WO2020075769A1 - 有機エレクトロルミネッセンス素子及びそれを用いた電子機器 - Google Patents

有機エレクトロルミネッセンス素子及びそれを用いた電子機器 Download PDF

Info

Publication number
WO2020075769A1
WO2020075769A1 PCT/JP2019/039870 JP2019039870W WO2020075769A1 WO 2020075769 A1 WO2020075769 A1 WO 2020075769A1 JP 2019039870 W JP2019039870 W JP 2019039870W WO 2020075769 A1 WO2020075769 A1 WO 2020075769A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
ring
group
unsubstituted
carbon atoms
Prior art date
Application number
PCT/JP2019/039870
Other languages
English (en)
French (fr)
Inventor
裕基 中野
太郎 八巻
聡美 田崎
加藤 朋希
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/557,675 external-priority patent/US10763444B2/en
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to US17/282,971 priority Critical patent/US20230011996A1/en
Publication of WO2020075769A1 publication Critical patent/WO2020075769A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/623Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission

Definitions

  • the present invention relates to an organic electroluminescence element and an electronic device using the same.
  • organic electroluminescence element (hereinafter, also referred to as “organic EL element”)
  • organic EL element When a voltage is applied to the organic electroluminescence element (hereinafter, also referred to as “organic EL element”), holes are injected from the anode and electrons are injected from the cathode into the light emitting layer. Then, in the light emitting layer, the injected holes and electrons are recombined to form excitons.
  • the materials used for the organic EL element are gradually being improved (for example, Patent Documents 1 to 6), but higher performance is required.
  • the improvement of the life of the organic EL element is an important issue that leads to the life of a commercialized product, and therefore a material capable of realizing a long-life organic EL element is required.
  • An object of the present invention is to provide an organic EL element having a long life and an electronic device using the organic EL element.
  • R 1 to R 8 are each independently: Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —Si (R 901 ) (R 902 ) (R 903 ), —O— (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • R 901 to R 907 are each independently Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • each of the two or more R 901 to R 907 may be the same or different.
  • At least one of R 1 to R 8 is a deuterium atom.
  • L 1 and L 2 are each independently: Single bond, It is a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring atom (s).
  • Ar is A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • One of R 11 to R 18 is a single bond that is bonded to L 2 .
  • R 11 to R 18 which are not a single bond bonding to L 2 are each independently, Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —Si (R 901 ) (R 902 ) (R 903 ), —O— (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • R 901 to R 907 are as defined for R 1 to R 8 .
  • Two or more adjacent R 11 to R 18 are not bonded to each other to form a ring.
  • One or more adjacent two or more of R 101 to R 110 are bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring, or a substituted or unsubstituted saturated or unsaturated ring; Does not form a ring.
  • At least one of R 101 to R 110 is a monovalent group represented by the following formula (12).
  • R 101 to R 110 which do not form a substituted or unsubstituted saturated or unsaturated ring and which are not a monovalent group represented by the following formula (12) are each independently Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —Si (R 901 ) (R 902 ) (R 903 ), —O— (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted
  • R 901 to R 907 are as defined in the above formula (1).
  • Ar 101 and Ar 102 are each independently: A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • L 101 to L 103 are independently Single bond, It is a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring atom (s). )
  • Z is each independently CR a or N.
  • the A1 ring and the A2 ring are each independently a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 ring-forming carbon atoms or a substituted or unsubstituted heterocyclic ring having 5 to 50 ring-forming atoms.
  • plural R a are present, one or more adjacent two or more sets of plural R a are bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring, or substituted or Does not form an unsubstituted saturated or unsaturated ring.
  • n21 and n22 are each independently an integer of 0 to 4.
  • R a to R c which do not form a substituted or unsubstituted saturated or unsaturated ring are each independently Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —Si (R 901 ) (R 902 ) (R 903 ), —O— (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having
  • R 901 to R 907 are as defined in the above formula (1). ) (In equation (31), At least one pair of adjacent two or more of R 301 to R 307 and R 311 to R 317 forms a substituted or unsubstituted saturated or unsaturated ring, or a substituted or unsubstituted saturated or unsaturated ring Does not form a ring.
  • R 301 to R 307 and R 311 to R 317 which do not form a substituted or unsubstituted saturated or unsaturated ring are each independently Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —Si (R 901 ) (R 902 ) (R 903 ), —O— (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstitute
  • R 321 and R 322 are each independently Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —Si (R 901 ) (R 902 ) (R 903 ), —O— (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • R 901 to R 907 are as defined in the above formula (1).
  • ring a, ring b and ring c are each independently A substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 ring carbon atoms, or It is a substituted or unsubstituted heterocycle having 5 to 50 ring atoms.
  • R 401 and R 402 each independently form a substituted or unsubstituted heterocyclic ring or do not form a substituted or unsubstituted heterocyclic ring by combining with the a ring, the b ring or the c ring.
  • R 401 and R 402 which do not form the substituted or unsubstituted heterocyclic ring are each independently A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • the r ring is a ring represented by the formula (52) or the formula (53) fused at an arbitrary position of an adjacent ring.
  • the q ring and the s ring are each independently a ring represented by the formula (54) fused at an arbitrary position of an adjacent ring.
  • the p-ring and the t-ring each have a structure represented by the formula (55) or (56), which is independently condensed at an arbitrary position of an adjacent ring.
  • R 501 there are a plurality and do not form a plurality of adjacent R 501 is bonded to either form a ring substituted or unsubstituted, saturated or unsaturated with one another, or a substituted or unsubstituted saturated or unsaturated ring .
  • X 501 is an oxygen atom, a sulfur atom, or NR 502 .
  • R 501 and R 502 which do not form a substituted or unsubstituted saturated or unsaturated ring are Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —Si (R 901 ) (R 902 ) (R 903 ), —O— (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to
  • R 901 to R 907 are as defined in the above formula (1).
  • Ar 501 and Ar 502 are each independently A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • L 501 is A substituted or unsubstituted alkylene group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenylene group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynylene group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkylene group having 3 to 50 ring carbon atoms, A substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms or a substituted or unsubstituted divalent heterocyclic group having 5 to 50 ring-forming atoms.
  • R 501 there are a plurality to plurality of R 501 may be the same as each other or may be different.
  • At least one pair of R 601 and R 602 , R 602 and R 603 , and R 603 and R 604 combine with each other to form a divalent group represented by the following formula (62).
  • At least one pair of R 605 and R 606 , R 606 and R 607 , and R 607 and R 608 combine with each other to form a divalent group represented by the following formula (63).
  • R 601 to R 604 those which do not form a divalent group represented by the above formula (62), and at least one of R 611 to R 614 are monovalent groups represented by the following formula (64) .
  • R 605 to R 608 those which do not form the divalent group represented by the above formula (63), and at least one of R 621 to R 624 are monovalent groups represented by the following formula (64).
  • X 601 is an oxygen atom, a sulfur atom, or NR 609 .
  • R 601 to R 608 which do not form the divalent group represented by the formulas (62) and (63) and are not the monovalent group represented by the formula (64), the formula (64) R 611 to R 614 and R 621 to R 624 , and R 609 which are not a monovalent group represented by Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —Si (R 901 ) (R 902 ) (R 903 ), —O— (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, A
  • R 901 to R 907 are as defined in the above formula (1).
  • Ar 601 and Ar 602 are each independently: A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • L 601 to L 603 are independently Single bond, A substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, A substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring-forming atoms, or a divalent linking group formed by combining 2 to 4 of these.
  • a 701 ring and A 702 ring are each independently A substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 ring carbon atoms, or It is a substituted or unsubstituted heterocycle having 5 to 50 ring atoms. At least one selected from the group consisting of the ring A 701 and the ring A 702 bonds to a bond * of a structure represented by the following formula (72).
  • a 703 rings are each independently: A substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 ring carbon atoms, or It is a substituted or unsubstituted heterocycle having 5 to 50 ring atoms.
  • X 701 is NR 703 , C (R 704 ) (R 705 ), Si (R 706 ) (R 707 ), Ge (R 708 ) (R 709 ), O, S or Se.
  • R 701 and R 702 combine with each other to form a substituted or unsubstituted saturated or unsaturated ring, or do not form a substituted or unsubstituted saturated or unsaturated ring.
  • R 701 and R 702 which do not form a substituted or unsubstituted saturated or unsaturated ring, and R 703 to R 709 are each independently Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —Si (R 901 ) (R 902 ) (R 903 ), —O— (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstit
  • R 901 to R 907 are as defined in the above formula (1).
  • the ring A 801 is a ring represented by the formula (82) fused at an arbitrary position of an adjacent ring.
  • the ring A 802 is a ring represented by the formula (83) fused at an arbitrary position of an adjacent ring.
  • the two bonding hands * bond to an arbitrary position on the A803 ring.
  • X 801 and X 802 are each independently C (R 803 ) (R 804 ), Si (R 805 ) (R 806 ), an oxygen atom, or a sulfur atom.
  • Ring A 803 is a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic ring having 5 to 50 ring-forming atoms.
  • Ar 801 is a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring-forming atoms.
  • R 801 to R 806 are each independently Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —Si (R 901 ) (R 902 ) (R 903 ), —O— (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • R 901 to R 907 are as defined in the above formula (1).
  • m801 and m802 are each independently an integer of 0 to 2. When these are 2, a plurality of R 801 or R 802 may be the same as or different from each other.
  • a801 is an integer of 0 to 2. When a801 is 0 or 1, the structures in parentheses represented by “3-a801” may be the same or different. If a801 is 2, to Ar 801 may be the same as each other or may be different. )
  • An electronic device comprising the organic electroluminescence element according to 2.1.
  • FIG. 1 is a diagram illustrating a schematic configuration of an organic EL element according to one embodiment of the present invention.
  • hydroxide includes isotopes having different neutron numbers, that is, protium, deuterium, and tritium.
  • the number of ring-forming carbon atoms refers to the ring itself of a compound having a structure in which atoms are cyclically bonded (for example, a monocyclic compound, a fused ring compound, a bridged compound, a carbocyclic compound, and a heterocyclic compound). Indicates the number of carbon atoms among the atoms. When the ring is substituted with a substituent, the carbon contained in the substituent is not included in the ring-forming carbon number.
  • the "number of ring carbon atoms" described below is the same unless otherwise specified.
  • a benzene ring has 6 ring-forming carbons
  • a naphthalene ring has 10 ring-forming carbons
  • a pyridine ring has 5 ring-forming carbons
  • a furan ring has 4 ring-forming carbons.
  • the 9,9-diphenylfluorenyl group has 13 ring-forming carbon atoms
  • the 9,9′-spirobifluorenyl group has 25 ring-forming carbon atoms.
  • the number of carbon atoms of the alkyl group is not included in the number of ring-forming carbon atoms.
  • the number of ring-forming atoms means a compound having a structure in which atoms are cyclically bonded (for example, a monocyclic compound, a condensed ring, a ring assembly) (for example, a monocyclic compound, a condensed ring compound, a bridged compound, a carbocyclic compound, Ring compound) represents the number of atoms constituting the ring itself.
  • the atoms that do not form a ring eg, hydrogen atoms that terminate the bonds of the atoms that make up the ring
  • the atoms that are included in the substituent when the ring is substituted with a substituent are not included in the number of ring-forming atoms.
  • the “number of ring-forming atoms” described below is the same unless otherwise specified.
  • the pyridine ring has 6 ring-forming atoms
  • the quinazoline ring has 10 ring-forming atoms
  • the furan ring has 5 ring-forming atoms.
  • a hydrogen atom bonded to a carbon atom of a pyridine ring or a quinazoline ring or an atom constituting a substituent is not included in the number of ring-forming atoms.
  • the “carbon number XX to YY” in the expression “substituted or unsubstituted ZZ group having XX to YY carbon atoms” represents the number of carbon atoms when the ZZ group is unsubstituted.
  • the carbon number of the substituent in the case where it is performed is not included.
  • “YY” is larger than “XX”, and “XX” and “YY” each mean an integer of 1 or more.
  • atom number XX to YY in the expression “substituted or unsubstituted ZZ group having XX to YY atoms” means the number of atoms when the ZZ group is unsubstituted, The number of atoms of the substituent when it is included is not included.
  • YY is larger than “XX”, and “XX” and “YY” each mean an integer of 1 or more.
  • the ring-forming carbon number of the “unsubstituted aryl group” described in the present specification is 6 to 50, preferably 6 to 30, and more preferably 6 to 18, unless otherwise specified in the present specification. .
  • the number of ring-forming atoms of the “unsubstituted heterocyclic group” described herein is from 5 to 50, preferably from 5 to 30, more preferably from 5 to 18, unless otherwise specified herein. is there.
  • the carbon number of the “unsubstituted alkyl group” described in the present specification is 1 to 50, preferably 1 to 20, and more preferably 1 to 6, unless otherwise specified in the present specification.
  • the carbon number of the “unsubstituted alkenyl group” described in the present specification is 2 to 50, preferably 2 to 20, more preferably 2 to 6, unless otherwise specified in the present specification.
  • the carbon number of the “unsubstituted alkynyl group” described in the present specification is 2 to 50, preferably 2 to 20, and more preferably 2 to 6, unless otherwise specified in the present specification.
  • the number of ring-forming carbon atoms of the “unsubstituted cycloalkyl group” described herein is 3 to 50, preferably 3 to 20, more preferably 3 to 6, unless otherwise specified in this specification. is there.
  • the number of ring-forming carbon atoms of the “unsubstituted arylene group” described in the present specification is 6 to 50, preferably 6 to 30, and more preferably 6 to 18, unless otherwise specified in the present specification. .
  • the number of ring-forming atoms of the “unsubstituted divalent heterocyclic group” described in the present specification is 5 to 50, preferably 5 to 30, and more preferably 5 unless otherwise specified in the present specification. ⁇ 18.
  • the carbon number of the “unsubstituted alkylene group” described in the present specification is 1 to 50, preferably 1 to 20, and more preferably 1 to 6, unless otherwise specified in the present specification.
  • Specific examples (specific example group G1) of the “substituted or unsubstituted aryl group” described in the present specification include the following unsubstituted aryl groups and substituted aryl groups.
  • the unsubstituted aryl group refers to the case where the “substituted or unsubstituted aryl group” is the “unsubstituted aryl group”, and the substituted aryl group is the “substituted or unsubstituted aryl group”.
  • substituted aryl group is used below.
  • aryl group includes both "unsubstituted aryl group” and "substituted aryl group”.
  • the “substituted aryl group” is a case where the “unsubstituted aryl group” has a substituent, and examples thereof include a group in which the following “unsubstituted aryl group” has a substituent and examples of a substituted aryl group. .
  • the examples of the “unsubstituted aryl group” and the examples of the “substituted aryl group” listed here are merely examples, and the “substituted aryl group” described in the present specification includes “unsubstituted aryl group”.
  • the group in which the “group” has a substituent further has a substituent
  • the “substituted aryl group” further has a substituent.
  • aryl group Phenyl group, p-biphenyl group, m-biphenyl group, o-biphenyl group, p-terphenyl-4-yl group, a p-terphenyl-3-yl group, p-terphenyl-2-yl group, m-terphenyl-4-yl group, m-terphenyl-3-yl group, m-terphenyl-2-yl group, o-terphenyl-4-yl group, o-terphenyl-3-yl group, o-terphenyl-2-yl group, 1-naphthyl group, 2-naphthyl group, Anthryl group, Benzoanthryl group, Phenanthryl group, Benzophenanthryl group, Phenalenyl group, Pyrenyl group, A chrysenyl group, Benzochrysenyl group, Triphenylenyl group, Tripheny
  • Substituted aryl group o-tolyl group, m-tolyl group, p-tolyl group, Para-xylyl group, Meta-xylyl group, Ortho-xylyl group, Para-isopropylphenyl group, Meta-isopropylphenyl group, Ortho-isopropylphenyl group, Para-t-butylphenyl group, Meta-t-butylphenyl group, Ortho-t-butylphenyl group, 3,4,5-trimethylphenyl group, 9,9-dimethylfluorenyl group, 9,9-diphenylfluorenyl group 9,9-di (4-methylphenyl) fluorenyl group, 9,9-di (4-isopropylphenyl) fluorenyl group, 9,9-di (4-tbutylphenyl) fluorenyl group, A cyanophenyl group, Triphenylsilylphenyl group, Trimethylsily
  • heterocyclic group is a cyclic group containing at least one hetero atom as a ring forming atom.
  • the hetero atom include a nitrogen atom, an oxygen atom, a sulfur atom, a silicon atom, a phosphorus atom, and a boron atom.
  • the “heterocyclic group” described in the present specification may be a monocyclic group or a condensed ring group.
  • the “heterocyclic group” described in the present specification may be an aromatic heterocyclic group or an aliphatic heterocyclic group.
  • substituted or unsubstituted heterocyclic group examples include the following unsubstituted heterocyclic groups and substituted heterocyclic groups.
  • an unsubstituted heterocyclic group refers to a case where “substituted or unsubstituted heterocyclic group” is an “unsubstituted heterocyclic group”, and a substituted heterocyclic group refers to “substituted or unsubstituted heterocyclic group.”
  • heterocyclic group is a “substituted heterocyclic group”.
  • both “unsubstituted heterocyclic group” and “substituted heterocyclic group” are used.
  • the “substituted heterocyclic group” is a case where the “unsubstituted heterocyclic group” has a substituent, and the following “unsubstituted heterocyclic group” has a substituent or an example of a substituted heterocyclic group. And the like.
  • the examples of the “unsubstituted heterocyclic group” and the examples of the “substituted heterocyclic group” are merely examples, and the “substituted heterocyclic group” described in the present specification includes “unsubstituted heterocyclic group”.
  • a group in which the “substituted heterocyclic group” has a substituent further has a substituent
  • a group in which the “substituted heterocyclic group” further has a substituent is also included.
  • Unsubstituted heterocyclic group containing oxygen atom Frill group, An oxazolyl group, Isoxazolyl group, An oxadiazolyl group, Xanthenyl group, Benzofuranyl group, An isobenzofuranyl group, Dibenzofuranyl group, Naphthobenzofuranyl group, Benzoxazolyl group, Benzoisoxazolyl group, Phenoxazinyl group, Morpholino group, Dinaphthofuranyl group, Azadibenzofuranyl group, Diazadibenzofuranyl group, Azanaphthobenzofuranyl group, Diazanaphthobenzofuranyl group, Diazanaphthobenzofuranyl group
  • Unsubstituted heterocyclic group containing a sulfur atom Thienyl group, Thiazolyl group, An isothiazolyl group, Thiadiazolyl group, Benzothiophenyl group, Isobenzothiophenyl group, Dibenzothiophenyl group, Naphthobenzothiophenyl group, Benzothiazolyl group, Benzoisothiazolyl group, Phenothiazinyl group, A dinaphthothiophenyl group, Azadibenzothiophenyl group, Diazadibenzothiophenyl group, Azanaphthobenzothiophenyl group, Diazanaphthobenzothiophenyl group
  • a substituted heterocyclic group containing a nitrogen atom (9-phenyl) carbazolyl group, (9-biphenylyl) carbazolyl group, (9-phenyl) phenylcarbazolyl group, (9-naphthyl) carbazolyl group, A diphenylcarbazol-9-yl group, A phenylcarbazol-9-yl group, A methylbenzimidazolyl group, Ethyl benzimidazolyl group, Phenyltriazinyl group, Biphenylyltriazinyl group, Diphenyltriazinyl group, Phenylquinazolinyl group, Biphenylylquinazolinyl group
  • a substituted heterocyclic group containing an oxygen atom Phenyldibenzofuranyl group, Methyldibenzofuranyl group, t-butyldibenzofuranyl group, Monovalent residue of spiro [9H-xanthene-9,9 '-[9H] fluorene]
  • X A and Y A are each independently an oxygen atom, a sulfur atom, NH, or CH 2 . However, at least one of X A and Y A is an oxygen atom, a sulfur atom, or NH.
  • the heterocyclic ring represented by the above formulas (XY-1) to (XY-18) has a bond at an arbitrary position to be a monovalent heterocyclic group.
  • the monovalent group derived from the unsubstituted heterocyclic ring represented by the above formulas (XY-1) to (XY-18) has a substituent when the carbon atom constituting the skeleton in these formulas is when bonded hydrogen atoms is replaced by a substituent, or, X a and Y a is NH or CH 2, hydrogen atoms in these NH or CH 2 may refer to a state in which is replaced by a substituent.
  • specific examples (specific example group G3) of the “substituted or unsubstituted alkyl group” described in the present specification include the following unsubstituted alkyl groups and substituted alkyl groups.
  • the unsubstituted alkyl group refers to a case where the “substituted or unsubstituted alkyl group” is an “unsubstituted alkyl group”
  • the substituted alkyl group refers to a “substituted or unsubstituted alkyl group”
  • the term “substituted alkyl group” is referred to.
  • the term “alkyl group” includes both “unsubstituted alkyl group” and “substituted alkyl group”.
  • the “substituted alkyl group” is a case where the “unsubstituted alkyl group” has a substituent, and examples thereof include a group in which the following “unsubstituted alkyl group” has a substituent and examples of a substituted alkyl group. .
  • the examples of the “unsubstituted alkyl group” and the examples of the “substituted alkyl group” listed here are merely examples, and the “substituted alkyl group” described in this specification includes “unsubstituted alkyl group”.
  • the group in which the “group” has a substituent further has a substituent
  • the “substituted alkyl group” further has a substituent.
  • Unsubstituted alkyl group Methyl group, Ethyl group, n-propyl group, Isopropyl group, n-butyl group, Isobutyl group, s-butyl group, t-butyl group
  • Substituted alkyl group Heptafluoropropyl group (including isomers), Pentafluoroethyl group, 2,2,2-trifluoroethyl group, Trifluoromethyl group
  • specific examples (specific example group G4) of the “substituted or unsubstituted alkenyl group” described in the present specification include the following unsubstituted alkenyl groups and substituted alkenyl groups.
  • the unsubstituted alkenyl group refers to a case where the “substituted or unsubstituted alkenyl group” is an “unsubstituted alkenyl group”
  • the “substituted alkenyl group” refers to a “substituted or unsubstituted alkenyl group.” Is a "substituted alkenyl group”.
  • alkenyl group includes both "unsubstituted alkenyl group” and "substituted alkenyl group”.
  • the ⁇ substituted alkenyl group '' is a case where the ⁇ unsubstituted alkenyl group '' has a substituent, and examples of the following ⁇ unsubstituted alkenyl group '' include a group having a substituent and a substituted alkenyl group. .
  • the examples of the “unsubstituted alkenyl group” and the examples of the “substituted alkenyl group” are merely examples, and the “substituted alkenyl group” described in the present specification includes “unsubstituted alkenyl group”.
  • the group in which the “group” has a substituent further has a substituent
  • the “substituted alkenyl group” further has a substituent.
  • Unsubstituted alkenyl group and substituted alkenyl group Vinyl group, Allyl group, 1-butenyl group, 2-butenyl group, A 3-butenyl group, 1,3-butanedienyl group, 1-methylvinyl group, 1-methylallyl group, 1,1-dimethylallyl group, 2-methylallyl group, 1,2-dimethylallyl group
  • Specific examples (specific example group G5) of the “substituted or unsubstituted alkynyl group” described in the present specification include the following unsubstituted alkynyl groups.
  • the unsubstituted alkynyl group refers to a case where the “substituted or unsubstituted alkynyl group” is an “unsubstituted alkynyl group”.
  • alkynyl group Alkynyl group "and” substituted alkynyl group ".
  • substituted alkynyl group is a case where the “unsubstituted alkynyl group” has a substituent, and examples thereof include the following “unsubstituted alkynyl group” having a substituent.
  • Specific examples (specific example group G6) of the “substituted or unsubstituted cycloalkyl group” described in the present specification include the following unsubstituted cycloalkyl groups and substituted cycloalkyl groups.
  • the unsubstituted cycloalkyl group refers to the case where the “substituted or unsubstituted cycloalkyl group” is an “unsubstituted cycloalkyl group”, and the substituted cycloalkyl group is the “substituted or unsubstituted
  • cycloalkyl group means a "substituted cycloalkyl group”.
  • Substituted cycloalkyl group is a case where "unsubstituted cycloalkyl group” has a substituent, and examples of the following "unsubstituted cycloalkyl group” have a substituent and substituted cycloalkyl groups. And the like. It should be noted that the examples of the “unsubstituted cycloalkyl group” and the examples of the “substituted cycloalkyl group” are merely examples, and the “substituted cycloalkyl group” described in this specification includes “unsubstituted cycloalkyl group”. A group in which the “substituted cycloalkyl group” further has a substituent, a group in which the “substituted cycloalkyl group” further has a substituent, and the like are also included.
  • Specific examples of the group represented by —Si (R 901 ) (R 902 ) (R 903 ) described in the present specification include: -Si (G1) (G1) (G1), -Si (G1) (G2) (G2), -Si (G1) (G1) (G2), -Si (G2) (G2) (G2), -Si (G3) (G3) (G3), -Si (G5) (G5) (G5), -Si (G6) (G6) (G6) Is mentioned.
  • G1 is an "aryl group” described in Specific Example Group G1.
  • G2 is the “heterocyclic group” described in Specific Example Group G2.
  • G3 is the “alkyl group” described in Specific Example Group G3.
  • G5 is the “alkynyl group” described in Specific Example Group G5.
  • G6 is the “cycloalkyl group” described in Specific Example Group G6.
  • G8 Specific examples of the group represented by —O— (R 904 ) described in the present specification (specific example group G8) include -O (G1), -O (G2), -O (G3), -O (G6) Is mentioned.
  • G1 is an "aryl group” described in Specific Example Group G1.
  • G2 is the “heterocyclic group” described in Specific Example Group G2.
  • G3 is the “alkyl group” described in Specific Example Group G3.
  • G6 is the “cycloalkyl group” described in Specific Example Group G6.
  • G9 Specific examples of the group represented by -S- (R 905 ) described in the present specification (specific example group G9) include -S (G1), -S (G2), -S (G3), -S (G6) Is mentioned.
  • G1 is an "aryl group” described in Specific Example Group G1.
  • G2 is the “heterocyclic group” described in Specific Example Group G2.
  • G3 is the “alkyl group” described in Specific Example Group G3.
  • G6 is the “cycloalkyl group” described in Specific Example Group G6.
  • G1 is an "aryl group” described in Specific Example Group G1.
  • G2 is the “heterocyclic group” described in Specific Example Group G2.
  • G3 is the “alkyl group” described in Specific Example Group G3.
  • G6 is the “cycloalkyl group” described in Specific Example Group G6.
  • Specific examples (specific example group G11) of the “halogen atom” described in this specification include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a specific example of the “alkoxy group” described in the present specification is a group represented by —O (G3), where G3 is an “alkyl group” described in the specific example group G3.
  • the carbon number of the “unsubstituted alkoxy group” is 1 to 50, preferably 1 to 30, and more preferably 1 to 18, unless otherwise specified in this specification.
  • a specific example of the “alkylthio group” described in the present specification is a group represented by —S (G3), where G3 is the “alkyl group” described in the specific example group G3.
  • the carbon number of the “unsubstituted alkylthio group” is 1 to 50, preferably 1 to 30, and more preferably 1 to 18, unless otherwise specified in this specification.
  • a specific example of the “aryloxy group” described in the present specification is a group represented by —O (G1), where G1 is the “aryl group” described in the specific example group G1.
  • the ring-forming carbon number of the “unsubstituted aryloxy group” is from 6 to 50, preferably from 6 to 30, and more preferably from 6 to 18, unless otherwise specified herein.
  • a specific example of the “arylthio group” described in the present specification is a group represented by —S (G1), where G1 is the “aryl group” described in the specific example group G1.
  • the ring-forming carbon number of the “unsubstituted arylthio group” is from 6 to 50, preferably from 6 to 30, and more preferably from 6 to 18, unless otherwise specified herein.
  • a specific example of the “aralkyl group” described in the present specification is a group represented by — (G3) — (G1), wherein G3 is an “alkyl group” described in the specific example group G3. , G1 is the “aryl group” described in Specific Example Group G1.
  • an “aralkyl group” is an embodiment of a “substituted alkyl group” substituted with an “aryl group”.
  • the carbon number of the “unsubstituted aralkyl group” which is the “unsubstituted alkyl group” substituted by the “unsubstituted aryl group” is 7 to 50, preferably 7 unless otherwise specified in the present specification. -30, more preferably 7-18.
  • aralkyl group examples include, for example, benzyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylisopropyl group, 2-phenylisopropyl group, phenyl-t-butyl group, ⁇ -naphthylmethyl Group, 1- ⁇ -naphthylethyl group, 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, 2- ⁇ -naphthylisopropyl group, ⁇ -naphthylmethyl group, 1- ⁇ -naphthylethyl group, 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, 2- ⁇ -naphthylisopropyl group and the like.
  • the substituted or unsubstituted aryl group described in the present specification is preferably a phenyl group, a p-biphenyl group, an m-biphenyl group, an o-biphenyl group, a p-terphenyl- 4-yl group, p-terphenyl-3-yl group, p-terphenyl-2-yl group, m-terphenyl-4-yl group, m-terphenyl-3-yl group, m-terphenyl- 2-yl group, o-terphenyl-4-yl group, o-terphenyl-3-yl group, o-terphenyl-2-yl group, 1-naphthyl group, 2-naphthyl group, anthryl group, phenanthryl group , A pyrenyl group, a chrysenyl group, a triphenylenyl group, a fluor
  • the substituted or unsubstituted heterocyclic group described in the present specification is preferably a pyridyl group, a pyrimidinyl group, a triazinyl group, a quinolyl group, an isoquinolyl group, a quinazolinyl group, a benzimidazolyl group, unless otherwise specified in the present specification.
  • Nanthrolinyl group carbazolyl group (1-carbazolyl group, 2-carbazolyl group, 3-carbazolyl group, 4-carbazolyl group, 9-carbazolyl group), benzocarbazolyl group, azacarbazolyl group, diazacarbazolyl group, Dibenzofuranyl group, naphthobenzofuranyl group, azadibenzofuranyl group, diazadibenzofuranyl group, dibenzothiophenyl group, naphthobenzothiophenyl group, azadibenzothiophenyl group, diazadibenzothiophenyl group, (9 -Phenyl) carbazolyl group ((9-phenyl) carbazolyl -1-yl group, (9-phenyl) carbazol-2-yl group, (9-phenyl) carbazol-3-yl group, or (9-phenyl) carbazol-4-yl group), (9-biphen
  • dibenzofuranyl group and dibenzothiophenyl group are specifically any one of the following groups unless otherwise described in this specification.
  • X B is an oxygen atom or a sulfur atom.
  • the substituted or unsubstituted alkyl group described in the present specification is preferably a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group. And the like.
  • the “substituted or unsubstituted arylene group” described in the present specification means a divalent group of the above “aryl group”.
  • Specific examples of the “substituted or unsubstituted arylene group” include a divalent group of the “aryl group” described in specific example group G1. That is, as a specific example (specific group G12) of the "substituted or unsubstituted arylene group", a group excluding one hydrogen bonded to the ring-forming carbon of the "aryl group” described in the specific group G1. Is.
  • Specific examples (specific example group G13) of the “substituted or unsubstituted divalent heterocyclic group” described in the present specification include groups obtained by divalently converting the “heterocyclic group” described in the specific example group G2. Is mentioned. That is, specific examples (specific example group G13) of the “substituted or unsubstituted divalent heterocyclic group” include one of the “heterocyclic groups” bonded to the ring-forming atom of the “heterocyclic group” described in the specific example group G2. It is a group excluding hydrogen.
  • the substituted or unsubstituted arylene group described in the present specification is preferably any one of the following groups unless otherwise described in the present specification.
  • R 908 is a substituent.
  • m901 is 0 to a 4 integer, when m901 represents 2 or more, to R 908 of existing in plural numbers may be the same as each other or may be different.
  • R 909 is each independently a hydrogen atom or a substituent. Two R 909 may be bonded to each other via a single bond to form a ring.
  • R 910 is a substituent.
  • m902 is an integer of 0 to 6.
  • a plurality of R 910 may be the same as or different from each other.
  • the substituted or unsubstituted divalent heterocyclic group described in the present specification is preferably any one of the following groups unless otherwise described in the present specification.
  • R 911 is a hydrogen atom or a substituent.
  • X B is an oxygen atom or a sulfur atom.
  • adjacent two which form a ring when one or more adjacent two or more are bonded to each other to form a ring includes R 921 and R 922 , R 922 and R 923, R 923 and R 924, R 924 and R 930, R 930 and R 925, R 925 and R 926, R 926 and R 927, R 927 and R 928, R 928 and R 929, and R 929 and R 921 .
  • the “one or more sets” means that two or more adjacent two sets may form a ring at the same time.
  • R 921 and R 922 combine with each other to form ring A
  • R 925 and R 926 combine with each other to form ring B
  • the compound is represented by the following formula (XY-81) .
  • R 921 and R 922 combine with each other to form ring A
  • R 922 and R 923 combine with each other to form ring C
  • XY-82 In the case where three adjacent R 921 to R 923 are fused to the anthracene mother skeleton to form a ring A and a ring C sharing R 922 , they are represented by the following formula (XY-82).
  • the rings A to C formed in the above formulas (XY-81) and (XY-82) are saturated or unsaturated rings.
  • “Unsaturated ring” means an aromatic hydrocarbon ring or an aromatic heterocyclic ring.
  • “Saturated ring” means an aliphatic hydrocarbon ring or an aliphatic heterocyclic ring.
  • a ring A formed by bonding R 921 and R 922 to each other has a carbon atom of an anthracene skeleton to which R 921 is bonded and a carbon atom of an anthracene skeleton to which R 922 is bonded.
  • a ring formed by atoms and one or more optional elements is meant.
  • the carbon atom of the anthracene skeleton to which R 921 is bonded the carbon atom of the anthracene skeleton to which R 922 is bonded, and four carbon atoms are different.
  • the ring formed by R 921 and R 922 is a benzene ring.
  • the ring is a cyclohexane ring.
  • the “arbitrary element” is preferably a C element, an N element, an O element, or an S element.
  • a bond that does not participate in ring formation may be terminated with a hydrogen atom or the like, or may be substituted with an arbitrary substituent.
  • the formed ring is a heterocyclic ring.
  • “One or more optional elements” constituting a saturated or unsaturated ring is preferably 2 or more and 15 or less, more preferably 3 or more and 12 or less, and still more preferably 3 or more and 5 or less. .
  • the aromatic hydrocarbon ring a structure in which the aryl group mentioned as a specific example in the specific example group G1 is terminated with a hydrogen atom is given.
  • the aromatic heterocyclic ring a structure in which the aromatic heterocyclic group described as a specific example in the specific example group G2 is terminated with a hydrogen atom is given.
  • Specific examples of the aliphatic hydrocarbon ring include a structure in which the cycloalkyl group mentioned as a specific example in Specific Example Group G6 is terminated with a hydrogen atom.
  • the substituent is, for example, an “optional substituent” described later.
  • Specific examples of the substituent in the case where the above “saturated or unsaturated ring” has a substituent are the substituents described in the above section of “the substituent described in the present specification”.
  • the substituent in the case of “substituted or unsubstituted” may be: An unsubstituted alkyl group having 1 to 50 carbon atoms, An unsubstituted alkenyl group having 2 to 50 carbon atoms, An unsubstituted alkynyl group having 2 to 50 carbon atoms, An unsubstituted cycloalkyl group having 3 to 50 carbon atoms for ring formation, —Si (R 901 ) (R 902 ) (R 903 ), —O— (R 904 ), -S- (R 905 ), -N ( R906 ) ( R907 ) (here, R 901 to R 907 are each independently Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group
  • each of the two or more R 901 to R 907 may be the same or different.
  • Halogen atom cyano group, nitro group
  • It is a group selected from the group consisting of an unsubstituted aryl group having 6 to 50 ring-forming carbon atoms and an unsubstituted monovalent heterocyclic group having 5 to 50 ring-forming atoms.
  • the substituents when referred to as "substituted or unsubstituted” are: An alkyl group having 1 to 50 carbon atoms, It is a group selected from the group consisting of an aryl group having 6 to 50 ring carbon atoms and a monovalent heterocyclic group having 5 to 50 ring atoms.
  • the substituents when referred to as "substituted or unsubstituted” are: An alkyl group having 1 to 18 carbon atoms, It is a group selected from the group consisting of an aryl group having 6 to 18 ring carbon atoms and a monovalent heterocyclic group having 5 to 18 ring atoms.
  • adjacent substituents may be substituted with a saturated or unsaturated ring (preferably a substituted or unsubstituted saturated or unsaturated 5- or 6-membered ring, (Preferably, a benzene ring).
  • an optional substituent may further have a substituent unless otherwise specified. Examples of the substituent further included in the optional substituent include those similar to the optional substituent described above.
  • An organic EL element is an organic EL element having a cathode, an anode, and a light emitting layer arranged between the cathode and the anode, wherein the light emitting layer is represented by the following formula (1).
  • a compound represented by one or more compounds selected from the group consisting of formulas (11), (21), (31), (41), (51), (61), (71) and (81): And are included. Each compound will be described later.
  • the organic EL element according to one embodiment of the present invention has high performance due to the above structure. Specifically, it becomes possible to provide an organic EL element having a longer life. Further, according to one aspect of the present invention, a compound represented by the above formula (1) and one or more compounds selected from the group consisting of the above formulas (11) to (81) are included in the light emitting layer of the organic EL device. It is also possible to provide a method for improving the performance of an organic EL device, which is characterized by using the above in combination. Specifically, the method specifically includes a compound having the same structure as the compound represented by the formula (1) except that the host material contains only a light hydrogen atom as a hydrogen atom (hereinafter, also referred to as a “light hydrogen form”).
  • the case where a light hydrogen is used means that substantially only a light hydrogen is used as the host material in the light emitting layer (the content of the light hydrogen is based on the sum of the compound represented by the formula (1) and the light hydrogen).
  • the ratio is 90 mol% or more, 95 mol% or more, or 99 mol% or more). That is, as a host material, at least one of the light hydrogen atoms on the anthracene skeleton was replaced with a deuterium atom among the light hydrogen atoms of the light hydrogen form instead of or in addition to the light hydrogen form.
  • the organic EL device 1 includes a substrate 2, an anode 3, a light emitting layer 5, a cathode 10, an organic layer 4 between the anode 3 and the light emitting layer 5, and a light emitting layer 5. And an organic layer 6 between the cathode 10.
  • One or more compounds are included in the light emitting layer 5 between the anode 3 and the cathode 10.
  • Each compound contained in the light emitting layer 5 may be a single type, or may be two or more types.
  • R 1 to R 8 are each independently: Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —Si (R 901 ) (R 902 ) (R 903 ), —O— (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group
  • R 901 to R 907 are each independently Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • each of the two or more R 901 to R 907 may be the same or different.
  • At least one of R 1 to R 8 is a deuterium atom.
  • L 1 and L 2 are each independently: Single bond, It is a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring atom (s).
  • Ar is A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • One of R 11 to R 18 is a single bond that is bonded to L 2 .
  • R 11 to R 18 which are not a single bond bonding to L 2 are each independently, Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —Si (R 901 ) (R 902 ) (R 903 ), —O— (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • R 1 to R 8 may be deuterium atoms, or some (eg, 1 or 2 or more) may be deuterium atoms.
  • R 1 to R 8 which are not deuterium atoms are preferably hydrogen atoms (light hydrogen atoms).
  • At least one of the hydrogen atoms possessed by one or more selected from the group consisting of L 1 and L 2 is a deuterium atom.
  • one or more selected from the group consisting of L 1 and L 2 is an unsubstituted arylene group having 6 to 30 ring-forming carbon atoms in which at least one of hydrogen atoms is a deuterium atom.
  • an unsubstituted divalent heterocyclic group having 5 to 30 ring-forming atoms in which at least one of hydrogen atoms is a deuterium atom.
  • L 1 and L 2 are each independently a single bond or a substituted or unsubstituted arylene group having 6 to 14 ring carbon atoms.
  • at least one of L 1 and L 2 is a single bond.
  • those which are not single bonds with L 2 are hydrogen atoms. In one embodiment, at least one of R 11 to R 18 which is not a single bond bonding to L 2 is a deuterium atom.
  • At least one hydrogen atom contained in one or more of Ar is a deuterium atom.
  • Ar is an unsubstituted aryl group having 6 to 50 ring carbon atoms in which at least one of hydrogen atoms is a deuterium atom, or at least one of hydrogen atoms is a deuterium atom. It is an unsubstituted monovalent heterocyclic group having 5 to 50 ring-forming atoms.
  • the presence of a deuterium atom in the compound is confirmed by mass spectrometry or 1 H-NMR analysis. Further, the bonding position of the deuterium atom in the compound is specified by 1 H-NMR analysis. Specifically, it is as follows. The target compound is subjected to mass spectrometry, and it can be confirmed that the target compound contains one deuterium atom by increasing the molecular weight by 1 as compared with the corresponding compound in which all hydrogen atoms are light hydrogen atoms. In addition, since no signal is generated for deuterium atoms by 1 H-NMR analysis, the number of deuterium atoms contained in the molecule is determined by an integrated value obtained by performing 1 H-NMR analysis on the target compound. You can check. In addition, 1 H-NMR analysis is performed on the target compound, and the binding position of a deuterium atom can be specified by assigning a signal.
  • the content ratio of the latter is preferably 99 mol% or less based on the total amount of the compound represented by the formula (1) and the light hydrogen compound in the light emitting layer.
  • the content ratio of the deuterium is confirmed by mass spectrometry.
  • the light-emitting layer of the organic EL element according to one embodiment of the present invention includes the compound represented by the formula (1) and a deuterium compound, and the content of the former is 30 mols relative to the total. %, 50 mol% or more, 70 mol% or more, 90 mol% or more, 95 mol% or more, 99 mol% or more, or 100 mol%.
  • Ar is preferably a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, and more preferably selected from groups represented by the following formulas (a1) to (a4).
  • * represents a single bond bonded to L 1 .
  • R 21 is A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —Si (R 901 ) (R 902 ) (R 903 ), —O— (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • R 901 to R 907 are as defined in the above formula (1).
  • m1 is an integer of 0 to 4.
  • m2 is an integer of 0 to 5.
  • m3 is an integer of 0 to 7.
  • R 21's may be the same as or different from each other.
  • adjacent R 21 are bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring, or a substituted or unsubstituted saturated or unsaturated ring. Does not form. )
  • L 1 and L 2 are preferably each independently a single bond or a substituted or unsubstituted arylene group having 6 to 14 ring carbon atoms. Preferably, at least one of L 1 and L 2 is a single bond.
  • the compound represented by formula (1) is a compound represented by the following formula (2).
  • R 1 to R 8 , Ar, L 1 and L 2 are as defined in the formula (1).
  • the compound represented by formula (1) is a compound represented by the following formula (3). (In the formula (3), Ar, L 1 and L 2 are as defined in the formula (1).)
  • the compound represented by formula (1) is represented by the following formula (1A) or (1B).
  • R 1A to R 8A are each independently a hydrogen atom, and at least one of R 1A to R 8A is a deuterium atom.
  • L 1A and L 2A are each independently a single bond, an unsubstituted phenylene group, or an unsubstituted naphthylene group.
  • Ar 1A is a phenyl group which may have a phenyl group as a substituent, or a naphthyl group which may have a phenyl group as a substituent.
  • R 11A to R 14A are each independently a hydrogen atom or an unsubstituted aryl group having 6 to 50 ring carbon atoms. Two or more adjacent R 11A to R 14A are not bonded to each other to form a ring. )
  • At least two of R 1A to R 8A are deuterium atoms.
  • R 1A to R 8A are all deuterium atoms.
  • At least one hydrogen atom contained in Ar 1A is a deuterium atom.
  • R 11A to R 14A are hydrogen atoms.
  • R 11A to R 14A are deuterium atoms.
  • the compound represented by the formula (1) can be synthesized by following the synthetic method described in the examples and using known alternative reactions or starting materials according to the intended product.
  • D represents a deuterium atom.
  • R 101 to R 110 which do not form a substituted or unsubstituted saturated or unsaturated ring and which are not a monovalent group represented by the following formula (12) are each independently Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —Si (R 901 ) (R 902 ) (R 903 ), —O— (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted
  • R 901 to R 907 are as defined in the above formula (1).
  • Ar 101 and Ar 102 are each independently: A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • L 101 to L 103 are independently Single bond, It is a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring atom (s). )
  • the compound represented by the formula (11) is represented by the following formula (13).
  • R 111 to R 118 are the same as R 101 to R 110 in the formula (11), which are not the monovalent group represented by the formula (12).
  • Ar 101 and Ar 102 , L 101 , L 102, and L 103 are as defined in the above formula (12).
  • L 101 is preferably a single bond
  • L 102 and L 103 are preferably single bonds.
  • the compound represented by the formula (11) is represented by the following formula (14) or (15).
  • R 111 to R 118 are as defined in the formula (13).
  • Ar 101 , Ar 102 , L 102 and L 103 are as defined in the formula (12). .
  • R 111 to R 118 are as defined in the formula (13).
  • Ar 101 and Ar 102 are as defined in the formula (12).
  • At least one of Ar 101 and Ar 102 is a group represented by the following formula (16).
  • X 101 represents an oxygen atom or a sulfur atom.
  • R 121 to R 127 are bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring, or a substituted or unsubstituted saturated or unsaturated ring. Does not form a ring.
  • R 121 to R 127 which do not form a substituted or unsubstituted saturated or unsaturated ring are each independently Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —Si (R 901 ) (R 902 ) (R 903 ), —O— (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having
  • X 101 is preferably an oxygen atom.
  • At least one of R 121 to R 127 is A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, It is preferably a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring-forming atoms.
  • Ar 101 is preferably a group represented by the formula (16), and Ar 102 is preferably a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms. .
  • the compound represented by the formula (11) is represented by the following formula (17).
  • R 111 to R 118 are as defined in the formula (13).
  • R 121 to R 127 are as defined in the formula (16).
  • R 131 to R 135 are each independently Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —Si (R 901 ) (R 902 ) (R 903 ), —O— (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, A substituted or unsubstituted
  • Z is each independently CR a or N.
  • the A1 ring and the A2 ring are each independently a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 ring-forming carbon atoms or a substituted or unsubstituted heterocyclic ring having 5 to 50 ring-forming atoms.
  • plural R a are present, one or more adjacent two or more sets of plural R a are bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring, or substituted or Does not form an unsubstituted saturated or unsaturated ring.
  • n21 and n22 are each independently an integer of 0 to 4.
  • R a to R c which do not form a substituted or unsubstituted saturated or unsaturated ring are each independently Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —Si (R 901 ) (R 902 ) (R 903 ), —O— (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having
  • the “aromatic hydrocarbon ring” of the A1 ring and the A2 ring has the same structure as the above-described compound in which a hydrogen atom has been introduced into the “aryl group”.
  • the “aromatic hydrocarbon ring” of the A1 ring and the A2 ring includes two carbon atoms on the central fused bicyclic structure of the formula (21) as ring-forming atoms.
  • Specific examples of the “substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 ring carbon atoms” include compounds in which a hydrogen atom has been introduced into the “aryl group” described in Specific Example Group G1.
  • the “heterocycle” of the A1 ring and the A2 ring has the same structure as the compound in which a hydrogen atom has been introduced into the above “heterocyclic group”.
  • the “heterocycle” of the A1 ring and the A2 ring includes two carbon atoms on the central fused bicyclic structure of the formula (21) as ring-forming atoms.
  • Specific examples of the “substituted or unsubstituted heterocyclic ring having 5 to 50 ring atoms” include compounds in which a hydrogen atom has been introduced into the “heterocyclic group” described in Specific Example Group G2.
  • R b is bonded to any of the carbon atoms forming the aromatic hydrocarbon ring of A1 ring or to the atoms forming the heterocyclic ring of A1 ring.
  • R c is bonded to any of the carbon atoms forming the aromatic hydrocarbon ring of the A2 ring or any of the atoms forming the heterocyclic ring of the A2 ring.
  • At least one (preferably two) of R a to R c is preferably a group represented by the following formula (21a).
  • L 201 is Single bond, It is a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring atom (s).
  • Ar 201 is A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, A substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms, or a group represented by the following formula (21b).
  • L 211 and L 212 are each independently Single bond, It is a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring atom (s).
  • Ar 211 and Ar 212 are bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring or no substituted or unsubstituted saturated or unsaturated ring.
  • Ar 211 and Ar 212 which do not form a substituted or unsubstituted saturated or unsaturated ring are each independently A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, It is a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms. ))
  • the compound represented by the formula (21) is represented by the following formula (22).
  • formula (22) One or more pairs of adjacent two or more of R 201 to R 211 are bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring, or a substituted or unsubstituted saturated or unsaturated ring; Does not form a ring.
  • R 201 to R 211 which do not form a substituted or unsubstituted saturated or unsaturated ring are each independently Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —Si (R 901 ) (R 902 ) (R 903 ), —O— (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having
  • At least one (preferably two) of R 201 to R 211 is preferably a group represented by the above formula (21a).
  • R 204 and R 211 are groups represented by the above formula (21a).
  • the compound represented by the formula (21) is a compound in which the structure represented by the following formula (21-1) or (21-2) is bonded to the A1 ring.
  • the compound represented by the formula (22) is a compound in which the structure represented by the following formula (21-1) or (21-2) is bound to the ring to which R 204 to R 207 are bound.
  • the two bonds * are each independently bonded to a ring-forming carbon atom of an aromatic hydrocarbon ring or a ring-forming atom of a heterocyclic ring of the A1 ring of the formula (21); Alternatively, it binds to any of R 204 to R 207 in the formula (22).
  • the three bonds * in formula (21-2) are each independently bonded to the ring-forming carbon atom of the aromatic hydrocarbon ring of the A1 ring of formula (21) or the ring-forming atom of the heterocycle, or It is bonded to any of R 204 to R 207 in (22). At least one pair of two or more of R 221 to R 227 and R 231 to R 239 is bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring, or Does not form a substituted saturated or unsaturated ring.
  • R 221 to R 227 and R 231 to R 239 which do not form a substituted or unsubstituted saturated or unsaturated ring are each independently Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —Si (R 901 ) (R 902 ) (R 903 ), —O— (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstitute
  • the compound represented by the formula (21) is a compound represented by the following formula (21-3), (21-4) or (21-5).
  • the ring A1 is as defined in the formula (21).
  • R 2401 to R 2407 are the same as R 221 to R 227 in formulas (21-1) and (21-2).
  • R 2410 to R 2417 are the same as R 201 to R 211 in the formula (22). Two R 2417 may be the same or different from each other. )
  • the substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 ring carbon atoms of the ring A1 in the formula (21-5) is a substituted or unsubstituted naphthalene ring or a substituted or unsubstituted naphthalene ring. It is a fluorene ring.
  • the substituted or unsubstituted heterocyclic ring having 5 to 50 ring atoms in ring A1 of formula (21-5) is a substituted or unsubstituted dibenzofuran ring, a substituted or unsubstituted carbazole ring, or It is a substituted or unsubstituted dibenzothiophene ring.
  • the compound represented by the formula (21) or (22) is selected from the group consisting of compounds represented by the following formulas (21-6-1) to (21-6-7).
  • You. (In formulas (21-6-1) to (21-6-7), R 2421 to R 2427 are the same as R 221 to R 227 in formulas (21-1) and (21-2).
  • R 2430 to R 2437 and R 2441 to R 2444 are the same as R 201 to R 211 in the formula (22).
  • X is O, NR 901 , or C (R 902 ) (R 903 ).
  • R 901 to R 903 are as defined in the above formula (1).
  • At least one set of two or more adjacent R 201 to R 211 is bonded to each other to form a substituted or unsubstituted saturated or unsaturated group. Form a ring.
  • This embodiment will be described in detail below as Expression (25).
  • Two or more rings formed by R 251 to R 261 may be the same or different.
  • R 251 to R 261 which do not form a substituted or unsubstituted saturated or unsaturated ring are each independently Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —Si (R 901 ) (R 902 ) (R 903 ), —O— (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having
  • R n and R n + 1 are bonded to each other to form two rings where R n and R n + 1 are bonded. Together with the forming carbon atom, it forms a substituted or unsubstituted saturated or unsaturated ring.
  • the ring is preferably composed of atoms selected from C, O, S and N atoms, and the number of atoms is preferably 3 to 7, more preferably 5 or 6.
  • the number of the ring structures in the compound represented by the formula (25) is, for example, two, three, or four.
  • the two or more ring structures may each be present on the same benzene ring on the mother skeleton of the formula (25), or may be present on different benzene rings.
  • one ring structure may be present in each of the three benzene rings of formula (25).
  • Examples of the ring structure in the compound represented by the formula (25) include structures represented by the following formulas (251) to (260). (In the formulas (251) to (257), * 1 and * 2, * 3 and * 4, * 5 and * 6, * 7 and * 8, * 9 and * 10, * 11 and * 12, and * 13
  • * 14 represents the two ring-forming carbon atoms to which R n and R n + 1 are bonded, and the ring-forming carbon atoms to which R n is bonded are * 1 and * 2, * 3 and * 4, * 5 and It may be any of the two ring-forming carbon atoms represented by * 6, * 7 and * 8, * 9 and * 10, * 11 and * 12, and * 13 and * 14.
  • X 2501 is C (R 2512 ) (R 2513 ), NR 2514 , O or S.
  • One or more adjacent two or more sets of R 2501 to R 2506 and R 2512 to R 2513 are bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring, or substituted or unsubstituted. Does not form a substituted saturated or unsaturated ring.
  • R 2501 to R 2514 which do not form a substituted or unsubstituted saturated or unsaturated ring are the same as R 251 to R 261 described above. )
  • * 1 and * 2 and * 3 and * 4 each represent the two ring-forming carbon atoms to which R n and R n + 1 are bonded, and R n is bonded to
  • the ring-forming carbon atom may be any of the two ring-forming carbon atoms represented by * 1 and * 2 or * 3 and * 4.
  • X 2501 is C (R 2512 ) (R 2513 ), NR 2514 , O or S.
  • One or more adjacent two or more sets of R 2515 to R 2525 are bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring, or a substituted or unsubstituted saturated or unsaturated Does not form a ring.
  • R 2515 to R 2521 and R 2522 to R 2525 which do not form a substituted or unsubstituted saturated or unsaturated ring are the same as R 251 to R 261 described above.
  • At least one of R 252 , R 254 , R 255 , R 260 and R 261 is a ring It is preferable that the group does not form a structure.
  • R 251 to R 261 that does not form a ring structure, and (iii) R 2501 to R 2514 and R 2515 to R 2525 in Formulas (251) to (260) are preferably Independently Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, -N (R 906 ) (R 907 ), A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, It is either a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted
  • R d is each independently: Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —Si (R 901 ) (R 902 ) (R 903 ), —O— (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • X is C (R 901 ) (R 902 ), NR 903 , O or S.
  • R 901 to R 907 are as defined in the above formula (1).
  • p1 is an integer of 0 to 5
  • p2 is an integer of 0 to 4
  • p3 is an integer of 0 to 3
  • p4 is an integer of 0 to 7.
  • the compound represented by the formula (25) is represented by any of the following formulas (25-1) to (25-6).
  • the rings d to i are each independently a substituted or unsubstituted saturated or unsaturated ring.
  • R 251 to R 261 are the same as those in the formula (25) Same as).
  • the compound represented by formula (25) is represented by any of the following formulas (25-7) to (25-12).
  • rings d to f, k, and j are each independently a substituted or unsubstituted saturated or unsaturated ring.
  • R 251 to R 261 are This is the same as the equation (25).
  • the compound represented by the formula (25) is represented by any of the following formulas (25-13) to (25-21).
  • ring d-k are each independently a ring substituted or unsubstituted, saturated or unsaturated .
  • R 251 - R 261 is the formula (25 Same as).)
  • the substituent is, for example, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, Examples thereof include a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a group represented by the above formula (261), (263) or (264).
  • the compound represented by the formula (25) is represented by any of the following formulas (25-22) to (25-25).
  • X 250 is independently C (R 901 ) (R 902 ), NR 903 , O or S.
  • R 251 to R 261 , R 271 To R 278 are the same as R 251 to R 261 in the above formula (25), and R 901 to R 903 are as defined in the above formula (1).
  • the compound represented by the formula (25) is represented by the following formula (25-26).
  • X 250 is C (R 901 ) (R 902 ), NR 903 , O or S.
  • R 253 , R 254 , R 257 , R 258 , R 261 , and R 271 -R 282 are the same as R 251 -R 261 in the formula (25).
  • R 901 -R 903 are as defined in the formula (1).
  • the compound represented by the formula (31) will be described.
  • the compound represented by the formula (31) is a compound corresponding to the compound represented by the formula (21-3) described above.
  • (In equation (31) At least one pair of adjacent two or more of R 301 to R 307 and R 311 to R 317 forms a substituted or unsubstituted saturated or unsaturated ring, or a substituted or unsubstituted saturated or unsaturated ring Does not form a ring.
  • R 301 to R 307 and R 311 to R 317 which do not form a substituted or unsubstituted saturated or unsaturated ring are each independently Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —Si (R 901 ) (R 902 ) (R 903 ), —O— (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstitute
  • R 321 and R 322 are each independently Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —Si (R 901 ) (R 902 ) (R 903 ), —O— (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • R 901 to R 907 are as defined in
  • One set of two or more adjacent to R 301 to R 307 and R 311 to R 317 is, for example, R 301 and R 302 , R 302 and R 303 , R 303 and R 304 , R 305 and R 306. , R 306 and R 307 , R 301 , R 302 and R 303, and the like.
  • At least one, preferably two of R 301 to R 307 and R 311 to R 317 are groups represented by —N (R 906 ) (R 907 ).
  • R 301 to R 307 and R 311 to R 317 are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted ring group. It is a monovalent heterocyclic group having 5 to 50 atoms.
  • the compound represented by the formula (31) is a compound represented by the following formula (32).
  • (In equation (32) One or more of adjacent two or more of R 331 to R 334 and R 341 to R 344 form a substituted or unsubstituted saturated or unsaturated ring, or are substituted or unsubstituted saturated or unsaturated. Does not form a ring.
  • R 331 to R 334 , R 341 to R 344 and R 351 and R 352 which do not form a substituted or unsubstituted saturated or unsaturated ring are each independently Hydrogen atom, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • R 361 to R 364 are each independently A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • the compound represented by formula (31) is a compound represented by formula (33) below.
  • R 351 , R 352 and R 361 to R 364 are as defined in the formula (32).
  • the compound represented by the formula (31) is a compound represented by the following formula (34) or (35).
  • R 361 to R 364 are as defined in the above formula (32).
  • At least one pair of adjacent two or more of R 371 to R 377 and R 380 to R 386 forms a substituted or unsubstituted saturated or unsaturated ring, or a substituted or unsubstituted saturated or unsaturated ring Does not form a ring.
  • R 371 to R 377 and R 380 to R 386 which do not form a substituted or unsubstituted saturated or unsaturated ring, and R 387 are each independently Hydrogen atom, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • Two R 387 may be the same or different from each other. )
  • the compound represented by the formula (31) is a compound represented by the following formula (34-2) or (35-2).
  • R 361 to R 364 , R 375 to R 377 and R 384 to R 387 are as defined in the formulas (34) and (35).
  • R 361 to R 364 in formulas (32), (33), (34), (35), (34-2), and (35-2) are each independently substituted or unsubstituted.
  • R 321 and R 322 in the formula (31), R 351 and R 352 in the formulas (32), (33), (34), (35), (34-2), and (35-2) are used.
  • 352 and R 387 are each independently a hydrogen atom or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms (preferably a phenyl group).
  • the compound represented by the formula (31) is one or more compounds selected from the group consisting of the following formulas (32-11), (34-11), and (35-11). (In the equations (32-11), (34-11) and (35-11), At least one pair of adjacent two or more of R 3301 to R 3307 and R 3311 to R 3317 forms a substituted or unsubstituted saturated or unsaturated ring, or a substituted or unsubstituted saturated or unsaturated ring Does not form a ring.
  • R 3301 to R 3307 and R 3311 to R 3317 which do not form a substituted or unsubstituted saturated or unsaturated ring, and R 3331 each independently represent a hydrogen atom, a substituted or unsubstituted ring-forming carbon number of 6 to An aryl group of 20 or a substituted or unsubstituted monovalent heterocyclic group having 5 to 20 ring atoms.
  • the two R 3331 may be the same or different from each other.
  • R 3321 to R 3324 are each independently a substituted or unsubstituted aryl group having 6 to 20 ring-forming carbon atoms or a substituted or unsubstituted monovalent heterocyclic group having 5 to 20 ring-forming atoms.
  • one or more compounds selected from the group consisting of formulas (32-11), (34-11) and (35-11) have the formula (32-12), (34-12) And (35-12) one or more compounds selected from the group consisting of: (In the formulas (32-12), (34-12) and (35-12), R 3321 to R 3324 and R 3331 correspond to the formulas (32-11), (34-11) and (35-11) As defined in.)
  • R 3321 to R 3324 are , Each independently a substituted or unsubstituted phenyl group.
  • two R 3331s are Each is a hydrogen atom.
  • substituted or unsubstituted Is selected from the group consisting of alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 20 ring carbon atoms, and monovalent heterocyclic groups having 5 to 20 ring atom atoms. .
  • R 3321 to R 3324 are And each independently is a substituted or unsubstituted phenyl group, and two R 3331 are each a hydrogen atom.
  • R 3321 to R 3324 are Are each independently a substituted or unsubstituted phenyl group, two R 3331 are each a hydrogen atom, and the substituent in the case of “substituted or unsubstituted” is an alkyl group having 1 to 20 carbon atoms; It is selected from the group consisting of an aryl group having 6 to 20 ring carbon atoms and a monovalent heterocyclic group having 5 to 20 ring atoms.
  • R 3321 to R 3324 are Are each independently a substituted or unsubstituted phenyl group, two R 3331 are each a hydrogen atom, and the substituent in the case of “substituted or unsubstituted” is an alkyl group having 1 to 5 carbon atoms. is there.
  • one or more pairs of adjacent two or more of R 301 to R 307 and R 311 to R 317 are substituted or unsubstituted saturated or unsaturated. To form a ring.
  • the compound represented by the formula (31) is one or more compounds selected from the group consisting of compounds represented by the following formulas (36-1) to (36-6).
  • At least one pair of adjacent two or more of R 3605 to R 3607 , R 3615 to R 3617 and R 3631 is bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring, or Does not form a ring.
  • One or more adjacent pairs of R 3601 to R 3604 , R 3611 to R 3614 and R 3621 to R 3628 are bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring. Or, it does not form the ring.
  • R 3601 to R 3607 , R 3611 to R 3617 , R 3621 to R 3628 and R 3631 which do not form a ring are each independently, Hydrogen atom, halogen atom, cyano group, nitro group, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —Si (R 901 ) (R 902 ) (R 903 ), —O— (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubsti
  • R 901 to R 907 are each independently Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • X 1 is selected from O, S and N (R 3641 ), and the two X 1 may be the same as each other or may be different.
  • R 3641 is bonded to one or more members selected from the group consisting of R 3601 to R 3604 , R 3611 to R 3614 , R 3624 and R 3628 to form a substituted or unsubstituted saturated or unsaturated ring. Or does not form the ring.
  • R 3641 not forming the ring is a hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • the compound represented by formula (31) is the compound represented by formula (36-1) or formula (36-2), and in one embodiment, the compound represented by formula (36-1) Is a compound represented by.
  • two R 3631 are phenyl groups.
  • X 1 is N (R 3641 ).
  • R 3641 is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • the compound represented by the formula (31) is a compound represented by the following formula (36-1-1).
  • formula (36-1-1) two or more of R 3001 , R 3002 , R 3005 to R 3007 , R 3010 , R 3011 , R 3014 to R 3016 , and R 3031 to R 3034 are adjacent to each other. More than one pair may be linked together to form a substituted or unsubstituted saturated or unsaturated ring, or not to form a substituted or unsubstituted saturated or unsaturated ring.
  • X a is independently selected from O, S and N (R 35 ).
  • R 35 is combined with R 31 to form a substituted or unsubstituted saturated or unsaturated ring, or does not form the ring.
  • R 3001 which do not form a ring substituted or unsubstituted, saturated or unsaturated
  • R 3002, R 3005 ⁇ R 3007, R 3010, R 3011, R 3014 ⁇ R 3016, and R 3031 ⁇ R 3035, and R 3021, R 3022 is each independently: Hydrogen atom, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • the equations (31) to (35), (34-2), (35-2), (32-11), (34-11), (35-11), and (32-12) , (34-12), (35-12), (36-1) to (36-6) and (36-1-1), the substituent in the case of “substituted or unsubstituted” A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • ring a, ring b and ring c are each independently A substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 ring carbon atoms, or It is a substituted or unsubstituted heterocycle having 5 to 50 ring atoms.
  • R 401 and R 402 each independently form a substituted or unsubstituted heterocyclic ring or do not form a substituted or unsubstituted heterocyclic ring by combining with the a ring, the b ring or the c ring.
  • R 401 and R 402 which do not form the substituted or unsubstituted heterocyclic ring are each independently A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • Ring a, ring b and ring c are each a ring (substituted or unsubstituted aromatic ring having 6 to 50 ring-forming carbon atoms) fused to a central fused bicyclic structure of formula (41) composed of a B atom and two N atoms.
  • the “aromatic hydrocarbon ring” of ring a, ring b and ring c has the same structure as the above-described compound in which a hydrogen atom has been introduced into the “aryl group”.
  • the “aromatic hydrocarbon ring” of the ring a contains three carbon atoms on the fused bicyclic structure at the center of the formula (41) as ring-forming atoms.
  • the “aromatic hydrocarbon ring” of the ring b and the ring c includes two carbon atoms on the central fused bicyclic structure of the formula (41) as ring-forming atoms.
  • Specific examples of the “substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 ring carbon atoms” include compounds in which a hydrogen atom has been introduced into the “aryl group” described in Specific Example Group G1.
  • the “heterocycle” of ring a, ring b and ring c has the same structure as the above-mentioned compound in which a hydrogen atom has been introduced into the “heterocyclic group”.
  • the “heterocycle” of ring a contains three carbon atoms on the condensed two-ring structure in the center of formula (41) as ring-forming atoms.
  • the “heterocycle” of the b-ring and the c-ring includes two carbon atoms on the fused bicyclic structure at the center of the formula (41) as ring-forming atoms.
  • Specific examples of the “substituted or unsubstituted heterocyclic ring having 5 to 50 ring atoms” include compounds in which a hydrogen atom has been introduced into the “heterocyclic group” described in Specific Example Group G2.
  • R 401 and R 402 may be independently bonded to ring a, ring b or ring c to form a substituted or unsubstituted heterocyclic ring.
  • the heterocyclic ring in this case will contain a nitrogen atom on the fused bicyclic structure in the center of formula (41). In this case, the heterocyclic ring may contain a hetero atom other than a nitrogen atom.
  • R 401 and R 402 are bonded to ring a, ring b or ring c, specifically, the atom forming ring a, ring b or ring c is bonded to the atom forming ring R 401 or R 402.
  • R 401 may be bonded to ring a to form a two-ring fused (or three-ring fused or more) nitrogen-containing heterocycle in which the ring containing R 401 and the a ring are fused.
  • Specific examples of the nitrogen-containing heterocyclic ring include compounds corresponding to a nitrogen-containing two-ring fused or more heterocyclic group in Specific Example Group G2. The same applies to the case where R 401 is bonded to ring b, the case where R 402 is bonded to ring a, and the case where R 402 is bonded to ring c.
  • ring a, ring b and ring c in formula (41) are each independently a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 ring carbon atoms. In one embodiment, ring a, ring b and ring c in formula (41) are each independently a substituted or unsubstituted benzene ring or naphthalene ring.
  • R 401 and R 402 in Formula (41) are each independently a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted ring-forming atom having 5 to 50 ring atoms. And is preferably a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • the compound represented by formula (41) is a compound represented by formula (42) below.
  • R 401A combines with one or more selected from the group consisting of R 411 and R 421 to form a substituted or unsubstituted heterocyclic ring, or does not form a substituted or unsubstituted heterocyclic ring.
  • R 402A bonds to one or more selected from the group consisting of R 413 and R 414 to form a substituted or unsubstituted heterocyclic ring, or does not form a substituted or unsubstituted heterocyclic ring.
  • R 401A and R 402A which do not form a substituted or unsubstituted heterocyclic ring are each independently A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • R 411 to R 421 are bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring, or a substituted or unsubstituted saturated or unsaturated ring. Does not form a ring.
  • R 411 to R 421 which do not form the substituted or unsubstituted heterocyclic ring or the substituted or unsubstituted saturated or unsaturated ring are each independently Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —Si (R 901 ) (R 902 ) (R 903 ), —O— (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substitute
  • R 401A and R 402A in the formula (42) are groups corresponding to R 401 and R 402 in the formula (41).
  • R 401A and R 411 may combine to form a bicyclic fused (or tricyclic fused or more) nitrogen-containing heterocycle in which a ring containing these and a benzene ring corresponding to ring a are fused.
  • Specific examples of the nitrogen-containing heterocyclic ring include compounds corresponding to a nitrogen-containing two-ring fused or more heterocyclic group in Specific Example Group G2. The same applies to the case where R 401A and R 412 combine, the case where R 402A and R 413 combine, and the case where R 402A and R 414 combine.
  • R 11 and R 12 may be bonded to form a structure in which a benzene ring, an indole ring, a pyrrole ring, a benzofuran ring, a benzothiophene ring, or the like is condensed to a 6-membered ring to which these are bonded,
  • the formed condensed ring becomes a naphthalene ring, a carbazole ring, an indole ring, a dibenzofuran ring or a dibenzothiophene ring.
  • R 411 to R 421 that do not contribute to ring formation are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted ring carbon number having 6 to 50 carbon atoms. Or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • R 411 to R 421 that do not contribute to ring formation are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted ring-forming atom number. 5 to 50 monovalent heterocyclic groups.
  • R 411 to R 421 that do not contribute to ring formation are each independently a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms.
  • R 411 to R 421 that do not contribute to ring formation are each independently a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, and at least one of R 411 to R 421 One is a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms.
  • the compound represented by the formula (42) is a compound represented by the following formula (43).
  • R 431 combines with R 446 to form a substituted or unsubstituted heterocyclic ring or does not form a substituted or unsubstituted heterocyclic ring.
  • R 433 combines with R 447 to form a substituted or unsubstituted heterocyclic ring or does not form a substituted or unsubstituted heterocyclic ring.
  • R 441 combines with R 442 to form a substituted or unsubstituted heterocyclic ring or does not form a substituted or unsubstituted heterocyclic ring.
  • One or more of adjacent two or more of R 431 to R 451 are bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring, or a substituted or unsubstituted saturated or unsaturated ring. Does not form a ring.
  • R 431 to R 451 which do not form the substituted or unsubstituted heterocyclic ring or the substituted or unsubstituted saturated or unsaturated ring are each independently Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —Si (R 901 ) (R 902 ) (R 903 ), —O— (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substitute
  • R 431 may combine with R 446 to form a substituted or unsubstituted heterocycle.
  • R 431 and R 446 combine to form a 3- or more-fused nitrogen-containing heterocycle in which the benzene ring to which R 46 is attached, the ring containing N, and the benzene ring corresponding to ring a are fused.
  • the nitrogen-containing heterocycle include compounds corresponding to a nitrogen-containing three-ring fused or more heterocyclic group in Specific Example Group G2. The same applies to the case where R 433 and R 447 are bonded, the case where R 434 and R 451 are bonded, and the case where R 441 and R 442 are bonded.
  • R 431 to R 451 which do not contribute to ring formation are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted ring-forming carbon number 6 to 50. Or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • R 431 to R 451 that do not contribute to ring formation are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted ring-forming atom number. 5 to 50 monovalent heterocyclic groups.
  • R 431 to R 451 that do not contribute to ring formation are each independently a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms.
  • R 431 to R 451 that do not contribute to ring formation are each independently a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, and at least one of R 431 to R 451 is preferred.
  • One is a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms.
  • the compound represented by the formula (43) is a compound represented by the following formula (43A).
  • R 461 is Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, It is a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • R 462 to R 465 are each independently A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, It is a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • R 461 to R 465 are each independently a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • R 461 to R 465 are each independently a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms.
  • the compound represented by the formula (43) is a compound represented by the following formula (43B).
  • R 471 and R 472 are each independently Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —N (R 906 ) (R 907 ) or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • R 473 to R 475 are each independently A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —N (R 906 ) (R 907 ) or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • R 906 and R 907 are as defined in the above formula (1).
  • the compound represented by the formula (43) is a compound represented by the following formula (43B ′).
  • R 472 to R 475 are as defined in the formula (43B).
  • R 471 to R 475 is A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —N (R 906 ) (R 907 ) or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • R 472 is Hydrogen atom
  • R 471 and R 473 to R 475 are each independently A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, —N (R 906 ) (R 907 ) or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • the compound represented by the formula (43) is a compound represented by the following formula (43C).
  • R 481 and R 482 are each independently Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, It is a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • R 483 to R 486 are each independently A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, It is a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • the compound represented by the formula (43) is a compound represented by the following formula (43C ′).
  • R 483 to R 486 are as defined in the formula (43C).
  • R 481 to R 486 are each independently a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • R 481 to R 486 are each independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • the compound represented by the formula (43) is a compound represented by the following formula (43D).
  • R 4611 is a hydrogen atom, an unsubstituted alkyl group having 1 to 6 carbon atoms, an unsubstituted cycloalkyl group having 3 to 10 carbon atoms forming a ring, —Si (R 911 ) (R 912 ) (R 913 ), or -N ( R914 ) ( R915 ).
  • R 4612 to R 4615 each independently represent an unsubstituted alkyl group having 1 to 6 carbon atoms, an unsubstituted cycloalkyl group having 3 to 10 ring-forming carbon atoms, or —Si (R 911 ) (R 912 ) ( R 913 ).
  • R 911 to R 913 are each independently an unsubstituted alkyl group having 1 to 6 carbon atoms or an unsubstituted aryl group having 6 to 18 ring carbon atoms.
  • R 914 to R 915 are each independently an unsubstituted aryl group having 6 to 18 ring carbon atoms.
  • R 4611 is a hydrogen atom, an unsubstituted C 1-6 alkyl group, or —N (R 914 ) (R 915 ).
  • R 4612 to R 4615 are each independently an unsubstituted alkyl group having 1 to 6 carbon atoms or an unsubstituted cycloalkyl group having 3 to 10 ring forming carbon atoms. is there.
  • R 4611 is -N (R 914 ) (R 915 ), and R 4612 -R 4615 are each independently an unsubstituted alkyl group having 1-6 carbon atoms. It is.
  • R 4611 is an unsubstituted alkyl group having 1 to 6 carbon atoms
  • R 4612 to R 4615 are each independently an unsubstituted alkyl group having 1 to 6 carbon atoms. It is a base.
  • R 4611 is a hydrogen atom
  • R 4612 to R 4615 are each independently an unsubstituted alkyl group having 1 to 6 carbon atoms or an unsubstituted ring-forming carbon group having 3 carbon atoms. ⁇ 10 cycloalkyl groups.
  • At least one of the hydrogen atoms included in one or more selected from the group consisting of R 914 and R 915 is a deuterium atom.
  • the compound represented by the formula (41) is prepared as an intermediate by first connecting the a ring, b ring and c ring with a linking group (a group containing NR 1 and a group containing NR 2 ).
  • First reaction the final product can be produced by bonding ring a, ring b and ring c with a linking group (group containing B) (second reaction).
  • first reaction an amination reaction such as a Bhabhurt-Hartwig reaction can be applied.
  • a tandem hetero Friedel-Crafts reaction or the like can be applied.
  • the compound represented by the formula (51) will be described.
  • the r ring is a ring represented by the formula (52) or the formula (53) fused at an arbitrary position of an adjacent ring.
  • the q ring and the s ring are each independently a ring represented by the formula (54) fused at an arbitrary position of an adjacent ring.
  • the p-ring and the t-ring each have a structure represented by the formula (55) or (56), which is independently condensed at an arbitrary position of an adjacent ring.
  • R 501 there are a plurality and do not form a plurality of adjacent R 501 is bonded to either form a ring substituted or unsubstituted, saturated or unsaturated with one another, or a substituted or unsubstituted saturated or unsaturated ring .
  • X 501 is an oxygen atom, a sulfur atom, or NR 502 .
  • R 501 and R 502 which do not form a substituted or unsubstituted saturated or unsaturated ring are Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —Si (R 901 ) (R 902 ) (R 903 ), —O— (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to
  • R 901 to R 907 are as defined in the above formula (1).
  • Ar 501 and Ar 502 are each independently A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • L 501 is A substituted or unsubstituted alkylene group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenylene group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynylene group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkylene group having 3 to 50 ring carbon atoms, A substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms or a substituted or unsubstituted divalent heterocyclic group having 5 to 50 ring-forming atoms.
  • m1 is each independently an integer of 0 to 2
  • m2 is each independently an integer of 0 to 4
  • m3 is each independently an integer of 0 to 3
  • m4 is each independently 0 to 2. It is an integer of 5. If R 501 there are a plurality to plurality of R 501 may be the same as each other or may be different. )
  • each of the rings p to t is fused by sharing two carbon atoms with an adjacent ring.
  • the position and direction of condensation are not limited, and condensation can be performed at any position and direction.
  • R 501 is a hydrogen atom.
  • the compound represented by the formula (51) is represented by any of the following formulas (51-1) to (51-6).
  • R 501 , X 501 , Ar 501 , Ar 502 , L 501 , m1 and m3 are as defined in the formula (51).
  • the compound represented by the formula (51) is represented by any of the following formulas (51-11) to (51-13).
  • R 501 , X 501 , Ar 501 , Ar 502 , L 501 , m1, m3, and m4 are as defined in Formula (51).
  • the compound represented by the formula (51) is represented by any of the following formulas (51-21) to (51-25).
  • R 501 , X 501 , Ar 501 , Ar 502 , L 501 , m1 and m4 are as defined in the formula (51).
  • the compound represented by the formula (51) is represented by any of the following formulas (51-31) to (51-33).
  • R 501 , X 501 , Ar 501 , Ar 502 , L 501 , and m2 to m4 are as defined in the formula (51).
  • Ar 501 and Ar 502 are each independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • one of Ar 501 and Ar 502 is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, and the other is a substituted or unsubstituted monovalent monovalent having 5 to 50 ring atom atoms. It is a heterocyclic group.
  • R 605 to R 608 those which do not form the divalent group represented by the above formula (63), and at least one of R 621 to R 624 are monovalent groups represented by the following formula (64).
  • X 601 is an oxygen atom, a sulfur atom, or NR 609 .
  • R 601 to R 608 which do not form the divalent group represented by the formulas (62) and (63) and are not the monovalent group represented by the formula (64), the formula (64) R 611 to R 614 and R 621 to R 624 , and R 609 which are not a monovalent group represented by Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —Si (R 901 ) (R 902 ) (R 903 ), —O— (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, A
  • R 901 to R 907 are as defined in the above formula (1).
  • Ar 601 and Ar 602 are each independently: A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • L 601 to L 603 are independently Single bond, A substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, A substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring-forming atoms, or a divalent linking group formed by combining 2 to 4 of these. )
  • the positions where the divalent group represented by the formula (62) and the divalent group represented by the formula (63) are formed are not particularly limited, and the positions where R 601 to R 608 are possible Such groups can be formed.
  • the compound represented by the formula (61) is represented by any of the following formulas (61-1) to (61-6).
  • X 601 is as defined in the formula (61).
  • At least two of R 601 to R 624 are monovalent groups represented by the above formula (64).
  • R 601 to R 624 which are not a monovalent group represented by the formula (64) are each independently Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —Si (R 901 ) (R 902 ) (R 903 ), —O— (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms
  • the compound represented by the formula (61) is represented by any of the following formulas (61-7) to (61-18).
  • X 601 is as defined in the formula (61). * Represents a single bond bonded to the monovalent group represented by the formula (64).
  • R 601 to R 624 are the same as R 601 to R 624 which are not a monovalent group represented by the formula (64).
  • R 601 to R 608 which do not form the divalent group represented by the formulas (62) and (63) and are not the monovalent group represented by the formula (64);
  • R 611 to R 614 and R 621 to R 624 which are not monovalent groups represented by 64) are preferably each independently Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • R 631 to R 640 are independently Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —Si (R 901 ) (R 902 ) (R 903 ), —O— (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted
  • HAr 601 is a structure represented by the following formula (67).
  • X 602 is an oxygen atom or a sulfur atom. Any one of R 641 to R 648 is a single bond bonded to L 603 .
  • R 641 to R 648 which are not a single bond are each independently Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —Si (R 901 ) (R 902 ) (R 903 ), —O— (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • a 701 ring and A 702 ring are each independently A substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 ring carbon atoms, or It is a substituted or unsubstituted heterocycle having 5 to 50 ring atoms. At least one selected from the group consisting of the ring A 701 and the ring A 702 bonds to a bond * of a structure represented by the following formula (72).
  • a 703 rings are each independently: A substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 ring carbon atoms, or It is a substituted or unsubstituted heterocycle having 5 to 50 ring atoms.
  • X 701 is NR 703 , C (R 704 ) (R 705 ), Si (R 706 ) (R 707 ), Ge (R 708 ) (R 709 ), O, S or Se.
  • R 701 and R 702 combine with each other to form a substituted or unsubstituted saturated or unsaturated ring, or do not form a substituted or unsubstituted saturated or unsaturated ring.
  • R 701 and R 702 which do not form a substituted or unsubstituted saturated or unsaturated ring, and R 703 to R 709 are each independently Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —Si (R 901 ) (R 902 ) (R 903 ), —O— (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstit
  • the group represented by the following formula (73) to one or both of the A 701 ring and A 702 ring is bonded.
  • Ar 701 and Ar 702 are each independently A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • L 701 to L 703 are each independently Single bond, A substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, A substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring-forming atoms, or a divalent linking group formed by combining 2 to 4 of these.
  • the ring-forming carbon atom of the aromatic hydrocarbon ring of the ring A 702 or the ring-forming atom of the heterocyclic ring has a bond of a structure represented by the formula (72). Combine with *.
  • the structures represented by formula (72) may be the same or different.
  • R 701 and R 702 are each independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms. In one embodiment, R 701 and R 702 combine with each other to form a fluorene structure.
  • Ring A 701 and Ring A 702 are a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 ring carbon atoms, for example, a substituted or unsubstituted benzene ring.
  • ring A 703 is a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 ring carbon atoms, for example, a substituted or unsubstituted benzene ring.
  • X 701 is O or S.
  • the compound represented by the formula (81) will be described.
  • the ring A 801 is a ring represented by the formula (82) fused at an arbitrary position of an adjacent ring.
  • the ring A 802 is a ring represented by the formula (83) fused at an arbitrary position of an adjacent ring.
  • the two bonding hands * bond to an arbitrary position on the A803 ring.
  • X 801 and X 802 are each independently C (R 803 ) (R 804 ), Si (R 805 ) (R 806 ), an oxygen atom, or a sulfur atom.
  • Ring A 803 is a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic ring having 5 to 50 ring-forming atoms.
  • Ar 801 is a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring-forming atoms.
  • R 801 to R 806 are each independently Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, —Si (R 901 ) (R 902 ) (R 903 ), —O— (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • R 901 to R 907 are as defined in the above formula (1).
  • m801 and m802 are each independently an integer of 0 to 2. When these are 2, a plurality of R 801 or R 802 may be the same as or different from each other.
  • a801 is an integer of 0 to 2. When a801 is 0 or 1, the structures in parentheses represented by “3-a801” may be the same or different. If a801 is 2, to Ar 801 may be the same as each other or may be different. )
  • Ar 801 is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • ring A 803 is a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 ring carbon atoms, such as a substituted or unsubstituted benzene ring, a substituted or unsubstituted naphthalene ring, or It is a substituted or unsubstituted anthracene ring.
  • R 803 and R 804 are each independently a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms.
  • a801 is 1.
  • the organic EL element according to one aspect of the present invention has a cathode, an anode, and a light emitting layer between the cathode and the anode, and the light emitting layer is represented by the formula (1).
  • formulas (11), (21), (31), (41), (51), (61), (71) and (81) are selected from the group consisting of formulas (11), (21), (31), (41), (51), (61), (71) and (81):
  • conventionally known materials and device configurations can be applied as long as the effects of the present invention are not impaired.
  • the light emitting layer is represented by the formula (43D) and at least one selected from the group consisting of the compound represented by the formula (1A) and the compound represented by the formula (1B). And a compound.
  • the group represented by the formula (1A) or (1B) is a compound represented by the following formulas BH-1, BH-2, BH-3 and BH-5 to BH-17.
  • the compound represented by the formula (43D) is one or more selected from the group consisting of compounds represented by the following formulas BD-9, BD-10, BD-11 and BD-12. It is 1 or more.
  • the content of the compound represented by the formula (1) in the light emitting layer is preferably 80% by mass or more and 99% by mass or less based on the entire light emitting layer.
  • Content of one or more compounds selected from the group consisting of formulas (11), (21), (31), (41), (51), (61), (71) and (81) in the light emitting layer. Is preferably 1% by mass or more and 20% by mass or less with respect to the entire light emitting layer.
  • One aspect of the organic EL device of the present invention preferably has a hole transport layer between the anode and the light emitting layer.
  • One aspect of the organic EL device of the present invention preferably has an electron transport layer between the cathode and the light emitting layer.
  • hole injection / transport layer means “at least one of a hole injection layer and a hole transport layer”
  • electron injection / transport layer means “electron injection layer and electron At least one of the transport layers ".
  • the substrate is used as a support for the light emitting device.
  • the substrate for example, glass, quartz, plastic, or the like can be used.
  • a flexible substrate may be used.
  • the flexible substrate is a substrate that can be bent (flexible), and examples thereof include a plastic substrate made of polycarbonate and polyvinyl chloride.
  • anode It is preferable to use a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a large work function (specifically, 4.0 eV or more) for the anode formed on the substrate.
  • a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a large work function (specifically, 4.0 eV or more) for the anode formed on the substrate.
  • ITO indium oxide-tin oxide
  • ITO indium oxide-tin oxide containing silicon or silicon oxide
  • indium oxide-zinc oxide silicon oxide
  • tungsten oxide tungsten oxide
  • indium oxide containing zinc oxide Graphene
  • gold (Au) platinum
  • Pt platinum
  • a nitride of a metal material for example, titanium nitride
  • the hole-injection layer is a layer containing a substance having a high hole-injection property.
  • Materials having a high hole-injecting property include molybdenum oxide, titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide, silver oxide, Tungsten oxide, manganese oxide, aromatic amine compounds, or high molecular compounds (oligomers, dendrimers, polymers, and the like) can also be used.
  • the hole-transporting layer is a layer containing a substance having a high hole-transporting property.
  • An aromatic amine compound, a carbazole derivative, an anthracene derivative or the like can be used for the hole transport layer.
  • a high molecular compound such as poly (N-vinylcarbazole) (abbreviation: PVK) or poly (4-vinyltriphenylamine) (abbreviation: PVTPA) can also be used.
  • PVK N-vinylcarbazole
  • PVTPA poly (4-vinyltriphenylamine
  • any substance other than these substances may be used as long as it has a property of transporting more holes than electrons.
  • the layer containing a substance having a high hole-transport property is not limited to a single layer, and may be a layer in which two or more layers of the above substances are stacked.
  • the light-emitting layer is a layer containing a substance having a high light-emitting property, and various materials can be used.
  • a fluorescent compound that emits fluorescence or a phosphorescent compound that emits phosphorescence can be used as the substance having a high light emitting property.
  • the fluorescent compound is a compound capable of emitting light from a singlet excited state
  • the phosphorescent compound is a compound capable of emitting light from a triplet excited state.
  • a blue fluorescent light-emitting material that can be used for the light-emitting layer
  • a pyrene derivative, a styrylamine derivative, a chrysene derivative, a fluoranthene derivative, a fluorene derivative, a diamine derivative, a triarylamine derivative, or the like can be used.
  • a green fluorescent light emitting material that can be used for the light emitting layer
  • an aromatic amine derivative or the like can be used.
  • a red fluorescent light emitting material that can be used for the light emitting layer
  • a tetracene derivative, a diamine derivative, or the like can be used.
  • a metal complex such as an iridium complex, an osmium complex, and a platinum complex is used.
  • An iridium complex or the like is used as a green phosphorescent material that can be used for the light emitting layer.
  • a metal complex such as an iridium complex, a platinum complex, a terbium complex, or a europium complex is used as a red phosphorescent light emitting material that can be used for the light emitting layer.
  • the light-emitting layer may have a structure in which the above substance having a high light-emitting property (guest material) is dispersed in another substance (host material).
  • guest material the above substance having a high light-emitting property
  • host material the substance having a high light emitting property
  • various compounds other than the compound represented by the above formula (1) can be used, and the lowest unoccupied molecular orbital level (LUMO) is higher than that of the substance having a high light emitting property. It is preferable to use a substance having a high level) and a low highest occupied orbital level (HOMO level).
  • a substance (host material) for dispersing a substance having a high light-emitting property 1) a metal complex such as an aluminum complex, a beryllium complex, or a zinc complex; 2) an oxadiazole derivative, a benzimidazole derivative, or a phenanthroline derivative; A heterocyclic compound, 3) a condensed aromatic compound such as a carbazole derivative, an anthracene derivative, a phenanthrene derivative, a pyrene derivative, or a chrysene derivative; 3) an aromatic amine compound such as a triarylamine derivative or a condensed polycyclic aromatic amine derivative; used.
  • the electron-transporting layer is a layer containing a substance having a high electron-transporting property.
  • a metal complex such as an aluminum complex, a beryllium complex or a zinc complex
  • a heteroaromatic compound such as an imidazole derivative, a benzimidazole derivative, an azine derivative, a carbazole derivative or a phenanthroline derivative
  • 3) a polymer compound can be used.
  • the electron-injection layer is a layer containing a substance having a high electron-injection property.
  • a substance having a high electron-injection property lithium (Li), ytterbium (Yb), lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF 2 ), 8-hydroxyquinolinolato-lithium (Liq), etc.
  • an alkali metal such as lithium oxide (LiO x ), an alkaline earth metal, or a compound thereof.
  • cathode It is preferable to use a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a low work function (specifically, 3.8 eV or less) for the cathode.
  • a cathode material include elements belonging to Group 1 or Group 2 of the periodic table, that is, alkali metals such as lithium (Li) and cesium (Cs), and magnesium (Mg) and calcium ( Alkaline earth metals such as Ca) and strontium (Sr); alloys containing these (eg, MgAg, AlLi); rare earth metals such as europium (Eu) and ytterbium (Yb); and alloys containing these.
  • a method for forming each layer is not particularly limited.
  • a conventionally known formation method such as a vacuum evaporation method and a spin coating method can be used.
  • Each layer such as a light-emitting layer is formed by a known method such as a vacuum evaporation method, a molecular beam evaporation method (MBE method), or a dipping method of a solution dissolved in a solvent, a spin coating method, a casting method, a bar coating method, a roll coating method, or the like. It can be formed by a method.
  • MBE method molecular beam evaporation method
  • the thickness of each layer is not particularly limited, but is generally from several nm to suppress defects such as pinholes, suppress applied voltage, and improve luminous efficiency. A range of 1 ⁇ m is preferred.
  • An electronic device includes the organic EL element according to one embodiment of the present invention.
  • the electronic device include a display component such as an organic EL panel module, a display device such as a television, a mobile phone, or a personal computer, and a light emitting device such as a lighting device or a vehicular lamp.
  • Synthesis Example 3 [Synthesis of Compound BH-3] The same reaction was performed as in Synthesis Example 1 except that 1.1 g (5.3 mmol) of dibenzofuran-1-boronic acid was used instead of dibenzofuran-2-boronic acid to obtain 1.3 g of white crystals. The obtained compound was subjected to FD-MS analysis and identified as the following compound BH-3 (yield 62%).
  • Synthesis Example 5 [Synthesis of Compound BH-5] The same reaction was performed as in Synthesis Example 1 except that 1.5 g (5.3 mmol) of 4- (2-dibenzofuranyl) phenylboronic acid was used instead of dibenzofuran-2-boronic acid, and 1.8 g of white Crystals were obtained. The obtained compound was subjected to FD-MS analysis and identified as the following compound BH-5 (yield 71%).
  • Synthesis Example 6 [Synthesis of Compound BH-6] The same reaction was performed as in Synthesis Example 2 except that 1.5 g (5.3 mmol) of 4- (2-dibenzofuranyl) phenylboronic acid was used instead of dibenzofuran-2-boronic acid, and 2.0 g of white Crystals were obtained. The obtained compound was subjected to FD-MS analysis and identified as the following compound BH-6 (yield 73%).
  • Synthesis example 8 [Synthesis of Compound BH-8] (Synthesis of Intermediate 7) Under an argon atmosphere, 13.3-g (50.0 mmol) of 9-bromoanthracene-d9, 10.4 g (52.5 mmol) of 3-biphenylboronic acid, 1.2 g (1.00 mmol) of Pd [PPh 3 ] 4 and 75 ml of toluene. , 75 ml (150.0 mmol) of 2M Na 2 CO 3 aqueous solution were added, and the mixture was heated under reflux with stirring for 10 hours. After completion of the reaction, the mixture was cooled to room temperature, transferred to a separating funnel and extracted with dichloromethane.
  • Synthesis Example 12 [Synthesis of Compound BH-12] A reaction was performed in the same manner as in Synthesis Example 1 except that 1.8 g (5.3 mmol) of 6- (2-dibenzofuranyl) -2-naphthalenyl-boronic acid was used instead of dibenzofuran-2-boronic acid. Obtained 0.5 g of white crystals. The obtained compound was subjected to FD-MS analysis and identified as the following compound BH-12 (yield 55%).
  • Synthesis Example 13 [Synthesis of Compound BH-13] A reaction was performed in the same manner as in Synthesis Example 2, except that 1.8 g (5.3 mmol) of 6- (2-dibenzofuranyl) -2-naphthalenyl-boronic acid was used instead of dibenzofuran-2-boronic acid. 0.0 g of white crystals were obtained. The obtained compound was subjected to FD-MS analysis and identified as the following compound BH-13 (yield 65%).
  • Synthesis Example 14 [Synthesis of Compound BH-14] The same reaction was performed as in Synthesis Example 1 except that 1.5 g (5.3 mmol) of 3- (2-dibenzofuranyl) phenylboronic acid was used instead of dibenzofuran-2-boronic acid, and 1.3 g of white Crystals were obtained. The obtained compound was subjected to FD-MS analysis and identified as the following compound BH-14 (yield 52%).
  • Synthesis Example 15 [Synthesis of Compound BH-15] The same reaction was performed as in Synthesis Example 2 except that 1.5 g (5.3 mmol) of 3- (2-dibenzofuranyl) phenylboronic acid was used instead of dibenzofuran-2-boronic acid, and 1.4 g of white Crystals were obtained. The obtained compound was subjected to FD-MS analysis and identified as the following compound BH-15 (yield 50%).
  • Synthesis Example 16 [Synthesis of Compound BH-16] The reaction was performed in the same manner as in Synthesis Example 1 except that 1.5 g (5.3 mmol) of 4- (1-dibenzofuranyl) phenylboronic acid was used instead of dibenzofuran-2-boronic acid, and 1.6 g of white Crystals were obtained. The obtained compound was subjected to FD-MS analysis and identified as the following compound BH-16 (yield 62%).
  • Example 1 (Production of organic EL element) A 25 mm ⁇ 75 mm ⁇ 1.1 mm thick glass substrate with ITO transparent electrode (anode) (manufactured by Geomatic Co., Ltd.) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, and then UV ozone cleaning for 30 minutes. The film thickness of ITO was 130 nm. The cleaned glass substrate with a transparent electrode is mounted on a substrate holder of a vacuum vapor deposition apparatus, and a compound HI is vapor-deposited so that the transparent electrode is first covered on the surface on which the transparent electrode is formed to form a HI film having a thickness of 5 nm. A film was formed. This HI film functions as a hole injection layer.
  • ITO transparent electrode anode
  • UV ozone cleaning for 30 minutes.
  • the film thickness of ITO was 130 nm.
  • the cleaned glass substrate with a transparent electrode is mounted on a substrate holder of a vacuum vapor deposition apparatus, and a compound
  • the compound HT-1 was vapor-deposited to form an HT-1 film having a film thickness of 80 nm on the HI film.
  • This HT-1 film functions as a hole transport layer (first hole transport layer).
  • a compound HT-2 was deposited, and a 10 nm-thick HT-2 film was formed on the HT-1 film.
  • This HT-2 film functions as an electron blocking layer (second hole transport layer).
  • the compound BH-1-D (host material) and the compound BD-1 (dopant material) were co-evaporated on the HT-2 film so that the ratio of the compound BD-1 was 4% by mass, and a BH- film having a thickness of 25 nm was formed.
  • a BD-1 film was formed.
  • This BH-1 BD-1 film functions as a light emitting layer.
  • Compound ET-1 was deposited on this light emitting layer to form a 10 nm-thick ET-1 film. This ET-1 film functions as a hole barrier layer.
  • Compound ET-2 was deposited on the ET-1 film to form a 15 nm-thick ET-2 film. This ET-2 film functions as an electron transport layer.
  • LiF was deposited on the ET-2 film to form a 1 nm-thick LiF film.
  • Metal Al was vapor-deposited on this LiF film to form a metal cathode having a film thickness of 80 nm, and an organic EL device was produced.
  • the layer structure of the obtained organic EL device is as follows. ITO (130) / HI (5) / HT-1 (80) / HT-2 (10) / BH-1: BD-1 (25: 4% by mass) / ET-1 (10) / ET-2 ( 15) / LiF (1) / Al (80)
  • the numbers in parentheses indicate the film thickness (unit: nm).
  • Example 1 The materials used in Example 1 and Examples and Comparative Examples described later are shown below.
  • Comparative Example 1 An organic EL device was prepared and evaluated by the same method as in Example 1 except that the compounds shown in the following table were used as the host material of the light emitting layer. The results are shown in Table 1.
  • Example 2 and Comparative Example 2 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in Table 2 were used as the light emitting layer material. Table 2 shows the results.
  • Example 3 Comparative Example 3 An organic EL device was prepared and evaluated by the same method as in Example 1 except that the compounds shown in Table 3 were used as the light emitting layer material. The results are shown in Table 3.
  • Example 4 Comparative Example 4 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in Table 4 were used as the light emitting layer material. The results are shown in Table 4.
  • Example 5 Comparative Example 5 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in Table 5 were used as the light emitting layer material. Table 5 shows the results.
  • Example 6 Comparative Example 6 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in Table 6 were used as the light emitting layer material. The results are shown in Table 6.
  • Example 7 Comparative Example 7 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in Table 7 were used as the light emitting layer material. Table 7 shows the results.
  • Example 8 and Comparative Example 8 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in Table 8 were used as the light emitting layer material. Table 8 shows the results.
  • Example 11 and Comparative Example 11 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 9.
  • Example 12 Comparative Example 12 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 10.
  • Example 13 Comparative Example 13 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 11.
  • Example 14 Comparative Example 14 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 12.
  • Example 15 and Comparative Example 15 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 13.
  • Example 16 Comparative Example 16 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 14.
  • Example 17 Comparative Example 17 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 15.
  • Example 21 Comparative Example 21 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 16.
  • Example 22 Comparative Example 22 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 17.
  • Example 23 Comparative Example 23 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 18.
  • Example 24 Comparative Example 24 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 19.
  • Example 25 Comparative Example 25 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 20.
  • Example 26 Comparative Example 26 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 21.
  • Example 27 Comparative Example 27 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 22.
  • Example 31 Comparative Example 31 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 23.
  • Example 32 Comparative Example 32 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 24.
  • Example 33 Comparative Example 33 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 25.
  • Example 34 Comparative Example 34 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 26.
  • Example 35 Comparative Example 35 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 27.
  • Example 36 Comparative Example 36 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 28.
  • Example 37 Comparative Example 37 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 29.
  • Example 41 Comparative Example 41 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 30.
  • Example 42 Comparative Example 42 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 31.
  • Example 43 Comparative Example 43 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 32.
  • Example 44 Comparative Example 44 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 33.
  • Example 45 Comparative Example 45 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 34.
  • Example 46 Comparative Example 46 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 35.
  • Example 47 Comparative Example 47 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 36.
  • Example 51 Comparative Example 51 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 37.
  • Example 52 Comparative Example 52 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 38.
  • Example 53 Comparative Example 53 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 39.
  • Example 54 Comparative Example 54 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 40.
  • Example 55 Comparative Example 55 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 41.
  • Example 56 Comparative Example 56 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 42.
  • Example 57 Comparative Example 57 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 43.
  • Example 61 Comparative Example 61 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 44.
  • Example 62 Comparative Example 62 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 45.
  • Example 63 Comparative Example 63 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 46.
  • Example 64 Comparative Example 64 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 47.
  • Example 65 Comparative Example 65 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 48.
  • Example 66 Comparative Example 66 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 49.
  • Example 67 Comparative example 67 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 50.
  • Example 68 Comparative Example 68 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 51.
  • Example 69 Comparative example 69 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 52.
  • Example 70 Comparative Example 70 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 53.
  • Example 71 Comparative example 71 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 54.
  • Example 72 Comparative Example 72 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 55.
  • Example 73 Comparative Example 73 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 56.
  • Example 74 Comparative Example 74 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 57.
  • Example 75 Comparative Example 75 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 58.
  • Example 76 Comparative Example 76 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 59.
  • Example 77 Comparative Example 77 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 60.
  • Example 78 Comparative Example 78 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 61.
  • Example 79 Comparative Example 79 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 62.
  • Example 80 Comparative Example 80 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 63.
  • Example 81 Comparative Example 81 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 64.
  • Example 82 Comparative Example 82 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 65.
  • Example 83 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 66.
  • Example 84 Comparative Example 84 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 67.
  • Example 85 Comparative Example 85 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 68.
  • Example 86 Comparative Example 86 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 69.
  • Example 87 Comparative Example 87 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 70.
  • Example 88 Comparative Example 88 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 71.
  • Example 89 Comparative Example 89 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 72.
  • Example 90 Comparative Example 90 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 73.
  • Example 91 Comparative example 91 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 74.
  • Example 92 Comparative Example 92 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 75.
  • Example 93 Comparative Example 93 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 76.
  • Example 94 Comparative example 94 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 77.
  • Example 95 Comparative Example 95 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 78.
  • Example 96 Comparative Example 96 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 79.
  • Example 97 Comparative Example 97 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 80.
  • Example 98 Comparative Example 98 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 81.
  • Example 99 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 82.
  • Example 100 Comparative example 100 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 83.
  • Example 101 Comparative Example 101 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 84.
  • Example 102 Comparative Example 102 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 85.
  • Example 103 Comparative Example 103 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 86.
  • Example 104 Comparative example 104 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 87.
  • Example 105 Comparative Example 105 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 88.
  • Example 106 Comparative Example 106 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 89.
  • Example 107 Comparative Example 107 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 90.
  • Example 108 Comparative Example 108 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 91.
  • Example 109 Comparative Example 109 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 92.
  • Example 110 Comparative Example 110 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 93.
  • Example 111 Comparative Example 111 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 94.
  • Example 112 Comparative example 112 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 95.
  • Example 113 Comparative Example 113 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 96.
  • Example 114 Comparative example 114 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 97.
  • Example 115 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 98.
  • Example 116 Comparative Example 116 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 99.
  • Example 117 Comparative Example 117 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 100.
  • Example 118 Comparative example 118 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 101.
  • Example 119 Comparative Example 119 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 102.
  • Example 120 Comparative Example 120 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 103.
  • Example 121 Comparative Example 121 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 104.
  • Example 122 Comparative Example 122 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 105.
  • Example 123 Comparative Example 123 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 106.
  • Example 124 Comparative Example 124 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 107.
  • Example 125 Comparative Example 125 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 108.
  • Example 126 Comparative example 126 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 109.
  • Example 127 Comparative Example 127 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 110.
  • Example 128, Comparative Example 128 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 111.
  • Example 129 Comparative Example 129 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 112.
  • Example 130 Comparative Example 130 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 113.
  • Example 131 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in Table 114.
  • Example 132 Comparative example 132 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 133 Comparative Example 133 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 134 Comparative Example 134 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 135, Comparative example 135 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 136 Comparative Example 136 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 137 Comparative Example 137 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 138 Comparative Example 138 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 139 Comparative Example 139 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 140 Comparative Example 140 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 141 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 142 Comparative Example 142 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 143 Comparative Example 143 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 144, Comparative example 144 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 145 Comparative Example 145 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 146 Comparative Example 146 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 147 Comparative Example 147 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 148 Comparative Example 148 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 149 Comparative Example 149 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 150 Comparative Example 150 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 151 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 152 Comparative Example 152 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 153 Comparative Example 153 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 154 Comparative Example 154 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 155 Comparative Example 155 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 156 Comparative Example 156 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 157 Comparative Example 157 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 158 Comparative Example 158 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 159 Comparative Example 159 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 160 Comparative Example 160 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 161 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 162 Comparative example 162 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 163 Comparative Example 163 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 164 Comparative Example 164 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 165 Comparative Example 165 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 166 Comparative Example 166 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 167 Comparative Example 167 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 168 Comparative Example 168 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 169 Comparative Example 169 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 170 Comparative example 170 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 171 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 172 Comparative Example 172 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 173 Comparative Example 173 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 174 Comparative Example 174 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 175, Comparative Example 175 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 176 Comparative Example 176 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 177 Comparative Example 177 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 178 Comparative Example 178 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 179 Comparative Example 179 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 180 Comparative Example 180 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 181 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 182 Comparative Example 182 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 183 Comparative Example 183 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 184 Comparative Example 184 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 185 Comparative Example 185 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 186 Comparative Example 186 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 187 Comparative Example 187 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 188 Comparative Example 188 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 189 Comparative Example 189 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 190 Comparative example 190 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 191 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 192 Comparative Example 192 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 193 Comparative Example 193 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 194 Comparative Example 194 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 195 Comparative Example 195 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 196 Comparative Example 196 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 197 Comparative Example 197 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 198 Comparative Example 198 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 199 Comparative Example 199 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 200 Comparative Example 200 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 201 Comparative Example 201 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 202 Comparative example 202 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 203 Comparative example 203 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 204 Comparative example 204 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 205 Comparative example 205 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 206 Comparative example 206 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 207 Comparative Example 207 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 208 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 209 Comparative Example 209 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 210 Comparative Example 210 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 211 Comparative Example 211 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 212 Comparative example 212 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 213, Comparative Example 213 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 214 Comparative example 214 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 215, Comparative Example 215 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 216 Comparative Example 216 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 217 Comparative Example 217 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 218, Comparative Example 218 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 219 Comparative Example 219 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 220 Comparative Example 220 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 221 Comparative Example 221 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 222 Comparative example 222 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 223, Comparative Example 223 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 224 Comparative Example 224 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 225 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 226, Comparative Example 226 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 227 Comparative Example 227 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 228, Comparative Example 228 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 229 Comparative Example 229 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 230 Comparative example 230 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 231 Comparative Example 231 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 232 Comparative Example 232 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 233 Comparative Example 233 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 234, Comparative Example 234 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 235 Comparative Example 235 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 236, Comparative Example 236 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 237 Comparative Example 237 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 238, Comparative Example 238 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 239 Comparative Example 239 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 240 Comparative example 240 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 241 Comparative Example 241 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 242 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 243 Comparative Example 243 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 244 Comparative Example 244 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 245, Comparative Example 245 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 246, Comparative Example 246 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 247 Comparative Example 247 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 248, Comparative Example 248 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 249 Comparative Example 249 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 250 Comparative Example 250 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 251 Comparative Example 251 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 252 Comparative Example 252 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 253 Comparative Example 253 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 254 Comparative Example 254 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 255 Comparative example 255 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 256 Comparative Example 256 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 257 Comparative Example 257 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 258, Comparative Example 258 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 259 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 260 Comparative example 260 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 261 Comparative Example 261 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 262 Comparative Example 262 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 263 Comparative Example 263 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 264 Comparative Example 264 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 265 Comparative Example 265 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 266, Comparative Example 266 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 267 Comparative Example 267 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 268, Comparative Example 268 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 269 Comparative Example 269 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 270 Comparative Example 270 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 271 Comparative Example 271 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 272 Comparative Example 272 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 273 Comparative Example 273 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 274 Comparative Example 274 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 275 Comparative Example 275 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 276 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 277 Comparative Example 277 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 278, Comparative Example 278 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 279 Comparative Example 279 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 280 Comparative Example 280 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 281 Comparative Example 281 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 282 Comparative Example 282 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 283 Comparative Example 283 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 284 Comparative Example 284 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 285, Comparative Example 285 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 286, Comparative Example 286 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 287 Comparative Example 287 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 288, Comparative Example 288 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 289 Comparative Example 289 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 290 Comparative Example 290 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 291 Comparative Example 291 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 292 Comparative Example 292 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.
  • Example 293 Comparative Example 293 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the following table were used as the light emitting layer materials (host material and dopant material). The results are shown in the table below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

陰極と、陽極と、前記陰極と前記陽極との間に配置された発光層と、を有し、前記発光層が、下記式(1)で表される化合物と、下記式(11)、(21)、(31)、(41)、(51)、(61)、(71)及び(81)からなる群から選択される1以上の化合物と、を含有する有機エレクトロルミネッセンス素子。(式(1)において、R~Rのうち、少なくとも1つは重水素原子である。)

Description

有機エレクトロルミネッセンス素子及びそれを用いた電子機器
 本発明は、有機エレクトロルミネッセンス素子及びそれを用いた電子機器に関する。
 有機エレクトロルミネッセンス素子(以下、「有機EL素子」ということがある)に電圧を印加すると、陽極から正孔が、また陰極から電子が、それぞれ発光層に注入される。そして、発光層において、注入された正孔と電子とが再結合し、励起子が形成される。
 有機EL素子の素子性能を高めるべく、有機EL素子に用いる材料の改良は徐々に進められているが(例えば特許文献1~6)、さらなる高性能化が求められている。特に、有機EL素子の寿命の改善は、実用化した製品の寿命につながる重要な課題であるため、長寿命な有機EL素子を実現できる材料が求められている。
国際公開第2017/188111号 米国特許出願公開第2017/324045号明細書 国際公開第2010/099534号 国際公開第2010/135395号 国際公開第2010/071362号 国際公開第2018/066830号
 本発明の目的は、長寿命な有機EL素子、及び当該有機EL素子を用いた電子機器を提供することである。
 本発明者らは上記目的を達成するために鋭意研究を重ねた結果、有機EL素子の発光層に特定の化合物を組み合わせて用いることで、寿命に優れる有機EL素子が得られることを見出し、本発明を完成した。
 本発明によれば、以下の化合物、有機EL素子及び電子機器が提供される。
1.陰極と、
 陽極と、
 前記陰極と前記陽極との間に配置された発光層と、
を有し、
 前記発光層が、
下記式(1)で表される化合物と、
下記式(11)、(21)、(31)、(41)、(51)、(61)、(71)及び(81)からなる群から選択される1以上の化合物と、
を含有する有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000023
(式(1)において、
 R~Rは、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907が2個以上存在する場合、2個以上のR901~R907のそれぞれは同一でもよく、異なっていてもよい。
 R~Rのうち、少なくとも1つは重水素原子である。
 R~Rのうちの隣接する2つ以上、及びR~Rのうちの隣接する2つ以上は、互いに結合して環を形成しない。
 L及びLは、それぞれ独立に、
単結合、
置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は
置換もしくは無置換の環形成原子数5~30の2価の複素環基である。
 Arは、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R11~R18のうちの1つはLと結合する単結合である。
 Lと結合する単結合ではないR11~R18は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907は、R~Rで定義した通りである。
 R11~R18のうちの隣接する2つ以上は、互いに結合して環を形成しない。)
Figure JPOXMLDOC01-appb-C000024
(式(11)において、
 R101~R110のうちの隣接する2つ以上の1組以上が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
 R101~R110の少なくとも1つは下記式(12)で表される1価の基である。
 前記置換もしくは無置換の飽和又は不飽和の環を形成せず、かつ下記式(12)で表される1価の基ではないR101~R110は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907は、前記式(1)で定義した通りである。
Figure JPOXMLDOC01-appb-C000025
 式(12)において、Ar101及びAr102は、それぞれ独立に、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 L101~L103は、それぞれ独立に、
単結合、
置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は
置換もしくは無置換の環形成原子数5~30の2価の複素環基である。)
Figure JPOXMLDOC01-appb-C000026
(式(21)において、
 Zは、それぞれ独立にCR又はNである。
 A1環及びA2環は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は置換もしくは無置換の環形成原子数5~50の複素環である。
 Rが複数存在する場合、複数のRのうちの隣接する2つ以上の1組以上が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
 Rが複数存在する場合、複数のRのうちの隣接する2つ以上の1組以上が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
 Rが複数存在する場合、複数のRのうちの隣接する2つ以上の1組以上が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
 n21及びn22は、それぞれ独立に、0~4の整数である。
 前記置換もしくは無置換の飽和又は不飽和の環を形成しないR~Rは、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907は、前記式(1)で定義した通りである。)
Figure JPOXMLDOC01-appb-C000027
(式(31)において、
 R301~R307及びR311~R317のうち隣接する2つ以上の1組以上が、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
 前記置換もしくは無置換の飽和又は不飽和の環を形成しないR301~R307及びR311~R317は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R321及びR322は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907は、前記式(1)で定義した通りである。)
Figure JPOXMLDOC01-appb-C000028
(式(41)において、
 a環、b環及びc環は、それぞれ独立に、
置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は、
置換もしくは無置換の環形成原子数5~50の複素環である。
 R401及びR402は、それぞれ独立に、前記a環、b環又はc環と結合して、置換もしくは無置換の複素環を形成するか、あるいは置換もしくは無置換の複素環を形成しない。
 前記置換もしくは無置換の複素環を形成しないR401及びR402は、それぞれ独立に、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。)
Figure JPOXMLDOC01-appb-C000029
(式(51)において、
 r環は、隣接環の任意の位置で縮合する式(52)又は式(53)で表される環である。
 q環及びs環は、それぞれ独立に、隣接環の任意の位置で縮合する式(54)で表される環である。
 p環及びt環は、それぞれ独立に、隣接環の任意の位置で縮合する式(55)又は式(56)で表される構造である。
 R501が複数存在する場合、隣接する複数のR501は互いに結合して置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
 X501は、酸素原子、硫黄原子、又はNR502である。
 前記置換もしくは無置換の飽和又は不飽和の環を形成しないR501及びR502は、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907は、前記式(1)で定義した通りである。
 Ar501及びAr502は、それぞれ独立に、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 L501は、
置換もしくは無置換の炭素数1~50のアルキレン基、
置換もしくは無置換の炭素数2~50のアルケニレン基、
置換もしくは無置換の炭素数2~50のアルキニレン基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキレン基、
置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
 m1は0~2の整数であり、m2は0~4の整数であり、m3は、それぞれ独立に0~3の整数であり、m4は、それぞれ独立に0~5の整数である。R501が複数存在する場合、複数のR501は互いに同一であってもよいし、異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000030
(式(61)において、
 R601とR602、R602とR603、及びR603とR604の少なくとも一組は互いに結合して下記式(62)で示される2価の基を形成する。
 R605とR606、R606とR607、及びR607とR608の少なくとも一組は互いに結合して下記式(63)で示される2価の基を形成する。
Figure JPOXMLDOC01-appb-C000031
 R601~R604のうち前記式(62)で示される2価の基を形成しないもの、及びR611~R614の少なくとも1つは下記式(64)で表される1価の基である。
 R605~R608のうち前記式(63)で示される2価の基を形成しないもの、及びR621~R624の少なくとも1つは下記式(64)で表される1価の基である。
 X601は酸素原子、硫黄原子、又はNR609である。
 前記式(62)及び(63)で表される2価の基を形成せず、かつ、前記式(64)で表される1価の基ではないR601~R608、前記式(64)で表される1価の基ではないR611~R614及びR621~R624、並びにR609は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907は、前記式(1)で定義した通りである。
Figure JPOXMLDOC01-appb-C000032
 式(64)において、Ar601及びAr602は、それぞれ独立に、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 L601~L603は、それぞれ独立に、
単結合、
置換もしくは無置換の環形成炭素数6~30のアリーレン基、
置換もしくは無置換の環形成原子数5~30の2価の複素環基、又は
これらが2~4個結合して形成される2価の連結基である。)
Figure JPOXMLDOC01-appb-C000033
(式(71)において、
 A701環及びA702環は、それぞれ独立に、
置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は、
置換もしくは無置換の環形成原子数5~50の複素環である。
 A701環及びA702環からなる群から選択される一以上は、下記式(72)で表される構造の結合手*と結合する。
Figure JPOXMLDOC01-appb-C000034
 式(72)において、
 A703環は、それぞれ独立に、
置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は、
置換もしくは無置換の環形成原子数5~50の複素環である。
 X701は、NR703、C(R704)(R705)、Si(R706)(R707)、Ge(R708)(R709)、O、S又はSeである。
 R701及びR702は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
 置換もしくは無置換の飽和又は不飽和の環を形成しないR701及びR702、並びにR703~R709は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907は、前記式(1)で定義した通りである。)
Figure JPOXMLDOC01-appb-C000035
(式(81)において、
 A801環は、隣接環の任意の位置で縮合する式(82)で表される環である。
 A802環は、隣接環の任意の位置で縮合する式(83)で表される環である。2つの結合手*はA803環の任意の位置と結合する。
 X801及びX802は、それぞれ独立に、C(R803)(R804)、Si(R805)(R806)、酸素原子、又は硫黄原子である。
 A803環は、置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は置換もしくは無置換の環形成原子数5~50の複素環である。
 Ar801は、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R801~R806は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907は、前記式(1)で定義した通りである。
 m801及びm802は、それぞれ独立に、0~2の整数である。これらが2の場合、複数のR801又はR802は互いに同一であってもよいし、異なっていてもよい。
 a801は0~2の整数である。a801が0又は1の場合、「3-a801」で示されるカッコ内の構造は互いに同一であってもよいし、異なっていてもよい。a801が2の場合、Ar801は互いに同一であってもよいし、異なっていてもよい。)
2.1に記載の有機エレクトロルミネッセンス素子を備える電子機器。
 本発明によれば、長寿命な有機EL素子、及び当該有機EL素子を用いた電子機器が提供できる。
本発明の一態様に係る有機EL素子の概略構成を示す図である。
[定義]
 本明細書において、水素原子とは、中性子数が異なる同位体、即ち、軽水素(protium)、重水素(deuterium)、三重水素(tritium)を包含する。
 本明細書において、化学構造式中、「R」等の記号や重水素原子を表す「D」が明示されていない結合可能位置には、水素原子、即ち、軽水素原子、重水素原子、又は三重水素原子が結合しているものとする。
 本明細書において、環形成炭素数とは、原子が環状に結合した構造の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子のうちの炭素原子の数を表す。当該環が置換基によって置換される場合、置換基に含まれる炭素は環形成炭素数には含まない。以下で記される「環形成炭素数」については、特筆しない限り同様とする。例えば、ベンゼン環は環形成炭素数が6であり、ナフタレン環は環形成炭素数が10であり、ピリジン環は環形成炭素数5であり、フラン環は環形成炭素数4である。また例えば、9,9-ジフェニルフルオレニル基の環形成炭素数は13であり、9,9’-スピロビフルオレニル基の環形成炭素数は25である。
 また、ベンゼン環やナフタレン環に置換基として例えばアルキル基が置換している場合、当該アルキル基の炭素数は、環形成炭素数の数に含めない。
 本明細書において、環形成原子数とは、原子が環状に結合した構造(例えば単環、縮合環、環集合)の化合物(例えば単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子の数を表す。環を構成しない原子(例えば環を構成する原子の結合を終端する水素原子)や、当該環が置換基によって置換される場合の置換基に含まれる原子は環形成原子数には含まない。以下で記される「環形成原子数」については、特筆しない限り同様とする。例えば、ピリジン環の環形成原子数は6であり、キナゾリン環の環形成原子数は10であり、フラン環の環形成原子数は5である。ピリジン環やキナゾリン環の炭素原子にそれぞれ結合している水素原子や置換基を構成する原子については、環形成原子数の数に含めない。
 本明細書において、「置換もしくは無置換の炭素数XX~YYのZZ基」という表現における「炭素数XX~YY」は、ZZ基が無置換である場合の炭素数を表すものであり、置換されている場合の置換基の炭素数は含めない。ここで、「YY」は「XX」よりも大きく、「XX」と「YY」はそれぞれ1以上の整数を意味する。
 本明細書において、「置換もしくは無置換の原子数XX~YYのZZ基」という表現における「原子数XX~YY」は、ZZ基が無置換である場合の原子数を表すものであり、置換されている場合の置換基の原子数は含めない。ここで、「YY」は「XX」よりも大きく、「XX」と「YY」はそれぞれ1以上の整数を意味する。
 「置換もしくは無置換のZZ基」という場合における「無置換」とはZZ基が置換基で置換されておらず、水素原子が結合していることを意味する。あるいは、「置換もしくは無置換のZZ基」という場合における「置換」とはZZ基における1つ以上の水素原子が、置換基と置き換わっていることを意味する。「AA基で置換されたBB基」という場合における「置換」も同様に、BB基における1つ以上の水素原子が、AA基と置き換わっていることを意味する。
 以下、本明細書に記載の置換基について説明する。
 本明細書に記載の「無置換のアリール基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30、より好ましくは6~18である。
 本明細書に記載の「無置換の複素環基」の環形成原子数は、本明細書に別途記載のない限り、5~50であり、好ましくは5~30、より好ましくは5~18である。
 本明細書に記載の「無置換のアルキル基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~20、より好ましくは1~6である。
 本明細書に記載の「無置換のアルケニル基」の炭素数は、本明細書に別途記載のない限り、2~50であり、好ましくは2~20、より好ましくは2~6である。
 本明細書に記載の「無置換のアルキニル基」の炭素数は、本明細書に別途記載のない限り、2~50であり、好ましくは2~20、より好ましくは2~6である。
 本明細書に記載の「無置換のシクロアルキル基」の環形成炭素数は、本明細書に別途記載のない限り、3~50であり、好ましくは3~20、より好ましくは3~6である。
 本明細書に記載の「無置換のアリーレン基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30、より好ましくは6~18である。
本明細書に記載の「無置換の2価の複素環基」の環形成原子数は、本明細書に別途記載のない限り、5~50であり、好ましくは5~30、より好ましくは5~18である。
 本明細書に記載の「無置換のアルキレン基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~20、より好ましくは1~6である。
 本明細書に記載の「置換もしくは無置換のアリール基」の具体例(具体例群G1)としては、以下の無置換のアリール基及び置換のアリール基等が挙げられる。(ここで、無置換のアリール基とは「置換もしくは無置換のアリール基」が「無置換のアリール基」である場合を指し、置換のアリール基とは「置換もしくは無置換のアリール基」が「置換のアリール基」である場合を指す。)以下、単に「アリール基」という場合は、「無置換のアリール基」と「置換のアリール基」の両方を含む。
 「置換のアリール基」は「無置換のアリール基」が置換基を有する場合であり、下記の「無置換のアリール基」が置換基を有する基や、置換のアリール基の例等が挙げられる。尚、ここに列挙した「無置換のアリール基」の例や「置換のアリール基」の例は一例に過ぎず、本明細書に記載の「置換のアリール基」には、「無置換のアリール基」が置換基を有する基がさらに置換基を有する基や、「置換のアリール基」がさらに置換基を有する基等も含まれる。
 無置換のアリール基:
フェニル基、
p-ビフェニル基、
m-ビフェニル基、
o-ビフェニル基、
p-ターフェニル-4-イル基、
p-ターフェニル-3-イル基、
p-ターフェニル-2-イル基、
m-ターフェニル-4-イル基、
m-ターフェニル-3-イル基、
m-ターフェニル-2-イル基、
o-ターフェニル-4-イル基、
o-ターフェニル-3-イル基、
o-ターフェニル-2-イル基、
1-ナフチル基、
2-ナフチル基、
アントリル基、
ベンゾアントリル基、
フェナントリル基、
ベンゾフェナントリル基、
フェナレニル基、
ピレニル基、
クリセニル基、
ベンゾクリセニル基、
トリフェニレニル基、
ベンゾトリフェニレニル基、
テトラセニル基、
ペンタセニル基、
フルオレニル基、
9,9’-スピロビフルオレニル基、
ベンゾフルオレニル基、
ジベンゾフルオレニル基、
フルオランテニル基、
ベンゾフルオランテニル基、
ペリレニル基
 置換のアリール基:
o-トリル基、
m-トリル基、
p-トリル基、
パラ-キシリル基、
メタ-キシリル基、
オルト-キシリル基、
パラ-イソプロピルフェニル基、
メタ-イソプロピルフェニル基、
オルト-イソプロピルフェニル基、
パラ-t-ブチルフェニル基、
メタ-t-ブチルフェニル基、
オルト-t-ブチルフェニル基、
3,4,5-トリメチルフェニル基、
9,9-ジメチルフルオレニル基、
9,9-ジフェニルフルオレニル基
9,9-ジ(4-メチルフェニル)フルオレニル基、
9,9-ジ(4-イソプロピルフェニル)フルオレニル基、
9,9-ジ(4-tブチルフェニル)フルオレニル基、
シアノフェニル基、
トリフェニルシリルフェニル基、
トリメチルシリルフェニル基、
フェニルナフチル基、
ナフチルフェニル基
 本明細書に記載の「複素環基」は、環形成原子にヘテロ原子を少なくとも1つ含む環状の基である。ヘテロ原子の具体例としては、窒素原子、酸素原子、硫黄原子、ケイ素原子、リン原子、及びホウ素原子が挙げられる。
 本明細書に記載の「複素環基」は、単環の基であっても縮合環の基であってもよい。
 本明細書に記載の「複素環基」は、芳香族複素環基であっても脂肪族複素環基であってもよい。
 本明細書に記載の「置換もしくは無置換の複素環基」の具体例(具体例群G2)としては、以下の無置換の複素環基及び置換の複素環基等が挙げられる。(ここで、無置換の複素環基とは「置換もしくは無置換の複素環基」が「無置換の複素環基」である場合を指し、置換の複素環基とは「置換もしくは無置換の複素環基」が「置換の複素環基」である場合を指す。)以下、単に「複素環基」という場合は、「無置換の複素環基」と「置換の複素環基」の両方を含む。
 「置換の複素環基」は「無置換の複素環基」が置換基を有する場合であり、下記の「無置換の複素環基」が置換基を有する基や、置換の複素環基の例等が挙げられる。尚、ここに列挙した「無置換の複素環基」の例や「置換の複素環基」の例は一例に過ぎず、本明細書に記載の「置換の複素環基」には、「無置換の複素環基」が置換基を有する基がさらに置換基を有する基や、「置換の複素環基」がさらに置換基を有する基等も含まれる。
 窒素原子を含む無置換の複素環基:
ピロリル基、
イミダゾリル基、
ピラゾリル基、
トリアゾリル基、
テトラゾリル基、
オキサゾリル基、
イソオキサゾリル基、
オキサジアゾリル基、
チアゾリル基、
イソチアゾリル基、
チアジアゾリル基、
ピリジル基、
ピリダジニル基、
ピリミジニル基、
ピラジニル基、
トリアジニル基、
インドリル基、
イソインドリル基、
インドリジニル基、
キノリジニル基、
キノリル基、
イソキノリル基、
シンノリル基、
フタラジニル基、
キナゾリニル基、
キノキサリニル基、
ベンゾイミダゾリル基、
インダゾリル基、
フェナントロリニル基、
フェナントリジニル基、
アクリジニル基、
フェナジニル基、
カルバゾリル基、
ベンゾカルバゾリル基、
モルホリノ基、
フェノキサジニル基、
フェノチアジニル基、
アザカルバゾリル基、
ジアザカルバゾリル基
 酸素原子を含む無置換の複素環基:
フリル基、
オキサゾリル基、
イソオキサゾリル基、
オキサジアゾリル基、
キサンテニル基、
ベンゾフラニル基、
イソベンゾフラニル基、
ジベンゾフラニル基、
ナフトベンゾフラニル基、
ベンゾオキサゾリル基、
ベンゾイソキサゾリル基、
フェノキサジニル基、
モルホリノ基、
ジナフトフラニル基、
アザジベンゾフラニル基、
ジアザジベンゾフラニル基、
アザナフトベンゾフラニル基、
ジアザナフトベンゾフラニル基
 硫黄原子を含む無置換の複素環基:
チエニル基、
チアゾリル基、
イソチアゾリル基、
チアジアゾリル基、
ベンゾチオフェニル基、
イソベンゾチオフェニル基、
ジベンゾチオフェニル基、
ナフトベンゾチオフェニル基、
ベンゾチアゾリル基、
ベンゾイソチアゾリル基、
フェノチアジニル基、
ジナフトチオフェニル基、
アザジベンゾチオフェニル基、
ジアザジベンゾチオフェニル基、
アザナフトベンゾチオフェニル基、
ジアザナフトベンゾチオフェニル基
 窒素原子を含む置換の複素環基:
(9-フェニル)カルバゾリル基、
(9-ビフェニリル)カルバゾリル基、
(9-フェニル)フェニルカルバゾリル基、
(9-ナフチル)カルバゾリル基、
ジフェニルカルバゾール-9-イル基、
フェニルカルバゾール-9-イル基、
メチルベンゾイミダゾリル基、
エチルベンゾイミダゾリル基、
フェニルトリアジニル基、
ビフェニリルトリアジニル基、
ジフェニルトリアジニル基、
フェニルキナゾリニル基、
ビフェニリルキナゾリニル基
 酸素原子を含む置換の複素環基:
フェニルジベンゾフラニル基、
メチルジベンゾフラニル基、
t-ブチルジベンゾフラニル基、
スピロ[9H-キサンテン-9,9’-[9H]フルオレン]の1価の残基
 硫黄原子を含む置換の複素環基:
フェニルジベンゾチオフェニル基、
メチルジベンゾチオフェニル基、
t-ブチルジベンゾチオフェニル基、
スピロ[9H-チオキサンテン-9,9’-[9H]フルオレン]の1価の残基
 窒素原子、酸素原子、及び硫黄原子のうち少なくとも1つを含む下記無置換の複素環の環形成原子に結合した1つの水素原子を除くことにより誘導される1価の基、及び下記無置換の複素環の環形成原子に結合した1つの水素原子を除くことにより誘導される1価の基が置換基を有する基: 
Figure JPOXMLDOC01-appb-C000036
 式(XY-1)~(XY-18)において、X及びYは、それぞれ独立に、酸素原子、硫黄原子、NH、CHである。ただし、X及びYのうち少なくとも1つは酸素原子、硫黄原子、又はNHである。
 上記式(XY-1)~(XY-18)で表される複素環は、任意の位置で結合を有して1価の複素環基となる。
 上記式(XY-1)~(XY-18)で表される無置換の複素環から誘導される1価の基が置換基を有するとは、これらの式中の骨格を構成する炭素原子に結合した水素原子が置換基に置き換わっている場合、あるいは、XやYがNHもしくはCHであり、これらNHもしくはCHにおける水素原子が、置換基と置き換わっている状態を指す。
 本明細書に記載の「置換もしくは無置換のアルキル基」の具体例(具体例群G3)としては、以下の無置換のアルキル基及び置換のアルキル基が挙げられる。(ここで、無置換のアルキル基とは「置換もしくは無置換のアルキル基」が「無置換のアルキル基」である場合を指し、置換のアルキル基とは「置換もしくは無置換のアルキル基」が「置換のアルキル基」である場合を指す。)以下、単に「アルキル基」という場合は、「無置換のアルキル基」と「置換のアルキル基」の両方を含む。
 「置換のアルキル基」は「無置換のアルキル基」が置換基を有する場合であり、下記の「無置換のアルキル基」が置換基を有する基や、置換のアルキル基の例等が挙げられる。尚、ここに列挙した「無置換のアルキル基」の例や「置換のアルキル基」の例は一例に過ぎず、本明細書に記載の「置換のアルキル基」には、「無置換のアルキル基」が置換基を有する基がさらに置換基を有する基や、「置換のアルキル基」がさらに置換基を有する基等も含まれる。
 無置換のアルキル基:
メチル基、
エチル基、
n-プロピル基、
イソプロピル基、
n-ブチル基、
イソブチル基、
s-ブチル基、
t-ブチル基
 置換のアルキル基:
ヘプタフルオロプロピル基(異性体を含む)、
ペンタフルオロエチル基、
2,2,2-トリフルオロエチル基、
トリフルオロメチル基
 本明細書に記載の「置換もしくは無置換のアルケニル基」の具体例(具体例群G4)としては、以下の無置換のアルケニル基及び置換のアルケニル基等が挙げられる。(ここで、無置換のアルケニル基とは「置換もしくは無置換のアルケニル基」が「無置換のアルケニル基」である場合を指し、「置換のアルケニル基」とは「置換もしくは無置換のアルケニル基」が「置換のアルケニル基」である場合を指す。)以下、単に「アルケニル基」という場合は、「無置換のアルケニル基」と「置換のアルケニル基」の両方を含む。
 「置換のアルケニル基」は「無置換のアルケニル基」が置換基を有する場合であり、下記の「無置換のアルケニル基」が置換基を有する基や、置換のアルケニル基の例等が挙げられる。尚、ここに列挙した「無置換のアルケニル基」の例や「置換のアルケニル基」の例は一例に過ぎず、本明細書に記載の「置換のアルケニル基」には、「無置換のアルケニル基」が置換基を有する基がさらに置換基を有する基や、「置換のアルケニル基」がさらに置換基を有する基等も含まれる。
 無置換のアルケニル基及び置換のアルケニル基:
ビニル基、
アリル基、
1-ブテニル基、
2-ブテニル基、
3-ブテニル基、
1,3-ブタンジエニル基、
1-メチルビニル基、
1-メチルアリル基、
1,1-ジメチルアリル基、
2-メチルアリル基、
1,2-ジメチルアリル基
 本明細書に記載の「置換もしくは無置換のアルキニル基」の具体例(具体例群G5)としては、以下の無置換のアルキニル基等が挙げられる。(ここで、無置換のアルキニル基とは、「置換もしくは無置換のアルキニル基」が「無置換のアルキニル基」である場合を指す。)以下、単に「アルキニル基」という場合は、「無置換のアルキニル基」と「置換のアルキニル基」の両方を含む。
 「置換のアルキニル基」は「無置換のアルキニル基」が置換基を有する場合であり、下記の「無置換のアルキニル基」が置換基を有する基等が挙げられる。
 無置換のアルキニル基:
エチニル基
 本明細書に記載の「置換もしくは無置換のシクロアルキル基」の具体例(具体例群G6)としては、以下の無置換のシクロアルキル基及び置換のシクロアルキル基等が挙げられる。(ここで、無置換のシクロアルキル基とは「置換もしくは無置換のシクロアルキル基」が「無置換のシクロアルキル基」である場合を指し、置換のシクロアルキル基とは「置換もしくは無置換のシクロアルキル基」が「置換のシクロアルキル基」である場合を指す。)以下、単に「シクロアルキル基」という場合は、「無置換のシクロアルキル基」と「置換のシクロアルキル基」の両方を含む。
 「置換のシクロアルキル基」は「無置換のシクロアルキル基」が置換基を有する場合であり、下記の「無置換のシクロアルキル基」が置換基を有する基や、置換のシクロアルキル基の例等が挙げられる。尚、ここに列挙した「無置換のシクロアルキル基」の例や「置換のシクロアルキル基」の例は一例に過ぎず、本明細書に記載の「置換のシクロアルキル基」には、「無置換のシクロアルキル基」が置換基を有する基がさらに置換基を有する基や、「置換のシクロアルキル基」がさらに置換基を有する基等も含まれる。
 無置換の脂肪族環基:
シクロプロピル基、
シクロブチル基、
シクロペンチル基、
シクロヘキシル基、
1-アダマンチル基、
2-アダマンチル基、
1-ノルボルニル基、
2-ノルボルニル基
 置換のシクロアルキル基:
4-メチルシクロヘキシル基
 本明細書に記載の-Si(R901)(R902)(R903)で表される基の具体例(具体例群G7)としては、
-Si(G1)(G1)(G1)、
-Si(G1)(G2)(G2)、
-Si(G1)(G1)(G2)、
-Si(G2)(G2)(G2)、
-Si(G3)(G3)(G3)、
-Si(G5)(G5)(G5)、
-Si(G6)(G6)(G6)
が挙げられる。
 ここで、
 G1は具体例群G1に記載の「アリール基」である。
 G2は具体例群G2に記載の「複素環基」である。
 G3は具体例群G3に記載の「アルキル基」である。
 G5は具体例群G5に記載の「アルキニル基」である。
 G6は具体例群G6に記載の「シクロアルキル基」である。
 本明細書に記載の-O-(R904)で表される基の具体例(具体例群G8)としては、
-O(G1)、
-O(G2)、
-O(G3)、
-O(G6)
が挙げられる。
 ここで、
 G1は具体例群G1に記載の「アリール基」である。
 G2は具体例群G2に記載の「複素環基」である。
 G3は具体例群G3に記載の「アルキル基」である。
 G6は具体例群G6に記載の「シクロアルキル基」である。
 本明細書に記載の-S-(R905)で表される基の具体例(具体例群G9)としては、
-S(G1)、
-S(G2)、
-S(G3)、
-S(G6)
が挙げられる。
 ここで、
 G1は具体例群G1に記載の「アリール基」である。
 G2は具体例群G2に記載の「複素環基」である。
 G3は具体例群G3に記載の「アルキル基」である。
 G6は具体例群G6に記載の「シクロアルキル基」である。
 本明細書に記載の-N(R906)(R907)で表される基の具体例(具体例群G10)としては、
-N(G1)(G1)、
-N(G2)(G2)、
-N(G1)(G2)、
-N(G3)(G3)、
-N(G6)(G6)
が挙げられる。
 ここで、
 G1は具体例群G1に記載の「アリール基」である。
 G2は具体例群G2に記載の「複素環基」である。
 G3は具体例群G3に記載の「アルキル基」である。
 G6は具体例群G6に記載の「シクロアルキル基」である。
 本明細書に記載の「ハロゲン原子」の具体例(具体例群G11)としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 本明細書に記載の「アルコキシ基」の具体例としては、-O(G3)で表される基であり、ここで、G3は具体例群G3に記載の「アルキル基」である。「無置換のアルコキシ基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30、より好ましくは1~18である。
 本明細書に記載の「アルキルチオ基」の具体例としては、-S(G3)で表される基であり、ここで、G3は具体例群G3に記載の「アルキル基」である。「無置換のアルキルチオ基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30、より好ましくは1~18である。
 本明細書に記載の「アリールオキシ基」の具体例としては、-O(G1)で表される基であり、ここで、G1は具体例群G1に記載の「アリール基」である。「無置換のアリールオキシ基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30、より好ましくは6~18である。
 本明細書に記載の「アリールチオ基」の具体例としては、-S(G1)で表される基であり、ここで、G1は具体例群G1に記載の「アリール基」である。「無置換のアリールチオ基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30、より好ましくは6~18である。
 本明細書に記載の「アラルキル基」の具体例としては、-(G3)-(G1)で表される基であり、ここで、G3は具体例群G3に記載の「アルキル基」であり、G1は具体例群G1に記載の「アリール基」である。従って、「アラルキル基」は、「アリール基」が置換した、「置換のアルキル基」の一実施形態である。「無置換のアリール基」が置換した「無置換のアルキル基」である「無置換のアラルキル基」の炭素数は、本明細書に別途記載のない限り、7~50であり、好ましくは7~30、より好ましくは7~18である。
 「アラルキル基」の具体例としては、例えば、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルイソプロピル基、2-フェニルイソプロピル基、フェニル-t-ブチル基、α-ナフチルメチル基、1-α-ナフチルエチル基、2-α-ナフチルエチル基、1-α-ナフチルイソプロピル基、2-α-ナフチルイソプロピル基、β-ナフチルメチル基、1-β-ナフチルエチル基、2-β-ナフチルエチル基、1-β-ナフチルイソプロピル基、2-β-ナフチルイソプロピル基等が挙げられる。
 本明細書に記載の置換もしくは無置換のアリール基は、本明細書に別途記載のない限り、好ましくはフェニル基、p-ビフェニル基、m-ビフェニル基、o-ビフェニル基、p-ターフェニル-4-イル基、p-ターフェニル-3-イル基、p-ターフェニル-2-イル基、m-ターフェニル-4-イル基、m-ターフェニル-3-イル基、m-ターフェニル-2-イル基、o-ターフェニル-4-イル基、o-ターフェニル-3-イル基、o-ターフェニル-2-イル基、1-ナフチル基、2-ナフチル基、アントリル基、フェナントリル基、ピレニル基、クリセニル基、トリフェニレニル基、フルオレニル基、9,9’-スピロビフルオレニル基、9,9-ジフェニルフルオレニル基等である。
 本明細書に記載の置換もしくは無置換の複素環基は、本明細書に別途記載のない限り、好ましくはピリジル基、ピリミジニル基、トリアジニル基、キノリル基、イソキノリル基、キナゾリニル基、ベンゾイミダゾリル基、フェナントロリニル基、カルバゾリル基(1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、9-カルバゾリル基)、ベンゾカルバゾリル基、アザカルバゾリル基、ジアザカルバゾリル基、ジベンゾフラニル基、ナフトベンゾフラニル基、アザジベンゾフラニル基、ジアザジベンゾフラニル基、ジベンゾチオフェニル基、ナフトベンゾチオフェニル基、アザジベンゾチオフェニル基、ジアザジベンゾチオフェニル基、(9-フェニル)カルバゾリル基((9-フェニル)カルバゾール-1-イル基、(9-フェニル)カルバゾール-2-イル基、(9-フェニル)カルバゾール-3-イル基、又は(9-フェニル)カルバゾール-4-イル基)、(9-ビフェニリル)カルバゾリル基、(9-フェニル)フェニルカルバゾリル基、ジフェニルカルバゾール-9-イル基、フェニルカルバゾール-9-イル基、フェニルトリアジニル基、ビフェニリルトリアジニル基、ジフェニルトリアジニル基、フェニルジベンゾフラニル基、フェニルジベンゾチオフェニル基、インドロカルバゾリル基、ピラジニル基、ピリダジニル基、キナゾリニル基、シンノリニル基、フタラジニル基、キノキサリニル基、ピロリル基、インドリル基、ピロロ[3,2,1-jk]カルバゾリル基、フラニル基、ベンゾフラニル基、チオフェニル基、ベンゾチオフェニル基、ピラゾリル基、イミダゾリル基、ベンズイミダゾリル基、トリアゾリル基、オキサゾリル基、ベンズオキサゾリル基、チアゾリル基、ベンゾチアゾリル基、イソチアゾリル基、ベンズイソチアゾリル基、チアジアゾリル基、イソオキサゾリル基、ベンズイソオキサゾリル基、ピロリジニル基、ピぺリジニル基、ピぺラジニル基、イミダゾリジニル基、インドロ[3,2,1-jk]カルバゾリル基、ジベンゾチオフェニル基等である。
 上記ジベンゾフラニル基及びジベンゾチオフェニル基は、本明細書に別途記載のない限り、具体的には以下のいずれかの基である。
Figure JPOXMLDOC01-appb-C000037
 式(XY-76)~(XY-79)中、Xは、酸素原子又は硫黄原子である。
 本明細書に記載の置換もしくは無置換のアルキル基は、本明細書に別途記載のない限り、好ましくはメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基等である。
 本明細書に記載の「置換もしくは無置換のアリーレン基」は、別途記載のない限り、上記「アリール基」を2価にした基をいう。「置換もしくは無置換のアリーレン基」の具体例(具体例群G12)としては、具体例群G1に記載の「アリール基」を2価にした基等が挙げられる。すなわち、「置換もしくは無置換のアリーレン基」の具体例(具体例群G12)としては、具体例群G1に記載の「アリール基」の環形成炭素に結合している1つの水素を除いた基である。
 本明細書に記載の「置換もしくは無置換の2価の複素環基」の具体例(具体例群G13)としては、具体例群G2に記載の「複素環基」を2価にした基等が挙げられる。すなわち、「置換もしくは無置換の2価の複素環基」の具体例(具体例群G13)としては、具体例群G2に記載の「複素環基」の環形成原子に結合している1つの水素を除いた基である。
 本明細書に記載の「置換もしくは無置換のアルキレン基」の具体例(具体例群G14)としては、具体例群G3に記載の「アルキル基」を2価にした基等が挙げられる。すなわち、「置換もしくは無置換のアルキレン基」の具体例(具体例群G14)としては、具体例群G3に記載の「アルキル基」のアルカン構造を形成する炭素に結合している1つの水素を除いた基である。
 本明細書に記載の置換もしくは無置換のアリーレン基は、本明細書に別途記載のない限り、好ましくは以下いずれかの基である。
Figure JPOXMLDOC01-appb-C000038
 式(XY-20)~(XY-29)、(XY-83)及び(XY-84)中、R908は、置換基である。
 m901は、0~4の整数であり、m901が2以上のとき、複数存在するR908は互いに同一であってもよいし、異なっていてもよい。
Figure JPOXMLDOC01-appb-C000039
 式(XY-30)~(XY-40)中、R909は、それぞれ独立に、水素原子、又は置換基である。2個のR909は、単結合を介して互いに結合して環を形成してもよい。
Figure JPOXMLDOC01-appb-C000040
 式(XY-41)~(XY-46)中、R910は、置換基である。
 m902は0~6の整数である。m902が2以上のとき、複数存在するR910は互いに同一であってもよいし、異なっていてもよい。
 本明細書に記載の置換もしくは無置換の2価の複素環基は、本明細書に別途記載のない限り、好ましくは以下いずれかの基である。
Figure JPOXMLDOC01-appb-C000041
 式(XY-50)~(XY-60)中、R911は、水素原子、又は置換基である。
Figure JPOXMLDOC01-appb-C000042
 上記式(XY-65)~(XY-75)中、Xは、酸素原子又は硫黄原子である。
 本明細書において、「隣接する2つ以上の1組以上が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する」場合について、母骨格がアントラセン環である下記式(XY-80)で表されるアントラセン化合物の場合を例として説明する。
Figure JPOXMLDOC01-appb-C000043
 例えば、R921~R930のうちの「隣接する2つ以上の1組以上が、互いに結合して、環を形成する」場合の1組となる隣接する2つとは、R921とR922、R922とR923、R923とR924、R924とR930、R930とR925、R925とR926、R926とR927、R927とR928、R928とR929、及びR929とR921である。
 上記「1組以上」とは、上記隣接する2つの2組以上が同時に環を形成してもよいことを意味する。例えば、R921とR922とが互いに結合して環Aを形成し、同時にR925とR926とが互いに結合して環Bを形成した場合は、下記式(XY-81)で表される。
Figure JPOXMLDOC01-appb-C000044
 「隣接する2つ以上」が環を形成する場合とは、例えば、R921とR922とが互いに結合して環Aを形成し、R922とR923とが互いに結合して環Cを形成し、R921~R923の互いに隣接する3つでアントラセン母骨格に縮合する、R922を共有する環A及び環Cを形成した場合は、下記式(XY-82)で表される。
Figure JPOXMLDOC01-appb-C000045
 上記式(XY-81)及び(XY-82)において形成された環A~Cは、飽和又は不飽和の環である。
 「不飽和の環」とは、芳香族炭化水素環又は芳香族複素環を意味する。「飽和の環」とは、脂肪族炭化水素環又は脂肪族複素環を意味する。
 例えば、上記式(XY-81)に示す、R921とR922が互いに結合して形成された環Aは、R921が結合するアントラセン骨格の炭素原子と、R922が結合するアントラセン骨格の炭素原子と、1以上の任意の元素とで形成する環を意味する。具体例としては、R921とR922で環Aを形成する場合において、R921が結合するアントラセン骨格の炭素原子と、R922が結合するアントラセン骨格の炭素原子と、4つの炭素原子とで不飽和の環を形成する場合、R921とR922とで形成する環はベンゼン環となる。また、飽和の環を形成する場合には、シクロヘキサン環となる。
 ここで、「任意の元素」は、好ましくは、C元素、N元素、O元素、S元素である。任意の元素において(例えばC元素又はN元素の場合)、環形成に関与しない結合は、水素原子等で終端されてもよいし、任意の置換基で置換されてもよい。C元素以外の任意の元素を含む場合、形成される環は複素環となる。
 飽和又は不飽和の環を構成する「1以上の任意の元素」は、好ましくは2個以上15個以下、より好ましくは3個以上12個以下、さらに好ましくは、3個以上5個以下である。
 芳香族炭化水素環の具体例としては、具体例群G1において具体例として挙げられたアリール基が、水素原子で終端された構造が挙げられる。
 芳香族複素環の具体例としては、具体例群G2において具体例として挙げられた芳香族複素環基が、水素原子で終端された構造が挙げられる。
 脂肪族炭化水素環の具体例としては、具体例群G6において具体例として挙げられたシクロアルキル基が、水素原子で終端された構造が挙げられる。
 上記の「飽和又は不飽和の環」が置換基を有する場合の置換基は、例えば後述する「任意の置換基」である。上記の「飽和又は不飽和の環」が置換基を有する場合の置換基の具体例は、上述した「本明細書に記載の置換基」の項で説明した置換基である。
 本明細書における一実施形態においては、前記「置換もしくは無置換の」という場合の置換基(以下、「任意の置換基」と呼ぶことがある。)は、
無置換の炭素数1~50のアルキル基、
無置換の炭素数2~50のアルケニル基、
無置換の炭素数2~50のアルキニル基、
無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907
(ここで、
901~R907は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。R901~R907が2個以上存在する場合、2個以上のR901~R907のそれぞれは同一でもよく、異なっていてもよい。)、
ハロゲン原子、シアノ基、ニトロ基、
無置換の環形成炭素数6~50のアリール基、及び
無置換の環形成原子数5~50の1価の複素環基
からなる群から選択される基である。
 一実施形態においては、前記「置換もしくは無置換の」という場合の置換基は、
炭素数1~50のアルキル基、
環形成炭素数6~50のアリール基、及び
環形成原子数5~50の1価の複素環基
からなる群から選択される基である。
 一実施形態においては、前記「置換もしくは無置換の」という場合の置換基は、
炭素数1~18のアルキル基、
環形成炭素数6~18のアリール基、及び
環形成原子数5~18の1価の複素環基
からなる群から選択される基である。
 上記任意の置換基の各基の具体例は、上述した通りである。
 本明細書において、特にことわらない限り、隣接する任意の置換基同士で、飽和又は不飽和の環(好ましくは、置換もしくは無置換の飽和もしくは不飽和の、5員環又は6員環、より好ましくは、ベンゼン環)を形成してもよい。
 本明細書において、特にことわらない限り、任意の置換基は、さらに置換基を有してもよい。任意の置換基がさらに有する置換基としては、上記任意の置換基と同様のものが挙げられる。
[有機EL素子]
 本発明の一態様に係る有機EL素子は、陰極と、陽極と、陰極と陽極との間に配置された発光層とを有する有機EL素子であって、発光層が、下記式(1)で表される化合物と、式(11)、(21)、(31)、(41)、(51)、(61)、(71)及び(81)からなる群から選択される1以上の化合物と、を含むことを特徴とする。
 各化合物については後述する。
 本発明の一態様に係る有機EL素子は、上記の構成を有することによって高い素子性能を示す。具体的には、より長寿命な有機EL素子が提供可能となる。
 また、本発明の一態様によれば、有機EL素子の発光層に上記式(1)で表される化合物と上記式(11)~(81)からなる群から選択される1以上の化合物とを組み合わせて用いることを特徴とする有機EL素子性能の向上方法をも提供できる。当該方法は、具体的には、特に、ホスト材料として、水素原子として軽水素原子のみを含む以外は式(1)で表される化合物と同じ構造を有する化合物(以下、「軽水素体」とも言う)を用いた場合と比較して、有機EL素子性能を改善することが可能となる。なお、軽水素体を用いた場合とは、発光層中のホスト材料として、実質的に軽水素体のみ(式(1)で表される化合物と軽水素体との合計に対する軽水素体の含有割合が90モル%以上、95モル%以上又は99モル%以上)を用いた場合を示す。
 すなわち、ホスト材料として、軽水素体に代えて、又は軽水素体に加えて、軽水素体の軽水素原子のうち、少なくともアントラセン骨格上の軽水素原子の少なくとも1つを重水素原子に置き換えた化合物(式(1)で表される化合物)を用いることで、当該性能を高めることができる。
 本発明の一態様に係る有機EL素子の概略構成を、図1を参照して説明する。
 本発明の一態様に係る有機EL素子1は、基板2と、陽極3と、発光層5と、陰極10と、陽極3と発光層5との間にある有機層4と、発光層5と陰極10との間にある有機層6とを有する。
 上記式(1)で表される化合物と、式(11)、(21)、(31)、(41)、(51)、(61)、(71)及び(81)からなる群から選択される1以上の化合物は、陽極3と陰極10との間にある発光層5に含まれる。発光層5に含まれる各化合物は、それぞれ1種単独であってもよいし、2種以上であってもよい。
(式(1)で表される化合物)
 次に、式(1)で表される化合物について説明する。
Figure JPOXMLDOC01-appb-C000046
(式(1)において、
 R~Rは、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907が2個以上存在する場合、2個以上のR901~R907のそれぞれは同一でもよく、異なっていてもよい。
 R~Rのうち、少なくとも1つは重水素原子である。
 R~Rのうちの隣接する2つ以上、及びR~Rのうちの隣接する2つ以上は、互いに結合して環を形成しない。
 L及びLは、それぞれ独立に、
単結合、
置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は
置換もしくは無置換の環形成原子数5~30の2価の複素環基である。
 Arは、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R11~R18のうちの1つはLと結合する単結合である。
 Lと結合する単結合ではないR11~R18は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907は、R~Rで定義した通りである。
 R11~R18のうちの隣接する2つ以上は、互いに結合して環を形成しない。)
 R~Rは、全てが重水素原子であってもよいし、一部(例えば1つ又は2つ以上)が重水素原子であってもよい。
 重水素原子ではないR~Rは、好ましくは、水素原子(軽水素原子)である。
 一実施形態において、L及びLからなる群から選択される一以上が有する水素原子の少なくとも1つが重水素原子である。具体的には、一実施形態において、L及びLからなる群から選択される一以上は、水素原子の少なくとも1つが重水素原子である無置換の環形成炭素数6~30のアリーレン基、又は水素原子の少なくとも1つが重水素原子である無置換の環形成原子数5~30の2価の複素環基である。
 一実施形態において、L及びLは、それぞれ独立に、単結合、又は置換もしくは無置換の環形成炭素数6~14のアリーレン基である。好ましくは、L及びLの少なくとも1つは単結合である。
 一実施形態において、R11~R18のうち、Lと結合する単結合でないものは水素原子である。
 一実施形態において、R11~R18のうち、Lと結合する単結合でないものの少なくとも1つは重水素原子である。
 一実施形態において、Arの一以上が有する水素原子の少なくとも1つが重水素原子である。具体的には、一実施形態において、Arが、水素原子の少なくとも1つが重水素原子である無置換の環形成炭素数6~50のアリール基、又は水素原子の少なくとも1つが重水素原子である無置換の環形成原子数5~50の1価の複素環基である。
 化合物中に重水素原子が含まれていることは、質量分析法又はH-NMR分析法により確認する。また、化合物中の重水素原子の結合位置はH-NMR分析法により特定する。具体的には、以下の通りである。
 対象化合物について質量分析を行い、水素原子が全て軽水素原子である対応化合物と比較して分子量が1増えていることにより、重水素原子を1つ含むことが確認できる。また、重水素原子はH-NMR分析にてシグナルが出ないことから、対象化合物についてH-NMR分析を行って得られた積分値によって分子内に含まれている重水素原子の数を確認できる。また、対象化合物についてH-NMR分析を行い、シグナルを帰属することにより重水素原子の結合位置を特定することができる。
 本発明の一態様における有機EL素子は、好ましくは、発光層における、式(1)で表される化合物と、軽水素体との合計に対する、後者の含有割合が99モル%以下である。軽水素体を含有割合は、質量分析法により確認する。
 また、一実施形態においては、本発明の一態様に係る有機EL素子の発光層が、式(1)で表される化合物と軽水素体とを含み、その合計に対する前者の含有割合が30モル%以上、50モル%以上、70モル%以上、90モル%以上、95モル%以上、99モル%以上、又は100モル%である。
 Arは、好ましくは置換もしくは無置換の環形成炭素数6~50のアリール基であり、より好ましくは下記式(a1)~(a4)で表される基から選択される。
Figure JPOXMLDOC01-appb-C000047
(式(a1)~(a4)中、*は、Lと結合する単結合である。
 R21は、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907は、前記式(1)で定義した通りである。
 m1は、0~4の整数である。
 m2は、0~5の整数である。
 m3は、0~7の整数である。
 m1~m3が、それぞれ2以上のとき、複数のR21は互いに同一であってもよいし、異なっていてもよい。
 m1~m3が、それぞれ2以上のとき、隣接する複数のR21は互いに結合して置換若しくは無置換の飽和又は不飽和の環を形成するか、あるいは置換若しくは無置換の飽和又は不飽和の環を形成しない。)
 L及びLは、好ましくは、それぞれ独立に、単結合、又は置換もしくは無置換の環形成炭素数6~14のアリーレン基である。好ましくは、L及びLの少なくとも1つは単結合である。
 一実施形態において、式(1)で表される化合物は下記式(2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000048
(式(2)中、R~R、Ar、L及びLは、前記式(1)で定義した通りである。)
 一実施形態において、式(1)で表される化合物は下記式(3)で表される化合物である。
Figure JPOXMLDOC01-appb-C000049
(式(3)中、Ar、L及びLは、前記式(1)で定義した通りである。)
 一実施形態において、式(1)で表される化合物は下記式(1A)又は(1B)で表される。
Figure JPOXMLDOC01-appb-C000050
(式(1A)及び(1B)において、
 R1A~R8Aは、それぞれ独立に水素原子であり、R1A~R8Aのうち、少なくとも1つは重水素原子である。
 L1A及びL2Aは、それぞれ独立に、単結合、無置換のフェニレン基、又は無置換のナフチレン基である。
 Ar1Aは、置換基としてフェニル基を有してもよいフェニル基、又は置換基としてフェニル基を有してもよいナフチル基である。
 R11A~R14Aは、それぞれ独立に、水素原子、又は無置換の環形成炭素数6~50のアリール基である。
 R11A~R14Aのうちの隣接する2つ以上は、互いに結合して環を形成しない。)
 一実施形態において、前記式(1A)又は(1B)において、R1A~R8Aのうち少なくとも2つが重水素原子である。
 一実施形態において、前記式(1A)又は(1B)において、R1A~R8Aが全て重水素原子である。
 一実施形態において、前記式(1A)又は(1B)において、Ar1Aが有する水素原子の少なくとも1つが重水素原子である。
 一実施形態において、前記式(1A)又は(1B)において、R11A~R14Aが水素原子である。
 一実施形態において、前記式(1A)又は(1B)において、R11A~R14Aが重水素原子である。
 式(1)で表される化合物は、実施例に記載の合成方法に倣い、目的物に合わせた既知の代替反応や原料を用いることで合成することができる。
 式(1)で表される化合物の例を以下に示す。下記具体例中、Dは重水素原子を示す。
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
(式(11)で表される化合物)
 式(11)で表される化合物について説明する。
Figure JPOXMLDOC01-appb-C000073
(式(11)において、
 R101~R110のうちの隣接する2つ以上の1組以上が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
 R101~R110の少なくとも1つは下記式(12)で表される1価の基である。
 前記置換もしくは無置換の飽和又は不飽和の環を形成せず、かつ下記式(12)で表される1価の基ではないR101~R110は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907は、前記式(1)で定義した通りである。
Figure JPOXMLDOC01-appb-C000074
 式(12)において、Ar101及びAr102は、それぞれ独立に、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 L101~L103は、それぞれ独立に、
単結合、
置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は
置換もしくは無置換の環形成原子数5~30の2価の複素環基である。)
 式(11)において、R101~R110のうち2つが式(12)で表される基であることが好ましい。
 一実施形態において、式(11)で表される化合物は下記式(13)で表される。
Figure JPOXMLDOC01-appb-C000075
(式(13)において、R111~R118は、前記式(11)における、式(12)で表される1価の基ではないR101~R110と同じである。Ar101、Ar102、L101、L102及びL103は、前記式(12)で定義した通りである。)
 式(11)において、L101は単結合であることが好ましく、L102及びL103は単結合であることが好ましい。
 一実施形態において、式(11)で表される化合物は下記式(14)又は(15)で表される。
Figure JPOXMLDOC01-appb-C000076
(式(14)において、R111~R118は、前記式(13)で定義した通りである。Ar101、Ar102、L102及びL103は、前記式(12)で定義した通りである。)
Figure JPOXMLDOC01-appb-C000077
(式(15)において、R111~R118は、前記式(13)で定義した通りである。Ar101及びAr102は、前記式(12)で定義した通りである。)
 式(11)及び式(12)において、好ましくは、Ar101及びAr102のうち少なくとも1つが下記式(16)で表される基である。
Figure JPOXMLDOC01-appb-C000078
(式(16)において、
 X101は酸素原子又は硫黄原子を示す。
 R121~R127のうち、隣接する2つ以上の1組以上が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
 前記置換もしくは無置換の飽和又は不飽和の環を形成しないR121~R127は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907は、前記式(1)で定義した通りである。)
 X101は、酸素原子であることが好ましい。
 R121~R127のうち少なくとも1つは、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基であることが好ましい。
 式(11)及び式(12)において、Ar101が式(16)で表される基であり、Ar102が、置換もしくは無置換の環形成炭素数6~50のアリール基であることが好ましい。
 一実施形態において、式(11)で表される化合物は下記式(17)で表される。
Figure JPOXMLDOC01-appb-C000079
(式(17)において、R111~R118は、前記式(13)で定義した通りである。R121~R127は前記式(16)で定義した通りである。
 R131~R135は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907は、前記式(1)で定義した通りである。)
 式(11)で表される化合物としては、例えば、以下に示す化合物が具体例として挙げられる。下記具体例中、Meはメチル基を示す。
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
(式(21)で表される化合物)
 式(21)で表される化合物について説明する。
Figure JPOXMLDOC01-appb-C000087
(式(21)において、
 Zは、それぞれ独立にCR又はNである。
 A1環及びA2環は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は置換もしくは無置換の環形成原子数5~50の複素環である。
 Rが複数存在する場合、複数のRのうちの隣接する2つ以上の1組以上が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
 Rが複数存在する場合、複数のRのうちの隣接する2つ以上の1組以上が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
 Rが複数存在する場合、複数のRのうちの隣接する2つ以上の1組以上が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
 n21及びn22は、それぞれ独立に、0~4の整数である。
 前記置換もしくは無置換の飽和又は不飽和の環を形成しないR~Rは、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907は、前記式(1)で定義した通りである。)
 A1環及びA2環の「芳香族炭化水素環」は、上述した「アリール基」に水素原子を導入した化合物と同じ構造である。A1環及びA2環の「芳香族炭化水素環」は、式(21)中央の縮合2環構造上の炭素原子2つを環形成原子として含むものである。「置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環」の具体例としては、具体例群G1に記載の「アリール基」に水素原子を導入した化合物等が挙げられる。
 A1環及びA2環の「複素環」は、上述した「複素環基」に水素原子を導入した化合物と同じ構造である。A1環及びA2環の「複素環」は、式(21)中央の縮合2環構造上の炭素原子2つを環形成原子として含むものである。「置換もしくは無置換の環形成原子数5~50の複素環」の具体例としては、具体例群G2に記載の「複素環基」に水素原子を導入した化合物等が挙げられる。
 Rは、A1環の芳香族炭化水素環を形成する炭素原子のいずれか、又は、A1環の複素環を形成する原子のいずれかに結合する。
 Rは、A2環の芳香族炭化水素環を形成する炭素原子のいずれか、又は、A2環の複素環を形成する原子のいずれかに結合する。
 R~Rのうち、少なくとも1つ(好ましくは2つ)は下記式(21a)で表される基であることが好ましい。
-L201-Ar201 (21a)
(式(21a)において、
201は、
単結合、
置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は
置換もしくは無置換の環形成原子数5~30の2価の複素環基である。
 Ar201は、
置換もしくは無置換の環形成炭素数6~50のアリール基、
置換もしくは無置換の環形成原子数5~50の1価の複素環基、又は
下記式(21b)で表される基である。
Figure JPOXMLDOC01-appb-C000088
(式(21b)において、
 L211及びL212は、それぞれ独立に、
単結合、
置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は
置換もしくは無置換の環形成原子数5~30の2価の複素環基である。
 Ar211及びAr212は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
 置換もしくは無置換の飽和又は不飽和の環を形成しないAr211及びAr212は、それぞれ独立に、
置換もしくは無置換の環形成炭素数6~50のアリール基、
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。))
 一実施形態において、式(21)で表される化合物は下記式(22)で表される。
Figure JPOXMLDOC01-appb-C000089
(式(22)において、
 R201~R211のうちの隣接する2つ以上の1組以上が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
 前記置換もしくは無置換の飽和又は不飽和の環を形成しないR201~R211は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907は、前記式(1)で定義した通りである。)
 R201~R211のうち、少なくとも1つ(好ましくは2つ)は上記式(21a)で表される基であることが好ましい。好ましくはR204及びR211が上記式(21a)で表される基である。
 一実施形態において、式(21)で表される化合物は、A1環に下記式(21-1)又は(21-2)で表される構造が結合した化合物である。また、一実施形態において、式(22)で表される化合物は、R204~R207が結合する環に下記式(21-1)又は(21-2)で表される構造が結合した化合物である。
Figure JPOXMLDOC01-appb-C000090
(式(21-1)において、2つの結合手*は、それぞれ独立に、式(21)のA1環の芳香族炭化水素環の環形成炭素原子もしくは複素環の環形成原子と結合するか、又は式(22)のR204~R207のいずれかと結合する。
 式(21-2)の3つの結合手*は、それぞれ独立に、式(21)のA1環の芳香族炭化水素環の環形成炭素原子もしくは複素環の環形成原子と結合するか、又は式(22)のR204~R207のいずれかと結合する。
 R221~R227及びR231~R239のうちの隣接する2つ以上の1組以上が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
 前記置換もしくは無置換の飽和又は不飽和の環を形成しないR221~R227及びR231~R239は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907は、前記式(1)で定義した通りである。)
 一実施形態においては、式(21)で表される化合物は、下記式(21-3)、式(21-4)又は式(21-5)で表される化合物である。
Figure JPOXMLDOC01-appb-C000091
(式(21-3)、式(21-4)及び式(21-5)中、
 A1環は、式(21)で定義した通りである。
 R2401~R2407は、式(21-1)及び(21-2)のR221~R227と同じである。R2410~R2417は、式(22)のR201~R211と同じである。2つのR2417は、互いに同一であっても異なっていてもよい。)
 一実施形態においては、式(21-5)のA1環の置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環は、置換もしくは無置換のナフタレン環、又は置換もしくは無置換のフルオレン環である。
 一実施形態においては、式(21-5)のA1環の置換もしくは無置換の環形成原子数5~50の複素環は、置換もしくは無置換のジベンゾフラン環、置換もしくは無置換のカルバゾール環、又は置換もしくは無置換のジベンゾチオフェン環である。
 一実施形態においては、式(21)又は式(22)で表される化合物は、下記式(21-6-1)~(21-6-7)で表される化合物からなる群から選択される。
Figure JPOXMLDOC01-appb-C000092
(式(21-6-1)~(21-6-7)中、
 R2421~R2427は、式(21-1)及び(21-2)のR221~R227と同じである。R2430~R2437及びR2441~R2444は、式(22)のR201~R211と同じである。
 Xは、O、NR901、又はC(R902)(R903)である。
 R901~R903は、前記式(1)で定義した通りである。)
 一実施形態において、式(22)で表される化合物は、R201~R211のうち、隣接する2つ以上の1組以上が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する。当該実施形態について、以下式(25)として詳述する。
(式(25)で表される化合物)
 式(25)で表される化合物について説明する。
Figure JPOXMLDOC01-appb-C000093
(式(25)において、
 R251とR252、R252とR253、R254とR255、R255とR256、R256とR257、R258とR259、R259とR260、及び、R260とR261からなる群から選択される対のうち2以上は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する。
 ただし、R251とR252からなる対及びR252とR253からなる対;R254とR255からなる対及びR255とR256からなる対;R255とR256からなる対及びR256とR257からなる対;R258とR259からなる対及びR259とR260からなる対;並びにR259とR260からなる対及びR260とR261からなる対が、同時に環を形成することはない。
 R251~R261が形成する2つ以上の環は、同一であってもよく、異なっていてもよい。
 前記置換もしくは無置換の飽和又は不飽和の環を形成しないR251~R261は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907は、前記式(1)で定義した通りである。)
 式(25)において、RとRn+1(nは251、252、254~256、及び258~260から選ばれる整数を表す)は互いに結合して、RとRn+1が結合する2つの環形成炭素原子と共に、置換もしくは無置換の飽和又は不飽和の環を形成する。当該環は、好ましくは、C原子、O原子、S原子及びN原子から選ばれる原子から構成され、原子数は、好ましくは3~7であり、より好ましくは5又は6である。
 式(25)で表される化合物における上記の環構造の数は、例えば、2つ、3つ、又は4つである。2つ以上の環構造は、それぞれ式(25)の母骨格上の同一のベンゼン環上に存在してもよいし、異なるベンゼン環上に存在してもよい。例えば、環構造を3つ有する場合、式(25)の3つのベンゼン環のそれぞれに1つずつ環構造が存在してもよい。
 式(25)で表される化合物における上記の環構造としては、例えば、下記式(251)~(260)で表される構造等が挙げられる。
Figure JPOXMLDOC01-appb-C000094
(式(251)~(257)において、*1と*2、*3と*4、*5と*6、*7と*8、*9と*10、*11と*12及び*13と*14のそれぞれは、RとRn+1が結合する前記2つの環形成炭素原子を表し、Rが結合する環形成炭素原子は、*1と*2、*3と*4、*5と*6、*7と*8、*9と*10、*11と*12及び*13と*14が表す2つの環形成炭素原子のどちらであってもよい。
 X2501は、C(R2512)(R2513)、NR2514、O又はSである。
 R2501~R2506及びR2512~R2513のうちの隣接する2つ以上の1組以上が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
 置換もしくは無置換の飽和又は不飽和の環を形成しないR2501~R2514は、前記R251~R261と同じである。)
Figure JPOXMLDOC01-appb-C000095
(式(258)~(260)において、*1と*2、及び*3と*4のそれぞれは、RとRn+1が結合する前記2つの環形成炭素原子を表し、Rが結合する環形成炭素原子は、*1と*2、又は*3と*4が表す2つの環形成炭素原子のどちらであってもよい。
 X2501は、C(R2512)(R2513)、NR2514、O又はSである。
 R2515~R2525のうちの隣接する2つ以上の1組以上が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
 置換もしくは無置換の飽和又は不飽和の環を形成しないR2515~R2521及びR2522~R2525は、前記R251~R261と同じである。)
 式(25)において、R252、R254、R255、R260及びR261の少なくとも1つ(好ましくは、R252、R255及びR260の少なくとも1つ、さらに好ましくはR252)が、環構造を形成しない基であると好ましい。
 (i)式(25)において、RとRn+1により形成される環構造が置換基を有する場合の置換基、
 (ii)式(25)において、環構造を形成しないR251~R261、及び
 (iii)式(251)~(260)におけるR2501~R2514、R2515~R2525は、好ましくは、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-N(R906)(R907)、
置換もしくは無置換の環形成炭素数6~50のアリール基、
置換もしくは無置換の環形成原子数5~50の1価の複素環基、又は
下記の群から選択される基のいずれかである。
Figure JPOXMLDOC01-appb-C000096
(式(261)~(264)中、Rは、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 Xは、C(R901)(R902)、NR903、O又はSである。
 R901~R907は、前記式(1)で定義した通りである。
 p1は、それぞれ独立に、0~5の整数、p2は、それぞれ独立に、0~4の整数、p3は0~3の整数、p4は0~7の整数である。)
 一実施形態において、式(25)で表される化合物は、下記式(25-1)~(25-6)のいずれかで表される。
Figure JPOXMLDOC01-appb-C000097
(式(25-1)~(25-6)において、環d~iは、それぞれ独立に、置換もしくは無置換の飽和又は不飽和の環である。R251~R261は、前記式(25)と同じである。)
 一実施形態において、式(25)で表される化合物は、下記式(25-7)~(25-12)のいずれかで表される。
Figure JPOXMLDOC01-appb-C000098
(式(25-7)~(25-12)において、環d~f、k、jは、それぞれ独立に、置換もしくは無置換の飽和又は不飽和の環である。R251~R261は、前記式(25)と同じである。)
 一実施形態において、式(25)で表される化合物は、下記式(25-13)~(25-21)のいずれかで表される。
Figure JPOXMLDOC01-appb-C000099
(式(25-13)~(25-21)において、環d~kは、それぞれ独立に、置換もしくは無置換の飽和又は不飽和の環である。R251~R261は、前記式(25)と同じである。)
 前記環g又はhがさらに置換基を有する場合の置換基としては、例えば、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
上記式(261)、(263)又は(264)で表される基が挙げられる。
 一実施形態において、式(25)で表される化合物は、下記式(25-22)~(25-25)のいずれかで表される。
Figure JPOXMLDOC01-appb-C000100
(式(25-22)~(25-25)において、X250は、それぞれ独立に、C(R901)(R902)、NR903、O又はSである。R251~R261、R271~R278は、前記式(25)のR251~R261と同じである。R901~R903は、前記式(1)で定義した通りである。)
 一実施形態において、式(25)で表される化合物は、下記式(25-26)で表される。
Figure JPOXMLDOC01-appb-C000101
(式(25-26)において、X250は、C(R901)(R902)、NR903、O又はSである。R253、R254、R257、R258、R261、及びR271~R282は、前記式(25)のR251~R261と同じである。R901~R903は、前記式(1)で定義した通りである。)
 式(21)で表される化合物としては、例えば、以下に示す化合物が具体例として挙げられる。下記具体例中、Meはメチル基を示す。
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
(式(31)で表される化合物)
 式(31)で表される化合物について説明する。式(31)で表される化合物は、上述した式(21-3)で表される化合物に対応する化合物である。
Figure JPOXMLDOC01-appb-C000112
(式(31)において、
 R301~R307及びR311~R317のうち隣接する2つ以上の1組以上が、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
 前記置換もしくは無置換の飽和又は不飽和の環を形成しないR301~R307及びR311~R317は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R321及びR322は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907は、前記式(1)で定義した通りである。)
 「R301~R307及びR311~R317のうち隣接する2つ以上の1組」は、例えば、R301とR302、R302とR303、R303とR304、R305とR306、R306とR307、R301とR302とR303等の組合せである。
 一実施形態において、R301~R307及びR311~R317の少なくとも1つ、好ましくは2つが-N(R906)(R907)で表される基である。
 一実施形態においては、R301~R307及びR311~R317は、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 一実施形態においては、式(31)で表される化合物は、下記式(32)で表される化合物である。
Figure JPOXMLDOC01-appb-C000113
(式(32)において、
 R331~R334及びR341~R344のうち隣接する2つ以上の1組以上が、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
 前記置換もしくは無置換の飽和又は不飽和の環を形成しないR331~R334、R341~R344、並びにR351及びR352は、それぞれ独立に、
水素原子、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R361~R364は、それぞれ独立に、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。)
 一実施形態においては、式(31)で表される化合物は、下記式(33)で表される化合物である。
Figure JPOXMLDOC01-appb-C000114
(式(33)において、R351、R352及びR361~R364は前記式(32)で定義した通りである。)
 一実施形態においては、式(31)で表される化合物は、下記式(34)又は(35)で表される化合物である。
Figure JPOXMLDOC01-appb-C000115
(式(34)及び(35)中、
 R361~R364は前記式(32)で定義した通りである。
 R371~R377及びR380~R386のうち隣接する2つ以上の1組以上が、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
 前記置換もしくは無置換の飽和又は不飽和の環を形成しないR371~R377及びR380~R386、並びにR387は、それぞれ独立に、
水素原子、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 2つのR387は、互いに同じであっても異なっていてもよい。)
 一実施形態においては、式(31)で表される化合物は、下記式(34-2)又は(35-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000116
(式(34-2)及び(35-2)中、R361~R364、R375~R377及びR384~R387は、前記式(34)及び(35)で定義した通りである。)
 一実施形態においては、式(32)、(33)、(34)、(35)、(34-2)、(35-2)におけるR361~R364は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基(好ましくはフェニル基)である。
 一実施形態においては、式(31)におけるR321及びR322、式(32)、(33)、(34)、(35)、(34-2)、(35-2)におけるR351、R352、及びR387は、それぞれ独立に、水素原子、又は置換もしくは無置換の環形成炭素数6~50のアリール基(好ましくはフェニル基)である。
 一実施形態においては、式(31)で表される化合物は、下記式(32-11)、(34-11)及び(35-11)からなる群から選択される一以上の化合物である。
Figure JPOXMLDOC01-appb-C000117
(式(32-11)、(34-11)及び(35-11)において、
 R3301~R3307及びR3311~R3317のうち隣接する2つ以上の1組以上が、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
 前記置換もしくは無置換の飽和又は不飽和の環を形成しないR3301~R3307及びR3311~R3317、並びにR3331は、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~20のアリール基、又は置換もしくは無置換の環形成原子数5~20の1価の複素環基である。2つのR3331は互いに同じであっても異なってもよい。
 R3321~R3324は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~20のアリール基、又は置換もしくは無置換の環形成原子数5~20の1価の複素環基である。)
 一実施形態においては、式(32-11)、(34-11)及び(35-11)からなる群から選択される一以上の化合物は、下記式(32-12)、(34-12)及び(35-12)からなる群から選択される一以上の化合物である。
Figure JPOXMLDOC01-appb-C000118
(式(32-12)、(34-12)及び(35-12)中、R3321~R3324及びR3331は、前記式(32-11)、(34-11)及び(35-11)で定義した通りである。)
 一実施形態においては、式(32-11)、(34-11)、(35-11)、(32-12)、(34-12)及び(35-12)において、R3321~R3324が、それぞれ独立に、置換もしくは無置換のフェニル基である。
 一実施形態においては、式(32-11)、(34-11)、(35-11)、(32-12)、(34-12)及び(35-12)において、2つのR3331が、それぞれ水素原子である。
 一実施形態においては、式(32-11)、(34-11)、(35-11)、(32-12)、(34-12)及び(35-12)において、「置換もしくは無置換の」という場合における置換基が、炭素数1~20のアルキル基、環形成炭素数6~20のアリール基、及び環形成原子数5~20の1価の複素環基からなる群から選択される。
 一実施形態においては、式(32-11)、(34-11)、(35-11)、(32-12)、(34-12)及び(35-12)において、「置換もしくは無置換の」という場合における置換基が、炭素数1~5のアルキル基である。
 一実施形態においては、式(32-11)、(34-11)、(35-11)、(32-12)、(34-12)及び(35-12)において、R3321~R3324が、それぞれ独立に、置換もしくは無置換のフェニル基であり、2つのR3331が、それぞれ水素原子である。
 一実施形態においては、式(32-11)、(34-11)、(35-11)、(32-12)、(34-12)及び(35-12)において、R3321~R3324が、それぞれ独立に、置換もしくは無置換のフェニル基であり、2つのR3331が、それぞれ水素原子であり、「置換もしくは無置換の」という場合における置換基が、炭素数1~20のアルキル基、環形成炭素数6~20のアリール基、及び環形成原子数5~20の1価の複素環基からなる群から選択される。
 一実施形態においては、式(32-11)、(34-11)、(35-11)、(32-12)、(34-12)及び(35-12)において、R3321~R3324が、それぞれ独立に、置換もしくは無置換のフェニル基であり、2つのR3331が、それぞれ水素原子であり、「置換もしくは無置換の」という場合における置換基が、炭素数1~5のアルキル基である。
 一実施形態においては、式(31)で表される化合物において、R301~R307及びR311~R317のうち隣接する2つ以上の1組以上が、置換もしくは無置換の飽和又は不飽和の環を形成する。
 一実施形態においては、式(31)で表される化合物は、下記式(36-1)~(36-6)で表される化合物からなる群から選択される1以上の化合物である。
Figure JPOXMLDOC01-appb-C000119
(式(36-1)~(36-6)において、
 R3605~R3607、R3615~R3617及びR3631のうちの隣接する2つ以上の1組以上が、互いに結合して置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは前記環を形成しない。
 R3601~R3604、R3611~R3614及びR3621~R3628のうちの隣接する2つ以上の1組以上が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは前記環を形成しない。
 前記環を形成しないR3601~R3607、R3611~R3617、R3621~R3628及びR3631はそれぞれ独立に、
水素原子、ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。R901~R907が2個以上存在する場合、2個以上のR901~R907のそれぞれは同一でもよく、異なっていてもよい。
 XはO、S及びN(R3641)から選択され、2つのXは互いに同一であってよく、また、異なっていてもよい。
 R3641は、R3601~R3604、R3611~R3614、R3624及びR3628からなる群から選択される1以上と、互いに結合して置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは前記環を形成しない。
 前記環を形成しないR3641は水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。)
 一実施形態においては、式(31)で表される化合物は、式(36-1)又は式(36-2)で表される化合物であり、一実施形態においては、式(36-1)で表される化合物である。
 一実施形態においては、式(36-1)~(36-6)で表される化合物において、2つのR3631がフェニル基である。
 一実施形態においては、式(36-1)~(36-6)で表される化合物において、XがN(R3641)である。
 一実施形態においては、式(36-1)~(36-6)で表される化合物において、R3641が、置換もしくは無置換の環形成炭素数6~50のアリール基である。
 一実施形態においては、式(31)で表される化合物は、下記式(36-1-1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000120
(式(36-1-1)において、R3001、R3002、R3005~R3007、R3010、R3011、R3014~R3016、及びR3031~R3034のうち隣接する2つ以上の1組以上が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
 Xは、それぞれ独立に、O、S及びN(R35)から選択される。
 R35は、R31と互いに結合して置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは前記環を形成しない。
 前記置換もしくは無置換の飽和又は不飽和の環を形成しないR3001、R3002、R3005~R3007、R3010、R3011、R3014~R3016、及びR3031~R3035、並びにR3021、R3022は、それぞれ独立に、
水素原子、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。)
 一実施形態においては、式(31)~(35)、(34-2)、(35-2)、(32-11)、(34-11)、(35-11)、(32-12)、(34-12)、(35-12)、(36-1)~(36-6)及び(36-1-1)における、「置換もしくは無置換の」という場合における置換基は、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 式(31)で表される化合物としては、例えば、以下に示す化合物が具体例として挙げられる。下記具体例中、Meはメチル基を示す。
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000143
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000147
Figure JPOXMLDOC01-appb-C000148
Figure JPOXMLDOC01-appb-C000149
Figure JPOXMLDOC01-appb-C000150
Figure JPOXMLDOC01-appb-C000151
(式(41)で表される化合物)
 式(41)で表される化合物について説明する。
Figure JPOXMLDOC01-appb-C000152
(式(41)において、
 a環、b環及びc環は、それぞれ独立に、
置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は、
置換もしくは無置換の環形成原子数5~50の複素環である。
 R401及びR402は、それぞれ独立に、前記a環、b環又はc環と結合して、置換もしくは無置換の複素環を形成するか、あるいは置換もしくは無置換の複素環を形成しない。
 前記置換もしくは無置換の複素環を形成しないR401及びR402は、それぞれ独立に、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。)
 a環、b環及びc環は、B原子及び2つのN原子から構成される式(41)中央の縮合2環構造に縮合する環(置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は置換もしくは無置換の環形成原子数5~50の複素環)である。
 a環、b環及びc環の「芳香族炭化水素環」は、上述した「アリール基」に水素原子を導入した化合物と同じ構造である。a環の「芳香族炭化水素環」は、式(41)中央の縮合2環構造上の炭素原子3つを環形成原子として含むものである。b環及びc環の「芳香族炭化水素環」は、式(41)中央の縮合2環構造上の炭素原子2つを環形成原子として含むものである。「置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環」の具体例としては、具体例群G1に記載の「アリール基」に水素原子を導入した化合物等が挙げられる。
 a環、b環及びc環の「複素環」は、上述した「複素環基」に水素原子を導入した化合物と同じ構造である。a環の「複素環」は、式(41)中央の縮合2環構造上の炭素原子3つを環形成原子として含むものである。b環及びc環の「複素環」は、式(41)中央の縮合2環構造上の炭素原子2つを環形成原子として含むものである。「置換もしくは無置換の環形成原子数5~50の複素環」の具体例としては、具体例群G2に記載の「複素環基」に水素原子を導入した化合物等が挙げられる。
 R401及びR402は、それぞれ独立に、a環、b環又はc環と結合して、置換もしくは無置換の複素環を形成してもよい。この場合における複素環は、式(41)中央の縮合2環構造上の窒素原子を含むこととなる。この場合における複素環は、窒素原子以外のヘテロ原子を含んでいてもよい。R401及びR402がa環、b環又はc環と結合するとは、具体的には、a環、b環又はc環を構成する原子とR401及びR402を構成する原子が結合することを意味する。例えば、R401がa環と結合して、R401を含む環とa環が縮合した2環縮合(又は3環縮合以上)の含窒素複素環を形成してもよい。当該含窒素複素環の具体例としては、具体例群G2のうち、窒素を含む2環縮合以上の複素環基に対応する化合物等が挙げられる。
 R401がb環と結合する場合、R402がa環と結合する場合、及びR402がc環と結合する場合も上記と同じである。
 一実施形態において、式(41)におけるa環、b環及びc環は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環である。
 一実施形態において、式(41)におけるa環、b環及びc環は、それぞれ独立に、置換もしくは無置換のベンゼン環又はナフタレン環である。
 一実施形態において、式(41)におけるR401及びR402は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の1価の複素環基であり、好ましくは置換もしくは無置換の環形成炭素数6~50のアリール基である。
 一実施形態において、式(41)で表される化合物は下記式(42)で表される化合物である。
Figure JPOXMLDOC01-appb-C000153
(式(42)において、
 R401Aは、R411及びR421からなる群から選択される1以上と結合して、置換もしくは無置換の複素環を形成するか、あるいは置換もしくは無置換の複素環を形成しない。R402Aは、R413及びR414からなる群から選択される1以上と結合して、置換もしくは無置換の複素環を形成するか、あるいは置換もしくは無置換の複素環を形成しない。
 前記置換もしくは無置換の複素環を形成しないR401A及びR402Aは、それぞれ独立に、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R411~R421のうちの隣接する2つ以上の1組以上は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
 前記置換もしくは無置換の複素環又は前記置換もしくは無置換の飽和又は不飽和の環を形成しないR411~R421は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907は、前記式(1)で定義した通りである。)
 式(42)のR401A及びR402Aは、式(41)のR401及びR402に対応する基である。
 例えば、R401AとR411が結合して、これらを含む環とa環に対応するベンゼン環が縮合した2環縮合(又は3環縮合以上)の含窒素複素環を形成してもよい。当該含窒素複素環の具体例としては、具体例群G2のうち、窒素を含む2環縮合以上の複素環基に対応する化合物等が挙げられる。R401AとR412が結合する場合、R402AとR413が結合する場合、及びR402AとR414が結合する場合も上記と同じである。
 R411~R421のうちの隣接する2つ以上の1組以上は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成してもよい。例えば、R11とR12が結合して、これらが結合する6員環に対して、ベンゼン環、インドール環、ピロール環、ベンゾフラン環又はベンゾチオフェン環等が縮合した構造を形成してもよく、形成された縮合環は、ナフタレン環、カルバゾール環、インドール環、ジベンゾフラン環又はジベンゾチオフェン環となる。
 一実施形態において、環形成に寄与しないR411~R421は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 一実施形態において、環形成に寄与しないR411~R421は、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 一実施形態において、環形成に寄与しないR411~R421は、それぞれ独立に、水素原子、又は置換もしくは無置換の炭素数1~50のアルキル基である。
 一実施形態において、環形成に寄与しないR411~R421は、それぞれ独立に、水素原子、又は置換もしくは無置換の炭素数1~50のアルキル基であり、R411~R421のうち少なくとも1つは置換もしくは無置換の炭素数1~50のアルキル基である。
 一実施形態において、前記式(42)で表される化合物は、下記式(43)で表される化合物である。
Figure JPOXMLDOC01-appb-C000154
(式(43)において、
 R431は、R446と結合して、置換もしくは無置換の複素環を形成するか、あるいは置換もしくは無置換の複素環を形成しない。R433は、R447と結合して、置換もしくは無置換の複素環を形成するか、あるいは置換もしくは無置換の複素環を形成しない。R434は、R451と結合して、置換もしくは無置換の複素環を形成するか、あるいは置換もしくは無置換の複素環を形成しない。R441は、R442と結合して、置換もしくは無置換の複素環を形成するか、あるいは置換もしくは無置換の複素環を形成しない。
 R431~R451のうちの隣接する2つ以上の1組以上は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
 前記置換もしくは無置換の複素環又は前記置換もしくは無置換の飽和又は不飽和の環を形成しないR431~R451は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907は、前記式(1)で定義した通りである。)
 R431は、R446と結合して、置換もしくは無置換の複素環を形成してもよい。例えば、R431とR446が結合して、R46が結合するベンゼン環と、Nを含む環と、a環に対応するベンゼン環とが縮合した3環縮合以上の含窒素複素環を形成してもよい。当該含窒素複素環の具体例としては、具体例群G2のうち、窒素を含む3環縮合以上の複素環基に対応する化合物等が挙げられる。R433とR447が結合する場合、R434とR451が結合する場合、及びR441とR442が結合する場合も上記と同じである。
 一実施形態において、環形成に寄与しないR431~R451は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 一実施形態において、環形成に寄与しないR431~R451は、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 一実施形態において、環形成に寄与しないR431~R451は、それぞれ独立に、水素原子、又は置換もしくは無置換の炭素数1~50のアルキル基である。
 一実施形態において、環形成に寄与しないR431~R451は、それぞれ独立に、水素原子、又は置換もしくは無置換の炭素数1~50のアルキル基であり、R431~R451のうち少なくとも1つは置換もしくは無置換の炭素数1~50のアルキル基である。
 一実施形態において、前記式(43)で表される化合物は、下記式(43A)で表される化合物である。
Figure JPOXMLDOC01-appb-C000155
(式(43A)において、
461は、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、又は
置換もしくは無置換の環形成炭素数6~50のアリール基である。
462~R465はそれぞれ独立に、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、又は
置換もしくは無置換の環形成炭素数6~50のアリール基である。)
 一実施形態において、R461~R465は、それぞれ独立に、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。
 一実施形態において、R461~R465は、それぞれ独立に、置換もしくは無置換の炭素数1~50のアルキル基である。
 一実施形態において、前記式(43)で表される化合物は、下記式(43B)で表される化合物である。
Figure JPOXMLDOC01-appb-C000156
(式(43B)において、
471及びR472は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-N(R906)(R907)、又は
置換もしくは無置換の環形成炭素数6~50のアリール基である。
473~R475は、それぞれ独立に、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-N(R906)(R907)、又は
置換もしくは無置換の環形成炭素数6~50のアリール基である。
 R906及びR907は、前記式(1)で定義した通りである。)
 一実施形態において、前記式(43)で表される化合物は、下記式(43B’)で表される化合物である。
Figure JPOXMLDOC01-appb-C000157
(式(43B’)において、R472~R475は、前記式(43B)で定義した通りである。)
 一実施形態において、R471~R475のうち少なくとも1つは、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-N(R906)(R907)、又は
置換もしくは無置換の環形成炭素数6~50のアリール基である。
 一実施形態において、
 R472は、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
-N(R906)(R907)、又は
置換もしくは無置換の環形成炭素数6~50のアリール基であり、
 R471及びR473~R475は、それぞれ独立に、
置換もしくは無置換の炭素数1~50のアルキル基、
-N(R906)(R907)、又は
置換もしくは無置換の環形成炭素数6~50のアリール基である。
 一実施形態において、前記式(43)で表される化合物は、下記式(43C)で表される化合物である。
Figure JPOXMLDOC01-appb-C000158
(式(43C)において、
481及びR482は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、又は
置換もしくは無置換の環形成炭素数6~50のアリール基である。
483~R486は、それぞれ独立に、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、又は
置換もしくは無置換の環形成炭素数6~50のアリール基である。)
 一実施形態において、前記式(43)で表される化合物は、下記式(43C’)で表される化合物である。
Figure JPOXMLDOC01-appb-C000159
(式(43C’)において、R483~R486は、前記式(43C)で定義した通りである。)
 一実施形態において、R481~R486は、それぞれ独立に、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。
 一実施形態において、R481~R486は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基である。
 一実施形態において、前記式(43)で表される化合物は、下記式(43D)で表される化合物である。
Figure JPOXMLDOC01-appb-C000160
(式(43D)において、
 R4611は、水素原子、無置換の炭素数1~6のアルキル基、無置換の環形成炭素数3~10のシクロアルキル基、-Si(R911)(R912)(R913)、又は-N(R914)(R915)である。
 R4612~R4615は、それぞれ独立に、無置換の炭素数1~6のアルキル基、無置換の環形成炭素数3~10のシクロアルキル基、又は-Si(R911)(R912)(R913)である。
 R911~R913は、それぞれ独立に、無置換の炭素数1~6のアルキル基、又は無置換の環形成炭素数6~18のアリール基である。
 R914~R915は、それぞれ独立に、無置換の環形成炭素数6~18のアリール基である。)
 一実施形態において、式(43D)において、R4611が、水素原子、無置換の炭素数1~6のアルキル基、又は-N(R914)(R915)である。
 一実施形態において、式(43D)において、R4612~R4615が、それぞれ独立に、無置換の炭素数1~6のアルキル基、又は無置換の環形成炭素数3~10のシクロアルキル基である。
 一実施形態において、式(43D)において、R4611が、-N(R914)(R915)であり、R4612~R4615が、それぞれ独立に、無置換の炭素数1~6のアルキル基である。
 一実施形態において、式(43D)において、R4611が、無置換の炭素数1~6のアルキル基であり、R4612~R4615が、それぞれ独立に、無置換の炭素数1~6のアルキル基である。
 一実施形態において、式(43D)において、R4611が水素原子であり、R4612~R4615が、それぞれ独立に、無置換の炭素数1~6のアルキル基又は無置換の環形成炭素数3~10のシクロアルキル基である。
 一実施形態において、式(43D)において、R914及びR915からなる群から選択される一以上が有する水素原子の少なくとも1つが重水素原子である。
 式(41)で表される化合物は、まずa環、b環及びc環を連結基(N-Rを含む基及びN-Rを含む基)で結合させることで中間体を製造し(第1反応)、a環、b環及びc環を連結基(Bを含む基)で結合させることで最終生成物を製造することができる(第2反応)。第1反応ではバッハブルト-ハートウィッグ反応等のアミノ化反応を適用できる。第2反応では、タンデムヘテロフリーデルクラフツ反応等を適用できる。
 以下に、式(41)で表される化合物の具体例を記載するが、これらは例示に過ぎず、式(41)で表される化合物は下記具体例に限定されるものではない。下記具体例中、Meはメチル基、tBuはtert-ブチル基を示す。
Figure JPOXMLDOC01-appb-C000161
Figure JPOXMLDOC01-appb-C000162
Figure JPOXMLDOC01-appb-C000163
Figure JPOXMLDOC01-appb-C000164
Figure JPOXMLDOC01-appb-C000165
Figure JPOXMLDOC01-appb-C000166
Figure JPOXMLDOC01-appb-C000167
Figure JPOXMLDOC01-appb-C000168
Figure JPOXMLDOC01-appb-C000169
Figure JPOXMLDOC01-appb-C000170
Figure JPOXMLDOC01-appb-C000171
Figure JPOXMLDOC01-appb-C000172
Figure JPOXMLDOC01-appb-C000173
Figure JPOXMLDOC01-appb-C000174
Figure JPOXMLDOC01-appb-C000175
Figure JPOXMLDOC01-appb-C000176
Figure JPOXMLDOC01-appb-C000177
Figure JPOXMLDOC01-appb-C000178
(式(51)で表される化合物)
 式(51)で表される化合物について説明する。
Figure JPOXMLDOC01-appb-C000179
(式(51)において、
 r環は、隣接環の任意の位置で縮合する式(52)又は式(53)で表される環である。
 q環及びs環は、それぞれ独立に、隣接環の任意の位置で縮合する式(54)で表される環である。
 p環及びt環は、それぞれ独立に、隣接環の任意の位置で縮合する式(55)又は式(56)で表される構造である。
 R501が複数存在する場合、隣接する複数のR501は互いに結合して置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
 X501は、酸素原子、硫黄原子、又はNR502である。
 前記置換もしくは無置換の飽和又は不飽和の環を形成しないR501及びR502は、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907は、前記式(1)で定義した通りである。
 Ar501及びAr502は、それぞれ独立に、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 L501は、
置換もしくは無置換の炭素数1~50のアルキレン基、
置換もしくは無置換の炭素数2~50のアルケニレン基、
置換もしくは無置換の炭素数2~50のアルキニレン基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキレン基、
置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
 m1は、それぞれ独立に0~2の整数であり、m2は、それぞれ独立に0~4の整数であり、m3は、それぞれ独立に0~3の整数であり、m4は、それぞれ独立に0~5の整数である。R501が複数存在する場合、複数のR501は互いに同一であってもよいし、異なっていてもよい。)
 式(51)において、p環~t環の各環は、隣接環と炭素原子2つを共有して縮合する。縮合する位置や向きは限定されず、任意の位置・向きで縮合可能である。
 一実施形態において、r環の式(52)又は式(53)において、R501は水素原子である。
 一実施形態において、式(51)で表される化合物は下記式(51-1)~(51-6)のいずれかで表される。
Figure JPOXMLDOC01-appb-C000180
(式(51-1)~(51-6)において、R501、X501、Ar501、Ar502、L501、m1及びm3は、前記式(51)で定義した通りである。)
 一実施形態において、式(51)で表される化合物は下記式(51-11)~(51-13)のいずれかで表される。
Figure JPOXMLDOC01-appb-C000181
(式(51-11)~(51-13)において、R501、X501、Ar501、Ar502、L501、m1、m3及びm4は、前記式(51)で定義した通りである。)
 一実施形態において、式(51)で表される化合物は下記式(51-21)~(51-25)のいずれかで表される。
Figure JPOXMLDOC01-appb-C000182
(式(51-21)~(51-25)において、R501、X501、Ar501、Ar502、L501、m1及びm4は、前記式(51)で定義した通りである。)
 一実施形態において、式(51)で表される化合物は下記式(51-31)~(51-33)のいずれかで表される。
Figure JPOXMLDOC01-appb-C000183
(式(51-31)~(51-33)において、R501、X501、Ar501、Ar502、L501、m2~m4は、前記式(51)で定義した通りである。)
 一実施形態においては、Ar501及びAr502が、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基である。
 一実施形態においては、Ar501及びAr502の一方が置換もしくは無置換の環形成炭素数6~50のアリール基であり、他方が置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 式(51)で表される化合物としては、例えば、以下に示す化合物が具体例として挙げられる。下記具体例中、Meはメチル基を示す。
Figure JPOXMLDOC01-appb-C000184
Figure JPOXMLDOC01-appb-C000185
Figure JPOXMLDOC01-appb-C000186
Figure JPOXMLDOC01-appb-C000187
Figure JPOXMLDOC01-appb-C000188
Figure JPOXMLDOC01-appb-C000189
(式(61)で表される化合物)
 式(61)で表される化合物について説明する。
Figure JPOXMLDOC01-appb-C000190
(式(61)において、
 R601とR602、R602とR603、及びR603とR604の少なくとも一組は互いに結合して下記式(62)で示される2価の基を形成する。
 R605とR606、R606とR607、及びR607とR608の少なくとも一組は互いに結合して下記式(63)で示される2価の基を形成する。
Figure JPOXMLDOC01-appb-C000191
 R601~R604のうち前記式(62)で示される2価の基を形成しないもの、及びR611~R614の少なくとも1つは下記式(64)で表される1価の基である。
 R605~R608のうち前記式(63)で示される2価の基を形成しないもの、及びR621~R624の少なくとも1つは下記式(64)で表される1価の基である。
 X601は酸素原子、硫黄原子、又はNR609である。
 前記式(62)及び(63)で表される2価の基を形成せず、かつ、前記式(64)で表される1価の基ではないR601~R608、前記式(64)で表される1価の基ではないR611~R614及びR621~R624、並びにR609は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907は、前記式(1)で定義した通りである。
Figure JPOXMLDOC01-appb-C000192
 式(64)において、Ar601及びAr602は、それぞれ独立に、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 L601~L603は、それぞれ独立に、
単結合、
置換もしくは無置換の環形成炭素数6~30のアリーレン基、
置換もしくは無置換の環形成原子数5~30の2価の複素環基、又は
これらが2~4個結合して形成される2価の連結基である。)
 式(61)において、式(62)で示される2価の基及び式(63)で示される2価の基が形成される位置は特に限定されず、R601~R608の可能な位置において当該基を形成し得る。
 一実施形態において、式(61)で表される化合物は、下記式(61-1)~(61-6)のいずれかで表される。
Figure JPOXMLDOC01-appb-C000193
(式(61-1)~(61-6)において、X601は前記式(61)で定義した通りである。
 R601~R624の少なくとも2つは前記式(64)で表される1価の基である。
 前記式(64)で表される1価の基ではないR601~R624は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907は、前記式(1)で定義した通りである。)
 一実施形態において、式(61)で表される化合物は、下記式(61-7)~(61-18)のいずれかで表される。
Figure JPOXMLDOC01-appb-C000194
(式(61-7)~(61-18)において、X601は前記式(61)で定義した通りである。*は前記式(64)で表される1価の基と結合する単結合である。R601~R624は、前記式(64)で表される1価の基ではないR601~R624と同じである。)
 前記式(62)及び(63)で表される2価の基を形成せず、かつ、前記式(64)で表される1価の基ではないR601~R608、及び、前記式(64)で表される1価の基ではないR611~R614及びR621~R624は、好ましくは、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 式(64)で表される1価の基は、好ましくは下記式(65)又は(66)で表される。
Figure JPOXMLDOC01-appb-C000195
(式(65)において、R631~R640は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907は、前記式(1)で定義した通りである。)
Figure JPOXMLDOC01-appb-C000196
(式(66)において、Ar601、L601及びL603は前記式(64)で定義した通りである。HAr601は下記式(67)で表される構造である。
Figure JPOXMLDOC01-appb-C000197
 式(67)において、X602は酸素原子又は硫黄原子である。
 R641~R648のいずれか1つはL603に結合する単結合である。
 単結合ではないR641~R648は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907は、前記式(1)で定義した通りである。)
 式(61)で表される化合物としては、国際公開2014/104144号に記載の化合物の他、例えば、以下に示す化合物が具体例として挙げられる。下記具体例中、Meはメチル基を示す。
Figure JPOXMLDOC01-appb-C000198
Figure JPOXMLDOC01-appb-C000199
Figure JPOXMLDOC01-appb-C000200
Figure JPOXMLDOC01-appb-C000201
Figure JPOXMLDOC01-appb-C000202
Figure JPOXMLDOC01-appb-C000203
Figure JPOXMLDOC01-appb-C000204
Figure JPOXMLDOC01-appb-C000205
Figure JPOXMLDOC01-appb-C000206
Figure JPOXMLDOC01-appb-C000207
Figure JPOXMLDOC01-appb-C000208
Figure JPOXMLDOC01-appb-C000209
Figure JPOXMLDOC01-appb-C000210
Figure JPOXMLDOC01-appb-C000211
Figure JPOXMLDOC01-appb-C000212
Figure JPOXMLDOC01-appb-C000213
Figure JPOXMLDOC01-appb-C000214
Figure JPOXMLDOC01-appb-C000215
Figure JPOXMLDOC01-appb-C000216
Figure JPOXMLDOC01-appb-C000217
Figure JPOXMLDOC01-appb-C000218
Figure JPOXMLDOC01-appb-C000219
Figure JPOXMLDOC01-appb-C000220
Figure JPOXMLDOC01-appb-C000221
Figure JPOXMLDOC01-appb-C000222
Figure JPOXMLDOC01-appb-C000223
Figure JPOXMLDOC01-appb-C000224
(式(71)で表される化合物)
 式(71)で表される化合物について説明する。
Figure JPOXMLDOC01-appb-C000225
(式(71)において、
 A701環及びA702環は、それぞれ独立に、
置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は、
置換もしくは無置換の環形成原子数5~50の複素環である。
 A701環及びA702環からなる群から選択される一以上は、下記式(72)で表される構造の結合手*と結合する。
Figure JPOXMLDOC01-appb-C000226
 式(72)において、
 A703環は、それぞれ独立に、
置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は、
置換もしくは無置換の環形成原子数5~50の複素環である。
 X701は、NR703、C(R704)(R705)、Si(R706)(R707)、Ge(R708)(R709)、O、S又はSeである。
 R701及びR702は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
 置換もしくは無置換の飽和又は不飽和の環を形成しないR701及びR702、並びにR703~R709は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907は、前記式(1)で定義した通りである。)
 A701環及びA702環からなる群から選択される一以上は、式(72)で表される構造の結合手*と結合する。即ち、一実施形態において、A701環の前記芳香族炭化水素環の環形成炭素原子、又は前記複素環の環形成原子は、式(72)で表される構造の結合手*と結合する。また、一実施形態において、A702環の前記芳香族炭化水素環の環形成炭素原子、又は前記複素環の環形成原子は、式(72)で表される構造の結合手*と結合する。
 一実施形態において、A701環及びA702環のいずれか又は両方に下記式(73)で表される基が結合する。
Figure JPOXMLDOC01-appb-C000227
(式(73)において、Ar701及びAr702は、それぞれ独立に、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 L701~L703は、それぞれ独立に、
単結合、
置換もしくは無置換の環形成炭素数6~30のアリーレン基、
置換もしくは無置換の環形成原子数5~30の2価の複素環基、又は
これらが2~4個結合して形成される2価の連結基である。)
 一実施形態において、A701環に加えて、A702環の前記芳香族炭化水素環の環形成炭素原子、又は前記複素環の環形成原子は、式(72)で表される構造の結合手*と結合する。この場合、式(72)で表される構造は同一でもよいし異なってもよい。
 一実施形態において、R701及びR702は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基である。
 一実施形態において、R701及びR702は、互いに結合してフルオレン構造を形成する。
 一実施形態において、環A701及び環A702は、置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環であり、例えば、置換もしくは無置換のベンゼン環である。
 一実施形態において、環A703は、置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環であり、例えば、置換もしくは無置換のベンゼン環である。
 一実施形態において、X701は、O又はSである。
 式(71)で表される化合物としては、例えば、以下に示す化合物が具体例として挙げられる。下記具体例中、Meはメチル基を示す。
Figure JPOXMLDOC01-appb-C000228
Figure JPOXMLDOC01-appb-C000229
Figure JPOXMLDOC01-appb-C000230
Figure JPOXMLDOC01-appb-C000231
(式(81)で表される化合物)
 式(81)で表される化合物について説明する。
Figure JPOXMLDOC01-appb-C000232
(式(81)において、
 A801環は、隣接環の任意の位置で縮合する式(82)で表される環である。
 A802環は、隣接環の任意の位置で縮合する式(83)で表される環である。2つの結合手*はA803環の任意の位置と結合する。
 X801及びX802は、それぞれ独立に、C(R803)(R804)、Si(R805)(R806)、酸素原子、又は硫黄原子である。
 A803環は、置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は置換もしくは無置換の環形成原子数5~50の複素環である。
 Ar801は、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R801~R806は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907は、前記式(1)で定義した通りである。
 m801及びm802は、それぞれ独立に、0~2の整数である。これらが2の場合、複数のR801又はR802は互いに同一であってもよいし、異なっていてもよい。
 a801は0~2の整数である。a801が0又は1の場合、「3-a801」で示されるカッコ内の構造は互いに同一であってもよいし、異なっていてもよい。a801が2の場合、Ar801は互いに同一であってもよいし、異なっていてもよい。)
 一実施形態において、Ar801は、置換もしくは無置換の環形成炭素数6~50のアリール基である。
 一実施形態において、環A803は、置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環であり、例えば、置換もしくは無置換のベンゼン環、置換もしくは無置換のナフタレン環、又は置換もしくは無置換のアントラセン環である。
 一実施形態において、R803及びR804は、それぞれ独立に、置換もしくは無置換の炭素数1~50のアルキル基である。
 一実施形態において、a801は1である。
 式(81)で表される化合物としては、例えば、以下に示す化合物が具体例として挙げられる。
Figure JPOXMLDOC01-appb-C000233
 上記各基の具体例は、本明細書の[定義]の欄に記載の通りである。
 本発明の一態様に係る有機EL素子は、前述したように、陰極と、陽極と、前記陰極と前記陽極との間に発光層を有し、前記発光層が、式(1)で表される化合物と、式(11)、(21)、(31)、(41)、(51)、(61)、(71)及び(81)からなる群から選択される1以上の化合物と、を含む以外は、本発明の効果を損なわない限りにおいて、従来公知の材料、素子構成を適用することができる。
 一実施形態において、前記発光層が、前記式(1A)で表される化合物及び前記式(1B)で表される化合物からなる群から選択される1以上と、前記式(43D)で表される化合物と、を含有する。
 一実施形態において、前記式(1A)又は(1B)で表される化合物が、下記式BH-1、BH-2、BH-3、BH-5~BH-17で表される化合物からなる群から選択される1以上であり、前記式(43D)で表される化合物が、下記式BD-9、BD-10、BD-11及びBD-12で表される化合物からなる群から選択される1以上である。
Figure JPOXMLDOC01-appb-C000234
 式(1)で表される化合物の発光層中の含有量は、発光層全体に対して、80質量%以上99質量%以下が好ましい。
 式(11)、(21)、(31)、(41)、(51)、(61)、(71)及び(81)からなる群から選択される1以上の化合物の発光層中の含有量は、発光層全体に対して、1質量%以上20質量%以下が好ましい。
 本発明の有機EL素子の一態様は、陽極と発光層との間に正孔輸送層を有することが好ましい。
 本発明の有機EL素子の一態様は、陰極と発光層との間に電子輸送層を有することが好ましい。
 本発明の有機EL素子の代表的な素子構成としては、
(1)陽極/発光層/陰極
(2)陽極/正孔注入層/発光層/陰極
(3)陽極/発光層/電子注入・輸送層/陰極
(4)陽極/正孔注入層/発光層/電子注入・輸送層/陰極
(5)陽極/有機半導体層/発光層/陰極
(6)陽極/有機半導体層/電子障壁層/発光層/陰極
(7)陽極/有機半導体層/発光層/付着改善層/陰極
(8)陽極/正孔注入・輸送層/発光層/電子注入・輸送層/陰極
(9)陽極/絶縁層/発光層/絶縁層/陰極
(10)陽極/無機半導体層/絶縁層/発光層/絶縁層/陰極
(11)陽極/有機半導体層/絶縁層/発光層/絶縁層/陰極
(12)陽極/絶縁層/正孔注入・輸送層/発光層/絶縁層/陰極
(13)陽極/絶縁層/正孔注入・輸送層/発光層/電子注入・輸送層/陰極
等の構造を挙げることができる。
 上記の中で(8)の構成が好ましく用いられるが、これらに限定されるものではない。
 本明細書中で「正孔注入・輸送層」は「正孔注入層及び正孔輸送層のうちの少なくともいずれか一方」を意味し、「電子注入・輸送層」は「電子注入層及び電子輸送層のうちの少なくともいずれか一方」を意味する。
 以下、本発明の一態様に係る有機EL素子で用いることができる部材、及び各層を構成する、上記化合物以外の材料等について説明する。
(基板)
 基板は、発光素子の支持体として用いられる。基板としては、例えば、ガラス、石英、プラスチック等を用いることができる。また、可撓性基板を用いてもよい。可撓性基板とは、折り曲げることができる(フレキシブル)基板のことであり、例えば、ポリカーボネート、ポリ塩化ビニルからなるプラスチック基板等が挙げられる。
(陽極)
 基板上に形成される陽極には、仕事関数の大きい(具体的には4.0eV以上)金属、合金、電気伝導性化合物、及びこれらの混合物等を用いることが好ましい。具体的には、例えば、酸化インジウム-酸化スズ(ITO:Indium Tin Oxide)、珪素若しくは酸化珪素を含有した酸化インジウム-酸化スズ、酸化インジウム-酸化亜鉛、酸化タングステン、及び酸化亜鉛を含有した酸化インジウム、グラフェン等が挙げられる。この他、金(Au)、白金(Pt)、又は金属材料の窒化物(例えば、窒化チタン)等が挙げられる。
(正孔注入層)
 正孔注入層は、正孔注入性の高い物質を含む層である。正孔注入性の高い物質としては、モリブデン酸化物、チタン酸化物、バナジウム酸化物、レニウム酸化物、ルテニウム酸化物、クロム酸化物、ジルコニウム酸化物、ハフニウム酸化物、タンタル酸化物、銀酸化物、タングステン酸化物、マンガン酸化物、芳香族アミン化合物、又は高分子化合物(オリゴマー、デンドリマー、ポリマー等)等も使用できる。
(正孔輸送層)
 正孔輸送層は、正孔輸送性の高い物質を含む層である。正孔輸送層には、芳香族アミン化合物、カルバゾール誘導体、アントラセン誘導体等を使用する事ができる。ポリ(N-ビニルカルバゾール)(略称:PVK)やポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)等の高分子化合物を用いることもできる。但し、電子よりも正孔の輸送性の高い物質であれば、これら以外のものを用いてもよい。尚、正孔輸送性の高い物質を含む層は、単層のものだけでなく、上記物質からなる層が二層以上積層したものとしてもよい。
(発光層のゲスト材料)
 発光層は、発光性の高い物質を含む層であり、種々の材料を用いることができる。例えば、発光性の高い物質としては、蛍光を発光する蛍光性化合物や燐光を発光する燐光性化合物を用いることができる。蛍光性化合物は一重項励起状態から発光可能な化合物であり、燐光性化合物は三重項励起状態から発光可能な化合物である。
 発光層に用いることができる青色系の蛍光発光材料として、ピレン誘導体、スチリルアミン誘導体、クリセン誘導体、フルオランテン誘導体、フルオレン誘導体、ジアミン誘導体、トリアリールアミン誘導体等が使用できる。発光層に用いることができる緑色系の蛍光発光材料として、芳香族アミン誘導体等を使用できる。発光層に用いることができる赤色系の蛍光発光材料として、テトラセン誘導体、ジアミン誘導体等が使用できる。
 発光層に用いることができる青色系の燐光発光材料として、イリジウム錯体、オスミウム錯体、白金錯体等の金属錯体が使用される。発光層に用いることができる緑色系の燐光発光材料としてイリジウム錯体等が使用される。発光層に用いることができる赤色系の燐光発光材料として、イリジウム錯体、白金錯体、テルビウム錯体、ユーロピウム錯体等の金属錯体が使用される。
(発光層のホスト材料)
 発光層としては、上述した発光性の高い物質(ゲスト材料)を他の物質(ホスト材料)に分散させた構成としてもよい。発光性の高い物質を分散させるための物質としては、前記式(1)で表される化合物の他、各種のものを用いることができ、発光性の高い物質よりも最低空軌道準位(LUMO準位)が高く、最高被占有軌道準位(HOMO準位)が低い物質を用いることが好ましい。
 発光性の高い物質を分散させるための物質(ホスト材料)としては、1)アルミニウム錯体、ベリリウム錯体、若しくは亜鉛錯体等の金属錯体、2)オキサジアゾール誘導体、ベンゾイミダゾール誘導体、若しくはフェナントロリン誘導体等の複素環化合物、3)カルバゾール誘導体、アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、若しくはクリセン誘導体等の縮合芳香族化合物、3)トリアリールアミン誘導体、若しくは縮合多環芳香族アミン誘導体等の芳香族アミン化合物が使用される。
(電子輸送層)
 電子輸送層は、電子輸送性の高い物質を含む層である。電子輸送層には、1)アルミニウム錯体、ベリリウム錯体、亜鉛錯体等の金属錯体、2)イミダゾール誘導体、ベンゾイミダゾール誘導体、アジン誘導体、カルバゾール誘導体、フェナントロリン誘導体等の複素芳香族化合物、3)高分子化合物を使用することができる。
(電子注入層)
 電子注入層は、電子注入性の高い物質を含む層である。電子注入層には、リチウム(Li)、イッテルビウム(Yb)、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)、8-ヒドロキシキノリノラト-リチウム(Liq)等の金属錯体化合物、リチウム酸化物(LiO)等のアルカリ金属、アルカリ土類金属、又はそれらの化合物を用いることができる。
(陰極)
 陰極には、仕事関数の小さい(具体的には3.8eV以下)金属、合金、電気伝導性化合物、及びこれらの混合物等を用いることが好ましい。このような陰極材料の具体例としては、元素周期表の第1族又は第2族に属する元素、即ち、リチウム(Li)やセシウム(Cs)等のアルカリ金属、及びマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、及びこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)、イッテルビウム(Yb)等の希土類金属及びこれらを含む合金等が挙げられる。
 本発明の一態様に係る有機EL素子において、各層の形成方法は特に限定されない。従来公知の真空蒸着法、スピンコーティング法等による形成方法を用いることができる。発光層等の各層は、真空蒸着法、分子線蒸着法(MBE法)あるいは溶媒に解かした溶液のディッピング法、スピンコーティング法、キャスティング法、バーコート法、ロールコート法等の塗布法による公知の方法で形成することができる。
 本発明の一態様に係る有機EL素子において、各層の膜厚は特に制限されないが、一般にピンホール等の欠陥を抑制し、印加電圧を低く抑え、発光効率をよくするため、通常は数nmから1μmの範囲が好ましい。
[電子機器]
 本発明の一態様に係る電子機器は、本発明の一態様に係る有機EL素子を備えることを特徴とする。
 電子機器の具体例としては、有機ELパネルモジュール等の表示部品、テレビ、携帯電話、又はパーソナルコンピュータ等の表示装置、及び、照明、又は車両用灯具等の発光装置等が挙げられる。
 次に、実施例及び比較例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例の記載内容に何ら制限されるものではない。
合成例1[化合物BH-1の合成]
(中間体1の合成)
 アルゴン雰囲気下、9-ブロモアントラセン-d9 13.3g(50.0mmol)、フェニルボロン酸6.4g(52.5mmol)、Pd[PPh 1.2g(1.00mmol)にトルエン75ml、ジメトキシエタン75ml、2M NaCO水溶液75ml(150.0mmol)を加え、10時間加熱還流攪拌した。
 反応終了後、室温に冷却し、試料を分液ロートに移しジクロロメタンにて抽出した。有機層をMgSOで乾燥後、ろ過、濃縮した。濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し、10.9gの白色固体を得た。得られた化合物についてFD-MS分析を行い、下記中間体1と同定した(収率83%)。
Figure JPOXMLDOC01-appb-C000235
(中間体2の合成)
 中間体1 5.3g(20.0mmol)をジクロロメタン120mlに溶解させた溶液を、臭素3.2g(20.0mmol)をジクロロメタン12mlに溶解させた溶液に、室温で滴下して加え、1時間撹拌した。
 反応終了後、試料を分液ロートに移し、2M Na水溶液で洗浄した。さらに、有機相を10% NaCOで洗浄し、その後に水で洗浄し、分離した有機相をMgSOで乾燥後、ろ過、濃縮した。
 濃縮残渣をメタノール(100mL)中に分散させ析出した結晶をし、6.5gの白色固体を得た。得られた化合物についてFD-MS分析を行い、下記中間体2と同定した(収率95%)。
Figure JPOXMLDOC01-appb-C000236
(化合物BH-1の合成)
 アルゴン雰囲気下、中間体2 1.7g(5.0mmol)、ジベンゾフラン-2-ボロン酸1.1g(5.3mmol)、Pd[PPh 0.1g(0.1mmol)にトルエン7.5ml、ジメトキシエタン7.5ml、2M NaCO水溶液7.5ml(15.0mmol)を加え、10時間加熱還流攪拌した。
 反応終了後、室温に冷却し、試料を分液ロートに移しジクロロメタンにて抽出した。有機相をMgSOで乾燥後、ろ過、濃縮した。濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し、1.6gの白色固体を得た。得られた化合物についてFD-MS分析を行い、下記化合物BH-1と同定した(収率75%)。
Figure JPOXMLDOC01-appb-C000237
合成例2[化合物BH-2の合成]
(中間体3の合成)
 アルゴン雰囲気下、9-ブロモアントラセン-d9 13.3g(50.0mmol)、1-ナフタレンボロン酸9.0g(52.5mmol)、Pd[PPh 1.2g(1.00mmol)にトルエン75ml、ジメトキシエタン75ml、2M NaCO水溶液75ml(150.0mmol)を加え、10時間加熱還流攪拌した。
 反応終了後、室温に冷却し、試料を分液ロートに移しジクロロメタンにて抽出した。有機相をMgSOで乾燥後、ろ過、濃縮した。濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し、13.3gの白色固体を得た。得られた化合物についてFD-MS分析を行い、下記中間体3と同定した(収率85%)。
Figure JPOXMLDOC01-appb-C000238
(中間体4の合成)
 中間体3 6.3g(20.0mmol)をジクロロメタン120mlに溶解させた溶液を、臭素3.2g(20.0mmol)をジクロロメタン12mlに溶解させた溶液に、室温で滴下して加え、1時間撹拌した。
 反応終了後、試料を分液ロートに移し、2M Na水溶液で洗浄した。更に、有機相を10% NaCOで洗浄し、その後に水で3回洗浄した。有機相をMgSOで乾燥後、ろ過、濃縮した。
 濃縮残渣をメタノール(100mL)中に分散させ析出した結晶をし、7.5gの白色固体を得た。得られた化合物についてFD-MS分析を行い、下記中間体4と同定した(収率96%)。
Figure JPOXMLDOC01-appb-C000239
(化合物BH-2の合成)
 アルゴン雰囲気下、中間体4 2.0g(5.0mmol)、ジベンゾフラン-2-ボロン酸1.1g(5.3mmol)、Pd[PPh 0.1g(0.1mmol)にトルエン7.5ml、ジメトキシエタン7.5ml、2M NaCO水溶液7.5ml(15.0mmol)を加え、10時間加熱還流攪拌した。
 反応終了後、室温に冷却し、試料を分液ロートに移しジクロロメタンにて抽出した。有機相をMgSOで乾燥後、ろ過、濃縮した。濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し、1.7gの白色固体を得た。得られた化合物についてFD-MS分析を行い、下記化合物BH-2と同定した(収率70%)。
Figure JPOXMLDOC01-appb-C000240
合成例3[化合物BH-3の合成]
 合成例1において、ジベンゾフラン-2-ボロン酸の代わりにジベンゾフラン-1-ボロン酸を1.1g(5.3mmol)用いた以外は同様に反応を行い、1.3gの白色結晶を得た。得られた化合物についてFD-MS分析を行い、下記化合物BH-3と同定した(収率62%)。
Figure JPOXMLDOC01-appb-C000241
合成例4[化合物BH-4の合成]
 合成例1において、ジベンゾフラン-2-ボロン酸の代わりにジベンゾフラン-4-ボロン酸を1.1g(5.3mmol)用いた以外は同様に反応を行ったところ、1.2gの白色結晶を得た。得られた化合物についてFD-MS分析を行い、下記化合物BH-4と同定した(収率55%)。
Figure JPOXMLDOC01-appb-C000242
合成例5[化合物BH-5の合成]
 合成例1において、ジベンゾフラン-2-ボロン酸の代わりに4-(2-ジベンゾフラニル)フェニルボロン酸を1.5g(5.3mmol)用いた以外は同様に反応を行い、1.8gの白色結晶を得た。得られた化合物についてFD-MS分析を行い、下記化合物BH-5と同定した(収率71%)。
Figure JPOXMLDOC01-appb-C000243
合成例6[化合物BH-6の合成]
 合成例2において、ジベンゾフラン-2-ボロン酸の代わりに4-(2-ジベンゾフラニル)フェニルボロン酸を1.5g(5.3mmol)用いた以外は同様に反応を行い、2.0gの白色結晶を得た。得られた化合物についてFD-MS分析を行い、下記化合物BH-6と同定した(収率73%)。
Figure JPOXMLDOC01-appb-C000244
合成例7[化合物BH-7の合成]
(中間体5の合成)
 アルゴン雰囲気下、9-ブロモアントラセン-d9 13.3g(50.0mmol)、4-ビフェニルボロン酸10.4g(52.5mmol)、Pd[PPh 1.2g(1.00mmol)にトルエン75ml、ジメトキシエタン75ml、2M NaCO水溶液75ml(150.0mmol)を加え、10時間加熱還流攪拌した。
 反応終了後、室温に冷却し、試料を分液ロートに移しジクロロメタンにて抽出した。有機相をMgSOで乾燥後、ろ過、濃縮した。濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し、14.1gの白色固体を得た。得られた化合物についてFD-MS分析を行い、下記中間体5と同定した(収率83%)。
Figure JPOXMLDOC01-appb-C000245
(中間体6の合成)
 中間体5 6.8g(20.0mmol)をジクロロメタン120mlに溶解させた溶液を、臭素3.2g(20.0mmol)をジクロロメタン12mlに溶解させた溶液に、室温で滴下して加え、1時間撹拌した。
 反応終了後、試料を分液ロートに移し、2M Na水溶液で洗浄した。さらに、有機相を10% NaCOで洗浄し、その後に水で3回洗浄した。有機相をMgSOで乾燥後、ろ過、濃縮した。
 濃縮残渣をメタノール(100mL)中に分散させ析出した結晶をし、8.0gの白色固体を得た。得られた化合物についてFD-MS分析を行い、下記中間体6と同定した(収率96%)。
Figure JPOXMLDOC01-appb-C000246
(化合物BH-7の合成)
 アルゴン雰囲気下、中間体8 2.1g(5.0mmol)、ジベンゾフラン-2-ボロン酸1.1g(5.3mmol)、Pd[PPh 0.1g(0.1mmol)にトルエン7.5ml、ジメトキシエタン7.5ml、2M NaCO水溶液7.5ml(15.0mmol)を加え、10時間加熱還流攪拌した。
 反応終了後、室温に冷却し、試料を分液ロートに移しジクロロメタンにて抽出した。有機相をMgSOで乾燥後、ろ過、濃縮した。濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し、1.6gの白色固体を得た。得られた化合物についてFD-MS分析を行い、下記化合物BH-7と同定した(収率64%)。
Figure JPOXMLDOC01-appb-C000247
合成例8
[化合物BH-8の合成]
(中間体7の合成)
 アルゴン雰囲気下、9-ブロモアントラセン-d9 13.3g(50.0mmol)、3-ビフェニルボロン酸10.4g(52.5mmol)、Pd[PPh 1.2g(1.00mmol)にトルエン75ml、ジメトキシエタン75ml、2M NaCO水溶液75ml(150.0mmol)を加え、10時間加熱還流攪拌した。
 反応終了後、室温に冷却し、試料を分液ロートに移しジクロロメタンにて抽出した。有機相をMgSOで乾燥後、ろ過、濃縮した。濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し、13.6gの白色固体を得た。得られた化合物についてFD-MS分析を行い、下記中間体7と同定した(収率80%)。
Figure JPOXMLDOC01-appb-C000248
(中間体8の合成)
 中間体7 6.8g(20.0mmol)をジクロロメタン120mlに溶解させた溶液を、臭素3.2g(20.0mmol)をジクロロメタン12mlに溶解させた溶液に、室温で滴下して加え、1時間撹拌した。
 反応終了後、試料を分液ロートに移し、2M Na水溶液で洗浄した。さらに、有機相を10% NaCOで洗浄し、その後に水で3回洗浄した。有機相をMgSOで乾燥後、ろ過、濃縮した。
 濃縮残渣をメタノール(100mL)中に分散させ析出した結晶をし、8.0gの白色固体を得た。得られた化合物についてFD-MS分析を行い、下記中間体8と同定した(収率96%)。
Figure JPOXMLDOC01-appb-C000249
(化合物BH-8の合成)
 アルゴン雰囲気下、中間体8 2.1g(5.0mmol)、ジベンゾフラン-2-ボロン酸1.1g(5.3mmol)、Pd[PPh 0.1g(0.1mmol)にトルエン7.5ml、ジメトキシエタン7.5ml、2M NaCO水溶液7.5ml(15.0mmol)を加え、10時間加熱還流攪拌した。
 反応終了後、室温に冷却し、試料を分液ロートに移しジクロロメタンにて抽出した。有機相をMgSOで乾燥後、ろ過、濃縮した。濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し、1.5gの白色固体を得た。得られた化合物についてFD-MS分析を行い、下記化合物BH-8と同定した(収率59%)。
Figure JPOXMLDOC01-appb-C000250
合成例9
[化合物BH-9の合成]
(中間体9の合成)
 アルゴン雰囲気下、9-ブロモアントラセン-d9 13.3g(50.0mmol)、2-ビフェニルボロン酸10.4g(52.5mmol)、Pd[PPh 1.2g(1.00mmol)にトルエン75ml、ジメトキシエタン75ml、2M NaCO水溶液75ml(150.0mmol)を加え、10時間加熱還流攪拌した。
 反応終了後、室温に冷却し、試料を分液ロートに移しジクロロメタンにて抽出した。有機相をMgSOで乾燥後、ろ過、濃縮した。濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し、10.9gの白色固体を得た。得られた化合物についてFD-MS分析を行い、下記中間体9と同定した(収率64%)。
Figure JPOXMLDOC01-appb-C000251
(中間体10の合成)
 中間体9 6.8g(20.0mmol)をジクロロメタン120mlに溶解させた溶液を、臭素3.2g(20.0mmol)をジクロロメタン12mlに溶解させた溶液に、室温で滴下して加え、1時間撹拌した。
 反応終了後、試料を分液ロートに移し、2M Na水溶液で洗浄した。さらに、有機相を10% NaCOで洗浄し、その後に水で3回洗浄した。有機相をMgSOで乾燥後、ろ過、濃縮した。
 濃縮残渣をメタノール(100mL)中に分散させ析出した結晶をし、8.0gの白色固体を得た。得られた化合物についてFD-MS分析を行い、下記中間体10と同定した(収率96%)。
Figure JPOXMLDOC01-appb-C000252
(化合物BH-9の合成)
 アルゴン雰囲気下、中間体10 2.1g(5.0mmol)、ジベンゾフラン-2-ボロン酸1.1g(5.3mmol)、Pd[PPh 0.1g(0.1mmol)にトルエン7.5ml、ジメトキシエタン7.5ml、2M NaCO水溶液7.5ml(15.0mmol)を加え、10時間加熱還流攪拌した。
 反応終了後、室温に冷却し、試料を分液ロートに移しジクロロメタンにて抽出した。有機相をMgSOで乾燥後、ろ過、濃縮した。濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し、1.6gの白色固体を得た。得られた化合物についてFD-MS分析を行い、下記化合物BH-9と同定した(収率63%)。
Figure JPOXMLDOC01-appb-C000253
合成例10
[化合物BH-10の合成]
(中間体11の合成)
 アルゴン雰囲気下、9-ブロモアントラセン-d9 13.3g(50.0mmol)、4-(1-ナフチル)フェニルボロン酸13.0g(52.5mmol)、Pd[PPh 1.2g(1.00mmol)にトルエン75ml、ジメトキシエタン75ml、2M NaCO水溶液75ml(150.0mmol)を加え、10時間加熱還流攪拌した。
 反応終了後、室温に冷却し、試料を分液ロートに移しジクロロメタンにて抽出した。有機相をMgSOで乾燥後、ろ過、濃縮した。濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し、15.6gの白色固体を得た。得られた化合物についてFD-MS分析を行い、下記中間体11と同定した(収率80%)。
Figure JPOXMLDOC01-appb-C000254
(中間体12の合成)
 中間体11 7.8g(20.0mmol)をジクロロメタン120mlに溶解させた溶液を、臭素3.2g(20.0mmol)をジクロロメタン12mlに溶解させた溶液に、室温で滴下して加え、1時間撹拌した。
 反応終了後、試料を分液ロートに移し、2M Na水溶液で洗浄した。さらに、有機相を10% NaCOで洗浄し、その後に水で3回洗浄した。有機相をMgSOで乾燥後、ろ過、濃縮した。
 濃縮残渣をメタノール(100ml)中に分散させ析出した結晶をし、8.6gの白色固体を得た。得られた化合物についてFD-MS分析を行い、下記中間体12と同定した(収率92%)。
Figure JPOXMLDOC01-appb-C000255
(化合物BH-10の合成)
 アルゴン雰囲気下、中間体12 2.3g(5.0mmol)、ジベンゾフラン-2-ボロン酸1.1g(5.3mmol)、Pd[PPh 0.1g(0.1mmol)にトルエン7.5ml、ジメトキシエタン7.5ml、2M NaCO水溶液7.5ml(15.0mmol)を加え、10時間加熱還流攪拌した。
 反応終了後、室温に冷却し、試料を分液ロートに移しジクロロメタンにて抽出した。有機相をMgSOで乾燥後、ろ過、濃縮した。濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し、1.9gの白色固体を得た。得られた化合物についてFD-MS分析を行い、下記化合物BH-10と同定した(収率68%)。
Figure JPOXMLDOC01-appb-C000256
合成例11
[化合物BH-11の合成]
 合成例1において、ジベンゾフラン-2-ボロン酸の代わりに4-(2-ジベンゾフラニル)-1-ナフタレニル-ボロン酸を1.8g(5.3mmol)用いた以外は同様に反応を行い、1.7gの白色結晶を得た。得られた化合物についてFD-MS分析を行い、下記化合物BH-11と同定した(収率60%)。
Figure JPOXMLDOC01-appb-C000257
合成例12
[化合物BH-12の合成]
 合成例1において、ジベンゾフラン-2-ボロン酸の代わりに6-(2-ジベンゾフラニル)-2-ナフタレニル-ボロン酸を1.8g(5.3mmol)用いた以外は同様に反応を行い、1.5gの白色結晶を得た。得られた化合物についてFD-MS分析を行い、下記化合物BH-12と同定した(収率55%)。
Figure JPOXMLDOC01-appb-C000258
合成例13
[化合物BH-13の合成]
 合成例2において、ジベンゾフラン-2-ボロン酸の代わりに6-(2-ジベンゾフラニル)-2-ナフタレニル-ボロン酸を1.8g(5.3mmol)用いた以外は同様に反応を行い、2.0gの白色結晶を得た。得られた化合物についてFD-MS分析を行い、下記化合物BH-13と同定した(収率65%)。
Figure JPOXMLDOC01-appb-C000259
合成例14
[化合物BH-14の合成]
 合成例1において、ジベンゾフラン-2-ボロン酸の代わりに3-(2-ジベンゾフラニル)フェニルボロン酸を1.5g(5.3mmol)用いた以外は同様に反応を行い、1.3gの白色結晶を得た。得られた化合物についてFD-MS分析を行い、下記化合物BH-14と同定した(収率52%)。
Figure JPOXMLDOC01-appb-C000260
合成例15
[化合物BH-15の合成]
 合成例2において、ジベンゾフラン-2-ボロン酸の代わりに3-(2-ジベンゾフラニル)フェニルボロン酸を1.5g(5.3mmol)用いた以外は同様に反応を行い、1.4gの白色結晶を得た。得られた化合物についてFD-MS分析を行い、下記化合物BH-15と同定した(収率50%)。
Figure JPOXMLDOC01-appb-C000261
合成例16
[化合物BH-16の合成]
 合成例1において、ジベンゾフラン-2-ボロン酸の代わりに4-(1-ジベンゾフラニル)フェニルボロン酸を1.5g(5.3mmol)用いた以外は同様に反応を行い、1.6gの白色結晶を得た。得られた化合物についてFD-MS分析を行い、下記化合物BH-16と同定した(収率62%)。
Figure JPOXMLDOC01-appb-C000262
合成例17
[化合物BH-17の合成]
(中間体13の合成)
 アルゴン雰囲気下、9-ブロモアントラセン-d9 1.33g(5.00mmol)、フェニル-d5-ボロン酸0.67g(5.25mmol)、Pd[PPh 0.12g(0.10mmol)にトルエン7.5ml、ジメトキシエタン7.5ml、2M NaCO水溶液7.5ml(15.0mmol)を加え、10時間加熱還流攪拌した。
 反応終了後、室温に冷却し、試料を分液ロートに移しジクロロメタンにて抽出した。有機相をMgSOで乾燥後、ろ過、濃縮した。濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し、1.07gの白色固体を得た。得られた化合物についてFD-MS分析を行い、下記中間体13と同定した(収率80%)。
Figure JPOXMLDOC01-appb-C000263
(中間体14の合成)
 中間体13 1.07g(4.0mmol)をジクロロメタン25mlに溶解させた溶液を、臭素0.64g(4.0mmol)をジクロロメタン3mlに溶解させた溶液に、室温で滴下して加え、1時間撹拌した。
 反応終了後、試料を分液ロートに移し、2M Na水溶液で洗浄した。さらに有機相を10% NaCOで洗浄し、その後に水で洗浄し、分離した有機相をMgSOで乾燥後、ろ過、濃縮した。
 濃縮残渣をメタノール(100ml)中に分散させ析出した結晶をし、1.3gの白色固体を得た。得られた化合物についてFD-MS分析を行い、下記中間体14と同定した(収率95%)。
Figure JPOXMLDOC01-appb-C000264
(化合物BH-17の合成)
 アルゴン雰囲気下、中間体14 0.87g(2.5mmol)、ジベンゾフランd7-2-ボロン酸0.58g(2.65mmol)、Pd[PPh 0.06g(0.05mmol)にトルエン5ml、ジメトキシエタン5ml、2M NaCO水溶液5ml(10.0mmol)を加え、10時間加熱還流攪拌した。
 反応終了後、室温に冷却し、試料を分液ロートに移しジクロロメタンにて抽出した。有機相をMgSOで乾燥後、ろ過、濃縮した。濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し、0.77gの白色固体を得た。得られた化合物についてFD-MS分析を行い、下記化合物BH-17と同定した(収率70%)。
Figure JPOXMLDOC01-appb-C000265
実施例1
(有機EL素子の作製)
 25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板(ジオマティック株式会社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。ITOの膜厚は、130nmとした。
 洗浄後の透明電極付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極が形成されている側の面上に透明電極を覆うようにして化合物HIを蒸着し、膜厚5nmのHI膜を形成した。このHI膜は、正孔注入層として機能する。
 このHI膜の成膜に続けて化合物HT-1を蒸着し、HI膜上に膜厚80nmのHT-1膜を成膜した。このHT-1膜は正孔輸送層(第1正孔輸送層)として機能する。
 HT-1膜の成膜に続けて化合物HT-2を蒸着し、HT-1膜上に膜厚10nmのHT-2膜を成膜した。このHT-2膜は電子阻止層(第2正孔輸送層)として機能する。
 HT-2膜上に化合物BH-1-D(ホスト材料)及び化合物BD-1(ドーパント材料)を化合物BD-1の割合が4質量%となるように共蒸着し、膜厚25nmのBH-1:BD-1膜を成膜した。このBH-1:BD-1膜は発光層として機能する。
 この発光層上に化合物ET-1を蒸着して、膜厚10nmのET-1膜を成膜した。このET-1膜は正孔障壁層として機能する。
 ET-1膜上に化合物ET-2を蒸着して、膜厚15nmのET-2膜を成膜した。このET-2膜は電子輸送層として機能する。このET-2膜上にLiFを蒸着して、膜厚1nmのLiF膜を形成した。このLiF膜上に金属Alを蒸着して、膜厚80nmの金属陰極を形成し、有機EL素子を作製した。
 得られた有機EL素子の層構成は下記の通りである。
ITO(130)/HI(5)/HT-1(80)/HT-2(10)/BH-1:BD-1(25:4質量%)/ET-1(10)/ET-2(15)/LiF(1)/Al(80)
 括弧内の数字は膜厚(単位:nm)を表す。
 実施例1及び後述する実施例及び比較例で用いた材料を以下に示す。
Figure JPOXMLDOC01-appb-C000266
Figure JPOXMLDOC01-appb-C000267

 
Figure JPOXMLDOC01-appb-C000268

 
Figure JPOXMLDOC01-appb-C000269

 
Figure JPOXMLDOC01-appb-C000270
Figure JPOXMLDOC01-appb-C000271

 
Figure JPOXMLDOC01-appb-C000272
Figure JPOXMLDOC01-appb-C000273
(有機EL素子の評価)
 得られた有機EL素子に、電流密度が50mA/cmとなるように電圧を印加し、初期輝度に対して輝度が95%となるまでの時間(LT95(単位:時間))を測定した。結果を表1に示す。
 また、電流密度が10mA/cmとなるように、得られた有機EL素子に電圧を印加したときのCIE1931色度座標(CIEx、CIEy)を、分光放射輝度計CS-1000(コニカミノルタ株式会社製)を用いて、分光放射輝度スペクトルを得て計測した。結果を表1に示す。
比較例1
 発光層のホスト材料として下記表に記載の化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000274
実施例2、比較例2
 発光層材料として表2に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000275
実施例3、比較例3
 発光層材料として表3に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000276
実施例4、比較例4
 発光層材料として表4に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000277
実施例5、比較例5
 発光層材料として表5に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000278
実施例6、比較例6
 発光層材料として表6に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000279
実施例7、比較例7
 発光層材料として表7に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000280
実施例8、比較例8
 発光層材料として表8に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000281
実施例11、比較例11
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表9に示す。
Figure JPOXMLDOC01-appb-T000282
実施例12、比較例12
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表10に示す。
Figure JPOXMLDOC01-appb-T000283
実施例13、比較例13
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表11に示す。
Figure JPOXMLDOC01-appb-T000284
実施例14、比較例14
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表12に示す。
Figure JPOXMLDOC01-appb-T000285
実施例15、比較例15
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表13に示す。
Figure JPOXMLDOC01-appb-T000286
実施例16、比較例16
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表14に示す。
Figure JPOXMLDOC01-appb-T000287
実施例17、比較例17
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表15に示す。
Figure JPOXMLDOC01-appb-T000288
実施例21、比較例21
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表16に示す。
Figure JPOXMLDOC01-appb-T000289
実施例22、比較例22
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表17に示す。
Figure JPOXMLDOC01-appb-T000290
実施例23、比較例23
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表18に示す。
Figure JPOXMLDOC01-appb-T000291
実施例24、比較例24
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表19に示す。
Figure JPOXMLDOC01-appb-T000292
実施例25、比較例25
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表20に示す。
Figure JPOXMLDOC01-appb-T000293
実施例26、比較例26
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表21に示す。
Figure JPOXMLDOC01-appb-T000294
実施例27、比較例27
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表22に示す。
Figure JPOXMLDOC01-appb-T000295
実施例31、比較例31
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表23に示す。
Figure JPOXMLDOC01-appb-T000296
実施例32、比較例32
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表24に示す。
Figure JPOXMLDOC01-appb-T000297
実施例33、比較例33
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表25に示す。
Figure JPOXMLDOC01-appb-T000298
実施例34、比較例34
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表26に示す。
Figure JPOXMLDOC01-appb-T000299
実施例35、比較例35
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表27に示す。
Figure JPOXMLDOC01-appb-T000300
実施例36、比較例36
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表28に示す。
Figure JPOXMLDOC01-appb-T000301
実施例37、比較例37
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表29に示す。
Figure JPOXMLDOC01-appb-T000302
実施例41、比較例41
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表30に示す。
Figure JPOXMLDOC01-appb-T000303
実施例42、比較例42
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表31に示す。
Figure JPOXMLDOC01-appb-T000304
実施例43、比較例43
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表32に示す。
Figure JPOXMLDOC01-appb-T000305
実施例44、比較例44
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表33に示す。
Figure JPOXMLDOC01-appb-T000306
実施例45、比較例45
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表34に示す。
Figure JPOXMLDOC01-appb-T000307
実施例46、比較例46
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表35に示す。
Figure JPOXMLDOC01-appb-T000308
実施例47、比較例47
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表36に示す。
Figure JPOXMLDOC01-appb-T000309
実施例51、比較例51
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表37に示す。
Figure JPOXMLDOC01-appb-T000310
実施例52、比較例52
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表38に示す。
Figure JPOXMLDOC01-appb-T000311
実施例53、比較例53
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表39に示す。
Figure JPOXMLDOC01-appb-T000312
実施例54、比較例54
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表40に示す。
Figure JPOXMLDOC01-appb-T000313
実施例55、比較例55
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表41に示す。
Figure JPOXMLDOC01-appb-T000314
実施例56、比較例56
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表42に示す。
Figure JPOXMLDOC01-appb-T000315
実施例57、比較例57
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表43に示す。
Figure JPOXMLDOC01-appb-T000316
実施例61、比較例61
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表44に示す。
Figure JPOXMLDOC01-appb-T000317
実施例62、比較例62
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表45に示す。
Figure JPOXMLDOC01-appb-T000318
実施例63、比較例63
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表46に示す。
Figure JPOXMLDOC01-appb-T000319
実施例64、比較例64
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表47に示す。
Figure JPOXMLDOC01-appb-T000320
実施例65、比較例65
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表48に示す。
Figure JPOXMLDOC01-appb-T000321
実施例66、比較例66
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表49に示す。
Figure JPOXMLDOC01-appb-T000322
実施例67、比較例67
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表50に示す。
Figure JPOXMLDOC01-appb-T000323
実施例68、比較例68
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表51に示す。
Figure JPOXMLDOC01-appb-T000324
実施例69、比較例69
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表52に示す。
Figure JPOXMLDOC01-appb-T000325
実施例70、比較例70
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表53に示す。
Figure JPOXMLDOC01-appb-T000326
実施例71、比較例71
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表54に示す。
Figure JPOXMLDOC01-appb-T000327
実施例72、比較例72
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表55に示す。
Figure JPOXMLDOC01-appb-T000328
実施例73、比較例73
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表56に示す。
Figure JPOXMLDOC01-appb-T000329
実施例74、比較例74
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表57に示す。
Figure JPOXMLDOC01-appb-T000330
実施例75、比較例75
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表58に示す。
Figure JPOXMLDOC01-appb-T000331
実施例76、比較例76
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表59に示す。
Figure JPOXMLDOC01-appb-T000332
実施例77、比較例77
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表60に示す。
Figure JPOXMLDOC01-appb-T000333
実施例78、比較例78
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表61に示す。
Figure JPOXMLDOC01-appb-T000334
実施例79、比較例79
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表62に示す。
Figure JPOXMLDOC01-appb-T000335
実施例80、比較例80
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表63に示す。
Figure JPOXMLDOC01-appb-T000336
実施例81、比較例81
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表64に示す。
Figure JPOXMLDOC01-appb-T000337
実施例82、比較例82
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表65に示す。
Figure JPOXMLDOC01-appb-T000338
実施例83
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表66に示す。
Figure JPOXMLDOC01-appb-T000339
実施例84、比較例84
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表67に示す。
Figure JPOXMLDOC01-appb-T000340
実施例85、比較例85
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表68に示す。
Figure JPOXMLDOC01-appb-T000341
実施例86、比較例86
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表69に示す。
Figure JPOXMLDOC01-appb-T000342
実施例87、比較例87
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表70に示す。
Figure JPOXMLDOC01-appb-T000343
実施例88、比較例88
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表71に示す。
Figure JPOXMLDOC01-appb-T000344
実施例89、比較例89
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表72に示す。
Figure JPOXMLDOC01-appb-T000345
実施例90、比較例90
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表73に示す。
Figure JPOXMLDOC01-appb-T000346
実施例91、比較例91
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表74に示す。
Figure JPOXMLDOC01-appb-T000347
実施例92、比較例92
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表75に示す。
Figure JPOXMLDOC01-appb-T000348
実施例93、比較例93
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表76に示す。
Figure JPOXMLDOC01-appb-T000349
実施例94、比較例94
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表77に示す。
Figure JPOXMLDOC01-appb-T000350
実施例95、比較例95
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表78に示す。
Figure JPOXMLDOC01-appb-T000351
実施例96、比較例96
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表79に示す。
Figure JPOXMLDOC01-appb-T000352
実施例97、比較例97
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表80に示す。
Figure JPOXMLDOC01-appb-T000353
実施例98、比較例98
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表81に示す。
Figure JPOXMLDOC01-appb-T000354
実施例99
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表82に示す。
Figure JPOXMLDOC01-appb-T000355
実施例100、比較例100
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表83に示す。
Figure JPOXMLDOC01-appb-T000356
実施例101、比較例101
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表84に示す。
Figure JPOXMLDOC01-appb-T000357
実施例102、比較例102
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表85に示す。
Figure JPOXMLDOC01-appb-T000358
実施例103、比較例103
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表86に示す。
Figure JPOXMLDOC01-appb-T000359
実施例104、比較例104
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表87に示す。
Figure JPOXMLDOC01-appb-T000360
実施例105、比較例105
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表88に示す。
Figure JPOXMLDOC01-appb-T000361
実施例106、比較例106
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表89に示す。
Figure JPOXMLDOC01-appb-T000362
実施例107、比較例107
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表90に示す。
Figure JPOXMLDOC01-appb-T000363
実施例108、比較例108
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表91に示す。
Figure JPOXMLDOC01-appb-T000364
実施例109、比較例109
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表92に示す。
Figure JPOXMLDOC01-appb-T000365
実施例110、比較例110
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表93に示す。
Figure JPOXMLDOC01-appb-T000366
実施例111、比較例111
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表94に示す。
Figure JPOXMLDOC01-appb-T000367
実施例112、比較例112
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表95に示す。
Figure JPOXMLDOC01-appb-T000368
実施例113、比較例113
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表96に示す。
Figure JPOXMLDOC01-appb-T000369
実施例114、比較例114
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表97に示す。
Figure JPOXMLDOC01-appb-T000370
実施例115
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表98に示す。
Figure JPOXMLDOC01-appb-T000371
実施例116、比較例116
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表99に示す。
Figure JPOXMLDOC01-appb-T000372
実施例117、比較例117
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表100に示す。
Figure JPOXMLDOC01-appb-T000373
実施例118、比較例118
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表101に示す。
Figure JPOXMLDOC01-appb-T000374
実施例119、比較例119
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表102に示す。
Figure JPOXMLDOC01-appb-T000375
実施例120、比較例120
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表103に示す。
Figure JPOXMLDOC01-appb-T000376
実施例121、比較例121
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表104に示す。
Figure JPOXMLDOC01-appb-T000377
実施例122、比較例122
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表105に示す。
Figure JPOXMLDOC01-appb-T000378
実施例123、比較例123
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表106に示す。
Figure JPOXMLDOC01-appb-T000379
実施例124、比較例124
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表107に示す。
Figure JPOXMLDOC01-appb-T000380
実施例125、比較例125
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表108に示す。
Figure JPOXMLDOC01-appb-T000381
実施例126、比較例126
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表109に示す。
Figure JPOXMLDOC01-appb-T000382
実施例127、比較例127
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表110に示す。
Figure JPOXMLDOC01-appb-T000383
実施例128、比較例128
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表111に示す。
Figure JPOXMLDOC01-appb-T000384
実施例129、比較例129
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表112に示す。
Figure JPOXMLDOC01-appb-T000385
実施例130、比較例130
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表113に示す。
Figure JPOXMLDOC01-appb-T000386
実施例131
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を表114に示す。
Figure JPOXMLDOC01-appb-T000387
実施例132、比較例132
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000388
実施例133、比較例133
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000389
実施例134、比較例134
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000390
実施例135、比較例135
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000391
実施例136、比較例136
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000392
実施例137、比較例137
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000393
実施例138、比較例138
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000394
実施例139、比較例139
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000395
実施例140、比較例140
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000396
実施例141
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000397
実施例142、比較例142
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000398
実施例143、比較例143
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000399
実施例144、比較例144
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000400
実施例145、比較例145
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000401
実施例146、比較例146
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000402
実施例147、比較例147
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000403
実施例148、比較例148
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000404
実施例149、比較例149
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000405
実施例150、比較例150
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000406
実施例151
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000407
実施例152、比較例152
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000408
実施例153、比較例153
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000409
実施例154、比較例154
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000410
実施例155、比較例155
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000411
実施例156、比較例156
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000412
実施例157、比較例157
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000413
実施例158、比較例158
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000414
実施例159、比較例159
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000415
実施例160、比較例160
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000416
実施例161
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000417
実施例162、比較例162
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000418
実施例163、比較例163
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000419
実施例164、比較例164
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000420
実施例165、比較例165
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000421
実施例166、比較例166
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000422
実施例167、比較例167
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000423
実施例168、比較例168
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000424
実施例169、比較例169
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000425
実施例170、比較例170
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000426
実施例171
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000427
実施例172、比較例172
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000428
実施例173、比較例173
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000429
実施例174、比較例174
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000430
実施例175、比較例175
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000431
実施例176、比較例176
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000432
実施例177、比較例177
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000433
実施例178、比較例178
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000434
実施例179、比較例179
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000435
実施例180、比較例180
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000436
実施例181
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000437
実施例182、比較例182
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000438
実施例183、比較例183
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000439
実施例184、比較例184
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000440
実施例185、比較例185
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000441
実施例186、比較例186
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000442
実施例187、比較例187
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000443
実施例188、比較例188
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000444
実施例189、比較例189
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000445
実施例190、比較例190
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000446
実施例191
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000447
実施例192、比較例192
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000448
実施例193、比較例193
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000449
実施例194、比較例194
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000450
実施例195、比較例195
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000451
実施例196、比較例196
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000452
実施例197、比較例197
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000453
実施例198、比較例198
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000454
実施例199、比較例199
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000455
実施例200、比較例200
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000456
実施例201、比較例201
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000457
実施例202、比較例202
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000458
実施例203、比較例203
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000459
実施例204、比較例204
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000460
実施例205、比較例205
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000461
実施例206、比較例206
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000462
実施例207、比較例207
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000463
実施例208
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000464
実施例209、比較例209
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000465
実施例210、比較例210
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000466
実施例211、比較例211
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000467
実施例212、比較例212
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000468
実施例213、比較例213
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000469
実施例214、比較例214
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000470
実施例215、比較例215
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000471
実施例216、比較例216
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000472
実施例217、比較例217
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000473
実施例218、比較例218
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000474
実施例219、比較例219
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000475
実施例220、比較例220
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000476
実施例221、比較例221
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000477
実施例222、比較例222
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000478
実施例223、比較例223
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000479
実施例224、比較例224
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000480
実施例225
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000481
実施例226、比較例226
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000482
実施例227、比較例227
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000483
実施例228、比較例228
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000484
実施例229、比較例229
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000485
実施例230、比較例230
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000486
実施例231、比較例231
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000487
実施例232、比較例232
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000488
実施例233、比較例233
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000489
実施例234、比較例234
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000490
実施例235、比較例235
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000491
実施例236、比較例236
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000492
実施例237、比較例237
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000493
実施例238、比較例238
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000494
実施例239、比較例239
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000495
実施例240、比較例240
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000496
実施例241、比較例241
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000497
実施例242
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000498
実施例243、比較例243
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000499
実施例244、比較例244
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000500
実施例245、比較例245
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000501
実施例246、比較例246
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000502
実施例247、比較例247
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000503
実施例248、比較例248
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000504
実施例249、比較例249
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000505
実施例250、比較例250
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000506
実施例251、比較例251
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000507
実施例252、比較例252
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000508
実施例253、比較例253
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000509
実施例254、比較例254
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000510
実施例255、比較例255
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000511
実施例256、比較例256
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000512
実施例257、比較例257
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000513
実施例258、比較例258
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000514
実施例259
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000515
実施例260、比較例260
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000516
実施例261、比較例261
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000517
実施例262、比較例262
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000518
実施例263、比較例263
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000519
実施例264、比較例264
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000520
実施例265、比較例265
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000521
実施例266、比較例266
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000522
実施例267、比較例267
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000523
実施例268、比較例268
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000524
実施例269、比較例269
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000525
実施例270、比較例270
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000526
実施例271、比較例271
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000527
実施例272、比較例272
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000528
実施例273、比較例273
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000529
実施例274、比較例274
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000530
実施例275、比較例275
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000531
実施例276
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000532
実施例277、比較例277
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000533
実施例278、比較例278
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000534
実施例279、比較例279
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000535
実施例280、比較例280
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000536
実施例281、比較例281
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000537
実施例282、比較例282
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000538
実施例283、比較例283
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000539
実施例284、比較例284
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000540
実施例285、比較例285
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000541
実施例286、比較例286
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000542
実施例287、比較例287
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000543
実施例288、比較例288
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000544
実施例289、比較例289
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000545
実施例290、比較例290
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000546
実施例291、比較例291
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000547
実施例292、比較例292
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000548
実施例293、比較例293
 発光層材料(ホスト材料及びドーパント材料)として下記の表に示す化合物を用いた以外は実施例1と同じ方法で有機EL素子を作製し、評価した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000549
 表1~276の結果から、特定の部位に重水素原子を有する式(1)で表される化合物(ホスト材料)に特定のドーパント材料を組み合わせて有機EL素子の発光層に用いると、当該特定部位に重水素原子を有さない化合物(ホスト材料)に対応するドーパント材料を組み合わせて用いた場合よりも有機EL素子の寿命が長くなることが分かる。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献、及び本願のパリ条約による優先権の基礎となる出願の内容を全て援用する。

 

Claims (26)

  1.  陰極と、
     陽極と、
     前記陰極と前記陽極との間に配置された発光層と、
    を有し、
     前記発光層が、
    下記式(1)で表される化合物と、
    下記式(11)、(21)、(31)、(41)、(51)、(61)、(71)及び(81)からなる群から選択される1以上の化合物と、
    を含有する有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)において、
     R~Rは、それぞれ独立に、
    水素原子、
    置換もしくは無置換の炭素数1~50のアルキル基、
    置換もしくは無置換の炭素数2~50のアルケニル基、
    置換もしくは無置換の炭素数2~50のアルキニル基、
    置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
    -Si(R901)(R902)(R903)、
    -O-(R904)、
    -S-(R905)、
    -N(R906)(R907)、
    ハロゲン原子、シアノ基、ニトロ基、
    置換もしくは無置換の環形成炭素数6~50のアリール基、又は
    置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
     R901~R907は、それぞれ独立に、
    水素原子、
    置換もしくは無置換の炭素数1~50のアルキル基、
    置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
    置換もしくは無置換の環形成炭素数6~50のアリール基、又は
    置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
     R901~R907が2個以上存在する場合、2個以上のR901~R907のそれぞれは同一でもよく、異なっていてもよい。
     R~Rのうち、少なくとも1つは重水素原子である。
     R~Rのうちの隣接する2つ以上、及びR~Rのうちの隣接する2つ以上は、互いに結合して環を形成しない。
     L及びLは、それぞれ独立に、
    単結合、
    置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は
    置換もしくは無置換の環形成原子数5~30の2価の複素環基である。
     Arは、
    置換もしくは無置換の環形成炭素数6~50のアリール基、又は
    置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
     R11~R18のうちの1つはLと結合する単結合である。
     Lと結合する単結合ではないR11~R18は、それぞれ独立に、
    水素原子、
    置換もしくは無置換の炭素数1~50のアルキル基、
    置換もしくは無置換の炭素数2~50のアルケニル基、
    置換もしくは無置換の炭素数2~50のアルキニル基、
    置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
    -Si(R901)(R902)(R903)、
    -O-(R904)、
    -S-(R905)、
    -N(R906)(R907)、
    ハロゲン原子、シアノ基、ニトロ基、
    置換もしくは無置換の環形成炭素数6~50のアリール基、又は
    置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
     R901~R907は、R~Rで定義した通りである。
     R11~R18のうちの隣接する2つ以上は、互いに結合して環を形成しない。)
    Figure JPOXMLDOC01-appb-C000002
    (式(11)において、
     R101~R110のうちの隣接する2つ以上の1組以上が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
     R101~R110の少なくとも1つは下記式(12)で表される1価の基である。
     前記置換もしくは無置換の飽和又は不飽和の環を形成せず、かつ下記式(12)で表される1価の基ではないR101~R110は、それぞれ独立に、
    水素原子、
    置換もしくは無置換の炭素数1~50のアルキル基、
    置換もしくは無置換の炭素数2~50のアルケニル基、
    置換もしくは無置換の炭素数2~50のアルキニル基、
    置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
    -Si(R901)(R902)(R903)、
    -O-(R904)、
    -S-(R905)、
    -N(R906)(R907)、
    ハロゲン原子、シアノ基、ニトロ基、
    置換もしくは無置換の環形成炭素数6~50のアリール基、又は
    置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
     R901~R907は、前記式(1)で定義した通りである。
    Figure JPOXMLDOC01-appb-C000003
     式(12)において、Ar101及びAr102は、それぞれ独立に、
    置換もしくは無置換の環形成炭素数6~50のアリール基、又は
    置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
     L101~L103は、それぞれ独立に、
    単結合、
    置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は
    置換もしくは無置換の環形成原子数5~30の2価の複素環基である。)
    Figure JPOXMLDOC01-appb-C000004
    (式(21)において、
     Zは、それぞれ独立にCR又はNである。
     A1環及びA2環は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は置換もしくは無置換の環形成原子数5~50の複素環である。
     Rが複数存在する場合、複数のRのうちの隣接する2つ以上の1組以上が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
     Rが複数存在する場合、複数のRのうちの隣接する2つ以上の1組以上が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
     Rが複数存在する場合、複数のRのうちの隣接する2つ以上の1組以上が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
     n21及びn22は、それぞれ独立に、0~4の整数である。
     前記置換もしくは無置換の飽和又は不飽和の環を形成しないRa~Rcは、それぞれ独立に、
    水素原子、
    置換もしくは無置換の炭素数1~50のアルキル基、
    置換もしくは無置換の炭素数2~50のアルケニル基、
    置換もしくは無置換の炭素数2~50のアルキニル基、
    置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
    -Si(R901)(R902)(R903)、
    -O-(R904)、
    -S-(R905)、
    -N(R906)(R907)、
    ハロゲン原子、シアノ基、ニトロ基、
    置換もしくは無置換の環形成炭素数6~50のアリール基、又は
    置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
     R901~R907は、前記式(1)で定義した通りである。)
    Figure JPOXMLDOC01-appb-C000005
    (式(31)において、
     R301~R307及びR311~R317のうち隣接する2つ以上の1組以上が、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
     前記置換もしくは無置換の飽和又は不飽和の環を形成しないR301~R307及びR311~R317は、それぞれ独立に、
    水素原子、
    置換もしくは無置換の炭素数1~50のアルキル基、
    置換もしくは無置換の炭素数2~50のアルケニル基、
    置換もしくは無置換の炭素数2~50のアルキニル基、
    置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
    -Si(R901)(R902)(R903)、
    -O-(R904)、
    -S-(R905)、
    -N(R906)(R907)、
    ハロゲン原子、シアノ基、ニトロ基、
    置換もしくは無置換の環形成炭素数6~50のアリール基、又は
    置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
     R321及びR322は、それぞれ独立に、
    水素原子、
    置換もしくは無置換の炭素数1~50のアルキル基、
    置換もしくは無置換の炭素数2~50のアルケニル基、
    置換もしくは無置換の炭素数2~50のアルキニル基、
    置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
    -Si(R901)(R902)(R903)、
    -O-(R904)、
    -S-(R905)、
    -N(R906)(R907)、
    ハロゲン原子、シアノ基、ニトロ基、
    置換もしくは無置換の環形成炭素数6~50のアリール基、又は
    置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
     R901~R907は、前記式(1)で定義した通りである。)
    Figure JPOXMLDOC01-appb-C000006
    (式(41)において、
     a環、b環及びc環は、それぞれ独立に、
    置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は、
    置換もしくは無置換の環形成原子数5~50の複素環である。
     R401及びR402は、それぞれ独立に、前記a環、b環又はc環と結合して、置換もしくは無置換の複素環を形成するか、あるいは置換もしくは無置換の複素環を形成しない。
     前記置換もしくは無置換の複素環を形成しないR401及びR402は、それぞれ独立に、
    置換もしくは無置換の炭素数1~50のアルキル基、
    置換もしくは無置換の炭素数2~50のアルケニル基、
    置換もしくは無置換の炭素数2~50のアルキニル基、
    置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
    置換もしくは無置換の環形成炭素数6~50のアリール基、又は
    置換もしくは無置換の環形成原子数5~50の1価の複素環基である。)
    Figure JPOXMLDOC01-appb-C000007
    (式(51)において、
     r環は、隣接環の任意の位置で縮合する式(52)又は式(53)で表される環である。
     q環及びs環は、それぞれ独立に、隣接環の任意の位置で縮合する式(54)で表される環である。
     p環及びt環は、それぞれ独立に、隣接環の任意の位置で縮合する式(55)又は式(56)で表される構造である。
     R501が複数存在する場合、隣接する複数のR501は互いに結合して置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
     X501は、酸素原子、硫黄原子、又はNR502である。
     前記置換もしくは無置換の飽和又は不飽和の環を形成しないR501及びR502は、
    水素原子、
    置換もしくは無置換の炭素数1~50のアルキル基、
    置換もしくは無置換の炭素数2~50のアルケニル基、
    置換もしくは無置換の炭素数2~50のアルキニル基、
    置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
    -Si(R901)(R902)(R903)、
    -O-(R904)、
    -S-(R905)、
    -N(R906)(R907)、
    ハロゲン原子、シアノ基、ニトロ基、
    置換もしくは無置換の環形成炭素数6~50のアリール基、又は
    置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
     R901~R907は、前記式(1)で定義した通りである。
     Ar501及びAr502は、それぞれ独立に、
    置換もしくは無置換の炭素数1~50のアルキル基、
    置換もしくは無置換の炭素数2~50のアルケニル基、
    置換もしくは無置換の炭素数2~50のアルキニル基、
    置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
    置換もしくは無置換の環形成炭素数6~50のアリール基、又は
    置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
     L501は、
    置換もしくは無置換の炭素数1~50のアルキレン基、
    置換もしくは無置換の炭素数2~50のアルケニレン基、
    置換もしくは無置換の炭素数2~50のアルキニレン基、
    置換もしくは無置換の環形成炭素数3~50のシクロアルキレン基、
    置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
    置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
     m1は0~2の整数であり、m2は0~4の整数であり、m3は、それぞれ独立に0~3の整数であり、m4は、それぞれ独立に0~5の整数である。R501が複数存在する場合、複数のR501は互いに同一であってもよいし、異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000008
    (式(61)において、
     R601とR602、R602とR603、及びR603とR604の少なくとも一組は互いに結合して下記式(62)で示される2価の基を形成する。
     R605とR606、R606とR607、及びR607とR608の少なくとも一組は互いに結合して下記式(63)で示される2価の基を形成する。
    Figure JPOXMLDOC01-appb-C000009
     R601~R604のうち前記式(62)で示される2価の基を形成しないもの、及びR611~R614の少なくとも1つは下記式(64)で表される1価の基である。
     R605~R608のうち前記式(63)で示される2価の基を形成しないもの、及びR621~R624の少なくとも1つは下記式(64)で表される1価の基である。
     X601は酸素原子、硫黄原子、又はNR609である。
     前記式(62)及び(63)で表される2価の基を形成せず、かつ、前記式(64)で表される1価の基ではないR601~R608、前記式(64)で表される1価の基ではないR611~R614及びR621~R624、並びにR609は、それぞれ独立に、
    水素原子、
    置換もしくは無置換の炭素数1~50のアルキル基、
    置換もしくは無置換の炭素数2~50のアルケニル基、
    置換もしくは無置換の炭素数2~50のアルキニル基、
    置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
    -Si(R901)(R902)(R903)、
    -O-(R904)、
    -S-(R905)、
    -N(R906)(R907)、
    ハロゲン原子、シアノ基、ニトロ基、
    置換もしくは無置換の環形成炭素数6~50のアリール基、又は
    置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
     R901~R907は、前記式(1)で定義した通りである。
    Figure JPOXMLDOC01-appb-C000010
     式(64)において、Ar601及びAr602は、それぞれ独立に、
    置換もしくは無置換の環形成炭素数6~50のアリール基、又は
    置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
     L601~L603は、それぞれ独立に、
    単結合、
    置換もしくは無置換の環形成炭素数6~30のアリーレン基、
    置換もしくは無置換の環形成原子数5~30の2価の複素環基、又は
    これらが2~4個結合して形成される2価の連結基である。)
    Figure JPOXMLDOC01-appb-C000011
    (式(71)において、
     A701環及びA702環は、それぞれ独立に、
    置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は、
    置換もしくは無置換の環形成原子数5~50の複素環である。
     A701環及びA702環からなる群から選択される一以上は、下記式(72)で表される構造の結合手*と結合する。
    Figure JPOXMLDOC01-appb-C000012
     式(72)において、
     A703環は、それぞれ独立に、
    置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は、
    置換もしくは無置換の環形成原子数5~50の複素環である。
     X701は、NR703、C(R704)(R705)、Si(R706)(R707)、Ge(R708)(R709)、O、S又はSeである。
     R701及びR702は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
     置換もしくは無置換の飽和又は不飽和の環を形成しないR701及びR702、並びにR703~R709は、それぞれ独立に、
    水素原子、
    置換もしくは無置換の炭素数1~50のアルキル基、
    置換もしくは無置換の炭素数2~50のアルケニル基、
    置換もしくは無置換の炭素数2~50のアルキニル基、
    置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
    -Si(R901)(R902)(R903)、
    -O-(R904)、
    -S-(R905)、
    -N(R906)(R907)、
    ハロゲン原子、シアノ基、ニトロ基、
    置換もしくは無置換の環形成炭素数6~50のアリール基、又は
    置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
     R901~R907は、前記式(1)で定義した通りである。)
    Figure JPOXMLDOC01-appb-C000013
    (式(81)において、
     A801環は、隣接環の任意の位置で縮合する式(82)で表される環である。
     A802環は、隣接環の任意の位置で縮合する式(83)で表される環である。2つの結合手*はA803環の任意の位置と結合する。
     X801及びX802は、それぞれ独立に、C(R803)(R804)、Si(R805)(R806)、酸素原子、硫黄原子である。
     A803環は、置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は置換もしくは無置換の環形成原子数5~50の複素環である。
     Ar801は、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
     R801~R806は、それぞれ独立に、
    水素原子、
    置換もしくは無置換の炭素数1~50のアルキル基、
    置換もしくは無置換の炭素数2~50のアルケニル基、
    置換もしくは無置換の炭素数2~50のアルキニル基、
    置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
    -Si(R901)(R902)(R903)、
    -O-(R904)、
    -S-(R905)、
    -N(R906)(R907)、
    ハロゲン原子、シアノ基、ニトロ基、
    置換もしくは無置換の環形成炭素数6~50のアリール基、又は
    置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
     R901~R907は、前記式(1)で定義した通りである。
     m801及びm802は、それぞれ独立に、0~2の整数である。これらが2の場合、複数のR801又はR802は互いに同一であってもよいし、異なっていてもよい。
     a801は0~2の整数である。a801が0又は1の場合、「3-a801」で示されるカッコ内の構造は互いに同一であってもよいし、異なっていてもよい。a801が2の場合、Ar801は互いに同一であってもよいし、異なっていてもよい。)
  2.  前記式(1)におけるR~Rのうち少なくとも2つが重水素原子である請求項1に記載の有機エレクトロルミネッセンス素子。
  3.  前記式(1)におけるR~Rが全て重水素原子である請求項1又は2に記載の有機エレクトロルミネッセンス素子。
  4.  前記式(1)におけるL及びLからなる群から選択される一以上が、水素原子の少なくとも1つが重水素原子である無置換の環形成炭素数6~30のアリーレン基、又は水素原子の少なくとも1つが重水素原子である無置換の環形成原子数5~30の2価の複素環基である請求項1~3のいずれかに記載の有機エレクトロルミネッセンス素子。
  5.  前記式(1)におけるL及びLが、それぞれ独立に、単結合、又は置換もしくは無置換の環形成炭素数6~14のアリーレン基である請求項1~4のいずれかに記載の有機エレクトロルミネッセンス素子。
  6.  Arが、水素原子の少なくとも1つが重水素原子である無置換の環形成炭素数6~50のアリール基、又は水素原子の少なくとも1つが重水素原子である無置換の環形成原子数5~50の1価の複素環基である請求項1~5のいずれかに記載の有機エレクトロルミネッセンス素子。
  7.  前記式(1)におけるArが、置換もしくは無置換の環形成炭素数6~50のアリール基である請求項1~6のいずれかに記載の有機エレクトロルミネッセンス素子。
  8.  前記式(1)におけるArが、下記式(a1)~(a4)で表される基から選択される請求項7に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000014
    (式(a1)~(a4)中、*は、Lと結合する単結合である。
     R21は、
    ハロゲン原子、シアノ基、ニトロ基、
    置換もしくは無置換の炭素数1~50のアルキル基、
    置換もしくは無置換の炭素数2~50のアルケニル基、
    置換もしくは無置換の炭素数2~50のアルキニル基、
    置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
    -Si(R901)(R902)(R903)、
    -O-(R904)、
    -S-(R905)、
    -N(R906)(R907)、
    置換もしくは無置換の環形成炭素数6~50のアリール基、又は
    置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
     R901~R907は、前記式(1)で定義した通りである。
     m1は、0~4の整数である。
     m2は、0~5の整数である。
     m3は、0~7の整数である。
     m1~m3が、それぞれ2以上のとき、複数のR21は互いに同一であってもよいし、異なっていてもよい。
     m1~m3が、それぞれ2以上のとき、隣接する複数のR21は互いに結合して置換若しくは無置換の飽和又は不飽和の環を形成するか、あるいは置換若しくは無置換の飽和又は不飽和の環を形成しない。)
  9.  前記式(1)におけるLと結合する単結合ではないR11~R18が水素原子である請求項1~8のいずれかに記載の有機エレクトロルミネッセンス素子。
  10.  前記式(1)におけるLと結合する単結合ではないR11~R18が重水素原子である請求項1~9のいずれかに記載の有機エレクトロルミネッセンス素子。
  11.  前記式(1)で表される化合物が下記式(2)で表される化合物である請求項1に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000015
    (式(2)中、R~R、Ar、L及びLは、前記式(1)で定義した通りである。)
  12.  前記式(1)で表される化合物が下記式(3)で表される化合物である請求項1に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000016
    (式(3)中、Ar、L及びLは、前記式(1)で定義した通りである。)
  13.  前記発光層における、前記式(1)で表される化合物と、水素原子として軽水素原子のみを含む以外は前記式(1)で表される化合物と同じ構造を有する化合物との合計に対する、後者の含有割合が99モル%以下である請求項1~12のいずれかに記載の有機エレクトロルミネッセンス素子。
  14.  前記式(11)において、R101~R110のうち2つが前記式(12)で表される基である請求項1~13のいずれかに記載の有機エレクトロルミネッセンス素子。
  15.  前記式(11)で表される化合物が、下記式(13)で表される化合物である請求項1~14のいずれかに記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000017
    (式(13)において、R111~R118は、前記式(11)における、式(12)で表される1価の基ではないR101~R110と同じである。Ar101、Ar102、L101、L102及びL103は、前記式(12)で定義した通りである。)
  16.  前記式(13)で表される化合物が、下記式(14)で表される化合物である請求項15に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000018
    (式(14)において、R111~R118は、前記式(13)で定義した通りである。Ar101、Ar102、L102及びL103は、前記式(12)で定義した通りである。)
  17.  前記式(13)で表される化合物が、下記式(15)で表される化合物である請求項15に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000019
    (式(15)において、R111~R118は、前記式(13)で定義した通りである。Ar101及びAr102は、前記式(12)で定義した通りである。)
  18.  前記式(13)で表される化合物が、下記式(17)で表される化合物である請求項15に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000020
    (式(17)において、R111~R118は、前記式(13)で定義した通りである。
     R121~R127のうち、隣接する2つ以上の1組以上が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
     前記置換もしくは無置換の飽和又は不飽和の環を形成しないR121~R127は、それぞれ独立に、
    水素原子、
    置換もしくは無置換の炭素数1~50のアルキル基、
    置換もしくは無置換の炭素数2~50のアルケニル基、
    置換もしくは無置換の炭素数2~50のアルキニル基、
    置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
    -Si(R901)(R902)(R903)、
    -O-(R904)、
    -S-(R905)、
    -N(R906)(R907)、
    ハロゲン原子、シアノ基、ニトロ基、
    置換もしくは無置換の環形成炭素数6~50のアリール基、又は
    置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
     R901~R907は、前記式(1)で定義した通りである。
     R131~R135は、それぞれ独立に、
    水素原子、
    置換もしくは無置換の炭素数1~50のアルキル基、
    置換もしくは無置換の炭素数2~50のアルケニル基、
    置換もしくは無置換の炭素数2~50のアルキニル基、
    置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
    -Si(R901)(R902)(R903)、
    -O-(R904)、
    -S-(R905)、
    -N(R906)(R907)、
    ハロゲン原子、シアノ基、ニトロ基、
    置換もしくは無置換の環形成炭素数6~50のアリール基、又は
    置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
     R901~R907は、前記式(1)で定義した通りである。)
  19.  前記式(41)におけるa環、b環及びc環が、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環である請求項1~18のいずれかに記載の有機エレクトロルミネッセンス素子。
  20.  前記式(41)におけるR401及びR402が、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の1価の複素環基である請求項1~19のいずれかに記載の有機エレクトロルミネッセンス素子。
  21.  前記式(41)におけるR401及びR402が、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基である請求項1~20のいずれかに記載の有機エレクトロルミネッセンス素子。
  22.  前記式(41)で表される化合物が下記式(42)で表される化合物である請求項1~21のいずれかに記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000021
    (式(42)において、
     R401Aは、R411及びR421からなる群から選択される1以上と結合して、置換もしくは無置換の複素環を形成するか、あるいは置換もしくは無置換の複素環を形成しない。R402Aは、R413及びR414からなる群から選択される1以上と結合して、置換もしくは無置換の複素環を形成するか、あるいは置換もしくは無置換の複素環を形成しない。
     前記置換もしくは無置換の複素環を形成しないR401A及びR402Aは、それぞれ独立に、
    置換もしくは無置換の炭素数1~50のアルキル基、
    置換もしくは無置換の炭素数2~50のアルケニル基、
    置換もしくは無置換の炭素数2~50のアルキニル基、
    置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
    置換もしくは無置換の環形成炭素数6~50のアリール基、又は
    置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
     R411~R421のうちの隣接する2つ以上の1組以上は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
     前記置換もしくは無置換の複素環又は前記置換もしくは無置換の飽和又は不飽和の環を形成しないR411~R421は、それぞれ独立に、
    水素原子、
    置換もしくは無置換の炭素数1~50のアルキル基、
    置換もしくは無置換の炭素数2~50のアルケニル基、
    置換もしくは無置換の炭素数2~50のアルキニル基、
    置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
    -Si(R901)(R902)(R903)、
    -O-(R904)、
    -S-(R905)、
    -N(R906)(R907)、
    ハロゲン原子、シアノ基、ニトロ基、
    置換もしくは無置換の環形成炭素数6~50のアリール基、又は
    置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
     R901~R907は、前記式(1)で定義した通りである。)
  23.  前記式(41)で表される化合物が下記式(43)で表される化合物である請求項1~21のいずれかに記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000022
    (式(43)において、
     R431は、R446と結合して、置換もしくは無置換の複素環を形成するか、あるいは置換もしくは無置換の複素環を形成しない。R433は、R447と結合して、置換もしくは無置換の複素環を形成するか、あるいは置換もしくは無置換の複素環を形成しない。R434は、R451と結合して、置換もしくは無置換の複素環を形成するか、あるいは置換もしくは無置換の複素環を形成しない。R441は、R442と結合して、置換もしくは無置換の複素環を形成するか、あるいは置換もしくは無置換の複素環を形成しない。
     R431~R451のうちの隣接する2つ以上の1組以上は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
     前記置換もしくは無置換の複素環又は前記置換もしくは無置換の飽和又は不飽和の環を形成しないR431~R451は、それぞれ独立に、
    水素原子、
    置換もしくは無置換の炭素数1~50のアルキル基、
    置換もしくは無置換の炭素数2~50のアルケニル基、
    置換もしくは無置換の炭素数2~50のアルキニル基、
    置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
    -Si(R901)(R902)(R903)、
    -O-(R904)、
    -S-(R905)、
    -N(R906)(R907)、
    ハロゲン原子、シアノ基、ニトロ基、
    置換もしくは無置換の環形成炭素数6~50のアリール基、又は
    置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
     R901~R907は、前記式(1)で定義した通りである。)
  24.  前記陽極と前記発光層との間に正孔輸送層を有する請求項1~23のいずれかに記載の有機エレクトロルミネッセンス素子。
  25.  前記陰極と前記発光層との間に電子輸送層を有する請求項1~24のいずれかに記載の有機エレクトロルミネッセンス素子。
  26.  請求項1~25のいずれかに記載の有機エレクトロルミネッセンス素子を備える電子機器。

     
PCT/JP2019/039870 2018-10-09 2019-10-09 有機エレクトロルミネッセンス素子及びそれを用いた電子機器 WO2020075769A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/282,971 US20230011996A1 (en) 2018-10-09 2019-10-09 Organic electroluminescence device and electronic apparatus provided with the same

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2018191224 2018-10-09
JP2018190838 2018-10-09
JP2018-191224 2018-10-09
JP2018-190838 2018-10-09
JP2019-101675 2019-05-30
JP2019-101578 2019-05-30
JP2019101578 2019-05-30
JP2019101675 2019-05-30
US16/557,675 US10763444B2 (en) 2018-10-09 2019-08-30 Organic electroluminescence device and electronic apparatus provided with the same
US16/557,675 2019-08-30
US16/593,743 2019-10-04
US16/593,743 US10804474B2 (en) 2018-10-09 2019-10-04 Organic electroluminescence device and electronic apparatus provided with the same

Publications (1)

Publication Number Publication Date
WO2020075769A1 true WO2020075769A1 (ja) 2020-04-16

Family

ID=70164521

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/039870 WO2020075769A1 (ja) 2018-10-09 2019-10-09 有機エレクトロルミネッセンス素子及びそれを用いた電子機器
PCT/JP2019/039846 WO2020075763A1 (ja) 2018-10-09 2019-10-09 新規な化合物、有機エレクトロルミネッセンス素子、電子機器

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039846 WO2020075763A1 (ja) 2018-10-09 2019-10-09 新規な化合物、有機エレクトロルミネッセンス素子、電子機器

Country Status (4)

Country Link
US (1) US20220411437A1 (ja)
KR (1) KR20210075088A (ja)
CN (1) CN112789270A (ja)
WO (2) WO2020075769A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230150805A (ko) 2021-02-26 2023-10-31 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자, 및 전자 기기

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210320251A1 (en) * 2018-08-03 2021-10-14 Idemitsu Kosan Co.,Ltd. Organic electroluminescence device and electronic appliance
US20200111962A1 (en) * 2018-10-03 2020-04-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and electronic apparatus provided with the same
KR102305649B1 (ko) * 2018-10-26 2021-09-29 롬엔드하스전자재료코리아유한회사 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2022254581A1 (ja) * 2021-06-01 2022-12-08 株式会社フラスク 有機el素子

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015153911A (ja) * 2014-02-14 2015-08-24 富士フイルム株式会社 光電変換素子、光センサ、撮像素子
KR20160102881A (ko) * 2015-02-23 2016-08-31 에스에프씨 주식회사 저전압구동이 가능하며 고효율을 갖는 유기 발광 소자
WO2016152544A1 (ja) * 2015-03-24 2016-09-29 学校法人関西学院 有機電界発光素子
US20160351817A1 (en) * 2015-05-27 2016-12-01 Samsung Display Co., Ltd. Organic light-emitting device
US20170025608A1 (en) * 2015-07-20 2017-01-26 E I Du Pont De Nemours And Company Photoactive composition
JP2017514807A (ja) * 2014-04-16 2017-06-08 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH 電子デバイス用材料
WO2018151065A1 (ja) * 2017-02-14 2018-08-23 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
JP2018157209A (ja) * 2017-03-17 2018-10-04 株式会社半導体エネルギー研究所 有機化合物、発光素子、発光装置、電子機器、表示装置及び照明装置
US20190305227A1 (en) * 2018-03-28 2019-10-03 Lg Display Co., Ltd. Novel organic compounds and organic electroluminescent device including the same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4677221B2 (ja) 2004-11-26 2011-04-27 キヤノン株式会社 有機発光素子
EP2196444A1 (en) 2008-12-11 2010-06-16 Total Petrochemicals Research Feluy Process to make alpha olefins from ethanol
KR20100069216A (ko) 2008-12-16 2010-06-24 주식회사 두산 중수소화된 안트라센 유도체 및 이를 포함하는 유기 발광 소자
EP2401341B1 (en) 2009-02-27 2017-01-18 E. I. du Pont de Nemours and Company Deuterated compounds for electronic applications
WO2010135395A2 (en) 2009-05-19 2010-11-25 E. I. Du Pont De Nemours And Company Deuterated compounds for electronic applications
TW201245408A (en) 2011-04-08 2012-11-16 Du Pont Electronic device
TWI636056B (zh) * 2014-02-18 2018-09-21 學校法人關西學院 多環芳香族化合物及其製造方法、有機元件用材料及其應用
TWI777568B (zh) * 2014-05-30 2022-09-11 日商半導體能源研究所股份有限公司 發光元件,發光裝置,電子裝置以及照明裝置
KR102002023B1 (ko) * 2015-07-14 2019-07-22 에스에프씨주식회사 고효율의 유기 발광 소자
EP3333241B1 (en) 2015-08-06 2022-10-05 SFC Co., Ltd. Organic light emitting element having high efficiency
KR101733056B1 (ko) 2015-08-31 2017-05-08 엘지전자 주식회사 태양 전지 모듈
KR102142193B1 (ko) * 2017-11-16 2020-08-06 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
CN110317186B (zh) * 2018-03-28 2023-07-07 乐金显示有限公司 新的有机化合物和包含其的有机电致发光器件
KR102091507B1 (ko) * 2018-07-24 2020-03-20 머티어리얼사이언스 주식회사 유기 전계 발광 소자
KR102193855B1 (ko) * 2018-09-11 2020-12-22 주식회사 엘지화학 유기 발광 소자

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015153911A (ja) * 2014-02-14 2015-08-24 富士フイルム株式会社 光電変換素子、光センサ、撮像素子
JP2017514807A (ja) * 2014-04-16 2017-06-08 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH 電子デバイス用材料
KR20160102881A (ko) * 2015-02-23 2016-08-31 에스에프씨 주식회사 저전압구동이 가능하며 고효율을 갖는 유기 발광 소자
WO2016152544A1 (ja) * 2015-03-24 2016-09-29 学校法人関西学院 有機電界発光素子
US20160351817A1 (en) * 2015-05-27 2016-12-01 Samsung Display Co., Ltd. Organic light-emitting device
US20170025608A1 (en) * 2015-07-20 2017-01-26 E I Du Pont De Nemours And Company Photoactive composition
WO2018151065A1 (ja) * 2017-02-14 2018-08-23 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
JP2018157209A (ja) * 2017-03-17 2018-10-04 株式会社半導体エネルギー研究所 有機化合物、発光素子、発光装置、電子機器、表示装置及び照明装置
US20190305227A1 (en) * 2018-03-28 2019-10-03 Lg Display Co., Ltd. Novel organic compounds and organic electroluminescent device including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230150805A (ko) 2021-02-26 2023-10-31 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자, 및 전자 기기

Also Published As

Publication number Publication date
WO2020075763A1 (ja) 2020-04-16
CN112789270A (zh) 2021-05-11
KR20210075088A (ko) 2021-06-22
US20220411437A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
WO2020071479A1 (ja) 有機エレクトロルミネッセンス素子及びそれを用いた電子機器
WO2020075784A1 (ja) 有機エレクトロルミネッセンス素子及びそれを用いた電子機器
WO2019240251A1 (ja) 有機エレクトロルミネッセンス素子及びそれを用いた電子機器
WO2020116562A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2020075769A1 (ja) 有機エレクトロルミネッセンス素子及びそれを用いた電子機器
US10777752B2 (en) Organic electroluminescence device and electronic apparatus provided with the same
WO2020036197A1 (ja) 有機エレクトロルミネッセンス素子及びそれを用いた電子機器
US10763444B2 (en) Organic electroluminescence device and electronic apparatus provided with the same
WO2020096012A1 (ja) 有機エレクトロルミネッセンス素子及びそれを用いた電子機器
JP2020188121A (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2021025162A1 (ja) 新規化合物、それを用いた有機エレクトロルミネッセンス素子及び電子機器
WO2020116561A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2022118653A1 (ja) 化合物、有機エレクトロルミネッセンス素子及び電子機器
WO2020115933A1 (ja) 有機エレクトロルミネッセンス素子及びそれを用いた電子機器
WO2020027323A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
JP2023162192A (ja) 有機エレクトロルミネッセンス素子、組成物、粉体、電子機器、及び新規化合物
US20230019712A1 (en) Organic electroluminescence device and electronic apparatus provided with the same
US20230011996A1 (en) Organic electroluminescence device and electronic apparatus provided with the same
US20230020436A1 (en) Novel compound, organic electroluminescence device, and electronic apparatus
WO2022264826A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
JP7492975B2 (ja) 有機エレクトロルミネッセンス素子及び電子機器
US20220169656A1 (en) Novel compound, organic electroluminescence device and electronic apparatus
WO2022215527A1 (ja) 化合物及び有機エレクトロルミネッセンス素子
WO2023219071A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2024029581A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19870507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19870507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP