙げられる。より好ましい具体例、さらに好ましい具体例についても同様である。
 ヘテロアリール基部位の具体例としては、後述する環形成原子数5~50のヘテロアリール基の具体例が挙げられる。ヘテロアリール基部位の好ましい具体例としては、後述する環形成原子数5~50のヘテロアリール基の好ましい具体例が挙げられる。より好ましい具体例、さらに好ましい具体例についても同様である。
 なお、式(1)中、-Si(R101)(R102)(R63)で表される基が複数存在する場合、これらは互いに同一でも異なっていてもよい。また、式(1)中、-N(R104)(R105)で表される基が複数存在する場合、これらは互いに同一でも異なっていてもよい。
 R~R11が示す環形成炭素数6~50(好ましくは6~30、より好ましくは6~24、さらに好ましくは6~18)のアリール基は、縮合環であっても非縮合環であってもよい。該アリール基としては、例えば、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アセナフチレニル基、アントリル基、ベンゾアントリル基、アセアントリル基、フェナントリル基、ベンゾ[c]フェナントリル基、フェナレニル基、フルオレニル基、ピセニル基、ペンタフェニル基、ピレニル基、クリセニル基、ベンゾ[g]クリセニル基、s-インダセニル基、as-インダセニル基、フルオランテニル基、ベンゾ[k]フルオランテニル基、トリフェニレニル基、ベンゾ[b]トリフェニレニル基及びペリレニル基などが挙げられる。これらの中でも、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントリル基、ピレニル基、フルオランテニル基が好ましく、フェニル基、ビフェニリル基、ターフェニリル基がより好ましく、フェニル基がさらに好ましい。
 R~R11が示す環形成原子数5~50(好ましくは5~30、より好ましくは5~18、特に好ましくは5~13)のヘテロアリール基は、少なくとも1個、好ましくは1~5個、より好ましくは1~4個、さらに好ましくは1~3個のヘテロ原子を含む。該へテロ原子としては、例えば、窒素原子、硫黄原子及び酸素原子が挙げられ、窒素原子、酸素原子が好ましい。
 該ヘテロアリール基としては、例えば、ピロリル基、フリル基、チエニル基、ピリジル基、イミダゾピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ピラゾリル基、イソオキサゾリル基、イソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、トリアゾリル基、テトラゾリル基、インドリル基、イソインドリル基、ベンゾフラニル基、イソベンゾフラニル基、ベンゾチオフェニル基、イソベンゾチオフェニル基、インドリジニル基、キノリジニル基、キノリル基、イソキノリル基、シンノリル基、フタラジニル基、キナゾリニル基、キノキサリニル基、ベンズイミダゾリル基、ベンズオキサゾリル基、ベンズチアゾリル基、インダゾリル基、ベンズイソキサゾリル基、ベンズイソチアゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基、9-フェニルカルバゾリル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基及びキサンテニル基などが挙げられる。これらの中でも、ピリジル基、イミダゾピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、ベンズイミダゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基、9-フェニルカルバゾリル基、フェナントロリニル基、キナゾリニル基が好ましい。
 式(1)において、RとRn+1が結合する2つの環形成炭素原子と共に、炭素原子、酸素原子、硫黄原子、窒素原子から構成される原子数3以上の環構造を形成する場合の環構造が有する置換基の示す、ハロゲン原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数1~20のアルケニル基、置換もしくは無置換の炭素数1~20のアルキニル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、アミノ基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の炭素数1~20のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、-Si(R101)(R102)(R103)で表される基、-N(R104)(R105)で表される基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基の例としては、上記R~R11で説明した各基の例と同様の具体例が挙げられ、好ましい炭素数、原子数及び好ましい基も同様である。前記置換基としては、例えば、置換もしくは無置換の炭素数1~20のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基が挙げられる。
 前記式(1)において、RとRn+1が結合する2つの環形成炭素原子と共に、炭素原子、酸素原子、硫黄原子、窒素原子から構成される原子数3以上の環構造は、特に限定されないが、原子数3~7の環であると好ましく、原子数5または6の環であると特に好ましい。
 また、前記式(1)において、RとRn+1が結合する2つの環形成炭素原子と共に、炭素原子、酸素原子、硫黄原子、窒素原子から構成される原子数3以上の環は、下記式(2)~(8)から選ばれるいずれかの環であることも好ましく、(9)~(11)から選ばれるいずれかの基であることも好ましい。
Figure JPOXMLDOC01-appb-C000035
(式(2)~(8)において、*1と*2、*3と*4、*5と*6、*7と*8、*9と*10、*11と*12及び*13と*14のそれぞれは、RとRn+1が結合する前記2つの環形成炭素原子を表し、Rが結合する環形成炭素原子は、*1と*2、*3と*4、*5と*6、*7と*8、*9と*10、*11と*12及び*13と*14が表す2つの環形成炭素原子のどちらであってもよい。
 XはC(R23)(R24)、NR25、O、Sから選ばれる。R12~R25は、前記R~R11と同じである。
 R12~R17及びR23~R24は、隣接する基同士で互いに結合して環構造を形成してもよい。)
 R12~R25の例としては、前記式(1)のR~R11と同じであり、具体例や好ましい基も同様のものが挙げられる。
Figure JPOXMLDOC01-appb-C000036
(式(9)~(11)において、*1と*2、及び*3と*4のそれぞれは、RとRn+1が結合する前記2つの環形成炭素原子を表し、Rが結合する環形成炭素原子は、*1と*2、又は*3と*4が表す2つの環形成炭素原子のどちらであってもよい。
 R31~R37及びR41~R44は、前記R12~R25と同じであり、Xは、前記とXと同じである。
 R31~R37及びR41~R44は、隣接する基同士で互いに結合して環構造を形成してもよい。)
 Xに含まれるR23~R25、R31~R37及びR41~R44の例としては、前記式(1)のR~R11と同じであり、具体例や好ましい基も同様のものが挙げられる。
 式(1)において、R、R、R、R10及びR11の少なくとも1つ(好ましくは、R、R及びR10の少なくとも1つ、さらに好ましくはR)が、環構造を形成しない基であって、ハロゲン原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数1~20のアルケニル基、置換もしくは無置換の炭素数1~20のアルキニル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、アミノ基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の炭素数1~20のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、-Si(R101)(R102)(R103)で表される基[R101~R103は前記と同じ]、-N(R104)(R105)で表される基[R104及びR105は前記と同じ]、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基であると好ましい。
 これら各基の具体例、好ましい炭素数及び原子数等は前記R~R11と同じである。
 (i)式(1)において、RとRn+1が結合する2つの環形成炭素原子と共に、炭素原子、酸素原子、硫黄原子、窒素原子から構成される原子数3以上の環構造を形成する場合の環構造が有する置換基、(ii)式(1)において、前記環構造を形成しないR~R11、(iii) 式(2)~(11)において、R12~R22、R31~R37及びR41~R44が、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、-N(R104)(R105)で表される基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50のヘテロアリール基、又は下記の群から選択される基のいずれかであると好ましい。
Figure JPOXMLDOC01-appb-C000037

(式中、Rは、それぞれ独立に、前記R~R11と同じである。Xは前記と同じである。
 p1は0~5の整数、p2は0~4の整数、p3は0~3の整数、p4は0~7の整数である。)
 Xに含まれるR23~R25、及びRの例としては、前記式(1)のR~R11と同じであり、具体例や好ましい基も同様のものが挙げられる。
 前記式(1)の化合物は、下記式(1-1)~(1-6)のいずれかで表されると好ましく、式(1-1)~(1-3)及び(1-5)のいずれかで表されるとより好ましく、式(1-1)及び(1-5)のいずれかで表されるとさらに好ましい。
Figure JPOXMLDOC01-appb-C000038
(式(1-1)~(1-6)において、R~R11は前記と同じであり、具体例、好ましい炭素数、原子数及び好ましい基も同様である。環a~fは、それぞれ独立に、炭素原子、酸素原子、硫黄原子、窒素原子から構成される原子数3以上の環構造である。この環は、さらに置換基を有していてもよく、それら置換基同士が結合して環構造を形成してもよい。さらに有してもよい置換基は、R~R11が置換基を表す場合と同じである。なお、前記原子数3以上の環は、さらに置換している置換基の原子数は含まない。)
 式(1-1)~(1-6)において、前記環a~fの示す、炭素原子、酸素原子、硫黄原子、窒素原子から構成される原子数3以上の環構造は、特に限定されないが、原子数3~7の環であると好ましく、原子数5または6の環であると特に好ましい。また、前記式(2)~(8)から選ばれるいずれかの環であることも好ましく、(9)~(11)から選ばれるいずれかの基であることも好ましい。
 式(1-1)~(1-6)において、さらに有してもよい置換基としては、上記R~R11で説明した各基の例と同様の具体例が挙げられ、好ましい炭素数、原子数及び好ましい基も同様である。
 前記式(1)の化合物は、下記式(2-1)~(2-6)のいずれかで表されると好ましく、式(2-2)及び(2-5)のいずれかで表されるとより好ましい。
Figure JPOXMLDOC01-appb-C000039
(式(2-1)~(2-6)において、R及びR~R11は前記と同じであり、具体例、好ましい炭素数、原子数及び好ましい基も同様である。環a~c及びg~hは、それぞれ独立に、炭素原子、酸素原子、硫黄原子、窒素原子から構成される原子数3以上の環構造である。この環は、さらに置換基を有していてもよく、それら置換基同士が結合して環構造を形成してもよい。さらに有してもよい置換基は、R~R11が置換基を表す場合と同じである。なお、前記原子数3以上の環は、さらに置換している置換基の原子数は含まない。)
 式(2-1)~(2-6)において、前記環a~c及びg~hの示す、炭素原子、酸素原子、硫黄原子、窒素原子から構成される原子数3以上の環構造は、特に限定されないが、原子数3~7の環であると好ましく、原子数5または6の環であると特に好ましい。また、前記式(2)~(8)から選ばれるいずれかの環であることも好ましく、(9)~(11)から選ばれるいずれかの基であることも好ましい。
 式(2-1)~(2-6)において、さらに有してもよい置換基としては、上記R~R11で説明した各基の例と同様の具体例が挙げられ、好ましい炭素数、原子数及び好ましい基も同様である。
 前記式(1)の化合物は、下記式(3-1)~(3-9)のいずれかで表されると好ましく、式(3-1)で表されるとより好ましい。
Figure JPOXMLDOC01-appb-C000040
(式(3-1)~(3-9)において、R及びR~R11は前記と同じであり、具体例、好ましい炭素数、原子数及び好ましい基も同様である。環a~hは、それぞれ独立に、炭素原子、酸素原子、硫黄原子、窒素原子から構成される原子数3以上の環構造である。この環は、さらに置換基を有していてもよく、それら置換基同士が結合して環構造を形成してもよい。さらに有してもよい置換基は、R~R11が置換基を表す場合と同じである。なお、前記原子数3以上の環は、さらに置換している置換基の原子数は含まない。)
 式(3-1)~(3-9)において、前記環a~hの示す、炭素原子、酸素原子、硫黄原子、窒素原子から構成される原子数3以上の環構造は、特に限定されないが、原子数3~7の環であると好ましく、原子数5または6の環であると特に好ましい。また、前記式(2)~(8)から選ばれるいずれかの環であることも好ましく、(9)~(11)から選ばれるいずれかの基であることも好ましい。
 式(3-1)~(3-9)において、前記環a~hの示す、炭素原子、酸素原子、硫黄原子、窒素原子から構成される原子数3以上の環構造は、例えば、炭素原子、酸素原子、硫黄原子から構成される原子数3以上の環構造である。また、前記環g又はhが置換基を有する場合の置換基の前記へテロアリール基に含まれるヘテロ原子は、例えば、硫黄原子及び/又は酸素原子である。
 式(3-1)~(3-9)において、さらに有してもよい置換基としては、上記R~R11で説明した各基の例と同様の具体例が挙げられ、好ましい炭素数、原子数及び好ましい基も同様である。
 前記式(1-1)~(1-6)、(2-1)~(2-6)及び(3-1)~(3-9)において、環a~hがさらに置換基を有する場合の置換基もしくは環a~hを形成しないR~R11が、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、-N(R104)(R105)で表される基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50のヘテロアリール基、又は下記の群から選択される基のいずれかであると好ましい。
Figure JPOXMLDOC01-appb-C000041

(式中、Rは、それぞれ独立に、前記R~R11と同じである。Xは前記と同じである。
 p1は0~5の整数、p2は0~4の整数、p3は0~3の整数、p4は0~7の整数である。)
 Xに含まれるR23~R25及びRの例としては、前記式(1)のR~R11と同じであり、具体例や好ましい基も同様のものが挙げられる。
 前記環g又はhがさらに置換基を有する場合の置換基としては、例えば、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は下記の群から選択される基のいずれかが挙げられる。
Figure JPOXMLDOC01-appb-C000042

(式中、Rは、それぞれ独立に、前記R~R11と同じである。
 p1は0~5の整数、p2は0~4の整数、p4は0~7の整数である。)
 前記式(1)の化合物は、下記式(4-1)~(4-4)のいずれかで表されると好ましい。
Figure JPOXMLDOC01-appb-C000043
(式(4-1)~(4-4)において、XはC(R23)(R24)、NR25、O、Sから選ばれる。R~R、R~R11、R41~R48及びR23~R25は、前記R~R11と同じである。)
 R~R、R~R11、R41~R48及びR23~R25の例としては、前記式(1)のR~R11と同じであり、具体例や好ましい基も同様のものが挙げられる。
 前記式(1)の化合物は、下記式(5-1)で表されると好ましい。
Figure JPOXMLDOC01-appb-C000044

(式(5-1)において、XはC(R23)(R24)、NR25、O、Sから選ばれる。R、R、R、R、R11、R41~R52及びR23~R25は、前記R~R11と同じである。)
 R、R、R、R、R11、R41~R52及びR23~R25の例としては、前記式(1)のR~R11と同じであり、具体例や好ましい基も同様のものが挙げられる。例えば、R25は置換もしくは無置換の環形成炭素数6~50のアリール基である。
 本発明に係る第1の化合物の具体例を以下に挙げるが、特にこれらに制限されるものではない。
 下記具体例中、Phはフェニル基、Dは重水素原子を示す。
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
 第1の化合物のフォトルミネッセンススペクトルの半値幅は、30nm以下が好ましく、より好ましくは25nm以下であり、例えば20nm以下である。半値幅が上記の範囲にあると、高い色純度が得られる。
 化合物のフォトルミネッセンススペクトルの半値幅は、蛍光測定装置等を用い、以下のように蛍光強度を測定することにより算出した。
 化合物を溶媒(トルエン)に溶解(試料5[μmol/mL])し、蛍光測定用試料とした。石英セルへ入れた蛍光測定用試料に室温(300[K])で励起光を照射し、波長を変えながら蛍光強度(すなわち、フォトルミネッセンススペクトル、縦軸:蛍光強度、横軸:波長)を測定した。
 蛍光装置としては、例えば、日立ハイテクサイエンス社製、分光蛍光光度計F-7000等が挙げられる。
(第2の化合物)
 第1の化合物と同一ではない第2の化合物(以下、「第2の化合物」ということがある。)は、前記第1の化合物とともに発光層に含有される。
 第2の化合物の一態様としては、前記第1の化合物とともに発光層に含有され、発光層のホスト材料として用いる。
 第2の化合物としては、多環芳香族骨格含有化合物が挙げられ、縮合多環芳香族骨格含有化合物が好ましく、3環以上の縮合多環芳香族骨格を含有する化合物がより好ましい。具体的には、アントラセン骨格含有化合物、クリセン骨格含有化合物、ピレン骨格含有化合物、又はフルオレン骨格含有化合物であることが好ましく、この中で、アントラセン骨格含有化合物がさらに好ましい。
 第2の化合物として、例えば、下記式(19)で表されるアントラセン骨格含有化合物を使用できる。
Figure JPOXMLDOC01-appb-C000111
 式(19)において、R101~R110は、それぞれ独立に、水素原子、又は置換基であり、該置換基は上述のR~R11に関して挙げられたものと同じ、又は(-L-Ar)である。具体例、好ましい炭素数、原子数及び好ましい基も同様である。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。但し、R101~R110のうち少なくとも1つは、(-L-Ar)で表され、Lは、それぞれ独立に、単結合及び連結基から選択され、連結基は、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリーレン基であり、Arは、それぞれ独立に、置換もしくは無置換の環形成原子数5~50の単環基、置換もしくは無置換の環形成原子数8~50の縮合環基、又は前記単環基と前記縮合環基との組み合わせから構成される基である。
 式(19)における単環基とは、縮合環構造を持たない環構造のみで構成される基である。
 環形成原子数5~50の単環基の具体例としては、フェニル基、ビフェニリル基、ターフェニリル基、クォーターフェニリル基などの芳香族基と、ピリジル基、ピラジル基、ピリミジル基、トリアジニル基、フリル基、チエニル基などの複素環基が好ましい。
 上記単環基としては、中でも、フェニル基、ビフェニリル基、ターフェニリル基が好ましい。
 式(19)における、縮合環基とは、2環以上の環構造が縮環した基である。
 前記環形成原子数8~50の縮合環基として具体的には、ナフチル基、フェナントリル基、アントリル基、クリセニル基、ベンゾアントリル基、ベンゾフェナントリル基、トリフェニレニル基、ベンゾクリセニル基、インデニル基、フルオレニル基、9,9-ジメチルフルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、フルオランテニル基、ベンゾフルオランテニル基などの縮合芳香族環基や、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基、キノリル基、フェナントロリニル基などの縮合複素環基が好ましい。
 上記縮合環基としては、中でも、ナフチル基、フェナントリル基、アントリル基、9,9-ジメチルフルオレニル基、フルオランテニル基、ベンゾアントリル基、ジベンゾチオフェニル基、ジベンゾフラニル基、カルバゾリル基が好ましい。
 尚、Arが置換基を有する時の置換基としては、上述の単環基又は縮合環基が好ましい。
 Lが表す置換もしくは無置換の環形成炭素数6~30のアリーレン基において、該アリーレン基は、フェニル基、ナフチルフェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アセナフチレニル基、アントリル基、ベンゾアントリル基、アセアントリル基、フェナントリル基、ベンゾ[c]フェナントリル基、フェナレニル基、フルオレニル基、ピセニル基、ペンタフェニル基、ピレニル基、クリセニル基、ベンゾ[g]クリセニル基、s-インダセニル基、as-インダセニル基、フルオランテニル基、ベンゾ[k]フルオランテニル基、トリフェニレニル基、ベンゾ[b]トリフェニレニル基及びペリレニル基から選ばれるアリール基から1個の水素原子を除いて得られる2価の基であり、フェニレン基、ビフェニルジイル基、ターフェニルジイル基、ナフタレンジイル基が好ましく、フェニレン基、ビフェニルジイル基、ターフェニルジイル基がより好ましく、フェニレン基が特に好ましい。
 Lが表す置換もしくは無置換の環形成炭素数5~30のヘテロアリーレン基において、該ヘテロアリーレン基は、少なくとも1個、好ましくは1~5個のヘテロ原子、例えば、窒素原子、硫黄原子及び酸素原子を含む芳香族複素環化合物から2個の水素原子を除いて得られる2価の基である。該芳香族複素環化合物としては、ピロール、フラン、チオフェン、ピリジン、ピリダジン、ピリミジン、ピラジン、トリアジン、イミダゾール、オキサゾール、チアゾール、ピラゾール、イソオキサゾール、イソチアゾール、オキサジアゾール、チアジアゾール、トリアゾール、テトラゾール、インドール、イソインドール、ベンゾフラン、イソベンゾフラン、ベンゾチオフェン、イソベンゾチオフェン、インドリジン、キノリジン、キノリン、イソキノリン、シンノリン、フタラジニン、キナゾリン、キノキサリン、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、インダゾール、ベンズイソキサゾール、ベンズイソチアゾール、ジベンゾフラン、ジベンゾチオフェン、カルバゾール、フェナントリジン、アクリジン、フェナントロリン、フェナジン、フェノチアジン、フェノキサジン、キサンテンなどが挙げられる。該ヘテロアリーレン基としては、フラン、チオフェン、ピリジン、ピリダジン、ピリミジン、ピラジン、トリアジン、ベンゾフラン、ベンゾチオフェン、ジベンゾフラン、ジベンゾチオフェンから2個の水素原子を除いて得られる2価の基が好ましく、ベンゾフラン、ベンゾチオフェン、ジベンゾフラン、ジベンゾチオフェンから2個の水素原子を除いて得られる2価の基がより好ましい。
 前記式(19)の化合物は、下記式(20)で表されるアントラセン誘導体であることがより好ましい。
Figure JPOXMLDOC01-appb-C000112
 式(20)において、R101~R108は、それぞれ独立に、水素原子、又は置換基であり、該置換基は上述のR~R11に関して挙げられたものと同じである。具体例、好ましい炭素数、原子数及び好ましい基も同様である。Lは、前記式(19)のLと同じであり、具体例、好ましい炭素数、原子数及び好ましい基も同様である。Ar11、Ar12は、前記式(19)のArと同じである。
 式(20)で表されるアントラセン誘導体は、下記アントラセン誘導体(A)(B)、及び(C)のいずれかであることが好ましく、適用する有機EL素子の構成や求める特性により選択される。
アントラセン誘導体(A)
 当該アントラセン誘導体は、式(20)におけるAr11及びAr12が、それぞれ独立に、置換若しくは無置換の環形成原子数8~50の縮合環基となっている。当該アントラセン誘導体としては、Ar11及びAr12は同一でも異なっていてもよい。
 式(20)におけるAr11及びAr12が異なる(アントラセン環が結合する位置の違いを含む)置換若しくは無置換の縮合環基であるアントラセン誘導体が特に好ましく、縮合環の好ましい具体例は上述した通りである。中でもナフチル基、フェナントリル基、ベンズアントリル基、9,9-ジメチルフルオレニル基、ジベンゾフラニル基が好ましい。
アントラセン誘導体(B)
 当該アントラセン誘導体は、式(20)におけるAr11及びAr12の一方が置換若しくは無置換の環形成原子数5~50の単環基であり、他方が置換若しくは無置換の環形成原子数8~50の縮合環基となっている。
 好ましい形態として、Ar12がナフチル基、フェナントリル基、ベンゾアントリル基、9,9-ジメチルフルオレニル基、ジベンゾフラニル基であり、Ar11が無置換フェニル基、又は、単環基又は縮合環基(例えば、フェニル基、ビフェニル基、ナフチル基、フェナントリル基、9,9-ジメチルフルオレニル基、ジベンゾフラニル基)で置換されたフェニル基である。
 好ましい単環基、縮合環基の具体的な基は上述した通りである。
 別の好ましい形態として、Ar12が置換若しくは無置換の環形成原子数8~50の縮合環基であり、Ar11が無置換のフェニル基である。この場合、縮合環基として、フェナントリル基、9,9-ジメチルフルオレニル基、ジベンゾフラニル基、ベンゾアントリル基が特に好ましい。
アントラセン誘導体(C)
 当該アントラセン誘導体は、式(20)におけるAr11及びAr12が、それぞれ独立に、置換若しくは無置換の環形成原子数5~50の単環基となっている。
 好ましい形態として、Ar11、Ar12ともに置換若しくは無置換のフェニル基である。
さらに好ましい形態として、Ar11が無置換のフェニル基であり、Ar12が単環基又は縮合環基で置換されたフェニル基である場合と、Ar11、Ar12がそれぞれ独立に単環基又は縮合環基で置換されたフェニル基である場合がある。
 前記置換基としての好ましい単環基、縮合環基の具体例は上述した通りである。さらに好ましくは、置換基としての単環基としてフェニル基、ビフェニル基、縮合環基として、ナフチル基、フェナントリル基、9,9-ジメチルフルオレニル基、ジベンゾフラニル基、ベンゾアントリル基である。
 前記式(19)の化合物は、下記式(21)~式(24)で表されるアントラセン誘導体であることがより好ましい。
Figure JPOXMLDOC01-appb-C000113

Figure JPOXMLDOC01-appb-C000114

Figure JPOXMLDOC01-appb-C000115

Figure JPOXMLDOC01-appb-C000116
 式(21)~式(24)において、Ar13は、無置換の環形成炭素数6~50のアリール基である。L11は、それぞれ独立に、単結合又は無置換の環形成原子数6~30のアリーレン基である。
 無置換の環形成炭素数6~50のアリール基としては、例えば、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アセナフチレニル基、アントリル基、ベンゾアントリル基、アセアントリル基、フェナントリル基、ベンゾ[c]フェナントリル基、フェナレニル基、フルオレニル基、ピセニル基、ペンタフェニル基、ピレニル基、クリセニル基、ベンゾ[g]クリセニル基、s-インダセニル基、as-インダセニル基、フルオランテニル基、ベンゾ[k]フルオランテニル基、トリフェニレニル基、ベンゾ[b]トリフェニレニル基及びペリレニル基などが挙げられる。これらの中でも、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントリル基、ピレニル基、フルオランテニル基が好ましく、フェニル基、ビフェニリル基、ターフェニリル基がより好ましく、フェニル基がさらに好ましい。
 L11が表す無置換の環形成炭素数6~30のアリーレン基において、該アリーレン基は、例えば、フェニル基、ナフチルフェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アセナフチレニル基、アントリル基、ベンゾアントリル基、アセアントリル基、フェナントリル基、ベンゾ[c]フェナントリル基、フェナレニル基、フルオレニル基、ピセニル基、ペンタフェニル基、ピレニル基、クリセニル基、ベンゾ[g]クリセニル基、s-インダセニル基、as-インダセニル基、フルオランテニル基、ベンゾ[k]フルオランテニル基、トリフェニレニル基、ベンゾ[b]トリフェニレニル基及びペリレニル基から選ばれるアリール基から1個の水素原子を除いて得られる2価の基であり、フェニレン基、ビフェニルジイル基、ターフェニルジイル基、ナフタレンジイル基が好ましく、フェニレン基、ビフェニルジイル基、ターフェニルジイル基がより好ましく、フェニレン基が特に好ましい。
 前記式(19)の化合物は、下記式(25)~式(32)で表されるアントラセン誘導体であることがより好ましい。
Figure JPOXMLDOC01-appb-C000117

Figure JPOXMLDOC01-appb-C000118

Figure JPOXMLDOC01-appb-C000119

Figure JPOXMLDOC01-appb-C000120

Figure JPOXMLDOC01-appb-C000121

Figure JPOXMLDOC01-appb-C000122

Figure JPOXMLDOC01-appb-C000123

Figure JPOXMLDOC01-appb-C000124
 式(25)~式(32)において、Ar13及びL11は、前記式(21)~式(24)のAr13及びL11と同じである。
 式(19)、式(20)、式(21)~式(24)及び式(25)~式(32)で表されるアントラセン誘導体の具体例としては、以下に示すものが挙げられる。
 下記化合物の構造において、6員環はすべてベンゼン環である。
Figure JPOXMLDOC01-appb-C000125
 下記化合物の構造において、6員環はすべてベンゼン環である。
Figure JPOXMLDOC01-appb-C000126
 下記化合物の構造において、6員環はすべてベンゼン環である。
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000139
 下記化合物の構造において、6員環はすべてベンゼン環である。
Figure JPOXMLDOC01-appb-C000140
 下記化合物の構造において、6員環はすべてベンゼン環である。
Figure JPOXMLDOC01-appb-C000141
 下記化合物の構造において、6員環はすべてベンゼン環である。
Figure JPOXMLDOC01-appb-C000142
 下記化合物の構造において、6員環はすべてベンゼン環である。
Figure JPOXMLDOC01-appb-C000143
 下記化合物の構造において、6員環はすべてベンゼン環である。
Figure JPOXMLDOC01-appb-C000144
 下記化合物の構造において、6員環はすべてベンゼン環である。
Figure JPOXMLDOC01-appb-C000145
 下記化合物の構造において、6員環はすべてベンゼン環である。
Figure JPOXMLDOC01-appb-C000146
 下記化合物の構造において、6員環はすべてベンゼン環である。
Figure JPOXMLDOC01-appb-C000147
Figure JPOXMLDOC01-appb-C000148
Figure JPOXMLDOC01-appb-C000149
 クリセン骨格含有化合物としては、例えば、下記式(21)で表されるものを使用することが好ましい。
Figure JPOXMLDOC01-appb-C000150
 式(21)において、R201~R212は、それぞれ独立に、水素原子、又は置換基であり、該置換基は上述のR~R11に関して挙げられたものと同じ、又は(-L-Ar21)である。具体例、好ましい炭素数、原子数及び好ましい基も同様である。
 但し、R201~R212のうち少なくとも1つは、(-L-Ar21)で表され、L及びAr21は、前記式(19)のL及びArと同じであり、具体例、好ましい炭素数、原子数及び好ましい基も同様である。
 R204とR210の一方、R204とR210の双方が、(-L-Ar21)であることが好ましい。
 式(21)で表されるクリセン誘導体の具体例としては、以下に示すものが挙げられるが、特にこれらに制限されるものではない。
Figure JPOXMLDOC01-appb-C000151
 下記化合物の構造において、6員環はすべてベンゼン環である。
Figure JPOXMLDOC01-appb-C000152
 下記化合物の構造において、6員環はすべてベンゼン環である。
Figure JPOXMLDOC01-appb-C000153
 下記化合物の構造において、6員環はすべてベンゼン環である。
Figure JPOXMLDOC01-appb-C000154
 下記化合物の構造において、6員環はすべてベンゼン環である。
Figure JPOXMLDOC01-appb-C000155
 ピレン誘導体としては、例えば、下記式(22)で表されるものを使用することが好ましい。
Figure JPOXMLDOC01-appb-C000156
 式(22)において、R301~R310は、それぞれ独立に、水素原子、又は置換基であり、該置換基は上述のR~R11に関して挙げられたものと同じ、又は(-L-Ar31)である。具体例、好ましい炭素数、原子数及び好ましい基も同様である。
 但し、R301~R310のうち少なくとも1つは、(-L-Ar31)で表され、L及びAr31は、前記式(19)のL及びArと同じであり、具体例、好ましい炭素数、原子数及び好ましい基も同様である。
 R301、R303、R306、R308のいずれか1つ以上が(-L-Ar31)であることが好ましい。
 式(22)で表されるピレン誘導体の具体例としては、以下に示すものが挙げられるが、特にこれらに制限されるものではない。
 下記化合物の構造において、6員環はすべてベンゼン環である。
Figure JPOXMLDOC01-appb-C000157
 下記化合物の構造において、6員環はすべてベンゼン環である。
Figure JPOXMLDOC01-appb-C000158
 下記化合物の構造において、6員環はすべてベンゼン環である。
Figure JPOXMLDOC01-appb-C000159
 下記化合物の構造において、6員環はすべてベンゼン環である。
Figure JPOXMLDOC01-appb-C000160
 下記化合物の構造において、6員環はすべてベンゼン環である。
Figure JPOXMLDOC01-appb-C000161
Figure JPOXMLDOC01-appb-C000162
 下記化合物の構造において、6員環はすべてベンゼン環である。
Figure JPOXMLDOC01-appb-C000163
 下記化合物の構造において、6員環はすべてベンゼン環である。
Figure JPOXMLDOC01-appb-C000164
 下記化合物の構造において、6員環はすべてベンゼン環である。
Figure JPOXMLDOC01-appb-C000165
 下記化合物の構造において、6員環はすべてベンゼン環である。
Figure JPOXMLDOC01-appb-C000166
 下記化合物の構造において、6員環はすべてベンゼン環である。
Figure JPOXMLDOC01-appb-C000167
 下記化合物の構造において、6員環はすべてベンゼン環である。
Figure JPOXMLDOC01-appb-C000168
 下記化合物の構造において、6員環はすべてベンゼン環である。
Figure JPOXMLDOC01-appb-C000169
 下記化合物の構造において、6員環はすべてベンゼン環である。
Figure JPOXMLDOC01-appb-C000170
 下記化合物の構造において、6員環はすべてベンゼン環である。
Figure JPOXMLDOC01-appb-C000171
 フルオレン誘導体としては、例えば、下記式(23)で表されるものを使用することが好ましい。
Figure JPOXMLDOC01-appb-C000172
 式(23)において、R401~R410は、それぞれ独立に、水素原子、又は置換基であり、該置換基は上述のR~R11に関して挙げられたものと同じ、又は(-L-Ar41)である。具体例、好ましい炭素数、原子数及び好ましい基も同様である。但し、R401~R410のうち少なくとも1つは、(-L-Ar41)で表される。L及びAr41は、前記式(19)のL及びArと同じであり、具体例、好ましい炭素数、原子数及び好ましい基も同様である。
 また、R401とR402、R402とR403、R403とR404、R405とR406、R406とR407、及びR407とR408から選択される1以上の組み合わせが、互いに結合して環を形成してもよい。
 R402及びR407が(-L-Ar41)であることが好ましい。またR409及びR410が置換もしくは無置換のアルキル基、又は(-L-Ar41)であることが好ましい。
 式(23)で表されるフルオレン誘導体の具体例としては、以下に示すものが挙げられが、特にこれらに制限されるものではない。
 下記化合物の構造において、6員環はすべてベンゼン環である。
Figure JPOXMLDOC01-appb-C000173
 上記本発明の一態様の本発明に係る第1の化合物及び該第1の化合物と同一ではない第2の化合物は、有機EL素子用材料として有用である。
 なお、本発明に係る第1の化合物及び第2の化合物の製造方法に特に制限はなく、本明細書の実施例等を参照しながら、公知の合成反応を適宜利用及び変更して容易に製造することができる。
 また、本発明の一様態において、本発明に係る第1の化合物は有機EL素子の発光層の蛍光ドーパント材料として用いる。
 有機EL素子が有する発光層のドーパント材料としては、発光効率の観点から、蛍光量子収率(PLQY)及び蛍光発光スペクトルの形状(半値幅)が重要視される。
 フルカラーディスプレイで用いられる赤、緑及び青の3原色やそれに黄等を加えた4色以上の光は、目的の色域に最適化させるために、カラーフィルタによるカットや、マイクロキャビティ構造による目的の波長の光の増幅とそれ以外の光の減衰を受けた上で、外部に取り出されている。すなわち、目的の波長以外は削られるため、エネルギーのロスにつながる。従って、よりシャープな発光スペクトル形状を有する材料は、削られる波長域が小さくなるため、エネルギーのロスが少なく効率の面で有利となる。
 シャープな発光スペクトルを示すドーパント材料としては、基底状態と励起状態の構造変化が少なく、振動準位が少ない化学構造が適すると考えられる。
 本発明に係る第1の化合物は、芳香環の縮環構造を中心とする剛直な構造であることから基底状態と励起状態の構造変化が少ない。
 本発明に係る第1の化合物が対称性が高い縮環構造をとる場合は、振動準位が縮重するため、よりシャープな発光スペクトルを得られると考えられる。ここで、対称性が高い縮環構造とは、例えば前記式(1)における骨格のN原子とRとを結ぶ直線を軸とした線対称となる縮環構造を意味する。
 本発明に係る第1の化合物が非対称の縮環構造をとる場合は、置換基を加えることのない波長の調整に特に有効である。ここで、非対称の縮環構造とは、例えば前記式(1)における骨格のN原子とRとを結ぶ直線を軸としたときに線対称ではない縮環構造を意味する。
 次に、本発明の有機EL素子についてさらに説明する。
 本発明の有機EL素子は、前述したように、陰極と、陽極と、該陰極と陽極の間に存在する有機層とを有する有機エレクトロルミネッセンス素子であって、該有機層は蛍光発光層を含む1又は複数の層を有し、該蛍光発光層が、前述した式(1)で表される第1の化合物及び該第1の化合物と同一ではない前述した第2の化合物を含む。本発明の有機EL素子には、低電圧駆動が可能なものが含まれ、且つ素子寿命が長いものも含まれる。また、該有機EL素子には、青色純度の高い発光が可能なものも含まれる。
 本発明に係る第1の化合物は、第2の化合物とともに発光層に含まれ、特にドーパント材料として発光層に含まれる。特に、蛍光発光を用いる発光層のドーパント材料として、発光層に含まれることが好ましく、また、熱活性化遅延蛍光(Thermally Activated Delayed Fluorescence)機構を用いる発光層のドーパント材料として、発光層に含まれることも好ましい。
 また、本発明に係る蛍光発光層は、燐光発光性等を有する重金属錯体を含まない。例えば、重金属として、イリジウム、白金、オスミウム、レニウム、ルテニウム等が挙げられる。
 本発明の有機EL素子は、蛍光発光型又は熱活性化遅延蛍光(Thermally Activated Delayed Fluorescence)機構を用いる単色発光素子であっても、上記のハイブリッド型の白色発光素子であってもよいし、単独の発光ユニットを有するシンプル型であっても、複数の発光ユニットを有するタンデム型であってもよい。ここで、「発光ユニット」とは、一層以上の有機層を含み、そのうちの一層が発光層であり、注入された正孔と電子が再結合することにより発光することができる最小単位をいう。
 従って、シンプル型有機EL素子の代表的な素子構成としては、以下の素子構成を挙げることができる。但し、以下発光ユニットにおいて、蛍光発光層を含まない場合は除く。
(1)陽極/発光ユニット/陰極
 また、上記発光ユニットは、燐光発光層、蛍光発光層又は熱活性化遅延蛍光機構を用いる発光層を複数有する積層型であってもよく、その場合、各発光層の間に、燐光発光層で生成された励起子が蛍光発光層に拡散することを防ぐ目的で、スペース層を有していてもよい。発光ユニットの代表的な層構成を以下に示す。
(a)正孔輸送層/発光層(/電子輸送層)
(b)正孔輸送層/第一蛍光発光層/第二蛍光発光層(/電子輸送層)
(c)正孔輸送層/燐光発光層/スペース層/蛍光発光層(/電子輸送層)
(d)正孔輸送層/第一燐光発光層/第二燐光発光層/スペース層/蛍光発光層(/電子輸送層)
(e)正孔輸送層/第一燐光発光層/スペース層/第二燐光発光層/スペース層/蛍光発光層(/電子輸送層)
(f)正孔輸送層/燐光発光層/スペース層/第一蛍光発光層/第二蛍光発光層(/電子輸送層)
 上記各燐光又は蛍光発光層は、それぞれ互いに異なる発光色を示すものとすることができる。具体的には、上記積層発光層(d)において、正孔輸送層/第一燐光発光層(赤色発光)/第二燐光発光層(緑色発光)/スペース層/蛍光発光層(青色発光)/電子輸送層といった層構成が挙げられる。
 なお、各発光層と正孔輸送層あるいはスペース層との間には、適宜、電子障壁層を設けてもよい。また、各発光層と電子輸送層との間には、適宜、正孔障壁層を設けてもよい。電子障壁層や正孔障壁層を設けることで、電子又は正孔を発光層内に閉じ込めて、発光層における電荷の再結合確率を高め、発光効率を向上させることができる。
 タンデム型有機EL素子の代表的な素子構成としては、以下の素子構成を挙げることができる。
(2)陽極/第一発光ユニット/中間層/第二発光ユニット/陰極
 ここで、上記第一発光ユニット及び第二発光ユニットとしては、例えば、それぞれ独立に上述の発光ユニットと同様のものを選択することができる。
 上記中間層は、一般的に、中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、第一発光ユニットに電子を、第二発光ユニットに正孔を供給する、公知の材料構成を用いることができる。
 図1に、本発明の有機EL素子の一例の概略構成を示す。有機EL素子1は、基板2、陽極3、陰極4、及び該陽極3と陰極4との間に配置された発光ユニット(有機薄膜層)10とを有する。発光ユニット10は、蛍光ホスト材料と蛍光ドーパント材料を含む少なくとも1つの蛍光発光層を含む発光層5を有する。発光層5と陽極3との間に正孔注入層/正孔輸送層6など、発光層5と陰極4との間に電子注入層/電子輸送層7などを形成してもよい。また、発光層5の陽極3側に電子障壁層を、発光層5の陰極4側に正孔障壁層を、それぞれ設けてもよい。これにより、電子や正孔を発光層5に閉じ込めて、発光層5における励起子の生成確率を高めることができる。
 なお、本明細書において、蛍光ドーパント材料と組み合わされたホスト材料を蛍光ホスト材料と称し、燐光ドーパント材料と組み合わされたホスト材料を燐光ホスト材料と称する。蛍光ホスト材料と燐光ホスト材料は、分子構造のみにより区分されるものではない。すなわち、蛍光ホスト材料とは、蛍光ドーパント材料を含有する蛍光発光層を構成する材料を意味し、燐光発光層を構成する材料として利用できないことを意味しているわけではない。燐光ホスト材料についても同様である。
(基板)
 本発明の有機EL素子は、透光性基板上に作製する。透光性基板は有機EL素子を支持する基板であり、400nm~700nmの可視領域の光の透過率が50%以上で平滑な基板が好ましい。具体的には、ガラス板、ポリマー板などが挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英などを原料として用いてなるものを挙げられる。またポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォンなどを原料として用いてなるものを挙げることができる。
(陽極)
 有機EL素子の陽極は、正孔を正孔輸送層又は発光層に注入する役割を担うものであり、4.5eV以上の仕事関数を有するものを用いることが効果的である。陽極材料の具体例としては、酸化インジウム錫合金(ITO)、酸化錫(NESA)、酸化インジウム亜鉛酸化物、金、銀、白金、銅などが挙げられる。陽極はこれらの電極物質を蒸着法やスパッタリング法などの方法で薄膜を形成させることにより作製することができる。発光層からの発光を陽極から取り出す場合、陽極の可視領域の光の透過率を10%より大きくすることが好ましい。また、陽極のシート抵抗は、数百Ω/□以下が好ましい。陽極の膜厚は、材料にもよるが、通常10nm~1μm、好ましくは10nm~200nmの範囲で選択される。
(陰極)
 陰極は電子注入層、電子輸送層又は発光層に電子を注入する役割を担うものであり、仕事関数の小さい材料により形成するのが好ましい。陰極材料は特に限定されないが、具体的にはインジウム、アルミニウム、マグネシウム、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、アルミニウム-リチウム合金、アルミニウム-スカンジウム-リチウム合金、マグネシウム-銀合金などが使用できる。陰極も、陽極と同様に、蒸着法やスパッタリング法などの方法で薄膜を形成させることにより作製することができる。また、必要に応じて、陰極側から発光を取り出してもよい。
 以下、各層について、本発明の化合物以外に使用し得る材料について説明する。但し、発光層については、本発明に係る第1の化合物及び第2の化合物を含む蛍光発光層を含むものとする。
(発光層)
 発光機能を有する有機層であって、ドーピングシステムを採用する場合、ホスト材料とドーパント材料を含んでいる。このとき、ホスト材料は、主に電子と正孔の再結合を促し、励起子を発光層内に閉じ込める機能を有し、ドーパント材料は、再結合で得られた励起子を効率的に発光させる機能を有する。
 燐光素子の場合、ホスト材料は主にドーパント材料で生成された励起子を発光層内に閉じ込める機能を有する。
 ここで、上記発光層は、量子収率の高いドーパント材料を二種類以上入れることによって、それぞれのドーパント材料が発光するダブルドーパント材料を採用してもよい。具体的には、ホスト材料、赤色ドーパント材料及び緑色ドーパント材料を共蒸着することによって、発光層を共通化して黄色発光を実現する態様が挙げられる。
 上記発光層は、複数の発光層を積層した積層体とすることで、発光層界面に電子と正孔を蓄積させて、再結合領域を発光層界面に集中させて、量子効率を向上させることができる。
 発光層への正孔の注入し易さと電子の注入し易さは異なっていてもよく、また、発光層中での正孔と電子の移動度で表される正孔輸送能と電子輸送能が異なっていてもよい。
 発光層は、例えば蒸着法、スピンコート法、LB法などの公知の方法により形成することができる。また、樹脂などの結着剤と材料化合物とを溶剤に溶かした溶液をスピンコート法などにより薄膜化することによっても、発光層を形成することができる。
 発光層は、分子堆積膜であることが好ましい。分子堆積膜とは、気相状態の材料化合物から沈着され形成された薄膜や、溶液状態又は液相状態の材料化合物から固体化され形成された膜のことであり、通常この分子堆積膜は、LB法により形成された薄膜(分子累積膜)とは凝集構造、高次構造の相違や、それに起因する機能的な相違により区分することができる。
 発光層の膜厚は、好ましくは5~50nm、より好ましくは7~50nm、さらに好ましくは10~50nmである。5nm以上であると発光層の形成が容易であり、50nm以下であると駆動電圧の上昇が避けられる。
(ドーパント材料)
 発光層を形成する蛍光ドーパント材料(蛍光発光材料)は一重項励状態から発光することのできる化合物であり、一重項励状態から発光する限り特に限定されないが、フルオランテン誘導体、スチリルアリーレン誘導体、ピレン誘導体、アリールアセチレン誘導体、フルオレン誘導体、ホウ素錯体、ペリレン誘導体、オキサジアゾール誘導体、アントラセン誘導体、スチリルアミン誘導体、アリールアミン誘導体などが挙げられ、好ましくは、アントラセン誘導体、フルオランテン誘導体、スチリルアミン誘導体、アリールアミン誘導体、スチリルアリーレン誘導体、ピレン誘導体、ホウ素錯体、より好ましくはアントラセン誘導体、フルオランテン誘導体、スチリルアミン誘導体、アリールアミン誘導体、ホウ素錯体化合物である。
 蛍光ドーパント材料の発光層における含有量は特に制限はなく目的に応じて適宜選択することができるが、例えば、0.1~70質量%が好ましく、0.1~30質量%がより好ましく、1~30質量%がさらに好ましく、1~20質量%がさらにより好ましく、1~10質量%が特により好ましい。蛍光ドーパント材料の含有量が0.1質量%以上であると十分な発光が得られ、70質量%以下であると濃度消光を避けることができる。
(電子供与性ドーパント材料)
 本発明の有機EL素子は、陰極と発光ユニットとの界面領域に電子供与性ドーパント材料を有することも好ましい。このような構成によれば、有機EL素子における発光輝度の向上や長寿命化が図られる。ここで、電子供与性ドーパント材料とは、仕事関数3.8eV以下の金属を含有するものをいい、その具体例としては、アルカリ金属、アルカリ金属錯体、アルカリ金属化合物、アルカリ土類金属、アルカリ土類金属錯体、アルカリ土類金属化合物、希土類金属、希土類金属錯体、及び希土類金属化合物などから選ばれた少なくとも一種類が挙げられる。
 アルカリ金属としては、Na(仕事関数:2.36eV)、K(仕事関数:2.28eV)、Rb(仕事関数:2.16eV)、Cs(仕事関数:1.95eV)などが挙げられ、仕事関数が2.9eV以下のものが特に好ましい。アルカリ土類金属としては、Ca(仕事関数:2.9eV)、Sr(仕事関数:2.0eV~2.5eV)、Ba(仕事関数:2.52eV)などが挙げられ、仕事関数が2.9eV以下のものが特に好ましい。希土類金属としては、Sc、Y、Ce、Tb、Ybなどが挙げられ、仕事関数が2.9eV以下のものが特に好ましい。
 アルカリ金属化合物としては、LiO、CsO、KOなどのアルカリ酸化物、LiF、NaF、CsF、KFなどのアルカリハロゲン化物などが挙げられ、LiF、LiO、NaFが好ましい。アルカリ土類金属化合物としては、BaO、SrO、CaO及びこれらを混合したBaSr1-xO(0<x<1)、BaCa1-xO(0<x<1)などが挙げられ、BaO、SrO、CaOが好ましい。希土類金属化合物としては、YbF、ScF、ScO、Y、Ce、GdF、TbFなどが挙げられ、YbF、ScF、TbFが好ましい。
 アルカリ金属錯体、アルカリ土類金属錯体、希土類金属錯体としては、それぞれ金属イオンとしてアルカリ金属イオン、アルカリ土類金属イオン、希土類金属イオンの少なくとも一つ含有するものであれば特に限定はない。また、配位子にはキノリノール、ベンゾキノリノール、アクリジノール、フェナントリジノール、ヒドロキシフェニルオキサゾール、ヒドロキシフェニルチアゾール、ヒドロキシジアリールオキサジアゾール、ヒドロキシジアリールチアジアゾール、ヒドロキシフェニルピリジン、ヒドロキシフェニルベンゾイミダゾール、ヒドロキシベンゾトリアゾール、ヒドロキシフルボラン、ビピリジル、フェナントロリン、フタロシアニン、ポルフィリン、シクロペンタジエン、β-ジケトン類、アゾメチン類、及びそれらの誘導体などが挙げられる。
 電子供与性ドーパント材料の添加形態としては、界面領域に層状又は島状に形成すると好ましい。形成方法としては、抵抗加熱蒸着法により電子供与性ドーパント材料を蒸着しながら、界面領域を形成する有機化合物(発光材料や電子注入材料)を同時に蒸着させ、有機化合物に電子供与性ドーパント材料を分散する方法が好ましい。分散濃度はモル比で有機化合物:電子供与性ドーパント材料=100:1~1:100である。
 電子供与性ドーパント材料を層状に形成する場合は、界面の有機層である発光材料や電子注入材料を層状に形成した後に、還元ドーパント材料を単独で抵抗加熱蒸着法により蒸着し、好ましくは層の厚み0.1nm~15nmで形成する。電子供与性ドーパント材料を島状に形成する場合は、界面の有機層である発光材料や電子注入材料を島状に形成した後に、電子供与性ドーパント材料を単独で抵抗加熱蒸着法により蒸着し、島の厚み0.05nm~1nmで形成する。
 本発明の有機EL素子における、主成分と電子供与性ドーパント材料の割合は、モル比で主成分:電子供与性ドーパント材料=5:1~1:5であると好ましい。
(電子輸送層)
 発光層と陰極との間に形成される有機層であって、電子を陰極から発光層へ輸送する機能を有する。電子輸送層が複数層で構成される場合、陰極に近い有機層を電子注入層と定義することがある。電子注入層は、陰極から電子を効率的に有機層ユニットに注入する機能を有する。
 電子輸送層に用いる電子輸送性材料としては、分子内にヘテロ原子を1個以上含有する芳香族ヘテロ環化合物が好ましく用いられ、特に含窒素環誘導体が好ましい。また、含窒素環誘導体としては、含窒素6員環もしくは5員環骨格を有する芳香族環、又は含窒素6員環もしくは5員環骨格を有する縮合芳香族環化合物が好ましい。
 この含窒素環誘導体としては、例えば、下記式(A)で表される含窒素環金属キレート錯体が好ましい。
Figure JPOXMLDOC01-appb-C000174
 式(A)におけるR~Rは、それぞれ独立に、水素原子、ハロゲン原子、オキシ基、アミノ基、炭素数1~40(好ましくは1~20、より好ましくは1~10、さらに好ましくは1~6)の炭化水素基、炭素数1~40(好ましくは1~20、より好ましくは1~10、さらに好ましくは1~6)のアルコキシ基、環形成炭素数6~40(好ましくは6~20、より好ましくは6~12)のアリールオキシ基、炭素数2~40(好ましくは2~20、より好ましくは2~10、さらに好ましくは2~5)のアルコキシカルボニル基又は環形成原子数9~40(好ましくは9~30、より好ましくは9~20)の芳香族複素環基であり、これらは置換されていてもよい。
 Mは、アルミニウム(Al)、ガリウム(Ga)又はインジウム(In)であり、Inであると好ましい。
 Lは、下記式(A’)又は(A”)で表される基である。
Figure JPOXMLDOC01-appb-C000175
 前記式(A’)中、R~R12は、それぞれ独立に、水素原子又は置換もしくは無置換の炭素数1~40(好ましくは1~20、より好ましくは1~10、さらに好ましくは1~6)の炭化水素基であり、互いに隣接する基が環状構造を形成していてもよい。また、前記式(A”)中、R13~R27は、それぞれ独立に、水素原子又は置換もしくは無置換の炭素数1~40(好ましくは1~20、より好ましくは1~10、さらに好ましくは1~6)の炭化水素基であり、互いに隣接する基が環状構造を形成していてもよい。
 前記式(A’)及び式(A”)のR~R12及びR13~R27が示す炭素数1~40の炭化水素基としては、前記式(A)中のR~Rの具体例と同様のものが挙げられる。
 また、R~R12及びR13~R27の互いに隣接する基が環状構造を形成した場合の2価の基としては、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ジフェニルメタン-2,2’-ジイル基、ジフェニルエタン-3,3’-ジイル基、ジフェニルプロパン-4,4’-ジイル基等が挙げられる。
 電子輸送層に用いられる電子伝達性化合物としては、8-ヒドロキシキノリン又はその誘導体の金属錯体、オキサジアゾール誘導体、含窒素複素環誘導体が好適である。
 これらの電子伝達性化合物は、薄膜形成性の良好なものが好ましく用いられる。そして、これら電子伝達性化合物の具体例としては、下記のものを挙げることができる。
Figure JPOXMLDOC01-appb-C000176
 電子伝達性化合物としての含窒素複素環誘導体としては、金属錯体でない含窒素化合物が挙げられる。例えば、以下の式で表される含窒素複素環基を有する化合物が好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000177

(上記式中、前記各式中、Rは、炭素数6~40の芳香族炭化水素基又は縮合芳香族炭化水素基、炭素数3~40の芳香族複素環基又は縮合芳香族複素環基、炭素数1~20のアルキル基、または炭素数1~20のアルコキシ基であり、nは0~5の整数であり、nが2以上の整数であるとき、複数のRは互いに同一又は異なっていてもよい)
 本発明の有機EL素子の電子輸送層は、下記式(60)~(62)で表される含窒素複素環誘導体を少なくとも1種含むことが特に好ましい。
Figure JPOXMLDOC01-appb-C000178
(式中、Z11、Z12及びZ13は、それぞれ独立に、窒素原子又は炭素原子である。
 R及びRは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)のアリール基、置換もしくは無置換の環形成原子数5~50(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の複素環基、置換もしくは無置換の炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルキル基、置換もしくは無置換の炭素数1~20(好ましくは1~10、より好ましくは1~6)のハロアルキル基又は置換もしくは無置換の炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルコキシ基である。
 nは、0~5の整数であり、nが2以上の整数であるとき、複数のRは互いに同一でも異なっていてもよい。また、隣接する2つのR同士が互いに結合して、置換もしくは無置換の炭化水素環を形成していてもよい。
 Ar11は、置換もしくは無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)のアリール基又は置換もしくは無置換の環形成原子数5~50(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の複素環基である。
 Ar12は、水素原子、置換もしくは無置換の炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルキル基、置換もしくは無置換の炭素数1~20(好ましくは1~10、より好ましくは1~6)のハロアルキル基、置換もしくは無置換の炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルコキシ基、置換もしくは無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)のアリール基又は置換もしくは無置換の環形成原子数5~50(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の複素環基である。
 但し、Ar11、Ar12のいずれか一方は、置換もしくは無置換の環形成炭素数10~50(好ましくは10~30、より好ましくは10~20、さらに好ましくは10~14)の縮合芳香族炭化水素環基又は置換もしくは無置換の環形成原子数9~50(好ましくは9~30、より好ましくは9~20、さらに好ましくは9~14)の縮合芳香族複素環基である。
 Ar13は、置換もしくは無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)のアリーレン基又は置換もしくは無置換の環形成原子数5~50(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)のヘテロアリーレン基である。
 L11、L12及びL13は、それぞれ独立に、単結合、置換もしくは無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)のアリーレン基、又は置換もしくは無置換の環形成原子数9~50(好ましくは9~30、より好ましくは9~20、さらに好ましくは9~14)の2価の縮合芳香族複素環基である。)
 上記式(60)~(62)で表される含窒素複素環誘導体の具体例としては、以下に示すものが挙げられる。
Figure JPOXMLDOC01-appb-C000179
 本発明の有機EL素子の電子輸送層は第1電子輸送層(陽極側)と第2電子輸送層(陰極側)の2層構造にしてもよい。
 電子輸送層の膜厚は、特に限定されないが、好ましくは1nm~100nmである。有機EL素子の電子輸送層は第1電子輸送層(陽極側)と第2電子輸送層(陰極側)の2層構造である場合、第1電子輸送層の膜厚は、好ましくは5~60nm、より好ましくは10~40nmであり、第2電子輸送層の膜厚は、好ましくは1~20nm、より好ましくは1~10nmである。
 また、電子輸送層に隣接して設けることができる電子注入層の構成成分として、含窒素環誘導体の他に無機化合物として、絶縁体又は半導体を使用することが好ましい。電子注入層が絶縁体や半導体で構成されていれば、電流のリークを有効に防止して、電子注入性を向上させることができる。
 このような絶縁体としては、アルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物からなる群から選択される少なくとも一つの金属化合物を使用するのが好ましい。電子注入層がこれらのアルカリ金属カルコゲニドなどで構成されていれば、電子注入性をさらに向上させることができる点で好ましい。具体的に、好ましいアルカリ金属カルコゲニドとしては、例えば、LiO、KO、NaS、NaSe及びNaOが挙げられ、好ましいアルカリ土類金属カルコゲニドとしては、例えば、CaO、BaO、SrO、BeO、BaS及びCaSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物としては、例えば、LiF、NaF、KF、LiCl、KCl及びNaClなどが挙げられる。また、好ましいアルカリ土類金属のハロゲン化物としては、例えば、CaF、BaF、SrF、MgF及びBeFなどのフッ化物や、フッ化物以外のハロゲン化物が挙げられる。
 また、半導体としては、Ba、Ca、Sr、Yb、Al、Ga、In、Li、Na、Cd、Mg、Si、Ta、Sb及びZnの少なくとも一つの元素を含む酸化物、窒化物又は酸化窒化物などの一種単独又は二種以上の組み合わせが挙げられる。また、電子注入層を構成する無機化合物が、微結晶又は非晶質の絶縁性薄膜であることが好ましい。電子注入層がこれらの絶縁性薄膜で構成されていれば、より均質な薄膜が形成されるために、ダークスポットなどの画素欠陥を減少させることができる。なお、このような無機化合物としては、アルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物などが挙げられる。
 このような絶縁体又は半導体を使用する場合、その層の好ましい厚みは、0.1nm~15nm程度である。また、本発明における電子注入層は、前述の電子供与性ドーパント材料を含有していても好ましい。
(正孔輸送層)
 発光層と陽極との間に形成される有機層であって、正孔を陽極から発光層へ輸送する機能を有する。正孔輸送層が複数層で構成される場合、陽極に近い有機層を正孔注入層と定義することがある。正孔注入層は、陽極から正孔を効率的に有機層ユニットに注入する機能を有する。
 正孔輸送層を形成し得る材料としては、芳香族アミン化合物、例えば、下記式(I)で表される芳香族アミン誘導体が好適に用いられる。
Figure JPOXMLDOC01-appb-C000180
 前記式(I)において、Ar~Arは置換もしくは無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の芳香族炭化水素基もしくは置換基を有していてもよい環形成炭素数6~50(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の縮合芳香族炭化水素基、置換もしくは無置換の環形成原子数5~50(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の芳香族複素環基もしくは置換もしくは無置換の環形成原子数5~50(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の縮合芳香族複素環基、又は、それら芳香族炭化水素基又は縮合芳香族炭化水素基と芳香族複素環基又は縮合芳香族複素環基が結合した基を表す。
Ar1とAr2、Ar3とAr4で環を形成してもよい。
 また、前記式(I)において、Lは置換もしくは無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の芳香族炭化水素基もしくは置換基を有していてもよい環形成炭素数6~50(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の縮合芳香族炭化水素基、又は置換もしくは無置換の環形成原子数5~50(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の芳香族複素環基もしくは置換もしくは無置換の環形成原子数5~50(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の縮合芳香族複素環基を表す。
 式(I)の化合物の具体例を以下に記す。
Figure JPOXMLDOC01-appb-C000181
Figure JPOXMLDOC01-appb-C000182
 また、下記式(II)の芳香族アミンも正孔輸送層の形成に好適に用いられる。
Figure JPOXMLDOC01-appb-C000183
 前記式(II)において、Ar~Arの定義は前記式(I)のAr~Arの定義と同様である。以下に式(II)の化合物の具体例を記すがこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000184
Figure JPOXMLDOC01-appb-C000185
 本発明の有機EL素子の正孔輸送層は第1正孔輸送層(陽極側)と第2正孔輸送層(陰極側)の2層構造にしてもよい。
 正孔輸送層の膜厚は特に限定されないが、10~200nmであるのが好ましい。正孔輸送層が、第1正孔輸送層(陽極側)と第2正孔輸送層(陰極側)の2層構造である場合、第1正孔輸送層の膜厚は、好ましくは50~150nm、より好ましくは50~110nmであり、第2正孔輸送層の膜厚は、好ましくは5~50nm、より好ましくは5~30nmである。
 本発明の有機EL素子では、正孔輸送層又は第1正孔輸送層の陽極側にアクセプター材料を含有する層を接合してもよい。これにより駆動電圧の低下及び製造コストの低減が期待される。
 前記アクセプター材料としては下記式で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000186
 アクセプター材料を含有する層の膜厚は特に限定されないが、5~20nmであるのが好ましい。
-n/pドーピング-
 上述の正孔輸送層や電子輸送層においては、特許第3695714号明細書に記載されているように、ドナー性材料のドーピング(n)やアクセプター性材料のドーピング(p)により、キャリア注入能を調整することができる。
 nドーピングの代表例としては、電子輸送材料にLiやCsなどの金属をドーピングする方法が挙げられ、pドーピングの代表例としては、正孔輸送材料にFTCNQなどのアクセプター材料をドーピングする方法が挙げられる。
(スペース層)
 上記スペース層とは、例えば、蛍光発光層と燐光発光層とを積層する場合に、燐光発光層で生成する励起子を蛍光発光層に拡散させない、あるいは、キャリアバランスを調整する目的で、蛍光発光層と燐光発光層との間に設けられる層である。また、スペース層は、複数の燐光発光層の間に設けることもできる。
 スペース層は発光層間に設けられるため、電子輸送性と正孔輸送性を兼ね備える材料であることが好ましい。また、隣接する燐光発光層内の三重項エネルギーの拡散を防ぐため、三重項エネルギーが2.6eV以上であることが好ましい。スペース層に用いられる材料としては、上述の正孔輸送層に用いられるものと同様のものが挙げられる。
(障壁層)
 本発明の有機EL素子は、発光層に隣接する部分に、電子障壁層、正孔障壁層、トリプレット障壁層といった障壁層を有することが好ましい。ここで、電子障壁層とは、発光層から正孔輸送層へ電子が漏れることを防ぐ層であり、発光層と正孔輸送層との間に設けられる層である。また、正孔障壁層とは、発光層から電子輸送層へ正孔が漏れることを防ぐ層であり、発光層と電子輸送層との間に設けられる層である。
 トリプレット障壁層は、後述するように、発光層で生成する三重項励起子が、周辺の層へ拡散することを防止し、三重項励起子を発光層内に閉じ込めることによって三重項励起子の発光ドーパント材料以外の電子輸送層の分子上でのエネルギー失活を抑制する機能を有する。
 電子注入層は、電界強度0.04~0.5MV/cmの範囲において、10-6cm/Vs以上であることが望ましい。これにより陰極からの電子輸送層への電子注入が促進され、ひいては隣接する障壁層、発光層への電子注入も促進し、より低電圧での駆動を可能にするためである。
[電子機器]
 本発明の化合物を用いて得られる有機EL素子は、優れた性能を有するため、有機ELパネルモジュールなどの表示部品;テレビ、携帯電話、パーソナルコンピュータなどの表示装置;照明、車両用灯具の発光装置、などの電子機器に使用できる。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらにより何ら限定されるものではない。
合成実施例1(化合物2の合成)
(1)中間体1の合成
Figure JPOXMLDOC01-appb-C000187
 アルゴン雰囲気下、2,6-ジクロロアニリン1.0g(6.17mmol)、2-ブロモナフタレン2.68g(13.0mmol)、酢酸パラジウム28mg(0.123mmol)、トリt-ブチルホスフィンテトラフルオロボレート72mg(0.247mmol)、ナトリウムt-ブトキシド1.78g(18.5mmol)をトルエン15mLに溶かし、100℃で6時間攪拌した。反応終了後、水を加え、ジクロロメタンで抽出した。有機層を集め、濃縮後得られた固体をカラムクロマトグラフィーを用いて精製し、白色固体1.8gを得た。得られた固体は目的物である中間体1であり、マススペクトル分析の結果、分子量414.32に対し、m/e=414であった。(収率71%)
(2)化合物2の合成
Figure JPOXMLDOC01-appb-C000188
 アルゴン雰囲気下、中間体1 100mg(0.241mmol)、酢酸パラジウム2.7mg(0.0121mmol)、トリシクロヘキシルホスフィンテトラフルオロボレート9.0mg(0.0241mmol)、炭酸カリウム133mg(0.964mmol)をジメチルアセトアミド3mLに溶かし、140℃で6時間加熱した。反応終了後、水を加え、ジクロロメタンで抽出した。有機層を集め、濃縮後得られた固体をフラッシュカラムクロマトグラフィーを用いて精製し、黄色固体32mgを得た。得られた固体は目的物である化合物2であり、マススペクトル分析の結果、分子量341.40に対し、341であった。(収率39%)
合成実施例2(化合物5の合成)
(1)中間体3の合成
Figure JPOXMLDOC01-appb-C000189
 アルゴン雰囲気下、2,4,6-トリクロロアニリン1.0g(5.09mmol)、2-ブロモナフタレン2.21g(10.7mmol)、酢酸パラジウム22mg(0.102mmol)、トリt-ブチルホスフィンテトラフルオロボレート59mg(0.204mmol)、ナトリウムt-ブトキシド1.38g(15.3mmol)をトルエン15mLに溶かし、100℃で6時間攪拌した。反応終了後、水を加え、ジクロロメタンで抽出した。有機層を集め、濃縮後得られた固体をカラムクロマトグラフィーを用いて精製し、白色固体1.5gを得た。得られた固体は目的物である中間体3であり、マススペクトル分析の結果、分子量448.77に対し、m/e=448であった。(収率66%)
(2)中間体4の合成
Figure JPOXMLDOC01-appb-C000190
 アルゴン雰囲気下、中間体3 100mg(0.223mmol)、酢酸パラジウム2.5mg(0.0111mmol)、トリシクロヘキシルホスフィンテトラフルオロボレート6.4mg(0.0222mmol)、炭酸カリウム92mg(0.669mmol)をジメチルアセトアミド3mLに溶かし、140℃で6時間加熱した。反応終了後、水を加え、ジクロロメタンで抽出した。有機層を集め、濃縮後得られた固体をフラッシュカラムクロマトグラフィーを用いて精製し、黄色固体26mgを得た。得られた固体は目的物である中間体4であり、マススペクトル分析の結果、分子量375.85に対し、375であった。(収率30%)
(3)化合物5の合成
Figure JPOXMLDOC01-appb-C000191
 アルゴン雰囲気下、中間体4 20mg(0.0532mmol)、4-tert-ブチルフェニルボロン酸9.3mg(0.0639mmol)、酢酸パラジウム1.2mg(0.00532mmol)、トリt-ブチルホスフィンテトラフルオロボレート3.1mg(0.0106mmol)、炭酸カリウム14.7mg(0.106mmol)にジメトキシエタン2mLと水0.5mLを加え、80℃で12時間攪拌した。反応終了後、水を加え、ジクロロメタンで抽出した。有機層を集め、濃縮後得られた固体をカラムクロマトグラフィーを用いて精製し、黄色固体16mgを得た。得られた固体は目的物である化合物5であり、マススペクトル分析の結果、分子量473.61に対し、m/e=473であった。(収率64%)
合成実施例3(化合物7の合成)
Figure JPOXMLDOC01-appb-C000192
 アルゴン雰囲気下、中間体4 150mg(0.399mmol)、ボロン酸6 395mg(1.995mmol)、トリス(ジベンジリデンアセトン)ジパラジウム15mg(0.016mmol)、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル(SPhos)26mg(0.064mmol)、リン酸カリウム847mg(3.99mmol)にトルエン2mLを加え、160℃で7分間撹拌した。反応終了後、析出した固体をろ取し、トルエンとメタノールで洗浄し、黄色固体167mgを得た。得られた固体は目的物である化合物7であり、マススペクトル分析の結果、分子量493.6に対し、m/e=493であった。(収率83%)
合成実施例4(化合物9の合成)
Figure JPOXMLDOC01-appb-C000193
 アルゴン雰囲気下、中間体4 150mg(0.399mmol)、ボロン酸8 423mg(1.995mmol)、トリス(ジベンジリデンアセトン)ジパラジウム15mg(0.016mmol)、SPhos26mg(0.064mmol)、及びリン酸カリウム847mg(3.99mmol)にトルエン2mLを加え、160℃で7分間撹拌した。反応終了後、析出した固体をろ取し、トルエンとメタノールで洗浄し、黄色固体188mgを得た。得られた固体は目的物である化合物9であり、マススペクトル分析の結果、分子量507.58に対し、m/e=507であった。(収率93%)
合成実施例5(化合物11の合成)
Figure JPOXMLDOC01-appb-C000194
 アルゴン雰囲気下、中間体4 150mg(0.399mmol)、ボロン酸10 395mg(1.995mmol)、トリス(ジベンジリデンアセトン)ジパラジウム15mg(0.016mmol)、SPhos26mg(0.064mmol)、及びリン酸カリウム847mg(3.99mmol)にトルエン2mLを加え、160℃で5分間撹拌した。反応終了後、析出した固体をろ取し、トルエンとメタノールで洗浄し、黄色固体142mgを得た。得られた固体は目的物である化合物11であり、マススペクトル分析の結果、分子量493.6に対し、m/e=493であった。(収率72%)
合成実施例6(化合物17の合成)
Figure JPOXMLDOC01-appb-C000195
(1)2-ブロモ-7-ヨードナフタレンの合成
 アルゴン雰囲気下、2,7-ジブロモナフタレン5.0g(17mmol)を、無水テトラヒドロフラン80mLと無水トルエン40mLの混合溶媒に溶かし、ドライアイス/アセトン浴で-48℃に冷却した。これに、n-ブチルリチウム/ヘキサン溶液10.6mL(1.64mol/L、17mmol)を加え、-45℃で20分間、次いで-72℃で30分間撹拌した。反応混合物にヨウ素4.9g(19mmol)のテトラヒドロフラン溶液を加え、-72℃で1時間、次いで室温で2.5時間撹拌した。反応混合物を10質量%亜硫酸ナトリウム水溶液60mLで失活させ、トルエン150mLで抽出した。有機層を飽和食塩水30mLで洗浄し、硫酸マグネシウムで乾燥後、溶媒留去して減圧乾燥し、淡黄色固体5.66gを得た。得られた固体は目的物である2-ブロモ-7-ヨードナフタレンであり、マススペクトル分析の結果、分子量339に対し、m/e=339であった。(収率99%)
(2)中間体14の合成
 アルゴン雰囲気下、9H-カルバゾール2.55g(15mmol)、2-ブロモ-7-ヨードナフタレン5.7g(17mmol)、ヨウ化銅30mg(0.16mmol)、及びリン酸三カリウム7.5g(35mmol)を無水1,4-ジオキサン20mLに懸濁し、trans-1,2-ジアミノシクロヘキサン0.19mL(1.6mmol)を加え、10時間還流した。反応終了後、トルエン200mLを加え、無機物をろ別した。ろ液を濃縮して得られた褐色固体6.5gをカラムクロマトグラフィーを用いて精製し、白色針状晶3.8gを得た。得られた固体は目的物である中間体14であり、マススペクトル分析の結果、分子量332に対し、m/e=332であった。(収率68%)
(3)中間体15の合成
 アルゴン雰囲気下、2,2,6,6-テトラメチルピペリジン2.9g(20.6mmol)を無水テトラヒドロフラン30mLに溶かし、ドライアイス/アセトン浴で-43℃に冷却した。これに、n-ブチルリチウム/ヘキサン溶液12.5mL(1.64mol/L、20.5mmol)を加え、-36℃で20分撹拌後、-70℃に冷却した。これにトリイソプロポキシボラン7mL(30mmol)を滴下し、次いで中間体14 3.8g(10.2mmol)を溶かしたテトラヒドロフラン溶液20mLを加え、冷却浴中で10時間撹拌した。反応終了後、5質量%塩酸100mLを加え、室温で30分間撹拌後、酢酸エチル150mLで抽出した。有機層を飽和食塩水30mLで洗浄し、硫酸マグネシウムで乾燥後、溶媒留去し、黄色アモルファス固体4.9gを得た。これをカラムクロマトグラフィーを用いて精製し、黄色固体2.9gを得た。得られた固体は目的物である中間体15であり、マススペクトル分析の結果、分子量415に対し、m/e=415であった。(収率68%)
(4)中間体16の合成
 アルゴン雰囲気下、2,6-ジヨード-4-tert-ブチルアニリン1.27g(3.2mmol)、中間体15 2.9g(7.0mmol)、テトラキス(トリフェニルホスフィン)パラジウム0.36g(0.31mmol)、及び炭酸水素ナトリウム2.1g(25mmol)を、1,2-ジメトキシエタン40mLに懸濁し、水21mLを加えて11時間還流した。反応終了後、ジクロロメタン200mLで抽出し、有機層を硫酸マグネシウムで乾燥後、溶媒留去し、黄色アモルファス固体3.5gを得た。これをカラムクロマトグラフィーを用いて精製し、白色固体2.0gを得た。得られた固体は目的物である中間体16であり、マススペクトル分析の結果、分子量887に対し、m/e=887であった。(収率70%)
(5)化合物17の合成
 アルゴン雰囲気下、中間体16 1.0g(1.1mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)41mg(45μmol)、SPhos5mg(0.18mmol)、炭酸セシウム2.2g(6.7mmol)を無水キシレン100mLに懸濁し、10時間還流した。反応終了後、ろ別し、ろ物を水及びメタノールで洗浄して減圧乾燥し、淡緑色固体0.427gを得た。これをカラムクロマトグラフィーを用いて精製し、黄色固体0.37gを得た。得られた固体は目的物である化合物17であり、マススペクトル分析の結果、分子量727に対し、m/e=727であった。(収率47%)
合成実施例7(化合物22の合成)
Figure JPOXMLDOC01-appb-C000196
(1)中間体19の合成
 アルゴン雰囲気下、4-tert-ブチルフェニルボロン酸3.0g(17mmol)、2-ブロモ-7-ヨードナフタレン5.66g(17mmol)、及びテトラキス(トリフェニルホスフィン)パラジウム0.35g(0.30mmol)を1,2-ジメトキシエタン45mLに溶かし、2M炭酸ナトリウム水溶液23mL(45mmol)を加え、11時間還流した。反応終了後、トルエン150mLで抽出した。有機層を飽和食塩水30mLで洗浄し、硫酸マグネシウムで乾燥後、溶媒留去し、褐色固体(9.2g)を得た。これをカラムクロマトグラフィーを用いて精製し、白色固体4.45gを得た。得られた固体は目的物である中間体19であり、マススペクトル分析の結果、分子量338に対し、m/e=338であった。(収率77%)
(2)中間体20の合成
 アルゴン雰囲気下、2,2,6,6-テトラメチルピペリジン2.8g(20mmol)を無水テトラヒドロフラン30mLに溶かし、ドライアイス/アセトン浴で-40℃に冷却した。これにn-ブチルリチウム/ヘキサン溶液12mL(1.64mol/L、20mmol)を加え、-54℃で20分撹拌した。反応終了後、-65℃に冷却し、トリイソプロポキシボラン6mL(26mmol)を滴下し、次いで中間体19 4.45g(13mmol)を溶かしたテトラヒドロフラン溶液20mLを加え、冷却浴中で10時間撹拌した。反応終了後、5質量%塩酸70mLを加え、室温で30分間撹拌後、酢酸エチル200mLで抽出した。有機層を飽和食塩水30mLで洗浄し、硫酸マグネシウムで乾燥後、溶媒留去し、黄色アモルファス固体5.5gを得た。これをカラムクロマトグラフィーを用いて精製し、白色固体3.19gを得た。得られた固体は目的物である中間体20であり、マススペクトル分析の結果、分子量382に対し、m/e=382であった。(収率64%)
(3)中間体21の合成
 アルゴン雰囲気下、中間体20 3.19g(8.3mmol)、2,6-ジヨード-4-tert-ブチルアニリン1.5g(3.7mmol)、テトラキス(トリフェニルホスフィン)パラジウム0.43g(0.37mmol)、炭酸水素ナトリウム2.5g(30mmol)を1,2-ジメトキシエタン50mLに懸濁し、水25mLを加えて11時間還流した。反応混合物をジクロロメタン200mLで抽出した。有機層を硫酸マグネシウムで乾燥後、溶媒留去し、黄色アモルファス固体4.14gを得た。これをカラムクロマトグフラフィーを用いて精製し、白色固体2.47gを得た。得られた固体は目的物である中間体21であり、マススペクトル分析の結果、分子量821に対し、m/e=821であった。(収率81%)
(4)化合物22の合成
 アルゴン雰囲気下、中間体21 2.47g(3.0mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)0.11g(0.12mmol)、SPhos0.20g(0.49mmol)、炭酸セシウム5.9g(18mmol)を無水キシレン250mLに懸濁し、11時間還流した。反応終了後、ろ別し、ろ物を水及びメタノールで順に洗浄して減圧乾燥し、淡黄色針状晶1.88gを得た。これをカラムクロマトグラフィーを用いて精製し、黄色固体1.03gを得た。得られた固体は目的物である化合物22であり、マススペクトル分析の結果、分子量661に対し、m/e=661であった。(収率52%)
合成実施例8(化合物38の合成)
Figure JPOXMLDOC01-appb-C000197
(1)中間体35の合成
 アルゴン雰囲気下、2-ブロモ-7-ヨードナフタレン2.83g(16.7mmol)、ジフェニルアミン5.57g(16.7mmol)、ヨウ化銅30mg(0.16mmol)、ナトリウムt-ブトキシド2.2g(23mmol)を無水1,4-ジオキサン20mLに懸濁し、trans-1,2-ジアミノシクロヘキサン0.19mL(1.6mmol)を加え、110℃で10時間撹拌した。反応混合物をシリカパッドを通してろ別し、トルエン100mLで洗浄した。ろ液から溶媒留去し、減圧乾燥して濃褐色オイル6.7gを得た。これをカラムクロマトグラフィーを用いて精製し、白色固体4.56gを得た。得られた固体は目的物である中間体35であり、マススペクトル分析の結果、分子量373に対し、m/e=373であった。(収率68%)
(2)中間体36の合成
 アルゴン雰囲気下、2,2,6,6-テトラメチルピペリジン3.4g(24mmol)を無水テトラヒドロフラン35mLに溶かし、ドライアイス/アセトン浴で-30℃に冷却した。これに、n-ブチルリチウム/ヘキサン溶液14.7mL(1.64mol/L、24mmol)を加え、-20℃で20分撹拌後、-75℃に冷却した。これにトリイソプロポキシボラン8.3mL(36mmol)を滴下し、5分後、中間体35 4.5g(12mmol)を溶かしたテトラヒドロフラン溶液20mLを加え、冷却浴中で10時間撹拌した。反応終了後、5質量%塩酸100mLを加え、室温で30分間撹拌後、酢酸エチル150mLで抽出した。有機層を飽和食塩水30mLで洗浄し、硫酸マグネシウムで乾燥後、溶媒留去し、赤褐色アモルファス固体5.8gを得た。これをカラムクロマトグラフィーを用いて精製し、淡黄色固体2.94gを得た。得られた固体は目的物である中間体36であり、マススペクトル分析の結果、分子量417に対し、m/e=417であった。(収率59%)
(3)中間体37の合成
 アルゴン雰囲気下、2,6-ジヨード-4-tert-ブチルアニリン1.28g(3.19mmol)、中間体36 2.94g(7.0mmol)、テトラキス(トリフェニルホスフィン)パラジウム0.37g(0.32mmol)、及び炭酸水素ナトリウム2.1g(25mmol)を、1,2-ジメトキシエタン45mLに懸濁し、水22mLを加えて11時間還流した。反応終了後、ジクロロメタン150mLで抽出し、有機層を硫酸マグネシウムで乾燥後、溶媒留去し、黄色アモルファス固体3.8gを得た。これをカラムクロマトグラフィーを用いて精製し、黄色固体1.92gを得た。得られた固体は目的物である中間体37であり、マススペクトル分析の結果、分子量891に対し、m/e=891であった。(収率67%)
(4)化合物38の合成
 アルゴン雰囲気下、中間体37 1.92g(2.1mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)0.14g(0.34mmol)、炭酸セシウム4.1g(12.6mmol)を無水キシレン200mLに懸濁し、11時間還流した。反応終了後、ろ別し、ろ液から溶媒留去し、減圧乾燥して、黄色固体を得た。これをカラムクロマトグラフィーを用いて精製し、黄色固体1.6gを得た。得られた固体をトルエン40mLで再結晶して、黄色針状晶1.07gを得た。得られた固体は目的物である化合物38であり、マススペクトル分析の結果、分子量731に対し、m/e=731であった。(収率70%)
合成実施例9(化合物41の合成)
Figure JPOXMLDOC01-appb-C000198
(1)中間体39の合成
 アルゴン雰囲気下、中間体36(9.38g、22.4mmol、2.2eq)、4-クロロ-2,6-ジヨードアニリン (3.87g、10.2mmol)、Pd(PPh(0.589g、0.510mmol、5%Pd)、NaCO(8.00g、75mmol)を1,2-トルエン(230mL)とジオキサン(230mL)に懸濁し、HO(40mL)を加えて、13時間還流した。反応混合物をHO(150mL)で希釈し、固体をろ別、水、メタノールの順に洗浄、減圧乾燥して黄色固体を得た。これをカラムクロマトグラフィーで精製して白色固体(7.02g、収率79%)を得た。得られた固体は目的物である中間体39であり、マススペクトル分析の結果、分子量872.09に対し、m/e=872であった。
(2)中間体40の合成
 アルゴン雰囲気下、中間体39(5.62g、6.44mmol)、Pd(dba)(0.236g、0.258mmol、4%Pd)、SPhos(0.423g、1.03mmol)、CsCO(12.6g、38.7mmol、6eq)を無水キシレン(330mL)に懸濁し、10時間還流した。反応混合物をろ別し、水、メタノールで洗浄、減圧乾燥して暗黄色固体を得た。これをカラムクロマトグラフィーで精製して黄色固体(3.25g、収率71%)を得た。得られた固体は目的物である中間体40であり、マススペクトル分析の結果、分子量710.26に対し、m/e=710であった。
(3)化合物41の合成
 アルゴン雰囲気下、中間体40(0.83g、6.44mmol)、フェニルボロン酸(1.43g、11.7mmol)、Pd(dba)(430mg、0.047mmol、4%Pd)、SPhos(770mg、0.187mmol)、KPO(4.96g、23.4mmol)を無水キシレン(60mL)に懸濁し、2日間還流した。反応混合物をろ別し、水、メタノールで洗浄、減圧乾燥して暗黄色固体を得た。これをカラムクロマトグラフィーで精製して黄色固体(0.72g、収率82%)を得た。得られた固体は目的物である化合物41であり、マススペクトル分析の結果、分子量751.91に対し、m/e=751であった。
合成実施例10(化合物43の合成)
Figure JPOXMLDOC01-appb-C000199
(1)中間体42の合成
 アルゴン雰囲気下、中間体36(2.94g、7.0mmol、2.2eq)、4-(4-tert-ブチルフェニル)-2,6-ジヨードアニリン(3.05g、6.40mmol)、Pd(PPh(0.74g、0.64mmol、5%Pd)、NaHCO(4.3g、51mmol、3.6eq)を1,2-ジメトキシエタン(80mL)に懸濁し、HO(40mL)を加えて11時間還流した。反応混合物をCHCl(200mL)で抽出し、MgSOで乾燥、溶媒留去、減圧乾燥して褐色アモルファス固体(7.78g)を得た。これをカラムクロマトグラフィーで精製して黄色固体(4.80g、収率77%)を得た。得られた固体は目的物である中間体42であり、マススペクトル分析の結果、分子量969.8に対し、m/e=969であった。
(2)化合物43の合成
 アルゴン雰囲気下、中間体42(4.00g、4.12mmol)、Pd(dba)(0.15g、0.164mmol、4%Pd)、SPhos(0.27g、0.658mmol)、CsCO(8.1g、24.8mmol) を無水キシレン(400mL)に懸濁し、11時間還流した。反応混合物をろ別し、ろ液を溶媒留去、減圧乾燥して暗黄色固体を得た。これをカラムクロマトグラフィーで精製して黄色固体(2.43g、収率73%)を得た。得られた固体は目的物である化合物43であり、マススペクトル分析の結果、分子量808.04に対し、m/e=808であった。
合成実施例11(化合物48の合成)
Figure JPOXMLDOC01-appb-C000200
(1)中間体44の合成
 アルゴン雰囲気下、フェニルボロン酸(6.6g、54mmol)、2-ブロモ-7-ヨードナフタレン(18g、54mmol),Pd(PPh(1.3mg、1.1mmol)、NaCO(17g、160mmol)を1,2-ジメトキシエタン(160mL)に懸濁し、HO(80mL)を加えて11時間還流した。反応混合物をトルエン (200mL)で希釈し、無機物をろ別、ろ液を濃縮して褐色固体(19.8g)を得た。これをカラムクロマトグラフィーで精製して白色板状晶(11.5g、収率75%)を得た。得られた固体は目的物である中間体44であり、マススペクトル分析の結果、分子量283.16に対し、m/e=283であった。
(2)中間体45の合成
 アルゴン雰囲気下、2,2,6,6-テトラメチルピペリジン(11.5g、81.6mmol、2eq.)を無水THF(130mL)に溶かし、ドライアイス/アセトン浴で-50℃に冷却した。これに、n-BuLi/ヘキサン溶液(1.55mol/L、52.6mL、81.5mmol、1eq.)を加え、-50℃で30分撹拌後、-70℃に冷却した。これにB(OPr)(25mL、108mmol、2.7eq.)を滴下し、続いて中間体44/THF(11.5g、40.6mmol/60mL)を加え、冷却浴で10時間撹拌した。 反応混合物に10%HCl(200mL)を加え、室温で30分撹拌後、酢酸エチル(200mL)で抽出、有機層を飽和食塩水(50mL)で洗浄、MgSOで乾燥、溶媒留去して黄色固体(13.8g)を得た。これをカラムクロマトグラフィーで精製して黄色固体(8.67g、収率65%)を得た。得られた固体は目的物である中間体45であり、マススペクトル分析の結果、分子量326.98に対し、m/e=326であった。
(3)中間体46の合成
 アルゴン雰囲気下、4-クロロ-2,6-ジヨードアニリン(3.70g、9.75mmol)、中間体45(7.02g、21.46mmol、2.2eq.)、Pd(PPh(0.564g、0.488mmol)をトルエン(240mL)と1,4-ジオキサン(240mL)に懸濁し、2M NaCOaq.(35mL)を加えて24時間還流した。反応終了後、CHCl(200mL)で抽出し、 有機層をMgSOで乾燥、溶媒留去して黄色アモルファス固体を得た。これをカラムクロマトグラフィーで精製して淡黄色固体 (5.52g、収率78%)を得た。得られた固体は目的物である中間体46であり、マススペクトル分析の結果、分子量689.88に対し、m/e=689であった。
(4)中間体47の合成
 アルゴン雰囲気下、中間体46(5.10g、7.39mmol)、Pd(dba)(271mg、0.296mol)、SPhos(486mg、1.18mmol)、CsCO(14.5g、44.4mmol)を無水キシレン(600mL)に懸濁し、24時間還流した。反応溶液を濃縮し、HO、MeOHで洗浄して黄色固体を得た。これをクロロベンゼンに溶かしセライトろ過して黄色固体(2.35g、収率60%)を得た。得られた固体は目的物である中間体47であり、マススペクトル分析の結果、分子量528.05に対し、m/e=528であった。
(5)化合物48の合成
 アルゴン雰囲気下、フェニルボロン酸(10.3g、84mmol)、中間体47(2.5g、4.73mmol)、Pd(dba)(308mg、0.336mmol)、SPhos(552mg、1.35mmol)、KPO(35.7g、168mmol)をキシレン(500mL)に懸濁し、24時間還流した。反応混合物をセライトろ過し、黄色固体(2.5g)を得た。この固体をトルエンで懸洗し、黄色固体(2.44g、収率87%)を得た。得られた固体は目的物である化合物48であり、マススペクトル分析の結果、分子量569.7に対し、m/e=569であった。
合成実施例12(化合物51の合成)
Figure JPOXMLDOC01-appb-C000201
(1)中間体49の合成
 アルゴン雰囲気下、2,2,6,6-テトラメチルピペリジン(8.80g、62.4mmol、2eq)を無水THF(90mL)に溶かし、ドライアイス/アセトン浴で-50℃に冷却した。これにn-BuLi/ヘキサン(1.55mol/L、40.3mL、62.5mmol、1eq)を加えて-50℃で30分撹拌後、-70℃に冷却した。反応混合物にB(OPr) (20.0mL、86.7mmol、2.8eq)を滴下し、5分後、3-ブロモ-9-フェニルカルバゾール/THF溶液(10.1g、31.4mmol/45mL)を加えて冷却浴中で10時間撹拌した。反応混合物に10%HCl(130mL)を加え、室温で30分撹拌した後、酢酸エチル(200mL)で抽出、有機層を飽和食塩水(30mL)で洗浄、MgSOで乾燥、溶媒留去、減圧乾燥して黄色アモルファス固体(10.6g)を得た。これをカラムクロマトグラフィーで精製して淡黄色固体(4.20g、収率37%)を得た。得られた固体は目的物である中間体49であり、マススペクトル分析の結果、分子量366.02に対し、m/e=366であった。
(2)中間体50の合成
 アルゴン雰囲気下、中間体49(4.20g、11.5mmol、2.3eq)、4-(tert-ブチル)-2,6-ジヨードアニリン(2.00g、4.99mmol)、Pd(PPh(0.58g、0.50mmol、5%Pd)、NaHCO(3.5g、3.6eq)を1,2-ジメトキシエタン(70mL)に懸濁し、HO(35mL)を加えて11時間還流した。反応混合物をCHCl(250mL)で抽出し、MgSOで乾燥、溶媒留去、減圧乾燥して黄色アモルファス固体(5.6g)を得た。これをカラムクロマトグラフィーで精製して白色固体 (3.25g、収率82%)を得た。得られた固体は目的物である中間体50であり、マススペクトル分析の結果、分子量789.6に対し、m/e=789であった。
(3)化合物51の合成
 アルゴン雰囲気下、中間体50(3.25g、4.12mmol)、Pd(dba)(0.15g、0.16mol、4%Pd)、SPhos(0.27g、0.66mmol)、CsCO(8.1g、24.8mmol)を無水キシレン(320mL)に懸濁し、11時間還流した。反応混合物をろ別し、ろ液を溶媒留去、減圧乾燥して褐色固体(3.27g)を得た。これをカラムクロマトグラフィーで精製して黄色固体(1.40g)を得た。得られた固体をトルエン(40mL)から再結晶して黄色板状晶(1.14g、収率54%)を得た。得られた固体は目的物である化合物51であり、マススペクトル分析の結果、分子量627.77に対し、m/e=627であった。
合成実施例13(化合物60の合成)
Figure JPOXMLDOC01-appb-C000202
(1)中間体52の合成
 アルゴン雰囲気下、2,3-ナフタレンジオール(475g、2.97mol)、KCO(410g、2.97mol)をDMF(3L)に懸濁し、100℃で3時間攪拌した。放冷した後、攪拌を続けながらMeI(421g、2.97mol)を滴下し、室温で12時間攪拌した。反応終了後、HOと酢酸エチルを加え抽出、有機層を濃縮し、黒色オイル(904g)を得た。これをカラムクロマトグラフィーを用いて精製した後、ヘプタンで洗浄し、白色固体(184g、収率36%)を得た。得られた固体は目的物である中間体52であり、マススペクトル分析の結果、分子量174.2に対し、m/e=174であった。
(2)中間体53の合成
 アルゴン雰囲気下、中間体52(174g、1mol)をアセトニトリル(1.7L)に溶かし、p-トルエンスルホン酸一水和物(190g、1mol)を加えた。N-クロロスクシンイミド(133g、1mol) を加え、室温で12時間攪拌した。反応終了後、HOと酢酸エチルを加え抽出、有機層を濃縮し、橙色オイル(904g)を得た。これをカラムクロマトグラフィーを用いて精製した後、ヘプタンとトルエンで洗浄して白色固体(99g、収率48%)を得た。得られた固体は目的物である中間体53であり、マススペクトル分析の結果、分子量208.6に対し、m/e=208であった。
(3)中間体54の合成
 アルゴン雰囲気下、中間体53(99g、474mmol)をクロロホルム(940mL)に溶かし、トリエチルアミン(79mL、569mmol)を加え0℃に冷却した。0℃に保ちながら無水トリフラート(147g、522mmol)を滴下しながら加え、室温で3時間攪拌した。反応終了後、溶媒留去、減圧乾燥して赤色オイル(173g)を得た。これをカラムクロマトグラフィーを用いて精製し白色固体(139g、収率86%)を得た。得られた固体は目的物である中間体54であり、マススペクトル分析の結果、分子量340.7に対し、m/e=340であった。
(4)中間体55の合成
 アルゴン雰囲気下、中間体54(135g、396mmol、2.2eq)、 ボロン酸XX(65g、188mmol)、Pd(PPh(10.9g、9.42mmol、5%Pd)、NaCO(79.9g、4eq)を1,2-ジメトキシエタン(2L)に懸濁し、HO(380mL)を加えて3日間78℃で攪拌した。反応混合物をトルエンで抽出し、MgSOで乾燥、溶媒留去、減圧乾燥して黒色オイルを得た。これをカラムクロマトグラフィーで精製して白色固体 (56g、収率62%)を得た。得られた固体は目的物である中間体55であり、マススペクトル分析の結果、分子量474.3に対し、m/e=474であった。
(5)中間体56の合成
 アルゴン雰囲気下、中間体55(99g、474mmol)をジクロロメタン(940mL)に溶かし0℃に冷却した。0℃に保ちながらBBr(147g、522mmol)を滴下しながら加え、室温で12時間攪拌した。反応終了後、HOを滴下し析出した固体をろ取した後、酢酸エチルで懸洗し、白色固体(63g、収率81%)を得た。得られた固体は目的物である中間体56であり、マススペクトル分析の結果、分子量446.3に対し、m/e=446であった。
(6)中間体57の合成
 アルゴン雰囲気下、中間体56(62g、139mmol)、p-トルエンスルホン酸一水和物(2.64g、13.9mmol)をキシレン(1.2L)に溶かし140℃で2時間攪拌した。反応終了後、カラムクロマトグラフィーで精製し、白色固体(50g、収率84%)を得た。得られた固体は目的物である中間体57であり、マススペクトル分析の結果、分子量428.3に対し、m/e=428であった。
(7)中間体58の合成
 アルゴン雰囲気下、中間体57(48g、112mmol)をクロロホルム(500mL)に溶かし、トリエチルアミン(23.4mL、168mmol)を加え0℃に冷却した。0℃に保ちながら無水トリフラート(33g、157mmol)を滴下しながら加え、室温で12時間攪拌した。反応終了後、カラムクロマトグラフィーを用いて精製し白色固体(50g、収率80%)を得た。得られた固体は目的物である中間体58であり、マススペクトル分析の結果、分子量560.3に対し、m/e=560であった。
(8)中間体59の合成
 アルゴン雰囲気下、中間体58(40.0g、71.4mmol)、Pd(dba)(3.92g、4.28mmol、6%Pd)、XPhos(4.08g、8.57mmol)、KPO(45.5g、214mmol) を無水キシレン(860mL)に懸濁し、4時間還流した。放冷後、析出した固体をろ取した。これをシリカゲルカラムクロマトグラフィーを通した後、キシレンで加熱懸洗し黄色固体(20g、収率68%)を得た。得られた固体は目的物である中間体59であり、マススペクトル分析の結果、分子量410.3に対し、m/e=410であった。
(9)化合物60の合成
 アルゴン雰囲気下、4-シアノフェニルボロン酸(6.45g、43.9mmol)、中間体59(3.00g、7.31mmol)、Pd(dba)(536mg、0.585mmol)、SPhos(961mg、2.34mmol)、KPO(31g、146mmol)をDMF(360mL)に懸濁し、100℃で3.5時間攪拌した。反応終了後、溶媒を留去、シリカゲルカラムクロマトグラフィーを用いて精製し、黄色固体(1.86g、収率47%)を得た。得られた固体は目的物である化合物60であり、マススペクトル分析の結果、分子量543.6に対し、m/e=543であった。
<有機EL素子の作製>
有機EL素子を以下のように作製し、評価した。
(実施例1)
 25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板(ジオマテック社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。ITOの膜厚は、130nmとした。
洗浄後の前記ガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして化合物HI-1を蒸着し、膜厚5nmの正孔注入層を形成した。
 この正孔注入層の上に、化合物HT-1を蒸着し、膜厚80nmの第一正孔輸送層を形成した。
 続けて、この第一正孔輸送層の上に、化合物HT-2を蒸着し、膜厚10nmの第二正孔輸送層を形成した。
 続けて、この第二正孔輸送層の上に、化合物BH-1と合成実施例1で得られた化合物2(ドーパント材料)を共蒸着し、膜厚25nmの発光層を形成した。発光層内における化合物2(ドーパント材料)の濃度を4質量%とした。
 続けて、この発光層の上に、ET-1を蒸着し、膜厚10nmの第一電子輸送層を形成した。
 続けて、この第一電子輸送層の上に、ET-2を蒸着し、膜厚15nmの第二電子輸送層を形成した。
 さらに、この第二電子輸送層の上に、フッ化リチウム(LiF)を蒸着し、膜厚1nmの電子注入性電極を形成した。
 そして、この電子注入性電極の上に、金属アルミニウム(Al)を蒸着し、膜厚80nmの金属陰極を形成した。
 実施例1の有機EL素子は、下記構成とした。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-1:化合物2(25:4質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
 なお、括弧内の数字は、膜厚(単位:nm)を示す。
Figure JPOXMLDOC01-appb-C000203
Figure JPOXMLDOC01-appb-C000204
Figure JPOXMLDOC01-appb-C000205
Figure JPOXMLDOC01-appb-C000206
(実施例2)
 実施例1の発光層における化合物2(ドーパント材料)に代えて、合成実施例2で得られた化合物5を用いたこと以外、実施例1と同様にして有機EL素子を作製した。
 実施例2の有機EL素子は、下記構成である。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-1:化合物5(25:4質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例3)
 実施例1の発光層におけるBH-1(ホスト材料)に代えて、BH-2を用いたこと以外、実施例1と同様にして有機EL素子を作製した。
 実施例3の有機EL素子は、下記構成である。
ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-2:化合物2(25:4質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例4)
 実施例2の発光層におけるBH-1(ホスト材料)に代えて、BH-2を用いたこと以外、実施例2と同様にして有機EL素子を作製した。
 実施例4の有機EL素子は、下記構成である。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-2:化合物5(25:4質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例5)
 実施例1の発光層におけるBH-1(ホスト材料)に代えて、BH-3を用いたこと以外、実施例1と同様にして有機EL素子を作製した。
 実施例5の有機EL素子は、下記構成である。
ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-3:化合物2(25:4質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例6)
 実施例2の発光層におけるBH-1(ホスト材料)に代えて、BH-3を用いたこと以外、実施例2と同様にして有機EL素子を作製した。
 実施例6の有機EL素子は、下記構成である。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-3:化合物5(25:4質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例7)
 実施例1の発光層におけるBH-1(ホスト材料)に代えて、BH-4を用いたこと以外、実施例1と同様にして有機EL素子を作製した。
 実施例7の有機EL素子は、下記構成である。
ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-4:化合物2(25:4質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例8)
 実施例2の発光層における化合物2(ドーパント材料)の濃度を4質量%に代えて、2質量%としたこと以外、実施例2と同様にして有機EL素子を作製した。
 実施例8の有機EL素子は、下記構成である。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-1:化合物5(25:2質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例9)
 実施例8の発光層におけるBH-1(ホスト材料)に代えて、BH-2を用いたこと以外、実施例8と同様にして有機EL素子を作製した。
 実施例9の有機EL素子は、下記構成である。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-2:化合物5(25:2質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例10)
 実施例8の発光層におけるBH-1(ホスト材料)に代えて、BH-5を用いたこと以外、実施例8と同様にして有機EL素子を作製した。
 実施例10の有機EL素子は、下記構成である。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-5:化合物5(25:2質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例11)
 実施例8の発光層におけるBH-1(ホスト材料)に代えて、BH-6を用いたこと以外、実施例8と同様にして有機EL素子を作製した。
 実施例11の有機EL素子は、下記構成である。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-6:化合物5(25:2質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例12)
 実施例8の発光層におけるBH-1(ホスト材料)に代えて、BH-7を用いたこと以外、実施例8と同様にして有機EL素子を作製した。
 実施例12の有機EL素子は、下記構成である。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-7:化合物5(25:2質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例13)
 実施例8の発光層におけるBH-1(ホスト材料)に代えて、BH-8を用いたこと以外、実施例8と同様にして有機EL素子を作製した。
 実施例13の有機EL素子は、下記構成である。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-8:化合物5(25:2質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例14)
 実施例8の発光層におけるBH-1(ホスト材料)に代えて、BH-9を用いたこと以外、実施例8と同様にして有機EL素子を作製した。
 実施例14の有機EL素子は、下記構成である。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-9:化合物5(25:2質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例15)
 実施例8の発光層におけるBH-1(ホスト材料)に代えて、BH-10を用いたこと以外、実施例8と同様にして有機EL素子を作製した。
 実施例15の有機EL素子は、下記構成である。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-10:化合物5(25:2質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例16)
 実施例8の発光層におけるBH-1(ホスト材料)に代えて、BH-11を用いたこと以外、実施例8と同様にして有機EL素子を作製した。
 実施例16の有機EL素子は、下記構成である。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-11:化合物5(25:2質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例17)
 実施例8の発光層におけるBH-1(ホスト材料)に代えて、BH-12を用いたこと以外、実施例8と同様にして有機EL素子を作製した。
 実施例17の有機EL素子は、下記構成である。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-12:化合物5(25:2質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例18)
 実施例8の発光層におけるBH-1(ホスト材料)に代えて、BH-13を用いたこと以外、実施例8と同様にして有機EL素子を作製した。
 実施例18の有機EL素子は、下記構成である。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-13:化合物5(25:2質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例19)
 実施例8の発光層におけるBH-1(ホスト材料)に代えて、BH-14を用いたこと以外、実施例8と同様にして有機EL素子を作製した。
 実施例19の有機EL素子は、下記構成である。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-14:化合物5(25:2質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例20)
 実施例8の発光層におけるBH-1(ホスト材料)に代えて、BH-15を用いたこと以外、実施例8と同様にして有機EL素子を作製した。
 実施例20の有機EL素子は、下記構成である。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-15:化合物5(25:2質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例21)
 実施例8の発光層におけるBH-1(ホスト材料)に代えて、BH-16を用いたこと以外、実施例8と同様にして有機EL素子を作製した。
 実施例21の有機EL素子は、下記構成である。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-16:化合物5(25:2質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例22)
 実施例1の発光層における化合物2(ドーパント材料)に代えて、合成実施例3で得られた化合物7を用い、化合物7の濃度を2質量%としたこと以外、実施例1と同様にして有機EL素子を作製した。
 実施例22の有機EL素子は、下記構成である。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-1:化合物7(25:2質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例23)
 実施例1の発光層における化合物2(ドーパント材料)に代えて、合成実施例4で得られた化合物9を用い、化合物9の濃度を2質量%としたこと以外、実施例1と同様にして有機EL素子を作製した。
 実施例23の有機EL素子は、下記構成である。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-1:化合物9(25:2質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例24)
 実施例1の発光層における化合物2(ドーパント材料)に代えて、合成実施例5で得られた化合物11を用い、化合物11の濃度を2質量%としたこと以外、実施例1と同様にして有機EL素子を作製した。
 実施例24の有機EL素子は、下記構成である。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-1:化合物11(25:2質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例25)
 実施例1の発光層における化合物2(ドーパント材料)に代えて、合成実施例6で得られた化合物17を用い、化合物17の濃度を2質量%としたこと以外、実施例1と同様にして有機EL素子を作製した。
 実施例25の有機EL素子は、下記構成である。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-1:化合物17(25:2質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例26)
 実施例1の発光層における化合物2(ドーパント材料)に代えて、合成実施例7で得られた化合物22を用い、化合物22の濃度を2質量%としたこと以外、実施例1と同様にして有機EL素子を作製した。
 実施例26の有機EL素子は、下記構成である。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-1:化合物22(25:2質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例27)
 実施例1の発光層における化合物2(ドーパント材料)に代えて、合成実施例8で得られた化合物38(ドーパント材料)を用い、化合物38の濃度を2質量%としたこと以外、実施例1と同様にして有機EL素子を作製した。
 実施例27の有機EL素子は、下記構成である。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-1:化合物38(25:2質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例28)
 実施例1の発光層における化合物2(ドーパント材料)に代えて、合成実施例9で得られた化合物41(ドーパント材料)を用い、化合物41の濃度を2質量%としたこと以外、実施例1と同様にして有機EL素子を作製した。
 実施例28の有機EL素子は、下記構成である。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-1:化合物41(25:2質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例29)
 実施例1の発光層における化合物2(ドーパント材料)に代えて、合成実施例10で得られた化合物43(ドーパント材料)を用い、化合物43の濃度を2質量%としたこと以外、実施例1と同様にして有機EL素子を作製した。
 実施例29の有機EL素子は、下記構成である。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-1:化合物43(25:2質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例30)
 実施例1の発光層における化合物2(ドーパント材料)に代えて、合成実施例11で得られた化合物48(ドーパント材料)を用い、化合物48の濃度を2質量%としたこと以外、実施例1と同様にして有機EL素子を作製した。
 実施例30の有機EL素子は、下記構成である。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-1:化合物48(25:2質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例31)
 実施例1の発光層における化合物2(ドーパント材料)に代えて、合成実施例12で得られた化合物51(ドーパント材料)を用い、化合物51の濃度を2質量%としたこと以外、実施例1と同様にして有機EL素子を作製した。
 実施例31の有機EL素子は、下記構成である。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-1:化合物51(25:2質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例32)
 実施例1の発光層における化合物2(ドーパント材料)に代えて、合成実施例13で得られた化合物60(ドーパント材料)を用い、2質量%としたこと以外、実施例1と同様にして有機EL素子を作製した。
 実施例32の有機EL素子は、下記構成である。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-1:化合物60(25:2質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例33)
 実施例1の正孔注入層における化合物HI-1に代えて、以下の化合物HI-2を用いたこと、並びに発光層における化合物2(ドーパント材料)に代えて、以下の化合物61を2質量%用いたこと以外、実施例1と同様にして有機EL素子を作製した。
 実施例33の有機EL素子は、下記構成である。
 ITO(130)/HI-2(5)/HT-1(80)/HT-2(10)/BH-1:化合物61(25:2質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
Figure JPOXMLDOC01-appb-C000207
(実施例34)
 実施例1の正孔注入層における化合物HI-1に代えて,化合物HI-2を用いたこと、並びに発光層における化合物2(ドーパント材料)に代えて、化合物61を用いたこと以外、実施例1と同様にして有機EL素子を作製した。
 実施例34の有機EL素子は、下記構成である。
 ITO(130)/HI-2(5)/HT-1(80)/HT-2(10)/BH-1:化合物61(25:4質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例35)
 実施例33の発光層におけるBH-1に代えて、BH-2を用いたこと以外、実施例33と同様にして有機EL素子を作製した。
 実施例35の有機EL素子は、下記構成である。
 ITO(130)/HI-2(5)/HT-1(80)/HT-2(10)/BH-2:化合物61(25:2質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例36)
 実施例34の発光層におけるBH-1に代えて、BH-2を用いたこと以外、実施例34と同様にして有機EL素子を作製した。
 実施例36の有機EL素子は、下記構成である。
 ITO(130)/HI-2(5)/HT-1(80)/HT-2(10)/BH-2:化合物61(25:4質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例37)
 実施例1の正孔注入層における化合物HI-1に代えて、化合物HI-2を用いたこと、並びに発光層における化合物2(ドーパント材料)に代えて、以下の化合物62を2質量%用いたこと以外、実施例1と同様にして有機EL素子を作製した。
 実施例37の有機EL素子は、下記構成である。
 ITO(130)/HI-2(5)/HT-1(80)/HT-2(10)/BH-1:化合物62(25:2質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
Figure JPOXMLDOC01-appb-C000208
(実施例38)
 実施例1の正孔注入層における化合物HI-1に代えて、化合物HI-2を用いたこと、並びに発光層における化合物2(ドーパント材料)に代えて、化合物62を用いたこと以外、実施例1と同様にして有機EL素子を作製した。
 実施例38の有機EL素子は、下記構成である。
 ITO(130)/HI-2(5)/HT-1(80)/HT-2(10)/BH-1:化合物62(25:4質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例39)
 実施例37の発光層におけるBH-1に代えて、BH-2を用いたこと以外、実施例37と同様にして有機EL素子を作製した。
 実施例39の有機EL素子は、下記構成である。
 ITO(130)/HI-2(5)/HT-1(80)/HT-2(10)/BH-2:化合物62(25:2質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(実施例40)
 実施例38の発光層におけるBH-1に代えて、BH-2を用いたこと以外、実施例38と同様にして有機EL素子を作製した。
 実施例40の有機EL素子は、下記構成である。
 ITO(130)/HI-2(5)/HT-1(80)/HT-2(10)/BH-2:化合物62(25:4質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(比較例1)
 実施例1の発光層における化合物1(ドーパント材料)に代えて、比較化合物1を用いたこと以外、実施例1と同様にして有機EL素子を作製した。
 比較例1の有機EL素子は、下記構成である。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-1:比較化合物1(25:4質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(比較例2)
 比較例1の発光層における比較化合物1(ドーパント材料)に代えて、比較化合物2を用いたこと以外、比較例1と同様にして有機EL素子を作製した。
 比較例2の有機EL素子は、下記構成である。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-1:比較化合物2(25:4質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(比較例3)
 比較例2の発光層におけるBH-1(ホスト材料)に代えて、BH-2を用いたこと以外、比較例2と同様にして有機EL素子を作製した。
 比較例3の有機EL素子は、下記構成である。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-2:比較化合物2(25:4質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(比較例4)
 比較例2の発光層におけるBH-1(ホスト材料)に代えて、BH-3を用いたこと以外、比較例2と同様にして有機EL素子を作製した。
 比較例4の有機EL素子は、下記構成である。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-3:比較化合物2(25:4質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(比較例5)
 比較例2の発光層におけるBH-1(ホスト材料)に代えて、BH-4を用いたこと以外、比較例2と同様にして有機EL素子を作製した。
 比較例5の有機EL素子は、下記構成である。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-4:比較化合物2(25:4質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
(比較例6)
 比較例1の発光層における比較化合物1(ドーパント材料)の濃度を4質量%に代えて、2質量%としたこと以外、比較例1と同様にして有機EL素子を作製した。
 比較例6の有機EL素子は、下記構成である。
 ITO(130)/HI-1(5)/HT-1(80)/HT-2(10)/BH-1:比較化合物1(25:2質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
Figure JPOXMLDOC01-appb-C000209
<有機EL素子の評価>
 作製した有機EL素子について、以下の評価を行った。評価結果を表1-1、表1-2、表1-3及び表1-4に示す。
・駆動電圧
 電流密度が10mA/cmとなるように有機EL素子に電圧を印加したときの電圧(単位:V)を計測した。
・CIE1931色度、及び主ピーク波長λp
 電流密度が10mA/cmとなるように有機EL素子に電圧を印加したときのCIE1931色度座標(x、y)を、分光放射輝度計CS-1000(コニカミノルタ株式会社製)を用いて計測した。主ピーク波長λp(単位:nm)は、得られた上記分光放射輝度スペクトルから求めた。
Figure JPOXMLDOC01-appb-T000210
Figure JPOXMLDOC01-appb-T000211
Figure JPOXMLDOC01-appb-T000212
Figure JPOXMLDOC01-appb-T000213
 表1-1、表1-2、表1-3及び表1-4から分かるように、比較化合物1は、CIEyの値が0.29と高い値を示している。これは、膜内での分子同士の相互作用により、緑色領域の発光ピークの増大によるものである。このような長波長側の発光の増大は、平面性の高い分子では一般に見られる現象であり、比較化合物2のように立体障害基の導入により抑制できることが知られている。しかし、窒素原子を平面性の高い骨格内に含んだ構造の化合物2は、立体障害基を導入することなく、膜内での分子同士の相互作用が抑制できることを確認した。置換基を導入した化合物5においても、同様の効果が得られることが色度の値から判断できる。
(実施例41)
 合成実施例1で得られた化合物2を日立ハイテクサイエンス社製 分光光度計U-3310を用いて測定したところ、423nmに吸収ピーク波長が観測された。また、この化合物2を蛍光スペクトル測定装置日立ハイテクサイエンス社製 分光蛍光光度計F-7000を用いて測定したところ、349nmでの励起における蛍光発光ピーク波長が432nmにて観測された。
 また、半値幅を、次のようにして測定した。
 化合物2を溶媒(トルエン)に溶解(試料5[μmol/mL])し、蛍光測定用試料とした。石英セルへ入れた蛍光測定用試料に室温(300[K])で励起光を照射し、波長を変えながら蛍光強度を測定した。フォトルミネッセンススペクトルは、縦軸を蛍光強度、横軸を波長とした。蛍光の測定に用いた装置は、日立ハイテクサイエンス 分光蛍光光度計F-7000である。
 このフォトルミネッセンススペクトルから化合物2の半値幅(nm)を測定した。フォトルミネッセンススペクトル測定結果を、図2に示す。その結果、化合物2の半値幅は16nmであった。
 また、PLQYを、次のようにして測定した。
 化合物2について、浜松ホトニクス社製 絶対PL量子収率測定装置 Quantaurus-QYを用いて、トルエン溶液で濃度を5[μmol/mL]で測定した結果、PLQYの値は83%であった。
 また、一重項エネルギーEgSを、以下のようにして求めた。
 化合物2のトルエン溶液(20μmol/mL)を日立ハイテクサイエンス社製 分光光度計U-3310を用い吸収スペクトルを測定した。この吸収スペクトルは、縦軸が吸光度、横軸が波長であり、最も長波長側のピークの立ち下がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を求めた。この波長値を次に示す換算式でエネルギー値に換算した値をEgSとした。
  換算式:EgS[eV]=1239.85/λedge
 なお、吸収スペクトルの長波長側の立ち下がりに対する接線は以下のように引いた。吸収スペクトルの極大値のうち、最も長波長側の極大値から長波長方向にスペクトル曲線上を移動する際に、曲線上の各点における接線を考える。この接線は、曲線が立ち下がるにつれ(すなわち縦軸の値が減少するにつれ)、傾きが減少しその後増加することを繰り返す。傾きの値が最も長波長側で極小値をとる点において引いた接線を当該吸収スペクトルの長波長側の立ち下がりに対する接線とする。
 上記のようにして求めた化合物2の一重項エネルギーは、2.85eVであった。化合物2の吸収スペクトルを、図3に示した。
 このように、本願の化合物2は、半値幅が狭く、高い色純度、シャープなスペクトルを有する。また、本願の化合物2は、置換基を有さずに、高いPLQYを示す。さらに、本願の化合物2は、432nmと深い青色発光を示す。
  1 有機エレクトロルミネッセンス素子
  2 基板
  3 陽極
  4 陰極
  5 発光層
  6 正孔注入層/正孔輸送層
  7 電子注入層/電子輸送層
 10 発光ユニット
 

Claims (40)

  1.  陰極と、陽極と、該陰極と陽極の間に存在する有機層とを有する有機エレクトロルミネッセンス素子であって、該有機層は蛍光発光層を含む1又は複数の層を有し、該蛍光発光層が、下記式(P)で表される第1の化合物及び該第1の化合物と同一ではない第2の化合物を含む有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001

    [式中、式(P)において、Zは、CRまたはNである。
     π1は、置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は置換もしくは無置換の環形成原子数5~50の芳香族複素環である。
     π2は、置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は置換もしくは無置換の環形成原子数5~50の芳香族複素環である。
     R、R及びRは、それぞれ独立に、水素原子または置換基を表し、R、R及びRが置換基を表す場合、R、R及びRはそれぞれ独立に、ハロゲン原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数1~20のアルケニル基、置換もしくは無置換の炭素数1~20のアルキニル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、アミノ基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の炭素数1~20のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、-Si(R101)(R102)(R103)で表される基、-N(R104)(R105)で表される基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である。
     R101~R105は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である。n、mは1以上4以下の整数である。
     隣接するR同士が互いに結合して環構造を形成してもよく、互いに結合することなく、環を形成しなくてもよい。また、隣接するR同士が互いに結合して環構造を形成してもよく、互いに結合することなく、環を形成しなくてもよい。さらに、隣接するR同士が互いに結合して環構造を形成してもよく、互いに結合することなく、環を形成しなくてもよい。]
  2.  前記式(P)で表される第1の化合物が、下記式(Q)で表される化合物を含む、請求項1に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000002

    [式中、式(Q)において、
     ZはCR又はN、ZはCR又はN、ZはCR又はN、ZはCR又はN、ZはCR又はN、ZはCR又はN、ZはCR又はN、ZはCR又はN、ZはCR又はN、Z10はCR10又はN、Z11はCR11又はNである。
     R~R11は、それぞれ独立に、水素原子または置換基を表し、R~R11が置換基を表す場合は、それぞれ独立に、ハロゲン原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数1~20のアルケニル基、置換もしくは無置換の炭素数1~20のアルキニル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、アミノ基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の炭素数1~20のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、-Si(R101)(R102)(R103)で表される基、-N(R104)(R105)で表される基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である。
     R101~R105は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である。
     R~Rにおいて、隣接する置換基同士が互いに結合して環構造を形成してもよく、互いに結合することなく、環を形成しなくてもよい。R~Rにおいて、隣接する置換基同士が互いに結合して環構造を形成してもよく、互いに結合することなく、環を形成しなくてもよい。R~R11において、隣接する置換基同士が互いに結合して環構造を形成してもよく、互いに結合することなく、環を形成しなくてもよい。]
  3.  前記式(P)で表される第1の化合物が、下記式(1)で表される化合物を含む、請求項1又は2に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000003

    [式中、式(1)において、
     RとR、RとR、RとR、RとR、RとR、RとR、RとR10、及び、R10とR11から選ばれる各対のそれぞれにおいて、RとRn+1(nは1、2、4~6、及び8~10から選ばれる整数を表す)は互いに結合して、RとRn+1が結合する2つの環形成炭素原子と共に、炭素原子、酸素原子、硫黄原子、窒素原子から構成される原子数3以上の環構造を形成してもよく、又はRとRn+1は互いに結合することなく、環を形成しなくてもよい。この環構造を構成する原子のうち、置換基を有しうる原子は水素原子または置換基を有し、該置換基は、それぞれ独立に、ハロゲン原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数1~20のアルケニル基、置換もしくは無置換の炭素数1~20のアルキニル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、アミノ基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の炭素数1~20のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、-Si(R101)(R102)(R103)で表される基、-N(R104)(R105)で表される基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基から選ばれる。それら置換基同士が結合してさらなる環構造を形成してもよい。なお、前記原子数3以上の環の原子数には、前記置換基の原子数は含まない。
     前記原子数3以上の環構造を形成しないR~R11は、水素原子または置換基を表し、R~R11が置換基を表す場合、R~R11は前記と同じである。]
  4.  RとRn+1が結合する2つの環形成炭素原子と共に、炭素原子、酸素原子、硫黄原子、窒素原子から構成される原子数3以上の環が、下記式(2)~(8)から選ばれるいずれかの環である、請求項3に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000004

    (式(2)~(8)において、*1と*2、*3と*4、*5と*6、*7と*8、*9と*10、*11と*12及び*13と*14のそれぞれは、RとRn+1が結合する前記2つの環形成炭素原子を表し、Rが結合する環形成炭素原子は、*1と*2、*3と*4、*5と*6、*7と*8、*9と*10、*11と*12及び*13と*14が表す2つの環形成炭素原子のどちらであってもよい。
     XはC(R23)(R24)、NR25、O、Sから選ばれる。R12~R25は、前記R~R11と同じである。
     R12~R17及びR23~R24は、隣接する基同士で互いに結合して環構造を形成してもよい。)
  5.  RとRn+1が結合する2つの環形成炭素原子と共に、炭素原子、酸素原子、硫黄原子、窒素原子から構成される原子数3以上の環が、下記式(9)~(11)から選ばれるいずれかの環である、請求項3又は4に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000005

    (式(9)~(11)において、*1と*2、及び*3と*4のそれぞれは、RとRn+1が結合する前記2つの環形成炭素原子を表し、Rが結合する環形成炭素原子は、*1と*2、又は*3と*4が表す2つの環形成炭素原子のどちらであってもよい。
     R31~R37及びR41~R44は、前記R12~R25と同じであり、Xは、前記Xと同じである。
     R31~R37及びR41~R44は、隣接する基同士で互いに結合して環構造を形成してもよい。)
  6.  RとRn+1が結合する2つの環形成炭素原子と共に、炭素原子、酸素原子、硫黄原子、窒素原子から構成される原子数3以上の環が、下記式(9)及び(10)から選ばれるいずれかの環である請求項5に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000006

    (式(9)又は(10)において、*1と*2は、RとRn+1が結合する前記2つの環形成炭素原子を表し、Rが結合する環形成炭素原子は、*1と*2が表す2つの環形成炭素原子のどちらであってもよい。
     R31~R37は、前記R12~R25と同じであり、Xは、前記と同じである。
     R31~R37は、隣接する基同士で互いに結合して環構造を形成してもよい。)
  7.  式(1)において、R、R、R、R10及びR11の少なくとも1つが、前記原子数3以上の環構造を形成しない基であって、ハロゲン原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数1~20のアルケニル基、置換もしくは無置換の炭素数1~20のアルキニル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、アミノ基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の炭素数1~20のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、-Si(R101)(R102)(R103)で表される基[R101~R103は前記と同じ]、-N(R104)(R105)で表される基[R104及びR105は前記と同じ]、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である、請求項3~6のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  8.  式(1)において、Rが、前記原子数3以上の環構造を形成しない基であって、ハロゲン原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数1~20のアルケニル基、置換もしくは無置換の炭素数1~20のアルキニル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、アミノ基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の炭素数1~20のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、-Si(R101)(R102)(R103)で表される基[R101~R103は前記と同じ]、-N(R104)(R105)で表される基[R104及びR105は前記と同じ]、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である、請求項7に記載の有機エレクトロルミネッセンス素子。
  9.  式(1)において、RとRn+1が結合する2つの環形成炭素原子と共に、炭素原子、酸素原子、硫黄原子、窒素原子から構成される原子数3以上の環構造を形成する場合の環構造が有する置換基が、それぞれ独立に、置換もしくは無置換の炭素数1~20のアルキル基、-N(R104)(R105)で表される基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50のヘテロアリール基、又は下記の群から選択される基のいずれかである、請求項3~8のいずれか1項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000007

    (式中、Rは、それぞれ独立に、前記R~R11と同じである。Xは前記と同じである。
     p1は0~5の整数、p2は0~4の整数、p3は0~3の整数、p4は0~7の整数である。)
  10.  前記環構造が有する置換基が、それぞれ独立に、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は下記の群から選択される基のいずれかである請求項9に記載の化合物。
    Figure JPOXMLDOC01-appb-C000008

    (式中、Rは、それぞれ独立に、前記R~R11と同じである。
     p1は0~5の整数、p2は0~4の整数、p4は0~7の整数である。)
  11.  式(1)において、前記環構造を形成しないR~R11が、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、-N(R104)(R105)で表される基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50のヘテロアリール基、又は下記の群から選択される基のいずれかである、請求項3~10のいずれか1項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000009

    (式中、Rは、それぞれ独立に、前記R~R11と同じである。Xは前記と同じである。
     p1は0~5の整数、p2は0~4の整数、p3は0~3の整数、p4は0~7の整数である。)
  12.  式(2)~(11)において、R12~R22、R31~R37及びR41~R44が、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、-N(R104)(R105)で表される基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50のヘテロアリール基、又は下記の群から選択される基のいずれかである、請求項4~11のいずれか1項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000010

    (式中、Rは、それぞれ独立に、前記R~R11と同じである。Xは前記と同じである。
     p1は0~5の整数、p2は0~4の整数、p3は0~3の整数、p4は0~7の整数である。)
  13.  前記式(1)で表される第1の化合物が、下記式(1-1)~(1-3)及び(1-5)のいずれかで表される化合物を含む、請求項3に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000011

    (式(1-1)~(1-3)及び(1-5)において、R~R11は前記と同じである。環a~fは、それぞれ独立に、炭素原子、酸素原子、硫黄原子、窒素原子から構成される原子数3以上の環構造である。この環は、さらに置換基を有していてもよく、それら置換基同士が結合して環構造を形成してもよい。さらに有してもよい置換基は、R~R11が置換基を表す場合と同じである。なお、前記原子数3以上の環は、さらに置換している置換基の原子数は含まない。)
  14.  前記式(1)で表される第1の化合物が、下記式(2-2)及び(2-5)のいずれかで表される化合物である、請求項3に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000012

    (式(2-2)及び(2-5)において、R、R、R及びR~R11は前記と同じである。環b及びg~hは、それぞれ独立に、炭素原子、酸素原子、硫黄原子、窒素原子から構成される原子数3以上の環構造である。この環は、さらに置換基を有していてもよく、それら置換基同士が結合して環構造を形成してもよい。さらに有してもよい置換基は、R~R11が置換基を表す場合と同じである。なお、前記原子数3以上の環は、さらに置換している置換基の原子数は含まない。)
  15.  前記式(1)で表される第1の化合物が、下記式(3-1)で表される化合物である、請求項3に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000013

    (式(3-1)において、R、R、R、R及びR11は前記と同じである。環b、e及びhは、それぞれ独立に、炭素原子、酸素原子、硫黄原子、窒素原子から構成される原子数3以上の環構造である。この環は、さらに置換基を有していてもよく、それら置換基同士が結合して環構造を形成してもよい。さらに有してもよい置換基は、R~R11が置換基を表す場合と同じである。なお、前記原子数3以上の環は、さらに置換している置換基の原子数は含まない。)
  16.  前記a~f環がさらに置換基を有する場合の置換基が、それぞれ独立に、置換もしくは無置換の炭素数1~20のアルキル基、-N(R104)(R105)で表される基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50のヘテロアリール基、又は下記の群から選択される基のいずれかである、請求項13~15のいずれか1項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000014

    (式中、Rは、それぞれ独立に、前記R~R11と同じである。Xは前記と同じである。
     p1は0~5の整数、p2は0~4の整数、p3は0~3の整数、p4は0~7の整数である。)
  17.  前記環g及びhがさらに置換基を有する場合の置換基が、それぞれ独立に、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は下記の群から選択される基のいずれかである請求項14又は15に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000015

    (式中、Rは、それぞれ独立に、前記R~R11と同じである。
     p1は0~5の整数、p2は0~4の整数、p4は0~7の整数である。)
  18.  前記式(1)で表される第1の化合物が、下記式(4-1)~(4-4)のいずれかで表される化合物である、請求項3に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000016

    (式(4-1)~(4-4)において、XはC(R23)(R24)、NR25、O、Sから選ばれる。R~R、R~R11、R41~R48及びR23~R25は、前記R~R11と同じである。)
  19.  R~Rは、水素原子または置換基を表し、R~Rが置換基を表す場合、R~Rはそれぞれ独立に、ハロゲン原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数1~20のアルケニル基、置換もしくは無置換の炭素数1~20のアルキニル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、アミノ基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の炭素数1~20のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、-Si(R101)(R102)(R103)で表される基[R101~R103は前記と同じ]、-N(R104)(R105)で表される基[R104及びR105は前記と同じ]、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である、請求項13又は18に記載の有機エレクトロルミネッセンス素子。
  20.  Rが、前記原子数3以上の環構造を形成しない基であって、ハロゲン原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数1~20のアルケニル基、置換もしくは無置換の炭素数1~20のアルキニル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、アミノ基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の炭素数1~20のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、-Si(R101)(R102)(R103)で表される基[R101~R103は前記と同じ]、-N(R104)(R105)で表される基[R104及びR105は前記と同じ]、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である、請求項13又は18に記載の有機エレクトロルミネッセンス素子。
  21.  前記式(1)で表される第1の化合物が、下記式(5-1)で表される化合物である、請求項3に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000017

    (式(5-1)において、XはC(R23)(R24)、NR25、O、Sから選ばれる。R、R、R、R、R11、R41~R52及びR23~R25は、前記R~R11と同じである。)
  22.  R25は置換もしくは無置換の環形成炭素数6~50のアリール基である、請求項21に記載の有機エレクトロルミネッセンス素子。
  23.  式(1)において、RとR、RとR、RとR、RとR、RとR、RとR、RとR10、及び、R10とR11から選ばれる少なくとも2対のそれぞれにおいて、RとRn+1(nは1、2、4~6、及び8~10から選ばれる整数を表す)は互いに結合して、RとRn+1が結合する2つの環形成炭素原子と共に、炭素原子、酸素原子、硫黄原子、窒素原子から構成される原子数3以上の環構造を形成する、請求項3~22のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  24.  RとR、RとR、RとR、RとR、RとR10、及び、R10とR11から選ばれる少なくとも2対のそれぞれにおいて、RとRn+1(nは4~6、及び8~10から選ばれる整数を表す)は互いに結合して、RとRn+1が結合する2つの環形成炭素原子と共に、炭素原子、酸素原子、硫黄原子、窒素原子から構成される原子数3以上の環構造を形成する、請求項23に記載の有機エレクトロルミネッセンス素子。
  25.  R~Rは、水素原子または置換基を表し、R~Rが置換基を表す場合、R~Rはそれぞれ独立に、ハロゲン原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数1~20のアルケニル基、置換もしくは無置換の炭素数1~20のアルキニル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、アミノ基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の炭素数1~20のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、-Si(R101)(R102)(R103)で表される基[R101~R103は前記と同じ]、-N(R104)(R105)で表される基[R104及びR105は前記と同じ]、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である、請求項3に記載の有機エレクトロルミネッセンス素子。
  26.  式(1)において、RとRからなる対とRとRからなる対;RとRからなる対とRとRからなる対;RとRからなる対とRとRからなる対;RとRからなる対とRとR10からなる対;及びRとR10からなる対とR10とR11からなる対が、環構造を同時に形成しない、請求項3~22のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  27.  前記式(P)で表される第1の化合物が、前記蛍光発光層に含まれるドーパント材料である、請求項1~26のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  28.  前記第2の化合物が、多環芳香族骨格含有化合物である、請求項1~27のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  29.  前記第2の化合物が、縮合多環芳香族骨格含有化合物である、請求項1~28のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  30.  前記第2の化合物が、3環以上の縮合多環芳香族骨格を含有する、請求項1~29のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  31.  前記第2の化合物が、アントラセン骨格含有化合物、クリセン骨格含有化合物、ピレン骨格含有化合物、又はフルオレン骨格含有化合物である、請求項1~30のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  32.  前記アントラセン骨格含有化合物が、下記式(19)で表される、請求項31に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000018

    (式(19)において、R101~R110は、それぞれ独立に、水素原子、又は置換基であり、該置換基は前記R~R11と同じ、又は(-L-Ar)である。但し、R101~R110のうち少なくとも1つは、(-L-Ar)で表され、Lは、それぞれ独立に、単結合及び連結基から選択され、連結基は、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリーレン基であり、Arは、それぞれ独立に、置換もしくは無置換の環形成原子数5~50の単環基、置換もしくは無置換の環形成原子数8~50の縮合環基、又は前記単環基と前記縮合環基との組み合わせから構成される基である。)
  33.  前記アントラセン骨格含有化合物が、下記式(20)で表される、請求項32に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000019

    (式(20)において、R101~R108は、それぞれ独立に、水素原子、又は置換基であり、該置換基は前記R~R11と同じである。Ar11及びAr12は、それぞれ独立に、置換もしくは無置換の環形成原子数5~50の単環基、置換もしくは無置換の環形成原子数8~50の縮合環基、又は前記単環基と前記縮合環基との組み合わせから構成される基であり、Lは、それぞれ独立に、単結合及び連結基から選択され、連結基は、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリーレン基である。)
  34.  前記クリセン骨格含有化合物が、下記式(21)で表される、請求項31~33のいずれか1項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000020

    (式(21)において、R201~R212は、それぞれ独立に、水素原子、又は置換基であり、該置換基は前記R~R11と同じ、又は(-L-Ar21)である。但し、R201~R212のうち少なくとも1つは、(-L-Ar21)で表され、Lは、それぞれ独立に、単結合及び連結基から選択され、連結基は、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリーレン基であり、Ar21は、それぞれ独立に、置換もしくは無置換の環形成原子数5~50の単環基、置換もしくは無置換の環形成原子数8~50の縮合環基、又は前記単環基と前記縮合環基との組み合わせから構成される基である。)
  35.  前記ピレン骨格含有化合物が、下記式(22)で表される、請求項31~34のいずれか1項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000021

    (式(22)において、R301~R310は、それぞれ独立に、水素原子、又は置換基であり、該置換基は前記R~R11と同じ、又は(-L-Ar31)である。但し、R301~R310のうち少なくとも1つは、(-L-Ar31)で表され、Lは、それぞれ独立に、単結合及び連結基から選択され、連結基は、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリーレン基であり、Ar31は、それぞれ独立に、置換もしくは無置換の環形成原子数5~50の単環基、置換もしくは無置換の環形成原子数8~50の縮合環基、又は前記単環基と前記縮合環基との組み合わせから構成される基である。)
  36.  前記フルオレン骨格含有化合物が、下記式(23)で表される、請求項31~35のいずれか1項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000022

    (式(23)において、R401~R410は、それぞれ独立に、水素原子、又は置換基であり、該置換基は前記R~R11と同じ、又は(-L-Ar41)である。但し、R401~R410のうち少なくとも1つは、(-L-Ar41)で表され、Lは、それぞれ独立に、単結合及び連結基から選択され、連結基は、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリーレン基であり、Ar41は、それぞれ独立に、置換もしくは無置換の環形成原子数5~50の単環基、置換もしくは無置換の環形成原子数8~50の縮合環基、又は前記単環基と前記縮合環基との組み合わせから構成される基である。R401とR402、R402とR403、R403とR404、R405とR406、R406とR407、及びR407とR408から選択される1以上の組み合わせが、互いに結合して環を形成してもよい。)
  37.  前記蛍光発光層が、前記式(1)で表される第1の化合物を含有する、請求項3~36のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  38.  前記蛍光発光層が、前記式(1)で表される第1の化合物を0.1~30質量%含有する、請求項37に記載の有機エレクトロルミネッセンス素子。
  39.  前記蛍光発光層が、重金属錯体を含まない、請求項1~38のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  40.  請求項1~39のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えた電子機器。
PCT/JP2018/004785 2016-04-08 2018-02-13 有機エレクトロルミネッセンス素子及び電子機器 WO2018151065A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/485,132 US12029119B2 (en) 2016-04-08 2018-02-13 Organic electroluminescence element and electronic device
EP18754903.5A EP3584850A4 (en) 2017-02-14 2018-02-13 ORGANIC ELECTROLUMINESCENT ELEMENT AND ELECTRONIC DEVICE
CN201880011725.7A CN110291654B (zh) 2017-02-14 2018-02-13 有机电致发光元件和电子设备
JP2018568509A JPWO2018151065A1 (ja) 2017-02-14 2018-02-13 有機エレクトロルミネッセンス素子及び電子機器
KR1020197023511A KR102547448B1 (ko) 2017-02-14 2018-02-13 유기 전기발광 소자 및 전자 기기

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2017025393 2017-02-14
JP2017-025393 2017-02-14
US15/476,682 US9954187B2 (en) 2016-04-08 2017-03-31 Compound, organic electroluminescence device and electronic device
US15/476,682 2017-03-31
JP2017-196433 2017-10-06
JP2017196433 2017-10-06
JP2017-234726 2017-12-06
JP2017234726 2017-12-06

Publications (1)

Publication Number Publication Date
WO2018151065A1 true WO2018151065A1 (ja) 2018-08-23

Family

ID=63169455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004785 WO2018151065A1 (ja) 2016-04-08 2018-02-13 有機エレクトロルミネッセンス素子及び電子機器

Country Status (5)

Country Link
EP (1) EP3584850A4 (ja)
JP (1) JPWO2018151065A1 (ja)
KR (1) KR102547448B1 (ja)
CN (1) CN110291654B (ja)
WO (1) WO2018151065A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019070083A1 (ja) * 2017-10-06 2019-04-11 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
US10593889B1 (en) 2018-09-26 2020-03-17 Idemitsu Kosan Co., Ltd. Compound and organic electroluminescence device
WO2020075784A1 (ja) * 2018-10-09 2020-04-16 出光興産株式会社 有機エレクトロルミネッセンス素子及びそれを用いた電子機器
WO2020075769A1 (ja) * 2018-10-09 2020-04-16 出光興産株式会社 有機エレクトロルミネッセンス素子及びそれを用いた電子機器
WO2020096021A1 (ja) * 2018-11-07 2020-05-14 出光興産株式会社 有機エレクトロルミネッセンス素子及びそれを用いた電子機器
US10658594B2 (en) 2017-12-06 2020-05-19 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and novel compound
US10763441B2 (en) 2018-10-09 2020-09-01 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and electronic apparatus provided with the same
US10763444B2 (en) 2018-10-09 2020-09-01 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and electronic apparatus provided with the same
KR20210021300A (ko) 2018-06-15 2021-02-25 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네센스 소자 및 그것을 이용한 전자 기기
EP3693371A4 (en) * 2017-10-06 2021-05-12 Idemitsu Kosan Co., Ltd. COMPOUND, MATERIAL FOR ORGANIC ELECTROLUMINESCENT ELEMENT, ORGANIC ELECTROLUMINESCENT ELEMENT, AND ELECTRONIC DEVICE
CN112840474A (zh) * 2018-10-16 2021-05-25 出光兴产株式会社 有机电致发光元件和电子设备
KR20220020827A (ko) 2019-06-14 2022-02-21 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네센스 소자 및 그것을 이용한 전자 기기
US12063854B2 (en) 2018-12-05 2024-08-13 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and electronic apparatus using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116987081B (zh) * 2023-09-27 2023-12-12 季华实验室 一种吲哚并咔唑类化合物、其制备方法、有机电致发光组合物和有机电致发光器件

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3695714B2 (ja) 2000-11-20 2005-09-14 ノヴァレッド・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 有機層を持つ発光素子
WO2011128017A1 (de) 2010-04-14 2011-10-20 Merck Patent Gmbh Überbrückte triarylamine und -phosphine als materialien für elektronische vorrichtungen
JP2012191031A (ja) * 2011-03-11 2012-10-04 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2013077344A1 (ja) 2011-11-22 2013-05-30 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子、有機電界発光素子用材料、並びに、該素子を用いた発光装置、表示装置、照明装置及び該素子に用いられる化合物
JP2013183011A (ja) * 2012-03-01 2013-09-12 Udc Ireland Ltd 有機電界発光素子、有機電界発光素子用材料、並びに、該素子を用いた発光装置、表示装置、照明装置及び該素子に用いられる化合物
JP2014073965A (ja) 2012-10-02 2014-04-24 Canon Inc 新規ベンゾインドロカルバゾール化合物、これを有する有機発光素子、表示装置、画像情報処理装置、照明装置、画像形成装置
KR20140102947A (ko) * 2013-02-15 2014-08-25 원광대학교산학협력단 유기전계 발광층 재료용 붕소 착화합물, 이의 제조방법 및 이를 포함하는 유기전계 발광다이오드
CN104119347A (zh) 2014-07-14 2014-10-29 烟台万润精细化工股份有限公司 一种有机电致发光二极管材料及其应用
JP2014231510A (ja) * 2013-05-03 2014-12-11 株式会社半導体エネルギー研究所 複素環化合物、発光素子、ディスプレイモジュール、照明モジュール、発光装置、表示装置、照明装置及び電子機器
KR20150135125A (ko) 2014-05-23 2015-12-02 롬엔드하스전자재료코리아유한회사 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2016006925A1 (en) 2014-07-09 2016-01-14 Rohm And Haas Electronic Materials Korea Ltd. An organic electroluminescent compound and an organic electroluminescent device comprising the same
US20160149142A1 (en) * 2014-11-26 2016-05-26 Lg Display Co., Ltd. Organic light emitting display device
WO2016195441A1 (ko) * 2015-06-03 2016-12-08 주식회사 엘지화학 함질소 축합고리 화합물 및 이를 이용한 유기 발광 소자
WO2017175690A1 (ja) * 2016-04-08 2017-10-12 出光興産株式会社 新規な化合物、有機エレクトロルミネッセンス素子及び電子機器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI314947B (en) * 2002-04-24 2009-09-21 Eastman Kodak Compan Organic light emitting diode devices with improved operational stability
EP3009494B1 (en) * 2014-10-17 2017-07-12 LG Display Co., Ltd. Delayed fluorescence compound, and organic light emitting diode and display device using the same
KR102633050B1 (ko) * 2015-03-25 2024-02-02 가꼬우 호징 관세이 가쿠잉 다환 방향족 화합물 및 발광층 형성용 조성물

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3695714B2 (ja) 2000-11-20 2005-09-14 ノヴァレッド・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 有機層を持つ発光素子
WO2011128017A1 (de) 2010-04-14 2011-10-20 Merck Patent Gmbh Überbrückte triarylamine und -phosphine als materialien für elektronische vorrichtungen
JP2012191031A (ja) * 2011-03-11 2012-10-04 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2013077344A1 (ja) 2011-11-22 2013-05-30 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子、有機電界発光素子用材料、並びに、該素子を用いた発光装置、表示装置、照明装置及び該素子に用いられる化合物
JP2013183011A (ja) * 2012-03-01 2013-09-12 Udc Ireland Ltd 有機電界発光素子、有機電界発光素子用材料、並びに、該素子を用いた発光装置、表示装置、照明装置及び該素子に用いられる化合物
JP2014073965A (ja) 2012-10-02 2014-04-24 Canon Inc 新規ベンゾインドロカルバゾール化合物、これを有する有機発光素子、表示装置、画像情報処理装置、照明装置、画像形成装置
KR20140102947A (ko) * 2013-02-15 2014-08-25 원광대학교산학협력단 유기전계 발광층 재료용 붕소 착화합물, 이의 제조방법 및 이를 포함하는 유기전계 발광다이오드
JP2014231510A (ja) * 2013-05-03 2014-12-11 株式会社半導体エネルギー研究所 複素環化合物、発光素子、ディスプレイモジュール、照明モジュール、発光装置、表示装置、照明装置及び電子機器
KR20150135125A (ko) 2014-05-23 2015-12-02 롬엔드하스전자재료코리아유한회사 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2016006925A1 (en) 2014-07-09 2016-01-14 Rohm And Haas Electronic Materials Korea Ltd. An organic electroluminescent compound and an organic electroluminescent device comprising the same
CN104119347A (zh) 2014-07-14 2014-10-29 烟台万润精细化工股份有限公司 一种有机电致发光二极管材料及其应用
US20160149142A1 (en) * 2014-11-26 2016-05-26 Lg Display Co., Ltd. Organic light emitting display device
WO2016195441A1 (ko) * 2015-06-03 2016-12-08 주식회사 엘지화학 함질소 축합고리 화합물 및 이를 이용한 유기 발광 소자
WO2017175690A1 (ja) * 2016-04-08 2017-10-12 出光興産株式会社 新規な化合物、有機エレクトロルミネッセンス素子及び電子機器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MI ET AL., APPLIED PHYSICS LETTERS, vol. 75, no. 26
See also references of EP3584850A4

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11839153B2 (en) 2017-10-06 2023-12-05 Idemitsu Kosan Co.,Ltd. Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device
WO2019070083A1 (ja) * 2017-10-06 2019-04-11 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
EP3693371A4 (en) * 2017-10-06 2021-05-12 Idemitsu Kosan Co., Ltd. COMPOUND, MATERIAL FOR ORGANIC ELECTROLUMINESCENT ELEMENT, ORGANIC ELECTROLUMINESCENT ELEMENT, AND ELECTRONIC DEVICE
US10680181B2 (en) 2017-12-06 2020-06-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and novel compound
US11569449B2 (en) 2017-12-06 2023-01-31 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and novel compound
US11557730B2 (en) 2017-12-06 2023-01-17 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and novel compound
US10658594B2 (en) 2017-12-06 2020-05-19 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and novel compound
US10672989B2 (en) 2017-12-06 2020-06-02 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and novel compound
KR20210021300A (ko) 2018-06-15 2021-02-25 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네센스 소자 및 그것을 이용한 전자 기기
US12108666B2 (en) 2018-09-26 2024-10-01 Idemitsu Kosan Co., Ltd. Compound and organic electroluminescence device
WO2020067290A1 (ja) * 2018-09-26 2020-04-02 出光興産株式会社 新規化合物及び有機エレクトロルミネッセンス素子
CN112739702A (zh) * 2018-09-26 2021-04-30 出光兴产株式会社 新型化合物和有机电致发光元件
US10593889B1 (en) 2018-09-26 2020-03-17 Idemitsu Kosan Co., Ltd. Compound and organic electroluminescence device
US10777752B2 (en) 2018-10-09 2020-09-15 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and electronic apparatus provided with the same
US10804474B2 (en) 2018-10-09 2020-10-13 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and electronic apparatus provided with the same
US10763444B2 (en) 2018-10-09 2020-09-01 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and electronic apparatus provided with the same
CN112789270A (zh) * 2018-10-09 2021-05-11 出光兴产株式会社 新型的化合物、有机电致发光元件、电子设备
CN112789269A (zh) * 2018-10-09 2021-05-11 出光兴产株式会社 新型的化合物、有机电致发光元件、电子设备
US10763441B2 (en) 2018-10-09 2020-09-01 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and electronic apparatus provided with the same
WO2020075763A1 (ja) * 2018-10-09 2020-04-16 出光興産株式会社 新規な化合物、有機エレクトロルミネッセンス素子、電子機器
WO2020075769A1 (ja) * 2018-10-09 2020-04-16 出光興産株式会社 有機エレクトロルミネッセンス素子及びそれを用いた電子機器
WO2020075784A1 (ja) * 2018-10-09 2020-04-16 出光興産株式会社 有機エレクトロルミネッセンス素子及びそれを用いた電子機器
CN112840474A (zh) * 2018-10-16 2021-05-25 出光兴产株式会社 有机电致发光元件和电子设备
WO2020096021A1 (ja) * 2018-11-07 2020-05-14 出光興産株式会社 有機エレクトロルミネッセンス素子及びそれを用いた電子機器
US12063854B2 (en) 2018-12-05 2024-08-13 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and electronic apparatus using the same
KR20220020827A (ko) 2019-06-14 2022-02-21 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네센스 소자 및 그것을 이용한 전자 기기

Also Published As

Publication number Publication date
CN110291654A (zh) 2019-09-27
KR20190117524A (ko) 2019-10-16
EP3584850A4 (en) 2021-01-06
JPWO2018151065A1 (ja) 2019-11-21
EP3584850A1 (en) 2019-12-25
KR102547448B1 (ko) 2023-06-23
CN110291654B (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
JP6251841B1 (ja) 新規な化合物、有機エレクトロルミネッセンス素子及び電子機器
WO2018151065A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2018186404A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
US12029119B2 (en) Organic electroluminescence element and electronic device
WO2018186374A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
US10566541B2 (en) Aromatic amine derivative, material for organic electroluminescent element, and organic electroluminescent element
JP6986552B2 (ja) 有機エレクトロルミネッセンス素子及び電子機器
JP6199752B2 (ja) 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子、並びに含窒素複素環化合物
JP6278894B2 (ja) 有機エレクトロルミネッセンス素子
KR102182270B1 (ko) 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
JP6270735B2 (ja) 芳香族アミン誘導体及び有機エレクトロルミネッセンス素子
WO2014092083A1 (ja) 有機エレクトロルミネッセンス素子
JP6769997B2 (ja) 新規な化合物、有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
KR20120116282A (ko) 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
JP6446362B2 (ja) アミン化合物及び有機エレクトロルミネッセンス素子
KR20220074924A (ko) 화합물, 유기 일렉트로루미네센스 소자용 재료, 유기 일렉트로루미네센스 소자 및 전자 기기
WO2017141876A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2013077385A1 (ja) 芳香族アミン誘導体およびそれを用いた有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754903

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568509

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197023511

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018754903

Country of ref document: EP

Effective date: 20190916