JP2023158501A - 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器 - Google Patents

化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器 Download PDF

Info

Publication number
JP2023158501A
JP2023158501A JP2022068382A JP2022068382A JP2023158501A JP 2023158501 A JP2023158501 A JP 2023158501A JP 2022068382 A JP2022068382 A JP 2022068382A JP 2022068382 A JP2022068382 A JP 2022068382A JP 2023158501 A JP2023158501 A JP 2023158501A
Authority
JP
Japan
Prior art keywords
group
substituted
unsubstituted
compound
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022068382A
Other languages
English (en)
Inventor
圭一 安川
Keiichi Yasukawa
真依子 飯田
Maiko Iida
裕美 中野
Hiromi Nakano
祐一 西前
Yuichi Nishimae
一成 川本
Kazunari Kawamoto
大貴 野田
Hirotaka Noda
和真 長尾
Kazumasa Nagao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Toray Industries Inc
Original Assignee
Idemitsu Kosan Co Ltd
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd, Toray Industries Inc filed Critical Idemitsu Kosan Co Ltd
Priority to JP2022068382A priority Critical patent/JP2023158501A/ja
Publication of JP2023158501A publication Critical patent/JP2023158501A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

【課題】有機EL素子の性能を向上させることができる化合物を提供すること。【解決手段】具体的には、例えば下記式で表される化合物である。TIFF2023158501000052.tif71119【選択図】なし

Description

本発明は、化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器に関する。
有機エレクトロルミネッセンス素子(以下、「有機EL素子」という場合がある。)に電圧を印加すると、陽極から正孔が発光層に注入され、また陰極から電子が発光層に注入される。そして、発光層において、注入された正孔と電子とが再結合し、励起子が形成される。このとき、電子スピンの統計則により、一重項励起子が25%の割合で生成し、及び三重項励起子が75%の割合で生成する。
一重項励起子からの発光を用いる蛍光型の有機EL素子は、携帯電話及びテレビ等のフルカラーディスプレイへ応用されつつあるが、内部量子効率25%が限界といわれている。そのため、有機EL素子の性能を向上するための検討が行われている。有機EL素子の性能としては、例えば、輝度、発光波長、半値幅、色度、発光効率、駆動電圧、及び寿命が挙げられる。
例えば、一重項励起子に加えて三重項励起子を利用して、有機EL素子をさらに効率的に発光させることが期待されている。このような背景から、熱活性化遅延蛍光(以下、単に「遅延蛍光」という場合がある。)を利用した高効率の蛍光型の有機EL素子が提案され、研究がなされている。
TADF(Thermally Activated Delayed Fluorescence、熱活性化遅延蛍光)機構(メカニズム)は、一重項準位と三重項準位とのエネルギー差(ΔST)の小さな材料を用いた場合に、三重項励起子から一重項励起子への逆項間交差が熱的に生じる現象を利用するメカニズムである。熱活性化遅延蛍光については、例えば、『安達千波矢編、「有機半導体のデバイス物性」、講談社、2012年4月1日発行、261-268ページ』に記載されている。
熱活性化遅延蛍光性(TADF性)を示す化合物(以下、TADF性化合物とも称する)としては、例えば、分子内に、ドナー部位とアクセプター部位とが結合した化合物が知られている。
有機EL素子並びに有機EL素子に用いる化合物に関する文献として、例えば、特許文献1が挙げられる。
国際公開第2021/215446号
本発明の目的は、有機EL素子の性能を向上させることができる化合物、当該化合物を含む有機エレクトロルミネッセンス素子用材料、当該化合物を含む有機エレクトロルミネッセンス素子及び当該有機エレクトロルミネッセンス素子を搭載した電子機器を提供することである。
本発明の一態様によれば、下記一般式(1)で表される化合物が提供される。
Figure 2023158501000001
(前記一般式(1)において、
は、CR11または窒素原子であり、
は、CR12または窒素原子であり、
は、CR13または窒素原子であり、
は、CR14または窒素原子であり、
は、CR15または窒素原子であり、
は、CR16または窒素原子であり、
は、CR17または窒素原子であり、
は、CR18または窒素原子であり、
は、前記一般式(11)で表される基であり、*は結合位置であり、
111は、
置換もしくは無置換の炭素数1~50のアルキル基、又は
置換もしくは無置換の環形成炭素数6~50のアリール基であり、
~Rのうちの隣接する2つ以上からなる組の1組以上が、
互いに結合して、置換もしくは無置換の単環を形成するか、又は
互いに結合して、置換もしくは無置換の縮合環を形成し、
11~R17のうちの隣接する2つ以上からなる組の1組以上が、
互いに結合して、置換もしくは無置換の単環を形成するか、
互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
互いに結合せず、
112~R115のうちの隣接する2つ以上からなる組の1組以上が、
互いに結合して、置換もしくは無置換の単環を形成するか、
互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
互いに結合せず、
18、並びに前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR~R、R11~R17及びR112~R115は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R911)(R912)(R913)で表される基、
-O-(R914)で表される基、
-S-(R915)で表される基、
-N(R916)(R917)で表される基、
置換もしくは無置換の炭素数7~50のアラルキル基、
-C(=O)R918で表される基、
-COOR919で表される基、
ハロゲン原子、
シアノ基、
ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の複素環基であり、
911~R919は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の複素環基であり、
911が複数存在する場合、複数のR911は、互いに同一であるか又は異なり、
912が複数存在する場合、複数のR912は、互いに同一であるか又は異なり、
913が複数存在する場合、複数のR913は、互いに同一であるか又は異なり、
914が複数存在する場合、複数のR914は、互いに同一であるか又は異なり、
915が複数存在する場合、複数のR915は、互いに同一であるか又は異なり、
916が複数存在する場合、複数のR916は、互いに同一であるか又は異なり、
917が複数存在する場合、複数のR917は、互いに同一であるか又は異なり、
918が複数存在する場合、複数のR918は、互いに同一であるか又は異なり、
919が複数存在する場合、複数のR919は、互いに同一であるか又は異なる。)
本発明の一態様によれば、下記一般式(100)で表される化合物が提供される。
Figure 2023158501000002
本発明の一態様によれば、本発明の一態様に係る化合物を含む有機エレクトロルミネッセンス素子用材料が提供される。
本発明の一態様によれば、陰極と、陽極と、前記陰極および前記陽極の間に含まれる有機層と、を有する有機エレクトロルミネッセンス素子であって、前記有機層が発光層を含み、前記有機層の少なくとも1層が本発明の一態様に係る化合物を含む有機エレクトロルミネッセンス素子が提供される。
本発明の一態様によれば、本発明の一態様に係る有機エレクトロルミネッセンス素子を搭載した電子機器が提供される。
本発明の一態様によれば、有機EL素子の性能を向上させることができる化合物を提供できる。また、本発明の一態様によれば、当該化合物を含む有機エレクトロルミネッセンス素子用材料を提供できる。また、本発明の一態様によれば、当該化合物を含む有機エレクトロルミネッセンス素子を提供できる。また、本発明の一態様によれば、当該有機エレクトロルミネッセンス素子を搭載した電子機器を提供できる。
本発明の第三実施形態に係る有機エレクトロルミネッセンス素子の一例の概略構成を示す図である。 過渡PLを測定する装置の概略図である。 過渡PLの減衰曲線の一例を示す図である。 本発明の第三実施形態に係る有機エレクトロルミネッセンス素子の一例の発光層における第一の化合物及び第二の化合物のエネルギー準位、並びにエネルギー移動の関係を示す図である。 本発明の第四実施形態に係る有機エレクトロルミネッセンス素子の一例の発光層における第一の化合物、第二の化合物及び第三の化合物のエネルギー準位、並びにエネルギー移動の関係を示す図である。
〔第一実施形態〕
(化合物)
本実施形態に係る化合物は、下記一般式(1)で表される。本実施形態に係る化合物を、一般式(1)で表される化合物と称する場合がある。
Figure 2023158501000003
(前記一般式(1)において、
は、CR11または窒素原子であり、
は、CR12または窒素原子であり、
は、CR13または窒素原子であり、
は、CR14または窒素原子であり、
は、CR15または窒素原子であり、
は、CR16または窒素原子であり、
は、CR17または窒素原子であり、
は、CR18または窒素原子であり、
は、前記一般式(11)で表される基であり、*は結合位置であり、
111は、
置換もしくは無置換の炭素数1~50のアルキル基、又は
置換もしくは無置換の環形成炭素数6~50のアリール基であり、
~Rのうちの隣接する2つ以上からなる組の1組以上が、
互いに結合して、置換もしくは無置換の単環を形成するか、又は
互いに結合して、置換もしくは無置換の縮合環を形成し、
11~R17のうちの隣接する2つ以上からなる組の1組以上が、
互いに結合して、置換もしくは無置換の単環を形成するか、
互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
互いに結合せず、
112~R115のうちの隣接する2つ以上からなる組の1組以上が、
互いに結合して、置換もしくは無置換の単環を形成するか、
互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
互いに結合せず、
18、並びに前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR~R、R11~R17及びR112~R115は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R911)(R912)(R913)で表される基、
-O-(R914)で表される基、
-S-(R915)で表される基、
-N(R916)(R917)で表される基、
置換もしくは無置換の炭素数7~50のアラルキル基、
-C(=O)R918で表される基、
-COOR919で表される基、
ハロゲン原子、
シアノ基、
ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の複素環基であり、
911~R919は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の複素環基であり、
911が複数存在する場合、複数のR911は、互いに同一であるか又は異なり、
912が複数存在する場合、複数のR912は、互いに同一であるか又は異なり、
913が複数存在する場合、複数のR913は、互いに同一であるか又は異なり、
914が複数存在する場合、複数のR914は、互いに同一であるか又は異なり、
915が複数存在する場合、複数のR915は、互いに同一であるか又は異なり、
916が複数存在する場合、複数のR916は、互いに同一であるか又は異なり、
917が複数存在する場合、複数のR917は、互いに同一であるか又は異なり、
918が複数存在する場合、複数のR918は、互いに同一であるか又は異なり、
919が複数存在する場合、複数のR919は、互いに同一であるか又は異なる。)
本実施形態に係る化合物は、下記一般式(2)で表される化合物であることも好ましい。
Figure 2023158501000004
(前記一般式(2)において、
~X及びRは、それぞれ独立に、前記一般式(1)におけるX~X及びRと同義であり、
前記一般式(2)中、1*の位置にある炭素原子は、下記一般式(21)~(27)のいずれかで表される縮合環の**との結合位置を表し、
前記一般式(2)中、2*の位置にあるホウ素原子は、下記一般式(21)~(27)のいずれかで表される縮合環の***との結合位置を表す。)
Figure 2023158501000005
(前記一般式(21)~(27)において、**は、前記一般式(2)中、1*の位置にある炭素原子との結合位置を表し、***は、前記一般式(2)中、2*の位置にあるホウ素原子との結合位置を表す。)
本実施形態に係る化合物は、前記一般式(2)で表され、前記一般式(2)中、1*の位置にある炭素原子は、下記一般式(28)~(30)のいずれかで表される縮合環の**との結合位置を表し、前記一般式(2)中、2*の位置にあるホウ素原子は、下記一般式(28)~(30)のいずれかで表される縮合環の***との結合位置を表すことも好ましい。
Figure 2023158501000006
(前記一般式(28)~(30)において、**は、前記一般式(2)中、1*の位置にある炭素原子との結合位置を表し、***は、前記一般式(2)中、2*の位置にあるホウ素原子との結合位置を表す。)
本実施形態に係る化合物は、下記一般式(21A)、(22A)、(23A)、(24A)、(25A)、(26A)、(27A)、(28A)、(29A)又は(30A)で表される化合物であることも好ましい。
例えば、下記一般式(21A)で表される化合物は、前記一般式(2)中、1*の位置にある炭素原子は、下記一般式(21)で表される縮合環の**との結合位置を表し、前記一般式(2)中、2*の位置にあるホウ素原子は、下記一般式(21)で表される縮合環の***との結合位置を表す場合の化合物に相当し、下記一般式(22A)、(23A)、(24A)、(25A)、(26A)、(27A)、(28A)、(29A)又は(30A)で表される化合物についても、同様である。
Figure 2023158501000007
Figure 2023158501000008
(前記一般式(21A)~(30A)において、
~X及びRは、それぞれ独立に、前記一般式(1)におけるX~X及びRと同義である。)
本実施形態に係る化合物は、下記一般式(1-1)、(1-2)又は(1-3)で表される化合物であることも好ましい。
Figure 2023158501000009
(前記一般式(1-1)~(1-3)において、R~R、R11~R18及びR111~R115は、それぞれ独立に、前記一般式(1)におけるR~R、R11~R18及びR111~R115と同義である。)
前記一般式(1-1)~(1-3)において、R11及びR12からなる組、又はR12及びR13からなる組が、互いに結合して、置換もしくは無置換の単環を形成するか、又は互いに結合して、置換もしくは無置換の縮合環を形成することも好ましい。
前記一般式(1-1)において、R15及びR16からなる組、又はR16及びR17からなる組が互いに結合して、置換もしくは無置換の単環を形成するか、又は互いに結合して、置換もしくは無置換の縮合環を形成することも好ましい。
前記一般式(1-3)において、R15及びR16からなる組が互いに結合して、置換もしくは無置換の単環を形成するか、又は互いに結合して、置換もしくは無置換の縮合環を形成することも好ましい。
本実施形態に係る化合物は、下記一般式(1-11)~(1-15)のいずれかで表される化合物であることも好ましい。
Figure 2023158501000010
(前記一般式(1-11)~(1-15)において、
~R、R11、R12、R14~R18及びR111~R115は、それぞれ独立に、前記一般式(1)におけるR~R、R11、R12、R14~R18及びR111~R115と同義である。)
本実施形態に係る化合物は、下記一般式(1-16)~(1-20)のいずれかで表される化合物であることも好ましい。
Figure 2023158501000011
(前記一般式(1-16)~(1-20)において、
~R、R11~R18、R111、R113及びR115は、それぞれ独立に、前記一般式(1)におけるR~R、R11~R18、R111、R113及びR115と同義である。)
本実施形態に係る化合物において、R115は、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基であることが好ましく、無置換の炭素数1~50のアルキル基、又は無置換の環形成炭素数6~50のアリール基であることがより好ましい。
本実施形態に係る化合物において、R112及びR114は、水素原子であり、かつR111、R113及びR115は、それぞれ独立に、水素原子、メチル基、イソプロピル基、又はフェニル基であることも好ましい。
本実施形態に係る化合物において、R111及びR115は、メチル基であることも好ましい。
本実施形態に係る化合物において、R18、並びに前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR~R、R11~R17及びR112~R114は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、または置換もしくは無置換の環形成原子数5~50のヘテロアリール基であることが好ましい。
本実施形態に係る化合物において、前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR11~R13は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50のヘテロアリール基、又は置換もしくは無置換の環形成炭素数6~60のアリールアミノ基(好ましくは置換もしくは無置換のジフェニルアミノ基)であることも好ましい。
本実施形態に係る化合物において、R18は、水素原子であることも好ましい。
本実施形態に係る化合物において、前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR~Rは、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~25のアルキル基、置換もしくは無置換の環形成炭素数6~25のアリール基、または置換もしくは無置換の環形成原子数5~25のヘテロアリール基であることが好ましい。
本実施形態に係る化合物において、R18、並びに前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR11~R17及びR112~R114は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~25のアルキル基、置換もしくは無置換の環形成炭素数6~25のアリール基、または置換もしくは無置換の環形成原子数5~25のヘテロアリール基であることが好ましい。
本実施形態に係る化合物は、下記一般式(100)で表されることがより好ましい。
Figure 2023158501000012
本実施形態に係る化合物において、「置換もしくは無置換の」という場合における置換基が、無置換の炭素数1~10のアルキル基、無置換の環形成炭素数6~12のアリール基、又は無置換の環形成原子数5~12の複素環基であることが好ましい。
本実施形態に係る化合物において、「置換もしくは無置換」と記載された基は、いずれも「無置換」の基であることも好ましい。
・化合物の最大ピーク波長
本実施形態に係る化合物は、最大ピーク波長が400nm以上700nm以下の発光を示すことが好ましい。
本明細書において、化合物の最大ピーク波長とは、測定対象化合物が10-6モル/リットル以上10-5モル/リットル以下の濃度で溶解しているトルエン溶液について、測定した蛍光スペクトルにおける発光強度が最大となる蛍光スペクトルのピーク波長をいう。測定装置として、分光蛍光光度計(日立社製、F-7000)を用いることができる。
本実施形態に係る化合物は、赤色の発光又は緑色の発光を示すことが好ましく、緑色の発光を示すことがより好ましい。
本明細書において、赤色の発光とは、蛍光スペクトルの最大ピーク波長が600nm以上660nm以下の範囲内である発光をいう。
本実施形態に係る化合物が赤色の蛍光発光性の化合物である場合、第一の化合物の最大ピーク波長は、好ましくは600nm以上660nm以下、より好ましくは600nm以上640nm以下、さらに好ましくは610nm以上630nm以下である。
本明細書において、緑色の発光とは、蛍光スペクトルの最大ピーク波長が500nm以上560nm以下の範囲内である発光をいう。
本実施形態に係る化合物が緑色の蛍光発光性の化合物である場合、第一の化合物の最大ピーク波長は、好ましくは500nm以上560nm以下、より好ましくは500nm以上540nm以下、さらに好ましくは510nm以上530nm以下である。
本明細書において、青色の発光とは、蛍光スペクトルの最大ピーク波長が430nm以上480nm以下の範囲内である発光をいう。
本実施形態に係る化合物が青色の蛍光発光性の化合物である場合、第一の化合物の最大ピーク波長は、好ましくは430nm以上480nm以下、より好ましくは445nm以上480nm以下である。
・本実施形態に係る化合物の製造方法
本実施形態に係る化合物は、後述する実施例に記載の合成方法に従って、又は当該合成方法に倣い、目的物に合わせた既知の代替反応及び原料を用いることで、製造できる。
・本実施形態に係る化合物の具体例
本実施形態に係る第一の化合物(一般式(1)で表される化合物)の具体例を以下に示す。なお、本発明における第一の化合物は、これらの具体例に限定されない。
Figure 2023158501000013
Figure 2023158501000014
本実施形態に係る化合物によれば、有機EL素子の性能を向上させることができる。一実施形態に係る化合物によれば、有機EL素子を高効率で発光させ、かつ寿命を長くすることができる。
〔第二実施形態〕
(有機エレクトロルミネッセンス素子用材料)
本実施形態に係る有機エレクトロルミネッセンス素子用材料は、第一実施形態に係る化合物を含有する。一態様としては、第一実施形態に係る化合物のみを含む有機エレクトロルミネッセンス素子用材料が挙げられ、別の一態様としては、第一実施形態に係る化合物と、第一実施形態における化合物とは異なる他の化合物とを含む有機エレクトロルミネッセンス素子用材料が挙げられる。
本実施形態の有機エレクトロルミネッセンス素子材料において、第一実施形態に係る化合物(前記一般式(1)で表される化合物)がドーパント材料であることが好ましい。この場合、有機エレクトロルミネッセンス素子用材料は、ドーパント材料としての第一実施形態に係る化合物と、例えば、ホスト材料等の他の化合物とを含んでいてもよい。
〔第三実施形態〕
(有機エレクトロルミネッセンス素子)
本実施形態に係る有機EL素子について説明する。
本実施形態に係る有機EL素子は、陰極と、陽極と、前記陰極および前記陽極の間に含まれる有機層と、を有する。この有機層は、有機化合物で構成される層を少なくとも一つ含む。あるいは、この有機層は、有機化合物で構成される複数の層が積層されてなる。有機層は、無機化合物をさらに含んでいてもよい。有機層の少なくとも1層が、第一実施形態に係る化合物(前記一般式(1)で表される化合物)を含む。
有機層は、例えば、一つの発光層で構成されていてもよいし、有機EL素子に採用され得る層を含んでいてもよい。有機EL素子に採用され得る層としては、特に限定されないが、例えば、正孔注入層、正孔輸送層、電子注入層、電子輸送層、及び障壁層からなる群から選択される少なくともいずれかの層が挙げられる。
図1に、本実施形態に係る有機EL素子の一例の概略構成を示す。
有機EL素子1は、透光性の基板2と、陽極3と、陰極4と、陽極3と陰極4との間に配置された有機層10と、を含む。有機層10は、陽極3側から順に、正孔注入層6、正孔輸送層7、発光層5、電子輸送層8及び電子注入層9が、この順番で積層されて構成される。
(発光層)
本実施形態に係る有機EL素子の有機層は、発光層を含む。
発光層が第一実施形態に係る化合物(前記一般式(1)で表される化合物)を含むことが好ましい。
発光層がさらに遅延蛍光性発光材料を含むことも好ましい。
発光層が、第一実施形態に係る化合物及び遅延蛍光性発光材料を含む場合、遅延蛍光性発光材料の最低励起一重項エネルギーS(H)と、第一実施形態に係る化合物(前記一般式(1)で表される化合物)の最低励起一重項エネルギーS(D)とが、下記数式(数1)を満たすことが好ましい。
(H)>S(D)…(数1)
本実施形態に係る有機EL素子において、発光層は、第一の化合物及び第二の化合物を含むことが好ましい。発光層における第一の化合物は、第一実施形態に係る化合物であることが好ましい。
この態様の場合、第二の化合物は、ホスト材料(マトリックス材料と称する場合もある。)であることが好ましく、第一の化合物は、ドーパント材料(ゲスト材料、エミッター、又は発光材料と称する場合もある。)であることも好ましい。
本明細書において、「ホスト材料」とは、例えば、「層の50質量%以上」含まれる材料である。したがって、例えば、発光層は、第二の化合物を、当該発光層の全質量の50質量%以上、含有する。また、例えば、「ホスト材料」は、層の60質量%以上、層の70質量%以上、層の80質量%以上、層の90質量%以上、又は層の95質量%以上含まれていてもよい。
本実施形態の有機EL素子において、第一の化合物の最低励起一重項エネルギーS(M1)と、第二の化合物の最低励起一重項エネルギーS(M2)とが、下記数式(数3)の関係を満たすことが好ましい。
(M2)>S(M1) …(数3)
第一の化合物の77[K]におけるエネルギーギャップT77K(M1)は、第二の化合物の77[K]におけるエネルギーギャップT77K(M2)よりも小さいことが好ましい。すなわち、下記数式(数5)の関係を満たすことが好ましい。
77K(M2)>T77K(M1) …(数5)
本実施形態の有機EL素子を発光させたときに、発光層において、第一の化合物としての第一実施形態に係る化合物が主に発光していることが好ましい。
一実施形態において、発光層は、金属錯体を含んでもよい。
また、一実施形態において、発光層は、金属錯体を含まないことも好ましい。
また、一実施形態において、発光層は、燐光発光性材料(ドーパント材料)を含まないことが好ましい。
また、一実施形態において、発光層は、重金属錯体及び燐光発光性の希土類金属錯体を含まないことが好ましい。重金属錯体としては、例えば、イリジウム錯体、オスミウム錯体、及び白金錯体等が挙げられる。
本実施形態において、発光層が第一実施形態に係る化合物を含む場合、当該発光層は、燐光発光性の金属錯体を含まないことが好ましく、燐光発光性の金属錯体以外の金属錯体も含まないことが好ましい。
(第一の化合物)
第一の化合物は、第一実施形態に係る化合物であることが好ましい。
一実施形態において、第一の化合物は、遅延蛍光性を示さない蛍光発光性の化合物である。
(第二の化合物)
第二の化合物は、特に限定されないが、本実施形態の有機EL素子において、第二の化合物が遅延蛍光性発光材料であることが好ましい。
本実施形態の有機EL素子において、第二の化合物としての遅延蛍光性発光材料がホスト材料であることが好ましい。
本実施形態の有機EL素子において、第二の化合物としての遅延蛍光性発光材料がホスト材料であり、第一の化合物としての第一実施形態に係る化合物がドーパント材料であることが好ましい。
(遅延蛍光性)
遅延蛍光については、「有機半導体のデバイス物性」(安達千波矢編、講談社発行)の261~268ページで解説されている。その文献の中で、蛍光発光材料の励起一重項状態と励起三重項状態のエネルギー差ΔE13を小さくすることができれば、通常は遷移確率が低い励起三重項状態から励起一重項状態への逆エネルギー移動が高効率で生じ、熱活性化遅延蛍光(Thermally Activated delayed Fluorescence,TADF)が発現すると説明されている。さらに、当該文献中の図10.38で、遅延蛍光の発生メカニズムが説明されている。本実施形態における遅延蛍光性発光材料は、このようなメカニズムで発生する熱活性化遅延蛍光を示す化合物であることが好ましい。
一般に、遅延蛍光の発光は過渡PL(Photo Luminescence)測定により確認できる。
過渡PL測定から得た減衰曲線に基づいて遅延蛍光の挙動を解析することもできる。過渡PL測定とは、試料にパルスレーザーを照射して励起させ、照射を止めた後のPL発光の減衰挙動(過渡特性)を測定する手法である。TADF材料におけるPL発光は、最初のPL励起で生成する一重項励起子からの発光成分と、三重項励起子を経由して生成する一重項励起子からの発光成分に分類される。最初のPL励起で生成する一重項励起子の寿命は、ナノ秒オーダーであり、非常に短い。そのため、当該一重項励起子からの発光は、パルスレーザーを照射後、速やかに減衰する。
一方、遅延蛍光は、寿命の長い三重項励起子を経由して生成する一重項励起子からの発光のため、ゆるやかに減衰する。このように最初のPL励起で生成する一重項励起子からの発光と、三重項励起子を経由して生成する一重項励起子からの発光とでは、時間的に大きな差がある。そのため、遅延蛍光由来の発光強度を求めることができる。
図2には、過渡PLを測定するための例示的装置の概略図が示されている。図2を用いた過渡PLの測定方法、および遅延蛍光の挙動解析の一例を説明する。
図2の過渡PL測定装置100は、所定波長の光を照射可能なパルスレーザー部101と、測定試料を収容する試料室102と、測定試料から放射された光を分光する分光器103と、2次元像を結像するためのストリークカメラ104と、2次元像を取り込んで解析するパーソナルコンピュータ105とを備える。なお、過渡PLの測定は、図2に記載の装置に限定されない。
試料室102に収容される試料は、マトリックス材料に対し、ドーピング材料が12質量%の濃度でドープされた薄膜を石英基板に成膜することで得られる。
試料室102に収容された薄膜試料に対し、パルスレーザー部101からパルスレーザーを照射してドーピング材料を励起させる。励起光の照射方向に対して90度の方向へ発光を取り出し、取り出した光を分光器103で分光し、ストリークカメラ104内で2次元像を結像する。その結果、縦軸が時間に対応し、横軸が波長に対応し、輝点が発光強度に対応する2次元画像を得ることができる。この2次元画像を所定の時間軸で切り出すと、縦軸が発光強度であり、横軸が波長である発光スペクトルを得ることができる。また、当該2次元画像を波長軸で切り出すと、縦軸が発光強度の対数であり、横軸が時間である減衰曲線(過渡PL)を得ることができる。
例えば、マトリックス材料として、下記参考化合物H1を用い、ドーピング材料として下記参考化合物D1を用いて上述のようにして薄膜試料Aを作製し、過渡PL測定を行った。
ここでは、前述の薄膜試料A、および薄膜試料Bを用いて減衰曲線を解析した。薄膜試料Bは、マトリックス材料として下記参考化合物H2を用い、ドーピング材料として前記参考化合物D1を用いて、上述のようにして薄膜試料を作製した。
図3には、薄膜試料Aおよび薄膜試料Bについて測定した過渡PLから得た減衰曲線が示されている。
上記したように過渡PL測定によって、縦軸を発光強度とし、横軸を時間とする発光減衰曲線を得ることができる。この発光減衰曲線に基づいて、光励起により生成した一重項励起状態から発光する蛍光と、三重項励起状態を経由し、逆エネルギー移動により生成する一重項励起状態から発光する遅延蛍光との、蛍光強度比を見積もることができる。遅延蛍光性の材料では、素早く減衰する蛍光の強度に対し、緩やかに減衰する遅延蛍光の強度の割合が、ある程度大きい。
具体的には、遅延蛍光性の材料からの発光としては、Prompt発光(即時発光)と、Delay発光(遅延発光)とが存在する。Prompt発光(即時発光)とは、当該遅延蛍光性の材料が吸収する波長のパルス光(パルスレーザーから照射される光)で励起された後、当該励起状態から即座に観察される発光である。Delay発光(遅延発光)とは、当該パルス光による励起後、即座には観察されず、その後観察される発光である。
Prompt発光とDelay発光の量とその比は、“Nature 492, 234-238, 2012”(参考文献1)に記載された方法と同様の方法により求めることができる。なお、Prompt発光とDelay発光の量の算出に使用される装置は、前記参考文献1に記載の装置、または図2に記載の装置に限定されない。
また、本明細書では、遅延蛍光性発光材料の遅延蛍光性の測定には、次に示す方法により作製した試料を用いる。例えば、遅延蛍光性発光材料をトルエンに溶解し、自己吸収の寄与を取り除くため励起波長において吸光度が0.05以下の希薄溶液を調製する。また酸素による消光を防ぐため、試料溶液を凍結脱気した後にアルゴン雰囲気下で蓋付きのセルに封入することで、アルゴンで飽和された酸素フリーの試料溶液とする。
上記試料溶液の蛍光スペクトルを分光蛍光光度計FP-8600(日本分光社製)で測定し、また同条件で9,10-ジフェニルアントラセンのエタノール溶液の蛍光スペクトルを測定する。両スペクトルの蛍光面積強度を用いて、Morris et al. J.Phys.Chem.80(1976)969中の(1)式により全蛍光量子収率を算出する。
本実施形態においては、測定対象化合物(遅延蛍光性発光材料)のPrompt発光(即時発光)の量をXとし、Delay発光(遅延発光)の量をXとしたときに、X/Xの値が0.05以上であることが好ましい。
本明細書における遅延蛍光性発光材料以外の化合物のPrompt発光とDelay発光の量とその比の測定も、遅延蛍光性発光材料のPrompt発光とDelay発光の量とその比の測定と同様である。
・ΔST
本実施形態では、最低励起一重項エネルギーSと、77[K]におけるエネルギーギャップT77Kとの差(S-T77K)をΔSTとして定義する。
遅延蛍光性発光材料の最低励起一重項エネルギーS(H)と、遅延蛍光性発光材料の77[K]におけるエネルギーギャップT77K(H)との差ΔST(H)は、好ましくは0.3eV未満、より好ましくは0.2eV未満、さらに好ましくは0.1eV未満である。すなわち、ΔST(H)は、下記数式(数10)、(数11)又は(数12)の関係を満たすことが好ましい。
ΔST(H)=S(H)-T77K(H)<0.3eV …(数10)
ΔST(H)=S(H)-T77K(H)<0.2eV …(数11)
ΔST(H)=S(H)-T77K(H)<0.1eV …(数12)
・三重項エネルギーと77[K]におけるエネルギーギャップとの関係
ここで、三重項エネルギーと77[K]におけるエネルギーギャップとの関係について説明する。本実施形態では、77[K]におけるエネルギーギャップは、通常定義される三重項エネルギーとは異なる点がある。
三重項エネルギーの測定は、次のようにして行われる。まず、測定対象となる化合物を適切な溶媒中に溶解した溶液を石英ガラス管内に封入した試料を作製する。この試料について、低温(77[K])で燐光スペクトル(縦軸:燐光発光強度、横軸:波長とする。)を測定し、この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値に基づいて、所定の換算式から三重項エネルギーを算出する。
ここで、本実施形態に係る化合物の内、熱活性化遅延蛍光性の化合物は、ΔSTが小さい化合物であることが好ましい。ΔSTが小さいと、低温(77[K])状態でも、項間交差、及び逆項間交差が起こりやすく、励起一重項状態と励起三重項状態とが混在する。その結果、上記と同様にして測定されるスペクトルは、励起一重項状態、及び励起三重項状態の両者からの発光を含んでおり、いずれの状態から発光したのかについて峻別することは困難であるが、基本的には三重項エネルギーの値が支配的と考えられる。
そのため、本実施形態では、通常の三重項エネルギーTと測定手法は同じであるが、その厳密な意味において異なることを区別するため、次のようにして測定される値をエネルギーギャップT77Kと称する。測定対象となる化合物をEPA(ジエチルエーテル:イソペンタン:エタノール=5:5:2(容積比))中に、濃度が10μmol/Lとなるように溶解し、この溶液を石英セル中に入れて測定試料とする。この測定試料について、低温(77[K])で燐光スペクトル(縦軸:燐光発光強度、横軸:波長とする。)を測定し、この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]に基づいて、次の換算式(F1)から算出されるエネルギー量を77[K]におけるエネルギーギャップT77Kとする。
換算式(F1):T77K[eV]=1239.85/λedge
燐光スペクトルの短波長側の立ち上がりに対する接線は以下のように引く。燐光スペクトルの短波長側から、スペクトルの極大値のうち、最も短波長側の極大値までスペクトル曲線上を移動する際に、長波長側に向けて曲線上の各点における接線を考える。この接線は、曲線が立ち上がるにつれ(つまり縦軸が増加するにつれ)、傾きが増加する。この傾きの値が極大値をとる点において引いた接線(すなわち変曲点における接線)が、当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
なお、スペクトルの最大ピーク強度の15%以下のピーク強度をもつ極大点は、上述の最も短波長側の極大値には含めず、最も短波長側の極大値に最も近い、傾きの値が極大値をとる点において引いた接線を当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
燐光の測定には、(株)日立ハイテクノロジー製のF-4500形分光蛍光光度計本体を用いることができる。なお、測定装置はこの限りではなく、冷却装置、及び低温用容器と、励起光源と、受光装置とを組み合わせることにより、測定してもよい。
・最低励起一重項エネルギーS
溶液を用いた最低励起一重項エネルギーSの測定方法(溶液法と称する場合がある。)としては、下記の方法が挙げられる。
測定対象となる化合物の10μmol/Lトルエン溶液を調製して石英セルに入れ、常温(300K)でこの試料の吸収スペクトル(縦軸:吸収強度、横軸:波長とする。)を測定する。この吸収スペクトルの長波長側の立ち下がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を次に示す換算式(F2)に代入して最低励起一重項エネルギーを算出する。
換算式(F2):S[eV]=1239.85/λedge
吸収スペクトル測定装置としては、例えば、日立社製の分光光度計(装置名:U3310)が挙げられるが、これに限定されない。
吸収スペクトルの長波長側の立ち下がりに対する接線は以下のように引く。吸収スペクトルの極大値のうち、最も長波長側の極大値から長波長方向にスペクトル曲線上を移動する際に、曲線上の各点における接線を考える。この接線は、曲線が立ち下がるにつれ(つまり縦軸の値が減少するにつれ)、傾きが減少しその後増加することを繰り返す。傾きの値が最も長波長側(ただし、吸光度が0.1以下となる場合は除く)で極小値をとる点において引いた接線を当該吸収スペクトルの長波長側の立ち下がりに対する接線とする。
なお、吸光度の値が0.2以下の極大点は、上記最も長波長側の極大値には含めない。
・一般式(101)で表される化合物
本実施形態において、遅延蛍光性発光材料は、遅延蛍光性を有する化合物であれば特に限定されない。一実施形態において、遅延蛍光性発光材料は、下記一般式(101)で表される化合物である。
Figure 2023158501000017
(前記一般式(101)において、
Dは、下記一般式(110)、一般式(120)又は一般式(130)で表される基であり、
但し、少なくとも1つのDは、下記一般式(120)又は一般式(130)で表される基であり、
mは、1、2又は3であり、
mが2又は3のとき、複数のDは、互いに同一であるか、又は異なり、
Rは、それぞれ独立して、水素原子、ハロゲン原子又は置換基であり、
置換基としてのRは、それぞれ独立して、
置換もしくは無置換の環形成炭素数6~14のアリール基、
置換もしくは無置換の環形成原子数5~14のヘテロアリール基、
置換もしくは無置換の炭素数1~6のアルキル基、
置換もしくは無置換の環形成炭素数3~6のシクロアルキル基、
置換もしくは無置換の炭素数3~6のアルキルシリル基、
置換もしくは無置換の炭素数3~6のアリールシリル基、
置換もしくは無置換の炭素数1~6のアルコキシ基、
置換もしくは無置換の環形成炭素数6~14のアリールオキシ基、
置換もしくは無置換の炭素数2~12のアルキルアミノ基、
置換もしくは無置換の炭素数1~6のアルキルチオ基、又は
置換もしくは無置換の環形成炭素数6~14のアリールチオ基であり、
但し、少なくとも1つのRは、置換基であり、
少なくとも1つの置換基としてのRは、前記一般式(101)中のベンゼン環との炭素-炭素結合により結合し、
nは、1、2又は3であり、
nが2又は3のとき、複数のRは、互いに同一であるか、又は異なり、
置換基であるRの数と、下記一般式(120)又は一般式(130)で表される基の数との和が、3又は4である。)
Figure 2023158501000018
Figure 2023158501000019
Figure 2023158501000020
(前記一般式(110)におけるR~Rは、それぞれ独立に、水素原子、ハロゲン原子又は置換基であり、
前記一般式(120)におけるR11~R18は、それぞれ独立に、水素原子、ハロゲン原子もしくは置換基であるか、又はR11及びR12の組、R12及びR13の組、R13及びR14の組、R15及びR16の組、R16及びR17の組、並びにR17及びR18の組のいずれか1つ以上の組が互いに結合して環を形成し、
前記一般式(130)におけるR111~R118は、それぞれ独立に、水素原子、ハロゲン原子もしくは置換基であるか、又はR111及びR112の組、R112及びR113の組、R113及びR114の組、R115及びR116の組、R116及びR117の組、並びにR117及びR118の組のいずれか1つ以上の組が互いに結合して環を形成し、
置換基としてのR~R、置換基としてのR11~R18、並びに置換基としてのR111~R118は、それぞれ独立に、
置換もしくは無置換の環形成炭素数6~30のアリール基、
置換もしくは無置換の環形成原子数5~30の複素環基、
置換もしくは無置換の炭素数1~30のアルキル基、
置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
置換もしくは無置換の炭素数3~30のアルキルシリル基、
置換もしくは無置換の環形成炭素数6~60のアリールシリル基、
置換もしくは無置換の炭素数1~30のアルコキシ基、
置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
置換もしくは無置換の炭素数2~30のアルキルアミノ基、
置換もしくは無置換の環形成炭素数6~60のアリールアミノ基、
置換もしくは無置換の炭素数1~30のアルキルチオ基、又は
置換もしくは無置換の環形成炭素数6~30のアリールチオ基であり、
前記一般式(120)及び前記一般式(130)において、
A、B及びCは、それぞれ独立に、下記一般式(140)、一般式(150)及び一般式(160)で表される環構造からなる群から選択されるいずれかの環構造であり、
この環構造A、環構造B及び環構造Cは、隣接する環構造と任意の位置で縮合し、
p、px及びpyは、それぞれ独立に、1、2、3又は4であり、
pが2、3又は4の場合、複数の環構造Aは、互いに同一であるか、又は異なり、
pxが2、3又は4の場合、複数の環構造Bは、互いに同一であるか、又は異なり、
pyが2、3又は4の場合、複数の環構造Cは、互いに同一であるか、又は異なり、
ただし、少なくとも1つのDは、pが2、3又は4であって、環構造Aとして、下記一般式(150)及び一般式(160)で表される環構造からなる群から選択されるいずれかの環構造を含んだ前記一般式(120)で表される基であるか、又はpx及びpyの少なくとも一方が2、3又は4であって、環構造B又は環構造Cとして、下記一般式(150)及び一般式(160)で表される環構造からなる群から選択されるいずれかの環構造を含んだ前記一般式(130)で表される基であり、
前記一般式(110)、(120)及び(130)中の*は、前記一般式(101)中のベンゼン環との結合位置を示す。)
Figure 2023158501000021
(前記一般式(140)において、
19及びR20は、それぞれ独立に、水素原子、ハロゲン原子もしくは置換基であるか、又はR19及びR20の組が互いに結合して環を形成し、
前記一般式(150)及び一般式(160)において、
10及びX20は、それぞれ独立して、NR120、硫黄原子、又は酸素原子であり、
120は、水素原子、ハロゲン原子もしくは置換基であり、
置換基としてのR19、R20及びR120は、それぞれ独立に、置換基としてのR~Rと同義である。)
前記一般式(101)で表される化合物において、前記一般式(110)、(120)及び(130)で表される基等が結合する前記一般式(101)のベンゼン環とは、前記一般式(101)において明示的に示されているベンゼン環そのものであって、R及びDに含まれるベンゼン環ではない。
前記一般式(101)において、Rは、それぞれ独立に、水素原子、ハロゲン原子、置換もしくは無置換の環形成炭素数6~14のアリール基、置換もしくは無置換の環形成原子数5~14のヘテロアリール基、置換もしくは無置換の炭素数1~6のアルキル基、又は置換もしくは無置換の環形成炭素数3~6のシクロアルキル基であることが好ましい。
前記一般式(110)、(120)及び(130)において、R~R、R11~R18、及びR111~R118は、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の炭素数1~30のアルキル基、又は置換もしくは無置換の環形成炭素数3~30のシクロアルキル基であることが好ましい。
前記一般式(120)において、pは、2、3又は4であることが好ましい。
前記一般式(130)において、px及びpyは、それぞれ独立に、2、3又は4であることが好ましい。
・遅延蛍光性発光材料の製造方法
遅延蛍光性発光材料は、公知の方法により製造できる。また、遅延蛍光性発光材料は、公知の方法に倣い、目的物に合わせた既知の代替反応及び原料を用いることによっても、製造できる。
・遅延蛍光性発光材料の具体例
遅延蛍光性発光材料の具体例としては、例えば、以下の化合物が挙げられる。ただし、本発明は、これら遅延蛍光性発光材料の具体例に限定されない。
Figure 2023158501000022
Figure 2023158501000023
(TADF機構(メカニズム))
図4は、発光層における、遅延蛍光性発光材料である場合の第二の化合物M2及び第一実施形態の化合物である場合の第一の化合物M1のエネルギー準位の関係の一例を示す図である。図4において、S0は、基底状態を表す。S1(M1)は、第一の化合物M1の最低励起一重項状態を表す。T1(M1)は、第一の化合物M1の最低励起三重項状態を表す。S1(M2)は、第二の化合物M2の最低励起一重項状態を表す。T1(M2)は、第二の化合物M2の最低励起三重項状態を表す。
図4中のS1(M2)からS1(M1)へ向かう破線の矢印は、第二の化合物M2の最低励起一重項状態から第一の化合物M1へのフェルスター型エネルギー移動を表す。
図4に示すように、第二の化合物M2としてΔST(M2)の小さな化合物(遅延蛍光性発光材料)を用いると、最低励起三重項状態T1(M2)は、熱エネルギーにより、最低励起一重項状態S1(M2)に逆項間交差が可能である。そして、第二の化合物M2の最低励起一重項状態S1(M2)から第一の化合物M1へのフェルスター型エネルギー移動が生じ、最低励起一重項状態S1(M1)が生成する。この結果、第一の化合物M1の最低励起一重項状態S1(M1)からの蛍光発光を観測することができる。このTADF機構による遅延蛍光を利用することによっても、理論的に内部量子効率を100%まで高めることができると考えられている。
ホスト材料としての第二の化合物は、ドーパント材料よりも最低空軌道準位(LUMO準位)が高く、最高被占有軌道準位(HOMO準位)が低い化合物でもよい。ホスト材料としては、(1)アルミニウム錯体、ベリリウム錯体、若しくは亜鉛錯体等の金属錯体、(2)オキサジアゾール誘導体、ベンゾイミダゾール誘導体、若しくはフェナントロリン誘導体等の複素環化合物、(3)アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、若しくはクリセン誘導体等の縮合芳香族化合物、(3)カルバゾール誘導体等の縮合複素環化合物、(4)トリアリールアミン誘導体、若しくは縮合多環芳香族アミン誘導体等の芳香族アミン化合物が挙げられる。
本実施形態の有機EL素子を発光させたときに、発光層において、主に蛍光発光性の化合物が発光していることが好ましい。
本実施形態の有機EL素子は、赤色発光または緑色発光することが好ましく、緑色発光することがより好ましい。
本実施形態の有機EL素子が緑色発光する場合、有機EL素子から発光する光の最大ピーク波長は、500nm以上560nm以下であることが好ましい。
本実施形態の有機EL素子が赤色発光する場合、有機EL素子から発光する光の最大ピーク波長は、600nm以上660nm以下であることが好ましい。
本実施形態の有機EL素子が青色発光する場合、有機EL素子から発光する光の最大ピーク波長は、430nm以上480nm以下であることが好ましい。
有機EL素子から発光する光の最大ピーク波長の測定は、以下のようにして行う。
電流密度が10mA/cmとなるように有機EL素子1に電圧を印加した時の分光放射輝度スペクトルを分光放射輝度計CS-2000(コニカミノルタ社製)で計測する。
得られた分光放射輝度スペクトルにおいて、発光強度が最大となる発光スペクトルのピーク波長を測定し、これを最大ピーク波長(単位:nm)とする。
・発光層の膜厚
本実施形態の有機EL素子における発光層の膜厚は、好ましくは5nm以上50nm以下、より好ましくは7nm以上50nm以下、最も好ましくは10nm以上50nm以下である。5nm以上であると、発光層形成及び色度の調整が容易になりやすく、50nm以下であると、駆動電圧の上昇が抑制されやすい。
・発光層における化合物の含有率
発光層に含まれている第一の化合物及び第二の化合物の含有率は、例えば、以下の範囲であることが好ましい。
第一の化合物の含有率は、0.01質量%以上10質量%以下であることが好ましく、0.01質量%以上5質量%以下であることがより好ましく、0.01質量%以上1質量%以下であることがさらに好ましい。
第二の化合物の含有率は、10質量%以上80質量%以下であることが好ましく、10質量%以上60質量%以下であることがより好ましく、20質量%以上60質量%以下であることがさらに好ましい。
なお、本実施形態は、発光層に、第一の化合物及び第二の化合物以外の材料が含まれることを除外しない。
発光層は、第一の化合物を1種のみ含んでもよいし、2種以上含んでもよい。発光層は、第二の化合物を1種のみ含んでもよいし、2種以上含んでもよい。
本実施形態によれば、第一実施形態の化合物を含むので、高性能な有機EL素子が実現される。一実施形態によれば、高効率で発光し、かつ寿命が長い有機EL素子が実現される。本実施形態に係る有機EL素子は、表示装置、及び発光装置等の電子機器に使用できる。
有機EL素子の構成についてさらに説明する。
(基板)
基板は、有機EL素子の支持体として用いられる。基板としては、例えば、ガラス、石英、プラスチックなどを用いることができる。また、可撓性基板を用いてもよい。可撓性基板とは、折り曲げることができる(フレキシブル)基板のことであり、例えば、ポリカーボネート、ポリアリレート、ポリエーテルスルフォン、ポリプロピレン、ポリエステル、ポリフッ化ビニル、ポリ塩化ビニルからなるプラスチック基板等が挙げられる。また、無機蒸着フィルムを用いることもできる。
(陽極)
基板上に形成される陽極には、仕事関数の大きい(具体的には4.0eV以上)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。具体的には、例えば、酸化インジウム-酸化スズ(ITO:Indium Tin Oxide)、珪素若しくは酸化珪素を含有した酸化インジウム-酸化スズ、酸化インジウム-酸化亜鉛、酸化タングステン、および酸化亜鉛を含有した酸化インジウム、グラフェン等が挙げられる。この他、金(Au)、白金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、チタン(Ti)、または金属材料の窒化物(例えば、窒化チタン)等が挙げられる。
これらの材料は、通常、スパッタリング法により成膜される。例えば、酸化インジウム-酸化亜鉛は、酸化インジウムに対し1質量%以上10質量%以下の酸化亜鉛を加えたターゲットを用いることにより、スパッタリング法で形成することができる。また、例えば、酸化タングステン、および酸化亜鉛を含有した酸化インジウムは、酸化インジウムに対し酸化タングステンを0.5質量%以上5質量%以下、酸化亜鉛を0.1質量%以上1質量%以下含有したターゲットを用いることにより、スパッタリング法で形成することができる。その他、真空蒸着法、塗布法、インクジェット法、スピンコート法などにより作製してもよい。
陽極上に形成されるEL層のうち、陽極に接して形成される正孔注入層は、陽極の仕事関数に関係なく正孔(ホール)注入が容易である複合材料を用いて形成されるため、電極材料として可能な材料(例えば、金属、合金、電気伝導性化合物、およびこれらの混合物、その他、元素周期表の第1族または第2族に属する元素も含む)を用いることができる。
仕事関数の小さい材料である、元素周期表の第1族または第2族に属する元素、すなわちリチウム(Li)やセシウム(Cs)等のアルカリ金属、およびマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、およびこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)、イッテルビウム(Yb)等の希土類金属およびこれらを含む合金等を用いることもできる。なお、アルカリ金属、アルカリ土類金属、およびこれらを含む合金を用いて陽極を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。さらに、銀ペーストなどを用いる場合には、塗布法やインクジェット法などを用いることができる。
(陰極)
陰極には、仕事関数の小さい(具体的には3.8eV以下)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。このような陰極材料の具体例としては、元素周期表の第1族または第2族に属する元素、すなわちリチウム(Li)やセシウム(Cs)等のアルカリ金属、およびマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、およびこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)、イッテルビウム(Yb)等の希土類金属およびこれらを含む合金等が挙げられる。
なお、アルカリ金属、アルカリ土類金属、これらを含む合金を用いて陰極を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。また、銀ペーストなどを用いる場合には、塗布法やインクジェット法などを用いることができる。
なお、電子注入層を設けることにより、仕事関数の大小に関わらず、Al、Ag、ITO、グラフェン、珪素若しくは酸化珪素を含有した酸化インジウム-酸化スズ等様々な導電性材料を用いて陰極を形成することができる。これらの導電性材料は、スパッタリング法やインクジェット法、スピンコート法等を用いて成膜することができる。
(正孔注入層)
正孔注入層は、正孔注入性の高い物質を含む層である。正孔注入性の高い物質としては、モリブデン酸化物、チタン酸化物、バナジウム酸化物、レニウム酸化物、ルテニウム酸化物、クロム酸化物、ジルコニウム酸化物、ハフニウム酸化物、タンタル酸化物、銀酸化物、タングステン酸化物、マンガン酸化物等を用いることができる。
また、正孔注入性の高い物質としては、低分子の有機化合物である4,4’,4’’-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’-ビス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ビフェニル(略称:DPAB)、4,4’-ビス(N-{4-[N’-(3-メチルフェニル)-N’-フェニルアミノ]フェニル}-N-フェニルアミノ)ビフェニル(略称:DNTPD)、1,3,5-トリス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ベンゼン(略称:DPA3B)、3-[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA1)、3,6-ビス[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA2)、3-[N-(1-ナフチル)-N-(9-フェニルカルバゾール-3-イル)アミノ]-9-フェニルカルバゾール(略称:PCzPCN1)等の芳香族アミン化合物等も挙げられる。
また、正孔注入性の高い物質としては、高分子化合物(オリゴマー、デンドリマー、ポリマー等)を用いることもできる。例えば、ポリ(N-ビニルカルバゾール)(略称:PVK)、ポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N-(4-{N’-[4-(4-ジフェニルアミノ)フェニル]フェニル-N’-フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)ベンジジン](略称:Poly-TPD)などの高分子化合物が挙げられる。また、ポリ(3,4-エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(PEDOT/PSS)、ポリアニリン/ポリ(スチレンスルホン酸)(PAni/PSS)等の酸を添加した高分子化合物を用いることもできる。
(正孔輸送層)
正孔輸送層は、正孔輸送性の高い物質を含む層である。正孔輸送層には、芳香族アミン化合物、カルバゾール誘導体、アントラセン誘導体等を使用する事ができる。具体的には、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略称:NPB)やN,N’-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン(略称:TPD)、4-フェニル-4’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:BAFLP)、4,4’-ビス[N-(9,9-ジメチルフルオレン-2-イル)-N-フェニルアミノ]ビフェニル(略称:DFLDPBi)、4,4’,4’’-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’-ビス[N-(スピロ-9,9’-ビフルオレン-2-イル)-N-フェニルアミノ]ビフェニル(略称:BSPB)などの芳香族アミン化合物等を用いることができる。ここに述べた物質は、主に10-6cm/Vs以上の正孔移動度を有する物質である。
正孔輸送層には、CBP、CzPA、PCzPAのようなカルバゾール誘導体や、t-BuDNA、DNA、DPAnthのようなアントラセン誘導体を用いても良い。ポリ(N-ビニルカルバゾール)(略称:PVK)やポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)等の高分子化合物を用いることもできる。
但し、電子よりも正孔の輸送性の高い物質であれば、これら以外の物質を用いてもよい。なお、正孔輸送性の高い物質を含む層は、単層であっても、上記物質からなる層が二層以上積層された層であってもよい。
(電子輸送層)
電子輸送層は、電子輸送性の高い物質を含む層である。電子輸送層には、1)アルミニウム錯体、ベリリウム錯体、亜鉛錯体等の金属錯体、2)イミダゾール誘導体、ベンゾイミダゾール誘導体、アジン誘導体、カルバゾール誘導体、フェナントロリン誘導体等の複素芳香族化合物、3)高分子化合物を使用することができる。具体的には低分子の有機化合物として、Alq、トリス(4-メチル-8-キノリノラト)アルミニウム(略称:Almq)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(略称:BeBq)、BAlq、Znq、ZnPBO、ZnBTZなどの金属錯体等を用いることができる。また、金属錯体以外にも、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、1,3-ビス[5-(ptert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、3-(4-tert-ブチルフェニル)-4-フェニル-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:TAZ)、3-(4-tert-ブチルフェニル)-4-(4-エチルフェニル)-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:p-EtTAZ)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)、4,4’-ビス(5-メチルベンゾオキサゾール-2-イル)スチルベン(略称:BzOs)などの複素芳香族化合物も用いることができる。ここに述べた物質は、主に10-6cm/Vs以上の電子移動度を有する物質である。なお、正孔輸送性よりも電子輸送性の高い物質であれば、上記以外の物質を電子輸送層として用いてもよい。また、電子輸送層は、単層であっても、上記物質からなる層が二層以上積層された層であってもよい。
また、電子輸送層には、高分子化合物を用いることもできる。例えば、ポリ[(9,9-ジヘキシルフルオレン-2,7-ジイル)-co-(ピリジン-3,5-ジイル)](略称:PF-Py)、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(2,2’-ビピリジン-6,6’-ジイル)](略称:PF-BPy)などを用いることができる。
(電子注入層)
電子注入層は、電子注入性の高い物質を含む層である。電子注入層には、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)、リチウム酸化物(LiOx)等のようなアルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。その他、電子輸送性を有する物質にアルカリ金属、アルカリ土類金属、またはそれらの化合物を含有させたもの、具体的にはAlq中にマグネシウム(Mg)を含有させたもの等を用いてもよい。なお、この場合には、陰極からの電子注入をより効率良く行うことができる。
あるいは、電子注入層に、有機化合物と電子供与体(ドナー)とを混合してなる複合材料を用いてもよい。このような複合材料は、電子供与体によって有機化合物に電子が発生するため、電子注入性および電子輸送性に優れている。この場合、有機化合物としては、発生した電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述した電子輸送層を構成する物質(金属錯体や複素芳香族化合物等)を用いることができる。電子供与体としては、有機化合物に対し電子供与性を示す物質であればよい。具体的には、アルカリ金属やアルカリ土類金属や希土類金属が好ましく、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金属酸化物やアルカリ土類金属酸化物が好ましく、リチウム酸化物、カルシウム酸化物、バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。
(層形成方法)
本実施形態の有機EL素子の各層の形成方法としては、上記で特に言及した以外には制限されないが、真空蒸着法、スパッタリング法、プラズマ法、イオンプレーティング法などの乾式成膜法や、スピンコーティング法、ディッピング法、フローコーティング法、インクジェット法などの湿式成膜法などの公知の方法を採用することができる。
(膜厚)
本実施形態の有機EL素子の各有機層の膜厚は、上記で特に言及した以外には制限されないが、一般に膜厚が薄すぎるとピンホール等の欠陥が生じやすく、逆に厚すぎると高い印加電圧が必要となり効率が悪くなるため、通常は数nmから1μmの範囲が好ましい。
〔第四実施形態〕
(有機エレクトロルミネッセンス素子)
第四実施形態に係る有機EL素子の構成について説明する。第四実施形態の説明において第三実施形態と同一の構成要素は、同一符号や名称を付す等して説明を省略もしくは簡略化する。また、第四実施形態では、特に言及されない材料や化合物については、第三実施形態で説明した材料や化合物と同様の材料や化合物を用いることができる。
第四実施形態に係る有機EL素子は、発光層が、さらに第三の化合物を含んでいる点で、第三実施形態に係る有機EL素子と異なる。その他の点については第三実施形態と同様である。
第四実施形態において、発光層は、第一の化合物と、第二の化合物と、第三の化合物とを含む態様であることが好ましい。この態様の場合、第一の化合物が、第一実施形態の化合物であることがより好ましく、第二の化合物が、遅延蛍光性発光材料であることがさらに好ましい。また、この態様の場合、第一の化合物は、ドーパント材料であることが好ましく、第二の化合物は、ホスト材料であることが好ましい。また、第三の化合物は、ドーパント材料ではないことが好ましい。例えば、第四実施形態の発光層は、第二の化合物および第三の化合物を、合計で、当該発光層の全質量の50質量%以上、含有し、層の60質量%以上、層の70質量%以上、層の80質量%以上、層の90質量%以上、又は層の95質量%以上含有していてもよい。
(第三の化合物)
第三の化合物は、遅延蛍光性の化合物でもよいし、遅延蛍光性を示さない化合物でもよいが、遅延蛍光性を示さない化合物であることが好ましい。
第三の化合物としては、特に限定されないが、アミン化合物以外の化合物であることが好ましい。すなわち、第三の化合物は、置換もしくは無置換のアミノ基を含まないことが好ましい。また、例えば、第三の化合物としては、カルバゾール誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体を用いることができるが、これら誘導体に限定されない。
本実施形態において、第三の化合物は、下記一般式(300)で表される化合物であることが好ましい。
・一般式(300)で表される化合物
Figure 2023158501000024
(前記一般式(300)において、X30は酸素原子又は硫黄原子であり、Cは炭素原子であり、
nは、1、2、又は3であり、
kは、1、2、又は3であり、
mは、2、3、又は4であり、k+m=5であり、
11~R18は、それぞれ独立に、水素原子もしくは置換基であるか、又はR11及びR12の組、R12及びR13の組、R13及びR14の組、R15及びR16の組、R16及びR17の組、並びにR17及びR18の組のいずれか1つ以上の組が互いに結合して環を形成し、n及びkの少なくとも一方が2以上である場合、複数のR11は互いに同一であるか又は異なり、複数のR12は互いに同一であるか又は異なり、複数のR13は互いに同一であるか又は異なり、複数のR14は互いに同一であるか又は異なり、複数のR15は互いに同一であるか又は異なり、複数のR16は互いに同一であるか又は異なり、複数のR17は互いに同一であるか又は異なり、複数のR18は互いに同一であるか又は異なり、
は、単結合又は連結基であり、ただし、Lが単結合である場合、nは1であり、
kが2以上である場合、複数のLは互いに同一であるか又は異なり、
連結基としてのLは、
置換もしくは無置換の環形成炭素数6~30のアリール基から誘導される基、
置換もしくは無置換の環形成原子数5~30の複素環基から誘導される基、又は
置換もしくは無置換の環形成炭素数6~30のアリール基から誘導される基、及び置換もしくは無置換の環形成原子数5~30の複素環基から誘導される基からなる群から選択される2つの基が結合した基であり、
kが1であり、mが4であるとき、4つのRは、それぞれ、前記一般式(300)に示すa、b、c、d及びeの位置のいずれかの炭素原子と結合し、1つのLは、前記Rと結合しないa、b、c、d又はeの位置の炭素原子と結合し、
kが2であり、mが3であるとき、3つのRは、それぞれ、前記一般式(300)に示すa、b、c、d及びeの位置のいずれかの炭素原子と結合し、2つのLは、それぞれ、前記Rと結合しないa、b、c、d及びeの位置のいずれかの炭素原子と結合し、
kが3であり、mが2であるとき、2つのRは、それぞれ、前記一般式(300)に示すa、b、c、d及びeの位置のいずれかの炭素原子と結合し、3つのLは、それぞれ、前記Rと結合しないa、b、c、d及びeの位置のいずれかの炭素原子と結合し、
、R31、R32、R34及びR35は、それぞれ独立に、水素原子もしくは置換基であり、mが2以上の場合、複数のRは互いに同一であるか又は異なり、
及びR45~R48は、それぞれ独立に、水素原子もしくは置換基であるか、又はR45及びR46の組、R46及びR47の組、並びにR47及びR48の組のいずれか1つ以上の組が互いに結合して環を形成するか、又は複数のRのうちの2つ以上からなる組のいずれか1つ以上の組が互いに結合して環を形成し、ただし、3つのRは互いに同一であるか又は異なり、3つのRは、それぞれ、前記一般式(300)に示すf、g、h及びiの位置のいずれかの炭素原子と結合し、Cは、前記Rと結合しないf、g、h及びiの位置のいずれかの炭素原子と結合し、
置換基としてのR11~R18、R、R31、R32、R34、R35、R及びR45~R48は、それぞれ独立に、
ハロゲン原子、
シアノ基、
置換もしくは無置換の環形成炭素数6~30のアリール基、
置換もしくは無置換の環形成原子数5~30の複素環基、
置換もしくは無置換の炭素数1~30のアルキル基、
置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
置換もしくは無置換の炭素数2~30のアルケニル基、
置換もしくは無置換の炭素数2~30のアルキニル基、
置換もしくは無置換の炭素数3~30のアルキルシリル基、
置換もしくは無置換の環形成炭素数6~60のアリールシリル基、
置換もしくは無置換の環形成炭素数6~60のアリールホスホリル基、
ヒドロキシ基、
置換もしくは無置換の炭素数1~30のアルコキシ基、
置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
アミノ基、
置換もしくは無置換の炭素数2~30のアルキルアミノ基、
置換もしくは無置換の環形成炭素数6~60のアリールアミノ基、
チオール基、
置換もしくは無置換の炭素数1~30のアルキルチオ基、又は
置換もしくは無置換の環形成炭素数6~30のアリールチオ基である。)
前記一般式(300)において、R11及びR12の組、R12及びR13の組、R13及びR14の組、R15及びR16の組、R16及びR17の組、並びにR17及びR18の組のいずれか1つ以上の組が、互いに結合して環を形成する場合、当該環は、下記一般式(400)で表される環構造を有することが好ましい。
Figure 2023158501000025
前記一般式(400)において、Yは、酸素原子又は硫黄原子であり、R401~R404は、それぞれ独立に、前記一般式(300)におけるR11~R18と同義であり、ただし、R401及びR402の組、R402及びR403の組、並びにR403及びR404の組のいずれか1つ以上の組が互いに結合して環を形成するか、又はR401及びR402の組、R402及びR403の組、並びにR403及びR404の組は、いずれも環を形成しない。
前記一般式(300)において、R11及びR12の組、R12及びR13の組、R13及びR14の組、R15及びR16の組、R16及びR17の組、並びにR17及びR18の組のうちの2つ以上からなる組が、互いに結合して前記一般式(400)で表される環構造を形成する場合、複数のYは互いに同一であるか又は異なり、複数のR401は互いに同一であるか又は異なり、複数のR402は互いに同一であるか又は異なり、複数のR403は互いに同一であるか又は異なり、複数のR404は互いに同一であるか又は異なる。
前記一般式(300)において、n及びkの少なくとも一方が2以上である場合、複数のYは互いに同一であるか又は異なり、複数のR401は互いに同一であるか又は異なり、複数のR402は互いに同一であるか又は異なり、複数のR403は互いに同一であるか又は異なり、複数のR404は互いに同一であるか又は異なる。
前記一般式(400)で表される環構造中の*1及び*2は、前記一般式(300)中において、R11及びR12がそれぞれ結合する2つの炭素原子の組、R12及びR13がそれぞれ結合する2つの炭素原子の組、R13及びR14がそれぞれ結合する2つの炭素原子の組、R15及びR16がそれぞれ結合する2つの炭素原子の組、R16及びR17がそれぞれ結合する2つの炭素原子の組、並びにR17及びR18がそれぞれ結合する2つの炭素原子の組のうちの少なくともいずれかの組の炭素原子を表す。
前記一般式(300)及び(400)において、R11~R18、R、R45~R48及びR401~R404は、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30の複素環基、又は置換もしくは無置換の炭素数1~30のアルキル基であることが好ましい。
前記一般式(300)において、R、R31、R32、R34、及びR35は、水素原子であることが好ましい。
・第三の化合物の製造方法
第三の化合物(一般式(3)で表される化合物)は、公知の方法により製造することができる。
・第三の化合物の具体例
本実施形態に係る第三の化合物の具体例を以下に示す。なお、本発明における第三の化合物は、これらの具体例に限定されない。
Figure 2023158501000026
(発光層における第一の化合物、第二の化合物、及び第三の化合物の関係)
本実施形態の有機EL素子において、発光層が、第二の化合物と、第三の化合物とを含む場合、第二の化合物の最低励起一重項エネルギーS(M2)と、第三の化合物の最低励起一重項エネルギーS(M3)とは、下記数式(数2)の関係を満たすことが好ましい。
(M3)>S(M2) (数2)
第三の化合物の77[K]におけるエネルギーギャップT77K(M3)は、第一の化合物の77[K]におけるエネルギーギャップT77K(M1)よりも大きいことが好ましい。
第三の化合物の77[K]におけるエネルギーギャップT77K(M3)は、第二の化合物の77[K]におけるエネルギーギャップT77K(M2)よりも大きいことが好ましい。
第一の化合物の最低励起一重項エネルギーS(M1)と、第二の化合物の最低励起一重項エネルギーS(M2)と、第三の化合物の最低励起一重項エネルギーS(M3)とは、下記数式(数2A)の関係を満たすことが好ましい。
(M3)>S(M2)>S(M1) …(数2A)
第一の化合物の77[K]におけるエネルギーギャップT77K(M1)と、第二の化合物の77[K]におけるエネルギーギャップT77K(M2)と、第三の化合物の77[K]におけるエネルギーギャップT77K(M3)とは、下記数式(数2B)の関係を満たすことが好ましい。
77K(M3)>T77K(M2)>T77K(M1) …(数2B)
本実施形態の有機EL素子を発光させたときに、発光層において、主に第一実施形態の化合物が発光していることが好ましい。
本実施形態の有機EL素子を発光させたときに、発光層において、主に蛍光発光性の化合物が発光していることが好ましい。
本実施形態の有機EL素子は、第三実施形態の有機EL素子と同様に、赤色発光または緑色発光することが好ましく、緑色発光することがより好ましい。
有機EL素子から発光する光の最大ピーク波長は、第三実施形態の有機EL素子と同様の方法で測定することができる。
・発光層における化合物の含有率
発光層が第一の化合物、第二の化合物、及び第三の化合物を含む場合、当該発光層中の第一の化合物、第二の化合物、及び第三の化合物の含有率は、例えば、以下の範囲であることが好ましい。
本実施形態の有機EL素子では、発光層において、第一の化合物の含有率は、0.01質量%以上10質量%以下であることが好ましく、0.01質量%以上5質量%以下であることがより好ましく、0.01質量%以上1質量%以下であることがさらに好ましい。
第二の化合物の含有率は、10質量%以上80質量%以下であることが好ましく、10質量%以上60質量%以下であることがより好ましく、20質量%以上60質量%以下であることがさらに好ましい。
第三の化合物の含有率は、10質量%以上80質量%以下であることが好ましい。
発光層5における第一の化合物、第二の化合物、及び第三の化合物の合計含有率の上限は、100質量%である。なお、本実施形態は、発光層に、第一の化合物、第二の化合物、及び第三の化合物以外の材料が含まれることを除外しない。
発光層は、第一の化合物を1種のみ含んでもよいし、2種以上含んでもよい。発光層は、第二の化合物を1種のみ含んでもよいし、2種以上含んでもよい。発光層は、第三の化合物を1種のみ含んでもよいし、2種以上含んでもよい。
図5は、発光層における第一の化合物、第二の化合物、及び第三の化合物のエネルギー準位の関係の一例を示す図である。図5において、S0は、基底状態を表す。S1(M1)は、第一の化合物の最低励起一重項状態を表し、T1(M1)は、第一の化合物の最低励起三重項状態を表す。S1(M2)は、第二の化合物の最低励起一重項状態を表し、T1(M2)は、第二の化合物の最低励起三重項状態を表す。S1(M3)は、第三の化合物の最低励起一重項状態を表し、T1(M3)は、第三の化合物の最低励起三重項状態を表す。図5中のS1(M2)からS1(M1)へ向かう破線の矢印は、第二の化合物の最低励起一重項状態から第一の化合物へのフェルスター型エネルギー移動を表す。
図5に示すように、第二の化合物としてΔST(M2)の小さな化合物(遅延蛍光発光性材料)を用いると、最低励起三重項状態T1(M2)は、熱エネルギーにより、最低励起一重項状態S1(M2)に逆項間交差が可能である。そして、第二の化合物の最低励起一重項状態S1(M2)から第一の化合物へのフェルスター型エネルギー移動が生じ、最低励起一重項状態S1(M1)が生成する。この結果、第一の化合物の最低励起一重項状態S1(M1)からの蛍光発光を観測することができる。このTADFメカニズムによる遅延蛍光を利用することによっても、理論的に内部量子効率を100%まで高めることができると考えられている。
本実施形態によれば、第一実施形態の化合物を含むので、高性能な有機EL素子が実現される。一実施形態によれば、高効率で発光し、かつ寿命が長い有機EL素子が実現される。本実施形態に係る有機EL素子は、表示装置、及び発光装置等の電子機器に使用できる。
〔第五実施形態〕
(電子機器)
本実施形態に係る電子機器は、上述の実施形態のいずれかの有機EL素子を搭載している。電子機器としては、例えば、表示装置及び発光装置等が挙げられる。表示装置としては、例えば、表示部品(例えば、有機ELパネルモジュール等)、テレビ、携帯電話、タブレット、及びパーソナルコンピュータ等が挙げられる。発光装置としては、例えば、照明及び車両用灯具等が挙げられる。
〔実施形態の変更〕
なお、本発明は、上述の実施形態に限定されず、本発明の目的を達成できる範囲での変更、改良などは、本発明に含まれる。
例えば、発光層は、1層に限られず、複数の発光層が積層されていてもよい。有機EL素子が複数の発光層を有する場合、少なくとも1つの有機層が上記実施形態で説明した条件を満たしていればよく、少なくとも1つの発光層が、第一実施形態の化合物を含んでいることが好ましい。複数の発光層のうち1つの発光層が、第一実施形態の化合物を含んでいる場合、例えば、その他の発光層が、蛍光発光型の発光層であっても、三重項励起状態から直接基底状態への電子遷移による発光を利用した燐光発光型の発光層であってもよい。
また、有機EL素子が複数の発光層を有する場合、これらの発光層が互いに隣接して設けられていてもよいし、中間層を介して複数の発光ユニットが積層された、いわゆるタンデム型の有機EL素子であってもよい。
また、例えば、発光層の陽極側、及び陰極側の少なくとも一方に障壁層を隣接させて設けてもよい。障壁層は、発光層に接して配置され、正孔、電子、及び励起子の少なくともいずれかを阻止することが好ましい。
例えば、発光層の陰極側で接して障壁層が配置された場合、当該障壁層は、電子を輸送し、かつ正孔が当該障壁層よりも陰極側の層(例えば、電子輸送層)に到達することを阻止する。有機EL素子が、電子輸送層を含む場合は、発光層と電子輸送層との間に当該障壁層を含むことが好ましい。
また、発光層の陽極側で接して障壁層が配置された場合、当該障壁層は、正孔を輸送し、かつ電子が当該障壁層よりも陽極側の層(例えば、正孔輸送層)に到達することを阻止する。有機EL素子が、正孔輸送層を含む場合は、発光層と正孔輸送層との間に当該障壁層を含むことが好ましい。
また、励起エネルギーが発光層からその周辺層に漏れ出さないように、障壁層を発光層に隣接させて設けてもよい。発光層で生成した励起子が、当該障壁層よりも電極側の層(例えば、電子輸送層及び正孔輸送層等)に移動することを阻止する。
発光層と障壁層とは接合していることが好ましい。
その他、本発明の実施における具体的な構造、及び形状等は、本発明の目的を達成できる範囲で他の構造等としてもよい。
本明細書において、「~」を用いて表される数値範囲は、「~」の前に記載される数値を下限値とし、「~」の後に記載される数値を上限値として含む範囲を意味する。
本明細書において、Rx及びRyが互いに結合して環を形成するとは、例えば、Rx及びRyが炭素原子、窒素原子、酸素原子、硫黄原子、リン原子又はケイ素原子を含み、Rxに含まれる原子(炭素原子、窒素原子、酸素原子、硫黄原子、リン原子又はケイ素原子)と、Ryに含まれる原子(炭素原子、窒素原子、酸素原子、硫黄原子、リン原子又はケイ素原子)とが、単結合、二重結合、三重結合、又は二価の連結基を介して結合し、環形成原子数が5以上の環(具体的には、例えば、複素環又は芳香族炭化水素環)を形成することを意味する。xは、数字、文字、又は、数字と文字との組み合わせである。yは、数字、文字、又は、数字と文字との組み合わせである。
二価の連結基としては特に制限されないが、例えば、-O-、-CO-、-CO-、-S-、-SO-、-SO-、-NH-、-NRa-、及びこれらの連結基を2以上組み合わせた基等が挙げられる。
本明細書において、複素環の具体例としては、特筆しない限り、後述の「一般式中における各置換基についての説明」で例示した「ヘテロアリール基Sub」から結合手を除いた環構造(複素環)が挙げられる。これらの複素環は置換基を有していてもよい。
本明細書において、芳香族炭化水素環の具体例としては、特筆しない限り、後述の「一般式中における各置換基についての説明」で例示した「アリール基Sub」から結合手を除いた環構造(芳香族炭化水素環)が挙げられる。これらの芳香族炭化水素環は置換基を有していてもよい。
Raとしては、例えば、後述の「一般式中における各置換基についての説明」で例示した置換もしくは無置換の炭素数1~30のアルキル基Sub、置換もしくは無置換の環形成炭素数6~30のアリール基Sub、置換もしくは無置換の環形成原子数5~30のヘテロアリール基Sub等が挙げられる。
例えば、Rx及びRyが互いに結合して環を形成するとは、下記一般式(E1)で表される分子構造において、Rxに含まれる原子と、Ry1に含まれる原子とが、一般式(E2)で表される環(環構造)Eを形成すること;一般式(F1)で表される分子構造において、Rxに含まれる原子と、Ry1に含まれる原子とが、一般式(F2)で表される環Fを形成すること;一般式(G1)で表される分子構造において、Rxに含まれる原子と、Ry1に含まれる原子とが、一般式(G2)で表される環Gを形成すること;一般式(H1)で表される分子構造において、Rxに含まれる原子と、Ry1に含まれる原子とが、一般式(H2)で表される環Hを形成すること;一般式(I1)で表される分子構造において、Rxに含まれる原子と、Ry1に含まれる原子とが、一般式(I2)
で表される環Iを形成すること;を意味する。
一般式(E1)~(I1)中、*は、それぞれ独立に、一分子中の他の原子との結合位置を表す。一般式(E1)中の2つの*は一般式(E2)中の2つの*にそれぞれ対応し、一般式(F1)中の2つの*は一般式(F2)中の2つの*にそれぞれ対応し、一般式(G1)中の2つの*は一般式(G2)中の2つの*にそれぞれ対応し、一般式(H1)中の2つの*は一般式(H2)中の2つの*にそれぞれ対応し、一般式(I1)中の2つの*は一般式(I2)中の2つの*にそれぞれ対応する。
Figure 2023158501000027
Figure 2023158501000028
一般式(E2)~(I2)で表される分子構造において、E~Iはそれぞれ環構造(前記環形成原子数が5以上の環)を表す。一般式(E2)~(I2)中、*は、それぞれ独立に、一分子中の他の原子との結合位置を表す。一般式(E2)中の2つの*は一般式(E1)中の2つの*にそれぞれ対応する。一般式(F2)~(I2)中の2つの*についても同様に、一般式(F1)~(I1)中の2つの*にそれぞれ対応する。
例えば、一般式(E1)において、Rx及びRyが互いに結合して一般式(E2)中の環Eを形成し、環Eが無置換のベンゼン環である場合、一般式(E1)で表される分子構造は、下記一般式(E3)で表される分子構造になる。ここで、一般式(E3)中の2つの*は、それぞれ独立に、一般式(E2)および一般式(E1)中の2つの*に対応する。
例えば、一般式(E1)において、Rx及びRyが互いに結合して一般式(E2)中の環Eを形成し、環Eが無置換のピロール環である場合、一般式(E1)で表される分子構造は、下記一般式(E4)で表される分子構造になる。ここで、一般式(E4)中の2つの*は、それぞれ独立に、一般式(E2)および一般式(E1)中の2つの*に対応する。一般式(E3)及び(E4)中、*は、それぞれ独立に、一分子中の他の原子との結合位置を表す。
Figure 2023158501000029
本明細書において、環形成炭素数とは、原子が環状に結合した構造の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子のうちの炭素原子の数を表す。当該環が置換基によって置換される場合、置換基に含まれる炭素は環形成炭素数には含まない。以下で記載される「環形成炭素数」については、特筆しない限り同様とする。例えば、ベンゼン環は環形成炭素数が6であり、ナフタレン環は環形成炭素数が10であり、ピリジニル基は環形成炭素数が5であり、フラニル基は環形成炭素数4である。また、ベンゼン環やナフタレン環に置換基として例えばアルキル基が置換している場合、当該アルキル基の炭素数は、環形成炭素数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の炭素数は環形成炭素数の数に含めない。
本明細書において、環形成原子数とは、原子が環状に結合した構造(例えば単環、縮合環、環集合)の化合物(例えば単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子の数を表す。環を構成しない原子や、当該環が置換基によって置換される場合の置換基に含まれる原子は環形成原子数には含まない。以下で記載される「環形成原子数」については、特筆しない限り同様とする。例えば、ピリジン環は、環形成原子数が6であり、キナゾリン環は、環形成原子数が10であり、フラン環は、環形成原子数が5である。ピリジン環やキナゾリン環の炭素原子にそれぞれ結合している水素原子や置換基を構成する原子については、環形成原子数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の原子数は環形成原子数の数に含めない。
・本明細書における一般式中における各置換基についての説明(各置換基の説明)
本明細書におけるアリール基(芳香族炭化水素基と称する場合がある。)は、例えば、アリール基Subであり、アリール基Subは、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、アントリル基、フェナントリル基、フルオレニル基、ピレニル基、クリセニル基、フルオランテニル基、ベンゾ[a]アントリル基、ベンゾ[c]フェナントリル基、トリフェニレニル基、ベンゾ[k]フルオランテニル基、ベンゾ[g]クリセニル基、ベンゾ[b]トリフェニレニル基、ピセニル基、及びペリレニル基からなる群から選択される少なくともいずれかの基である。
本明細書におけるアリール基Subとしては、環形成炭素数が、6~30であることが好ましく、6~20であることがより好ましく、6~14であることがさらに好ましく、6~12であることがよりさらに好ましい。上記アリール基Subの中でもフェニル基、ビフェニル基、ナフチル基、フェナントリル基、ターフェニル基、及びフルオレニル基が好ましい。1-フルオレニル基、2-フルオレニル基、3-フルオレニル基及び4-フルオレニル基については、9位の炭素原子に、後述する本明細書における置換もしくは無置換のアルキル基Subや、置換もしくは無置換のアリール基Subが置換されていることが好ましい。
本明細書におけるヘテロアリール基(複素環基、ヘテロ芳香族環基、または芳香族複素環基と称する場合がある。)は、例えば、複素環基Subである。複素環基Subは、ヘテロ原子として、窒素、硫黄、酸素、ケイ素、セレン原子、及びゲルマニウム原子からなる群から選択される少なくともいずれかの原子を含む基である。複素環基Subは、ヘテロ原子として、窒素、硫黄、及び酸素からなる群から選択される少なくともいずれかの原子を含む基であることが好ましい。
本明細書における複素環基Subは、例えば、ピリジル基、ピリミジニル基、ピラジニル基、ピリダジニル基、トリアジニル基、キノリル基、イソキノリニル基、ナフチリジニル基、フタラジニル基、キノキサリニル基、キナゾリニル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、ピロリル基、イミダゾリル基、ピラゾリル基、トリアゾリル基、テトラゾリル基、インドリル基、ベンズイミダゾリル基、インダゾリル基、イミダゾピリジニル基、ベンズトリアゾリル基、カルバゾリル基、フリル基、チエニル基、オキサゾリル基、チアゾリル基、イソキサゾリル基、イソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、ベンゾフラニル基、ベンゾチエニル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、ベンゾイソキサゾリル基、ベンゾイソチアゾリル基、ベンゾオキサジアゾリル基、ベンゾチアジアゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、ピペリジニル基、ピロリジニル基、ピペラジニル基、モルホリル基、フェナジニル基、フェノチアジニル基、及びフェノキサジニル基からなる群から選択される少なくともいずれかの基である。
本明細書における複素環基Subとしては、環形成原子数が、5~30であることが好ましく、5~20であることがより好ましく、5~14であることがさらに好ましい。上記複素環基Subの中でも1-ジベンゾフラニル基、2-ジベンゾフラニル基、3-ジベンゾフラニル基、4-ジベンゾフラニル基、1-ジベンゾチエニル基、2-ジベンゾチエニル基、3-ジベンゾチエニル基、4-ジベンゾチエニル基、1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、及び9-カルバゾリル基がさらにより好ましい。1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基及び4-カルバゾリル基については、9位の窒素原子に、本明細書における置換もしくは無置換のアリール基Subや、置換もしくは無置換の複素環基Subが置換していることが好ましい。
また、本明細書において、複素環基Subは、例えば、下記一般式(XY-1)~(XY-18)で表される部分構造から誘導される基であってもよい。
前記一般式(XY-1)~(XY-18)において、X及びYは、それぞれ独立に、ヘテロ原子であり、酸素原子、硫黄原子、セレン原子、ケイ素原子、またはゲルマニウム原子であることが好ましい。前記一般式(XY-1)~(XY-18)で表される部分構造は、任意の位置で結合手を有して複素環基となり、この複素環基は、置換基を有していてもよい。
また、本明細書において、複素環基Subは、例えば、下記一般式(XY-19)~(XY-22)で表される基であってもよい。また、結合手の位置も適宜変更され得る。
本明細書におけるアルキル基は、直鎖のアルキル基、分岐鎖のアルキル基または環状のアルキル基のいずれであってもよい。
本明細書におけるアルキル基は、例えば、アルキル基Subである。
本明細書における直鎖のアルキル基は、例えば、直鎖のアルキル基Sub31である。
本明細書における分岐鎖のアルキル基は、例えば、分岐鎖のアルキル基Sub32である。
本明細書における環状のアルキル基は、例えば、環状のアルキル基Sub33である。
アルキル基Subは、例えば、直鎖のアルキル基Sub31、分岐鎖のアルキル基Sub32、及び環状のアルキル基Sub33からなる群から選択される少なくともいずれかの基である。
直鎖のアルキル基Sub31または分岐鎖のアルキル基Sub32は、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、ネオペンチル基、アミル基、イソアミル基、1-メチルペンチル基、2-メチルペンチル基、1-ペンチルヘキシル基、1-ブチルペンチル基、1-ヘプチルオクチル基、及び3-メチルペンチル基からなる群から選択される少なくともいずれかの基である。
本明細書における直鎖のアルキル基Sub31または分岐鎖のアルキル基Sub32の炭素数は、1~30であることが好ましく、1~20であることがより好ましく、1~10であることがさらに好ましく、1~6であることがよりさらに好ましい。上記直鎖のアルキル基Sub31または分岐鎖のアルキル基Sub32としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、アミル基、イソアミル基、及びネオペンチル基がさらにより好ましい。
本明細書における環状のアルキル基Sub33は、例えば、シクロアルキル基Sub331である。
本明細書におけるシクロアルキル基Sub331は、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、4-メチルシクロヘキシル基、アダマンチル基、及びノルボルニル基からなる群から選択される少なくともいずれかの基である。シクロアルキル基Sub331の環形成炭素数は、3~30であることが好ましく、3~20であることがより好ましく、3~10であることがさらに好ましく、5~8であることがよりさらに好ましい。シクロアルキル基Sub331の中でも、シクロペンチル基やシクロヘキシル基がさらにより好ましい。
本明細書におけるハロゲン化アルキル基は、例えば、ハロゲン化アルキル基Subであり、ハロゲン化アルキル基Subは、例えば、アルキル基Subが1以上のハロゲン原子、好ましくはフッ素原子で置換されたアルキル基である。
本明細書におけるハロゲン化アルキル基Subは、例えば、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、トリフルオロメチルメチル基、トリフルオロエチル基、及びペンタフルオロエチル基からなる群から選択される少なくともいずれかの基である。
本明細書における置換シリル基は、例えば、置換シリル基Subであり、置換シリル基Subは、例えば、アルキルシリル基Sub51及びアリールシリル基Sub52からなる群から選択される少なくともいずれかの基である。
本明細書におけるアルキルシリル基Sub51は、例えば、上記アルキル基Subを有するトリアルキルシリル基Sub511である。
トリアルキルシリル基Sub511は、例えば、トリメチルシリル基、トリエチルシリル基、トリ-n-ブチルシリル基、トリ-n-オクチルシリル基、トリイソブチルシリル基、ジメチルエチルシリル基、ジメチルイソプロピルシリル基、ジメチル-n-プロピルシリル基、ジメチル-n-ブチルシリル基、ジメチル-t-ブチルシリル基、ジエチルイソプロピルシリル基、ビニルジメチルシリル基、プロピルジメチルシリル基、及びトリイソプロピルシリル基からなる群から選択される少なくともいずれかの基である。トリアルキルシリル基Sub511における3つのアルキル基Subは、互いに同一でも異なっていてもよい。
本明細書におけるアリールシリル基Sub52は、例えば、ジアルキルアリールシリル基Sub521、アルキルジアリールシリル基Sub522、及びトリアリールシリル基Sub523からなる群から選択される少なくともいずれかの基である。
ジアルキルアリールシリル基Sub521は、例えば、上記アルキル基Subを2つ有し、上記アリール基Subを1つ有するジアルキルアリールシリル基である。ジアルキルアリールシリル基Sub521の炭素数は、8~30であることが好ましい。
アルキルジアリールシリル基Sub522は、例えば、上記アルキル基Subを1つ有し、上記アリール基Subを2つ有するアルキルジアリールシリル基である。アルキルジアリールシリル基Sub522の炭素数は、13~30であることが好ましい。
トリアリールシリル基Sub523は、例えば、上記アリール基Subを3つ有するトリアリールシリル基である。トリアリールシリル基Sub523の炭素数は、18~30であることが好ましい。
本明細書における置換もしくは無置換のアルキルスルホニル基は、例えば、アルキルスルホニル基Subであり、アルキルスルホニル基Subは、-SOで表される。-SOにおけるRは、置換もしくは無置換の上記アルキル基Subを表す。
本明細書におけるアラルキル基(アリールアルキル基と称する場合がある)は、例えば、アラルキル基Subである。アラルキル基Subにおけるアリール基は、例えば、上記アリール基Sub及び上記ヘテロアリール基Subの少なくとも一方を含む。
本明細書におけるアラルキル基Subは、アリール基Subを有する基であることが好ましく、-Z-Zと表される。このZは、例えば、上記アルキル基Subに対応するアルキレン基等である。このZは、例えば、上記アリール基Subである。このアラルキル基Subは、アリール部分が炭素数6~30(好ましくは6~20、より好ましくは6~12)、アルキル部分が炭素数1~30(好ましくは1~20、より好ましくは1~10、さらに好ましくは1~6)であることが好ましい。このアラルキル基Subは、例えば、ベンジル基、2-フェニルプロパン-2-イル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルイソプロピル基、2-フェニルイソプロピル基、フェニル-t-ブチル基、α-ナフチルメチル基、1-α-ナフチルエチル基、2-α-ナフチルエチル基、1-α-ナフチルイソプロピル基、2-α-ナフチルイソプロピル基、β-ナフチルメチル基、1-β-ナフチルエチル基、2-β-ナフチルエチル基、1-β-ナフチルイソプロピル基、及び2-β-ナフチルイソプロピル基からなる群から選択される少なくともいずれかの基である。
本明細書におけるアルコキシ基は、例えば、アルコキシ基Subであり、アルコキシ基Subは、-OZと表される。このZは、例えば、上記アルキル基Subである。アルコキシ基Subは、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、及びヘキシルオキシ基からなる群から選択される少なくともいずれかの基である。アルコキシ基Subの炭素数は、1~30であることが好ましく、1~20であることがより好ましい。
本明細書におけるハロゲン化アルコキシ基は、例えば、ハロゲン化アルコキシ基Subであり、ハロゲン化アルコキシ基Subは、例えば、上記アルコキシ基Subが1以上のハロゲン原子、好ましくはフッ素原子で置換されたアルコキシ基である。
本明細書におけるアリールオキシ基(アリールアルコキシ基と称する場合がある)は、例えば、アリールアルコキシ基Sub10である。アリールアルコキシ基Sub10におけるアリール基は、アリール基Sub及びヘテロアリール基Subの少なくとも一方を含む。
本明細書におけるアリールアルコキシ基Sub10は、-OZと表される。このZのは、例えば、アリール基Subまたはヘテロアリール基Subである。アリールアルコキシ基Sub10の環形成炭素数は、6~30であることが好ましく、6~20であることがより好ましい。このアリールアルコキシ基Sub10としては、例えば、フェノキシ基が挙げられる。
本明細書における置換アミノ基は、例えば、置換アミノ基Sub11であり、置換アミノ基Sub11は、例えば、アリールアミノ基Sub111及びアルキルアミノ基Sub112からなる群から選択される少なくともいずれかの基である。
アリールアミノ基Sub111は、-NHRV1、または-N(RV1と表される。このRV1は、例えば、アリール基Subである。-N(RV1における2つのRV1は、同一または異なる。
アルキルアミノ基Sub112は、-NHRV2、または-N(RV2と表される。このRV2は、例えば、アルキル基Subである。-N(RV2における2つのRV2は、同一または異なる。
本明細書におけるアルケニル基は、例えば、アルケニル基Sub12であり、アルケニル基Sub12は、直鎖または分岐鎖のいずれかであり、例えば、ビニル基、プロペニル基、ブテニル基、オレイル基、エイコサペンタエニル基、ドコサヘキサエニル基、スチリル基、2,2-ジフェニルビニル基、1,2,2-トリフェニルビニル基、及び2-フェニル-2-プロペニルからなる群から選択される少なくともいずれかの基である。
本明細書におけるアルキニル基は、例えば、アルキニル基Sub13であり、アルキニル基Sub13は、直鎖または分岐鎖のいずれであってもよく、例えば、エチニル、プロピニル、および2-フェニルエチニルからなる群から選択される少なくともいずれかの基である。
本明細書におけるアルキルチオ基は、例えば、アルキルチオ基Sub14である。
アルキルチオ基Sub14は、-SRV3と表される。このRV3は、例えば、アルキル基Subである。アルキルチオ基Sub14の炭素数は、1~30であることが好ましく、1~20であることがより好ましい。
本明細書におけるアリールチオ基は、例えば、アリールチオ基Sub15である。
アリールチオ基Sub15は、-SRV4と表される。このRV4は、例えば、アリール基Subである。アリールチオ基Sub15の環形成炭素数は、6~30であることが好ましく、6~20であることがより好ましい。
本明細書におけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子等が挙げられ、フッ素原子が好ましい。
本明細書における置換ホスフィノ基は、例えば、置換ホスフィノ基Sub16であり、置換ホスフィノ基Sub16は、例えば、フェニルホスファニル基である。
本明細書におけるアリールカルボニル基は、例えば、アリールカルボニル基Sub17であり、アリールカルボニル基Sub17は、-COY’と表される。このY’は、例えば、アリール基Subである。本明細書におけるアリールカルボニル基Sub17は、例えば、フェニルカルボニル基、ジフェニルカルボニル基、ナフチルカルボニル基、及びトリフェニルカルボニル基からなる群から選択される少なくともいずれかの基である。
本明細書におけるアシル基は、例えば、アシル基Sub18であり、アシル基Sub18は、-COR’と表される。このR’は、例えば、アルキル基Subである。本明細書におけるアシル基Sub18は、例えば、アセチル基及びプロピオニル基からなる群から選択される少なくともいずれかの基である。
本明細書における置換ホスホリル基は、例えば、アリールホスホリル基及びアルキルホスホリル基等の置換ホスホリル基Sub19であり、置換ホスホリル基Sub19は、下記一般式(P)で表される。
前記一般式(P)において、ArP1及びArP2は、上記アルキル基Sub、及び上記アリール基Subからなる群から選択されるいずれかの置換基である。
本明細書におけるエステル基は、例えば、エステル基Sub20であり、エステル基Sub20は、例えば、アルキルエステル基及びアリールエステル基からなる群から選択される少なくともいずれかの基である。
本明細書におけるアルキルエステル基は、例えば、アルキルエステル基Sub201であり、アルキルエステル基Sub201は、-C(=O)ORで表される。Rは、例えば、置換もしくは無置換の上記アルキル基Subである。
本明細書におけるアリールエステル基は、例えば、アリールエステル基Sub202であり、アリールエステル基Sub202は、-C(=O)ORArで表される。RArは、例えば、置換もしくは無置換の上記アリール基Subである。
本明細書におけるシロキサニル基は、例えば、シロキサニル基Sub21であり、シロキサニル基Sub21は、エーテル結合を介したケイ素化合物基である。シロキサニル基Sub21は、例えば、トリメチルシロキサニル基である。
本明細書におけるカルバモイル基は、-CONHで表される。
本明細書における置換のカルバモイル基は、例えば、カルバモイル基Sub22であり、カルバモイル基Sub22は、-CONH-Ar、または-CONH-Rで表される。Arは、例えば、置換もしくは無置換の上記アリール基Sub(好ましくは環形成炭素数6~10)及び上記ヘテロアリール基Sub(好ましくは環形成原子数5~14)からなる群から選択される少なくともいずれかの基である。Arは、アリール基Subとヘテロアリール基Subとが結合した基であってもよい。
は、例えば、置換もしくは無置換の上記アルキル基Sub(好ましくは炭素数1~6)である。
本明細書において、「環形成炭素」とは飽和環、不飽和環、または芳香環を構成する炭素原子を意味する。「環形成原子」とはヘテロ環(飽和環、不飽和環、及び芳香環を含む)を構成する炭素原子及びヘテロ原子を意味する。
また、本明細書において、水素原子とは、中性子数の異なる同位体、すなわち、軽水素(Protium)、重水素(Deuterium)、三重水素(Tritium)を包含する。
以下、アルキル基Subとは、「各置換基の説明」で説明した直鎖のアルキル基Sub31、分岐鎖のアルキル基Sub32、及び環状のアルキル基Sub33のいずれか1以上の基を意味する。
同様に、置換シリル基Subとは、アルキルシリル基Sub51及びアリールシリル基Sub52のいずれか1以上の基を意味する。
同様に、置換アミノ基Sub11とは、アリールアミノ基Sub111及びアルキルアミノ基Sub112のいずれか1以上の基を意味する。
本明細書において、「置換もしくは無置換の」という場合における置換基としては、例えば置換基RF1であり、置換基RF1は、アリール基Sub、ヘテロアリール基Sub、アルキル基Sub、ハロゲン化アルキル基Sub、置換シリル基Sub、アルキルスルホニル基Sub、アラルキル基Sub、アルコキシ基Sub、ハロゲン化アルコキシ基Sub、アリールアルコキシ基Sub10、置換アミノ基Sub11、アルケニル基Sub12、アルキニル基Sub13、アルキルチオ基Sub14、アリールチオ基Sub15、置換ホスフィノ基Sub16、アリールカルボニル基Sub17、アシル基Sub18、置換ホスホリル基Sub19、エステル基Sub20、シロキサニル基Sub21、カルバモイル基Sub22、無置換のアミノ基、無置換のシリル基、ハロゲン原子、シアノ基、ヒドロキシ基、ニトロ基、及びカルボキシ基からなる群から選択される少なくとも一種の基である。
本明細書において、「置換もしくは無置換の」という場合における置換基RF1は、ジアリールホウ素基(ArB1ArB2B-)であってもよい。このArB1及びArB2の例としては、上述のアリール基Subが挙げられる。ArB1ArB2B-におけるArB1及びArB2は同一または異なる。
置換基RF1の具体例及び好ましい基としては、「各置換基の説明」中の置換基(例えば、アリール基Sub、ヘテロアリール基Sub、アルキル基Sub、ハロゲン化アルキル基Sub、置換シリル基Sub、アルキルスルホニル基Sub、アラルキル基Sub、アルコキシ基Sub、ハロゲン化アルコキシ基Sub、アリールアルコキシ基Sub10、置換アミノ基Sub11、アルケニル基Sub12、アルキニル基Sub13、アルキルチオ基Sub14、アリールチオ基Sub15、置換ホスフィノ基Sub16、アリールカルボニル基Sub17、アシル基Sub18、置換ホスホリル基Sub19、エステル基Sub20、シロキサニル基Sub21、及びカルバモイル基Sub22)の具体例及び好ましい基と同様の基が挙げられる。
「置換もしくは無置換の」という場合における置換基RF1は、アリール基Sub、ヘテロアリール基Sub、アルキル基Sub、ハロゲン化アルキル基Sub、置換シリル基Sub、アルキルスルホニル基Sub、アラルキル基Sub、アルコキシ基Sub、ハロゲン化アルコキシ基Sub、アリールアルコキシ基Sub10、置換アミノ基Sub11、アルケニル基Sub12、アルキニル基Sub13、アルキルチオ基Sub14、アリールチオ基Sub15、置換ホスフィノ基Sub16、アリールカルボニル基Sub17、アシル基Sub18、置換ホスホリル基Sub19、エステル基Sub20、シロキサニル基Sub21、カルバモイル基Sub22、無置換のアミノ基、無置換のシリル基、ハロゲン原子、シアノ基、ヒドロキシ基、ニトロ基、及びカルボキシ基からなる群から選択される少なくとも一種の基(以下、置換基RF2とも称する)によってさらに置換されてもよい。また、これらの置換基RF2は複数が互いに結合して環を形成してもよい。
「置換もしくは無置換の」という場合における「無置換」とは前記置換基RF1で置換されておらず、水素原子が結合していることを意味する。
なお、本明細書において、「置換もしくは無置換の炭素数XX~YYのZZ基」という表現における「炭素数XX~YY」は、ZZ基が無置換である場合の炭素数を表し、置換されている場合の置換基RF1の炭素数は含めない。
本明細書において、「置換もしくは無置換の原子数XX~YYのZZ基」という表現における「原子数XX~YY」は、ZZ基が無置換である場合の原子数を表し、置換されている場合の置換基RF1の原子数は含めない。
本明細書において説明する化合物、またはその部分構造において、「置換もしくは無置換の」という場合についても、前記と同様である。
本明細書において、置換基同士が互いに結合して環が構築される場合、当該環の構造は、飽和環、不飽和環、芳香族炭化水素環、または複素環である。
本明細書において、連結基における芳香族炭化水素基としては、例えば、上述した一価のアリール基Subから、1つ以上の原子を除いて得られる二価以上の基が挙げられる。
本明細書において、連結基における複素環基としては、例えば、上述した一価のヘテロアリール基Subから、1つ以上の原子を除いて得られる二価以上の基が挙げられる。
以下、本発明に係る実施例を説明する。本発明はこれらの実施例によって何ら限定されない。
<化合物>
実施例1の有機EL素子の製造に用いた一般式(1)で表される化合物を以下に示す。
Figure 2023158501000035
比較例1の有機EL素子の製造に用いた比較化合物を以下に示す。
Figure 2023158501000036
実施例及び比較例に係る有機EL素子の製造に用いたその他の化合物を以下に示す。
Figure 2023158501000037
Figure 2023158501000038
Figure 2023158501000039
Figure 2023158501000040
[有機EL素子の製造]
(実施例1)
実施例1の有機EL素子は以下のように製造した。
25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板(ジオマテック株式会社製)を、イソプロピルアルコール中で5分間超音波洗浄を行った後、UVオゾン洗浄を1分間行った。ITOの膜厚は、130nmとした。
洗浄後の透明電極ライン付き前記ガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして化合物HT-1及び化合物HAを共蒸着し、膜厚10nmの正孔注入層を形成した。正孔注入層における化合物HT-1の濃度を97質量%とし、化合物HAの濃度を3質量%とした。
次に、正孔注入層上に、化合物HT-1を蒸着し、膜厚90nmの第一正孔輸送層を形成した。
次に、この第一正孔輸送層上に、化合物HT-2を蒸着し、膜厚30nmの第二正孔輸送層を形成した。
次に、この第二正孔輸送層上に、第一の化合物としての蛍光発光性の化合物GD-1と、第二の化合物としての遅延蛍光性の化合物TADF-1と、第三の化合物としての化合物Martix-1とを共蒸着し、膜厚25nmの発光層を形成した。発光層における化合物GD-1の濃度を0.6質量%とし、化合物TADF-1の濃度を25質量%とし、化合物Martix-1の濃度を74.4質量%とした。
次に、この発光層上に、化合物ET-1を蒸着し、膜厚5nmの第一電子輸送層を形成した。
次に、この第一電子輸送層上に、化合物ET-2及びLiqを共蒸着し、膜厚50nmの第二電子輸送層を形成した。第二電子輸送層における化合物ET-2の濃度を50質量%とし、Liqの濃度を50質量%とした。
次に、この第二電子輸送層上に、イッテルビウム(Yb)を蒸着し、膜厚1nmの電子注入性電極(陰極)を形成した。
そして、この電子注入性電極上に、金属アルミニウム(Al)を蒸着し、膜厚80nmの金属Al陰極を形成した。
実施例1の有機EL素子の素子構成を略式的に示すと、次のとおりである。
ITO(130)/HT-1:HA(10,97%:3%)/HT-1(90)/HT-2(30)/Matrix-1:TADF-1:GD-1(25,74.4%:25%:0.6%)/ET-1(5)/ET-2:Liq(50,50%:50%)/Yb(1)/Al(80)
なお、括弧内の数字は、膜厚(単位:nm)を示す。
同じく括弧内において、パーセント表示された数字(97%:3%)は、正孔注入層における化合物HT-1及び化合物HAの割合(質量%)を示し、パーセント表示された数字(74.4%:25%:0.6%)は、発光層における第三の化合物、第二の化合物、及び第一の化合物の割合(質量%)を示し、パーセント表示された数字(50%:50%)は、第二電子輸送層における化合物ET-2及びLiqの割合(質量%)を示す。
(実施例2)
実施例2の有機EL素子は、実施例1の有機EL素子における発光層中の化合物GD-1の濃度を0.6質量%とし、化合物TADF-1の濃度を30質量%とし、化合物Martix-1の濃度を69.4質量%に変更した以外は実施例1の有機EL素子と同様にして製造した。
(比較例1)
比較例1の有機EL素子は、実施例1における化合物GD-1を化合物Ref-GDに置き換えたこと以外、実施例1と同様にして作製した。
(比較例2)
比較例2の有機EL素子は、実施例2における化合物GD-1を化合物Ref-GDに置き換えたこと以外、実施例2と同様にして作製した。
[有機EL素子の評価]
作製した有機EL素子について、以下の評価を行った。評価結果を表1に示す。
・駆動電圧(V)
有機EL素子の電流密度が10mA/cmとなるように陽極と陰極との間に通電したときの電圧(単位:V)を計測した。
・外部量子効率EQE
有機EL素子の電流密度が10mA/cmとなるように素子に電圧を印加した時の分光放射輝度スペクトルを分光放射輝度計CS-2000(コニカミノルタ株式会社製)で計測した。得られた分光放射輝度スペクトルから、ランバシアン放射を行ったと仮定し外部量子効率EQE(単位:%)を算出した。
・最大ピーク波長(λp)
有機EL素子の電流密度が10mA/cmとなるように素子に電圧を印加した時の分光放射輝度スペクトルを分光放射輝度計CS-2000(コニカミノルタ株式会社製)で計測した。得られた分光放射輝度スペクトルから、最大ピーク波長λp(単位:nm)を求めた。
・CIE1931色度
有機EL素子の電流密度が10mA/cmとなるように素子に電圧を印加した時の分光放射輝度スペクトルを分光放射輝度計CS-2000(コニカミノルタ株式会社製)で計測した。得られた分光放射輝度スペクトルから、CIEx及びCIEyを算出した。
・寿命LT95
得られた有機EL素子に、電流密度が50mA/cmとなるように電圧を印加し、初期輝度に対して輝度が95%となるまでの時間(LT95(単位:時間))を測定した。
輝度は、分光放射輝度計CS-2000(コニカミノルタ株式会社製)を用いて測定した。
Figure 2023158501000041
一般式(1)で表される化合物GD-1と、遅延蛍光性の化合物TADF-1と、化合物Matrix-1とを発光層に含む実施例1~2の有機EL素子は、化合物GD-1を化合物Ref-GDに置き換えた比較例1~2の有機EL素子に比べて、高効率で発光し、かつ寿命が長くなった。
<化合物の評価>
表1中に記載した化合物の物性値は、以下の方法で測定した。結果を表2に示す。
(遅延蛍光性)
・化合物TADF-1の遅延蛍光性
遅延蛍光性は図2に示す装置を利用して過渡PLを測定することにより確認した。前記化合物TADF-1をトルエンに溶解し、自己吸収の寄与を取り除くため励起波長において吸光度が0.05以下の希薄溶液を調製した。また酸素による消光を防ぐため、試料溶液を凍結脱気した後にアルゴン雰囲気下で蓋付きのセルに封入することで、アルゴンで飽和された酸素フリーの試料溶液とした。
上記試料溶液の蛍光スペクトルを分光蛍光光度計FP-8600(日本分光社製)で測定し、また同条件で9,10-ジフェニルアントラセンのエタノール溶液の蛍光スペクトルを測定した。両スペクトルの蛍光面積強度を用いて、Morris et al. J.Phys.Chem.80(1976)969中の(1)式により全蛍光量子収率を算出した。
前記化合物TADF-1が吸収する波長のパルス光(パルスレーザーから照射される光)で励起された後、当該励起状態から即座に観察されるPrompt発光(即時発光)と、当該励起後、即座には観察されず、その後観察されるDelay発光(遅延発光)とが存在する。本実施例における遅延蛍光発光とは、Delay発光(遅延発光)の量がPrompt発光(即時発光)の量に対して5%以上を意味する。具体的には、Prompt発光(即時発光)の量をXとし、Delay発光(遅延発光)の量をXとしたときに、X/Xの値が0.05以上であることを意味する。
Prompt発光とDelay発光の量とその比は、“Nature 492, 234-238, 2012” (参考文献1)に記載された方法と同様の方法により求めることができる。なお、Prompt発光とDelay発光の量の算出に使用される装置は、前記参考文献1に記載の装置、または図2に記載の装置に限定されない。
化合物TADF-1について、Delay発光(遅延発光)の量がPrompt発光(即時発光)の量に対して5%以上であることが確認された。
具体的には、化合物TADF-1について、X/Xの値が0.05以上であった。
・ΔST
化合物GD-1、TADF-1、Matrix-1及びRef-GDの最低励起一重項エネルギーSを、前述の溶液法により測定した。化合物TADF-1の77[K]におけるエネルギーギャップT77Kを前述の「三重項エネルギーと77[K]におけるエネルギーギャップとの関係」で記載したエネルギーギャップT77Kの測定方法により測定した。
測定した最低励起一重項エネルギーSと77[K]におけるエネルギーギャップT77Kとに基づいて、化合物TADF-1のΔSTを算出した。
・化合物の最大ピーク波長λ
測定対象となる化合物の5μmol/Lトルエン溶液を調製して石英セルに入れ、常温(300K)でこの試料の蛍光スペクトル(縦軸:蛍光発光強度、横軸:波長とする。)を測定した。本実施例では、蛍光スペクトルを日立社製の分光蛍光光度計(装置名:F-7000)で測定した。なお、蛍光スペクトル測定装置は、ここで用いた装置に限定されない。蛍光スペクトルにおいて、発光強度が最大となる蛍光スペクトルのピーク波長を化合物の最大ピーク波長λとした。
Figure 2023158501000042
・表2の説明
「-」は、測定していないことを表す。
「<0.01」は、ΔSTが0.01eV未満であることを表す。
<化合物の合成>
[合成実施例1:化合物GD-1の合成]
[中間体1-1の製造]
Figure 2023158501000043
2,3-ジメチルアミノナフタレン(35g)、2,6-ジメチル安息香酸(33g)およびポリリン酸(230g)をフラスコに入れ、窒素雰囲気下、150℃で7時間攪拌した。反応混合物を1000mLの氷水に入れスパチュラで攪拌した。析出した固体を濾取したのち、メタノール700mLとトリエチルアミン100mLとの混合溶媒に加え攪拌した。得られた固体を濾取したのち、さらに酢酸エチル100mLとヘプタン200mLとの混合溶媒に加え、90℃で10分加熱攪拌したのち放冷し、得られた固体を濾取後、減圧乾燥し、中間体1-1 48.4g(収率80%)を得た。
[中間体1-2の製造]
Figure 2023158501000044
2-ブロモ-1,3-ジフルオロ-5-ヨードベンゼン(65g)、フェニルボロン酸(25g)、リン酸三カリウム(48g)、ビス(トリフェニルホスフィン)パラジウムジクロリド(7.2g)、1,4-ジオキサン(280mL)および水(140mL)をフラスコに入れ、75℃で3時間攪拌した。反応混合物を室温まで放冷したのち、水200mLと酢酸エチル400mLとを加えて攪拌し、分液ロートに移した後、水層と有機層とに分離した。水層を酢酸エチルでさらに抽出したのち、有機層を集め、飽和食塩水で洗浄後、硫酸マグネシウムで脱水し、溶媒を減圧留去した。得られた濃縮物をシリカゲルカラムクロマトグラフィー(ヘプタン/トルエン=20/1)で精製し、中間体1-2 54.9g(収率100%)を得た。
[中間体1-3の製造]
Figure 2023158501000045
中間体1-1(32g)、中間体1-2(35g)、リン酸三カリウム(75g)およびN,N-ジメチルホルムアミド(DMF)(1200mL)をフラスコに入れ、窒素雰囲気下、160℃で7時間加熱攪拌した。反応混合物を室温まで放冷したのち、水1000mLと酢酸エチル2000mLとを加えて攪拌した。有機層を分離したのち、水層をさらに酢酸エチルで抽出した。有機層を集め、飽和食塩水で洗浄後、硫酸マグネシウムで脱水し、溶媒を減圧留去した。得られた濃縮物をシリカゲルカラムクロマトグラフィー(ヘプタン/酢酸エチル=4/1~2/1)で精製し、中間体1-3 20.2g(収率33%)を得た。
[中間体1-4の製造]
Figure 2023158501000046
中間体1-3(9.2g)、7H-ジベンゾ[c,g]カルバゾール(4.7g)、リン酸三カリウム(11.2g)、およびN,N-ジメチルホルムアミド(180mL)をフラスコに入れ、窒素雰囲気下、150℃で6時間加熱攪拌した。反応混合物を室温まで放冷したのち、水200mLと酢酸エチル300mLとを加えて攪拌した。有機層を分離したのち、水層をさらに酢酸エチルで抽出し、有機層を集めて飽和食塩水で洗浄したのち、硫酸マグネシウムで脱水し、溶媒を減圧留去した。得られた濃縮物にトルエン40mLを加えて110℃で30分間加熱攪拌したのち、室温まで放冷し、析出した固体を濾取後、減圧乾燥し、中間体1-4 11.8g(収率87%)を得た。
[化合物GD-1の製造]
Figure 2023158501000047
中間体1-4(6.3g)およびtert-ブチルベンゼン(70mL)をフラスコに入れ、窒素雰囲気下で攪拌しながら、氷浴により内温5℃以下になるように冷却した。反応混合物に1.6Mのn-ブチルリチウムヘキサン溶液(4.6mL)を滴下した。滴下後、室温に昇温して2時間攪拌した。氷浴により内温5℃以下としたのち、三臭化ホウ素(2.5mL)を滴下し、その後室温に昇温してから1時間攪拌した。再び氷浴により内温5℃以下に冷却してN,N-ジイソプロピルエチルアミン(4.6mL)を加えたのち、150℃まで昇温し、30時間加熱攪拌した。室温まで放冷したのち、水200mLを加え、ジクロロメタンで抽出した。有機層を水で洗浄したのち、硫酸マグネシウムで脱水し、溶媒を減圧留去した。得られた濃縮物をシリカゲルカラムクロマトグラフィー(トルエン/酢酸エチル=20/1)および酢酸ブチルからの再結晶により精製し、橙色固体である化合物GD-1 598mg(収率13%)を得た。
超伝導FTNMR EX-270(日本電子(株)製)を用いて、重クロロホルム溶液にて、H-NMR測定を行い、化合物GD-1の構造を同定した。
H-NMR(400MHz,CDCl,ppm):δ9.55(m、1H),9.47(s、1H)、9.29(d、2H)、8.77(d、1H)、8.69(d、2H)、8.29(m、1H)、8.24(d、2H)、8.10-8.14(m、2H)、7.85(t、1H)7.77(t、1H)、7.67-7.74(m、2H)、7.59-7.66(m、2H)、7.54(t、1H)7.33-7.50(m、8H)、2.24(s、6H)
1…有機EL素子、2…基板、3…陽極、4…陰極、5…発光層、6…正孔注入層、7…正孔輸送層、8…電子輸送層、9…電子注入層。

Claims (14)

  1. 下記一般式(1)で表される化合物。
    Figure 2023158501000048

    (前記一般式(1)において、
    は、CR11または窒素原子であり、
    は、CR12または窒素原子であり、
    は、CR13または窒素原子であり、
    は、CR14または窒素原子であり、
    は、CR15または窒素原子であり、
    は、CR16または窒素原子であり、
    は、CR17または窒素原子であり、
    は、CR18または窒素原子であり、
    は、前記一般式(11)で表される基であり、*は結合位置であり、
    111は、
    置換もしくは無置換の炭素数1~50のアルキル基、又は
    置換もしくは無置換の環形成炭素数6~50のアリール基であり、
    ~Rのうちの隣接する2つ以上からなる組の1組以上が、
    互いに結合して、置換もしくは無置換の単環を形成するか、又は
    互いに結合して、置換もしくは無置換の縮合環を形成し、
    11~R17のうちの隣接する2つ以上からなる組の1組以上が、
    互いに結合して、置換もしくは無置換の単環を形成するか、
    互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
    互いに結合せず、
    112~R115のうちの隣接する2つ以上からなる組の1組以上が、
    互いに結合して、置換もしくは無置換の単環を形成するか、
    互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
    互いに結合せず、
    18、並びに前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR~R、R11~R17及びR112~R115は、それぞれ独立に、
    水素原子、
    置換もしくは無置換の炭素数1~50のアルキル基、
    置換もしくは無置換の炭素数2~50のアルケニル基、
    置換もしくは無置換の炭素数2~50のアルキニル基、
    置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
    -Si(R911)(R912)(R913)で表される基、
    -O-(R914)で表される基、
    -S-(R915)で表される基、
    -N(R916)(R917)で表される基、
    置換もしくは無置換の炭素数7~50のアラルキル基、
    -C(=O)R918で表される基、
    -COOR919で表される基、
    ハロゲン原子、
    シアノ基、
    ニトロ基、
    置換もしくは無置換の環形成炭素数6~50のアリール基、又は
    置換もしくは無置換の環形成原子数5~50の複素環基であり、
    911~R919は、それぞれ独立に、
    水素原子、
    置換もしくは無置換の炭素数1~50のアルキル基、
    置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
    置換もしくは無置換の環形成炭素数6~50のアリール基、又は
    置換もしくは無置換の環形成原子数5~50の複素環基であり、
    911が複数存在する場合、複数のR911は、互いに同一であるか又は異なり、
    912が複数存在する場合、複数のR912は、互いに同一であるか又は異なり、
    913が複数存在する場合、複数のR913は、互いに同一であるか又は異なり、
    914が複数存在する場合、複数のR914は、互いに同一であるか又は異なり、
    915が複数存在する場合、複数のR915は、互いに同一であるか又は異なり、
    916が複数存在する場合、複数のR916は、互いに同一であるか又は異なり、
    917が複数存在する場合、複数のR917は、互いに同一であるか又は異なり、
    918が複数存在する場合、複数のR918は、互いに同一であるか又は異なり、
    919が複数存在する場合、複数のR919は、互いに同一であるか又は異なる。)
  2. 115は、
    置換もしくは無置換の炭素数1~50のアルキル基、又は
    置換もしくは無置換の環形成炭素数6~50のアリール基である、
    請求項1に記載の化合物。
  3. 111及びR115は、メチル基である、
    請求項1または請求項2に記載の化合物。
  4. 18、並びに前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR~R、R11~R17及びR112~R114は、それぞれ独立に、
    水素原子、
    置換もしくは無置換の炭素数1~50のアルキル基、
    置換もしくは無置換の環形成炭素数6~50のアリール基、または
    置換もしくは無置換の環形成原子数5~50のヘテロアリール基である、
    請求項1から請求項3のいずれか一項に記載の化合物。
  5. 前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR~Rは、それぞれ独立に、
    水素原子、
    置換もしくは無置換の炭素数1~25のアルキル基、
    置換もしくは無置換の環形成炭素数6~25のアリール基、または
    置換もしくは無置換の環形成原子数5~25のヘテロアリール基である、
    請求項4に記載の化合物。
  6. 18、並びに前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR11~R17及びR112~R114は、それぞれ独立に、
    水素原子、
    置換もしくは無置換の炭素数1~25のアルキル基、
    置換もしくは無置換の環形成炭素数6~25のアリール基、または
    置換もしくは無置換の環形成原子数5~25のヘテロアリール基である、
    請求項4または請求項5に記載の化合物。
  7. 下記一般式(2)で表される、
    請求項1から請求項6のいずれか一項に記載の化合物。
    Figure 2023158501000049

    (前記一般式(2)において、
    ~X及びRは、それぞれ独立に、前記一般式(1)におけるX~X及びRと同義であり、
    前記一般式(2)中、1*の位置にある炭素原子は、下記一般式(21)~(27)のいずれかで表される縮合環の**との結合位置を表し、
    前記一般式(2)中、2*の位置にあるホウ素原子は、下記一般式(21)~(27)のいずれかで表される縮合環の***との結合位置を表す。)
    Figure 2023158501000050

    (前記一般式(21)~(27)において、**は、前記一般式(2)中、1*の位置にある炭素原子との結合位置を表し、***は、前記一般式(2)中、2*の位置にあるホウ素原子との結合位置を表す。)
  8. 下記一般式(100)で表される化合物。
    Figure 2023158501000051
  9. 請求項1から請求項8のいずれか一項に記載の化合物を含む、有機エレクトロルミネッセンス素子用材料。
  10. 陰極と、陽極と、前記陰極および前記陽極の間に含まれる有機層と、を有する有機エレクトロルミネッセンス素子であって、
    前記有機層が発光層を含み、
    前記有機層の少なくとも1層が請求項1から請求項8のいずれか一項に記載の化合物を含む、
    有機エレクトロルミネッセンス素子。
  11. 前記発光層が前記化合物を含む、
    請求項10に記載の有機エレクトロルミネッセンス素子。
  12. 前記発光層がさらに遅延蛍光性発光材料を含む、
    請求項10又は請求項11に記載の有機エレクトロルミネッセンス素子。
  13. 前記遅延蛍光性発光材料の最低励起一重項エネルギーS(H)と、前記化合物の最低励起一重項エネルギーS(D)とが、下記数式(数1)を満たす、
    請求項12に記載の有機エレクトロルミネッセンス素子。
    (H)>S(D)…(数1)
  14. 請求項10から請求項13のいずれか一項に記載の有機エレクトロルミネッセンス素子を搭載した、電子機器。
JP2022068382A 2022-04-18 2022-04-18 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器 Pending JP2023158501A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022068382A JP2023158501A (ja) 2022-04-18 2022-04-18 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022068382A JP2023158501A (ja) 2022-04-18 2022-04-18 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器

Publications (1)

Publication Number Publication Date
JP2023158501A true JP2023158501A (ja) 2023-10-30

Family

ID=88509496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022068382A Pending JP2023158501A (ja) 2022-04-18 2022-04-18 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器

Country Status (1)

Country Link
JP (1) JP2023158501A (ja)

Similar Documents

Publication Publication Date Title
JP6761796B2 (ja) 有機エレクトロルミネッセンス素子、電子機器、および化合物
JP7252959B2 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、および電子機器
JP6754422B2 (ja) 有機エレクトロルミネッセンス素子、及び電子機器
WO2018088472A1 (ja) 化合物、組成物、有機エレクトロルミネッセンス素子、及び電子機器
WO2021066059A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2015159706A1 (ja) 化合物、有機エレクトロルミネッセンス素子および電子機器
WO2021015177A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
JP7393345B2 (ja) 有機エレクトロルミネッセンス素子、化合物、有機エレクトロルミネッセンス素子用材料、及び電子機器
JP6829583B2 (ja) 化合物、組成物、有機エレクトロルミネッセンス素子、及び電子機器
WO2020085446A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、および電子機器
JP2020050650A (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、および電子機器
JP6387311B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子用材料、および電子機器
KR20240021221A (ko) 화합물, 유기 일렉트로루미네센스 소자용 재료, 유기 일렉트로루미네센스 소자 및 전자 기기
JP2020158425A (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
JP7374187B2 (ja) 有機エレクトロルミネッセンス素子、化合物及び電子機器
JP2021172603A (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
JP2021020857A (ja) 化合物、有機エレクトロルミネッセンス素子及び電子機器
JP2020174072A (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2022025021A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス発光装置、及び電子機器
CN116568776A (zh) 有机电致发光元件及电子设备
CN113892194A (zh) 有机电致发光元件以及电子设备
WO2018180830A1 (ja) 有機エレクトロルミネッセンス素子、電子機器、及び化合物
JP2019137617A (ja) 化合物、有機エレクトロルミネッセンス素子、及び電子機器
WO2023171688A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2023199999A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器