JP2020161843A - 有機エレクトロルミネッセンス素子、および電子機器 - Google Patents

有機エレクトロルミネッセンス素子、および電子機器 Download PDF

Info

Publication number
JP2020161843A
JP2020161843A JP2020107179A JP2020107179A JP2020161843A JP 2020161843 A JP2020161843 A JP 2020161843A JP 2020107179 A JP2020107179 A JP 2020107179A JP 2020107179 A JP2020107179 A JP 2020107179A JP 2020161843 A JP2020161843 A JP 2020161843A
Authority
JP
Japan
Prior art keywords
group
substituted
unsubstituted
compound
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020107179A
Other languages
English (en)
Inventor
俊成 荻原
Toshinari Ogiwara
俊成 荻原
圭 吉田
Kei Yoshida
圭 吉田
祐一郎 河村
Yuichiro Kawamura
祐一郎 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Publication of JP2020161843A publication Critical patent/JP2020161843A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • H05B33/145Arrangements of the electroluminescent material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/20Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1022Heterocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

【課題】高性能の有機エレクトロルミネッセンス素子を提供すること。【解決手段】陽極と、発光層と、陰極と、を含み、前記発光層は、第一の化合物および第二の化合物を含み、前記第一の化合物は、遅延蛍光発光性の化合物であり、前記第二の化合物は、下記一般式(2)で表され、Xは、窒素原子、またはYと結合する炭素原子であり、Yは、水素原子または置換基であり、R21〜R26は、それぞれ独立に、水素原子または置換基であり、Z21およびZ22は、それぞれ独立に、ハロゲン原子、置換もしくは無置換のアリール基、置換もしくは無置換のアルコキシ基、および置換もしくは無置換のアリールオキシ基からなる群から選択される、有機エレクトロルミネッセンス素子。【化1】【選択図】なし

Description

本発明は、有機エレクトロルミネッセンス素子、および電子機器に関する。
有機エレクトロルミネッセンス素子(以下、「有機EL素子」という場合がある。)に電圧を印加すると、陽極から正孔が、また陰極から電子が、それぞれ発光層に注入される。そして、発光層において、注入された正孔と電子とが再結合し、励起子が形成される。このとき、電子スピンの統計則により、一重項励起子、及び三重項励起子が25%:75%の割合で生成する。
一重項励起子からの発光を用いる蛍光型の有機EL素子は、携帯電話やテレビ等のフルカラーディスプレイへ応用されているが、素子性能をさらに向上させるための検討が行われている(例えば、特許文献1〜5参照)。
国際公開第2012/133188号 国際公開第2014/013947号 特開2003−12676号公報 国際公開第2010/098098号 特許第4947142号公報
本発明の目的は、高性能の有機エレクトロルミネッセンス素子を提供すること、および当該有機エレクトロルミネッセンス素子を備える電子機器を提供することである。
本発明の一態様によれば、陽極と、発光層と、陰極と、を含み、前記発光層は、第一の化合物および第二の化合物を含み、前記第一の化合物は、遅延蛍光発光性の化合物であり、前記第二の化合物は、下記一般式(2)で表される有機エレクトロルミネッセンス素子が提供される。
(前記一般式(2)において、Xは、窒素原子、またはYと結合する炭素原子であり、Yは、水素原子または置換基であり、R21〜R26は、それぞれ独立に、水素原子または置換基であり、Y、およびR21〜R26が置換基である場合の置換基は、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアルキルチオ基、置換もしくは無置換のアリールオキシ基、置換もしくは無置換のアリールチオ基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアラルキル基、置換もしくは無置換のヘテロアリール基、ハロゲン原子、ハロアルキル基、カルボキシ基、エステル基、カルバモイル基、アミノ基、ニトロ基、シアノ基、シリル基、およびシロキサニル基からなる群から選択され、Z21およびZ22は、それぞれ独立に、ハロゲン原子、置換もしくは無置換のアリール基、置換もしくは無置換のアルコキシ基、および置換もしくは無置換のアリールオキシ基からなる群から選択される。)
本発明の一態様によれば、前述の本発明の一態様に係る有機エレクトロルミネッセンス素子を備える電子機器が提供される。
本発明によれば、高性能の有機エレクトロルミネッセンス素子を提供することができる。また、本発明によれば、当該有機エレクトロルミネッセンス素子を備える電子機器を提供することができる。
一実施形態に係る有機エレクトロルミネッセンス素子の一例の概略構成を示す図である。 過渡PLを測定する装置の概略図である。 過渡PLの減衰曲線の一例を示す図である。 発光層における第一の化合物、および第二の化合物のエネルギー準位およびエネルギー移動の関係を示す図である。
〔第一実施形態〕
本発明の第一実施形態に係る有機EL素子の構成について説明する。
有機EL素子は、陽極および陰極の両電極間に有機層を備える。この有機層は、有機化合物で構成される層を一つ以上有する。有機層は、無機化合物をさらに含んでいてもよい。本実施形態の有機EL素子は、有機層として少なくとも一つの発光層を含む。有機層は、例えば、発光層だけで構成されていてもよいし、有機EL素子で採用される層、例えば、正孔注入層、正孔輸送層、電子注入層、電子輸送層、正孔障壁層、および電子障壁層等のいずれかの層を有していてもよい。
図1に、本実施形態における有機EL素子の一例の概略構成を示す。
有機EL素子1は、透光性の基板2と、陽極3と、陰極4と、陽極3と陰極4との間に配置された有機層10と、を含む。有機層10は、陽極3側から順に、正孔注入層6、正孔輸送層7、発光層5、電子輸送層8、および電子注入層9が、この順番で積層されて構成される。
(発光層)
有機EL素子の発光層は、第一の化合物および第二の化合物を含む。発光層は、金属錯体を含んでもよいが、本実施形態では、燐光発光性の金属錯体を含まないことが好ましく、燐光発光性の金属錯体以外の金属錯体も含まないことが好ましい。
<第一の化合物>
本実施形態の第一の化合物は、遅延蛍光発光性の化合物である。第一の化合物は、下記一般式(1)で表されることが好ましい。本実施形態の第一の化合物は、金属錯体ではない。
本実施形態において、第一の化合物としては、例えば、下記一般式(1)で表される化合物が挙げられる。
前記一般式(1)において、
Aはアクセプター性部位であり、下記一般式(a−1)〜(a−7)から選ばれる部分構造を有する基である。Aが複数存在する場合、複数のAは互いに同一または異なり、A同士が結合して飽和または不飽和の環を形成してもよく、
Bはドナー性部位であり、下記一般式(b−1)〜(b−6)から選ばれる部分構造を有する。Bが複数存在する場合、複数のBは互いに同一または異なり、B同士が結合して飽和または不飽和の環を形成してもよく、
a,b,およびdは、それぞれ独立に、1〜5の整数であり、
cは0〜5の整数であり、
cが0のとき、AとBとは単結合またはスピロ結合で結合し、
cが1〜5の整数のとき、Lは、
置換または無置換の環形成炭素数6〜30の芳香族炭化水素基、および
置換または無置換の環形成原子数5〜30の複素環基からなる群から選択される連結基であり、Lが複数存在する場合、複数のLは互いに同一または異なり、L同士が結合して飽和または不飽和の環を形成してもよい。
前記一般式(b−1)〜(b−6)において、
Rは、それぞれ独立に、水素原子または置換基であり、Rが置換基である場合の置換基は、
置換または無置換の環形成炭素数6〜30の芳香族炭化水素基、
置換または無置換の環形成原子数5〜30の複素環基、および
置換または無置換の炭素数1〜30のアルキル基からなる群から選択され、Rが複数存在する場合、複数のRは互いに同一または異なり、R同士が結合して飽和または不飽和の環を形成してもよい。
前記一般式(1)で表される化合物の結合様式の一例として、例えば下記表1に示す結合様式が挙げられる。
第一の化合物の具体的な例を以下に示す。なお、本発明における第一の化合物は、これらの例に限定されない。
・第一の化合物の製造方法
第一の化合物は、例えば、国際公開第2013/180241号、国際公開第2014/092083号、および国際公開第2014/104346号等に記載された方法に従い、製造することができる。
・遅延蛍光発光性
遅延蛍光(熱活性化遅延蛍光)については、「有機半導体のデバイス物性」(安達千波矢編、講談社発行)の261〜268ページで解説されている。その文献の中で、蛍光発光材料の励起一重項状態と励起三重項状態のエネルギー差ΔE13を小さくすることができれば、通常は遷移確率が低い励起三重項状態から励起一重項状態への逆エネルギー移動が高効率で生じ、熱活性化遅延蛍光(Thermally Activated delayed Fluorescence, TADF)が発現すると説明されている。さらに、当該文献中の図10.38で、遅延蛍光の発生メカニズムが説明されている。本実施形態における第一の化合物は、このようなメカニズムで発生する熱活性化遅延蛍光を示す化合物である。遅延蛍光の発光は過渡PL(Photo Luminescence)測定により確認できる。
過渡PL測定から得た減衰曲線に基づいて遅延蛍光の挙動を解析することもできる。過渡PL測定とは、試料にパルスレーザーを照射して励起させ、照射を止めた後のPL発光の減衰挙動(過渡特性)を測定する手法である。TADF材料におけるPL発光は、最初のPL励起で生成する一重項励起子からの発光成分と、三重項励起子を経由して生成する一重項励起子からの発光成分に分類される。最初のPL励起で生成する一重項励起子の寿命は、ナノ秒オーダーであり、非常に短い。そのため、当該一重項励起子からの発光は、パルスレーザーを照射後、速やかに減衰する。
一方、遅延蛍光は、寿命の長い三重項励起子を経由して生成する一重項励起子からの発光のため、ゆるやかに減衰する。このように最初のPL励起で生成する一重項励起子からの発光と、三重項励起子を経由して生成する一重項励起子からの発光とでは、時間的に大きな差がある。そのため、遅延蛍光由来の発光強度を求めることができる。
図2には、過渡PLを測定するための例示的装置の概略図が示されている。
本実施形態の過渡PL測定装置100は、所定波長の光を照射可能なパルスレーザー部101と、測定試料を収容する試料室102と、測定試料から放射された光を分光する分光器103と、2次元像を結像するためのストリークカメラ104と、2次元像を取り込んで解析するパーソナルコンピュータ105と、を備える。なお、過渡PLの測定は、本実施形態で説明する装置に限定されない。
試料室102に収容される試料は、マトリックス材料に対し、ドーピング材料が12質量%の濃度でドープされた薄膜を石英基板に成膜することで得られる。
試料室102に収容された薄膜試料に対し、パルスレーザー部101からパルスレーザーを照射して、ドーピング材料を励起させる。励起光の照射方向に対して90度の方向へ発光を取り出し、取り出した光を分光器103で分光し、ストリークカメラ104内で2次元像を結像する。その結果、縦軸が時間に対応し、横軸が波長に対応し、輝点が発光強度に対応する2次元画像を得ることができる。この2次元画像を所定の時間軸で切り出すと、縦軸が発光強度であり、横軸が波長である発光スペクトルを得ることができる。また、当該2次元画像を波長軸で切り出すと、縦軸が発光強度の対数であり、横軸が時間である減衰曲線(過渡PL)を得ることができる。
例えば、マトリックス材料として、下記参考化合物H1を用い、ドーピング材料として下記参考化合物D1を用いて上述のようにして薄膜試料Aを作製し、過渡PL測定を行った。
ここでは、前述の薄膜試料A、および薄膜試料Bを用いて減衰曲線を解析した。薄膜試料Bは、マトリックス材料として下記参考化合物H2を用い、ドーピング材料として前記参考化合物D1を用いて、上述のようにして薄膜試料を作製した。
図3には、薄膜試料Aおよび薄膜試料Bについて測定した過渡PLから得た減衰曲線が示されている。
上記したように過渡PL測定によって、縦軸を発光強度とし、横軸を時間とする発光減衰曲線を得ることができる。この発光減衰曲線に基づいて、光励起により生成した一重項励起状態から発光する蛍光と、三重項励起状態を経由し、逆エネルギー移動により生成する一重項励起状態から発光する遅延蛍光との、蛍光強度比を見積もることができる。遅延蛍光発光性の材料では、素早く減衰する蛍光の強度に対し、緩やかに減衰する遅延蛍光の強度の割合が、ある程度大きい。
本実施形態における遅延蛍光発光量は、図2の装置を用いて求めることができる。前記第一の化合物は、当該第一の化合物が吸収する波長のパルス光(パルスレーザーから照射される光)で励起された後、当該励起状態から即座に観察されるPrompt発光(即時発光)と、当該励起後、即座には観察されず、その後観察されるDelay発光(遅延発光)とが存在する。本実施形態においては、Delay発光(遅延発光)の量がPrompt発光(即時発光)の量に対して5%以上であることが好ましい。
Prompt発光とDelay発光の量は、“Nature 492, 234−238, 2012”に記載された方法と同様の方法により求めることができる。なお、Prompt発光およびDelay発光の量の算出に使用される装置は、前記文献に記載の装置に限定されない。
また、遅延蛍光発光性の測定に用いられる試料は、例えば、第一の化合物と下記化合物TH−2とを、第一の化合物の割合が12質量%となるように石英基板上に共蒸着し、膜厚100nmの薄膜を形成した試料を使用することができる。
(第二の化合物)
第二の化合物は、下記一般式(2)で表される。
前記一般式(2)において、
Xは、窒素原子、またはYと結合する炭素原子であり、
Yは、水素原子または置換基であり、
21〜R26は、それぞれ独立に、水素原子または置換基であり、
Y、およびR21〜R26が置換基である場合の置換基は、
置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアルキルチオ基、置換もしくは無置換のアリールオキシ基、置換もしくは無置換のアリールチオ基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアラルキル基、置換もしくは無置換の複素環基、ハロゲン原子、ハロアルキル基、カルボキシ基、エステル基、カルバモイル基、アミノ基、ニトロ基、シアノ基、シリル基、およびシロキサニル基からなる群から選択され、
21およびZ22は、それぞれ独立に、ハロゲン原子、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換のアルコキシ基、および置換もしくは無置換のアリールオキシ基からなる群から選択される。
前記一般式(2)のR21〜R26のうち2つ以上が互いに結合して環構造が構築されていてもよい。例えば、R25およびR26が互いに結合して6員環の芳香族環構造が構築される場合、第二の化合物は、下記一般式(21)で表される。
前記一般式(21)において、X、Y、R21〜R24、Z21、およびZ22は、それぞれ、前記一般式(2)におけるX、Y、R21〜R24、Z21、およびZ22と同義であり、R27〜R30は、それぞれ独立に、水素原子または置換基であり、R27〜R30が置換基である場合の置換基としては、R21〜R24について列挙した置換基と同義である。
前記Z21および前記Z22のうち少なくともいずれかは、フッ素原子で置換されたアルコキシ基、フッ素原子で置換されたアリールオキシ基、またはフルオロアルキル基で置換されたアリールオキシ基であることが好ましい。
前記Z21および前記Z22のうち少なくともいずれかが、フッ素原子であることも好ましく、前記Z21および前記Z22がフッ素原子であることもより好ましい。
前記Z21および前記Z22のうち少なくともいずれかは、下記一般式(2a)で表されることも好ましい。
前記一般式(2a)において、Aは、置換もしくは無置換の炭素数1〜6のアルキル基、または置換もしくは無置換の環形成炭素数6〜12のアリール基であり、Lは、置換もしくは無置換の炭素数1〜6のアルキレン基、または置換もしくは無置換の環形成炭素数6〜12のアリーレン基であり、mは、0以上7以下の整数であり、複数のL同士は、互いに同じでも異なっていてもよい。mは、0以上2以下の整数であることが好ましい。mが0の場合、Aは、O(酸素原子)に直接結合する。
前記一般式(2)において、Z21およびZ22が前記一般式(2a)で表される場合、第二の化合物は、下記一般式(20)で表される。
前記一般式(20)において、X、Y、R21〜R26は、それぞれ、前記一般式(2)におけるX、Y、R21〜R26と同義である。A21およびA22は、前記一般式(2a)におけるAと同義であり、互いに同一でも異なっていてもよい。L21およびL22は、前記一般式(2a)におけるLと同義であり、互いに同一でも異なっていてもよい。m1およびm2は、それぞれ独立に、0以上7以下の整数であり、0以上2以下の整数であることが好ましい。複数のL21同士は、互いに同じでも異なっていてもよく、複数のL22同士は、互いに同じでも異なっていてもよい。m1が0の場合、A21は、O(酸素原子)に直接結合し、m2が0の場合、A22は、O(酸素原子)に直接結合する。
前記一般式(2a)におけるAおよびLのうち少なくともいずれかが、ハロゲン原子で置換されていることが好ましく、フッ素原子で置換されていることがより好ましい。
前記一般式(2a)におけるAは、炭素数1〜6のパーフルオロアルキル基、または環形成炭素数6〜12のパーフルオロアリール基であることがより好ましく、炭素数1〜6のパーフルオロアルキル基であることがさらに好ましい。
前記一般式(2a)におけるLは、炭素数1〜6のパーフルオロアルキレン基、または環形成炭素数6〜12のパーフルオロアリーレン基であることがより好ましく、炭素数1〜6のパーフルオロアルキレン基であることがさらに好ましい。
前記一般式(2),(20),(21)において、Xが炭素原子であり、Yが水素原子、または置換もしくは無置換のアルキル基、および置換もしくは無置換の環形成炭素数6〜30のアリール基からなる群から選択される置換基であることが好ましく、Yが置換もしくは無置換の環形成炭素数6〜30のアリール基であることがより好ましい。
第二の化合物は、前記Z21と前記Z22とが結合して構築される環構造を有していてもよいが、前記Z21と前記Z22とが結合して構築される環構造を有さないことが好ましい。
前記一般式(2),(20)において、R21、R23、R24、およびR26のうち少なくともいずれかが置換もしくは無置換の炭素数1〜30のアルキル基であることが好ましい。
前記一般式(2),(20)において、R21、R23、R24、およびR26が置換もしくは無置換の炭素数1〜30のアルキル基であることがより好ましい。この場合、R22およびR25が水素原子であることが好ましい。
前記一般式(21)において、R21、R23、およびR24のうち少なくともいずれかが置換もしくは無置換の炭素数1〜30のアルキル基であることが好ましい。
前記一般式(21)において、R21、R23、およびR24が置換もしくは無置換の炭素数1〜30のアルキル基であることがより好ましい。この場合、R22が水素原子であることが好ましい。
前記一般式(2),(20)において、R21、R23、R24、およびR26のうち少なくともいずれかが置換もしくは無置換の環形成炭素数6〜30のアリール基であることが好ましい。
前記一般式(2),(20)において、R21、R23、R24、およびR26が置換もしくは無置換の環形成炭素数6〜30のアリール基であることがより好ましい。この場合、R22およびR25が水素原子であることが好ましい。
前記一般式(21)において、R21、R23、およびR24のうち少なくともいずれかが置換もしくは無置換の環形成炭素数6〜30のアリール基であることが好ましい。
前記一般式(21)において、R21、R23、およびR24が置換もしくは無置換の環形成炭素数6〜30のアリール基であることがより好ましい。この場合、R22が水素原子であることが好ましい。
Y、およびR21〜R30が置換基である場合の置換基は、置換もしくは無置換の炭素数1〜30のアルキル基、置換もしくは無置換の炭素数3〜30のシクロアルキル基、置換もしくは無置換の環形成炭素数6〜30のアリール基、置換もしくは無置換の炭素数1〜30のアルコキシ基、置換もしくは無置換の炭素数1〜30のアルキルチオ基、置換もしくは無置換の環形成炭素数6〜30のアリールオキシ基、置換もしくは無置換の環形成炭素数6〜30のアリールチオ基、置換もしくは無置換の炭素数2〜30のアルケニル基、置換もしくは無置換の環形成炭素数6〜30のアラルキル基、置換もしくは無置換の環形成原子数5〜30のヘテロアリール基、ハロゲン原子、ハロアルキル基、カルボキシ基、エステル基、カルバモイル基、アミノ基、ニトロ基、シアノ基、シリル基、およびシロキサニル基からなる群から選択されることが好ましく、置換もしくは無置換の炭素数1〜30のアルキル基、置換もしくは無置換の炭素数3〜30のシクロアルキル基、置換もしくは無置換の環形成炭素数6〜30のアリール基、置換もしくは無置換の炭素数1〜30のアルコキシ基、置換もしくは無置換の環形成炭素数6〜30のアリールオキシ基、置換もしくは無置換の環形成原子数5〜30のヘテロアリール基、ハロゲン原子、およびハロアルキル基からなる群から選択されることがより好ましい。
前記Z21〜Z22は、それぞれ独立に、ハロゲン原子、置換もしくは無置換の環形成炭素数6〜30のアリール基、置換もしくは無置換の炭素数1〜30のアルコキシ基、および置換もしくは無置換の環形成炭素数6〜30のアリールオキシ基からなる群から選択されることが好ましい。
フッ素原子で置換されたアルコキシ基としては、例えば、2,2,2−トリフロオロエトキシ基、2,2−ジフロオロエトキシ基、2,2,3,3,3−ペンタフルオロ−1−プロポキシ基、2,2,3,3−テトラフルオロ−1−プロポキシ基、1,1,1,3,3,3−ヘキサフルオロ−2−プロポキシ基、2,2,3,3,4,4,4−ヘプタフルオロ−1−ブチルオキシ基、2,2,3,3,4,4−ヘキサフルオロ−1−ブチルオキシ基、ノナフルオロターシャリーブチルオキシ基、2,2,3,3,4,4,5,5,5−ノナフルオロペンタノキシ基、2,2,3,3,4,4,5,5,6,6,6−ウンデカフルオロヘキサノキシ基、2,3−ビス(トリフルオロメチル)−2,3−ブタンジオキシ基、1,1,2,2−テトラ(トリフルオロメチル)エチレングリコキシ基、4,4,5,5,6,6,6−ヘプタフルオロヘキサン−1,2−ジオキシ基、および4,4,5,5,6,6,7,7,8,8,9,9,9−トリデカフルオロノナン−1,2−ジオキシ基等が挙げられる。
フッ素原子で置換されたアリールオキシ基、またはフルオロアルキル基で置換されたアリールオキシ基としては、例えば、ペンタフルオロフェノキシ基、3,4,5−トリフルオロフェノキシ基、4−トリフルオロメチルフェノキシ基、3,5−ビストリフルオロメチルフェノキシ基、3−フルオロ−4−トリフルオロメチルフェノキシ基、2,3,5,6−テトラフルオロ−4−トリフルオロメチルフェノキシ基、4−フルオロカテコラート基、4−トリフルオロメチルカテコラート基、および3,5−ビストリフルオロメチルカテコラート基等が挙げられる。
第二の化合物は、500nm以上550nm以下の波長範囲に発光ピークを示す蛍光発光性の化合物であることが好ましい。このような蛍光発光性の第二の化合物を第一の化合物と共に発光層に用いることで、有機EL素子の性能が向上する。発光ピークを示す波長は、測定対象化合物が10−6モル/リットル以上10−5モル/リットル以下の濃度で溶解しているトルエン溶液について、測定した発光スペクトラムにおける発光強度が最大となる発光スペクトルのピーク波長をいう。
本実施形態に係る第二の化合物の具体例を以下に示す。なお、本発明における第二の化合物は、これらの具体例に限定されない。

第一実施形態の有機EL素子によれば高性能な有機EL素子を提供できる。
従来、蛍光発光性の化合物と共に発光層に用いられている化合物としては、主にアントラセン誘導体である。アントラセン誘導体は、電子輸送性が相対的に正孔輸送性より強いため、発光層中のキャリアバランスの向上に課題があった。そのため、有機EL素子の駆動電圧の低下が望まれていた。
一方、第一実施形態の有機EL素子は、発光層に、遅延蛍光発光性の第一の化合物と、前記一般式(2)等で表される特定の構造を有する第二の化合物と、を含んでいる。第一実施形態の有機EL素子では、バイポーラー性を有する第一の化合物を用いることで、従来の蛍光ホストであるアントラセン誘導体と比較して、発光層におけるキャリアバランスが向上すると考えられる。その結果、従来の蛍光発光型の素子に比べて、有機EL素子の駆動電圧が低下すると考えられる。
第一実施形態の有機EL素子は、発光させたときに500nm以上550nm以下の波長範囲にピークを示す光を放射することが好ましい。すなわち、有機EL素子から放射される光の主ピーク波長が500nm以上550nm以下の範囲に含まれることが好ましい。本実施形態の有機EL素子を発光させたときに、発光層5において、主に第二の化合物が発光していることが好ましい。
・TADF機構
本実施形態の有機EL素子では、第一の化合物としてΔST(M1)が小さい化合物を用いることが好ましく、外部から与えられる熱エネルギーによって、第一の化合物の三重項準位から第一の化合物の一重項準位への逆項間交差が起こり易くなる。有機EL素子内部の電気励起された励起子の励起三重項状態が、逆項間交差によって、励起一重項状態へスピン交換がされるエネルギー状態変換機構をTADF機構と呼ぶ。
図4は、発光層における第一の化合物および第二の化合物のエネルギー準位の関係の一例を示す図である。図4において、S0は、基底状態を表し、S1(M1)は、第一の化合物の最低励起一重項状態を表し、T1(M1)は、第一の化合物の最低励起三重項状態を表し、S1(M2)は、第二の化合物の最低励起一重項状態を表し、T1(M2)は、第二の化合物の最低励起三重項状態を表す。図4中のS1(M1)からS1(M2)へ向かう破線の矢印は、第一の化合物の最低励起一重項状態から第二の化合物の最低励起一重項状態へのフェルスター型エネルギー移動を表す。なお、本実施形態では、最低励起一重項状態S1と最低励起三重項状態T1との差を、ΔSTとして定義する。
図4に示すように、第一の化合物としてΔST(M1)の小さな化合物を用いると、最低励起三重項状態T1(M1)は、熱エネルギーにより、最低励起一重項状態S1(M1)に逆項間交差が可能である。そして、第一の化合物の最低励起一重項状態S1(M1)から第二の化合物の最低励起一重項状態S1(M2)へのフェルスター型エネルギー移動が生じる。この結果、第二の化合物の最低励起一重項状態S1(M2)からの蛍光発光を観測することができる。このTADF機構による遅延蛍光を利用することによっても、理論的に内部効率を100%まで高めることができると考えられている。
本実施形態において、第一の化合物の一重項エネルギーS(M1)は、第二の化合物の一重項エネルギーS(M2)よりも大きいことが好ましい。
また、本実施形態において、第一の化合物の77[K]におけるエネルギーギャップT77K(M1)は、第二の化合物の77[K]におけるエネルギーギャップT77K(M2)よりも大きいことが好ましい。
・三重項エネルギーと77[K]におけるエネルギーギャップとの関係
ここで、三重項エネルギーと77[K]におけるエネルギーギャップとの関係について説明する。本実施形態では、77[K]におけるエネルギーギャップは、通常定義される三重項エネルギーとは異なる点がある。
一般に、三重項エネルギーは、測定対象となる化合物を溶媒に溶解させた試料を低温(77[K])で燐光スペクトル(縦軸:燐光発光強度、横軸:波長とする。)を測定し、この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値に基づいて、所定の換算式から算出される。
ここで、本実施形態に用いる遅延蛍光性化合物としては、ΔSTが小さい化合物であることが好ましい。ΔSTが小さいと、低温(77[K])状態でも、項間交差、及び逆項間交差が起こりやすく、励起一重項状態と励起三重項状態とが混在する。その結果、上記と同様にして測定されるスペクトルは、励起一重項状態および励起三重項状態の両者からの発光を含んでおり、いずれの状態から発光したのかについて峻別することは困難であるが、基本的には三重項エネルギーの値が支配的と考えられる。
そのため、本実施形態では、通常の三重項エネルギーTと測定手法は同じであるが、その厳密な意味において異なることを区別するため、次のようにして測定される値をエネルギーギャップT77Kと称する。測定対象となる化合物をEPA(ジエチルエーテル:イソペンタン:エタノール=5:5:2(容積比))中に、濃度が10μmol/Lとなるように溶解し、この溶液を石英セル中に入れて測定試料とする。この測定試料について、低温(77[K])で燐光スペクトル(縦軸:燐光発光強度、横軸:波長とする。)を測定し、この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]に基づいて、次の換算式(F1)から算出されるエネルギー量をエネルギーギャップT77Kとする。
換算式(F1):T77K[eV]=1239.85/λedge
燐光スペクトルの短波長側の立ち上がりに対する接線は以下のように引く。燐光スペクトルの短波長側から、スペクトルの極大値のうち、最も短波長側の極大値までスペクトル曲線上を移動する際に、長波長側に向けて曲線上の各点における接線を考える。この接線は、曲線が立ち上がるにつれ(つまり縦軸が増加するにつれ)、傾きが増加する。この傾きの値が極大値をとる点において引いた接線(すなわち変曲点における接線)が、当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
なお、スペクトルの最大ピーク強度の15%以下のピーク強度をもつ極大点は、上述の最も短波長側の極大値には含めず、最も短波長側の極大値に最も近い、傾きの値が極大値をとる点において引いた接線を当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
燐光の測定には、(株)日立ハイテクノロジー製のF−4500形分光蛍光光度計本体を用いることができる。なお、測定装置はこの限りではなく、冷却装置及び低温用容器と、励起光源と、受光装置とを組み合わせることにより、測定してもよい。
・一重項エネルギーS
一重項エネルギーSは、次のようにして測定される。
測定対象となる化合物の10μmol/Lトルエン溶液を調製して石英セルに入れ、常温(300K)でこの試料の吸収スペクトル(縦軸:発光強度、横軸:波長とする。)を測定した。この吸収スペクトルの長波長側の立ち下がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を次に示す換算式2に代入して一重項エネルギーを算出した。
換算式2:S[eV]=1239.85/λedge
一重項エネルギーSの測定では、吸収スペクトルを日立社製の分光光度計(装置名:U3310)を用いることができる。なお、吸収スペクトル測定装置は、ここで用いた装置に限定されない。
吸収スペクトルの長波長側の立ち下がりに対する接線は以下のように引く。吸収スペクトルの極大値のうち、最も長波長側の極大値から長波長方向にスペクトル曲線上を移動する際に、曲線上の各点における接線を考える。この接線は、曲線が立ち下がるにつれ(つまり縦軸の値が減少するにつれ)、傾きが減少しその後増加することを繰り返す。傾きの値が最も長波長側(ただし、吸光度が0.1以下となる場合は除く)で極小値をとる点において引いた接線を当該吸収スペクトルの長波長側の立ち下がりに対する接線とする。
なお、吸光度の値が0.2以下の極大点は、上記最も長波長側の極大値には含めない。
・発光層の膜厚
本実施形態の有機EL素子1における発光層5の膜厚は、好ましくは5nm以上50nm以下、より好ましくは7nm以上50nm以下、さらに好ましくは10nm以上50nm以下である。発光層5の膜厚が5nm以上であれば、発光層5を形成し易くなり、色度も調整し易くなる。発光層5の膜厚が50nm以下であれば、駆動電圧の上昇を抑制することができる。
・発光層における化合物の含有率
本実施形態の有機EL素子1では、発光層5において、第一の化合物の含有率は、90質量%以上99質量%以下であることが好ましく、第二の化合物の含有率は、1質量%以上10質量%以下であることが好ましい。発光層5における第一の化合物および第二の化合物の合計含有率の上限は、100質量%である。なお、本実施形態は、発光層5に、第一の化合物および第二の化合物以外の材料が含まれることを除外しない。
(基板)
基板2は、有機EL素子1の支持体として用いられる。基板2としては、例えば、ガラス、石英、およびプラスチック等を用いることができる。また、可撓性基板を用いてもよい。可撓性基板とは、折り曲げることができる(フレキシブル)基板のことであり、例えば、ポリカーボネート、ポリアリレート、ポリエーテルスルフォン、ポリプロピレン、ポリエステル、ポリフッ化ビニル、ポリ塩化ビニル、ポリイミド、ポリエチレンナフタレートからなるプラスチック基板等が挙げられる。また、無機蒸着フィルムを用いることもできる。
(陽極)
基板2上に形成される陽極3には、仕事関数の大きい(具体的には4.0eV以上)金属、合金、電気伝導性化合物、およびこれらの混合物等を用いることが好ましい。具体的には、例えば、酸化インジウム−酸化スズ(ITO:Indium Tin Oxide)、珪素もしくは酸化珪素を含有した酸化インジウム−酸化スズ、酸化インジウム−酸化亜鉛、酸化タングステンおよび酸化亜鉛を含有した酸化インジウム、並びにグラフェン等が挙げられる。この他、金(Au)、白金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、チタン(Ti)、または金属材料の窒化物(例えば、窒化チタン)等が挙げられる。
これらの材料は、通常、スパッタリング法により成膜される。例えば、酸化インジウム−酸化亜鉛は、酸化インジウムに対し1質量%以上10質量%以下の酸化亜鉛を加えたターゲットを用いることにより、スパッタリング法で形成することができる。また、例えば、酸化タングステン、および酸化亜鉛を含有した酸化インジウムは、酸化インジウムに対し酸化タングステンを0.5質量%以上5質量%以下、酸化亜鉛を0.1質量%以上1質量%以下含有したターゲットを用いることにより、スパッタリング法で形成することができる。その他、真空蒸着法、塗布法、インクジェット法、およびスピンコート法などにより作製してもよい。
陽極3上に形成される有機層のうち、陽極3に接して形成される正孔注入層6は、陽極3の仕事関数に関係なく正孔(ホール)注入が容易である複合材料を用いて形成されるため、電極材料として可能な材料(例えば、金属、合金、電気伝導性化合物、およびこれらの混合物、その他、元素周期表の第1族または第2族に属する元素も含む)を用いることもできる。
仕事関数の小さい材料である、元素周期表の第1族または第2族に属する元素、すなわちリチウム(Li)やセシウム(Cs)等のアルカリ金属、およびマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、およびこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)、イッテルビウム(Yb)等の希土類金属およびこれらを含む合金等を用いることもできる。なお、アルカリ金属、アルカリ土類金属、およびこれらを含む合金を用いて陽極3を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。さらに、銀ペーストなどを用いる場合には、塗布法やインクジェット法などを用いることができる。
(正孔注入層)
正孔注入層6は、正孔注入性の高い物質を含む層である。正孔注入性の高い物質としては、例えば、モリブデン酸化物、チタン酸化物、バナジウム酸化物、レニウム酸化物、ルテニウム酸化物、クロム酸化物、ジルコニウム酸化物、ハフニウム酸化物、タンタル酸化物、銀酸化物、タングステン酸化物、およびマンガン酸化物等を用いることができる。
また、正孔注入性の高い物質としては、例えば、低分子の有機化合物である4,4’,4’’−トリス(N,N−ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ビフェニル(略称:DPAB)、4,4’−ビス(N−{4−[N’−(3−メチルフェニル)−N’−フェニルアミノ]フェニル}−N−フェニルアミノ)ビフェニル(略称:DNTPD)、1,3,5−トリス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ベンゼン(略称:DPA3B)、3−[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA1)、3,6−ビス[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA2)、および3−[N−(1−ナフチル)−N−(9−フェニルカルバゾール−3−イル)アミノ]−9−フェニルカルバゾール(略称:PCzPCN1)等の芳香族アミン化合物等、並びにジピラジノ[2,3−f:20,30−h]キノキサリン−2,3,6,7,10,11−ヘキサカルボニトリル(HAT−CN)等も挙げられる。
また、正孔注入性の高い物質としては、高分子化合物(オリゴマー、デンドリマー、ポリマー等)を用いることもできる。例えば、ポリ(N−ビニルカルバゾール)(略称:PVK)、ポリ(4−ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N−(4−{N’−[4−(4−ジフェニルアミノ)フェニル]フェニル−N’−フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、およびポリ[N,N’−ビス(4−ブチルフェニル)−N,N’−ビス(フェニル)ベンジジン](略称:Poly−TPD)などの高分子化合物が挙げられる。また、ポリ(3,4−エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(PEDOT/PSS)、およびポリアニリン/ポリ(スチレンスルホン酸)(PAni/PSS)等の酸を添加した高分子化合物を用いることもできる。
(正孔輸送層)
正孔輸送層7は、正孔輸送性の高い物質を含む層である。正孔輸送層7には、例えば、芳香族アミン化合物、カルバゾール誘導体、およびアントラセン誘導体等を使用することができる。具体的には、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPB)、N,N’−ビス(3−メチルフェニル)−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(略称:TPD)、4−フェニル−4’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:BAFLP)、4,4’−ビス[N−(9,9−ジメチルフルオレン−2−イル)−N−フェニルアミノ]ビフェニル(略称:DFLDPBi)、4,4’,4’’−トリス(N,N−ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミン(略称:MTDATA)、および4,4’−ビス[N−(スピロ−9,9’−ビフルオレン−2−イル)−N―フェニルアミノ]ビフェニル(略称:BSPB)などの芳香族アミン化合物等を用いることができる。ここに述べた物質は、主に10−6cm/(V・s)以上の正孔移動度を有する物質である。
正孔輸送層7には、CBP、9−[4−(N−カルバゾリル)]フェニル−10−フェニルアントラセン(CzPA)、および9−フェニル−3−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(PCzPA)のようなカルバゾール誘導体、並びにt−BuDNA、DNA、およびDPAnthのようなアントラセン誘導体を用いてもよい。ポリ(N−ビニルカルバゾール)(略称:PVK)、およびポリ(4−ビニルトリフェニルアミン)(略称:PVTPA)等の高分子化合物を用いることもできる。
但し、電子よりも正孔の輸送性の高い物質であれば、これら以外の物質を用いてもよい。なお、正孔輸送性の高い物質を含む層は、単層だけでなく、上記物質からなる層が二層以上積層した層としてもよい。
正孔輸送層を二層以上配置する場合、エネルギーギャップのより大きい材料を含む層を、発光層5に近い側に配置することが好ましい。
本実施形態において、正孔輸送層7は、発光層5で生成する三重項励起子が正孔輸送層へ拡散することを防止し、三重項励起子を発光層5内に閉じ込める機能を有することが好ましい。
(電子輸送層)
電子輸送層8は、電子輸送性の高い物質を含む層である。電子輸送層8には、1)アルミニウム錯体、ベリリウム錯体、および亜鉛錯体等の金属錯体、2)イミダゾール誘導体、ベンゾイミダゾール誘導体、アジン誘導体、カルバゾール誘導体、およびフェナントロリン誘導体等の複素芳香族化合物、並びに3)高分子化合物を使用することができる。具体的には低分子の有機化合物として、Alq、トリス(4−メチル−8−キノリノラト)アルミニウム(略称:Almq)、ビス(10−ヒドロキシベンゾ[h]キノリナト)ベリリウム(略称:BeBq)、BAlq、Znq、ZnPBO、およびZnBTZなどの金属錯体等を用いることができる。また、金属錯体以外にも、2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール(略称:PBD)、1,3−ビス[5−(ptert−ブチルフェニル)−1,3,4−オキサジアゾール−2−イル]ベンゼン(略称:OXD−7)、3−(4−tert−ブチルフェニル)−4−フェニル−5−(4−ビフェニリル)−1,2,4−トリアゾール(略称:TAZ)、3−(4−tert−ブチルフェニル)−4−(4−エチルフェニル)−5−(4−ビフェニリル)−1,2,4−トリアゾール(略称:p−EtTAZ)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)、および4,4’−ビス(5−メチルベンゾオキサゾール−2−イル)スチルベン(略称:BzOs)などの複素芳香族化合物も用いることができる。本実施態様においては、ベンゾイミダゾール化合物を好適に用いることができる。ここに述べた物質は、主に10−6cm/(V・s)以上の電子移動度を有する物質である。なお、正孔輸送性よりも電子輸送性の高い物質であれば、上記以外の物質を電子輸送層8として用いてもよい。また、電子輸送層8は、単層だけでなく、上記物質からなる層が二層以上積層した層としてもよい。
また、電子輸送層8には、高分子化合物を用いることもできる。例えば、ポリ[(9,9−ジヘキシルフルオレン−2,7−ジイル)−co−(ピリジン−3,5−ジイル)](略称:PF−Py)、およびポリ[(9,9−ジオクチルフルオレン−2,7−ジイル)−co−(2,2’−ビピリジン−6,6’−ジイル)](略称:PF−BPy)などを用いることができる。
本実施形態において、電子輸送層8は、発光層5で生成する三重項励起子が電子輸送層8や電子注入層9へ拡散することを防止し、三重項励起子を発光層5内に閉じ込める機能を有することが好ましい。
(電子注入層)
電子注入層9は、電子注入性の高い物質を含む層である。電子注入層9には、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)、およびリチウム酸化物(LiOx)等のような、アルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。その他、電子輸送性を有する物質にアルカリ金属、アルカリ土類金属、またはそれらの化合物を含有させた物質、具体的にはAlq中にマグネシウム(Mg)を含有させた物質等を用いてもよい。なお、この場合には、陰極4からの電子注入をより効率よく行うことができる。
あるいは、電子注入層9に、有機化合物と電子供与体(ドナー)とを混合してなる複合材料を用いてもよい。このような複合材料は、電子供与体によって有機化合物に電子が発生するため、電子注入性および電子輸送性に優れている。この場合、有機化合物としては、発生した電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述した電子輸送層8を構成する物質(金属錯体や複素芳香族化合物等)を用いることができる。電子供与体としては、有機化合物に対し電子供与性を示す物質であればよい。具体的には、アルカリ金属、アルカリ土類金属、または希土類金属が好ましく、例えば、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、およびイッテルビウム等が挙げられる。また、アルカリ金属酸化物、またはアルカリ土類金属酸化物が好ましく、例えば、リチウム酸化物、カルシウム酸化物、およびバリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。
(陰極)
陰極4には、仕事関数の小さい(具体的には3.8eV以下)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。このような陰極材料の具体例としては、元素周期表の第1族または第2族に属する元素、すなわちリチウム(Li)やセシウム(Cs)等のアルカリ金属、およびマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、およびこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)、イッテルビウム(Yb)等の希土類金属およびこれらを含む合金等が挙げられる。
なお、アルカリ金属、アルカリ土類金属、およびこれらを含む合金を用いて陰極4を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。また、銀ペーストなどを用いる場合には、塗布法やインクジェット法などを用いることができる。
なお、電子注入層9を設けることにより、仕事関数の大小に関わらず、Al、Ag、ITO、グラフェン、および珪素もしくは酸化珪素を含有した酸化インジウム−酸化スズ等、様々な導電性材料を用いて陰極4を形成することができる。これらの導電性材料は、スパッタリング法、インクジェット法、およびスピンコート法等を用いて成膜することができる。
(層形成方法)
本実施形態の有機EL素子1の各層の形成方法としては、上記で特に言及した以外には制限されず、乾式成膜法や湿式成膜法等の公知の方法を採用できる。乾式成膜法としては、真空蒸着法、スパッタリング法、プラズマ法、およびイオンプレーティング法などが挙げられる。湿式成膜法としては、スピンコーティング法、ディッピング法、フローコーティング法、およびインクジェット法などが挙げられる。
(膜厚)
本実施形態の有機EL素子1の各有機層の膜厚は、上記で特に言及した以外には制限されない。一般に膜厚が薄すぎるとピンホール等の欠陥が生じやすく、逆に厚すぎると高い印加電圧が必要となり効率が悪くなるため、通常、膜厚は、数nmから1μmの範囲が好ましい。
本実施形態において、環形成炭素数とは、原子が環状に結合した構造の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子のうちの炭素原子の数を表す。当該環が置換基によって置換される場合、置換基に含まれる炭素は環形成炭素数には含まない。以下で記される「環形成炭素数」については、特筆しない限り同様とする。例えば、ベンゼン環は環形成炭素数が6であり、ナフタレン環は環形成炭素数が10であり、ピリジニル基は環形成炭素数5であり、フラニル基は環形成炭素数4である。また、ベンゼン環やナフタレン環に置換基として例えばアルキル基が置換している場合、当該アルキル基の炭素数は、環形成炭素数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の炭素数は環形成炭素数の数に含めない。
本実施形態において、環形成原子数とは、原子が環状に結合した構造(例えば単環、縮合環、環集合)の化合物(例えば単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子の数を表す。環を構成しない原子(例えば環を構成する原子の結合手を終端する水素原子)や、当該環が置換基によって置換される場合の置換基に含まれる原子は環形成原子数には含まない。以下で記される「環形成原子数」については、特筆しない限り同様とする。例えば、ピリジン環は、環形成原子数が6であり、キナゾリン環は、環形成原子数が10であり、フラン環は、環形成原子数が5である。ピリジン環やキナゾリン環の炭素原子にそれぞれ結合している水素原子や置換基を構成する原子については、環形成原子数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の原子数は環形成原子数の数に含めない。
次に前記一般式に記載の各置換基について説明する。
本実施形態における環形成炭素数6〜30または環形成炭素数6〜40の芳香族炭化水素基(アリール基と称する場合がある。)としては、例えば、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、アントリル基、フェナントリル基、フルオレニル基、ピレニル基、クリセニル基、フルオランテニル基、ベンゾ[a]アントリル基、ベンゾ[c]フェナントリル基、トリフェニレニル基、ベンゾ[k]フルオランテニル基、ベンゾ[g]クリセニル基、ベンゾ[b]トリフェニレニル基、ピセニル基、およびペリレニル基などが挙げられる。
本実施形態におけるアリール基としては、環形成炭素数が6〜20であることが好ましく、6〜14であることがより好ましく、6〜12であることが更に好ましい。上記アリール基の中でもフェニル基、ビフェニル基、ナフチル基、フェナントリル基、ターフェニル基、フルオレニル基が特に好ましい。1−フルオレニル基、2−フルオレニル基、3−フルオレニル基および4−フルオレニル基については、9位の炭素原子に、後述する本実施形態における置換もしくは無置換の炭素数1〜30のアルキル基や置換もしくは無置換の環形成炭素数6〜18のアリール基が置換されていることが好ましい。
本実施形態における環形成原子数5〜30の複素環基(ヘテロアリール基、ヘテロ芳香族環基、または芳香族複素環基と称する場合がある。)は、ヘテロ原子として、窒素、硫黄、酸素、ケイ素、セレン原子、およびゲルマニウム原子からなる群から選択される少なくともいずれかの原子を含むことが好ましく、窒素、硫黄、および酸素からなる群から選択される少なくともいずれかの原子を含むことがより好ましい。
本実施形態における環形成原子数5〜30の複素環基(ヘテロアリール基、ヘテロ芳香族環基、または芳香族複素環基と称する場合がある。)としては、例えば、ピリジル基、ピリミジニル基、ピラジニル基、ピリダジニル基、トリアジニル基、キノリル基、イソキノリニル基、ナフチリジニル基、フタラジニル基、キノキサリニル基、キナゾリニル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、ピロリル基、イミダゾリル基、ピラゾリル基、トリアゾリル基、テトラゾリル基、インドリル基、ベンズイミダゾリル基、インダゾリル基、イミダゾピリジニル基、ベンズトリアゾリル基、カルバゾリル基、フリル基、チエニル基、オキサゾリル基、チアゾリル基、イソキサゾリル基、イソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、ベンゾフラニル基、ベンゾチオフェニル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、ベンゾイソキサゾリル基、ベンゾイソチアゾリル基、ベンゾオキサジアゾリル基、ベンゾチアジアゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、ピペリジニル基、ピロリジニル基、ピペラジニル基、モルホリル基、フェナジニル基、フェノチアジニル基、およびフェノキサジニル基などが挙げられる。
本実施形態における複素環基の環形成原子数は、5〜20であることが好ましく、5〜14であることがさらに好ましい。上記複素環基の中でも1−ジベンゾフラニル基、2−ジベンゾフラニル基、3−ジベンゾフラニル基、4−ジベンゾフラニル基、1−ジベンゾチオフェニル基、2−ジベンゾチオフェニル基、3−ジベンゾチオフェニル基、4−ジベンゾチオフェニル基、1−カルバゾリル基、2−カルバゾリル基、3−カルバゾリル基、4−カルバゾリル基、および9−カルバゾリル基が特に好ましい。1−カルバゾリル基、2−カルバゾリル基、3−カルバゾリル基および4−カルバゾリル基については、9位の窒素原子に、本実施形態における置換もしくは無置換の環形成炭素数6〜30のアリール基または置換もしくは無置換の環形成原子数5〜30の複素環基が置換していることが好ましい。
また、本実施形態において、複素環基は、例えば、下記一般式(XY−1)〜(XY−18)で表される部分構造から誘導される基であってもよい。
前記一般式(XY−1)〜(XY−18)において、XおよびYは、それぞれ独立に、ヘテロ原子であり、酸素原子、硫黄原子、セレン原子、ケイ素原子、またはゲルマニウム原子であることが好ましい。前記一般式(XY−1)〜(XY−18)で表される部分構造は、任意の位置で結合手を有して複素環基となり、この複素環基は、置換基を有していてもよい。
また、本実施形態において、置換もしくは無置換のカルバゾリル基としては、例えば、下記式で表されるような、カルバゾール環に対してさらに環が縮合した基も含み得る。このような基も置換基を有していてもよい。また、結合手の位置も適宜変更され得る。
本実施形態における炭素数1〜30のアルキル基としては、直鎖、分岐鎖または環状のいずれであってもよい。直鎖または分岐鎖のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、s−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−ペンタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、ネオペンチル基、アミル基、イソアミル基、1−メチルペンチル基、2−メチルペンチル基、1−ペンチルヘキシル基、1−ブチルペンチル基、1−ヘプチルオクチル基、および3−メチルペンチル基等が挙げられる。
本実施形態における直鎖または分岐鎖のアルキル基の炭素数は、1〜10であることが好ましく、1〜6であることがさらに好ましい。上記直鎖または分岐鎖のアルキル基の中でもメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、s−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基、アミル基、イソアミル基、およびネオペンチル基が特に好ましい。
本実施形態における炭素数3〜30のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、4−メチルシクロヘキシル基、アダマンチル基、およびノルボルニル基等が挙げられる。シクロアルキル基の環形成炭素数は、3〜10であることが好ましく、5〜8であることがさらに好ましい。上記シクロアルキル基の中でも、シクロペンチル基やシクロヘキシル基が特に好ましい。
アルキル基がハロゲン原子で置換されたハロゲン化アルキル基としては、例えば、上記炭素数1〜30のアルキル基が1以上のハロゲン原子で置換された基が挙げられる。具体的には、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、トリフルオロメチルメチル基、トリフルオロエチル基、ペンタフルオロエチル基等が挙げられる。
本実施形態における置換シリル基としては、炭素数3〜30のアルキルシリル基、環形成炭素数6〜30のアリールシリル基が挙げられる。
本実施形態における炭素数3〜30のアルキルシリル基としては、上記炭素数1〜30のアルキル基で例示したアルキル基を有するトリアルキルシリル基が挙げられ、具体的にはトリメチルシリル基、トリエチルシリル基、トリ−n−ブチルシリル基、トリ−n−オクチルシリル基、トリイソブチルシリル基、ジメチルエチルシリル基、ジメチルイソプロピルシリル基、ジメチル−n−プロピルシリル基、ジメチル−n−ブチルシリル基、ジメチル−t−ブチルシリル基、ジエチルイソプロピルシリル基、ビニルジメチルシリル基、プロピルジメチルシリル基、およびトリイソプロピルシリル基等が挙げられる。トリアルキルシリル基における3つのアルキル基は、それぞれ同一でも異なっていてもよい。
本実施形態における環形成炭素数6〜30のアリールシリル基としては、例えばジアルキルアリールシリル基、アルキルジアリールシリル基、およびトリアリールシリル基が挙げられる。
ジアルキルアリールシリル基は、例えば、上記炭素数1〜30のアルキル基で例示したアルキル基を2つ有し、上記環形成炭素数6〜30のアリール基を1つ有するジアルキルアリールシリル基が挙げられる。ジアルキルアリールシリル基の炭素数は、8〜30であることが好ましい。
アルキルジアリールシリル基は、例えば、上記炭素数1〜30のアルキル基で例示したアルキル基を1つ有し、上記環形成炭素数6〜30のアリール基を2つ有するアルキルジアリールシリル基が挙げられる。アルキルジアリールシリル基の炭素数は、13〜30であることが好ましい。
トリアリールシリル基は、例えば、上記環形成炭素数6〜30のアリール基を3つ有するトリアリールシリル基が挙げられる。トリアリールシリル基の炭素数は、18〜30であることが好ましい。
本実施形態における炭素数1〜30のアルコキシ基は、−OZと表される。このZの例として、上記炭素数1〜30のアルキル基が挙げられる。アルコキシ基は、例えばメトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、およびヘキシルオキシ基が挙げられる。アルコキシ基の炭素数は、1〜20であることが好ましい。
アルコキシ基がハロゲン原子で置換されたハロゲン化アルコキシ基としては、例えば、上記炭素数1〜30のアルコキシ基が1以上のフッ素原子で置換された基が挙げられる。
本実施形態における環形成炭素数6〜30のアリールオキシ基は、−OZと表される。このZの例として、上記環形成炭素数6〜30のアリール基が挙げられる。アリールオキシ基の環形成炭素数は、6〜20であることが好ましい。このアリールオキシ基としては、例えば、フェノキシ基が挙げられる。
炭素数2〜30のアルキルアミノ基は、−NHR、または−N(Rと表される。このRの例として、上記炭素数1〜30のアルキル基が挙げられる。
環形成炭素数6〜60のアリールアミノ基は、−NHR、または−N(Rと表される。このRの例として、上記環形成炭素数6〜30のアリール基が挙げられる。
炭素数1〜30のアルキルチオ基は、−SRと表される。このRの例として、上記炭素数1〜30のアルキル基が挙げられる。アルキルチオ基の炭素数は、1〜20であることが好ましい。
環形成炭素数6〜30のアリールチオ基は、−SRと表される。このRの例として、上記環形成炭素数6〜30のアリール基が挙げられる。アリールチオ基の環形成炭素数は、6〜20であることが好ましい。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、およびヨウ素原子等が挙げられ、フッ素原子が好ましい。
アルデヒド基、カルボニル基、エステル基、カルバモイル基、およびアミノ基には、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、または複素環などで置換されていてもよく、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、および複素環は、置換基をさらに有していてもよい。
シロキサニル基は、エーテル結合を介したケイ素化合物基であり、例えば、トリメチルシロキサニル基などが挙げられる。
本実施形態において、「環形成炭素」とは飽和環、不飽和環、または芳香環を構成する炭素原子を意味する。「環形成原子」とはヘテロ環(飽和環、不飽和環、および芳香環を含む)を構成する炭素原子およびヘテロ原子を意味する。
また、本実施形態において、水素原子とは、中性子数の異なる同位体、すなわち、軽水素(Protium)、重水素(Deuterium)、三重水素(Tritium)を包含する。
また、「置換もしくは無置換の」という場合における置換基としては、上述のようなアリール基、複素環基、アルキル基(直鎖または分岐鎖のアルキル基、シクロアルキル基、ハロアルキル基)、アルキルシリル基、アリールシリル基、アルコキシ基、アリールオキシ基、アルキルアミノ基、アリールアミノ基、アルキルチオ基、アリールチオ基の他に、アルケニル基、アルキニル基、アラルキル基、ハロゲン原子、シアノ基、ヒドロキシル基、ニトロ基、およびカルボキシ基が挙げられる。
ここで挙げた置換基の中では、アリール基、複素環基、アルキル基、ハロゲン原子、アルキルシリル基、アリールシリル基、シアノ基が好ましく、さらには、各置換基の説明において好ましいとした具体的な置換基が好ましい。
これらの置換基は、上記のアリール基、複素環基、アルキル基、アルキルシリル基、アリールシリル基、アルコキシ基、アリールオキシ基、アルキルアミノ基、アリールアミノ基、アルキルチオ基、アリールチオ基の他に、アルケニル基、アルキニル基、アラルキル基、ハロゲン原子、シアノ基、ヒドロキシル基、ニトロ基、およびカルボキシ基によって更に置換されてもよい。また、これらの置換基は複数が互いに結合して環を形成してもよい。
アルケニル基としては、炭素数2〜30のアルケニル基が好ましく、直鎖、分岐鎖、または環状のいずれであってもよく、例えば、ビニル基、プロペニル基、ブテニル基、オレイル基、エイコサペンタエニル基、ドコサヘキサエニル基、スチリル基、2,2−ジフェニルビニル基、1,2,2−トリフェニルビニル基、2−フェニル−2−プロペニル基、シクロペンタジエニル基、シクロペンテニル基、シクロヘキセニル基、およびシクロヘキサジエニル基等が挙げられる。
アルキニル基としては、炭素数2〜30のアルキニル基が好ましく、直鎖、分岐鎖、または環状のいずれであってもよく、例えば、エチニル、プロピニル、および2−フェニルエチニル等が挙げられる。
アラルキル基としては、環形成炭素数6〜30のアラルキル基が好ましく、−Z−Zと表される。このZの例として、上記炭素数1〜30のアルキル基に対応するアルキレン基が挙げられる。このZの例として、上記環形成炭素数6〜30のアリール基の例が挙げられる。このアラルキル基は、炭素数7〜30のアラルキル基(アリール部分は炭素数6〜30、好ましくは6〜20、より好ましくは6〜12)、アルキル部分は炭素数1〜24(好ましくは1〜20、より好ましくは1〜10、さらに好ましくは1〜6)であることが好ましい。このアラルキル基としては、例えば、ベンジル基、2−フェニルプロパン−2−イル基、1−フェニルエチル基、2−フェニルエチル基、1−フェニルイソプロピル基、2−フェニルイソプロピル基、フェニル−t−ブチル基、α−ナフチルメチル基、1−α−ナフチルエチル基、2−α−ナフチルエチル基、1−α−ナフチルイソプロピル基、2−α−ナフチルイソプロピル基、β−ナフチルメチル基、1−β−ナフチルエチル基、2−β−ナフチルエチル基、1−β−ナフチルイソプロピル基、2−β−ナフチルイソプロピル基が挙げられる。
「置換もしくは無置換の」という場合における「無置換」とは前記置換基で置換されておらず、水素原子が結合していることを意味する。
なお、本実施形態において、「置換もしくは無置換の炭素数XX〜YYのZZ基」という表現における「炭素数XX〜YY」は、ZZ基が無置換である場合の炭素数を表し、置換されている場合の置換基の炭素数は含めない。ここで、「YY」は「XX」よりも大きく、「XX」と「YY」はそれぞれ1以上の整数を意味する。
本実施形態において、「置換もしくは無置換の原子数XX〜YYのZZ基」という表現における「原子数XX〜YY」は、ZZ基が無置換である場合の原子数を表し、置換されている場合の置換基の原子数は含めない。ここで、「YY」は「XX」よりも大きく、「XX」と「YY」はそれぞれ1以上の整数を意味する。
本実施形態において、置換基同士が互いに結合して環構造が構築される場合、環構造は、飽和環、不飽和環、芳香族炭化水素環、または複素環である。
本実施形態において、連結基における芳香族炭化水素基および複素環基としては、上述した一価の基から、1つ以上の原子を除いて得られる二価以上の基が挙げられる。
また、本実施形態において、芳香族炭化水素環および複素環としては、上述した一価の基の由来となる環構造が挙げられる。
(有機EL素子用材料)
本発明の一実施形態に係る有機EL素子用材料は、遅延蛍光性の第一の化合物と、前記一般式(2)で表される第二の化合物とを含む。有機EL素子用材料は、本実施形態に係る第一の化合物および第二の化合物のみから構成されていてもよいし、他の化合物を含んで構成されていてもよい。
(層形成方法)
本実施形態の有機EL素子の各層の形成方法としては、上記で特に言及した以外には制限されないが、真空蒸着法、スパッタリング法、プラズマ法、イオンプレーティング法などの乾式成膜法や、スピンコーティング法、ディッピング法、フローコーティング法、インクジェット法などの湿式成膜法などの公知の方法を採用することができる。
(電子機器)
本発明の一実施形態に係る有機EL素子1は、表示装置や発光装置等の電子機器に使用できる。表示装置としては、例えば、有機ELパネルモジュール等の表示部品、テレビ、携帯電話、タブレットもしくはパーソナルコンピュータ等が挙げられる。発光装置としては、例えば、照明、もしくは車両用灯具等が挙げられる。
〔第二実施形態〕
第二実施形態に係る有機EL素子の構成について説明する。第二実施形態の説明において第一実施形態と同一の構成要素は、同一符号や名称を付す等して説明を省略もしくは簡略にする。また、第二実施形態では、特に言及されない材料や化合物については、第一実施形態で説明した材料や化合物と同様の材料や化合物を用いることができる。
第二実施形態に係る有機EL素子は、発光層が、第三の化合物をさらに含んでいる点で、第一実施形態に係る有機EL素子と異なる。その他の点については第一実施形態と同様である。
(第三の化合物)
第三の化合物の一重項エネルギーは、第一の化合物の一重項エネルギーよりも大きい。
・3つの成分の比率
本実施形態では、発光層において、第一の化合物の含有率は、10質量%以上80質量%以下であることが好ましく、第二の化合物の含有率は、1質量%以上10質量%以下であることが好ましく、第三の化合物の含有率は、10質量%以上80質量%以下であることが好ましい。発光層における第一の化合物、第二の化合物、および第三の化合物の合計含有率の上限は、100質量%である。なお、本実施形態は、発光層に、第一の化合物、第二の化合物、および第三の化合物以外の材料が含まれることを除外しない。
第三の化合物としては、特に限定されないが、アミン化合物以外の化合物であることが好ましい。また、例えば、第三の化合物としては、カルバゾール誘導体、ジベンゾフラン誘導体、およびジベンゾチオフェン誘導体からなる群から選択される少なくともいずれかの化合物を用いることができるが、これら誘導体に限定されない。
第三の化合物は、一つの分子中に下記一般式(31)で表される部分構造および下記一般式(32)で表される部分構造のうち少なくともいずれかを含む化合物であることも好ましい。
前記一般式(31)において、
31〜Y36は、それぞれ独立に、窒素原子、または第三の化合物の分子中における他の原子と結合する炭素原子であり、
ただし、Y31〜Y36のうち少なくともいずれかは、第三の化合物の分子中における他の原子と結合する炭素原子であり、
前記一般式(32)において、
41〜Y48は、それぞれ独立に、窒素原子、または第三の化合物の分子中における他の原子と結合する炭素原子であり、
ただし、Y41〜Y48のうち少なくともいずれかは、第三の化合物の分子中における他の原子と結合する炭素原子であり、
は、窒素原子、酸素原子、または硫黄原子である。
前記一般式(32)において、Y41〜Y48のうち少なくとも2つが第三の化合物の分子中における他の原子と結合する炭素原子であり、当該炭素原子を含む環構造が構築されていることも好ましい。
例えば、前記一般式(32)で表される部分構造が、下記一般式(321),(322),(323),(324),(325)および(326)で表される部分構造からなる群から選択されるいずれかであることが好ましい。
前記一般式(321)〜(326)において、
は、窒素原子、酸素原子、または硫黄原子であり、
41〜Y48は、それぞれ独立に、窒素原子、または第三の化合物の分子中における他の原子と結合する炭素原子であり、
は、窒素原子、酸素原子、硫黄原子、または炭素原子であり、
51〜Y54は、それぞれ独立に、窒素原子、または第三の化合物の分子中における他の原子と結合する炭素原子である。
本実施形態においては、第三の化合物は、前記一般式(321)〜(326)のうち前記一般式(323)で表される部分構造を有することが好ましい。
前記一般式(31)で表される部分構造は、下記一般式(33)で表される基および下記一般式(34)で表される基からなる群から選択される少なくともいずれかの基として第三の化合物に含まれることが好ましい。
下記一般式(33)および下記一般式(34)で表されるように、結合箇所が互いにメタ位に位置することは、77[K]におけるエネルギーギャップT77K(M3)を高く保つことができるため、第三の化合物として好ましい。
前記一般式(33)および前記一般式(34)において、Y31,Y32,Y34およびY36は、それぞれ独立に、窒素原子、またはCR31であり、R31は、水素原子または置換基であり、R31が置換基である場合の置換基は、置換もしくは無置換の環形成炭素数6〜30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5〜30の複素環基、置換もしくは無置換の炭素数1〜30のアルキル基、置換もしくは無置換の炭素数1〜30のフルオロアルキル基、置換もしくは無置換の炭素数3〜30のシクロアルキル基、置換もしくは無置換の炭素数7〜30のアラルキル基、置換シリル基、置換ゲルマニウム基、置換ホスフィンオキシド基、ハロゲン原子、シアノ基、ニトロ基、およびカルボキシ基からなる群から選択される置換基であり、ただし、前記R31における置換もしくは無置換の環形成炭素数6〜30の芳香族炭化水素基は、非縮合環であることが好ましい。
前記一般式(33)および前記一般式(34)において、波線部分は、第三の化合物の分子中における他の原子または他の構造との結合箇所を表す。
前記一般式(33)において、前記Y31,前記Y32,前記Y34および前記Y36は、それぞれ独立に、CR31であることが好ましく、複数のR31は、同一でも異なっていてもよい。
また、前記一般式(34)において、前記Y32,前記Y34および前記Y36は、それぞれ独立に、CR31であることが好ましく、複数のR31は、同一でも異なっていてもよい。
置換ゲルマニウム基は、−Ge(R101で表されることが好ましい。R101は、それぞれ独立に、置換基である。置換基R101は、置換もしくは無置換の炭素数1〜30のアルキル基、または置換もしくは無置換の環形成炭素数6〜30の芳香族炭化水素基であることが好ましい。複数のR101は、互いに同一でも異なっていてもよい。
前記一般式(32)で表される部分構造は、下記一般式(35)で表される基,下記一般式(36)で表される基,下記一般式(37)で表される基,下記一般式(38)で表される基,下記一般式(39)で表される基,および下記一般式(30a)で表される基からなる群から選択される少なくともいずれかの基として第三の化合物に含まれることが好ましい。
前記一般式(35)〜(39),(30a)において、
41,Y42,Y43,Y44,Y45,Y46,Y47,およびY48は、それぞれ独立に、窒素原子またはCR32であり、
32は、水素原子または置換基であり、R32が置換基である場合の置換基は、置換もしくは無置換の環形成炭素数6〜30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5〜30の複素環基、置換もしくは無置換の炭素数1〜30のアルキル基、置換もしくは無置換の炭素数1〜30のフルオロアルキル基、置換もしくは無置換の炭素数3〜30のシクロアルキル基、置換もしくは無置換の炭素数7〜30のアラルキル基、置換シリル基、置換ゲルマニウム基、置換ホスフィンオキシド基、ハロゲン原子、シアノ基、ニトロ基、およびカルボキシ基からなる群から選択される置換基であり、ただし、前記R32における置換もしくは無置換の環形成炭素数6〜30の芳香族炭化水素基は、非縮合環であることが好ましく、
前記一般式(35),(36)において、Xは、窒素原子であり、
前記一般式(37)〜(39),(30a)において、Xは、NR33、酸素原子または硫黄原子であり、
33は、置換もしくは無置換の環形成炭素数6〜30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5〜30の複素環基、置換もしくは無置換の炭素数1〜30のアルキル基、置換もしくは無置換の炭素数1〜30のフルオロアルキル基、置換もしくは無置換の炭素数3〜30のシクロアルキル基、置換もしくは無置換の炭素数7〜30のアラルキル基、置換シリル基、置換ゲルマニウム基、置換ホスフィンオキシド基、フッ素原子、シアノ基、ニトロ基、およびカルボキシ基からなる群から選択される置換基であり、ただし、前記R33における置換もしくは無置換の環形成炭素数6〜30の芳香族炭化水素基は、非縮合環であることが好ましい。
前記一般式(35)〜(39),(30a)において、波線部分は、第三の化合物の分子中における他の原子または他の構造との結合箇所を表す。
前記一般式(35)において、Y41〜Y48は、それぞれ独立に、CR32であることが好ましく、前記一般式(36)および前記一般式(37)において、Y41〜Y45,Y47およびY48は、それぞれ独立に、CR32であることが好ましく、前記一般式(38)において、Y41,Y42,Y44,Y45,Y47およびY48は、それぞれ独立に、CR32であることが好ましく、前記一般式(39)において、Y42〜Y48は、それぞれ独立に、CR32であることが好ましく、前記一般式(30a)において、Y42〜Y47は、それぞれ独立に、CR32であることが好ましく、複数のR32は、同一でも異なっていてもよい。
第三の化合物において、前記Xは、酸素原子もしくは硫黄原子であることが好ましく、酸素原子であることがより好ましい。
第三の化合物において、前記R31、および前記R32は、それぞれ独立に、水素原子または置換基であって、前記R31、および前記R32における置換基は、フッ素原子、シアノ基、置換もしくは無置換の炭素数1〜30のアルキル基、置換もしくは無置換の環形成炭素数6〜30の芳香族炭化水素基、および置換もしくは無置換の環形成原子数5〜30の複素環基からなる群から選択される置換基であることが好ましい。前記R31、および前記R32は、水素原子、シアノ基、置換もしくは無置換の環形成炭素数6〜30の芳香族炭化水素基、または置換もしくは無置換の環形成原子数5〜30の複素環基であることがより好ましい。ただし、前記R31、および前記R32における置換もしくは無置換の環形成炭素数6〜30の芳香族炭化水素基は、非縮合環であることが好ましい。
第三の化合物は、芳香族炭化水素化合物、または芳香族複素環化合物であることも好ましい。また、第三の化合物は、分子中に縮合芳香族炭化水素環を有していないことが好ましい。
・第三の化合物の製造方法
第三の化合物は、例えば、国際公開第2012/153780号および国際公開第2013/038650号等に記載の方法により製造することができる。
第三の化合物における置換基の例は、例えば、以下のとおりであるが、本発明は、これらの例に限定されない。
芳香族炭化水素基(アリ−ル基と称する場合がある。)の具体例としては、フェニル基、トリル基、キシリル基、ナフチル基、フェナントリル基、ピレニル基、クリセニル基、ベンゾ[c]フェナントリル基、ベンゾ[g]クリセニル基、ベンゾアントリル基、トリフェニレニル基、フルオレニル基、9,9−ジメチルフルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、ビフェニル基、ターフェニル基、クォーターフェニル基、およびフルオランテニル基等が挙げられ、好ましくはフェニル基、ビフェニル基、ターフェニル基、クォーターフェニル基、ナフチル基、トリフェニレニル基、およびフルオレニル基等を挙げることができる。
置換基を有する芳香族炭化水素基としては、例えばトリル基、キシリル基、および9,9−ジメチルフルオレニル基等を挙げることができる。
具体例が示すように、アリール基は、縮合アリール基及び非縮合アリール基の両方を含む。
芳香族炭化水素基としては、フェニル基、ビフェニル基、ターフェニル基、クォーターフェニル基、ナフチル基、トリフェニレニル基、およびフルオレニル基が好ましい。
芳香族複素環基(ヘテロアリール基、ヘテロ芳香族環基、または複素環基と称する場合がある。)の具体例としては、ピロリル基、ピラゾリル基、ピラジニル基、ピリミジニル基、ピリダジニル基、ピリジル基、トリアジニル基、インドリル基、イソインドリル基、イミダゾリル基、ベンズイミダゾリル基、インダゾリル基、イミダゾ[1,2−a]ピリジニル基、フリル基、ベンゾフラニル基、イソベンゾフラニル基、ジベンゾフラニル基、アザジベンゾフラニル基、チオフェニル基、ベンゾチオフェニル基、ジベンゾチオフェニル基、アザジベンゾチオフェニル基、キノリル基、イソキノリル基、キノキサリニル基、キナゾリニル基、ナフチリジニル基、カルバゾリル基、アザカルバゾリル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基、オキサゾリル基、オキサジアゾリル基、フラザニル基、ベンズオキサゾリル基、チエニル基、チアゾリル基、チアジアゾリル基、ベンズチアゾリル基、トリアゾリル基、テトラゾリル基等が挙げられ、好ましくは、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基、ピリジル基、ピリミジニル基、トリアジニル基、アザジベンゾフラニル基、およびアザジベンゾチオフェニル基等を挙げることができる。
芳香族複素環基としては、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基、ピリジル基、ピリミジニル基、トリアジニル基、アザジベンゾフラニル基、およびアザジベンゾチオフェニル基が好ましく、ジベンゾフラニル基、ジベンゾチオフェニル基、アザジベンゾフラニル基、およびアザジベンゾチオフェニル基がさらに好ましい。
第三の化合物において、置換シリル基は、置換もしくは無置換のトリアルキルシリル基、置換もしくは無置換のアリールアルキルシリル基、または置換もしくは無置換のトリアリールシリル基であることも好ましい。
置換もしくは無置換のトリアルキルシリル基の具体例としては、トリメチルシリル基、およびトリエチルシリル基等を挙げることができる。
置換若しくは無置換のアリールアルキルシリル基の具体例としては、ジフェニルメチルシリル基、ジトリルメチルシリル基、およびフェニルジメチルシリル基等を挙げることができる。
置換若しくは無置換のトリアリールシリル基の具体例としては、トリフェニルシリル基、およびトリトリルシリル基等を挙げることができる。
第三の化合物において、置換ホスフィンオキシド基は、置換もしくは無置換のジアリールホスフィンオキシド基であることも好ましい。
置換もしくは無置換のジアリールホスフィンオキシド基の具体例としては、ジフェニルホスフィンオキシド基、およびジトリルホスフィンオキシド基等を挙げることができる。
第二実施形態の有機EL素子によれば高性能な有機EL素子を提供できる。
第二実施形態の有機EL素子は、発光層に、遅延蛍光発光性の第一の化合物と、前記一般式(2)等で表される特定の構造を有する第二の化合物と、第一の化合物よりも大きな一重項エネルギーを有する第三の化合物と、を含んでおり、発光効率が向上する。発光効率が向上する理由としては、第三の化合物が含まれていることによって発光層のキャリアバランスが改善されるためと考えられる。
〔実施形態の変形〕
なお、本発明は、上述の実施形態に限定されず、本発明の目的を達成できる範囲での変更、改良などは、本発明に含まれる。
例えば、発光層は、1層に限られず、複数の発光層が積層されていてもよい。有機EL素子が複数の発光層を有する場合、少なくとも1つの発光層が前記第一の化合物および前記第二の化合物を含んでいればよい。例えば、その他の発光層が、蛍光発光型の発光層であっても、三重項励起状態から直接基底状態への電子遷移による発光を利用した燐光発光型の発光層であってもよい。
また、有機EL素子が複数の発光層を有する場合、これらの発光層が互いに隣接して設けられていてもよいし、中間層を介して複数の発光ユニットが積層された、いわゆるタンデム型の有機EL素子であってもよい。
また、例えば、発光層の陽極側や陰極側に障壁層を隣接させて設けてもよい。障壁層は、発光層に接して配置され、正孔、電子および励起子の少なくともいずれかを阻止することが好ましい。
例えば、発光層の陰極側で接して障壁層が配置された場合、当該障壁層は、電子を輸送し、正孔が当該障壁層よりも陰極側の層(例えば、電子輸送層)に到達することを阻止する。有機EL素子が、電子輸送層を含む場合は、発光層と電子輸送層との間に当該障壁層を含むことが好ましい。
また、発光層の陽極側で接して障壁層が配置された場合、当該障壁層は、正孔を輸送し、電子が当該障壁層よりも陽極側の層(例えば、正孔輸送層)に到達することを阻止する。有機EL素子が、正孔輸送層を含む場合は、発光層と正孔輸送層との間に当該障壁層を含むことが好ましい。
また、励起エネルギーが発光層からその周辺層に漏れ出さないように、障壁層を発光層に隣接させて設けてもよい。発光層で生成した励起子が、当該障壁層よりも電極側の層(例えば、電子輸送層や正孔輸送層)に移動することを阻止する。
発光層と障壁層とは接合していることが好ましい。
その他、本発明の実施における具体的な構造および形状などは、本発明の目的を達成できる範囲で他の構造などとしてもよい。
以下、本発明に係る実施例を説明するが、本発明はこれらの実施例によって限定されない。
有機EL素子の製造に用いた化合物を以下に示す。
化合物D−1は、国際公開第2010/098098号の記載を参考にして合成した。
<化合物の評価>
次に、化合物の遅延蛍光発光性および一重項エネルギーを測定した。測定方法および算出方法を以下に示す。
・遅延蛍光発光性
遅延蛍光発光性は図2に示す装置を利用して過渡PLを測定することにより確認した。前記化合物H−1と前記化合物TH−2とを、化合物H−1の割合が12質量%となるように石英基板上に共蒸着し、膜厚100nmの薄膜を形成して試料を作製した。前記化合物H−1が吸収する波長のパルス光(パルスレーザーから照射される光)で励起された後、当該励起状態から即座に観察されるPrompt発光(即時発光)と、当該励起後、即座には観察されず、その後観察されるDelay発光(遅延発光)とが存在する。本実施例における遅延蛍光発光とは、Delay発光(遅延発光)の量がPrompt発光(即時発光)の量に対して5%以上を意味する。
化合物H−2および化合物H−5についても化合物H−1と同様にして確認した。
化合物H−1、化合物H−2および化合物H−5について、Delay発光(遅延発光)の量がPrompt発光(即時発光)の量に対して5%以上あることが確認された。
Prompt発光とDelay発光の量は、“Nature 492, 234−238, 2012”に記載された方法と同様の方法により求めることができる。なお、Prompt発光とDelay発光の量の算出に使用される装置は、図2の装置や文献に記載された装置に限定されない。
・一重項エネルギーS
一重項エネルギーSは、次のようにして測定した。測定対象となる化合物の10μmol/Lトルエン溶液を調製して石英セルに入れ、常温(300K)でこの試料の吸収スペクトル(縦軸:発光強度、横軸:波長とする。)を測定した。この吸収スペクトルの長波長側の立ち下がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を次に示す換算式1に代入して一重項エネルギーを算出した。
換算式1:S[eV]=1239.85/λedge
本実施例では、吸収スペクトルを日立社製の分光光度計(装置名:U3310)で測定した。なお、吸収スペクトル測定装置は、ここで用いた装置に限定されない。
算出した一重項エネルギーSを以下に示す。
H−1 :2.89eV
H−2 :2.94eV
H−5 :2.87eV
CH−1 :3.55eV
<有機EL素子の作製および評価>
有機EL素子を以下のように作製し、評価した。
(実施例1)
25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板(ジオマティック社製)を、イソプロピルアルコール中で5分間超音波洗浄を行なった後、UVオゾン洗浄を30分間行なった。ITOの膜厚は、130nmとした。
洗浄後の透明電極ライン付き前記ガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして化合物HIを蒸着し、膜厚5nmの正孔注入層を形成した。
次に、正孔注入層上に、化合物HT−1を蒸着し、HI膜上に膜厚110nmの第一正孔輸送層を形成した。
次に、この第一正孔輸送層上に、化合物HT−2を蒸着し、膜厚15nmの第二正孔輸送層を形成した。
さらに、この第二正孔輸送層上に、第一の化合物としての化合物H−1と、第二の化合物としての化合物D−1と、を共蒸着し、膜厚25nmの発光層を形成した。発光層における化合物D−1の濃度を1質量%とした。
次に、この発光層上に、化合物HBを蒸着し、膜厚5nmの障壁層を形成した。
次に、この障壁層上に、化合物ETを蒸着し、膜厚35nmの電子輸送層を形成した。
次に、この電子輸送層上に、フッ化リチウム(LiF)を蒸着し、膜厚1nmの電子注入性電極(陰極)を形成した。
そして、この電子注入性電極上に、金属アルミニウム(Al)を蒸着し、膜厚80nmの金属Al陰極を形成した。
実施例1の有機EL素子の素子構成を略式的に示すと、次のとおりである。
ITO(130) / HI(5) / HT-1(110) / HT-2(15) / H-1 : D-1 (25, 1%) / HB(5) / ET(35) / LiF(1) / Al(80)
なお、括弧内の数字は、膜厚(単位:nm)を示す。また、同じく括弧内において、パーセント表示された数字は、発光層における第二の化合物の割合(質量%)を示す。
(実施例2)
実施例2の有機EL素子は、発光層の形成工程を次の通り変更したこと以外は、実施例1と同様にして作製した。実施例2において、第二正孔輸送層上に、第一の化合物としての化合物H−1と、第二の化合物としての化合物D−1と、第三の化合物としての化合物CH−1と、を共蒸着し、膜厚25nmの発光層を形成した。発光層における化合物D−1の濃度を1質量%とし、化合物H−1の濃度を50質量%とした。
実施例2の有機EL素子の素子構成を略式的に示すと、次のとおりである。
ITO(130) / HI(5) / HT-1(110) / HT-2(15) / CH-1: H-1 : D-1 (25, 50%,1%) / HB(5) / ET(35) / LiF(1) / Al(80)
なお、括弧内の数字は、膜厚(単位:nm)を示す。また、同じく括弧内において、パーセント表示された数字は、発光層における第一の化合物の割合(質量%)、および第二の化合物の割合(質量%)を示す。
(実施例3)
実施例3の有機EL素子は、実施例2の発光層において用いた化合物H−1に替えて化合物H−2を用いたこと以外は、実施例2と同様にして作製した。
実施例3の有機EL素子の素子構成を略式的に示すと、次のとおりである。
ITO(130) / HI(5) / HT-1(110) / HT-2(15) / CH-1: H-2 : D-1 (25, 50%,1%) / HB(5) / ET(35) / LiF(1) / Al(80)
なお、括弧内の数字は、膜厚(単位:nm)を示す。また、同じく括弧内において、パーセント表示された数字は、発光層における第一の化合物の割合(質量%)、および第二の化合物の割合(質量%)を示す。
(比較例1)
25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板(ジオマティック社製)を、イソプロピルアルコール中で5分間超音波洗浄を行なった後、UVオゾン洗浄を30分間行なった。ITOの膜厚は、130nmとした。
洗浄後の透明電極ライン付き前記ガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして化合物HIを蒸着し、膜厚5nmの正孔注入層を形成した。
次に、正孔注入層上に、化合物HT−3を蒸着し、HI膜上に膜厚50nmの第一正孔輸送層を形成した。
次に、この第一正孔輸送層上に、化合物HT−4を蒸着し、膜厚60nmの第二正孔輸送層を形成した。
さらに、この第二正孔輸送層上に、第一の化合物としての化合物H−3と、第二の化合物としての化合物D−1と、を共蒸着し、膜厚30nmの発光層を形成した。発光層における化合物D−1の濃度を5質量%とした。
次に、この発光層上に、化合物ETを蒸着し、膜厚20nmの電子輸送層を形成した。
次に、この電子輸送層上に、フッ化リチウム(LiF)を蒸着し、膜厚1nmの電子注入性電極(陰極)を形成した。
そして、この電子注入性電極上に、金属アルミニウム(Al)を蒸着し、膜厚80nmの金属Al陰極を形成した。
比較例1の有機EL素子の素子構成を略式的に示すと、次のとおりである。
ITO(130) / HI(5) / HT-3(50) / HT-4(60) / H-3 : D-1 (30, 5%) / ET(20) / LiF(1) / Al(80)
なお、括弧内の数字は、膜厚(単位:nm)を示す。また、同じく括弧内において、パーセント表示された数字は、発光層における第二の化合物の割合(質量%)を示す。
(比較例2)
比較例2の有機EL素子は、比較例1の発光層において用いた化合物H−3に替えて化合物H−4を用いたこと以外は、比較例1と同様にして作製した。
比較例2の有機EL素子の素子構成を略式的に示すと、次のとおりである。
ITO(130) / HI(5) / HT-3(50) / HT-4(60) / H-4 : D-1 (30, 5%) / ET(20) / LiF(1) / Al(80)
なお、括弧内の数字は、膜厚(単位:nm)を示す。また、同じく括弧内において、パーセント表示された数字は、発光層における第二の化合物の割合(質量%)を示す。
〔有機EL素子の評価〕
作製した有機EL素子について、以下の評価を行った。
・駆動電圧
電流密度が、10mA/cmとなるようにITO透明電極と金属Al陰極との間に通電させたときの電圧(単位:V)を計測した。
・輝度およびCIE1931色度
電流密度が、10mA/cmとなるように素子に電圧を印加した時のCIE1931色度座標(x、y)を、分光放射輝度計CS−1000(コニカミノルタ社製)で計測した。
・主ピーク波長λ
得られた上記分光放射輝度スペクトルから主ピーク波長λを求めた。
・電流効率L/Jおよび電力効率η
電流密度が、10mA/cmとなるように素子に電圧を印加した時の分光放射輝度スペクトルを、上記分光放射輝度計で計測した。得られた分光放射輝度スペクトルから、電流効率(単位:cd/A)および電力効率η(単位:lm/W)を算出した。
・外部量子効率EQE
電流密度が、10mA/cmとなるように素子に電圧を印加した時の分光放射輝度スペクトルを上記分光放射輝度計で計測した。得られた上記分光放射輝度スペクトルから、ランバシアン放射を行なったと仮定し外部量子効率EQE(単位:%)を算出した。
実施例1の有機EL素子について、駆動電圧、CIE1931色度および主ピーク波長λを測定した。測定結果を表2に示す。
実施例2および実施例3の有機EL素子について、輝度、CIE1931色度、主ピーク波長λ、電流効率L/J、電力効率η、および外部量子効率EQEを測定した。測定結果を表3に示す。
比較例1および比較例2の有機EL素子について、駆動電圧、輝度、CIE1931色度、主ピーク波長λ、電流効率L/J、電力効率η、および外部量子効率EQEを測定した。測定結果を表4に示す。
実施例1の有機EL素子は、第一の化合物および第二の化合物を発光層中に含んでおり、比較例1および2の有機EL素子に比べて駆動電圧が低下した。実施例2および3の有機EL素子は、第一の化合物、第二の化合物、および第三の化合物を発光層中に含んでおり、比較例1および2の有機EL素子に比べて発光効率が向上した。実施例1〜3の有機EL素子は駆動電圧または発光効率の点で高性能化した。
<有機EL素子の作製および評価>
(実施例4)
実施例1と同じITO透明電極(陽極)付きガラス基板(ジオマティック社製)を、イソプロピルアルコール中で5分間超音波洗浄を行なった後、UVオゾン洗浄を30分間行なった。ITOの膜厚は、130nmとした。
洗浄後の透明電極ライン付き前記ガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして化合物HI−2を蒸着し、膜厚5nmの正孔注入層を形成した。
次に、この正孔注入層上に、化合物HT−5を蒸着し、膜厚125nmの第一正孔輸送層を形成した。
次に、この第一正孔輸送層上に、化合物HT−6を蒸着し、膜厚15nmの第二正孔輸送層を形成した。
さらに、この第二正孔輸送層上に、第一の化合物としての化合物H−5と、第二の化合物としての化合物D−2と、第三の化合物としての化合物CH−1とを共蒸着し、膜厚25nmの発光層を形成した。発光層における化合物H−5の濃度を50質量%とし、化合物D−2の濃度を0.5質量%とした。
次に、この発光層上に、化合物HB−2を蒸着し、膜厚5nmの障壁層を形成した。
次に、この障壁層上に、化合物ETを蒸着し、膜厚35nmの電子輸送層を形成した。
次に、この電子輸送層上に、フッ化リチウム(LiF)を蒸着し、膜厚1nmの電子注入性電極(陰極)を形成した。
そして、この電子注入性電極上に、金属アルミニウム(Al)を蒸着し、膜厚80nmの金属Al陰極を形成した。
実施例4の有機EL素子の素子構成を略式的に示すと、次のとおりである。
ITO(130)/HI-2(5)/HT-5(125)/HT-6(15)/CH-1:H-5:D-2(25,50%,0.5%)/HB-2(5)/ET(35)/LiF(1)/Al(80)
なお、括弧内の数字は、膜厚(単位:nm)を示す。また、同じく括弧内において、パーセント表示された数字は、発光層における第一の化合物の割合(質量%)、および第二の化合物の割合(質量%)を示す。
〔有機EL素子の評価〕
作製した実施例4の有機EL素子について、輝度、CIE1931色度、主ピーク波長λ、電流効率L/J、電力効率η、及び外部量子効率EQEの評価を行った。各項目の評価は、前述と同様の方法で行った。
表5に示す通り、実施例4の有機EL素子は、第一の化合物、第二の化合物、および第三の化合物を発光層中に含んでおり、比較例1および2の有機EL素子に比べて発光効率が向上した。実施例4の有機EL素子は発光効率の点で高性能化した。
1…有機EL素子、2…基板、3…陽極、4…陰極、5…発光層、6…正孔注入層、
7…正孔輸送層、8…電子輸送層、9…電子注入層。

Claims (21)

  1. 陽極と、発光層と、陰極と、を含み、
    前記発光層は、第一の化合物および第二の化合物を含み、
    前記第一の化合物は、遅延蛍光発光性の化合物であり、
    前記第二の化合物は、下記一般式(2)で表される有機エレクトロルミネッセンス素子。

    (前記一般式(2)において、
    Xは、窒素原子、またはYと結合する炭素原子であり、
    Yは、水素原子または置換基であり、
    21〜R26は、それぞれ独立に、水素原子または置換基であり、
    21〜R26のうち2つ以上が互いに結合して環構造が構築されていてもよく、
    Y、およびR21〜R26が置換基である場合の置換基は、
    置換もしくは無置換のアルキル基、
    置換もしくは無置換のシクロアルキル基、
    置換もしくは無置換のアリール基、
    置換もしくは無置換のアルコキシ基、
    置換もしくは無置換のアルキルチオ基、
    置換もしくは無置換のアリールオキシ基、
    置換もしくは無置換のアリールチオ基、
    置換もしくは無置換のアルケニル基、
    置換もしくは無置換のアラルキル基、
    置換もしくは無置換のヘテロアリール基、
    ハロゲン原子、
    ハロアルキル基、
    カルボキシ基、
    エステル基、
    カルバモイル基、
    アミノ基、
    ニトロ基、
    シアノ基、
    シリル基、および
    シロキサニル基からなる群から選択され、
    21およびZ22は、それぞれ独立に、
    ハロゲン原子、
    置換もしくは無置換のアリール基、
    置換もしくは無置換のアルコキシ基、および
    置換もしくは無置換のアリールオキシ基からなる群から選択され、
    21およびZ22が結合して環構造が構築されていてもよい。)
  2. 前記発光層が、第三の化合物をさらに含み、
    前記第三の化合物の一重項エネルギーは、前記第一の化合物の一重項エネルギーよりも大きい
    請求項1に記載の有機エレクトロルミネッセンス素子。
  3. 前記第二の化合物が、下記一般式(21)で表される
    請求項1または請求項2に記載の有機エレクトロルミネッセンス素子。

    (前記一般式(21)において、
    X、Y、R21〜R24、Z21、およびZ22は、それぞれ、前記一般式(2)におけるX、Y、R21〜R24、Z21、およびZ22と同義であり、
    27〜R30は、それぞれ独立に、水素原子または置換基であり、
    27〜R30が置換基である場合の置換基としては、R21〜R24について列挙した置換基と同義である。)
  4. 前記第二の化合物は、前記Z21と前記Z22とが結合して構築される環構造を有さない
    請求項1から請求項3のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  5. 21〜R26は、互いに結合せず、
    前記第二の化合物は、前記Z21と前記Z22とが結合して構築される環構造を有さな

    請求項1または請求項2に記載の有機エレクトロルミネッセンス素子。
  6. 前記一般式(2)において、Z21およびZ22のうち少なくともいずれかは、下記一般式(2a)で表される
    請求項1から請求項5のいずれか一項に記載の有機エレクトロルミネッセンス素子。

    (前記一般式(2a)において、
    Aは、
    置換もしくは無置換の炭素数1〜6のアルキル基、または
    置換もしくは無置換の環形成炭素数6〜12のアリール基であり、
    は、
    置換もしくは無置換の炭素数1〜6のアルキレン基、または
    置換もしくは無置換の環形成炭素数6〜12のアリーレン基であり、
    mは、0以上7以下の整数であり、
    複数のL同士は、互いに同じでも異なっていてもよい。)
  7. 前記一般式(2a)のAおよびLのうち少なくともいずれかがハロゲン原子で置換されている
    請求項6に記載の有機エレクトロルミネッセンス素子。
  8. 前記第二の化合物が、下記一般式(20)で表される
    請求項6または請求項7に記載の有機エレクトロルミネッセンス素子。

    (前記一般式(20)において、
    X、Y、R21〜R26は、それぞれ、前記一般式(2)におけるX、Y、R21〜R26と同義であり、
    21およびA22は、前記一般式(2a)におけるAと同義であり、互いに同一でも異なっていてもよく、
    21およびL22は、前記一般式(2a)におけるLと同義であり、互いに同一でも異なっていてもよく、
    m1およびm2は、それぞれ独立に、0以上7以下の整数であり、
    複数のL21同士は、互いに同じでも異なっていてもよく、
    複数のL22同士は、互いに同じでも異なっていてもよい。)
  9. 前記一般式(2)のZ21およびZ22のうち少なくともいずれかは、
    フッ素原子で置換されたアルコキシ基、
    フッ素原子で置換されたアリールオキシ基、または
    フルオロアルキル基で置換されたアリールオキシ基である
    請求項1から請求項5のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  10. 前記一般式(2)のZ21およびZ22のうち少なくともいずれかは、フッ素原子である
    請求項1から請求項5のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  11. 前記一般式(2)のY、R21〜R26が置換基である場合の置換基は、置換もしくは無置換の炭素数1〜30のアルキル基、置換もしくは無置換の炭素数3〜30のシクロアルキル基、置換もしくは無置換の環形成炭素数6〜30のアリール基、置換もしくは無置換の炭素数1〜30のアルコキシ基、置換もしくは無置換の炭素数1〜30のアルキルチオ基、置換もしくは無置換の環形成炭素数6〜30のアリールオキシ基、置換もしくは無置換の環形成炭素数6〜30のアリールチオ基、置換もしくは無置換の炭素数2〜30のアルケニル基、置換もしくは無置換の環形成炭素数6〜30のアラルキル基、置換もしくは無置換の環形成原子数5〜30のヘテロアリール基、ハロゲン原子、ハロアルキル基、カルボキシ基、エステル基、カルバモイル基、アミノ基、ニトロ基、シアノ基、シリル基、およびシロキサニル基からなる群から選択される
    請求項1から請求項10のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  12. 前記一般式(2)のY、R21〜R26が置換基である場合の置換基は、置換もしくは無置換の炭素数1〜30のアルキル基、置換もしくは無置換の炭素数3〜30のシクロアルキル基、置換もしくは無置換の環形成炭素数6〜30のアリール基、置換もしくは無置換の炭素数1〜30のアルコキシ基、置換もしくは無置換の環形成炭素数6〜30のアリールオキシ基、置換もしくは無置換の環形成原子数5〜30のヘテロアリール基、ハロゲン原子、およびハロアルキル基からなる群から選択される
    請求項1から請求項11のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  13. 前記一般式(2)のR21、R23、R24、およびR26のうち少なくともいずれかが置換もしくは無置換の炭素数1〜30のアルキル基である
    請求項1から請求項12のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  14. 前記一般式(2)のR21、R23、R24、およびR26のうち少なくともいずれかが置換もしくは無置換の環形成炭素数6〜30のアリール基である
    請求項1から請求項13のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  15. 前記一般式(2)のXが炭素原子であり、Yが置換もしくは無置換の環形成炭素数6〜30のアリール基である
    請求項1から請求項14のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  16. 前記第二の化合物は、500nm以上550nm以下の波長範囲に発光ピークを示す蛍光発光性の化合物である
    請求項1から請求項15のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  17. 500nm以上550nm以下の波長範囲にピークを示す光を放射する
    請求項1から請求項16のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  18. 前記第一の化合物は、下記一般式(1)で表される
    請求項1から請求項17のいずれか一項に記載の有機エレクトロルミネッセンス素子。

    (前記一般式(1)において、
    Aはアクセプター性部位であり、下記一般式(a−1)〜(a−7)から選ばれる部分構造を有する基である。Aが複数存在する場合、複数のAは互いに同一または異なり、A同士が結合して飽和または不飽和の環を形成してもよく、
    Bはドナー性部位であり、下記一般式(b−1)〜(b−6)から選ばれる部分構造を有する。Bが複数存在する場合、複数のBは互いに同一または異なり、B同士が結合して飽和または不飽和の環を形成してもよく、
    a,b,およびdは、それぞれ独立に、1〜5の整数であり、
    cは0〜5の整数であり、
    cが0のとき、AとBとは単結合またはスピロ結合で結合し、
    cが1〜5の整数のとき、Lは、
    置換または無置換の環形成炭素数6〜30の芳香族炭化水素基、および
    置換または無置換の環形成原子数5〜30の複素環基からなる群から選択される連結基であり、Lが複数存在する場合、複数のLは互いに同一または異なり、L同士が結合して飽和または不飽和の環を形成してもよい。)


    (前記一般式(b−1)〜(b−6)において、
    Rは、それぞれ独立に、水素原子または置換基であり、Rが置換基である場合の置換基は、
    置換または無置換の環形成炭素数6〜30の芳香族炭化水素基、
    置換または無置換の環形成原子数5〜30の複素環基、および
    置換または無置換の炭素数1〜30のアルキル基からなる群から選択され、Rが複数存在する場合、複数のRは互いに同一または異なり、R同士が結合して飽和または不飽和の環を形成してもよい。)
  19. 前記陽極と前記発光層との間に正孔輸送層を含む
    請求項1から請求項18のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  20. 前記発光層と前記陰極との間に電子輸送層を含む
    請求項1から請求項19のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  21. 請求項1から請求項20のいずれか一項に記載の有機エレクトロルミネッセンス素子を備える電子機器。
JP2020107179A 2014-10-07 2020-06-22 有機エレクトロルミネッセンス素子、および電子機器 Pending JP2020161843A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014206797 2014-10-07
JP2014206797 2014-10-07

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016503033A Division JP6722579B2 (ja) 2014-10-07 2015-10-06 有機エレクトロルミネッセンス素子、および電子機器

Publications (1)

Publication Number Publication Date
JP2020161843A true JP2020161843A (ja) 2020-10-01

Family

ID=55653170

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016503033A Active JP6722579B2 (ja) 2014-10-07 2015-10-06 有機エレクトロルミネッセンス素子、および電子機器
JP2020107179A Pending JP2020161843A (ja) 2014-10-07 2020-06-22 有機エレクトロルミネッセンス素子、および電子機器

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016503033A Active JP6722579B2 (ja) 2014-10-07 2015-10-06 有機エレクトロルミネッセンス素子、および電子機器

Country Status (5)

Country Link
US (1) US11043638B2 (ja)
JP (2) JP6722579B2 (ja)
KR (1) KR102517591B1 (ja)
CN (2) CN105684180B (ja)
WO (1) WO2016056559A1 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6722579B2 (ja) * 2014-10-07 2020-07-15 出光興産株式会社 有機エレクトロルミネッセンス素子、および電子機器
US10703762B2 (en) 2015-08-28 2020-07-07 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence device, organic electroluminescence device and electronic apparatus
JPWO2017065295A1 (ja) * 2015-10-15 2018-08-02 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
US11279716B2 (en) 2016-07-29 2022-03-22 Lg Chem, Ltd. Nitrogen-containing cyclic compound, color conversion film comprising same, and backlight unit and display device comprising same
CN109415354B (zh) * 2016-08-19 2023-11-14 九州有机光材股份有限公司 电荷传输材料、化合物、延迟荧光材料及有机发光元件
JP6443867B1 (ja) * 2017-06-15 2018-12-26 キヤノン株式会社 発光装置、表示装置、及び、制御方法
JP7120015B2 (ja) * 2017-07-10 2022-08-17 東レ株式会社 発光素子
CN111032620B (zh) * 2017-08-28 2023-05-16 东丽株式会社 化合物、使用了该化合物的发光元件、显示装置及照明装置
CN111051471A (zh) * 2017-09-01 2020-04-21 九州有机光材股份有限公司 用于有机发光二极管中的组合物
CN111226325B (zh) * 2017-11-01 2023-08-15 出光兴产株式会社 顶发光型的有机电致发光元件、有机电致发光装置、和电子设备
JP2019165102A (ja) * 2018-03-19 2019-09-26 出光興産株式会社 有機エレクトロルミネッセンス素子、及び電子機器
JP2021120964A (ja) * 2018-03-19 2021-08-19 出光興産株式会社 有機エレクトロルミネッセンス素子、及び電子機器
JP2021119583A (ja) * 2018-03-19 2021-08-12 出光興産株式会社 有機エレクトロルミネッセンス素子、及び電子機器
JP2019165101A (ja) * 2018-03-19 2019-09-26 出光興産株式会社 有機エレクトロルミネッセンス素子、及び電子機器
JP2021177443A (ja) * 2018-05-28 2021-11-11 出光興産株式会社 有機エレクトロルミネッセンス素子、表示装置及び電子機器
EP3587423A1 (en) 2018-06-27 2020-01-01 Idemitsu Kosan Co., Ltd. Organic compounds and an organic electroluminescence device comprising the same
JPWO2020080108A1 (ja) * 2018-10-18 2021-09-02 東レ株式会社 発光素子、それを含むディスプレイ、照明装置およびセンサ
US20230011206A1 (en) * 2018-10-25 2023-01-12 Idemitsu Kosan Co.,Ltd. Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic appliance
EP3651225A1 (en) 2018-11-09 2020-05-13 Idemitsu Kosan Co., Ltd. Novel organic compounds and an organic electroluminescence device comprising the same
KR20210103508A (ko) * 2018-12-14 2021-08-23 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네센스 소자, 화합물, 유기 일렉트로루미네센스 소자용 재료, 및 전자 기기
KR20200076817A (ko) 2018-12-19 2020-06-30 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함하는 표시 장치
KR20200096337A (ko) * 2019-02-01 2020-08-12 삼성디스플레이 주식회사 유기 전계 발광 소자 및 이를 포함하는 표시 장치
KR20210124325A (ko) * 2019-02-05 2021-10-14 닛뽄 가야쿠 가부시키가이샤 디벤조피로메텐 붕소 킬레이트 화합물, 근적외광 흡수 재료, 유기 박막 및 유기 일렉트로닉스 디바이스
WO2020184369A1 (ja) 2019-03-11 2020-09-17 東レ株式会社 ピロメテン金属錯体、ピロメテン化合物、発光素子材料、発光素子、表示装置および照明装置
US11683983B2 (en) * 2019-10-18 2023-06-20 Lg Display Co., Ltd. Organic light emitting diode and organic light emitting device including the same
US20210119140A1 (en) * 2019-10-18 2021-04-22 Lg Display Co., Ltd. Organic light emitting diode and organic light emitting device including the same
TW202116785A (zh) 2019-10-28 2021-05-01 日商東麗股份有限公司 包含吡咯亞甲基硼錯合物的發光元件材料、發光元件、顯示裝置及照明裝置
JPWO2021149510A1 (ja) * 2020-01-24 2021-07-29

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116456A1 (ja) * 2008-03-19 2009-09-24 東レ株式会社 発光素子材料及び発光素子
WO2010001817A1 (ja) * 2008-07-01 2010-01-07 東レ株式会社 発光素子
WO2010098098A1 (ja) * 2009-02-27 2010-09-02 出光興産株式会社 ピロメテンホウ素錯体化合物及びそれを用いた有機電界発光素子
WO2010113743A1 (ja) * 2009-03-30 2010-10-07 東レ株式会社 発光素子材料および発光素子
JP2011014886A (ja) * 2009-06-03 2011-01-20 Toray Ind Inc 発光素子および発光素子材料
JP2012079915A (ja) * 2010-10-01 2012-04-19 Toray Ind Inc 発光素子材料および発光素子
JP2013105665A (ja) * 2011-11-15 2013-05-30 Idemitsu Kosan Co Ltd 白色系有機エレクトロルミネッセンス素子
WO2014010611A1 (ja) * 2012-07-13 2014-01-16 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2015098975A1 (ja) * 2013-12-26 2015-07-02 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
WO2015159706A1 (ja) * 2014-04-16 2015-10-22 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子および電子機器
JP6722579B2 (ja) * 2014-10-07 2020-07-15 出光興産株式会社 有機エレクトロルミネッセンス素子、および電子機器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03139352A (ja) 1989-10-25 1991-06-13 Paramaunto Bed Kk 床部起伏屈曲機構を備えたベツド
JP4000893B2 (ja) 2001-04-25 2007-10-31 東レ株式会社 ピロメテン金属錯体、それを用いた発光素子材料ならびに発光素子
US20130306957A1 (en) * 2010-11-22 2013-11-21 Idemitsu Kosan Co ., Ltd. Organic electroluminescent element
WO2012133188A1 (ja) 2011-03-25 2012-10-04 出光興産株式会社 有機エレクトロルミネッセンス素子
CN103502233A (zh) 2011-05-11 2014-01-08 出光兴产株式会社 新型化合物、有机电致发光元件用材料和有机电致发光元件
KR20140060484A (ko) 2011-09-13 2014-05-20 이데미쓰 고산 가부시키가이샤 축합 복소 방향족 유도체, 유기 전계 발광 소자용 재료 및 그것을 이용한 유기 전계 발광 소자
JP2014135466A (ja) * 2012-04-09 2014-07-24 Kyushu Univ 有機発光素子ならびにそれに用いる発光材料および化合物
JP5925308B2 (ja) * 2012-06-01 2016-05-25 出光興産株式会社 有機エレクトロルミネッセンス素子
JP5959970B2 (ja) 2012-07-20 2016-08-02 出光興産株式会社 有機エレクトロルミネッセンス素子
JP6113993B2 (ja) 2012-10-03 2017-04-12 出光興産株式会社 有機エレクトロルミネッセンス素子
US10297761B2 (en) 2012-12-10 2019-05-21 Idemitsu Kosan Co., Ltd. Organic electroluminescent element
US9882144B2 (en) 2012-12-28 2018-01-30 Idemitsu Kosan Co., Ltd. Organic electroluminescent element

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116456A1 (ja) * 2008-03-19 2009-09-24 東レ株式会社 発光素子材料及び発光素子
WO2010001817A1 (ja) * 2008-07-01 2010-01-07 東レ株式会社 発光素子
WO2010098098A1 (ja) * 2009-02-27 2010-09-02 出光興産株式会社 ピロメテンホウ素錯体化合物及びそれを用いた有機電界発光素子
WO2010113743A1 (ja) * 2009-03-30 2010-10-07 東レ株式会社 発光素子材料および発光素子
JP2011014886A (ja) * 2009-06-03 2011-01-20 Toray Ind Inc 発光素子および発光素子材料
JP2012079915A (ja) * 2010-10-01 2012-04-19 Toray Ind Inc 発光素子材料および発光素子
JP2013105665A (ja) * 2011-11-15 2013-05-30 Idemitsu Kosan Co Ltd 白色系有機エレクトロルミネッセンス素子
WO2014010611A1 (ja) * 2012-07-13 2014-01-16 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2015098975A1 (ja) * 2013-12-26 2015-07-02 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
WO2015159706A1 (ja) * 2014-04-16 2015-10-22 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子および電子機器
JP6722579B2 (ja) * 2014-10-07 2020-07-15 出光興産株式会社 有機エレクトロルミネッセンス素子、および電子機器

Also Published As

Publication number Publication date
KR20170085434A (ko) 2017-07-24
US20160190469A1 (en) 2016-06-30
WO2016056559A1 (ja) 2016-04-14
CN110233206B (zh) 2021-07-30
CN105684180A (zh) 2016-06-15
KR102517591B1 (ko) 2023-04-03
JP6722579B2 (ja) 2020-07-15
CN105684180B (zh) 2019-06-14
US11043638B2 (en) 2021-06-22
JPWO2016056559A1 (ja) 2017-07-20
CN110233206A (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
JP2020161843A (ja) 有機エレクトロルミネッセンス素子、および電子機器
JP6761796B2 (ja) 有機エレクトロルミネッセンス素子、電子機器、および化合物
KR101997907B1 (ko) 유기 일렉트로 루미네센스 소자 및 전자 기기
JP6742236B2 (ja) 有機エレクトロルミネッセンス素子および電子機器
JP6754422B2 (ja) 有機エレクトロルミネッセンス素子、及び電子機器
WO2018181188A1 (ja) 有機エレクトロルミネッセンス素子および電子機器
JP2016115940A (ja) 有機エレクトロルミネッセンス素子および電子機器
KR102660767B1 (ko) 유기 일렉트로루미네센스 소자 및 전자 기기
JP6829583B2 (ja) 化合物、組成物、有機エレクトロルミネッセンス素子、及び電子機器
WO2019181858A1 (ja) 有機エレクトロルミネッセンス素子、及び電子機器
WO2017115788A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2020085446A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、および電子機器
JP2020158425A (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2020241580A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
JP2021020857A (ja) 化合物、有機エレクトロルミネッセンス素子及び電子機器
JP2020174072A (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2017065295A1 (ja) 有機エレクトロルミネッセンス素子および電子機器
JP6698137B2 (ja) 有機エレクトロルミネッセンス素子および電子機器
JP2019137617A (ja) 化合物、有機エレクトロルミネッセンス素子、及び電子機器
WO2021261461A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、および電子機器
JP2018076260A (ja) 化合物、組成物、有機エレクトロルミネッセンス素子、及び電子機器
JP2023158501A (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
JP2020158436A (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、および電子機器

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200717

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20210126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210720