WO2021015177A1 - 有機エレクトロルミネッセンス素子及び電子機器 - Google Patents

有機エレクトロルミネッセンス素子及び電子機器 Download PDF

Info

Publication number
WO2021015177A1
WO2021015177A1 PCT/JP2020/028145 JP2020028145W WO2021015177A1 WO 2021015177 A1 WO2021015177 A1 WO 2021015177A1 JP 2020028145 W JP2020028145 W JP 2020028145W WO 2021015177 A1 WO2021015177 A1 WO 2021015177A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
unsubstituted
carbon atoms
substituent
substituted
Prior art date
Application number
PCT/JP2020/028145
Other languages
English (en)
French (fr)
Inventor
中野 裕美
松本 尚人
拓史 塩見
俊成 荻原
沖中 啓二
一成 川本
貴士 徳田
和真 長尾
Original Assignee
出光興産株式会社
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社, 東レ株式会社 filed Critical 出光興産株式会社
Priority to JP2021534033A priority Critical patent/JPWO2021015177A1/ja
Priority to CN202080051906.XA priority patent/CN114127979A/zh
Priority to KR1020227004307A priority patent/KR20220038370A/ko
Priority to US17/629,289 priority patent/US20220263030A1/en
Publication of WO2021015177A1 publication Critical patent/WO2021015177A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/06Benzimidazoles; Hydrogenated benzimidazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • C07D235/08Radicals containing only hydrogen and carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/022Boron compounds without C-boron linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3035Edge emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers

Definitions

  • the present invention relates to an organic electroluminescence device and an electronic device.
  • organic electroluminescence device When a voltage is applied to an organic electroluminescence device (hereinafter, may be referred to as an “organic EL device”), holes are injected into the light emitting layer from the anode and electrons are injected into the light emitting layer from the cathode. Then, in the light emitting layer, the injected holes and electrons are recombined to form excitons. At this time, according to the statistical law of electron spin, singlet excitons are generated at a rate of 25%, and triplet excitons are generated at a rate of 75%. Fluorescent organic EL devices that use light emitted from singlet excitons are being applied to full-color displays such as mobile phones and televisions, but are said to have an internal quantum efficiency of 25% as a limit. Therefore, studies are being conducted to improve the performance of the organic EL element.
  • an organic EL element can emit light more efficiently by using triplet excitons in addition to singlet excitons.
  • highly efficient fluorescent organic EL devices using thermally activated delayed fluorescence hereinafter, may be simply referred to as “delayed fluorescence”.
  • TADF Thermally activated Delayed Fluorescence
  • ⁇ ST small energy difference
  • Patent Documents 1 and 2 disclose an organic EL device having a hole transport layer, a light emitting layer containing a TADF compound, and an electron transport layer.
  • the hole transport layer described in Patent Documents 1 and 2 contains an amine compound.
  • the electron transport layer described in Patent Documents 1 and 2 contains a compound in which a heteroaryl group is bonded to an azine ring having an aryl group directly or via a linking group.
  • An object of the present invention is to provide a high-performance organic electroluminescence device and an electronic device.
  • a light emitting layer contained between the anode and the cathode A first layer contained between the anode and the light emitting layer and adjacent to the light emitting layer, It has a second layer contained between the cathode and the light emitting layer and adjacent to the light emitting layer.
  • the light emitting layer contains a first compound, a second compound, and a third compound.
  • the first layer contains a compound represented by the following general formula (A).
  • the second layer contains a compound represented by the following general formula (B).
  • the first compound is a fluorescently luminescent compound, which is represented by the following general formula (1).
  • the second compound is a delayed fluorescent compound, which is represented by the following general formula (2).
  • the third compound is represented by the following general formula (3).
  • the singlet energy S 1 (M1) of the first compound, the singlet energy S 1 (M2) of the second compound, and the singlet energy S 1 (M3) of the third compound are as follows. Satisfy the relationship of the formula (Equation 1), Organic electroluminescence devices are provided. S 1 (M3)> S 1 (M2)> S 1 (M1) ... (Equation 1)
  • Ra 1 to Ra 5 , Rb 1 to Rb 5 and Rc 3 to Rc 5 are independently hydrogen atoms or substituents, and are Ra 1 to Ra 5 , Rb 1 to Rb 5 and Rc 3 to as substituents, respectively.
  • Rc 5 is independent of each other Halogen atom, Cyanide group, A substituted or unsubstituted ring-forming aryl group having 6 to 30 carbon atoms, or a substituted or unsubstituted ring-forming atomic number of 5 to 30 heteroaryl groups.
  • Rc 1 is a hydrogen atom or a substituent, or a pair of Rc 1 and Rc 2 are bonded to each other to form a ring, and Rc 1 as a substituent is A substituted or unsubstituted ring-forming aryl group having 6 to 12 carbon atoms.
  • Rc 2 the ring when either a hydrogen atom or a substituent, or Rc 1 and Rc 2 pairs, are bonded to each other to form a ring, a set of Rc 1 and Rc 2 are bonded to each other to form a ring Containes at least a 5-membered ring, wherein the 5-membered ring contains at least one of a carbon atom, an oxygen atom, a sulfur atom, and a nitrogen atom, where Rc 1 and Rc 2 are not hydrogen atoms at the same time.
  • Rc 2 as a substituent is Substituent or unsubstituted ring-forming aryl groups having 6 to 30 carbon atoms, A heteroaryl group having 5 to 30 substituted or unsubstituted ring-forming atoms, Substituent or unsubstituted ring-forming aryloxy groups having 6 to 30 carbon atoms, Substituted or unsubstituted ring-forming Aarylthio group having 6 to 30 carbon atoms, or a substituted or unsubstituted amino group.
  • X 1 to X 3 are independently nitrogen atoms or CR 1 , but at least one of X 1 to X 3 is a nitrogen atom.
  • R 1 is a hydrogen atom or a substituent and is R 1 as a substituent is independent of each other.
  • Ar 1 and Ar 2 are independent of each other. Is it represented by the following general formula (1B)? Substituent or unsubstituted ring-forming aryl group having 6 to 30 carbon atoms, or It is a substituted or unsubstituted heteroaryl group having 5 to 30 ring-forming atoms. A is represented by the following general formula (1B).
  • HAR is represented by the following general formula (2B).
  • a is 1, 2, 3, 4, or 5
  • L 1 is a single bond or divalent linking group.
  • L 1 is a linking group of trivalent or more and hexavalent or less.
  • the linking group is Substitutable or unsubstituted ring-forming groups derived from aryl groups having 6 to 30 carbon atoms, A group derived from a substituted or unsubstituted heteroaryl group having 5 to 30 ring-forming atoms, Derived from a group in which two groups selected from the group consisting of an aryl group having 6 to 30 substituted or unsubstituted ring-forming carbon atoms and a heteroaryl group having 5 to 30 substituted or unsubstituted ring-forming atoms are bonded to each other.
  • Group or three groups selected from the group consisting of a substituted or unsubstituted ring-forming aryl group having 6 to 30 carbon atoms and a substituted or unsubstituted ring-forming atomic number of 5 to 30 heteroaryl groups bonded to each other.
  • a group derived from a group, The groups bonded to each other are the same or different from each other.
  • X 11 to X 18 are carbon atoms that independently bond to a nitrogen atom, CR 13 , or L 1 .
  • a plurality of R 13 are the same or different from each other,
  • Y 1 represents an oxygen atom, a sulfur atom, NR 18, SiR 11 R 12 , CR 14 R 15, L 1 nitrogen atom binding to a silicon atom bound respectively R 16 and L 1 or R 17, And a carbon atom bonded to L 1 , respectively.
  • the bonds to L 1 are carbon atoms from X 11 to X 18 , R 11 to R 12 , and R 14 to R 15 , and nitrogen, silicon, and carbon atoms in Y 1 .
  • R 11 and R 12 are the same or different from each other, and R 14 and R 15 are the same or different from each other.
  • R 11 to R 18 are independently hydrogen atoms or substituents, or one or more of adjacent R 13 pairs, R 11 and R 12 pairs, and R 14 and R 15 pairs. The pairs combine with each other to form a ring, R 11 to R 18 as substituents are independent of each other.
  • X is a nitrogen atom or a carbon atom bonded to Y
  • Y is a hydrogen atom or a substituent and is
  • R 21 to R 26 are independently hydrogen atoms or substituents, or R 21 and R 22 pairs, R 22 and R 23 pairs, R 24 and R 25 pairs, and R 25 and R. Any one or more of the 26 pairs combine with each other to form a ring.
  • Y as a substituent and R 21 to R 26 are independent of each other.
  • Substituent or unsubstituted alkyl groups having 1 to 30 carbon atoms Substituent or unsubstituted alkyl halide groups having 1 to 30 carbon atoms, Substitutable or unsubstituted ring-forming cycloalkyl group having 3 to 30 carbon atoms, Substituent or unsubstituted ring-forming aryl groups having 6 to 30 carbon atoms, Substituent or unsubstituted alkoxy group having 1 to 30 carbon atoms, Substituent or unsubstituted alkoxy group having 1 to 30 carbon atoms, Substituent or unsubstituted alkoxy group having 1 to 30 carbon atoms, Substituent or unsubstituted alkylthio groups having 1 to 30 carbon atoms, Substituent or unsubstituted ring-forming aryloxy groups having 6 to 30 carbon atoms, Substituted or unsubsti
  • Z 21 and Z 22 are independent substituents, or Z 21 and Z 22 are bonded to each other to form a ring.
  • Z 21 and Z 22 as substituents are independent of each other.
  • D 1 is a group represented by the following general formula (2-1)
  • D 2 is a group represented by the following general formula (2-2).
  • D 2 is the same group as each other.
  • X 4 is an oxygen atom or a sulfur atom
  • R 131 to R 140 are independently hydrogen atoms or substituents.
  • R 131 to R 140 as substituents are independent of each other.
  • Substituent or unsubstituted ring-forming aryl groups having 6 to 14 carbon atoms Substituted or unsubstituted ring-forming heterocyclic groups having 5 to 14 atoms, Substituent or unsubstituted alkyl groups having 1 to 6 carbon atoms, Substituent or unsubstituted alkylsilyl group having 3 to 6 carbon atoms, Substituent or unsubstituted alkoxy group having 1 to 6 carbon atoms, Substituent or unsubstituted ring-forming aryloxy groups having 6 to 14 carbon atoms, Substituent or unsubstituted alkylamino groups having 2 to 12 carbon atoms, It is a substituted or
  • R161 to R168 are independently hydrogen atoms or substituents, respectively.
  • a 31 is represented by the following general formula (31a), general formula (31b), general formula (31c), general formula (31d), general formula (31e) or general formula (31f).
  • R 31 to R 38 are independent hydrogen atoms or substituents
  • R 401 to R 404 and R 409 to R 412 are independent hydrogen atoms or substituents, respectively.
  • R 31 to R 38 as substituents and R 401 to R 404 and R 409 to R 412 as substituents are independent of each other.
  • Halogen atom Substituent or unsubstituted ring-forming aryl groups having 6 to 30 carbon atoms, Substituted or unsubstituted ring-forming heterocyclic groups having 5 to 30 atoms, Substituent or unsubstituted alkyl groups having 1 to 30 carbon atoms, Substituent or unsubstituted alkyl halide groups having 1 to 30 carbon atoms, Substituent or unsubstituted alkenyl groups having 2 to 30 carbon atoms, Substituent or unsubstituted alkynyl groups having 2 to 30 carbon atoms, Substituentally substituted or unsubstituted alkylsilyl groups having 3 to 30 carbon atoms, Substituent or unsubstituted ring-forming arylsilyl group having 6 to 60 carbon atoms, Substituent or unsubstituted ring-forming aryl phosphoryl group having
  • R 310 to R 319 are independent hydrogen atoms or substituents, respectively.
  • R 320 to R 329 are independently hydrogen atoms or substituents, respectively.
  • R 330 to R 339 are independent hydrogen atoms or substituents, respectively.
  • R 340 to R 349 are independently hydrogen atoms or substituents, respectively.
  • R 350 to R 359 are independently hydrogen atoms or substituents, respectively.
  • R 360 to R 369 are independently hydrogen atoms or substituents, respectively.
  • R 310 to R 319 , R 320 to R 329 , R 330 to R 339 , R 340 to R 349 , R 350 to R 359 and R 360 to R 369 as substituents are independently represented by the above general formula (3).
  • R 31 to R 38 as substituents
  • R 401 to R 404 and R 409 to R 412 as substituents. * Independently represent the bonding position with the benzene ring having R 401 to R 404 in the general formula (3). )
  • an electronic device equipped with the organic electroluminescence element according to the above-mentioned one aspect of the present invention is provided.
  • the organic EL element includes an organic layer between both electrodes of the anode and the cathode. This organic layer is formed by laminating a plurality of layers composed of organic compounds.
  • the organic layer may further contain an inorganic compound. At least one of the organic layers is a light emitting layer.
  • the organic layer includes a light emitting layer contained between the anode and the cathode, a first layer contained between the anode and the light emitting layer and adjacent to the light emitting layer, and a cathode and the light emitting layer. It has a second layer contained in between and adjacent to the light emitting layer.
  • the light emitting layer contains a first compound represented by the general formula (1), a second compound represented by the general formula (2), and a third compound represented by the general formula (3). ..
  • the first compound is a fluorescent compound and the second compound is a delayed fluorescent compound.
  • the first layer contains a compound represented by the general formula (A).
  • the first layer is not particularly limited, and examples thereof include at least one layer selected from the group consisting of a hole injection layer, a hole transport layer, and an electron barrier layer.
  • the electron barrier layer is preferable as the first layer.
  • the second layer contains a compound represented by the general formula (B).
  • the second layer is not particularly limited, and examples thereof include at least one layer selected from the group consisting of an electron injection layer, an electron transport layer, and a hole barrier layer.
  • the hole barrier layer is preferable as the second layer. That is, the organic layer of the organic EL element of the present embodiment preferably has the following layer structure. ⁇ Electron barrier layer / light emitting layer / hole barrier layer ⁇ hole injection layer / electron barrier layer / light emitting layer / hole barrier layer ⁇ hole transport layer / electron barrier layer / light emitting layer / hole barrier layer ⁇ hole injection Layer / hole transport layer / electron barrier layer / light emitting layer / hole barrier layer / electron barrier layer / light emitting layer / hole barrier layer / electron injection layer / electron barrier layer / light emitting layer / hole barrier layer / electron transport layer ⁇ Electron barrier layer / light emitting layer / hole barrier layer / electron transport layer / electron injection layer ⁇ hole injection layer / electron barrier layer / light emitting layer / hole barrier layer / electron injection layer ⁇ hole injection layer / electron barrier layer / Light emitting layer / hole barrier layer / electron injection layer ⁇ hole injection layer / electron barrier layer / Light
  • FIG. 1 shows a schematic configuration of an example of an organic EL device in this embodiment.
  • the organic EL element 1 includes a translucent substrate 2, an anode 3, a cathode 4, and an organic layer 10 arranged between the anode 3 and the cathode 4.
  • the organic layer 10 is composed of a first layer 6, a light emitting layer 5, and a second layer 7 laminated in this order in order from the anode 3 side.
  • the first layer 6 is adjacent to the light emitting layer 5 on the anode 3 side
  • the second layer 7 is adjacent to the light emitting layer 5 on the cathode 4 side.
  • the light emitting layer 5 may contain a metal complex.
  • the light emitting layer 5 preferably does not contain a phosphorescent material (dopant material).
  • the light emitting layer 5 preferably does not contain a heavy metal complex and a phosphorescent rare earth metal complex.
  • the heavy metal complex include an iridium complex, an osmium complex, a platinum complex, and the like. It is also preferable that the light emitting layer 5 does not contain a metal complex.
  • the first compound is preferably a dopant material (sometimes referred to as a guest material, emitter, luminescent material).
  • the second compound is preferably a host material (sometimes referred to as a matrix material).
  • the third compound is preferably a host material.
  • One of the second compound and the third compound may be referred to as a first host material, and the other may be referred to as a second host material.
  • the third compound may be a delayed fluorescence compound or a compound that does not exhibit delayed fluorescence.
  • an organic EL device including a light emitting layer containing three kinds of compounds, a fluorescent compound, a TADF compound and a third compound, is known.
  • the hole injection property into the light emitting layer is improved. There is a need to.
  • the combination of the light emitting layer and its peripheral layers known so far improves the hole injection property into the light emitting layer and efficiently excites the light emitting layer. Insufficient spawning.
  • the present inventors have placed the first layer containing the compound represented by the general formula (A) adjacent to the light emitting layer on the anode side, and the second layer containing the compound represented by the general formula (B) as the cathode. Adjacent to the light emitting layer on the side, the first compound having fluorescence emission (the compound represented by the general formula (1)) and the second compound having delayed fluorescence (represented by the general formula (2)). It has been found that a high-performance organic EL element can be realized by incorporating a compound) and a third compound (compound represented by the general formula (3)) in the light emitting layer.
  • the first layer 6 contains a compound represented by the following general formula (A).
  • Ra 1 to Ra 5 , Rb 1 to Rb 5 and Rc 3 to Rc 5 are independently hydrogen atoms or substituents, and Ra 1 to Ra 5 and Rb as substituents. 1 to Rb 5 and Rc 3 to Rc 5 are independent of each other.
  • Rc 1 is a hydrogen atom or a substituent, or is bonded to each other with Rc 2 to form a ring, and Rc 1 as a substituent is A substituted or unsubstituted ring-forming aryl group having 6 to 12 carbon atoms.
  • Rc 2 the ring when either a hydrogen atom or a substituent, or Rc 1 and Rc 2 pairs, are bonded to each other to form a ring, a set of Rc 1 and Rc 2 are bonded to each other to form a ring Containes at least a 5-membered ring, wherein the 5-membered ring contains at least one of a carbon atom, an oxygen atom, a sulfur atom, and a nitrogen atom, where Rc 1 and Rc 2 are not hydrogen atoms at the same time.
  • Rc 2 as a substituent is Substituent or unsubstituted ring-forming aryl groups having 6 to 30 carbon atoms, A heteroaryl group having 5 to 30 substituted or unsubstituted ring-forming atoms, Substituent or unsubstituted ring-forming aryloxy groups having 6 to 30 carbon atoms, A substituted or unsubstituted ring-forming arylthio group having 6 to 30 carbon atoms, or a substituted or unsubstituted amino group.
  • Ra 1 to Ra 5 when one or more of Ra 1 to Ra 5 is a substituted or unsubstituted dibenzofuranyl group, none of Rb 1 to Rb 5 and Rc 2 to Rc 5 is substituted or absent. If one or more of Rb 1 to Rb 5 is a substituted or unsubstituted dibenzofuranyl group instead of a substituted dibenzofuranyl group, either Ra 1 to Ra 5 and Rc 2 to Rc 5 are substituted or substituted.
  • Rc 2 to Rc 5 is a substituted or unsubstituted dibenzofuranyl group instead of an unsubstituted dibenzofuranyl group, all of Ra 1 to Ra 5 and Rb 1 to Rb 5 are substituted. Alternatively, it is more preferably not an unsubstituted dibenzofuranyl group.
  • Rc 1 is a hydrogen atom or a substituent and Rc 2 is a hydrogen atom or a substituent.
  • Rc 1 and Rc 2 are not hydrogen atoms at the same time.
  • the following general formula (1A) is used to explain the significance that the pair of Rc 1 and Rc 2 are bonded to each other to form a ring and that at least one of Rc 1 and Rc 2 is a specific substituent. explain.
  • the following general formula (1A) is a partial structure of the compound represented by the general formula (A).
  • Rc 1 has the same meaning as Rc 1 in the general formula (A)
  • Rc 2 has the same meaning as Rc 2 in the general formula (A)
  • Rc 3 ⁇ Rc 5 is , Independently synonymous with Rc 3 to Rc 5 in the general formula (A), where * represents a bond with a nitrogen atom in the compound represented by the general formula (A).
  • the compound represented by the general formula (A) has Rc 1 and Rc 2 located in the vicinity of the nitrogen atom bonded to each other to have the ring Z 11A , or Rc 1 and Rc. Since at least one of 2 has a specific substituent, for example, Rc 2 and Rc 3 are bonded to each other to form the ring Z 11B , and Rc 3 and Rc 4 are bonded to each other to form the ring Z 11C .
  • the structure around the nitrogen atom is bulkier than that of the compound having the compound and the compound having Rc 3 having a substituent.
  • the compound represented by the general formula (A) has a narrow HOMO (maximum occupied orbital) orbital and a deep ionization potential Ip (large absolute value). Therefore, according to the organic EL element 1 of the present embodiment, the first layer adjacent to the light emitting layer 5 on the anode 3 side contains the compound represented by the general formula (A) to form the light emitting layer 5. It is considered that the hole injection property and the efficiency of exciton generation in the light emitting layer are improved, and as a result, the performance of the organic EL device is improved.
  • the portion represented by the general formula (1A) is preferably a group represented by any of the following general formulas (1A-1) to (1A-10).
  • RA is a hydrogen atom or a substituent, and RA as a substituent is independent of each other.
  • the group represented by the general formula (1A) is preferably a group represented by any of the general formulas (1A-1) to (1A-5) and (1A-10), and the general formula is preferable. More preferably, it is a group represented by (1A-1) or (1A-4).
  • the group represented by the general formula (1A) is preferably a group represented by any of the general formulas (1A-6) to (1A-9), and the group represented by the general formula (1A-9). More preferably, it is the group represented.
  • the group represented by the general formula (1A) is more preferably a group represented by the general formula (1A-1), (1A-4) or (1A-9).
  • RA is preferably a hydrogen atom.
  • Ra 1 to Ra 5 and Rb 1 to Rb 5 are preferably hydrogen atoms or aryl groups having a substituted or unsubstituted ring-forming carbon number of 6 to 30, respectively.
  • Ra 1 to Ra 5 are independently hydrogen atoms, or substituted or unsubstituted aryl groups having 6 to 30 ring-forming carbon atoms, and Rb 1 to Rb 5 are respectively. It is also preferable that it is independently a hydrogen atom or a heteroaryl group having 5 to 30 substituted or unsubstituted ring-forming atoms.
  • Ra 1 to Ra 5 are independently aryl groups having 6 to 30 ring-forming carbon atoms substituted with hydrogen atoms or heteroaryl groups having 5 to 30 ring-forming atoms. It is also preferable that Rb 1 to Rb 5 are independently hydrogen atoms or heteroaryl groups having 5 to 30 substituted or unsubstituted ring-forming atoms.
  • Ra 1 to Ra 5 and Rb 1 to Rb 5 are independently hydrogen atoms or heteroaryl groups having 5 to 30 substituted or unsubstituted ring-forming atoms. ..
  • Ra 1 to Ra 5 is a substituent
  • Ra 1 to Ra 5 which is not the substituent is a hydrogen atom
  • Rb 1 to Rb 5 is a substituent. It is preferable that Rb 1 to Rb 5 which are not the substituents are hydrogen atoms, and Rc 3 to Rc 5 are hydrogen atoms.
  • Ra 1 to Ra 5 , Rb 1 to Rb 5 and Rc 3 to Rc 5 as substituents are independently halogen atoms, cyano groups, and unsubstituted ring-forming carbon atoms 6 to R. It is preferably an aryl group of 30 or an unsubstituted heteroaryl group having 5 to 30 ring-forming atoms.
  • Ra 1 to Ra 5 is a substituent
  • Ra 1 to Ra 5 which is not the substituent is a hydrogen atom
  • Rb 1 to Rb 5 is a substituent
  • Rb 1 to Rb 5 which are not the substituents are hydrogen atoms
  • Rc 3 to Rc 5 are hydrogen atoms
  • Ra 1 to Ra 5 and Rb 1 to Rb 5 as the substituents are independent of each other.
  • Halogen atom, cyano group, aryl group having 6 to 30 unsubstituted ring-forming atoms, or heteroaryl group having 5 to 30 unsubstituted ring-forming atoms is preferable.
  • At least one of Ra 1 to Ra 5 is a group independently represented by any of the following general formulas (1B-1) to (1B-10), and Rb. It is preferable that at least one of 1 to Rb 5 is a group independently represented by any of the following general formulas (1B-1) to (1B-10).
  • R B is hydrogen atom or a substituent, R B as a substituent, each independently, Halogen atom, Cyanide group, Substituent or unsubstituted ring-forming aryl groups having 6 to 30 carbon atoms, A heteroaryl group having 5 to 30 substituted or unsubstituted ring-forming atoms, Substituent or unsubstituted alkyl groups having 1 to 30 carbon atoms, Substituent or unsubstituted alkenyl groups having 2 to 30 carbon atoms, Substituent or unsubstituted alkynyl groups having 2 to 30 carbon atoms, Substituted or unsubstituted silyl group, Substituent or unsubstituted alkoxy group having 1 to 30 carbon atoms, Substituted or unsubstituted 7-30 aralkyl group having a carbon or a substituted or unsubstituted 7-30 aralkyl group having
  • R B is preferably a hydrogen atom.
  • the compound represented by the general formula (A) is preferably a compound represented by the following general formula (1X), the following general formula (1Y) or the following general formula (1Z), and the following general formula (1X). It is more preferable that the compound is represented by.
  • Ra 1 to Ra 5 and Rb 1 to Rb 5 are Ra 1 to Ra 5 and Ra 5 in the general formula (A), respectively. have the same meanings as Rb 1 ⁇ Rb 5, R a has the same meaning as R a in the general formula (1A-1) ⁇ (1A -10).
  • At least one of Ra 1 to Ra 5 is independently each of the general formulas (1B-1) to (1B-). It is a group represented by any of 10), and at least one of Rb 1 to Rb 5 is independently represented by any of the general formulas (1B-1) to (1B-10). It is preferably a group.
  • one of Ra 1 to Ra 5 is any one of the general formulas (1B-1) to (1B-10). It is more preferable that one of Rb 1 to Rb 5 is a group represented by any of the general formulas (1B-1) to (1B-10).
  • RA is preferably a hydrogen atom.
  • R B is preferably a hydrogen atom.
  • the ionization potential Ip of the compound represented by the general formula (A) is preferably 5.78 eV from the viewpoint of improving the hole injection property into the light emitting layer and from the viewpoint of efficiently generating excitons in the light emitting layer. As mentioned above, it is more preferably 5.80 eV or more, and further preferably 5.85 eV or more.
  • the method for measuring the ionization potential Ip of the compound represented by the general formula (A) is as described in Examples described later.
  • the compound represented by the general formula (A) can be produced by a known method.
  • the second layer 7 contains a compound represented by the following general formula (B).
  • X 1 to X 3 are independently nitrogen atoms or CR 1 , but at least one of X 1 to X 3 is a nitrogen atom.
  • R 1 is a hydrogen atom or a substituent and is R 1 as a substituent is independent of each other.
  • Ar 1 and Ar 2 are independent of each other. Is it represented by the following general formula (1B)? Substituent or unsubstituted ring-forming aryl group having 6 to 30 carbon atoms, or It is a substituted or unsubstituted heteroaryl group having 5 to 30 ring-forming atoms. A is represented by the following general formula (1B). )
  • HAR is represented by the following general formula (2B).
  • a is 1, 2, 3, 4, or 5
  • L 1 is a single bond or divalent linking group.
  • L 1 is a linking group of trivalent or more and hexavalent or less.
  • the linking group is Substitutable or unsubstituted ring-forming groups derived from aryl groups having 6 to 30 carbon atoms, A group derived from a substituted or unsubstituted heteroaryl group having 5 to 30 ring-forming atoms, Derived from a group in which two groups selected from the group consisting of an aryl group having 6 to 30 substituted or unsubstituted ring-forming carbon atoms and a heteroaryl group having 5 to 30 substituted or unsubstituted ring-forming atoms are bonded to each other.
  • Group or three groups selected from the group consisting of a substituted or unsubstituted ring-forming aryl group having 6 to 30 carbon atoms and a substituted or unsubstituted ring-forming atomic number of 5 to 30 heteroaryl groups bonded to each other.
  • a group derived from a group, The groups bonded to each other are the same or different from each other.
  • X 11 to X 18 are carbon atoms that independently bond to a nitrogen atom, CR 13 , or L 1 .
  • a plurality of R 13 are the same or different from each other
  • Y 1 represents an oxygen atom, a sulfur atom, NR 18, SiR 11 R 12 , CR 14 R 15, L 1 nitrogen atom binding to a silicon atom bound respectively R 16 and L 1 or R 17, And a carbon atom bonded to L 1 , respectively.
  • the bonds to L 1 are the carbon atoms from X 11 to X 18 , R 11 to R 12 , and R 14 to R 15 , and the nitrogen, silicon, and carbon atoms in Y 1 .
  • R 11 and R 12 are the same or different from each other, and R 14 and R 15 are the same or different from each other.
  • R 11 to R 18 are independently hydrogen atoms or substituents, or one or more of adjacent R 13 pairs, R 11 and R 12 pairs, and R 14 and R 15 pairs. The pairs combine with each other to form a ring, R 11 to R 18 as substituents are independent of each other.
  • the general formula (2B) is represented by the following general formula (2B-1).
  • X 11 ⁇ X 18 is a X 11 ⁇ X 18 in the general formula (2B) the same meanings.
  • the general formula (2B) is represented by the following general formula (2B-2).
  • X 11 ⁇ X 18 is a X 11 ⁇ X 18 in the general formula (2B) the same meanings.
  • L 1 as a linking group is a residue of divalent or more and hexavalent or less derived from a substituted or unsubstituted aryl group having 6 to 30 carbon atoms.
  • L 1 as a linking group is a residue of trivalent or more and hexavalent or less derived from an aryl group having 6 to 30 substituted or unsubstituted ring-forming carbon atoms.
  • a is preferably 1, 2, or 3, and more preferably 1 or 2.
  • L 1 is a divalent linking group
  • the general formula (1B) is represented by the following general formula (11B-1).
  • L 1 is a linking group of trivalent or more and hexavalent or less.
  • a is 2
  • L 1 is a trivalent linking group
  • the general formula (1B) is represented by the following general formula (11B-2).
  • HAR is the same or different.
  • L 1 is a divalent or trivalent linking group, and the linking group is an aryl having a substituted or unsubstituted ring-forming carbon number of 6 to 30.
  • Group derived from a group, substituted or unsubstituted ring-forming group derived from a heteroaryl group having 5 to 30 atoms, substituted or unsubstituted ring-forming aryl group having 6 to 30 carbon atoms and substituted or unsubstituted A group derived from a group in which two groups selected from the group consisting of heteroaryl groups having 5 to 30 ring-forming atoms are bonded to each other, or a substituted or unsubstituted aryl group having 6 to 30 ring-forming carbon atoms and a substituent. Alternatively, it is a group derived from a group in which three groups selected from the group consisting of a heteroaryl group having 5 to 30 unsubstituted ring-forming
  • L 1 of the general formulas (1B), (11B-1) and (11B-2) a group in which two or three of these groups are bonded to each other is an aryl having 6 to 30 ring-forming carbon atoms.
  • the groups bonded to each other are the same or different from each other.
  • Formula (1B), (11B-1 ) and in (11B-2), L 1 as a connecting group are benzene, biphenyl, terphenyl, divalent or trivalent derived from any of the naphthalene and phenanthrene It is also preferable that it is a residue of.
  • a is 1 or 2, and L 1 is preferably a divalent or trivalent linking group.
  • L 1 is a linking group
  • L 1 as a linking group is derived from a substituted or unsubstituted aryl group having 6 to 30 ring-forming carbon atoms. It is also preferable that it is a divalent residue or a divalent residue derived from a substituted or unsubstituted heteroaryl group having 5 to 30 ring-forming atoms.
  • a is 2
  • L 1 is a linking group
  • L 1 as a linking group is derived from a substituted or unsubstituted aryl group having 6 to 30 ring-forming carbon atoms. It is also preferable that it is a trivalent residue or a trivalent residue derived from a substituted or unsubstituted heteroaryl group having 5 to 30 ring-forming atoms.
  • L 1 is a single bond.
  • X 13 or X 16 is a carbon atom bonded to L 1 .
  • Y 1 is preferably a nitrogen atom bonded to NR 18 , oxygen atom, sulfur atom, CR 14 R 15 or L 1 .
  • Y 1 is CR 14 R 15 .
  • Y 1 is, if a CR 14 R 15, a carbon atom to which any one of X 11 to X 18 are coupled to L 1, other nitrogen atom from X 11 to X 18, or CR 13, Is preferable.
  • Y 1 is a nitrogen atom bonded to NR 18 or L 1 .
  • Y 1 is the case of NR 18, any one of X 11 to X 18 is a carbon atom bonded to L 1, the other is a nitrogen atom or CR 13, from X 11 to X 18 Is preferable.
  • X 11 to X 18 are preferably nitrogen atoms or CR 13 independently of each other.
  • Y 1 is preferably an oxygen atom or a sulfur atom, and more preferably an oxygen atom.
  • Y 1 is an oxygen atom or a sulfur atom. It is also preferable that one of X 11 to X 18 is a carbon atom bonded to L 1 and the other is CR 13 . In the general formula (2B), Y 1 is an oxygen atom, X 11 and X 18 are CR 13 , and one of X 12 to X 17 is a carbon atom bonded to L 1 . Yes, otherwise it is more preferred to be CR 13 .
  • any two or three of X 1 to X 3 in the general formula (B) are nitrogen atoms.
  • X 1 and X 2 are nitrogen atoms and X 3 is CR 1 .
  • the third compound is the following general. It is represented by the formula (21).
  • the compound represented by the general formula (B) can be produced by a known method.
  • the light emitting layer 5 contains a first compound, a second compound, and a third compound.
  • the first compound is a fluorescent compound.
  • the first compound may be a delayed fluorescence compound or a compound that does not exhibit delayed fluorescence.
  • the first compound is a compound represented by the following general formula (1).
  • X is a nitrogen atom or a carbon atom bonded to Y
  • Y is a hydrogen atom or a substituent and is
  • R 21 to R 26 are independently hydrogen atoms or substituents, or R 21 and R 22 pairs, R 22 and R 23 pairs, R 24 and R 25 pairs, and R 25 and R. Any one or more of the 26 pairs combine with each other to form a ring.
  • Y as a substituent and R 21 to R 26 are independent of each other.
  • Substituent or unsubstituted alkyl groups having 1 to 30 carbon atoms Substituent or unsubstituted alkyl halide groups having 1 to 30 carbon atoms, Substitutable or unsubstituted ring-forming cycloalkyl group having 3 to 30 carbon atoms, Substituent or unsubstituted ring-forming aryl groups having 6 to 30 carbon atoms, Substituent or unsubstituted alkoxy group having 1 to 30 carbon atoms, Substituent or unsubstituted alkoxy group having 1 to 30 carbon atoms, Substituent or unsubstituted alkoxy group having 1 to 30 carbon atoms, Substituent or unsubstituted alkylthio groups having 1 to 30 carbon atoms, Substituent or unsubstituted ring-forming aryloxy groups having 6 to 30 carbon atoms, Substituted or unsubsti
  • Z 21 and Z 22 are independent substituents, or Z 21 and Z 22 are bonded to each other to form a ring.
  • Z 21 and Z 22 as substituents are independent of each other.
  • the first compound is represented by the following general formula (11).
  • X, Y, R 21 ⁇ R 24, Z 21, and Z 22 are each the X in the general formula (1), Y, R 21 ⁇ R 24, Z 21, and Z Synonymous with 22 , R 27 to R 30 are independent hydrogen atoms or substituents, and R 21 to R 24 are listed as substituents when R 27 to R 30 are substituents. Synonymous with substituent.
  • the first compound when Z 21 and Z 22 are bonded to each other to form a ring, the first compound is represented by, for example, the following general formula (10A) or the following general formula (10B). Will be done. However, the first compound is not limited to the following structure.
  • X, Y, and R 21 to R 26 are synonymous with X, Y, and R 21 to R 26 in the general formula (1), respectively, and R 1A is independent of each other.
  • the substituent is synonymous with the substituents listed for R 21 to R 26 , and n3 is 4.
  • X, Y, and R 21 to R 26 are synonymous with X, Y, and R 21 to R 26 in the general formula (1), respectively, and R 1B are independent of each other.
  • the substituent is synonymous with the substituents listed for R 21 to R 26 , and n4 is 4.
  • At least one of Z 21 and Z 22 is a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted halogenated alkyl group having 1 to 30 carbon atoms , Substituted or unsubstituted ring-forming aryl group with 6 to 30 carbon atoms, substituted or unsubstituted alkoxy group with 1 to 30 carbon atoms, substituted or unsubstituted alkoxy group with 1 to 30 carbon atoms, and substituted or unsubstituted It is preferably a group selected from the group consisting of an unsubstituted ring-forming aryloxy group having 6 to 30 carbon atoms.
  • At least one of Z 21 and Z 22 has an alkoxy group having 1 to 30 carbon atoms substituted with a fluorine atom, an aryloxy group having 6 to 30 carbon atoms substituted with a fluorine atom, and 1 to 1 carbon atom. More preferably, it is a group selected from the group consisting of an aryloxy group having 6 to 30 ring-forming carbon atoms substituted with 30 fluoroalkyl groups. It is more preferable that at least one of Z 21 and Z 22 is an alkoxy group having 1 to 30 carbon atoms substituted with a fluorine atom, and Z 21 and Z 22 have 1 to 30 carbon atoms substituted with a fluorine atom. It is even more preferable that it is an alkoxy group of.
  • Z 21 and Z 22 are the same.
  • the Z 21 and the Z 22 is a fluorine atom.
  • At least one of the Z 21 and the Z 22 is a group represented by the following general formula (10a).
  • A is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkyl halide group having 1 to 6 carbon atoms, or a substituted or unsubstituted ring-forming carbon. It is an aryl group of number 6 to 12, L 2 is a substituted or unsubstituted alkylene group having 1 to 6 carbon atoms, or a substituted or unsubstituted ring-forming aryl group having 6 to 12 carbon atoms, and m is a substituted or unsubstituted arylene group. 0,1,2,3,4,5,6, or 7, when m is 3, 4, 5, 6, or 7, a plurality of L 2 may be the same or different from each other. m is preferably 0, 1, or 2. When m is 0, A directly bonds to O (oxygen atom).
  • the first compound when Z 21 and Z 22 are groups represented by the general formula (10a), the first compound is a compound represented by the following general formula (12).
  • the first compound is also preferably a compound represented by the following general formula (12).
  • X, Y when X is a carbon atom bonded with Y, R 21 ⁇ R 26 are each the X in the general formula (1), Y, and R 21 ⁇ R 26 It is synonymous.
  • a 21 and A 22 have the same meaning as A in the general formula (10a), and may be the same as or different from each other.
  • L 21 and L 22 have the same meaning as L 2 in the general formula (10a), and may be the same as or different from each other.
  • m1 and m2 are 0, 1, 2, 3, 4, 5, 6 or 7, respectively, and are preferably 0, 1, or 2.
  • At least one of A and L 2 in the general formula (10a) is preferably substituted with a halogen atom, and more preferably substituted with a fluorine atom.
  • a in the general formula (10a) is more preferably a perfluoroalkyl group having 1 to 6 carbon atoms or a perfluoroaryl group having 6 to 12 ring-forming carbon atoms, and more preferably a perfluoroalkyl group having 1 to 6 carbon atoms. It is more preferably a group.
  • L 2 in the general formula (10a) is more preferably a perfluoroalkylene group having 1 to 6 carbon atoms or a perfluoroarylene group having 6 to 12 ring-forming carbon atoms, and more preferably a perfluoroarylene group having 1 to 6 carbon atoms. It is more preferably an alkylene group.
  • the first compound is a compound represented by the following general formula (12a).
  • X is synonymous with X in the general formula (1)
  • Y when X is a carbon atom bonded to Y is synonymous with Y in the general formula (1).
  • R 21 to R 26 are independently synonymous with R 21 to R 26 in the general formula (1).
  • m3 is 0 or more and 4 or less
  • m4 is 0 or more and 4 or less
  • m3 and m4 are the same as or different from each other.
  • X is a carbon atom that binds to Y
  • Y is a hydrogen atom or a substituent and is Y as a substituent is an alkyl group having 1 to 30 carbon atoms substituted or unsubstituted, an alkyl halide group having 1 to 30 carbon atoms substituted or unsubstituted, and a ring-forming alkyl group having 6 to 30 substituted or unsubstituted carbon atoms. It is preferably a substituent selected from the group consisting of aryl groups, and more preferably a substituted or unsubstituted aryl group having 6 to 30 ring-forming carbon atoms.
  • X is a carbon atom that binds to Y
  • Y is a hydrogen atom or a substituent and is Y as a substituent is a substituted or unsubstituted aryl group having 6 to 30 carbon atoms.
  • Y as a substituent is an aryl group having a ring-forming carbon number of 6 to 30 having a substituent
  • the substituent is Substituent or unsubstituted alkyl groups having 1 to 30 carbon atoms, Substituent or unsubstituted alkyl halide groups having 1 to 30 carbon atoms, Substituent or unsubstituted alkoxy group having 1 to 30 carbon atoms, Examples thereof include a substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms substituted with an alkyl group having 1 to 30 carbon atoms.
  • the Z 21 and the Z 22 may be bonded to each other to form a ring, but it is preferable that the Z 21 and the Z 22 are not bonded to each other to form a ring.
  • R 21 , R 23 , R 24 , and R 26 is a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, or It is preferably a substituted or unsubstituted alkyl halide group having 1 to 30 carbon atoms.
  • R 21 , R 23 , R 24 , and R 26 are substituted or unsubstituted alkyl groups having 1 to 30 carbon atoms, or substituted or unsubstituted. It is more preferably an alkyl halide group having 1 to 30 carbon atoms. In this case, it is preferable that R 22 and R 25 are hydrogen atoms.
  • R 21 , R 23 , R 24 , and R 26 is a substituted or unsubstituted aryl group having 6 to 30 carbon atoms. Is preferable.
  • R 21 , R 23 , R 24 , and R 26 are substituted or unsubstituted aryl groups having 6 to 30 carbon atoms. preferable. In this case, it is preferable that R 22 and R 25 are hydrogen atoms.
  • R 21 , R 23 , R 24 , and R 26 are independent of each other.
  • Substituent or unsubstituted alkyl groups having 1 to 30 carbon atoms (preferably 1 to 6 carbon atoms) Ring-forming alkyl groups substituted with substituted or unsubstituted alkyl groups having 1 to 30 carbon atoms (preferably 1 to 6 carbon atoms) or alkyl groups having 1 to 30 carbon atoms (preferably ring forming) It is an aryl group having 6 to 12 carbon atoms).
  • R 22 and R 25 are hydrogen atoms can be mentioned.
  • R 21 , R 23 , and R 24 is a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, or a substituted or unsubstituted halogen having 1 to 30 carbon atoms. It is preferably an alkylated group.
  • R 21 , R 23 , and R 24 are substituted or unsubstituted alkyl groups having 1 to 30 carbon atoms, or substituted or unsubstituted alkyl halide groups having 1 to 30 carbon atoms. Is more preferable.
  • R 22 is preferably a hydrogen atom.
  • R 21 , R 23 , and R 24 is a substituted or unsubstituted aryl group having 6 to 30 carbon atoms.
  • R 21 , R 23 , and R 24 are substituted or unsubstituted aryl groups having 6 to 30 carbon atoms.
  • R 22 is preferably a hydrogen atom.
  • R 21 , R 23 , and R 24 are independent of each other.
  • Substituent or unsubstituted alkyl groups having 1 to 30 carbon atoms (preferably 1 to 6 carbon atoms) Ring-forming alkyl groups substituted with substituted or unsubstituted alkyl groups having 1 to 30 carbon atoms (preferably 1 to 6 carbon atoms) or alkyl groups having 1 to 30 carbon atoms (preferably ring forming) It is an aryl group having 6 to 12 carbon atoms).
  • R 22 is a hydrogen atom can be mentioned.
  • the compound represented by the general formula (1) is preferably a compound represented by the following general formula (n).
  • Ar 1001 and Ar 1002 are independent of each other. Selected from the group consisting of a substituted or unsubstituted ring-forming aryl group having 6 to 30 carbon atoms and a substituted or unsubstituted ring-forming atomic number of 5 to 30 heteroaryl groups.
  • R 1001 to R 1005 are independently hydrogen atoms or substituents, or a set of R 1001 and R 1002, a set of R 1002 and Ar 1001, a set of Ar 1002 and R 1003 , and R 1003 and R. Any one or more of the 1004 pairs combine with each other to form a ring.
  • R 1001 to R 1005 as substituents are independent of each other.
  • Substituent or unsubstituted alkyl groups having 1 to 30 carbon atoms Substituent or unsubstituted alkyl halide groups having 1 to 30 carbon atoms, Substitutable or unsubstituted ring-forming cycloalkyl group having 3 to 30 carbon atoms, Substituent or unsubstituted ring-forming aryl groups having 6 to 30 carbon atoms, Substituent or unsubstituted alkoxy group having 1 to 30 carbon atoms, Substituent or unsubstituted alkoxy group having 1 to 30 carbon atoms, Substituent or unsubstituted alkoxy group having 1 to 30 carbon atoms, Substituent or unsubstituted alkylthio groups having 1 to 30 carbon atoms, Substituent or unsubstituted ring-forming aryloxy groups having 6 to 30 carbon atoms, Substituted or unsubsti
  • Z 1001 and Z 1002 are independent of each other.
  • Ar 1001 and Ar 1002 are independently substituted or unsubstituted aryl groups having 6 to 30 carbon atoms.
  • Ar 1001 and Ar 1002 may be monocyclic or condensed rings independently of each other.
  • Examples of Ar 1001 and Ar 1002 include substituted or unsubstituted phenyl group, substituted or unsubstituted naphthyl group and the like.
  • R 1001 and R 1004 are each independently substituted or unsubstituted aryl group having 6 to 30 ring-forming carbon atoms, or substituted or unsubstituted heterozygous having 5 to 30 ring-forming atoms. It is more preferably an aryl group.
  • R 1002 and R 1003 are hydrogen atoms, substituted or unsubstituted alkyl groups having 1 to 30 carbon atoms, substituted or unsubstituted ring-forming cycloalkyl groups having 3 to 30 carbon atoms, and substitutions.
  • it is preferably an aryl group having an unsubstituted ring-forming carbon number of 6 to 30, or a heteroaryl group having a substituted or unsubstituted ring-forming atom number of 5 to 30, and a hydrogen atom or a substituted or unsubstituted carbon number 1 More preferably, it is an alkyl group of about 30.
  • R1005 is preferably an aryl group having 6 to 30 substituted or unsubstituted ring-forming atoms, or a heteroaryl group having 5 to 30 substituted or unsubstituted ring-forming atoms. ..
  • R1005 include a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted phenanthryl group, a substituted or unsubstituted anthryl group, a substituted or unsubstituted dibenzofuranyl group and the like. Can be mentioned.
  • Z 1001 and Z 1002 are independently halogen atoms, substituted or unsubstituted alkyl groups having 1 to 30 carbon atoms, and substituted or unsubstituted aryl groups having 6 to 30 carbon atoms. It is preferably a group, a substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, or a substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms.
  • the first compound when any one or more pairs of R 1002 and Ar 1001 and Ar 1002 and R 1003 are bonded to each other to form a ring, the first compound is used.
  • it is preferably a compound represented by the following general formula (n + 1A) or general formula (n + 1B).
  • R 1001 , R 1002 , R 1004 , R 1005 , Ar 1001 , Z 1001 and Z 1002 are independently related to R 1001 , R 1002 , and R 1004 in the general formula (n), respectively. , R 1005 , Ar 1001 , Z 1001 and Z 1002 .
  • R 1001 , R 1004 , R 1005 , Z 1001 and Z 1002 are independently described as R 1001 , R 1004 , R 1005 , Z 1001 and Z 1002 in the general formula (n). Synonymous with Ar 1003 and Ar 1004 are independent of each other.
  • B 1 is a crosslinked structure in which three or more atoms are bonded in series, and the atoms are Substituted or unsubstituted carbon atoms, Substituted or unsubstituted silicon atom, Substituted or unsubstituted nitrogen atom, Substituted or unsubstituted phosphorus atom, Selected from the group consisting of oxygen atoms and sulfur atoms
  • C 1 is a crosslinked structure in which one or more atoms are bonded in series, and the atoms are Substituted or unsubstituted carbon atoms, Substituted or unsubstituted silicon atom, Substituted or unsubstituted nitrogen atom, Substituted or unsubstituted phosphorus atom, Selected from the group consisting of oxygen atoms and sulfur atoms
  • R 1004 is not a hydrogen atom or a halogen atom.
  • the double bond represented as a part of Ar 1003 in the general formula (n + 1A) and the general formula (n + 1B) represents a part of an aromatic hydrocarbon ring or an aromatic heterocycle, and is directly attached to the pyrromethene skeleton. and bonded to that carbon atom, the carbon atom to which crosslinked structure B 1 is attached indicates that adjacent.
  • the double bonds shown as part of Ar 1004 in the general formula (n + 1A) and general formula (n + 1B) represent part of the aromatic hydrocarbon ring or aromatic heterocycle and are directly on the pyrromethene skeleton. and bonded to that carbon atom, the carbon atom to which crosslinked structure C 1 is bonded is shown that is adjacent.
  • the number of ring-forming atoms when the pair of R 1002 and Ar 1001 are bonded to each other to form a ring, and the number of ring-forming atoms when the pair of Ar 1002 and R 1003 are bonded to each other to form a ring are 30 or less. Is preferable. Specifically, in the general formula (n + 1A) and the formula (n + 1B), constituting atoms in the crosslinked structure B 1 (the number of atoms bonded in series), the ring-forming atoms in Ar 1003, the pyrromethene skeleton The total with the carbon atoms (2) is preferably 30 or less.
  • the number of atoms in the cross-linked structure C 1 (the number of atoms bonded in series), the ring-forming atoms in Ar 1004, the sum of the carbon atoms (2) constituting the pyrromethene skeleton, It is preferably 30 or less.
  • B 1 preferably has a crosslinked structure represented by the following general formula (n + 2A) or general formula (n + 2B).
  • R 1011 to R 1016 are each independently a hydrogen atom or a substituent, or one or more sets of two or more adjacent sets of R 1011 to R 1016. Combine with each other to form a ring,
  • R 1011 to R 1014 are independently hydrogen atoms or substituents, or one or more pairs of two or more adjacent pairs of R 1011 to R 1014 are mutually exclusive. Combine to form a ring, R 1011 to R 1016 as substituents are independent of each other.
  • Substituent or unsubstituted alkyl groups having 1 to 30 carbon atoms Substituent or unsubstituted alkyl halide groups having 1 to 30 carbon atoms, Substitutable or unsubstituted ring-forming cycloalkyl group having 3 to 30 carbon atoms, Substituent or unsubstituted ring-forming aryl groups having 6 to 30 carbon atoms, A heteroaryl group having 5 to 30 substituted or unsubstituted ring-forming atoms, Substituent or unsubstituted alkoxy group having 1 to 30 carbon atoms, Substituent or unsubstituted alkoxy group having 1 to 30 carbon atoms, Substituent or unsubstituted alkylthio groups having 1 to 30 carbon atoms, Substituent or unsubstituted ring-forming aryloxy groups having 6 to 30 carbon atoms, Substituted or unsub
  • R 1011 to R 1016 are preferably hydrogen atoms or substituted or unsubstituted alkyl groups having 1 to 30 carbon atoms, respectively.
  • B 1 (crosslinked structure in which three or more atoms are bonded in series)
  • B 1 preferably has a crosslinked structure in which three atoms are bonded in series.
  • C 1 (crosslinked structure in which one or more atoms are bonded in series)
  • C 1 preferably has a crosslinked structure in which one or more and three or less atoms are bonded in series.
  • the atom constituting C 1 is preferably selected from a substituted or unsubstituted carbon atom, an oxygen atom, and a sulfur atom, and more preferably a substituted or unsubstituted carbon atom.
  • R 1005 is preferably a group represented by the following general formula (n + 3).
  • R 1021 and R 1022 are independent of each other.
  • Substituent or unsubstituted alkyl groups having 1 to 30 carbon atoms Substituent or unsubstituted alkyl halide groups having 1 to 30 carbon atoms, Substitutable or unsubstituted ring-forming cycloalkyl group having 3 to 30 carbon atoms, Selected from the group consisting of a substituted or unsubstituted ring-forming aryl group having 6 to 30 carbon atoms and a substituted or unsubstituted ring-forming atomic number of 5 to 30 heteroaryl groups.
  • R 1023 to R 1025 are independently hydrogen atoms or substituents, or a pair of R 1023 and R 1024 , and one or more pairs of R 1024 and R 1025 are bonded to each other. Form a ring, R 1023 to R 1025 as substituents are independent of each other.
  • Substituent or unsubstituted alkyl groups having 1 to 30 carbon atoms Substituent or unsubstituted alkyl halide groups having 1 to 30 carbon atoms, Substitutable or unsubstituted ring-forming cycloalkyl group having 3 to 30 carbon atoms, Substituent or unsubstituted ring-forming aryl groups having 6 to 30 carbon atoms, A heteroaryl group having 5 to 30 substituted or unsubstituted ring-forming atoms, Substituent or unsubstituted alkoxy group having 1 to 30 carbon atoms, Substituent or unsubstituted alkoxy group having 1 to 30 carbon atoms, Substituent or unsubstituted alkylthio groups having 1 to 30 carbon atoms, Substituent or unsubstituted ring-forming aryloxy groups having 6 to 30 carbon atoms, Substituted or unsub
  • R 1021 and R 1022 are independently substituted or unsubstituted alkyl groups having 1 to 30 carbon atoms, substituted or unsubstituted ring-forming aryl groups having 6 to 30 carbon atoms, or It is preferably a substituted or unsubstituted heteroaryl group having 5 to 30 ring-forming atoms.
  • R 1021 and R 1022 are alkyl groups, they are more preferably substituted or unsubstituted alkyl groups having 1 to 4 carbon atoms, and even more preferably methyl groups.
  • R 1021 and R 1022 are aryl groups, they are more preferably substituted or unsubstituted phenyl groups.
  • R 1021 and R 1022 are heteroaryl groups, they are more preferably monocyclic heteroaryl groups having 5 to 6 substituted or unsubstituted ring-forming atoms.
  • R 1023 to R 1025 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, and a substituted or unsubstituted alkyl halide having 1 to 30 carbon atoms.
  • the substituent in the case of "substituted or unsubstituted" is a substituted or unsubstituted carbon.
  • Alkoxy group substituted or unsubstituted alkylthio group having 1 to 30 carbon atoms, substituted or unsubstituted ring-forming carbon number 6 to 30 aryloxy group, substituted or unsubstituted ring-forming carbon number 6 to 30 arylthio group.
  • alkylsulfonyl groups substituted or unsubstituted ring-forming arylcarbonyl groups with 6 to 30 carbon atoms, substituted or unsubstituted acyl groups with 1 to 30 carbon atoms, halogen atoms, carboxy groups, substituted or unsubstituted It is preferably an amino group, a nitro group, a cyano group, a substituted or unsubstituted silyl group, a substituted phosphoryl group, a hydroxy group, a substituted phosphino group, an ester group, a siloxanyl group, or a carbamoyl group.
  • examples of the alkoxy group substituted with the fluorine atom include 2,2,2-trifluoroethoxy group, 2,2-difluorooloethoxy group, 2,2,3,3,3. -Pentafluoro-1-propoxy group, 2,2,3,3-tetrafluoro-1-propoxy group, 1,1,1,3,3,3-hexafluoro-2-propoxy group, 2,2,3 , 3,4,4,4-Heptafluoro-1-butyloxy group, 2,2,3,3,4,4-hexafluoro-1-butyloxy group, nonafluorotertiary butyloxy group, 2,2,3 , 3,4,4,5,5,5-nonafluoropentanoxy group, 2,2,3,3,4,5,5,6,6,6-undecafluorohexanoxy group, 2,3-bis (trifluoromethyl) -2,3-butandioxy group, 1,1,2,2-tetra (trifluoromethyl) ethyleneglycoxy group, 4,
  • examples of the aryloxy group substituted with a fluorine atom or the aryloxy group substituted with a fluoroalkyl group include a pentafluorophenoxy group, a 3,4,5-trifluorophenoxy group and 4-.
  • the first compound When the first compound is a fluorescent compound, it is preferable that the first compound exhibits light emission having a main peak wavelength of 400 nm or more and 700 nm or less.
  • the main peak wavelength means that the emission intensity in the measured fluorescence spectrum is the maximum for a toluene solution in which the compound to be measured is dissolved at a concentration of 10-6 mol / liter or more and 10-5 mol / liter or less. Refers to the peak wavelength of the fluorescence spectrum.
  • a spectrofluorometer F-7000 manufactured by Hitachi High-Tech Science Corporation is used as the measuring device.
  • the first compound preferably exhibits red or green luminescence.
  • the red emission means the emission in which the main peak wavelength of the fluorescence spectrum is in the range of 600 nm or more and 660 nm or less.
  • the main peak wavelength of the first compound is preferably 600 nm or more and 660 nm or less, more preferably 600 nm or more and 640 nm or less, and further preferably 610 nm or more and 630 nm or less.
  • the green emission means the emission in which the main peak wavelength of the fluorescence spectrum is in the range of 500 nm or more and 560 nm or less.
  • the main peak wavelength of the first compound is preferably 500 nm or more and 560 nm or less, more preferably 500 nm or more and 540 nm or less, and further preferably 510 nm or more and 530 nm or less. ..
  • the blue emission means the emission in which the main peak wavelength of the fluorescence spectrum is in the range of 430 nm or more and 480 nm or less.
  • the main peak wavelength of the first compound is preferably 430 nm or more and 480 nm or less, and more preferably 445 nm or more and 480 nm or less.
  • the first compound can be produced by a known method.
  • the first compound in the present invention is not limited to these specific examples.
  • Me represents a methyl group.
  • the second compound is a delayed fluorescent compound.
  • the second compound is a compound represented by the following general formula (2).
  • D 1 is a group represented by the following general formula (2-1)
  • D 2 is a group represented by the following general formula (2-2).
  • D 2 is the same group as each other.
  • “Multiple D 2 is the same group together" and, between variables represented by the same symbols in the general formula (2-2) means that all the same.
  • the “variable in the general formula (2-2)” means R 161 to R 168 .
  • a group represented by the general formula (2-2) representing the D 2 are identical to each other R 161 is identical R 162 each other, to each other R 163 They are the same, R 164 are the same, R 165 are the same, R 166 are the same, R 167 are the same, and R 168 are the same.
  • three D 2 in the general formula (2) is the same group to one another, including substituents.
  • X 4 is an oxygen atom or a sulfur atom
  • R 131 to R 140 are independently hydrogen atoms or substituents.
  • R 131 to R 140 as substituents are independent of each other.
  • Substituent or unsubstituted ring-forming aryl groups having 6 to 14 carbon atoms Substituted or unsubstituted ring-forming heterocyclic groups having 5 to 14 atoms, Substituent or unsubstituted alkyl groups having 1 to 6 carbon atoms, Substituent or unsubstituted alkylsilyl group having 3 to 6 carbon atoms, Substituent or unsubstituted alkoxy group having 1 to 6 carbon atoms, Substituent or unsubstituted ring-forming aryloxy groups having 6 to 14 carbon atoms, Substituent or unsubstituted alkylamino groups having 2 to 12 carbon atoms, It is a substituted or
  • R161 to R168 are independently hydrogen atoms or substituents, respectively.
  • X 4 is preferably a sulfur atom. In the general formula (2-1), it is also preferable that X 4 is an oxygen atom.
  • the group represented by the general formula (2-2) is preferably any of the groups represented by the following general formulas (2-20) to (2-26).
  • R161 to R168 are each independently a hydrogen atom, an aryl group having 6 to 14 substituted or unsubstituted ring-forming carbon atoms, or 1 to 1 substituted or unsubstituted carbon atoms. It is preferably an alkyl group of 6, and more preferably a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms.
  • R 161 and R 163 , R 166 and R 168 has a substituent, and the substituent has an independently substituted or unsubstituted ring-forming carbon number. It is also preferable that it is an aryl group of 6 to 14 or an alkyl group having 1 to 6 carbon atoms substituted or unsubstituted, and R 162 , R 164 , R 165 and R 167 are hydrogen atoms.
  • R 131 to R 140 and R 161 to R 168 as substituents are independently halogen atoms and unsubstituted ring-forming carbon atoms 6 to 14, respectively.
  • R 131 to R 140 and R 161 to R 168 are independently hydrogen atoms, substituted or unsubstituted aryls having 6 to 14 ring-forming carbon atoms, respectively.
  • a group, a substituted or unsubstituted ring-forming atomic number 5 to 14 heterocyclic group, or a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms is preferable, and a hydrogen atom, a substituted or unsubstituted ring-forming carbon is preferable.
  • R 131 to R 140 and R 161 to R 168 as substituents are independently unsubstituted aryl groups having 6 to 14 carbon atoms. , Or an unsubstituted alkyl group having 1 to 6 carbon atoms is more preferable.
  • R 137 is a substituent, and R 137 as a substituent is an aryl group having 6 to 14 substituted or unsubstituted ring-forming carbon atoms, or a substituted or unsubstituted carbon. It is also preferable that R 131 to R 136 and R 138 to R 140 are alkyl groups of numbers 1 to 6 and are hydrogen atoms.
  • R 131 to R 140 and R 161 to R 168 are preferably hydrogen atoms.
  • the second compound can be produced, for example, by the method described in Examples described later.
  • the second compound according to the present embodiment can be produced by following the reaction described in Examples described later and using a known alternative reaction or raw material suitable for the desired product.
  • delayed fluorescence emission can be confirmed by transient PL (Photoluminescence) measurement.
  • Transient PL measurement is a method of irradiating a sample with a pulse laser to excite it and measuring the attenuation behavior (transient characteristics) of PL light emission after the irradiation is stopped.
  • PL light emission in TADF materials is classified into a light emitting component from a singlet exciton generated by the first PL excitation and a light emitting component from a singlet exciton generated via a triplet exciton.
  • the lifetime of singlet excitons generated by the first PL excitation is on the nanosecond order and is very short.
  • the light emission from the singlet exciton is rapidly attenuated after irradiation with the pulse laser.
  • delayed fluorescence is slowly attenuated due to emission from singlet excitons generated via triplet excitons having a long lifetime.
  • the emission intensity derived from delayed fluorescence can be obtained.
  • FIG. 2 shows a schematic diagram of an exemplary device for measuring transient PL.
  • a method for measuring transient PL using FIG. 2 and an example of behavior analysis of delayed fluorescence will be described.
  • the transient PL measuring device 100 of FIG. 2 includes a pulse laser unit 101 capable of irradiating light having a predetermined wavelength, a sample chamber 102 accommodating a measurement sample, a spectroscope 103 that disperses light emitted from the measurement sample, and 2 It includes a streak camera 104 for forming a dimensional image and a personal computer 105 for capturing and analyzing a two-dimensional image.
  • the measurement of transient PL is not limited to the device shown in FIG.
  • the sample accommodated in the sample chamber 102 is obtained by forming a thin film on a quartz substrate in which a doping material is doped at a concentration of 12% by mass with respect to the matrix material.
  • the thin film sample housed in the sample chamber 102 is irradiated with a pulse laser from the pulse laser unit 101 to excite the doping material.
  • Light is emitted in a direction of 90 degrees with respect to the irradiation direction of the excitation light, the extracted light is separated by the spectroscope 103, and a two-dimensional image is formed in the streak camera 104.
  • a two-dimensional image in which the vertical axis corresponds to time, the horizontal axis corresponds to wavelength, and the bright spot corresponds to emission intensity.
  • this two-dimensional image is cut out on a predetermined time axis, it is possible to obtain an emission spectrum in which the vertical axis is the emission intensity and the horizontal axis is the wavelength.
  • an attenuation curve (transient PL) in which the vertical axis is the logarithm of the emission intensity and the horizontal axis is the time can be obtained.
  • the following reference compound H1 was used as the matrix material, and the following reference compound D1 was used as the doping material to prepare a thin film sample A as described above, and transient PL measurement was performed.
  • the attenuation curves were analyzed using the above-mentioned thin film sample A and thin film sample B.
  • the following reference compound H2 was used as the matrix material
  • the reference compound D1 was used as the doping material to prepare a thin film sample as described above.
  • FIG. 3 shows the attenuation curves obtained from the transient PL measured for the thin film sample A and the thin film sample B.
  • transient PL measurement it is possible to obtain an emission attenuation curve with the vertical axis representing the emission intensity and the horizontal axis representing the time. Based on this emission attenuation curve, the fluorescence intensity of fluorescence emitted from the singlet excited state generated by photoexcitation and delayed fluorescence emitted from the singlet excited state generated by reverse energy transfer via the triplet excited state. The ratio can be estimated. In delayed fluorescence materials, the ratio of the intensity of slow-decaying fluorescence to the intensity of fast-decaying fluorescence is somewhat large.
  • Prompt emission is emission that is immediately observed from the excited state after being excited by pulsed light (light emitted from a pulse laser) having a wavelength absorbed by the delayed fluorescent material.
  • Delay light emission is light emission that is not immediately observed after being excited by the pulsed light but is observed thereafter.
  • the amount of Prompt emission and Delay emission and their ratio can be obtained by the same method as described in "Nature 492, 234-238, 2012" (Reference 1).
  • the device used to calculate the amounts of Prompt emission and Delay emission is not limited to the apparatus described in Reference 1 or the apparatus shown in FIG.
  • a sample prepared by the following method is used for measuring the delayed fluorescence of the second compound.
  • the second compound is dissolved in toluene to prepare a dilute solution with an absorbance of 0.05 or less at the excitation wavelength to remove the contribution of self-absorption.
  • the sample solution is frozen and degassed and then sealed in a cell with a lid under an argon atmosphere to obtain an oxygen-free sample solution saturated with argon.
  • the fluorescence spectrum of the sample solution is measured with a spectrofluorometer FP-8600 (manufactured by Nippon Kogaku Co., Ltd.), and the fluorescence spectrum of an ethanol solution of 9,10-diphenylanthracene is measured under the same conditions.
  • a spectrofluorometer FP-8600 manufactured by Nippon Kogaku Co., Ltd.
  • the fluorescence spectrum of an ethanol solution of 9,10-diphenylanthracene is measured under the same conditions.
  • the total fluorescence quantum yield is calculated by the equation (1) in 80 (1976) 969.
  • the amount of Prompt luminescence measurement target compound (second compound) (Immediate emission) and X P the amount of Delay emission (delayed luminescence) was X D, X D / X P
  • the value of is preferably 0.05 or more.
  • the measurement of the amount and ratio of Prompt emission and Delay emission of a compound other than the second compound in the present specification is the same as the measurement of the amount and ratio of Prompt emission and Delay emission of the second compound.
  • the third compound may be a thermally activated delayed fluorescence compound or a compound that does not exhibit thermally activated delayed fluorescence, but is preferably a compound that does not exhibit thermally activated delayed fluorescence.
  • the third compound is a compound represented by the following general formula (3).
  • a 31 is represented by the following general formula (31a), general formula (31b), general formula (31c), general formula (31d), general formula (31e) or general formula (31f).
  • R 31 to R 38 are independent hydrogen atoms or substituents
  • R 401 to R 404 and R 409 to R 412 are independent hydrogen atoms or substituents, respectively.
  • R 31 to R 38 as substituents and R 401 to R 404 and R 409 to R 412 as substituents are independent of each other.
  • Halogen atom Substituent or unsubstituted ring-forming aryl groups having 6 to 30 carbon atoms, Substituted or unsubstituted ring-forming heterocyclic groups having 5 to 30 atoms, Substituent or unsubstituted alkyl groups having 1 to 30 carbon atoms, Substituent or unsubstituted alkyl halide groups having 1 to 30 carbon atoms, Substituent or unsubstituted alkenyl groups having 2 to 30 carbon atoms, Substituent or unsubstituted alkynyl groups having 2 to 30 carbon atoms, Substituentally substituted or unsubstituted alkylsilyl groups having 3 to 30 carbon atoms, Substituent or unsubstituted ring-forming arylsilyl group having 6 to 60 carbon atoms, Substituent or unsubstituted ring-forming aryl phosphoryl group having
  • R 310 to R 319 are independent hydrogen atoms or substituents, respectively.
  • R 320 to R 329 are independently hydrogen atoms or substituents, respectively.
  • R 330 to R 339 are independent hydrogen atoms or substituents, respectively.
  • R 340 to R 349 are independently hydrogen atoms or substituents, respectively.
  • R 350 to R 359 are independently hydrogen atoms or substituents, respectively.
  • R 360 to R 369 are independently hydrogen atoms or substituents, respectively.
  • R 310 to R 319 , R 320 to R 329 , R 330 to R 339 , R 340 to R 349 , R 350 to R 359 and R 360 to R 369 as substituents are independently represented by the above general formula (3). ), It is synonymous with R 31 to R 38 as substituents and R 401 to R 404 and R 409 to R 412 as substituents. * Independently represent the bonding position with the benzene ring having R 401 to R 404 in the general formula (3).
  • the third compound (compound represented by the general formula (3)) can be produced, for example, by the method described in Examples described later.
  • the third compound according to the present embodiment can be produced by following the reaction described in Examples described later and using a known alternative reaction or raw material suitable for the desired product.
  • the difference ⁇ ST (M2) between the singlet energy S1 (M2) of the second compound and the energy gap T 77K (M2) at 77 [K] of the second compound is calculated by the following mathematical formula (M2). It is preferable to satisfy any of the relationships of Equation 1A) to (Equation 1D).
  • ⁇ ST (M2) S 1 (M2) -T 77K (M2) ⁇ 0.3eV (number 1A)
  • ⁇ ST (M2) S 1 (M2) -T 77K (M2) ⁇ 0.2 eV (number 1B)
  • ⁇ ST (M2) S 1 (M2) -T 77K (M2) ⁇ 0.1 eV (Equation 1C)
  • ⁇ ST (M2) S 1 (M2) -T 77K (M2) ⁇ 0.01 eV (Equation 1D)
  • the difference ⁇ ST (M1) between the singlet energy S 1 (M1) of the first compound and the energy gap T 77K (M1) at 77 [K] of the first compound is calculated by the following mathematical formula (M1). It is preferable to satisfy the relationship of Equation 1E).
  • the difference ⁇ ST (M3) between the singlet energy S 1 (M3) of the third compound and the energy gap T 77K (M3) at 77 [K] of the third compound is the following mathematical formula (number). It is preferable to satisfy the relationship of 1F).
  • the energy gap T 77K (M3) at 77 [K] of the third compound is preferably 2.9 eV or more.
  • ⁇ TADF mechanism (mechanism)
  • M2 small ⁇ ST
  • the triplet level to the second compound of the second compound is subjected to heat energy given from the outside. Intersystem crossing to a singlet level is more likely to occur.
  • the energy state conversion mechanism in which the excited triplet state of the electrically excited excitons inside the organic EL element is spin-exchanged to the excited singlet state by the inverse intersystem crossing is called the TADF mechanism.
  • FIG. 4 is a diagram showing an example of the relationship between the energy levels of the first compound, the second compound, and the third compound in the light emitting layer 5.
  • S0 represents the ground state.
  • S1 (M1) represents the lowest excited singlet state of the first compound, and T1 (M1) represents the lowest excited triplet state of the first compound.
  • S1 (M2) represents the lowest excited singlet state of the second compound, and T1 (M2) represents the lowest excited triplet state of the second compound.
  • S1 (M3) represents the lowest excited singlet state of the third compound, and T1 (M3) represents the lowest excited triplet state of the third compound.
  • the energy gap at 77 [K] differs from the normally defined triplet energy.
  • the triplet energy measurement is performed as follows. First, a sample in which a solution in which a compound to be measured is dissolved in an appropriate solvent is sealed in a quartz glass tube is prepared. For this sample, the phosphorescence spectrum (vertical axis: phosphorescence emission intensity, horizontal axis: wavelength) was measured at a low temperature (77 [K]), and a tangent line was drawn with respect to the rising edge of the phosphorescence spectrum on the short wavelength side.
  • the triple term energy is calculated from a predetermined conversion formula based on the wavelength value at the intersection of the tangent line and the horizontal axis.
  • the thermally activated delayed fluorescence compound is preferably a compound having a small ⁇ ST.
  • ⁇ ST is small, intersystem crossing and inverse intersystem crossing are likely to occur even in a low temperature (77 [K]) state, and an excited singlet state and an excited triplet state coexist.
  • the spectrum measured in the same manner as described above contains light emission from both the excited singlet state and the excited triplet state, and it is difficult to distinguish from which state the light is emitted.
  • the triplet energy value is considered to be dominant.
  • the measurement method is the same as that of the normal triple term energy T, but in order to distinguish the difference in the strict sense, the value measured as follows is referred to as the energy gap T 77K. ..
  • the phosphorescence spectrum (vertical axis: phosphorescence emission intensity, horizontal axis: wavelength) is measured at a low temperature (77 [K]), and a tangent line is drawn with respect to the rising edge of the phosphorescence spectrum on the short wavelength side.
  • the amount of energy calculated from the following conversion formula (F1) is defined as the energy gap T 77K at 77 [K].
  • Conversion formula (F1): T 77K [eV] 1239.85 / ⁇ edge
  • the tangent to the rising edge of the phosphorescence spectrum on the short wavelength side is drawn as follows.
  • the tangents at each point on the curve toward the long wavelength side This tangent increases in slope as the curve rises (ie, as the vertical axis increases).
  • the tangent line drawn at the point where the value of the slope reaches the maximum value is the tangent line to the rising edge of the phosphorescence spectrum on the short wavelength side.
  • the maximum point having a peak intensity of 15% or less of the maximum peak intensity of the spectrum is not included in the maximum value on the shortest wavelength side described above, and the slope value closest to the maximum value on the shortest wavelength side is the maximum.
  • the tangent line drawn at the point where the value is taken is taken as the tangent line to the rising edge of the phosphorescent spectrum on the short wavelength side.
  • the F-4500 type spectrofluorometer main body manufactured by Hitachi High-Technology Co., Ltd. can be used for the measurement of phosphorescence.
  • the measuring device is not limited to this, and may be measured by combining a cooling device, a low temperature container, an excitation light source, and a light receiving device.
  • the tangent to the fall on the long wavelength side of the absorption spectrum is drawn as follows. When moving on the spectrum curve from the maximum value on the longest wavelength side to the long wavelength direction among the maximum values of the absorption spectrum, consider the tangents at each point on the curve. This tangent repeats that the slope decreases and then increases as the curve descends (ie, as the value on the vertical axis decreases).
  • the tangent line drawn at the point where the slope value takes the minimum value on the longest wavelength side (except when the absorbance is 0.1 or less) is defined as the tangent line to the fall of the long wavelength side of the absorption spectrum.
  • the maximum point having an absorbance value of 0.2 or less is not included in the maximum value on the longest wavelength side.
  • the organic EL element 1 of the present embodiment is made to emit light, it is preferable that the light emitting layer 5 mainly emits a fluorescent compound.
  • the organic EL element 1 of the present embodiment preferably emits red light or green light.
  • the main peak wavelength of the light emitted from the organic EL element 1 is preferably 500 nm or more and 560 nm or less.
  • the main peak wavelength of the light emitted from the organic EL element 1 is preferably 600 nm or more and 660 nm or less.
  • the main peak wavelength of the light emitted from the organic EL element 1 is preferably 430 nm or more and 480 nm or less.
  • the main peak wavelength of the light emitted from the organic EL element 1 is measured as follows.
  • the spectral radiance spectrum when a voltage is applied to the organic EL element 1 so that the current density is 10 mA / cm 2 is measured with a spectral radiance meter CS-2000 (manufactured by Konica Minolta).
  • the peak wavelength of the emission spectrum having the maximum emission intensity is measured, and this is defined as the main peak wavelength (unit: nm).
  • the film thickness of the light emitting layer 5 in the organic EL element 1 of the present embodiment is preferably 5 nm or more and 50 nm or less, more preferably 7 nm or more and 50 nm or less, and most preferably 10 nm or more and 50 nm or less.
  • it is 5 nm or more, it is easy to form a light emitting layer and adjust the chromaticity, and when it is 50 nm or less, an increase in the driving voltage is likely to be suppressed.
  • the content of the first compound in the light emitting layer 5 is preferably 0.01% by mass or more and 10% by mass or less, and 0. It is more preferably 01% by mass or more and 5% by mass or less, and further preferably 0.01% by mass or more and 1% by mass or less.
  • the content of the second compound is preferably 10% by mass or more and 80% by mass or less, more preferably 10% by mass or more and 60% by mass or less, and further preferably 20% by mass or more and 60% by mass or less. preferable.
  • the content of the third compound is preferably 10% by mass or more and 80% by mass or less.
  • the upper limit of the total content of the first compound, the second compound, and the third compound in the light emitting layer 5 is 100% by mass.
  • the present embodiment does not exclude that the light emitting layer 5 contains a material other than the first compound, the second compound, and the third compound.
  • the light emitting layer 5 may contain only one type of the first compound, or may contain two or more types.
  • the light emitting layer 5 may contain only one type of the second compound, or may contain two or more types.
  • the light emitting layer 5 may contain only one type of the third compound, or may contain two or more types.
  • a high-performance organic EL element 1 is realized.
  • the organic EL element 1 according to the first embodiment can be used for an electronic device such as a display device and a light emitting device.
  • the substrate is used as a support for an organic EL element.
  • the substrate for example, glass, quartz, plastic, or the like can be used.
  • a flexible substrate is a foldable (flexible) substrate, and examples thereof include a plastic substrate.
  • the material for forming the plastic substrate include polycarbonate, polyarylate, polyether sulfone, polypropylene, polyester, polyvinyl fluoride, polyvinyl chloride, polyimide, polyethylene naphthalate and the like.
  • Inorganic vapor deposition film can also be used.
  • anode For the anode formed on the substrate, it is preferable to use a metal having a large work function (specifically, 4.0 eV or more), an alloy, an electrically conductive compound, a mixture thereof, or the like.
  • a metal having a large work function specifically, 4.0 eV or more
  • an alloy an electrically conductive compound, a mixture thereof, or the like.
  • ITO Indium Tin Oxide
  • indium tin oxide containing silicon or silicon oxide indium oxide-zinc oxide, tungsten oxide, and indium oxide containing zinc oxide.
  • Graphene Graphene and the like.
  • gold Au
  • platinum Pt
  • nickel Ni
  • tungsten W
  • Cr chromium
  • Mo molybdenum
  • iron Fe
  • Co cobalt
  • Cu copper
  • palladium Pd
  • titanium Ti
  • nitrides of metallic materials for example, titanium nitride
  • indium oxide-zinc oxide can be formed by a sputtering method by using a target in which 1% by mass or more and 10% by mass or less of zinc oxide is added to indium oxide.
  • indium oxide containing tungsten oxide and zinc oxide contained 0.5% by mass or more and 5% by mass or less of tungsten oxide and 0.1% by mass or more and 1% by mass or less of zinc oxide with respect to indium oxide.
  • a target it can be formed by a sputtering method.
  • it may be produced by a vacuum deposition method, a coating method, an inkjet method, a spin coating method or the like.
  • the hole injection layer formed in contact with the anode is formed by using a composite material that facilitates hole injection regardless of the work function of the electrode.
  • Possible electrode materials eg, metals, alloys, electrically conductive compounds, and mixtures thereof, and other elements belonging to Group 1 or Group 2 of the Periodic Table of the Elements.
  • Elements belonging to Group 1 or Group 2 of the Periodic Table of the Elements which are materials with a small work function, that is, alkali metals such as lithium (Li) and cesium (Cs), magnesium (Mg), calcium (Ca) and strontium ( Alkaline earth metals such as Sr), rare earth metals such as alloys containing them (for example, MgAg, AlLi), europium (Eu) and ytterbium (Yb), and alloys containing these can also be used.
  • alkali metals such as lithium (Li) and cesium (Cs)
  • magnesium (Mg) magnesium
  • Ca calcium
  • Alkaline earth metals such as Sr
  • rare earth metals such as alloys containing them (for example, MgAg, AlLi), europium (Eu) and ytterbium (Yb), and alloys containing these can also be used.
  • a vacuum vapor deposition method or a sputtering method can be
  • cathode As the cathode, it is preferable to use a metal having a small work function (specifically, 3.8 eV or less), an alloy, an electrically conductive compound, a mixture thereof, or the like.
  • a cathode material include elements belonging to Group 1 or Group 2 of the Periodic Table of the Elements, that is, alkali metals such as lithium (Li) and cesium (Cs), magnesium (Mg), and calcium (Ca). And alkaline earth metals such as strontium (Sr), and rare earth metals such as alloys containing them (for example, MgAg, AlLi), europium (Eu) and ytterbium (Yb), and alloys containing these.
  • a vacuum vapor deposition method or a sputtering method can be used.
  • a silver paste or the like is used, a coating method, an inkjet method, or the like can be used.
  • a cathode is formed by using various conductive materials such as indium tin oxide containing Al, Ag, ITO, graphene, silicon or silicon oxide, regardless of the size of the work function. can do.
  • These conductive materials can be formed into a film by using a sputtering method, an inkjet method, a spin coating method, or the like.
  • the hole injection layer is a layer containing a substance having a high hole injection property.
  • Substances with high hole injection properties include molybdenum oxide, titanium oxide, vanadium oxide, renium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide, silver oxide, etc. Tungsten oxide, manganese oxide and the like can be used.
  • a low molecular weight organic compound 4,4', 4''-tris (N, N-diphenylamino) triphenylamine (abbreviation: TDATA)
  • 4,4' , 4''-Tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine (abbreviation: MTDATA)
  • 4,4'-bis [N- (4-diphenylaminophenyl) -N-phenyl Amino] biphenyl abbreviation: DPAB
  • 4,4'-bis (N- ⁇ 4- [N'-(3-methylphenyl) -N'-phenylamino] phenyl ⁇ -N-phenylamino) biphenyl (abbreviation: abbreviation: DNTPD), 1,3,5-tris [N- (4-diphenylaminophenyl) -N-phenylamino] benzene (abbreviation: TDATA)
  • a polymer compound (oligomer, dendrimer, polymer, etc.) can also be used.
  • a polymer compound oligomer, dendrimer, polymer, etc.
  • PVK poly (N-vinylcarbazole)
  • PVTPA poly (4-vinyltriphenylamine)
  • PVTPA poly [N- (4- ⁇ N'- [4- (4-diphenylamino)
  • PEDOT / PSS polyaniline / poly (styrene sulfonic acid)
  • the hole transport layer is a layer containing a substance having a high hole transport property.
  • An aromatic amine compound, a carbazole derivative, an anthracene derivative, or the like can be used for the hole transport layer.
  • NPB 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • TPD 1,1'-biphenyl] -4,4'-diamine
  • BAFLP 4-phenyl-4'-(9-phenylfluoren-9-yl) triphenylamine
  • CBP 9- [4- (N-carbazolyl)] phenyl-10-phenylanthracene (CzPA), 9-phenyl-3- [4- (10-phenyl-9-anthril) phenyl]
  • Carbazole derivatives such as -9H-carbazole (PCzPA) and anthracene derivatives such as t-BuDNA, DNA and DPAnth may be used.
  • Polymer compounds such as poly (N-vinylcarbazole) (abbreviation: PVK) and poly (4-vinyltriphenylamine) (abbreviation: PVTPA) can also be used.
  • any substance other than these may be used as long as it is a substance having a higher hole transport property than electrons.
  • the layer containing the substance having a high hole transport property is not limited to a single layer, but may be a layer in which two or more layers made of the above substances are laminated.
  • a material having a larger energy gap closer to the light emitting layer When arranging two or more hole transport layers, it is preferable to arrange a material having a larger energy gap closer to the light emitting layer. Examples of such a material include HT-2 used in the examples described later.
  • the electron transport layer is a layer containing a substance having a high electron transport property.
  • the electron transport layer includes 1) metal complexes such as aluminum complexes, beryllium complexes and zinc complexes, 2) complex aromatic compounds such as imidazole derivatives, benzimidazole derivatives, azine derivatives, carbazole derivatives and phenanthroline derivatives, and 3) polymer compounds. Can be used.
  • Alq tris (4-methyl-8-quinolinolato) aluminum (abbreviation: Almq 3 ), bis (10-hydroxybenzo [h] quinolinato) beryllium (abbreviation: BeBq 2 ), Metal complexes such as BAlq, Znq, ZnPBO, and ZnBTZ can be used.
  • a benzimidazole compound can be preferably used.
  • the substances described here are mainly substances having electron mobility of 10-6 cm 2 / (V ⁇ s) or more.
  • a substance other than the above may be used as the electron transport layer as long as it is a substance having higher electron transport property than hole transport property.
  • the electron transport layer may be composed of a single layer, or may be composed of two or more layers made of the above substances.
  • a polymer compound can be used for the electron transport layer.
  • PF-Py poly [(9,9-dihexylfluorene-2,7-diyl) -co- (pyridine-3,5-diyl)]
  • PF-BPy poly [(9,9-dioctylfluorene-2) , 7-diyl) -co- (2,2'-bipyridine-6,6'-diyl)]
  • PF-BPy poly [(9,9-dioctylfluorene-2) , 7-diyl) -co- (2,2'-bipyridine-6,6'-diyl)]
  • the electron injection layer is a layer containing a substance having a high electron injection property.
  • the electron injection layer includes lithium (Li), cesium (Cs), calcium (Ca), lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF 2 ), lithium oxide (LiOx), etc.
  • Alkaline metals such as, alkaline earth metals, or compounds thereof can be used.
  • a substance having an electron transporting property containing an alkali metal, an alkaline earth metal, or a compound thereof, specifically, a substance containing magnesium (Mg) in Alq or the like may be used. In this case, electron injection from the cathode can be performed more efficiently.
  • a composite material obtained by mixing an organic compound and an electron donor (donor) may be used for the electron injection layer.
  • a composite material is excellent in electron injection property and electron transport property because electrons are generated in the organic compound by the electron donor.
  • the organic compound is preferably a material excellent in transporting generated electrons, and specifically, for example, a substance (metal complex, complex aromatic compound, etc.) constituting the above-mentioned electron transport layer is used. be able to.
  • the electron donor may be any substance that exhibits electron donating property to the organic compound. Specifically, alkali metals, alkaline earth metals and rare earth metals are preferable, and lithium, cesium, magnesium, calcium, erbium, ytterbium and the like can be mentioned.
  • alkali metal oxides and alkaline earth metal oxides are preferable, and lithium oxides, calcium oxides, barium oxides and the like can be mentioned.
  • a Lewis base such as magnesium oxide can also be used.
  • an organic compound such as tetrathiafulvalene (abbreviation: TTF) can also be used.
  • the method for forming each layer of the organic EL device of the present embodiment is not limited except as specifically mentioned above, but is limited to dry film deposition methods such as vacuum deposition method, sputtering method, plasma method, ion plating method, and spin coating.
  • dry film deposition methods such as vacuum deposition method, sputtering method, plasma method, ion plating method, and spin coating.
  • Known methods such as a coating method, a dipping method, a flow coating method, and a wet film forming method such as an inkjet method can be adopted.
  • each organic layer of the organic EL element of the present embodiment is not limited except as specifically mentioned above, but in general, if the film thickness is too thin, defects such as pinholes are likely to occur, and conversely, if it is too thick, it is high. Since an applied voltage is required and efficiency is deteriorated, a range of several nm to 1 ⁇ m is usually preferable.
  • the electronic device is equipped with the organic EL element of the above-described embodiment.
  • the electronic device include a display device and a light emitting device.
  • the display device include display components (for example, organic EL panel modules, etc.), televisions, mobile phones, tablets, personal computers, and the like.
  • the light emitting device include lighting and vehicle lamps.
  • the light emitting layer is not limited to one layer, and a plurality of light emitting layers may be laminated.
  • the organic EL element has a plurality of light emitting layers, it is sufficient that at least one light emitting layer satisfies the conditions described in the above embodiment.
  • the other light emitting layer may be a fluorescence light emitting layer or a phosphorescent light emitting layer utilizing light emission by electron transition from the triplet excited state to the direct ground state.
  • these light emitting layers may be provided adjacent to each other, or a so-called tandem type organic in which a plurality of light emitting units are laminated via an intermediate layer. It may be an EL element.
  • a barrier layer adjacent to at least one of the anode side and the cathode side of the light emitting layer.
  • the barrier layer is preferably located in contact with the light emitting layer to block at least one of holes, electrons, and excitons.
  • an electron barrier layer is provided adjacent to the light emitting layer as the first layer on the anode side of the light emitting layer. Since the first layer contains the compound represented by the general formula (A), it is considered that when the first layer is an electron barrier layer, the ionization potential Ip becomes deeper (absolute value becomes large). As a result, electrons can be blocked efficiently.
  • a hole barrier layer is provided adjacent to the light emitting layer as a second layer on the cathode side of the light emitting layer. Since the second layer contains the compound represented by the general formula (B), it is considered that when the second layer is a hole barrier layer, the electron affinity level Af becomes shallower (the absolute value becomes smaller). As a result, holes can be blocked efficiently.
  • the light emitting layer and the electron barrier layer are preferably bonded. It is preferable that the light emitting layer and the hole barrier layer are joined.
  • the numerical range represented by using “-” means a range including a numerical value before “-” as a lower limit value and a numerical value after "-" as an upper limit value. To do.
  • Rx and Ry when Rx and Ry are bonded to each other to form a ring, for example, Rx and Ry include a carbon atom, a nitrogen atom, an oxygen atom, a sulfur atom, a phosphorus atom or a silicon atom, and an atom contained in Rx.
  • Rx and Ry include a carbon atom, a nitrogen atom, an oxygen atom, a sulfur atom, a phosphorus atom or a silicon atom, and an atom contained in Rx.
  • Ry carbon atom, nitrogen atom, oxygen atom, sulfur atom, phosphorus atom or silicon atom
  • Double bond, triple bond, or bond via a divalent linking group to form a ring having 5 or more ring-forming atoms (specifically, for example, a heterocycle or an aromatic hydrocarbon ring).
  • Means. x is a number, a letter, or a combination of a number and a letter.
  • y is a number, a letter, or a combination of a number and a letter.
  • the divalent linking group e.g., -O -, - CO -, - CO 2 -, - S -, - SO -, - SO 2 -, - NH -, - NRa-, and their Examples thereof include a group in which two or more linking groups of the above are combined.
  • the heterocycle unless otherwise specified, the ring structure (heteroaryl group Sub 2) exemplified in "Explanation of each substituent in the general formula" described later (excluding the bond) ( Heterocycle). These heterocycles may have substituents.
  • aromatic hydrocarbon ring obtained by removing the bond from the "aryl group Sub 1 " exemplified in "Explanation of each substituent in the general formula” described later.
  • the structure (aromatic hydrocarbon ring) can be mentioned.
  • These aromatic hydrocarbon rings may have a substituent.
  • Ra include the substituted or unsubstituted alkyl group Sub 3 having 1 to 30 carbon atoms exemplified in the "Explanation of each substituent in the general formula” described later, and the substituted or unsubstituted ring-forming carbon number 6 to 3.
  • Examples thereof include an aryl group Sub 1 of 30 and a heteroaryl group Sub 2 having 5 to 30 substituted or unsubstituted ring-forming atoms.
  • E1 the molecular structure represented by the following general formula (E1)
  • E2 the atom contained in Rx 1 and the atom contained in Ry 1
  • E2 Forming a ring (ring structure) E represented by E2)
  • F1 the molecular structure represented by the general formula (F1)
  • the atom contained in Rx 1 and the atom contained in Ry 1 are represented by the general formula (F1).
  • the two * in the general formula (E1) correspond to the two * in the general formula (E2), respectively, and the two * in the general formula (F1) correspond to the two * in the general formula (F2), respectively.
  • the two * in the general formula (G1) correspond to the two * in the general formula (G2), respectively
  • the two * in the general formula (H1) correspond to the two * in the general formula (H2).
  • the two * in the general formula (I1) correspond to the two * in the general formula (I2), respectively.
  • E to I each represent a ring structure (the ring having 5 or more ring-forming atoms).
  • * independently represents a bond position with another atom in one molecule.
  • the two * in the general formula (E2) correspond to the two * in the general formula (E1), respectively.
  • the two * in the general formulas (F2) to (I2) correspond to the two * in the general formulas (F1) to (I1), respectively.
  • the general formula (E1) when Rx 1 and Ry 1 are bonded to each other to form the ring E in the general formula (E2) and the ring E is an unsubstituted benzene ring, the general formula (E1) is used.
  • the molecular structure represented is the molecular structure represented by the following general formula (E3).
  • the two * in the general formula (E3) correspond independently to the two * in the general formula (E2) and the general formula (E1), respectively.
  • the general formula (E1) when Rx 1 and Ry 1 are combined with each other to form the ring E in the general formula (E2), and the ring E is an unsubstituted pyrrole ring, the general formula (E1) is used.
  • the molecular structure represented is the molecular structure represented by the following general formula (E4).
  • the two * in the general formula (E4) correspond independently to the two * in the general formula (E2) and the general formula (E1), respectively.
  • * independently represents a bond position with another atom in one molecule.
  • the ring-forming carbon number constitutes the ring itself of a compound having a structure in which atoms are cyclically bonded (for example, a monocyclic compound, a fused ring compound, a crosslinked compound, a carbocyclic compound, or a heterocyclic compound). Represents the number of carbon atoms in an atom. When the ring is substituted with a substituent, the carbon contained in the substituent is not included in the ring-forming carbon number.
  • the "ring-forming carbon number" described below shall be the same unless otherwise specified.
  • a benzene ring has a ring-forming carbon number of 6
  • a naphthalene ring has a ring-forming carbon number of 10
  • a pyridinyl group has a ring-forming carbon number of 5
  • a furanyl group has a ring-forming carbon number of 4.
  • an alkyl group is substituted as a substituent on the benzene ring or naphthalene ring, the number of carbon atoms of the alkyl group is not included in the number of ring-forming carbon atoms.
  • the number of carbon atoms of the fluorene ring as a substituent is not included in the number of ring-forming carbon atoms.
  • the number of ring-forming atoms is a compound having a structure in which atoms are cyclically bonded (for example, a monocycle, a fused ring, or a ring assembly) (for example, a monocyclic compound, a fused ring compound, a crosslinked compound, a carbocyclic compound, or a complex). It represents the number of atoms constituting the ring itself of the ring compound). Atoms that do not form a ring and atoms included in the substituent when the ring is substituted by a substituent are not included in the number of ring-forming atoms.
  • the "number of ring-forming atoms" described below shall be the same unless otherwise specified.
  • the pyridine ring has 6 ring-forming atoms
  • the quinazoline ring has 10 ring-forming atoms
  • the furan ring has 5 ring-forming atoms.
  • Hydrogen atoms bonded to carbon atoms of the pyridine ring and quinazoline ring and atoms constituting substituents are not included in the number of ring-forming atoms.
  • a fluorene ring is bonded to the fluorene ring as a substituent (including a spirofluorene ring)
  • the number of atoms of the fluorene ring as a substituent is not included in the number of ring-forming atoms.
  • the aryl group (sometimes referred to as an aromatic hydrocarbon group) in the present specification is, for example, an example. It is an aryl group Sub 1 , and the aryl group Sub 1 is a phenyl group, a biphenyl group, a turphenyl group, a naphthyl group, an anthryl group, a phenanthryl group, a fluorenyl group, a pyrenyl group, a chrysenyl group, a fluoranthenyl group, a benzo [a].
  • the ring-forming carbon number is preferably 6 to 30, more preferably 6 to 20, further preferably 6 to 14, and 6 to 12. It is even more preferable to have.
  • aryl groups Sub 1 phenyl group, biphenyl group, naphthyl group, phenanthryl group, terphenyl group, and fluorenyl group are preferable.
  • the carbon atom at the 9-position is substituted with the substituted or unsubstituted alkyl group Sub 3 described later in the present specification, or substituted or unsubstituted. It is preferable that the aryl group Sub 1 of the above is substituted.
  • the heteroaryl group (sometimes referred to as a heterocyclic group, a heteroaromatic ring group, or an aromatic heterocyclic group) in the present specification is, for example, the heterocyclic group Sub 2 .
  • the heterocyclic group Sub 2 is a group containing at least one atom selected from the group consisting of nitrogen, sulfur, oxygen, silicon, selenium atom, and germanium atom as a heteroatom.
  • the heterocyclic group Sub 2 is preferably a group containing at least one atom selected from the group consisting of nitrogen, sulfur, and oxygen as a heteroatom.
  • the heterocyclic group Sub 2 in the present specification is, for example, pyridyl group, pyrimidinyl group, pyrazinyl group, pyridadinyl group, triazinyl group, quinolyl group, isoquinolinyl group, naphthyldinyl group, phthalazinyl group, quinoxalinyl group, quinazolinyl group, phenanthridinyl.
  • the number of ring-forming atoms is preferably 5 to 30, more preferably 5 to 20, and even more preferably 5 to 14.
  • the above heterocyclic groups Sub 2 1-dibenzofuranyl group, 2-dibenzofuranyl group, 3-dibenzofuranyl group, 4-dibenzofuranyl group, 1-dibenzothienyl group, 2-dibenzothienyl group, 3- Even more preferred are dibenzothienyl groups, 4-dibenzothienyl groups, 1-carbazolyl groups, 2-carbazolyl groups, 3-carbazolyl groups, 4-carbazolyl groups, and 9-carbazolyl groups.
  • the nitrogen atom at the 9-position is substituted or unsubstituted aryl group Sub 1 in the present specification, or a substituted or unsubstituted heterocycle. It is preferable that the ring group Sub 2 is substituted.
  • heterocyclic group Sub 2 may be, for example, a group derived from a partial structure represented by the following general formulas (XY-1) to (XY-18).
  • heterocyclic group Sub 2 may be, for example, a group represented by the following general formulas (XY-19) to (XY-22).
  • the position of the joint can be changed as appropriate.
  • the alkyl group in the present specification may be either a straight chain alkyl group, a branched chain alkyl group or a cyclic alkyl group.
  • the alkyl group in the present specification is, for example, the alkyl group Sub 3 .
  • the linear alkyl group in the present specification is, for example, the linear alkyl group Sub 31 .
  • the alkyl group of the branched chain in the present specification is, for example, the alkyl group Sub 32 of the branched chain.
  • the cyclic alkyl group in the present specification is, for example, the cyclic alkyl group Sub 33 .
  • the alkyl group Sub 3 is, for example, at least one group selected from the group consisting of a linear alkyl group Sub 31 , a branched chain alkyl group Sub 32 , and a cyclic alkyl group Sub 33 .
  • the linear alkyl group Sub 31 or the branched alkyl group Sub 32 is, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group, a t-butyl group.
  • N-Pentyl group N-Pentyl group, n-Hexyl group, n-Heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group , N-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, neopentyl group, amyl group, isoamyl group, 1-methylpentyl group, 2-methylpentyl group, 1-pentylhexyl group, 1- At least one group selected from the group consisting of a butylpentyl group, a 1-heptyloctyl group, and a 3-methylpentyl group.
  • the linear alkyl group Sub 31 or the branched chain alkyl group Sub 32 in the present specification preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and preferably 1 to 10 carbon atoms. More preferably, it is even more preferably 1 to 6.
  • the linear alkyl group Sub 31 or the branched alkyl group Sub 32 includes a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group, a t-butyl group, and n.
  • -Pentyl groups, n-hexyl groups, amyl groups, isoamyl groups, and neopentyl groups are even more preferred.
  • the cyclic alkyl group Sub 33 in the present specification is, for example, a cycloalkyl group Sub 331 .
  • the cycloalkyl group Sub 331 in the present specification is, for example, at least one group selected from the group consisting of a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a 4-methylcyclohexyl group, an adamantyl group, and a norbornyl group.
  • the ring-forming carbon number of the cycloalkyl group Sub 331 is preferably 3 to 30, more preferably 3 to 20, further preferably 3 to 10, and even more preferably 5 to 8. preferable.
  • cycloalkyl groups Sub 331 cyclopentyl groups and cyclohexyl groups are even more preferable.
  • the alkyl halide group in the present specification is, for example, the alkyl halide group Sub 4
  • the alkyl halide group Sub 4 is, for example, the alkyl group Sub 3 substituted with one or more halogen atoms, preferably a fluorine atom. It is an alkyl group.
  • the alkyl halide group Sub 4 in the present specification is, for example, a group consisting of a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a fluoroethyl group, a trifluoromethylmethyl group, a trifluoroethyl group, and a pentafluoroethyl group. At least one of the groups selected from.
  • the substituted silyl group in the present specification is, for example, the substituted silyl group Sub 5
  • the substituted silyl group Sub 5 is at least one selected from the group consisting of, for example, the alkylsilyl group Sub 51 and the arylsilyl group Sub 52 . Is the basis.
  • the alkylsilyl group Sub 51 in the present specification is, for example, the trialkylsilyl group Sub 511 having the above-mentioned alkyl group Sub 3 .
  • the trialkylsilyl group Sub 511 is, for example, a trimethylsilyl group, a triethylsilyl group, a tri-n-butylsilyl group, a tri-n-octylsilyl group, a triisobutylsilyl group, a dimethylethylsilyl group, a dimethylisopropylsilyl group, a dimethyl-n.
  • the three alkyl groups Sub 3 in the trialkylsilyl group Sub 511 may be the same or different from each other.
  • the arylsilyl group Sub 52 in the present specification is, for example, at least one group selected from the group consisting of the dialkylarylsilyl group Sub 521 , the alkyldiarylsilyl group Sub 522 , and the triarylsilyl group Sub 523 .
  • the dialkylarylsilyl group Sub 521 is, for example, a dialkylarylsilyl group having two alkyl groups Sub 3 and one aryl group Sub 1 .
  • the dialkylarylsilyl group Sub 521 preferably has 8 to 30 carbon atoms.
  • the alkyldiarylsilyl group Sub 522 is, for example, an alkyldiarylsilyl group having one alkyl group Sub 3 and two aryl group Sub 1 .
  • the alkyldiarylsilyl group Sub 522 preferably has 13 to 30 carbon atoms.
  • the triarylsilyl group Sub 523 is, for example, a triarylsilyl group having three of the above aryl groups Sub 1 .
  • the number of carbon atoms of the triarylsilyl group Sub 523 is preferably 18 to 30.
  • R w in -SO 2 R w represents the alkyl group Sub 3 substituted or unsubstituted.
  • the aralkyl group (sometimes referred to as an arylalkyl group) in the present specification is, for example, the aralkyl group Sub 7 .
  • the aryl group in the aralkyl group Sub 7 includes, for example, at least one of the aryl group Sub 1 and the heteroaryl group Sub 2 .
  • Aralkyl group Sub 7 herein is preferably a group having an aryl group Sub 1, it is expressed as -Z 3 -Z 4.
  • the Z 3 is, for example, an alkylene group corresponding to the above alkyl group Sub 3 .
  • the Z 4 is, for example, the aryl group Sub 1 .
  • the aryl moiety of the aralkyl group Sub 7 has 6 to 30 carbon atoms (preferably 6 to 20, more preferably 6 to 12) in the aryl moiety and 1 to 30 carbon atoms (preferably 1 to 20, more preferably 1 to 12) in the alkyl moiety. 10, more preferably 1 to 6).
  • the aralkyl group Sub 7 includes, for example, a benzyl group, a 2-phenylpropane-2-yl group, a 1-phenylethyl group, a 2-phenylethyl group, a 1-phenylisopropyl group, a 2-phenylisopropyl group, and a phenyl-t-.
  • the alkoxy group in the present specification is, for example, the alkoxy group Sub 8 , and the alkoxy group Sub 8 is represented as ⁇ OZ 1 .
  • This Z 1 is, for example, the above-mentioned alkyl group Sub 3 .
  • the alkoxy group Sub 8 is, for example, at least one group selected from the group consisting of a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentyloxy group, and a hexyloxy group.
  • the alkoxy group Sub 8 preferably has 1 to 30 carbon atoms, and more preferably 1 to 20 carbon atoms.
  • the halogenated alkoxy group in the present specification is, for example, a halogenated alkoxy group Sub 9 , and in the halogenated alkoxy group Sub 9 , for example, the above-mentioned alkoxy group Sub 8 is replaced with one or more halogen atoms, preferably a fluorine atom. It is an alkoxy group.
  • the aryloxy group (sometimes referred to as an arylalkoxy group) in the present specification is, for example, the arylalkoxy group Sub 10 .
  • the aryl group in the arylalkoxy group Sub 10 includes at least one of the aryl group Sub 1 and the heteroaryl group Sub 2 .
  • the arylalkoxy group Sub 10 in the present specification is represented by -OZ 2 .
  • the Z 2 is, for example, an aryl group Sub 1 or a heteroaryl group Sub 2 .
  • the ring-forming carbon number of the arylalkoxy group Sub 10 is preferably 6 to 30, and more preferably 6 to 20. Examples of the arylalkoxy group Sub 10 include a phenoxy group.
  • the substituted amino group in the present specification is, for example, the substituted amino group Sub 11
  • the substituted amino group Sub 11 is at least one selected from the group consisting of, for example, the arylamino group Sub 111 and the alkylamino group Sub 112 .
  • It is a group.
  • the arylamino group Sub 111 is represented as -NHR V1 or -N (R V1 ) 2 .
  • This R V1 is, for example, the aryl group Sub 1 . -N (R V1) 2 two R V1 in 2, the same or different.
  • the alkylamino group Sub 112 is represented as -NHR V2 , or -N (R V2 ) 2 .
  • This R V2 is, for example, an alkyl group Sub 3 . -N (R V2) of two of the 2 R V2 are the same or different.
  • the alkenyl group herein is, for example, the alkenyl group Sub 12
  • the alkenyl group Sub 12 is either a linear or branched chain, eg, a vinyl group, a propenyl group, a butenyl group, an oleyl group, an eikosa.
  • the alkynyl group in the present specification is, for example, an alkynyl group Sub 13
  • the alkynyl group Sub 13 may be either a straight chain or a branched chain, for example, a group consisting of ethynyl, propynyl, and 2-phenylethynyl. At least one of the groups selected from.
  • the alkylthio group in the present specification is, for example, the alkylthio group Sub 14 .
  • the alkylthio group Sub 14 is represented as -SR V3 .
  • This R V3 is, for example, an alkyl group Sub 3 .
  • the number of carbon atoms of the alkylthio group Sub 14 is preferably 1 to 30, and more preferably 1 to 20.
  • the arylthio group in the present specification is, for example, the arylthio group Sub 15 .
  • the arylthio group Sub 15 is represented as -SR V4 .
  • This R V4 is, for example, the aryl group Sub 1 .
  • the ring-forming carbon number of the arylthio group Sub 15 is preferably 6 to 30, and more preferably 6 to 20.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like, and a fluorine atom is preferable.
  • the substituted phosphino group in the present specification is, for example, the substituted phosphino group Sub 16
  • the substituted phosphino group Sub 16 is, for example, a phenylphosphanyl group.
  • the arylcarbonyl group in the present specification is, for example, the arylcarbonyl group Sub 17 , and the arylcarbonyl group Sub 17 is represented as -COY'. This Y'is, for example, the aryl group Sub 1 .
  • the arylcarbonyl group Sub 17 in the present specification is, for example, at least one group selected from the group consisting of a phenylcarbonyl group, a diphenylcarbonyl group, a naphthylcarbonyl group, and a triphenylcarbonyl group.
  • the acyl group in the present specification is, for example, the acyl group Sub 18 , and the acyl group Sub 18 is represented as -COR'. This R'is, for example, the alkyl group Sub 3 .
  • the acyl group Sub 18 in the present specification is, for example, at least one group selected from the group consisting of an acetyl group and a propionyl group.
  • the substituted phosphoryl group in the present specification is, for example, a substituted phosphoryl group Sub 19 such as an aryl phosphoryl group and an alkyl phosphoryl group, and the substituted phosphoryl group Sub 19 is represented by the following general formula (P).
  • Ar P1 and Ar P2 are any substituent selected from the group consisting of the alkyl group Sub 3 and the aryl group Sub 1 .
  • the ester group in the present specification is, for example, the ester group Sub 20
  • the ester group Sub 20 is, for example, at least one group selected from the group consisting of an alkyl ester group and an aryl ester group.
  • RE is, for example, the above-mentioned alkyl group Sub 3 substituted or unsubstituted.
  • R Ar is, for example, the above-mentioned aryl group Sub 1 substituted or unsubstituted.
  • the siroxanyl group in the present specification is, for example, the siroxanyl group Sub 21 and the siroxanyl group Sub 21 is a silicon compound group via an ether bond.
  • the siroxanyl group Sub 21 is, for example, a trimethylsyloxanyl group.
  • the carbamoyl group herein is represented by -CONH 2 .
  • the substituted carbamoyl group herein is, for example, the carbamoyl group Sub 22 and the carbamoyl group Sub 22 is represented by -CONH-Ar C or -CONH- RC .
  • Ar C is selected from the group consisting of, for example, the substituted or unsubstituted aryl group Sub 1 (preferably having 6 to 10 ring-forming carbon atoms) and the heteroaryl group Sub 2 (preferably having 5 to 14 ring-forming atoms). Is at least one of the groups to be.
  • Ar C may be a group in which an aryl group Sub 1 and a heteroaryl group Sub 2 are bonded.
  • the RC is, for example, the substituted or unsubstituted alkyl group Sub 3 (preferably having 1 to 6 carbon atoms).
  • ring-forming carbon means a carbon atom constituting a saturated ring, an unsaturated ring, or an aromatic ring.
  • Ring-forming atom means a carbon atom and a hetero atom constituting a hetero ring (including a saturated ring, an unsaturated ring, and an aromatic ring).
  • the hydrogen atom includes isotopes having different numbers of neutrons, that is, hydrogen (Protium), deuterium (Deuterium), and tritium (Tritium).
  • the alkyl group Sub 3 refers to any one or more of the linear alkyl group Sub 31 , the branched alkyl group Sub 32 , and the cyclic alkyl group Sub 33 described in "Explanation of each substituent".
  • the substituted silyl group Sub 5 means any one or more groups of the alkylsilyl group Sub 51 and the arylsilyl group Sub 52 .
  • the substituted amino group Sub 11 means any one or more of the arylamino group Sub 111 and the alkylamino group Sub 112 .
  • the substituent in the case of "substituted or unsubstituted” is, for example, the substituent R F1 , and the substituent R F1 is an aryl group Sub 1 , a heteroaryl group Sub 2 , an alkyl group Sub 3 , and the like.
  • Alkyl halide Sub 4 substituted silyl group Sub 5 , alkylsulfonyl group Sub 6 , aralkyl group Sub 7 , alkoxy group Sub 8 , halogenated alkoxy group Sub 9 , arylalkoxy group Sub 10 , substituted amino group Sub 11 , alkenyl group.
  • substituents R F1 when the "substituted or unsubstituted” may be Jiariruhou containing group (Ar B1 Ar B2 B-).
  • Ar B1 and Ar B2 include the above-mentioned aryl group Sub 1 .
  • Ar B1 Ar B2 B- Ar B1 and Ar B2 in the same or different.
  • substituents R F1 substituent in "Description of the substituent” (e.g., aryl group Sub 1, heteroaryl Sub 2, alkyl group Sub 3, a halogenated alkyl group Sub 4, Substituted silyl group Sub 5 , alkylsulfonyl group Sub 6 , aralkyl group Sub 7 , alkoxy group Sub 8 , halogenated alkoxy group Sub 9 , arylalkoxy group Sub 10 , substituted amino group Sub 11 , alkenyl group Sub 12 , alkynyl group Sub 13 , Alkylthio group Sub 14 , arylthio group Sub 15 , substituted phosphino group Sub 16 , arylcarbonyl group Sub 17 , acyl group Sub 18 , substituted phosphoryl group Sub 19 , ester group Sub 20 , and siloxanyl group Sub 21 and carbamoyl group Sub 22 ). Specific examples of the above and groups similar to the preferred groups are mentioned.
  • Substituents R F1 in the case of "substituted or unsubstituted” are aryl group Sub 1 , heteroaryl group Sub 2 , alkyl group Sub 3 , halogenated alkyl group Sub 4 , substituted silyl group Sub 5 , alkylsulfonyl group Sub 6 , Aralkyl group Sub 7 , alkoxy group Sub 8 , halogenated alkoxy group Sub 9 , arylalkoxy group Sub 10 , substituted amino group Sub 11 , alkenyl group Sub 12 , alkynyl group Sub 13 , alkylthio group Sub 14 , arylthio group Sub 15 , Substituted phosphino group Sub 16 , arylcarbonyl group Sub 17 , acyl group Sub 18 , substituted phosphoryl group Sub 19 , ester group Sub 20 , siloxanyl group Sub 21 , carbamoyl group Sub 22 , unsubstituted amino group,
  • R F1 is a "unsubstituted" in the case of "substituted or unsubstituted” means that a hydrogen atom is bonded.
  • the "carbon number XX to YY" in the expression "ZZ group having a substituted or unsubstituted carbon number XX to YY” represents the carbon number when the ZZ group is unsubstituted and is substituted. and carbon number of the substituent R F1 where are is not included.
  • the number of atoms XX to YY in the expression "the number of atoms XX to YY of substituted or unsubstituted” represents the number of atoms when the ZZ group is unsubstituted and is substituted. atoms of the substituents R F1 in this case is not included.
  • the structure of the ring is a saturated ring, an unsaturated ring, an aromatic hydrocarbon ring, or a heterocycle.
  • examples of the aromatic hydrocarbon group in the linking group include a divalent or higher valent group obtained by removing one or more atoms from the monovalent aryl group Sub 1 described above.
  • examples of the heterocyclic group in the linking group include a divalent or higher valent group obtained by removing one or more atoms from the monovalent heteroaryl group Sub 2 described above.
  • Example 1 Manufacturing of bottom emission type organic EL elements
  • a glass substrate manufactured by Geomatec Co., Ltd.
  • an ITO transparent electrode anode having a thickness of 25 mm ⁇ 75 mm ⁇ 1.1 mm was ultrasonically cleaned in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 1 minute.
  • the film thickness of ITO was 130 nm.
  • the transparent electrode line after cleaning The glass substrate is mounted on the substrate holder of the vacuum vapor deposition apparatus, and first, the compound HT and the compound HA are combined so as to cover the transparent electrode on the surface on the side where the transparent electrode line is formed.
  • the concentration of compound HT in the hole injection layer was 97% by mass, and the concentration of compound HA was 3% by mass.
  • the compound HT was deposited on the hole injection layer to form a hole transport layer having a film thickness of 200 nm.
  • the compound EBL-1 was deposited on the hole transport layer to form an electron barrier layer as a first layer having a film thickness of 10 nm.
  • the first compound, the fluorescent compound RD-1, the second compound, the delayed fluorescent compound TADF-1, and the third compound, compound D are placed.
  • -1 was co-deposited to form a light emitting layer having a film thickness of 25 nm.
  • the concentration of compound RD-1 in the light emitting layer was 1% by mass, the concentration of compound TADF-1 was 25% by mass, and the concentration of compound D-1 was 74% by mass.
  • the compound HBL-1 was vapor-deposited on the light emitting layer to form a hole barrier layer as a second layer having a film thickness of 10 nm.
  • the compound ET was vapor-deposited on the hole barrier layer to form an electron transport layer having a film thickness of 30 nm.
  • lithium fluoride (LiF) was vapor-deposited on the electron transport layer to form an electron-injectable electrode (cathode) having a film thickness of 1 nm.
  • metallic aluminum (Al) was deposited on the electron-injectable electrode to form a metallic Al cathode having a film thickness of 80 nm.
  • the element configuration of the organic EL element of the first embodiment is shown as follows. ITO (130) / HT: HA (10,97%: 3%) / HT (200) / EBL-1 (10) / D-1: TADF-1: RD-1 (25,74%: 25%: 1%) / HBL-1 (10) / ET (30) / LiF (1) / Al (80)
  • the numbers in parentheses indicate the film thickness (unit: nm).
  • the percentage-displayed number (97%: 3%) indicates the ratio (mass%) of compound HT and compound HA in the hole injection layer, and the percentage-displayed number (74%: 25%:). 1%) indicates the ratio (% by mass) of the third compound, the second compound, and the first compound in the light emitting layer.
  • the same notation will be used.
  • Table 1 shows the configurations of the electron barrier layer, the light emitting layer, and the hole barrier layer of the organic EL device produced in Example 1.
  • the ionization potential Ip of compound EBL-1 was measured by the following method.
  • the ionization potential Ip was measured in the atmosphere using a photoelectron spectrometer (“AC-3” manufactured by RIKEN Keiki Co., Ltd.). Specifically, the material to be measured was irradiated with light, and the amount of electrons generated by charge separation at that time was measured.
  • Delayed fluorescence of compound TADF-1 was confirmed by measuring transient PL using the apparatus shown in FIG.
  • the compound TADF-1 was dissolved in toluene to prepare a dilute solution having an absorbance of 0.05 or less at the excitation wavelength in order to remove the contribution of self-absorption. Further, in order to prevent quenching by oxygen, the sample solution was frozen and degassed and then sealed in a cell with a lid under an argon atmosphere to obtain an oxygen-free sample solution saturated with argon.
  • the fluorescence spectrum of the sample solution was measured with a spectrofluorometer FP-8600 (manufactured by Nippon Kogaku Co., Ltd.), and the fluorescence spectrum of an ethanol solution of 9,10-diphenylanthracene was measured under the same conditions. Using the fluorescence area intensities of both spectra, Morris et al. J. Phys. Chem. The total fluorescence quantum yield was calculated by the equation (1) in 80 (1976) 969. Prompt emission (immediate emission) that is immediately observed from the excited state after being excited by pulsed light (light emitted from a pulse laser) having a wavelength absorbed by the compound TADF-1, and immediately after the excitation.
  • pulsed light light emitted from a pulse laser
  • Delayed fluorescence emission in this example means that the amount of Delay emission (delayed emission) is 5% or more of the amount of Prompt emission (immediate emission). Specifically, the amount of Prompt luminescence (immediate emission) and X P, the amount of Delay emission (delayed luminescence) is taken as X D, that the value of X D / X P is 0.05 or more means.
  • the amounts of Prompt emission and Delay emission and their ratios can be determined by the same method as described in "Nature 492, 234-238, 2012" (Reference 1).
  • the device used to calculate the amounts of Prompt emission and Delay emission is not limited to the apparatus described in Reference 1 or the apparatus shown in FIG. Regarding the compound TADF-1, it was confirmed that the amount of Delay emission (delayed emission) was 5% or more of the amount of Prompt emission (immediate emission). Specifically, the compound TADF-1, the value of X D / X P was 0.05 or more.
  • the main peak wavelength ⁇ of compound RD-1 was measured by the following method. A 5 ⁇ mol / L toluene solution of the compound to be measured was prepared, placed in a quartz cell, and the emission spectrum (vertical axis: emission intensity, horizontal axis: wavelength) of this sample was measured at room temperature (300 K). In this example, the emission spectrum was measured with a spectrophotometer (device name: F-7000) manufactured by Hitachi, Ltd. The emission spectrum measuring device is not limited to the device used here. In the emission spectrum, the peak wavelength of the emission spectrum having the maximum emission intensity was defined as the main peak wavelength ⁇ .
  • Example 2 Manufacturing of bottom emission type organic EL elements
  • the organic EL device of Example 2 was produced in the same manner as in Example 1 except that the compound RD-1 in the light emitting layer was changed to the following compound RD-2.
  • the element configuration of the organic EL element of the second embodiment is shown as follows. ITO (130) / HT: HA (10,97%: 3%) / HT (200) / EBL-1 (10) / D-1: TADF-1: RD-2 (25,74%: 25%: 1%) / HBL-1 (10) / ET (30) / LiF (1) / Al (80)
  • Example 3 Manufacturing of bottom emission type organic EL elements
  • the organic EL device of Example 3 was prepared in the same manner as in Example 1 except that the compound RD-1 in the light emitting layer was changed to the following compound RD-3.
  • the element configuration of the organic EL element of the third embodiment is shown as follows. ITO (130) / HT: HA (10,97%: 3%) / HT (200) / EBL-1 (10) / D-1: TADF-1: RD-3 (25,74%: 25%: 1%) / HBL-1 (10) / ET (30) / LiF (1) / Al (80)
  • the spectral radiance spectrum when a voltage was applied to the element so that the current density of the organic EL element was 10 mA / cm 2 was measured with a spectral radiance meter CS-2000 (manufactured by Konica Minolta Co., Ltd.). From the obtained spectral radiance spectrum, the main peak wavelength ⁇ p (unit: nm) and the emission half width FWHM (unit: nm) were determined.
  • CIE1931 chromaticity The CIE1931 chromaticity coordinates (x, y) when a voltage was applied to the element so that the current density was 10 mA / cm 2 were measured with a spectral radiance meter CS-1000 (manufactured by Konica Minolta). ⁇ Lifetime LT95 A voltage was applied to the obtained organic EL element so that the current density was 50 mA / cm 2, and the time (LT95 (unit: time)) until the brightness became 95% with respect to the initial brightness was measured.
  • Example 4 Manufacturing of top emission type organic EL elements
  • a layer (reflection layer) (thickness 100 nm) of APC (Ag-Pd-Cu) which is a silver alloy and a layer (thickness 10 nm) of indium zinc oxide (IZO) are formed.
  • a film was formed in this order by a sputtering method.
  • the conductive material layer was patterned by etching using a resist pattern as a mask to form an anode.
  • the substrate on which the lower electrode was formed was ultrasonically cleaned in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes.
  • the compounds HT and HA were co-deposited using a vacuum vapor deposition method to form a hole injection layer having a film thickness of 10 nm.
  • the concentration of compound HT in the hole injection layer was 97% by mass, and the concentration of HA was 3% by mass.
  • the compound HT was deposited on the hole injection layer to form a hole transport layer (HT) having a film thickness of 180 nm.
  • the compound EBL-1 was deposited on the hole transport layer to form an electron barrier layer as a first layer having a film thickness of 10 nm.
  • the first compound, the fluorescent compound RD-2, the second compound, the delayed fluorescent compound TADF-1, and the third compound, compound D are placed.
  • the compound HBL-1 was vapor-deposited on the light emitting layer to form a hole barrier layer as a second layer having a film thickness of 15 nm.
  • the compound ET was vapor-deposited on the hole barrier layer to form an electron transport layer having a film thickness of 45 nm.
  • lithium fluoride (LiF) was vapor-deposited on the electron transport layer to form an electron-injectable electrode (cathode) having a film thickness of 1 nm.
  • Mg and Ag were vapor-deposited on the electron-injectable electrode at a film thickness ratio of 15:85 to form a cathode having a film thickness of 15 nm made of a semi-transparent MgAg alloy.
  • Cap was formed on the cathode by a vacuum vapor deposition method to form a capping layer having a film thickness of 65 nm.
  • the element configuration of the organic EL element of the fourth embodiment is shown as follows.
  • APC 100) / IZO (10) / HT: HA (10,97%: 3%) / HT (180) / EBL-1 (10) / D-1: TADF-1: RD-2 (25,74) %: 25%: 1%) / HBL-1 (15) / ET (45) / LiF (1) / MgAg (15) / Cap (65)
  • Examples 5 to 8 [Manufacturing of top emission type organic EL elements]
  • Examples 5 to 5 are the same as in Example 4 except that the film thickness of the hole transport layer (HT) is changed as shown in Table 4 and the compound RD-2 in the light emitting layer is changed to the compound RD-3. 8 organic EL elements were produced.
  • HT hole transport layer
  • intermediate A2 (10 g, 46 mmol), carbazole (23 g, 138 mmol), potassium carbonate (19 g, 138 mmol) and DMF 450 mL were placed in a 1000 mL three-necked flask, and the mixture was stirred at 0 ° C. for 24 hours. 300 mL of saturated aqueous ammonium chloride solution was added to the reaction mixture, and the precipitated solid was purified by silica gel column chromatography to obtain 26 g of a yellow solid. It was identified as intermediate A3 by analysis of ASAP-MS (Atmospheric Pressure Solid Analysis Probe Mass Spectrometry) (yield 85%).
  • intermediate C2 (26.0 g, 80 mmol), 1,3-bis (2,6-diisopropylphenyl) imidazolium chloride (IPrHCl) (1.4 g, 3.2 mmol), Palladium acetate (II) (Pd (OAc) 2 ) (0.36 g, 1.6 mmol), potassium carbonate (22.0 g, 160 mmol) and 400 mL of N, N-dimethylacetamide (DMAc) were added and 7 at 130 ° C. After stirring for hours, it was cooled to room temperature (25 ° C.). The reaction solution was purified by silica gel column chromatography to obtain 21 g of a white solid. It was identified as intermediate D2 by GC-MS analysis (yield 91%).
  • the obtained pyromethane compound (2-2) was dissolved in 50 mL of 1,2-dichloroethane, 0.9 g of 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) was added, and the mixture was subjected to a nitrogen stream. After stirring at room temperature (25 ° C.) for 2 hours and confirming the formation of compound (2-3) by LC-MS analysis, 5.4 mL of diisopropylethylamine and 3.9 mL of boron trifluoride diethyl ether complex were subsequently added. In addition, the mixture was stirred at 80 ° C. for 1 hour.
  • DDQ 2,3-dichloro-5,6-dicyano-p-benzoquinone
  • the obtained powder was analyzed by LC-MS, and it was confirmed that the reddish purple powder was the compound RD-2, which is a pyrromethene metal complex.
  • Compound RD-2 MS (m / z) Molecular Weight; 817
  • Compound RD-2 was sublimated and purified at 270 ° C. under a pressure of 1 ⁇ 10 -3 Pa using an oil diffusion pump. The solid adhering to the glass tube wall was recovered and confirmed by LC-MS analysis to have a purity of 99%.
  • the obtained powder was analyzed by LC-MS, and it was confirmed that the reddish purple powder was the compound RD-3, which is a pyrromethene metal complex.
  • Compound RD-3 MS (m / z) 842 [M + H] + Compound RD-3 was sublimated and purified at 290 ° C. using an oil diffusion pump under a pressure of 1 ⁇ 10 -3 Pa. The solid adhering to the glass tube wall was recovered and confirmed by LC-MS analysis to have a purity of 99%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

発光層、陽極側で発光層に接する第一層、陰極側で発光層に接する第二層を有し、発光層は第一、第二及び第三化合物を含み、第一層は式(A)の化合物を含み、第二層は式(B)の化合物を含み、第一化合物は式(1)の蛍光発光性の化合物であり、第二化合物は式(2)の遅延蛍光性の化合物であり、第三化合物は式(3)の化合物であり、第一、第二及び第三化合物の一重項エネルギーS1がS1(M3)>S1(M2)>S1(M1)を満たす有機EL素子。式(A)中、Ra1~Ra5等は各々独立に置換基等、式(B)中、X1~X3は各々独立にN原子等、Ar1及びAr2は各々独立に式(1B)の基等、Aは式(1B)の基、式(1B)中、HArは式(2B)で表され、aは1~5、L1は連結基等、式(2B)中、X11~X18は各々独立にN原子等、Y1はO原子、S原子又はN原子等。

Description

有機エレクトロルミネッセンス素子及び電子機器
 本発明は、有機エレクトロルミネッセンス素子及び電子機器に関する。
 有機エレクトロルミネッセンス素子(以下、「有機EL素子」という場合がある。)に電圧を印加すると、陽極から正孔が発光層に注入され、また陰極から電子が発光層に注入される。そして、発光層において、注入された正孔と電子とが再結合し、励起子が形成される。このとき、電子スピンの統計則により、一重項励起子が25%の割合で生成し、及び三重項励起子が75%の割合で生成する。
 一重項励起子からの発光を用いる蛍光型の有機EL素子は、携帯電話及びテレビ等のフルカラーディスプレイへ応用されつつあるが、内部量子効率25%が限界といわれている。そのため、有機EL素子の性能を向上するための検討が行われている。
 また、一重項励起子に加えて三重項励起子を利用し、有機EL素子をさらに効率的に発光させることが期待されている。このような背景から、熱活性化遅延蛍光(以下、単に「遅延蛍光」という場合がある。)を利用した高効率の蛍光型の有機EL素子が提案され、研究がなされている。
 例えば、TADF(Thermally Activated Delayed Fluorescence、熱活性化遅延蛍光)機構(メカニズム)が研究されている。このTADFメカニズムは、一重項準位と三重項準位とのエネルギー差(ΔST)の小さな材料を用いた場合に、三重項励起子から一重項励起子への逆項間交差が熱的に生じる現象を利用するメカニズムである。熱活性化遅延蛍光については、例えば、『安達千波矢編、「有機半導体のデバイス物性」、講談社、2012年4月1日発行、261-268ページ』に記載されている。
 特許文献1、2には、正孔輸送層、TADF化合物を含む発光層及び電子輸送層を有する有機EL素子が開示されている。特許文献1、2に記載の正孔輸送層は、アミン系化合物を含んでいる。また、特許文献1、2に記載の電子輸送層は、アリール基を有するアジン環に、直接または連結基を介してヘテロアリール基が結合した化合物を含んでいる。
国際公開第2019/013063号 国際公開第2016/056559号
 TADFメカニズムを利用した有機EL素子において、更なる性能の向上が求められている。
 本発明の目的は、高性能な有機エレクトロルミネッセンス素子及び電子機器を提供することである。
 本発明の一態様によれば、
 陽極と、
 陰極と、
 前記陽極と前記陰極との間に含まれる発光層と、
 前記陽極と前記発光層との間に含まれ、前記発光層に隣接する第一の層と、
 前記陰極と前記発光層との間に含まれ、前記発光層に隣接する第二の層と、を有し、
 前記発光層は、第一の化合物と、第二の化合物と、第三の化合物と、を含み、
 前記第一の層は、下記一般式(A)で表される化合物を含み、
 前記第二の層は、下記一般式(B)で表される化合物を含み、
 前記第一の化合物は、蛍光発光性の化合物であり、下記一般式(1)で表され、
 前記第二の化合物は、遅延蛍光性の化合物であり、下記一般式(2)で表され、
 前記第三の化合物は、下記一般式(3)で表され、
 前記第一の化合物の一重項エネルギーS(M1)と、前記第二の化合物の一重項エネルギーS(M2)と、前記第三の化合物の一重項エネルギーS(M3)とが、下記数式(数1)の関係を満たす、
 有機エレクトロルミネッセンス素子が提供される。
 S(M3)>S(M2)>S(M1)…(数1)
Figure JPOXMLDOC01-appb-C000018
 前記一般式(A)において、
 Ra~Ra、Rb~Rb及びRc~Rcは、それぞれ独立に、水素原子もしくは置換基であり、置換基としてのRa~Ra、Rb~Rb及びRc~Rcは、それぞれ独立に、
  ハロゲン原子、
  シアノ基、
  置換もしくは無置換の環形成炭素数6~30のアリール基、または
  置換もしくは無置換の環形成原子数5~30のヘテロアリール基であり、
 Rcは、水素原子もしくは置換基であるか、またはRc及びRcの組が互いに結合して環を形成し、置換基としてのRcは、
  置換もしくは無置換の環形成炭素数6~12のアリール基であり、
 Rcは、水素原子もしくは置換基であるか、またはRc及びRcの組が互いに結合して環を形成し、Rc及びRcの組が互いに結合して環を形成する場合の環は、少なくとも5員環を含み、前記5員環は、炭素原子、酸素原子、硫黄原子、及び窒素原子の少なくともいずれかの原子を含み、ただし、Rc及びRcは同時に水素原子ではなく、
 置換基としてのRcは、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の環形成原子数5~30のヘテロアリール基、
  置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
  置換もしくは無置換の環形成炭素数6~30のアリールチオ基、または
  置換もしくは無置換のアミノ基である。
Figure JPOXMLDOC01-appb-C000019
 前記一般式(B)において、
 X~Xは、それぞれ独立に、窒素原子又はCRであり、ただし、X~Xのうち、少なくともいずれか1つは、窒素原子であり、
 Rは、水素原子又は置換基であり、
 置換基としてのRは、それぞれ独立に、
  ハロゲン原子、
  シアノ基、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の環形成原子数5~30のヘテロアリール基、
  置換もしくは無置換の炭素数1~30のアルキル基、
  置換もしくは無置換の炭素数2~30のアルケニル基、
  置換もしくは無置換の炭素数2~30のアルキニル基、
  置換もしくは無置換のシリル基、
  置換もしくは無置換の炭素数1~30のアルコキシ基、
  置換もしくは無置換の炭素数7~30のアラルキル基、または
  置換もしくは無置換の環形成炭素数6~30のアリールオキシ基であり、
 ArおよびArは、それぞれ独立に、
  下記一般式(1B)で表されるか、
  置換もしくは無置換の環形成炭素数6~30のアリール基、または、
  置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。
 Aは、下記一般式(1B)で表される。
Figure JPOXMLDOC01-appb-C000020
 前記一般式(1B)において、
 HArは、下記一般式(2B)で表され、
 aは、1、2、3、4、又は5であり、
 aが1のとき、Lは、単結合または二価の連結基であり、
 aが2、3、4、又は5のとき、Lは、三価以上六価以下の連結基であり、
 複数のHArは、互いに同一または異なり、
 前記連結基は、
  置換もしくは無置換の環形成炭素数6~30のアリール基から誘導される基、
  置換もしくは無置換の環形成原子数5~30のヘテロアリール基から誘導される基、
  置換もしくは無置換の環形成炭素数6~30のアリール基及び置換もしくは無置換の環形成原子数5~30のヘテロアリール基からなる群から選択された2つの基が互いに結合した基から誘導される基、または
  置換もしくは無置換の環形成炭素数6~30のアリール基及び置換もしくは無置換の環形成原子数5~30のヘテロアリール基からなる群から選択された3つの基が互いに結合した基から誘導される基であり、
 なお、互いに結合した基は、互いに同一または異なる。
Figure JPOXMLDOC01-appb-C000021
 前記一般式(2B)において、
 X11~X18は、それぞれ独立に、窒素原子、CR13、またはLに対して結合する炭素原子であり、
 複数のR13は互いに同一または異なり、
 Yは、酸素原子、硫黄原子、NR18、SiR1112、CR1415、Lに対して結合する窒素原子、R16及びLに対してそれぞれ結合するケイ素原子、またはR17及びLに対してそれぞれ結合する炭素原子であり、
 ただし、Lに対して結合するのは、X11からX18まで、R11からR12まで、及びR14からR15までにおける炭素原子、並びにYにおける窒素原子、ケイ素原子及び炭素原子のいずれか一つであり、
 R11及びR12は互いに同一または異なり、R14及びR15は互いに同一または異なり、
 R11~R18は、それぞれ独立に、水素原子もしくは置換基であるか、隣接するR13の組、R11及びR12の組、並びにR14及びR15の組のいずれか1つ以上の組が互いに結合して環を形成し、
 置換基としてのR11~R18は、それぞれ独立に、
  ハロゲン原子、
  シアノ基、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の環形成原子数5~30のヘテロアリール基、
  置換もしくは無置換の炭素数1~30のアルキル基、
  置換もしくは無置換の炭素数2~30のアルケニル基、
  置換もしくは無置換の炭素数2~30のアルキニル基、
  置換もしくは無置換のシリル基、
  置換もしくは無置換の炭素数1~30のアルコキシ基、
  置換もしくは無置換の炭素数7~30のアラルキル基、または
  置換もしくは無置換の環形成炭素数6~30のアリールオキシ基である。
Figure JPOXMLDOC01-appb-C000022
 前記一般式(1)において、
 Xは、窒素原子、又はYと結合する炭素原子であり、
 Yは、水素原子又は置換基であり、
 R21~R26は、それぞれ独立に、水素原子もしくは置換基であるか、又はR21及びR22の組、R22及びR23の組、R24及びR25の組、並びにR25及びR26の組のいずれか1つ以上の組が互いに結合して環を形成し、
 置換基としてのY、及びR21~R26は、それぞれ独立に、
  置換もしくは無置換の炭素数1~30のアルキル基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の炭素数1~30のアルコキシ基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルコキシ基、
  置換もしくは無置換の炭素数1~30のアルキルチオ基、
  置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
  置換もしくは無置換の環形成炭素数6~30のアリールチオ基、
  置換もしくは無置換の炭素数2~30のアルケニル基、
  置換もしくは無置換の炭素数7~30のアラルキル基、
  置換もしくは無置換の環形成原子数5~30のヘテロアリール基、
  ハロゲン原子、
  カルボキシ基、
  置換もしくは無置換のエステル基、
  置換もしくは無置換のカルバモイル基、
  置換もしくは無置換のアミノ基、
  ニトロ基、
  シアノ基、
  置換もしくは無置換のシリル基、及び
  置換もしくは無置換のシロキサニル基からなる群から選択され、
 Z21及びZ22は、それぞれ独立に、置換基であるか、又はZ21及びZ22が互いに結合して環を形成し、
 置換基としてのZ21及びZ22は、それぞれ独立に、
  ハロゲン原子、
  置換もしくは無置換の炭素数1~30のアルキル基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の炭素数1~30のアルコキシ基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルコキシ基、及び
  置換もしくは無置換の環形成炭素数6~30のアリールオキシ基からなる群から選択される。
Figure JPOXMLDOC01-appb-C000023
 前記一般式(2)において、Dは、下記一般式(2-1)で表される基であり、Dは、下記一般式(2-2)で表される基であり、複数のDは、互いに同一の基である。
Figure JPOXMLDOC01-appb-C000024
 前記一般式(2-1)において、Xは、酸素原子または硫黄原子であり、R131~R140は、それぞれ独立に、水素原子または置換基であり、
 置換基としてのR131~R140は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~14のアリール基、
  置換もしくは無置換の環形成原子数5~14の複素環基、
  置換もしくは無置換の炭素数1~6のアルキル基、
  置換もしくは無置換の炭素数3~6のアルキルシリル基、
  置換もしくは無置換の炭素数1~6のアルコキシ基、
  置換もしくは無置換の環形成炭素数6~14のアリールオキシ基、
  置換もしくは無置換の炭素数2~12のアルキルアミノ基、
  置換もしくは無置換の炭素数1~6のアルキルチオ基、または
  置換もしくは無置換の環形成炭素数6~14のアリールチオ基である。
 *は、前記一般式(2)中におけるベンゼン環との結合位置を表す。
Figure JPOXMLDOC01-appb-C000025
 前記一般式(2-2)において、R161~R168は、それぞれ独立に、水素原子または置換基であり、
 置換基としてのR161~R168は、それぞれ独立に、
  ハロゲン原子、
  置換もしくは無置換の環形成炭素数6~14のアリール基、
  置換もしくは無置換の環形成原子数5~14の複素環基、
  置換もしくは無置換の炭素数1~6のアルキル基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
  置換もしくは無置換の炭素数3~6のアルキルシリル基、
  置換もしくは無置換の炭素数1~6のアルコキシ基、
  置換もしくは無置換の環形成炭素数6~14のアリールオキシ基、
  置換もしくは無置換の炭素数2~12のアルキルアミノ基、
  置換もしくは無置換の炭素数1~6のアルキルチオ基、または
  置換もしくは無置換の環形成炭素数6~14のアリールチオ基である。
 *は、それぞれ独立に、前記一般式(2)中におけるベンゼン環との結合位置を表す。
Figure JPOXMLDOC01-appb-C000026
 前記一般式(3)において、A31は、下記一般式(31a)、一般式(31b)、一般式(31c)、一般式(31d)、一般式(31e)又は一般式(31f)で表される基であり、
 R31~R38は、それぞれ独立に、水素原子もしくは置換基であり、R401~R404及びR409~R412は、それぞれ独立に、水素原子もしくは置換基であり、
 置換基としてのR31~R38並びに置換基としてのR401~R404及びR409~R412は、それぞれ独立に、
  ハロゲン原子、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の環形成原子数5~30の複素環基、
  置換もしくは無置換の炭素数1~30のアルキル基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
  置換もしくは無置換の炭素数2~30のアルケニル基、
  置換もしくは無置換の炭素数2~30のアルキニル基、
  置換もしくは無置換の炭素数3~30のアルキルシリル基、
  置換もしくは無置換の環形成炭素数6~60のアリールシリル基、
  置換もしくは無置換の環形成炭素数6~60のアリールホスホリル基、
  ヒドロキシ基、
  置換もしくは無置換の炭素数1~30のアルコキシ基、
  置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
  アミノ基、
  置換もしくは無置換の炭素数2~30のアルキルアミノ基、
  置換もしくは無置換の環形成炭素数6~60のアリールアミノ基、
  チオール基、
  置換もしくは無置換の炭素数1~30のアルキルチオ基、又は
  置換もしくは無置換の環形成炭素数6~30のアリールチオ基である。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 前記一般式(31a)、一般式(31b)、一般式(31c)、一般式(31d)、一般式(31e)及び一般式(31f)において、
 R310~R319は、それぞれ独立に、水素原子もしくは置換基であり、
 R320~R329は、それぞれ独立に、水素原子もしくは置換基であり、
 R330~R339は、それぞれ独立に、水素原子もしくは置換基であり、
 R340~R349は、それぞれ独立に、水素原子もしくは置換基であり、
 R350~R359は、それぞれ独立に、水素原子もしくは置換基であり、
 R360~R369は、それぞれ独立に、水素原子もしくは置換基であり、
 置換基としてのR310~R319、R320~R329、R330~R339、R340~R349、R350~R359及びR360~R369は、それぞれ独立に、前記一般式(3)における置換基としてのR31~R38並びに置換基としてのR401~R404及びR409~R412と同義である。*は、それぞれ独立に、前記一般式(3)中、R401~R404を有するベンゼン環との結合位置を表す。)
 本発明の一態様によれば、前述の本発明の一態様に係る有機エレクトロルミネッセンス素子を搭載した電子機器が提供される。
 本発明の一態様によれば、高性能な有機EL素子及び電子機器を提供することができる。
第一実施形態に係る有機EL素子の一例の概略構成を示す図である。 過渡PLを測定する装置の概略図である。 過渡PLの減衰曲線の一例を示す図である。 第一実施形態に係る有機EL素子の一例の発光層における第一の化合物、第二の化合物及び第三の化合物のエネルギー準位、並びにエネルギー移動の関係を示す図である。
〔第一実施形態〕
 本発明の第一実施形態に係る有機EL素子の構成について説明する。
 有機EL素子は、陽極および陰極の両電極間に有機層を備える。この有機層は、有機化合物で構成される複数の層が積層されてなる。有機層は、無機化合物をさらに含んでいてもよい。有機層のうち少なくとも一層は、発光層である。
 本実施形態において、有機層は、陽極と陰極との間に含まれる発光層と、陽極と発光層との間に含まれ前記発光層に隣接する第一の層と、陰極と発光層との間に含まれ前記発光層に隣接する第二の層と、を有する。
 発光層は、一般式(1)で表される第一の化合物と、一般式(2)で表される第二の化合物と、一般式(3)で表される第三の化合物とを含む。第一の化合物は蛍光発光性の化合物であり、第二の化合物は遅延蛍光性の化合物である。
 第一の層は一般式(A)で表される化合物を含む。第一の層としては特に限定されないが、例えば、正孔注入層、正孔輸送層、及び電子障壁層からなる群から選択される少なくともいずれかの層が挙げられる。第一の層としては電子障壁層が好ましい。
 第二の層は一般式(B)で表される化合物を含む。第二の層としては特に限定されないが、例えば、電子注入層、電子輸送層、及び正孔障壁層からなる群から選択される少なくともいずれかの層が挙げられる。第二の層としては正孔障壁層が好ましい。
 すなわち、本実施形態の有機EL素子の有機層は、以下の層構成であることが好ましい。
・電子障壁層/発光層/正孔障壁層
・正孔注入層/電子障壁層/発光層/正孔障壁層
・正孔輸送層/電子障壁層/発光層/正孔障壁層
・正孔注入層/正孔輸送層/電子障壁層/発光層/正孔障壁層
・電子障壁層/発光層/正孔障壁層/電子注入層
・電子障壁層/発光層/正孔障壁層/電子輸送層
・電子障壁層/発光層/正孔障壁層/電子輸送層/電子注入層
・正孔注入層/電子障壁層/発光層/正孔障壁層/電子注入層
・正孔注入層/電子障壁層/発光層/正孔障壁層/電子輸送層
・正孔注入層/電子障壁層/発光層/正孔障壁層/電子輸送層/電子注入層
・正孔輸送層/電子障壁層/発光層/正孔障壁層/電子注入層
・正孔輸送層/電子障壁層/発光層/正孔障壁層/電子輸送層
・正孔輸送層/電子障壁層/発光層/正孔障壁層/電子輸送層/電子注入層
・正孔注入層/正孔輸送層/電子障壁層/発光層/正孔障壁層/電子注入層
・正孔注入層/正孔輸送層/電子障壁層/発光層/正孔障壁層/電子輸送層
・正孔注入層/正孔輸送層/電子障壁層/発光層/正孔障壁層/電子輸送層/電子注入層
 図1に、本実施形態における有機EL素子の一例の概略構成を示す。
 有機EL素子1は、透光性の基板2と、陽極3と、陰極4と、陽極3と陰極4との間に配置された有機層10と、を含む。有機層10は、陽極3側から順に、第一の層6、発光層5、第二の層7が、この順番で積層されて構成される。第一の層6は陽極3側で発光層5に隣接しており、第二の層7は陰極4側で発光層5に隣接している。
 発光層5は、金属錯体を含んでもよい。
 発光層5は、燐光発光性材料(ドーパント材料)を含まないことが好ましい。
 発光層5は、重金属錯体及び燐光発光性の希土類金属錯体を含まないことが好ましい。ここで、重金属錯体としては、例えば、イリジウム錯体、オスミウム錯体、及び白金錯体等が挙げられる。
 また、発光層5は、金属錯体を含まないことも好ましい。
 第一の化合物は、ドーパント材料(ゲスト材料、エミッター、発光材料と称する場合もある。)であることが好ましい。
 第二の化合物は、ホスト材料(マトリックス材料と称する場合もある。)であることが好ましい。
 第三の化合物は、ホスト材料であることが好ましい。第二の化合物及び第三の化合物の一方を第一のホスト材料と称し、他方を第二のホスト材料と称する場合もある。第三の化合物は、遅延蛍光性の化合物でもよいし、遅延蛍光性を示さない化合物でもよい。
 従来、蛍光発光性の化合物、TADF化合物及び第三の化合物の3種の化合物を含んだ発光層を備える有機EL素子が知られている。従来の有機EL素子よりも、例えば、低電圧または高効率で発光する、素子が長寿命化する等、高性能な有機EL素子を実現するためには、発光層への正孔注入性を改善する必要がある。加えて、発光層に注入された正孔を発光層内により長く留め、効率よく励起子を生成させることも必要である。しかしながら、これまで知られている発光層及びその周辺層(例えば電子障壁層及び正孔障壁層等)の組み合わせでは、発光層への正孔注入性の改善、及び発光層内における効率的な励起子の生成が不十分であった。
 本発明者らは、一般式(A)で表される化合物を含む第一の層を陽極側で発光層に隣接させ、一般式(B)で表される化合物を含む第二の層を陰極側で発光層に隣接させ、さらに、蛍光発光性の第一の化合物(一般式(1)で表される化合物)と、遅延蛍光性の第二の化合物(一般式(2)で表される化合物)と、第三の化合物(一般式(3)で表される化合物)とを発光層に含ませることで、高性能な有機EL素子を実現できることを見出した。
 以下、本実施形態の有機EL素子の構成について詳細に説明する。
<第一の層>
 第一の層6は、下記一般式(A)で表される化合物を含む。
Figure JPOXMLDOC01-appb-C000030
 前記一般式(A)において、Ra~Ra、Rb~Rb及びRc~Rcは、それぞれ独立に、水素原子もしくは置換基であり、置換基としてのRa~Ra、Rb~Rb及びRc~Rcは、それぞれ独立に、
  ハロゲン原子、
  シアノ基、
  置換もしくは無置換の環形成炭素数6~30のアリール基、または
  置換もしくは無置換の環形成原子数5~30のヘテロアリール基であり、
 Rcは、水素原子もしくは置換基であるか、またはRcと互いに結合して環を形成し、置換基としてのRcは、
  置換もしくは無置換の環形成炭素数6~12のアリール基であり、
 Rcは、水素原子もしくは置換基であるか、またはRc及びRcの組が互いに結合して環を形成し、Rc及びRcの組が互いに結合して環を形成する場合の環は、少なくとも5員環を含み、前記5員環は、炭素原子、酸素原子、硫黄原子、及び窒素原子の少なくともいずれかの原子を含み、ただし、Rc及びRcは同時に水素原子ではなく、
 置換基としてのRcは、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の環形成原子数5~30のヘテロアリール基、
  置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
  置換もしくは無置換の環形成炭素数6~30のアリールチオ基、または
  置換もしくは無置換のアミノ基である。
 前記一般式(A)において、Ra~Raの内の1つ以上が無置換のジベンゾフラニル基である場合、Rb~Rb及びRc~Rcのいずれも無置換のジベンゾフラニル基ではなく、Rb~Rbの内の1つ以上が無置換のジベンゾフラニル基である場合、Ra~Ra及びRc~Rcのいずれも無置換のジベンゾフラニル基ではなく、Rc~Rcの内の1つ以上が無置換のジベンゾフラニル基である場合、Ra~Ra及びRb~Rbのいずれも無置換のジベンゾフラニル基ではないことが好ましい。
 前記一般式(A)において、Ra~Raの内の1つ以上が置換もしくは無置換のジベンゾフラニル基である場合、Rb~Rb及びRc~Rcのいずれも置換もしくは無置換のジベンゾフラニル基ではなく、Rb~Rbの内の1つ以上が置換もしくは無置換のジベンゾフラニル基である場合、Ra~Ra及びRc~Rcのいずれも置換もしくは無置換のジベンゾフラニル基ではなく、Rc~Rcの内の1つ以上が置換もしくは無置換のジベンゾフラニル基である場合、Ra~Ra及びRb~Rbのいずれも置換もしくは無置換のジベンゾフラニル基ではないことがより好ましい。
 前記一般式(A)において、Rc及びRcの組が互いに結合して環を形成することが好ましい。
 前記一般式(A)において、Rcは、水素原子もしくは置換基であり、Rcは、水素原子もしくは置換基であることも好ましい。ただし、Rc及びRcは同時に水素原子ではない。
 ここで、Rc及びRcの組が互いに結合して環を形成すること、並びにRc及びRcの少なくとも一方が特定の置換基であることの意義について下記一般式(1A)を用いて説明する。
 下記一般式(1A)は、前記一般式(A)で表される化合物の部分構造である。
Figure JPOXMLDOC01-appb-C000031
 前記一般式(1A)において、Rcは、前記一般式(A)におけるRcと同義であり、Rcは、前記一般式(A)におけるRcと同義であり、Rc~Rcは、それぞれ独立に、前記一般式(A)におけるRc~Rcと同義であり、*は、一般式(A)で表される化合物中の窒素原子との結合箇所を表す。
 前記一般式(1A)において、Rc及びRcの組が互いに結合して環を形成するとは、RcとRcとが、例えば、下記一般式(11A)で表される環Z11Aを形成することを意味する。
Figure JPOXMLDOC01-appb-C000032
 一方、前記一般式(1A)において、RcとRcとが、下記一般式(11B)で表される環Z11Bを形成する場合、及びRcとRcとが、下記一般式(11C)で表される環Z11Cを形成する場合、下記一般式(11B)及び(11C)は、いずれも前記一般式(1A)を満たさない。
Figure JPOXMLDOC01-appb-C000033
 一般式(A)で表される化合物は、一般式(A)中、窒素原子の近傍に位置するRcとRcとが互いに結合して前記環Z11Aを有するか、またはRc及びRcの少なくとも一方が特定の置換基を有するので、例えば、RcとRcとが互いに結合して前記環Z11Bを有する化合物、RcとRcとが互いに結合して前記環Z11Cを有する化合物、並びにRcが置換基を有する化合物に比べ、窒素原子の周りがより嵩高い構造となる。これにより、一般式(A)で表される化合物は、HOMO(最高被占軌道)の軌道が狭くなり、イオン化ポテンシャルIpが深く(絶対値が大きく)なると考えられる。
 したがって、本実施形態の有機EL素子1によれば、陽極3側で発光層5に隣接する第一の層が、一般式(A)で表される化合物を含むことにより、発光層5への正孔注入性及び発光層内における励起子の生成効率が改善され、その結果、有機EL素子の性能が改善されると考えられる。
 前記一般式(A)において、前記一般式(1A)で表される部分は、下記一般式(1A-1)~(1A-10)のいずれかで表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
 前記一般式(1A-1)~(1A-10)において、Rは、水素原子又は置換基であり、置換基としてのRは、それぞれ独立に、
  ハロゲン原子、
  シアノ基、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の環形成原子数5~30のヘテロアリール基、
  置換もしくは無置換の炭素数1~30のアルキル基、
  置換もしくは無置換の炭素数2~30のアルケニル基、
  置換もしくは無置換の炭素数2~30のアルキニル基、
  置換もしくは無置換のシリル基、
  置換もしくは無置換の炭素数1~30のアルコキシ基、
  置換もしくは無置換の炭素数7~30のアラルキル基、または
  置換もしくは無置換の環形成炭素数6~30のアリールオキシ基であり、複数のRが存在する場合、Rは互いに同一または異なり、*は、一般式(A)で表される化合物中の窒素原子との結合箇所を表す。
 前記一般式(1A)で表される基は、前記一般式(1A-1)~(1A-5)及び(1A-10)のいずれかで表される基であることが好ましく、前記一般式(1A-1)または(1A-4)で表される基であることがより好ましい。
 前記一般式(1A)で表される基は、前記一般式(1A-6)~(1A-9)のいずれかで表される基であることも好ましく、前記一般式(1A-9)で表される基であることがより好ましい。
 前記一般式(1A)で表される基は、前記一般式(1A-1)、(1A-4)または(1A-9)で表される基であることがより好ましい。
 前記一般式(1A-1)~(1A-10)において、Rは、水素原子であることが好ましい。
 前記一般式(A)において、Ra~Ra及びRb~Rbは、それぞれ独立に、水素原子、または置換もしくは無置換の環形成炭素数6~30のアリール基であることが好ましい。
 前記一般式(A)において、Ra~Raは、それぞれ独立に、水素原子、または置換もしくは無置換の環形成炭素数6~30のアリール基であり、かつRb~Rbは、それぞれ独立に、水素原子、または置換もしくは無置換の環形成原子数5~30のヘテロアリール基であることも好ましい。
 前記一般式(A)において、Ra~Raは、それぞれ独立に、水素原子、または環形成原子数5~30のヘテロアリール基で置換された環形成炭素数6~30のアリール基であり、かつRb~Rbは、それぞれ独立に、水素原子、または置換もしくは無置換の環形成原子数5~30のヘテロアリール基であることも好ましい。
 前記一般式(A)において、Ra~Ra及びRb~Rbは、それぞれ独立に、水素原子、または置換もしくは無置換の環形成原子数5~30のヘテロアリール基であることも好ましい。
 前記一般式(A)において、Ra~Raの内、1つが置換基であり、当該置換基でないRa~Raは水素原子であり、Rb~Rbの内、1つが置換基であり、当該置換基でないRb~Rbは水素原子であり、Rc~Rcは、水素原子であることが好ましい。
 前記一般式(A)において、置換基としてのRa~Ra、Rb~Rb及びRc~Rcは、それぞれ独立に、ハロゲン原子、シアノ基、無置換の環形成炭素数6~30のアリール基、または無置換の環形成原子数5~30のヘテロアリール基であることが好ましい。
 前記一般式(A)において、Ra~Raの内、1つが置換基であり、当該置換基でないRa~Raは水素原子であり、Rb~Rbの内、1つが置換基であり、当該置換基でないRb~Rbは水素原子であり、Rc~Rcは、水素原子であり、置換基としてのRa~Ra及びRb~Rbは、それぞれ独立に、ハロゲン原子、シアノ基、無置換の環形成炭素数6~30のアリール基、または無置換の環形成原子数5~30のヘテロアリール基であることが好ましい。
 前記一般式(A)において、Ra~Raの内、少なくとも1つが、それぞれ独立に、下記一般式(1B-1)~(1B-10)のいずれかで表される基であり、Rb~Rbの内、少なくとも1つが、それぞれ独立に、下記一般式(1B-1)~(1B-10)のいずれかで表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
 前記一般式(1B-1)~(1B-10)において、Rは、水素原子又は置換基であり、置換基としてのRは、それぞれ独立に、
  ハロゲン原子、
  シアノ基、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の環形成原子数5~30のヘテロアリール基、
  置換もしくは無置換の炭素数1~30のアルキル基、
  置換もしくは無置換の炭素数2~30のアルケニル基、
  置換もしくは無置換の炭素数2~30のアルキニル基、
  置換もしくは無置換のシリル基、
  置換もしくは無置換の炭素数1~30のアルコキシ基、
  置換もしくは無置換の炭素数7~30のアラルキル基、または
  置換もしくは無置換の環形成炭素数6~30のアリールオキシ基であり、複数のRが存在する場合、Rは互いに同一または異なる。*は、一般式(A)で表される化合物中のRa~Ra及びRb~Rbがそれぞれ結合するベンゼン環との結合箇所を表す。
 前記一般式(1B-1)~(1B-10)において、Rは、水素原子であることが好ましい。
 前記一般式(A)で表される化合物は、下記一般式(1X)、下記一般式(1Y)または下記一般式(1Z)で表される化合物であることが好ましく、下記一般式(1X)で表される化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
 前記一般式(1X)、前記一般式(1Y)及び前記一般式(1Z)において、Ra~Ra及びRb~Rbは、それぞれ、前記一般式(A)におけるRa~Ra及びRb~Rbと同義であり、Rは、前記一般式(1A-1)~(1A-10)におけるRと同義である。
 前記一般式(1X)、前記一般式(1Y)及び前記一般式(1Z)において、Ra~Raの内、少なくとも1つが、それぞれ独立に、前記一般式(1B-1)~(1B-10)のいずれかで表される基であり、Rb~Rbの内、少なくとも1つが、それぞれ独立に、前記一般式(1B-1)~(1B-10)のいずれかで表される基であることが好ましい。
 前記一般式(1X)、前記一般式(1Y)及び前記一般式(1Z)において、Ra~Raの内、1つが、前記一般式(1B-1)~(1B-10)のいずれかで表される基であり、Rb~Rbの内、1つが、前記一般式(1B-1)~(1B-10)のいずれかで表される基であることがより好ましい。
 前記一般式(1X)、前記一般式(1Y)及び前記一般式(1Z)において、Rは、水素原子であることが好ましい。
 前記一般式(1B-1)~(1B-10)において、Rは、水素原子であることが好ましい。
 前記一般式(A)で表される化合物のイオン化ポテンシャルIpは、発光層への正孔注入性を改善する観点、及び発光層内で効率よく励起子を生成させる観点から、好ましくは5.78eV以上、より好ましくは5.80eV以上、さらに好ましくは5.85eV以上である。
 前記一般式(A)で表される化合物のイオン化ポテンシャルIpの測定方法は、後述する実施例に記載の通りである。
・一般式(A)で表される化合物の製造方法
 一般式(A)で表される化合物は、公知の方法により製造することができる。
 一般式(A)で表される化合物の具体例を以下に示す。なお、本発明における一般式(A)で表される化合物は、これらの具体例に限定されない。
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
<第二の層>
 第二の層7は、下記一般式(B)で表される化合物を含む。
Figure JPOXMLDOC01-appb-C000046
 前記一般式(B)において、
 X~Xは、それぞれ独立に、窒素原子又はCRであり、ただし、X~Xのうち、少なくともいずれか1つは、窒素原子であり、
 Rは、水素原子又は置換基であり、
 置換基としてのRは、それぞれ独立に、
  ハロゲン原子、
  シアノ基、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の環形成原子数5~30のヘテロアリール基、
  置換もしくは無置換の炭素数1~30のアルキル基、
  置換もしくは無置換の炭素数2~30のアルケニル基、
  置換もしくは無置換の炭素数2~30のアルキニル基、
  置換もしくは無置換のシリル基、
  置換もしくは無置換の炭素数1~30のアルコキシ基、
  置換もしくは無置換の炭素数7~30のアラルキル基、または
  置換もしくは無置換の環形成炭素数6~30のアリールオキシ基であり、
 ArおよびArは、それぞれ独立に、
  下記一般式(1B)で表されるか、
  置換もしくは無置換の環形成炭素数6~30のアリール基、または、
  置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。
 Aは、下記一般式(1B)で表される。)
Figure JPOXMLDOC01-appb-C000047
 前記一般式(1B)において、
 HArは、下記一般式(2B)で表され、
 aは、1、2、3、4、又は5であり、
 aが1のとき、Lは、単結合または二価の連結基であり、
 aが2、3、4、又は5のとき、Lは、三価以上六価以下の連結基であり、
 複数のHArは、互いに同一または異なり、
 前記連結基は、
  置換もしくは無置換の環形成炭素数6~30のアリール基から誘導される基、
  置換もしくは無置換の環形成原子数5~30のヘテロアリール基から誘導される基、
  置換もしくは無置換の環形成炭素数6~30のアリール基及び置換もしくは無置換の環形成原子数5~30のヘテロアリール基からなる群から選択された2つの基が互いに結合した基から誘導される基、または
  置換もしくは無置換の環形成炭素数6~30のアリール基及び置換もしくは無置換の環形成原子数5~30のヘテロアリール基からなる群から選択された3つの基が互いに結合した基から誘導される基であり、
 なお、互いに結合した基は、互いに同一または異なる。
Figure JPOXMLDOC01-appb-C000048
 前記一般式(2B)において、
 X11~X18は、それぞれ独立に、窒素原子、CR13、またはLに対して結合する炭素原子であり、
 複数のR13は互いに同一または異なり、
 Yは、酸素原子、硫黄原子、NR18、SiR1112、CR1415、Lに対して結合する窒素原子、R16及びLに対してそれぞれ結合するケイ素原子、またはR17及びLに対してそれぞれ結合する炭素原子であり、
 ただし、Lに対して結合するのは、X11からX18まで、R11からR12まで、及びR14からR15までにおける炭素原子、並びにYにおける窒素原子、ケイ素原子及び炭素原子のいずれか一つであり、
 R11及びR12は互いに同一または異なり、R14及びR15は互いに同一または異なり、
 R11~R18は、それぞれ独立に、水素原子もしくは置換基であるか、隣接するR13の組、R11及びR12の組、並びにR14及びR15の組のいずれか1つ以上の組が互いに結合して環を形成し、
 置換基としてのR11~R18は、それぞれ独立に、
  ハロゲン原子、
  シアノ基、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の環形成原子数5~30のヘテロアリール基、
  置換もしくは無置換の炭素数1~30のアルキル基、
  置換もしくは無置換の炭素数2~30のアルケニル基、
  置換もしくは無置換の炭素数2~30のアルキニル基、
  置換もしくは無置換のシリル基、
  置換もしくは無置換の炭素数1~30のアルコキシ基、
  置換もしくは無置換の炭素数7~30のアラルキル基、または
  置換もしくは無置換の環形成炭素数6~30のアリールオキシ基である。
 Yが、R16及びLに対してそれぞれ結合するケイ素原子である場合、一般式(2B)は、下記一般式(2B-1)で表される。一般式(2B-1)中、X11~X18は、一般式(2B)におけるX11~X18とそれぞれ同義である。
 Yが、R17及びLに対してそれぞれ結合する炭素原子である場合、一般式(2B)は、下記一般式(2B-2)で表される。一般式(2B-2)中、X11~X18は、一般式(2B)におけるX11~X18とそれぞれ同義である。
Figure JPOXMLDOC01-appb-C000049
 前記一般式(1B)において、連結基としてのLは、置換もしくは無置換の環形成炭素数6~30のアリール基から誘導される二価以上六価以下の残基であることも好ましい。
 前記一般式(1B)において、連結基としてのLは、置換もしくは無置換の環形成炭素数6~30のアリール基から誘導される三価以上六価以下の残基であることも好ましい。
 前記一般式(1B)において、aは、1、2、または3であることが好ましく、1または2であることがより好ましい。
 aが1のとき、Lは、二価の連結基であり、前記一般式(1B)は、下記一般式(11B-1)で表される。
 aが2、3、4、または5のとき、Lは、三価以上六価以下の連結基である。aが2
のとき、Lは、三価の連結基であり、前記一般式(1B)は、下記一般式(11B-2)で表される。このとき、HArは、同一または異なる。
Figure JPOXMLDOC01-appb-C000050
 前記一般式(11B-1)及び(11B-2)において、Lは、二価または三価の連結基であり、前記連結基は、置換もしくは無置換の環形成炭素数6~30のアリール基から誘導される基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基から誘導される基、置換もしくは無置換の環形成炭素数6~30のアリール基及び置換もしくは無置換の環形成原子数5~30のヘテロアリール基からなる群から選択された2つの基が互いに結合した基から誘導される基、または置換もしくは無置換の環形成炭素数6~30のアリール基及び置換もしくは無置換の環形成原子数5~30のヘテロアリール基からなる群から選択された3つの基が互いに結合した基から誘導される基である。
 前記一般式(1B)、(11B-1)及び(11B-2)のLにおいて、これらの基が互いに2つ、もしくは3つ結合した基とは、前記環形成炭素数6~30のアリール基および環形成原子数5~30のヘテロアリール基から誘導される二価もしくは三価の残基が互いに単結合で、2つもしくは3つ結合した基である。この連結基において、互いに結合した基は、互いに同一または異なる。
 前記一般式(1B)、(11B-1)及び(11B-2)において、連結基としてのLは、置換もしくは無置換の環形成炭素数6~30のアリール基から誘導される二価もしくは三価の残基、または置換もしくは無置換の環形成原子数5~30のヘテロアリール基から誘導される二価もしくは三価の残基であることが好ましい。
 前記一般式(1B)、(11B-1)及び(11B-2)において、連結基としてのLは、ベンゼン、ビフェニル、ターフェニル、ナフタレンおよびフェナントレンのいずれかから誘導される二価または三価の残基であることも好ましい。
 前記一般式(1B)において、aは、1または2であり、Lは、二価または三価の連結基であることも好ましい。
 前記一般式(1B)において、aは1であり、Lが、連結基であって、連結基としてのLは、置換もしくは無置換の環形成炭素数6~30のアリール基から誘導される二価の残基、または置換もしくは無置換の環形成原子数5~30のヘテロアリール基から誘導される二価の残基であることも好ましい。
 前記一般式(1B)において、aは2であり、Lが、連結基であって、連結基としてのLは、置換もしくは無置換の環形成炭素数6~30のアリール基から誘導される三価の残基、または置換もしくは無置換の環形成原子数5~30のヘテロアリール基から誘導される三価の残基であることも好ましい。
 前記一般式(1B)において、Lは、単結合であることも好ましい。
 前記一般式(2B)において、X13またはX16が、Lに対して結合する炭素原子であることも好ましい。
 前記一般式(2B)において、Yが、NR18、酸素原子、硫黄原子、CR1415、またはLに対して結合する窒素原子であることが好ましい。
 前記一般式(2B)において、Yが、CR1415であることも好ましい。
 Yが、CR1415である場合、X11からX18までのいずれか一つがLに対して結合する炭素原子であり、X11からX18までのその他が窒素原子、またはCR13であることが好ましい。
 前記一般式(2B)において、Yが、NR18またはLに対して結合する窒素原子であることも好ましい。Yが、NR18である場合、X11からX18までのいずれか一つがLに対して結合する炭素原子であり、X11からX18までのその他が窒素原子、またはCR13であることが好ましい。Yが、Lに対して結合する窒素原子である場合、X11からX18は、各々の独立に、窒素原子またはCR13であることが好ましい。
 また、前記一般式(2B)において、Yが、酸素原子又は硫黄原子であることも好ましく、酸素原子であることがより好ましい。
 前記一般式(2B)において、Yが、酸素原子又は硫黄原子であり、
 X11からX18までのうち一つが、Lに対して結合する炭素原子であり、それ以外は、CR13であることも好ましい。
 前記一般式(2B)において、Yは、酸素原子であり、X11およびX18が、CR13であり、X12からX17までのうち一つが、Lに対して結合する炭素原子であり、それ以外は、CR13であることもより好ましい。
 前記一般式(B)におけるXからXまでのうち、いずれか2つもしくは3つが窒素原子であることが好ましい。
 XからXまでのうち2つが窒素原子である場合、X及びXが窒素原子であり、XがCRであることが好ましい。
 前記一般式(B)において、X及びXが窒素原子であり、XがCRであり、Rが水素原子であることがより好ましく、この場合、第三の化合物は、下記一般式(21)で表される。
Figure JPOXMLDOC01-appb-C000051
 前記一般式(21)において、A、Ar、及びArは、前記一般式(B)におけるA、Ar、及びArとそれぞれ同義である。
・一般式(B)で表される化合物の製造方法
 一般式(B)で表される化合物は、公知の方法により製造することができる。
 一般式(B)で表される化合物の具体例を以下に示す。なお、本発明における前記一般式(B)で表される化合物は、これらの具体例に限定されない。
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
<発光層>
 発光層5は、第一の化合物と、第二の化合物と、第三の化合物とを含む。
(第一の化合物)
 第一の化合物は、蛍光発光性の化合物である。第一の化合物は、遅延蛍光性の化合物でもよいし、遅延蛍光性を示さない化合物でもよい。
 本実施形態において、第一の化合物は、下記一般式(1)で表される化合物である。
・一般式(1)で表される化合物
Figure JPOXMLDOC01-appb-C000063
 前記一般式(1)において、
 Xは、窒素原子、又はYと結合する炭素原子であり、
 Yは、水素原子又は置換基であり、
 R21~R26は、それぞれ独立に、水素原子もしくは置換基であるか、又はR21及びR22の組、R22及びR23の組、R24及びR25の組、並びにR25及びR26の組のいずれか1つ以上の組が互いに結合して環を形成し、
 置換基としてのY、及びR21~R26は、それぞれ独立に、
  置換もしくは無置換の炭素数1~30のアルキル基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の炭素数1~30のアルコキシ基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルコキシ基、
  置換もしくは無置換の炭素数1~30のアルキルチオ基、
  置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
  置換もしくは無置換の環形成炭素数6~30のアリールチオ基、
  置換もしくは無置換の炭素数2~30のアルケニル基、
  置換もしくは無置換の炭素数7~30のアラルキル基、
  置換もしくは無置換の環形成原子数5~30のヘテロアリール基、
  ハロゲン原子、
  カルボキシ基、
  置換もしくは無置換のエステル基、
  置換もしくは無置換のカルバモイル基、
  置換もしくは無置換のアミノ基、
  ニトロ基、
  シアノ基、
  置換もしくは無置換のシリル基、及び
  置換もしくは無置換のシロキサニル基からなる群から選択され、
 Z21及びZ22は、それぞれ独立に、置換基であるか、又はZ21及びZ22が互いに結合して環を形成し、
 置換基としてのZ21及びZ22は、それぞれ独立に、
  ハロゲン原子、
  置換もしくは無置換の炭素数1~30のアルキル基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の炭素数1~30のアルコキシ基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルコキシ基、及び
  置換もしくは無置換の環形成炭素数6~30のアリールオキシ基からなる群から選択される。
 前記一般式(1)において、例えば、R25及びR26の組が互いに結合して環を形成している場合、第一の化合物は、下記一般式(11)で表される。
Figure JPOXMLDOC01-appb-C000064
 前記一般式(11)において、X、Y、R21~R24、Z21、及びZ22は、それぞれ、前記一般式(1)におけるX、Y、R21~R24、Z21、及びZ22と同義であり、R27~R30は、それぞれ独立に、水素原子又は置換基であり、R27~R30が置換基である場合の置換基としては、R21~R24について列挙した置換基と同義である。
 前記一般式(1)において、Z21及びZ22が互いに結合して環を形成している場合、第一の化合物は、例えば、下記一般式(10A)、又は下記一般式(10B)で表される。ただし、第一の化合物は、以下の構造に限定されない。
Figure JPOXMLDOC01-appb-C000065
 前記一般式(10A)において、X、Y、及びR21~R26は、それぞれ、前記一般式(1)におけるX、Y、及びR21~R26と同義であり、R1Aは、それぞれ独立に、水素原子又は置換基であり、R1Aが置換基である場合の置換基としては、R21~R26について列挙した置換基と同義であり、n3は4である。
 前記一般式(10B)において、X、Y、及びR21~R26は、それぞれ、前記一般式(1)におけるX、Y、及びR21~R26と同義であり、R1Bは、それぞれ独立に、水素原子又は置換基であり、R1Bが置換基である場合の置換基としては、R21~R26について列挙した置換基と同義であり、n4は4である。
 Z21及びZ22のうち少なくともいずれか(好ましくはZ21及びZ22)は、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の炭素数1~30のアルコキシ基、置換もしくは無置換の炭素数1~30のハロゲン化アルコキシ基、及び置換もしくは無置換の環形成炭素数6~30のアリールオキシ基からなる群から選択される基であることが好ましい。
 Z21及びZ22のうち少なくともいずれかは、フッ素原子で置換された炭素数1~30のアルコキシ基、フッ素原子で置換された環形成炭素数6~30のアリールオキシ基、及び炭素数1~30のフルオロアルキル基で置換された環形成炭素数6~30のアリールオキシ基からなる群から選択される基であることがより好ましい。
 Z21及びZ22のうち少なくともいずれかは、フッ素原子で置換された炭素数1~30のアルコキシ基であることがさらに好ましく、Z21及びZ22がフッ素原子で置換された炭素数1~30のアルコキシ基であることがよりさらに好ましい。
 Z21及びZ22が同じであることも好ましい。
 一方、前記Z21及び前記Z22のうち少なくともいずれかがフッ素原子であることも好ましく、前記Z21及び前記Z22がフッ素原子であることもより好ましい。
 前記Z21及び前記Z22のうち少なくともいずれかは、下記一般式(10a)で表される基であることも好ましい。
Figure JPOXMLDOC01-appb-C000066
 前記一般式(10a)において、Aは、置換もしくは無置換の炭素数1~6のアルキル基、置換もしくは無置換の炭素数1~6のハロゲン化アルキル基、又は置換もしくは無置換の環形成炭素数6~12のアリール基であり、Lは、置換もしくは無置換の炭素数1~6のアルキレン基、又は置換もしくは無置換の環形成炭素数6~12のアリーレン基であり、mは、0、1、2、3、4、5、6、又は7であり、mが2、3、4、5、6、又は7である場合、複数のLは、互いに同一又は異なる。mは、0、1、又は2であることが好ましい。mが0の場合、Aは、O(酸素原子)に直接結合する。
 前記一般式(1)において、Z21及びZ22が前記一般式(10a)で表される基である場合、第一の化合物は、下記一般式(12)で表される化合物である。
 第一の化合物は、下記一般式(12)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000067
 前記一般式(12)において、X、XがYと結合する炭素原子であるときのY、R21~R26は、それぞれ、前記一般式(1)におけるX、Y、R21~R26と同義である。A21及びA22は、前記一般式(10a)におけるAと同義であり、互いに同一でも異なっていてもよい。L21及びL22は、前記一般式(10a)におけるLと同義であり、互いに同一でも異なっていてもよい。m1及びm2は、それぞれ独立に、0、1、2、3、4、5、6、又は7であり、0、1、又は2であることが好ましい。m1が2、3、4、5、6、又は7である場合、複数のL21は、互いに同一又は異なり、m2が2、3、4、5、6、又は7である場合、複数のL22は、互いに同一又は異なる。m1が0の場合、A21は、O(酸素原子)に直接結合し、m2が0の場合、A22は、O(酸素原子)に直接結合する。
 前記一般式(10a)におけるA及びLのうち少なくともいずれかが、ハロゲン原子で置換されていることが好ましく、フッ素原子で置換されていることがより好ましい。
 前記一般式(10a)におけるAは、炭素数1~6のパーフルオロアルキル基、又は環形成炭素数6~12のパーフルオロアリール基であることがより好ましく、炭素数1~6のパーフルオロアルキル基であることがさらに好ましい。
 前記一般式(10a)におけるLは、炭素数1~6のパーフルオロアルキレン基、又は環形成炭素数6~12のパーフルオロアリーレン基であることがより好ましく、炭素数1~6のパーフルオロアルキレン基であることがさらに好ましい。
 すなわち、前記第一の化合物は、下記一般式(12a)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000068
 前記一般式(12a)において、
 Xは、前記一般式(1)におけるXと同義であり、XがYと結合する炭素原子であるときのYは、前記一般式(1)におけるYと同義であり、
 R21~R26は、それぞれ独立に、前記一般式(1)におけるR21~R26とそれぞれ同義であり、
 m3は、0以上4以下であり、
 m4は、0以上4以下であり、
 m3及びm4は、互いに同一であるか又は異なる。
 前記一般式(1)、(11)、(12)、及び(12a)において、
 Xは、Yと結合する炭素原子であり、
 Yは、水素原子又は置換基であり、
 置換基としてのYは、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数1~30のハロゲン化アルキル基及び置換もしくは無置換の環形成炭素数6~30のアリール基からなる群から選択される置換基であることが好ましく、置換もしくは無置換の環形成炭素数6~30のアリール基であることがより好ましい。
 前記一般式(1)、(11)、(12)、及び(12a)において、
 より好ましい態様としては、
 Xは、Yと結合する炭素原子であり、
 Yは、水素原子又は置換基であり、
 置換基としてのYは、置換もしくは無置換の環形成炭素数6~30のアリール基であり、
 置換基としてのYが置換基を有する環形成炭素数6~30のアリール基である場合の当該置換基は、
  置換もしくは無置換の炭素数1~30のアルキル基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
  置換もしくは無置換の炭素数1~30のアルコキシ基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルコキシ基、又は
  炭素数1~30のアルキル基で置換された環形成炭素数6~30のアリール基である態様が挙げられる。
 第一の化合物は、前記Z21と前記Z22とが互いに結合して環を形成してもよいが、前記Z21と前記Z22とが互いに結合して環を形成しないことが好ましい。
 前記一般式(1)、(12)、及び(12a)において、R21、R23、R24、及びR26のうち少なくともいずれかが置換もしくは無置換の炭素数1~30のアルキル基、又は置換もしくは無置換の炭素数1~30のハロゲン化アルキル基であることが好ましい。
 前記一般式(1)、(12)、及び(12a)において、R21、R23、R24、及びR26が置換もしくは無置換の炭素数1~30のアルキル基、又は置換もしくは無置換の炭素数1~30のハロゲン化アルキル基であることがより好ましい。この場合、R22及びR25が水素原子であることが好ましい。
 前記一般式(1)、(12)、及び(12a)において、R21、R23、R24、及びR26のうち少なくともいずれかが置換もしくは無置換の環形成炭素数6~30のアリール基であることが好ましい。
 前記一般式(1)、(12)、及び(12a)において、R21、R23、R24、及びR26が置換もしくは無置換の環形成炭素数6~30のアリール基であることがより好ましい。この場合、R22及びR25が水素原子であることが好ましい。
 前記一般式(1)、(12)、及び(12a)において、
 より好ましい態様としては、
 R21、R23、R24、及びR26は、それぞれ独立に、
 置換もしくは無置換の炭素数1~30(好ましくは炭素数1~6)のアルキル基、
 置換もしくは無置換の炭素数1~30(好ましくは炭素数1~6)のハロゲン化アルキル基、又は
 炭素数1~30のアルキル基で置換された環形成炭素数6~30(好ましくは環形成炭素数6~12)のアリール基であり、
 R22及びR25が水素原子である態様が挙げられる。
 前記一般式(11)において、R21、R23、及びR24のうち少なくともいずれかが置換もしくは無置換の炭素数1~30のアルキル基、又は置換もしくは無置換の炭素数1~30のハロゲン化アルキル基であることが好ましい。
 前記一般式(11)において、R21、R23、及びR24が置換もしくは無置換の炭素数1~30のアルキル基、又は置換もしくは無置換の炭素数1~30のハロゲン化アルキル基であることがより好ましい。この場合、R22は水素原子であることが好ましい。
 前記一般式(11)において、R21、R23、及びR24のうち少なくともいずれかが置換もしくは無置換の環形成炭素数6~30のアリール基であることが好ましい。
 前記一般式(11)において、R21、R23、及びR24が置換もしくは無置換の環形成炭素数6~30のアリール基であることがより好ましい。この場合、R22は水素原子であることが好ましい。
 前記一般式(11)において、
 より好ましい態様としては、
 R21、R23、及びR24は、それぞれ独立に、
 置換もしくは無置換の炭素数1~30(好ましくは炭素数1~6)のアルキル基、
 置換もしくは無置換の炭素数1~30(好ましくは炭素数1~6)のハロゲン化アルキル基、又は
 炭素数1~30のアルキル基で置換された環形成炭素数6~30(好ましくは環形成炭素数6~12)のアリール基であり、
 R22が水素原子である態様が挙げられる。
 一実施形態において、前記一般式(1)で表される化合物は、下記一般式(n)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000069
(前記一般式(n)において、
 Ar1001及びAr1002は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~30のアリール基、及び
  置換もしくは無置換の環形成原子数5~30のヘテロアリール基からなる群から選択され、
 R1001~R1005は、それぞれ独立に、水素原子もしくは置換基であるか、又はR1001及びR1002の組、R1002及びAr1001の組、Ar1002及びR1003の組、並びにR1003及びR1004の組のいずれか1つ以上の組が互いに結合して環を形成し、
 置換基としてのR1001~R1005は、それぞれ独立に、
  置換もしくは無置換の炭素数1~30のアルキル基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の炭素数1~30のアルコキシ基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルコキシ基、
  置換もしくは無置換の炭素数1~30のアルキルチオ基、
  置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
  置換もしくは無置換の環形成炭素数6~30のアリールチオ基、
  置換もしくは無置換の炭素数2~30のアルケニル基、
  置換もしくは無置換の環形成原子数5~30のヘテロアリール基、
  ハロゲン原子、
  カルボキシ基、
  置換もしくは無置換のエステル基、
  置換もしくは無置換のカルバモイル基、
  置換もしくは無置換のアミノ基、
  ニトロ基、
  シアノ基、
  置換もしくは無置換のシリル基、及び
  置換もしくは無置換のシロキサニル基からなる群から選択され、
 Z1001及びZ1002は、それぞれ独立に、
  ハロゲン原子、
  置換もしくは無置換の炭素数1~30のアルキル基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の炭素数1~30のアルコキシ基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルコキシ基、及び
  置換もしくは無置換の環形成炭素数6~30のアリールオキシ基からなる群から選択される。)
 前記一般式(n)において、Ar1001及びAr1002は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール基であることが好ましい。Ar1001及びAr1002は、それぞれ独立に、単環でも縮合環でもよい。Ar1001及びAr1002としては、例えば、置換もしくは無置換のフェニル基、及び置換もしくは無置換のナフチル基等が挙げられる。
 前記一般式(n)において、R1001及びR1004の少なくとも一つが置換もしくは無置換の環形成炭素数6~30のアリール基、または置換もしくは無置換の環形成原子数5~30のヘテロアリール基であることが好ましく、R1001及びR1004の両方が、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール基、または置換もしくは無置換の環形成原子数5~30のヘテロアリール基であることがより好ましい。
 前記一般式(n)において、R1002及びR1003は、水素原子、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、または置換もしくは無置換の環形成原子数5~30のヘテロアリール基であることが好ましく、水素原子、または置換もしくは無置換の炭素数1~30のアルキル基であることがより好ましい。
 前記一般式(n)において、R1005は、置換もしくは無置換の環形成炭素数6~30のアリール基、または置換もしくは無置換の環形成原子数5~30のヘテロアリール基であることが好ましい。R1005としては、例えば、置換もしくは無置換のフェニル基、置換もしくは無置換のナフチル基、置換もしくは無置換のフェナントリル基、置換もしくは無置換のアントリル基、及び置換もしくは無置換のジベンゾフラニル基等が挙げられる。
 前記一般式(n)において、Z1001及びZ1002は、それぞれ独立に、ハロゲン原子、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の炭素1~30のアルコキシ基、又は置換もしくは無置換の炭素数1~30のハロゲン化アルコキシ基であることが好ましい。
 前記一般式(n)において、R1002及びAr1001の組、並びにAr1002及びR1003の組のいずれか1つ以上の組が互いに結合して環を形成する場合、前記第一の化合物は、例えば、下記一般式(n+1A)または一般式(n+1B)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000070
(前記一般式(n+1A)において、R1001、R1002、R1004、R1005、Ar1001、Z1001及びZ1002は、それぞれ独立に、前記一般式(n)におけるR1001、R1002、R1004、R1005、Ar1001、Z1001及びZ1002と同義であり、
 前記一般式(n+1B)において、R1001、R1004、R1005、Z1001及びZ1002は、それぞれ独立に、前記一般式(n)におけるR1001、R1004、R1005、Z1001及びZ1002と同義であり、
 Ar1003及びAr1004は、それぞれ独立に、
 置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素環、及び
 置換もしくは無置換の環形成原子数5~30の芳香族複素環からなる群から選択され、
 Bは3個以上の原子が直列に結合した架橋構造であり、前記原子が、
  置換もしくは無置換の炭素原子、
  置換もしくは無置換のケイ素原子、
  置換もしくは無置換の窒素原子、
  置換もしくは無置換のリン原子、
  酸素原子、及び
  硫黄原子からなる群から選択され、
 Cは1個以上の原子が直列に結合した架橋構造であり、前記原子が、
  置換もしくは無置換の炭素原子、
  置換もしくは無置換のケイ素原子、
  置換もしくは無置換の窒素原子、
  置換もしくは無置換のリン原子、
  酸素原子、及び
  硫黄原子からなる群から選択され、
 ただし、Bがトリメチレン基である場合、R1004は水素原子およびハロゲン原子ではない。)
 ここで、一般式(n+1A)及び一般式(n+1B)においてAr1003の一部として示される二重結合は、芳香族炭化水素環または芳香族複素環の一部を表しており、ピロメテン骨格に直接結合している炭素原子と、架橋構造Bが結合している炭素原子とが隣接していることを示している。
 同様に、一般式(n+1A)および一般式(n+1B)においてAr1004の一部として示される二重結合は、芳香族炭化水素環または芳香族複素環の一部を表しており、ピロメテン骨格に直接結合している炭素原子と、架橋構造Cが結合している炭素原子とが隣接していることを示している。
 R1002及びAr1001の組が互いに結合して環を形成した場合の環形成原子数、並びにAr1002及びR1003の組が互いに結合して環を形成した場合の環形成原子数は、30以下であることが好ましい。
 具体的には、前記一般式(n+1A)及び一般式(n+1B)において、架橋構造Bにおける原子数(直列に結合した原子数)と、Ar1003における環形成原子数と、ピロメテン骨格を構成する炭素原子(2つ)との合計は、30以下であることが好ましい。
 前記一般式(n+1B)において、架橋構造Cにおける原子数(直列に結合した原子数)と、Ar1004における環形成原子数と、ピロメテン骨格を構成する炭素原子(2つ)との合計は、30以下であることが好ましい。
 前記一般式(n+1A)及び一般式(n+1B)において、Bは、下記一般式(n+2A)または一般式(n+2B)で表される架橋構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000071
(前記一般式(n+2A)において、R1011~R1016は、それぞれ独立に、水素原子もしくは置換基であるか、R1011~R1016のうちの隣接する2つ以上からなる組の1組以上が互いに結合して環を形成し、
 前記一般式(n+2B)において、R1011~R1014は、それぞれ独立に、水素原子もしくは置換基であるか、R1011~R1014のうちの隣接する2つ以上からなる組の1組以上が互いに結合して環を形成し、
 置換基としてのR1011~R1016は、それぞれ独立に、
  置換もしくは無置換の炭素数1~30のアルキル基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の環形成原子数5~30のヘテロアリール基、
  置換もしくは無置換の炭素数1~30のアルコキシ基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルコキシ基、
  置換もしくは無置換の炭素数1~30のアルキルチオ基、
  置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
  置換もしくは無置換の環形成炭素数6~30のアリールチオ基、
  置換もしくは無置換の炭素数2~30のアルケニル基、
  置換もしくは無置換の炭素数2~30のアルキニル基、
  ハロゲン原子、
  カルボキシ基、
  置換もしくは無置換のアミノ基、
  ニトロ基、
  シアノ基、
  置換もしくは無置換のシリル基、
  ヒドロキシ基、
  エステル基、
  シロキサニル基、または
  カルバモイル基であり、
 *は、前記一般式(n+1A)及び一般式(n+1B)中、ピロール環との連結部を示し、**は、Ar1003との連結部を示す。)
 なお、ピロール環との連結部を示す*は、前記一般式(n+1A)及び一般式(n+1B)中、2*に該当し、Ar1003との連結部を示す**は、前記一般式(n+1A)及び一般式(n+1B)中、1*に該当する。
 前記一般式(n+2A)及び一般式(n+2B)において、R1011~R1016は、それぞれ独立に、水素原子、又は置換もしくは無置換の炭素数1~30のアルキル基であることが好ましい。
・B(3個以上の原子が直列に結合した架橋構造)
 前記一般式(n+1A)及び一般式(n+1B)において、Bは、3個の原子が直列に結合した架橋構造であることが好ましい。
・C(1個以上の原子が直列に結合した架橋構造)
 前記一般式(n+1B)において、Cは、1個以上3個以下の原子が直列に結合した架橋構造であることが好ましい。
 Cを構成する原子は、置換もしくは無置換の炭素原子、酸素原子、および硫黄原子の中から選ばれることが好ましく、置換もしくは無置換の炭素原子であることがより好ましい。
 前記一般式(n)において、R1005が、下記一般式(n+3)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000072
(前記一般式(n+3)において、
 R1021およびR1022は、それぞれ独立に、
  置換もしくは無置換の炭素数1~30のアルキル基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~30のアリール基、及び
  置換もしくは無置換の環形成原子数5~30のヘテロアリール基からなる群から選択され、
 R1023~R1025は、それぞれ独立に、水素原子もしくは置換基であるか、又はR1023及びR1024の組、並びにR1024及びR1025の組のいずれか1つ以上の組が互いに結合して環を形成し、
 置換基としてのR1023~R1025は、それぞれ独立に、
  置換もしくは無置換の炭素数1~30のアルキル基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の環形成原子数5~30のヘテロアリール基、
  置換もしくは無置換の炭素数1~30のアルコキシ基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルコキシ基、
  置換もしくは無置換の炭素数1~30のアルキルチオ基、
  置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
  置換もしくは無置換の環形成炭素数6~30のアリールチオ基、
  置換もしくは無置換の炭素数2~30のアルケニル基、
  置換もしくは無置換の炭素数2~30のアルキニル基、
  置換もしくは無置換の炭素数1~30のアルキルスルホニル基、
  置換もしくは無置換の環形成炭素数6~30のアリールカルボニル基、
  置換もしくは無置換の炭素数1~30のアシル基、
  ハロゲン原子、
  カルボキシ基、
  置換もしくは無置換のアミノ基、
  ニトロ基、
  シアノ基、
  置換もしくは無置換のシリル基、
  ヒドロキシ基、
  エステル基、
  シロキサニル基、または
  カルバモイル基であり、
 前記一般式(n+3)中、***は、前記一般式(n)におけるR1005と結合する炭素原子との結合位置を表す。)
 前記一般式(n+3)において、R1021およびR1022は、それぞれ独立に、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリール基であることが好ましい。R1021およびR1022がアルキル基である場合は、置換もしくは無置換の炭素数1~4のアルキル基であることがより好ましく、メチル基であることがさらに好ましい。R1021およびR1022がアリール基である場合は、置換もしくは無置換のフェニル基であることがより好ましい。R1021およびR1022がヘテロアリール基である場合は、置換もしくは無置換の環形成原子数5~6の単環のヘテロアリール基であることがより好ましい。
 前記一般式(n+3)において、R1023~R1025は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、置換もしくは無置換の炭素数1~30のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアリール基、ハロゲン原子、置換もしくは無置換のアミノ基、またはシアノ基であることがより好ましい。
 前記一般式(n)、前記一般式(n+1A)、前記一般式(n+1B)、及び前記一般式(n+3)において、「置換もしくは無置換の」という場合の置換基は、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基、置換もしくは無置換の炭素数1~30のアルコキシ基、置換もしくは無置換の炭素数1~30のハロゲン化アルコキシ基、置換もしくは無置換の炭素数1~30のアルキルチオ基、置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、置換もしくは無置換の環形成炭素数6~30のアリールチオ基、置換もしくは無置換の炭素数2~30のアルケニル基、置換もしくは無置換の炭素数2~30のアルキニル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の炭素数1~30のアルキルスルホニル基、置換もしくは無置換の環形成炭素数6~30のアリールカルボニル基、置換もしくは無置換の炭素数1~30のアシル基、ハロゲン原子、カルボキシ基、置換もしくは無置換のアミノ基、ニトロ基、シアノ基、置換もしくは無置換のシリル基、置換ホスホリル基、ヒドロキシ基、置換ホスフィノ基、エステル基、シロキサニル基、またはカルバモイル基であることが好ましい。
 前記一般式(n)、前記一般式(n+1A)、前記一般式(n+1B)、及び前記一般式(n+3)において、「置換もしくは無置換の」という場合の置換基は、無置換の炭素数1~30のアルキル基、無置換の炭素数1~30のハロゲン化アルキル基、無置換の環形成炭素数3~30のシクロアルキル基、無置換の環形成炭素数6~30のアリール基、無置換の環形成原子数5~30のヘテロアリール基、無置換の炭素数1~30のアルコキシ基、無置換の炭素数1~30のハロゲン化アルコキシ基、無置換の炭素数1~30のアルキルチオ基、無置換の環形成炭素数6~30のアリールオキシ基、無置換の環形成炭素数6~30のアリールチオ基、無置換の炭素数2~30のアルケニル基、無置換の炭素数2~30のアルキニル基、無置換の炭素数7~30のアラルキル基、無置換の炭素数1~30のアルキルスルホニル基、無置換の環形成炭素数6~30のアリールカルボニル基、無置換の炭素数1~30のアシル基、ハロゲン原子、カルボキシ基、置換もしくは無置換のアミノ基、ニトロ基、シアノ基、置換もしくは無置換のシリル基、置換ホスホリル基、ヒドロキシ基、置換ホスフィノ基、エステル基、シロキサニル基、またはカルバモイル基であることがより好ましい。
 第一の化合物において、フッ素原子で置換されたアルコキシ基としては、例えば、2,2,2-トリフロオロエトキシ基、2,2-ジフロオロエトキシ基、2,2,3,3,3-ペンタフルオロ-1-プロポキシ基、2,2,3,3-テトラフルオロ-1-プロポキシ基、1,1,1,3,3,3-ヘキサフルオロ-2-プロポキシ基、2,2,3,3,4,4,4-ヘプタフルオロ-1-ブチルオキシ基、2,2,3,3,4,4-ヘキサフルオロ-1-ブチルオキシ基、ノナフルオロターシャリーブチルオキシ基、2,2,3,3,4,4,5,5,5-ノナフルオロペンタノキシ基、2,2,3,3,4,4,5,5,6,6,6-ウンデカフルオロヘキサノキシ基、2,3-ビス(トリフルオロメ
チル)-2,3-ブタンジオキシ基、1,1,2,2-テトラ(トリフルオロメチル)エ
チレングリコキシ基、4,4,5,5,6,6,6-ヘプタフルオロヘキサン-1,2-ジオキシ基、及び4,4,5,5,6,6,7,7,8,8,9,9,9-トリデカフルオロノナン-1,2-ジオキシ基等が挙げられる。
 第一の化合物において、フッ素原子で置換されたアリールオキシ基、又はフルオロアルキル基で置換されたアリールオキシ基としては、例えば、ペンタフルオロフェノキシ基、3,4,5-トリフルオロフェノキシ基、4-トリフルオロメチルフェノキシ基、3,5-ビストリフルオロメチルフェノキシ基、3-フルオロ-4-トリフルオロメチルフェノキシ基、2,3,5,6-テトラフルオロ-4-トリフルオロメチルフェノキシ基、4-フルオロカテコラート基、4-トリフルオロメチルカテコラート基、及び3,5-ビストリフルオロメチルカテコラート基等が挙げられる。
 第一の化合物が蛍光発光性の化合物である場合、第一の化合物は、主ピーク波長が、400nm以上700nm以下の発光を示すことが好ましい。
 本明細書において、主ピーク波長とは、測定対象化合物が10-6モル/リットル以上10-5モル/リットル以下の濃度で溶解しているトルエン溶液について、測定した蛍光スペクトルにおける発光強度が最大となる蛍光スペクトルのピーク波長をいう。測定装置は、分光蛍光光度計(日立ハイテクサイエンス社製、F-7000)を用いる。
 第一の化合物は、赤色の発光又は緑色の発光を示すことが好ましい。
 本明細書において、赤色の発光とは、蛍光スペクトルの主ピーク波長が600nm以上660nm以下の範囲内である発光をいう。
 第一の化合物が赤色の蛍光発光性の化合物である場合、第一の化合物の主ピーク波長は、好ましくは600nm以上660nm以下、より好ましくは600nm以上640nm以下、さらに好ましくは610nm以上630nm以下である。
 本明細書において、緑色の発光とは、蛍光スペクトルの主ピーク波長が500nm以上560nm以下の範囲内である発光をいう。
 第一の化合物が緑色の蛍光発光性の化合物である場合、第一の化合物の主ピーク波長は、好ましくは500nm以上560nm以下、より好ましくは500nm以上540nm以下、さらに好ましくは510nm以上530nm以下である。
 本明細書において、青色の発光とは、蛍光スペクトルの主ピーク波長が430nm以上480nm以下の範囲内である発光をいう。
 第一の化合物が青色の蛍光発光性の化合物である場合、第一の化合物の主ピーク波長は、好ましくは430nm以上480nm以下、より好ましくは445nm以上480nm以下である。
・第一の化合物の製造方法
 第一の化合物は、公知の方法により製造することができる。
 本実施形態に係る第一の化合物(一般式(1)で表される化合物)の具体例を以下に示す。なお、本発明における第一の化合物は、これらの具体例に限定されない。
 なお、ピロメテン骨格中におけるホウ素原子と窒素原子との配位結合は、実線、破線、矢印、もしくは省略するなど、種々の表記方法がある。本明細書においては、実線で表すか、破線で表すか、又は記載を省略する。Meはメチル基を表す。
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
(第二の化合物)
 第二の化合物は、遅延蛍光性の化合物である。
 本実施形態において、第二の化合物は、下記一般式(2)で表される化合物である。
・一般式(2)で表される化合物
Figure JPOXMLDOC01-appb-C000133
 前記一般式(2)において、Dは、下記一般式(2-1)で表される基であり、Dは、下記一般式(2-2)で表される基であり、複数のDは、互いに同一の基である。
 「複数のDは、互いに同一の基である」とは、一般式(2-2)内の同じ記号で表される変数同士が全て同一であることを意味する。
 「一般式(2-2)内の変数」とは、R161~R168を意味する。具体的には、一般式(2)において、Dを表す一般式(2-2)で表される基は、R161同士が同一であり、R162同士が同一であり、R163同士が同一であり、R164同士が同一であり、R165同士が同一であり、R166同士が同一であり、R167同士が同一であり、R168同士が同一である。すなわち、一般式(2)における3つのDは、置換基も含めて互いに同一の基である。
Figure JPOXMLDOC01-appb-C000134
 前記一般式(2-1)において、Xは、酸素原子または硫黄原子であり、R131~R140は、それぞれ独立に、水素原子または置換基であり、
 置換基としてのR131~R140は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~14のアリール基、
  置換もしくは無置換の環形成原子数5~14の複素環基、
  置換もしくは無置換の炭素数1~6のアルキル基、
  置換もしくは無置換の炭素数3~6のアルキルシリル基、
  置換もしくは無置換の炭素数1~6のアルコキシ基、
  置換もしくは無置換の環形成炭素数6~14のアリールオキシ基、
  置換もしくは無置換の炭素数2~12のアルキルアミノ基、
  置換もしくは無置換の炭素数1~6のアルキルチオ基、または
  置換もしくは無置換の環形成炭素数6~14のアリールチオ基である。
 *は、前記一般式(2)中におけるベンゼン環との結合位置を表す。
Figure JPOXMLDOC01-appb-C000135
 前記一般式(2-2)において、R161~R168は、それぞれ独立に、水素原子または置換基であり、
 置換基としてのR161~R168は、それぞれ独立に、
  ハロゲン原子、
  置換もしくは無置換の環形成炭素数6~14のアリール基、
  置換もしくは無置換の環形成原子数5~14の複素環基、
  置換もしくは無置換の炭素数1~6のアルキル基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
  置換もしくは無置換の炭素数3~6のアルキルシリル基、
  置換もしくは無置換の炭素数1~6のアルコキシ基、
  置換もしくは無置換の環形成炭素数6~14のアリールオキシ基、
  置換もしくは無置換の炭素数2~12のアルキルアミノ基、
  置換もしくは無置換の炭素数1~6のアルキルチオ基、または
  置換もしくは無置換の環形成炭素数6~14のアリールチオ基である。
 *は、それぞれ独立に、前記一般式(2)中におけるベンゼン環との結合位置を表す。
 前記一般式(2-1)において、Xは、硫黄原子であることが好ましい。
 前記一般式(2-1)において、Xは、酸素原子であることも好ましい。
 第二の化合物において、一般式(2-2)で表される基は、下記一般式(2-20)~(2-26)で表される基のいずれかの基であることが好ましい。
Figure JPOXMLDOC01-appb-C000136
 前記一般式(2-20)~(2-26)において、*は、それぞれ独立に、前記一般式(2)中におけるベンゼン環との結合位置を表す。
 前記一般式(2-2)において、R161~R168は、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~14のアリール基、または置換もしくは無置換の炭素数1~6のアルキル基であることが好ましく、水素原子、または置換もしくは無置換の炭素数1~6のアルキル基であることがより好ましい。
 前記一般式(2-2)において、R161、R163、R166及びR168の少なくともいずれかに置換基を有し、当該置換基は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~14のアリール基、または置換もしくは無置換の炭素数1~6のアルキル基であり、R162、R164、R165及びR167は水素原子であることも好ましい。
 前記一般式(2-1)及び(2-2)において、置換基としてのR131~R140及びR161~R168は、それぞれ独立に、ハロゲン原子、無置換の環形成炭素数6~14のアリール基、無置換の環形成原子数5~14の複素環基、無置換の炭素数1~6のアルキル基、無置換の炭素数1~6のハロゲン化アルキル基、無置換の炭素数3~6のアルキルシリル基、無置換の炭素数1~6のアルコキシ基、無置換の環形成炭素数6~14のアリールオキシ基、無置換の炭素数2~12のアルキルアミノ基、無置換の炭素数1~6のアルキルチオ基、または無置換の環形成炭素数6~14のアリールチオ基であることが好ましい。
 前記一般式(2-1)及び(2-2)において、R131~R140及びR161~R168は、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~14のアリール基、置換もしくは無置換の環形成原子数5~14の複素環基、または置換もしくは無置換の炭素数1~6のアルキル基であることが好ましく、水素原子、置換もしくは無置換の環形成炭素数6~14のアリール基、または置換もしくは無置換の炭素数1~6のアルキル基であることがより好ましく、水素原子、または置換もしくは無置換の炭素数1~6のアルキル基であることがさらに好ましい。
 前記一般式(2-1)及び(2-2)において、置換基としてのR131~R140及びR161~R168は、それぞれ独立に、無置換の環形成炭素数6~14のアリール基、または無置換の炭素数1~6のアルキル基であることがより好ましい。
 前記一般式(2-1)において、R137は、置換基であり、置換基としてのR137は、置換もしくは無置換の環形成炭素数6~14のアリール基、または置換もしくは無置換の炭素数1~6のアルキル基であり、R131~R136及びR138~R140は、水素原子であることも好ましい。
 前記一般式(2-1)及び(2-2)において、R131~R140及びR161~R168は、水素原子であることも好ましい。
・第二の化合物の製造方法
 第二の化合物は、例えば、後述する実施例に記載の方法により製造することができる。本実施形態に係る第二の化合物は、後述する実施例で説明する反応に倣い、目的物に合わせた既知の代替反応や原料を用いることで、製造することができる。
 本実施形態に係る第二の化合物(一般式(2)で表される化合物)の具体例を以下に示す。なお、本発明における第二の化合物は、これらの具体例に限定されない。Meはメチル基を示す。
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000141
・遅延蛍光性
 遅延蛍光については、「有機半導体のデバイス物性」(安達千波矢編、講談社発行)の261~268ページで解説されている。その文献の中で、蛍光発光材料の励起一重項状態と励起三重項状態のエネルギー差ΔE13を小さくすることができれば、通常は遷移確率が低い励起三重項状態から励起一重項状態への逆エネルギー移動が高効率で生じ、熱活性化遅延蛍光(ThermallyActivated delayed Fluore
scence, TADF)が発現すると説明されている。さらに、当該文献中の図10
.38で、遅延蛍光の発生メカニズムが説明されている。本実施形態における第二の化合物は、このようなメカニズムで発生する熱活性化遅延蛍光を示す化合物であることが好ましい。
 一般に、遅延蛍光の発光は過渡PL(Photo Luminescence)測定により確認できる。
 過渡PL測定から得た減衰曲線に基づいて遅延蛍光の挙動を解析することもできる。過渡PL測定とは、試料にパルスレーザーを照射して励起させ、照射を止めた後のPL発光の減衰挙動(過渡特性)を測定する手法である。TADF材料におけるPL発光は、最初のPL励起で生成する一重項励起子からの発光成分と、三重項励起子を経由して生成する一重項励起子からの発光成分に分類される。最初のPL励起で生成する一重項励起子の寿命は、ナノ秒オーダーであり、非常に短い。そのため、当該一重項励起子からの発光は、パルスレーザーを照射後、速やかに減衰する。
 一方、遅延蛍光は、寿命の長い三重項励起子を経由して生成する一重項励起子からの発光のため、ゆるやかに減衰する。このように最初のPL励起で生成する一重項励起子からの発光と、三重項励起子を経由して生成する一重項励起子からの発光とでは、時間的に大きな差がある。そのため、遅延蛍光由来の発光強度を求めることができる。
 図2には、過渡PLを測定するための例示的装置の概略図が示されている。図2を用いた過渡PLの測定方法、および遅延蛍光の挙動解析の一例を説明する。
 図2の過渡PL測定装置100は、所定波長の光を照射可能なパルスレーザー部101と、測定試料を収容する試料室102と、測定試料から放射された光を分光する分光器103と、2次元像を結像するためのストリークカメラ104と、2次元像を取り込んで解析するパーソナルコンピュータ105とを備える。なお、過渡PLの測定は、図2に記載の装置に限定されない。
 試料室102に収容される試料は、マトリックス材料に対し、ドーピング材料が12質量%の濃度でドープされた薄膜を石英基板に成膜することで得られる。
 試料室102に収容された薄膜試料に対し、パルスレーザー部101からパルスレーザーを照射してドーピング材料を励起させる。励起光の照射方向に対して90度の方向へ発光を取り出し、取り出した光を分光器103で分光し、ストリークカメラ104内で2次元像を結像する。その結果、縦軸が時間に対応し、横軸が波長に対応し、輝点が発光強度に対応する2次元画像を得ることができる。この2次元画像を所定の時間軸で切り出すと、縦軸が発光強度であり、横軸が波長である発光スペクトルを得ることができる。また、当該2次元画像を波長軸で切り出すと、縦軸が発光強度の対数であり、横軸が時間である減衰曲線(過渡PL)を得ることができる。
 例えば、マトリックス材料として、下記参考化合物H1を用い、ドーピング材料として下記参考化合物D1を用いて上述のようにして薄膜試料Aを作製し、過渡PL測定を行った。
Figure JPOXMLDOC01-appb-C000142
 ここでは、前述の薄膜試料A、および薄膜試料Bを用いて減衰曲線を解析した。薄膜試料Bは、マトリックス材料として下記参考化合物H2を用い、ドーピング材料として前記参考化合物D1を用いて、上述のようにして薄膜試料を作製した。
 図3には、薄膜試料Aおよび薄膜試料Bについて測定した過渡PLから得た減衰曲線が示されている。
Figure JPOXMLDOC01-appb-C000143
 上記したように過渡PL測定によって、縦軸を発光強度とし、横軸を時間とする発光減衰曲線を得ることができる。この発光減衰曲線に基づいて、光励起により生成した一重項励起状態から発光する蛍光と、三重項励起状態を経由し、逆エネルギー移動により生成する一重項励起状態から発光する遅延蛍光との、蛍光強度比を見積もることができる。遅延蛍光性の材料では、素早く減衰する蛍光の強度に対し、緩やかに減衰する遅延蛍光の強度の割合が、ある程度大きい。
 具体的には、遅延蛍光性の材料からの発光としては、Prompt発光(即時発光)と、Delay発光(遅延発光)とが存在する。Prompt発光(即時発光)とは、当該遅延蛍光性の材料が吸収する波長のパルス光(パルスレーザーから照射される光)で励起された後、当該励起状態から即座に観察される発光である。Delay発光(遅延発光)とは、当該パルス光による励起後、即座には観察されず、その後観察される発光である。
 Prompt発光とDelay発光の量とその比は、“Nature 492, 234-238, 2012”(参考文献1)に記載された方法と同様の方法により求めることができる。なお、Prompt発光とDelay発光の量の算出に使用される装置は、前記参考文献1に記載の装置、または図2に記載の装置に限定されない。
 また、本明細書では、第二の化合物の遅延蛍光性の測定には、次に示す方法により作製した試料を用いる。例えば、第二の化合物をトルエンに溶解し、自己吸収の寄与を取り除くため励起波長において吸光度が0.05以下の希薄溶液を調製する。また酸素による消光を防ぐため、試料溶液を凍結脱気した後にアルゴン雰囲気下で蓋付きのセルに封入することで、アルゴンで飽和された酸素フリーの試料溶液とする。
 上記試料溶液の蛍光スペクトルを分光蛍光光度計FP-8600(日本分光社製)で測定し、また同条件で9,10-ジフェニルアントラセンのエタノール溶液の蛍光スペクトルを測定する。両スペクトルの蛍光面積強度を用いて、Morris et al. J.Phys.Chem.80(1976)969中の(1)式により全蛍光量子収率を算出する。
 本実施形態においては、測定対象化合物(第二の化合物)のPrompt発光(即時発光)の量をXとし、Delay発光(遅延発光)の量をXとしたときに、X/Xの値が0.05以上であることが好ましい。
 本明細書における第二の化合物以外の化合物のPrompt発光とDelay発光の量とその比の測定も、第二の化合物のPrompt発光とDelay発光の量とその比の測定と同様である。
(第三の化合物)
 第三の化合物は、熱活性化遅延蛍光性の化合物でもよいし、熱活性化遅延蛍光性を示さない化合物でもよいが、熱活性遅延蛍光性を示さない化合物であることが好ましい。
 本実施形態において、第三の化合物は、下記一般式(3)で表される化合物である。
・一般式(3)で表される化合物
Figure JPOXMLDOC01-appb-C000144
 前記一般式(3)において、A31は、下記一般式(31a)、一般式(31b)、一般式(31c)、一般式(31d)、一般式(31e)又は一般式(31f)で表される基であり、
 R31~R38は、それぞれ独立に、水素原子もしくは置換基であり、R401~R404及びR409~R412は、それぞれ独立に、水素原子もしくは置換基であり、
 置換基としてのR31~R38並びに置換基としてのR401~R404及びR409~R412は、それぞれ独立に、
  ハロゲン原子、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の環形成原子数5~30の複素環基、
  置換もしくは無置換の炭素数1~30のアルキル基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
  置換もしくは無置換の炭素数2~30のアルケニル基、
  置換もしくは無置換の炭素数2~30のアルキニル基、
  置換もしくは無置換の炭素数3~30のアルキルシリル基、
  置換もしくは無置換の環形成炭素数6~60のアリールシリル基、
  置換もしくは無置換の環形成炭素数6~60のアリールホスホリル基、
  ヒドロキシ基、
  置換もしくは無置換の炭素数1~30のアルコキシ基、
  置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
  アミノ基、
  置換もしくは無置換の炭素数2~30のアルキルアミノ基、
  置換もしくは無置換の環形成炭素数6~60のアリールアミノ基、
  チオール基、
  置換もしくは無置換の炭素数1~30のアルキルチオ基、又は
  置換もしくは無置換の環形成炭素数6~30のアリールチオ基である。
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000147
 前記一般式(31a)、一般式(31b)、一般式(31c)、一般式(31d)、一般式(31e)及び一般式(31f)において、
 R310~R319は、それぞれ独立に、水素原子もしくは置換基であり、
 R320~R329は、それぞれ独立に、水素原子もしくは置換基であり、
 R330~R339は、それぞれ独立に、水素原子もしくは置換基であり、
 R340~R349は、それぞれ独立に、水素原子もしくは置換基であり、
 R350~R359は、それぞれ独立に、水素原子もしくは置換基であり、
 R360~R369は、それぞれ独立に、水素原子もしくは置換基であり、
 置換基としてのR310~R319、R320~R329、R330~R339、R340~R349、R350~R359及びR360~R369は、それぞれ独立に、前記一般式(3)における置換基としてのR31~R38並びに置換基としてのR401~R404及びR409~R412と同義である。*は、それぞれ独立に、前記一般式(3)中、R401~R404を有するベンゼン環との結合位置を表す。
・第三の化合物の製造方法
 第三の化合物(一般式(3)で表される化合物)は、例えば、後述する実施例に記載の方法により製造することができる。本実施形態に係る第三の化合物は、後述する実施例で説明する反応に倣い、目的物に合わせた既知の代替反応や原料を用いることで、製造することができる。
・第三の化合物の具体例
 本実施形態に係る第三の化合物(一般式(3)で表される化合物)の具体例を以下に示す。なお、本発明における第三の化合物は、これらの具体例に限定されない。
Figure JPOXMLDOC01-appb-C000148
<発光層における第一の化合物、第二の化合物、及び第三の化合物の関係>
 本実施形態の有機EL素子1において、発光層5における第一の化合物の一重項エネルギーS(M1)と、第二の化合物の一重項エネルギーS(M2)と、第三の化合物の一重項エネルギーS(M3)と、は、下記数式(数1)の関係を満たす。
   S(M3)>S(M2)>S(M1)   …(数1)
 発光層5における第一の化合物の77[K]におけるエネルギーギャップT77K(M1)と、第二の化合物の77[K]におけるエネルギーギャップT77K(M2)と、第三の化合物の77[K]におけるエネルギーギャップT77K(M3)とは、下記数式(数2)の関係を満たすことが好ましい。
   T77K(M3)>T77K(M2)>T77K(M1)   …(数2)
 本実施形態において、前記第二の化合物の一重項エネルギーS1(M2)と、前記第二の化合物の77[K]におけるエネルギーギャップT77K(M2)との差ΔST(M2)は、下記数式(数1A)~(数1D)のいずれかの関係を満たすことが好ましい。
ΔST(M2)=S(M2)-T77K(M2)<0.3eV(数1A)
ΔST(M2)=S(M2)-T77K(M2)<0.2eV(数1B)
ΔST(M2)=S(M2)-T77K(M2)<0.1eV(数1C)
ΔST(M2)=S(M2)-T77K(M2)<0.01eV(数1D)
 本実施形態において、前記第一の化合物の一重項エネルギーS(M1)と、第一の化合物の77[K]におけるエネルギーギャップT77K(M1)との差ΔST(M1)は、下記数式(数1E)の関係を満たすことが好ましい。
 ΔST(M1)=S(M1)-T77K(M1)>0.3[eV] …(数1E)
 本実施形態において、第三の化合物の一重項エネルギーS(M3)と、第三の化合物の77[K]におけるエネルギーギャップT77K(M3)との差ΔST(M3)は、下記数式(数1F)の関係を満たすことが好ましい。
 ΔST(M3)=S(M3)-T77K(M3)>0.3[eV] …(数1F)
 本実施形態において、第三の化合物の77[K]におけるエネルギーギャップT77K(M3)は、2.9eV以上であることが好ましい。第三の化合物が、このようなエネルギーギャップT77K(M3)を有することで、発光層において、第二の化合物(遅延蛍光性の化合物)の三重項エネルギーを発光層に有効に閉じ込めることができると考えられる。
・TADF機構(メカニズム)
 本実施形態の有機EL素子1では、第二の化合物としてΔST(M2)が小さい化合物を用いることが好ましく、外部から与えられる熱エネルギーによって、第二の化合物の三重項準位から第二の化合物の一重項準位への逆項間交差が起こり易くなる。有機EL素子内部の電気励起された励起子の励起三重項状態が、逆項間交差によって、励起一重項状態へスピン交換がされるエネルギー状態変換機構をTADF機構と呼ぶ。
 図4は、発光層5における第一の化合物、第二の化合物、及び第三の化合物のエネルギー準位の関係の一例を示す図である。図4において、S0は、基底状態を表す。S1(M1)は、第一の化合物の最低励起一重項状態を表し、T1(M1)は、第一の化合物の最低励起三重項状態を表す。S1(M2)は、第二の化合物の最低励起一重項状態を表し、T1(M2)は、第二の化合物の最低励起三重項状態を表す。S1(M3)は、第三の化合物の最低励起一重項状態を表し、T1(M3)は、第三の化合物の最低励起三重項状態を表す。図4中のS1(M2)からS1(M1)へ向かう破線の矢印は、第二の化合物の最低励起一重項状態から第一の化合物の最低励起一重項状態へのフェルスター型エネルギー移動を表す。
 図4に示すように、第二の化合物としてΔST(M2)の小さな化合物を用いると、最低励起三重項状態T1(M2)は、熱エネルギーにより、最低励起一重項状態S1(M2)に逆項間交差が可能である。そして、第二の化合物の最低励起一重項状態S1(M2)から第一の化合物へのフェルスター型エネルギー移動が生じ、最低励起一重項状態S1(M1)が生成する。この結果、第一の化合物の最低励起一重項状態S1(M1)からの蛍光発光を観測することができる。このTADFメカニズムによる遅延蛍光を利用することによっても、理論的に内部量子効率を100%まで高めることができると考えられている。
・三重項エネルギーと77[K]におけるエネルギーギャップとの関係
 ここで、三重項エネルギーと77[K]におけるエネルギーギャップとの関係について説明する。本実施形態では、77[K]におけるエネルギーギャップは、通常定義される三重項エネルギーとは異なる点がある。
 三重項エネルギーの測定は、次のようにして行われる。まず、測定対象となる化合物を適切な溶媒中に溶解した溶液を石英ガラス管内に封入した試料を作製する。この試料について、低温(77[K])で燐光スペクトル(縦軸:燐光発光強度、横軸:波長とする。)を測定し、この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値に基づいて、所定の換算式から三重項エネルギーを算出する。
 ここで、本実施形態に係る化合物の内、熱活性化遅延蛍光性の化合物は、ΔSTが小さい化合物であることが好ましい。ΔSTが小さいと、低温(77[K])状態でも、項間交差、及び逆項間交差が起こりやすく、励起一重項状態と励起三重項状態とが混在する。その結果、上記と同様にして測定されるスペクトルは、励起一重項状態、及び励起三重項状態の両者からの発光を含んでおり、いずれの状態から発光したのかについて峻別することは困難であるが、基本的には三重項エネルギーの値が支配的と考えられる。
 そのため、本実施形態では、通常の三重項エネルギーTと測定手法は同じであるが、その厳密な意味において異なることを区別するため、次のようにして測定される値をエネルギーギャップT77Kと称する。測定対象となる化合物をEPA(ジエチルエーテル:イソペンタン:エタノール=5:5:2(容積比))中に、濃度が10μmol/Lとなるように溶解し、この溶液を石英セル中に入れて測定試料とする。この測定試料について、低温(77[K])で燐光スペクトル(縦軸:燐光発光強度、横軸:波長とする。)を測定し、この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]に基づいて、次の換算式(F1)から算出されるエネルギー量を77[K]におけるエネルギーギャップT77Kとする。
  換算式(F1):T77K[eV]=1239.85/λedge
 燐光スペクトルの短波長側の立ち上がりに対する接線は以下のように引く。燐光スペクトルの短波長側から、スペクトルの極大値のうち、最も短波長側の極大値までスペクトル曲線上を移動する際に、長波長側に向けて曲線上の各点における接線を考える。この接線は、曲線が立ち上がるにつれ(つまり縦軸が増加するにつれ)、傾きが増加する。この傾きの値が極大値をとる点において引いた接線(すなわち変曲点における接線)が、当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
 なお、スペクトルの最大ピーク強度の15%以下のピーク強度をもつ極大点は、上述の最も短波長側の極大値には含めず、最も短波長側の極大値に最も近い、傾きの値が極大値をとる点において引いた接線を当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
 燐光の測定には、(株)日立ハイテクノロジー製のF-4500形分光蛍光光度計本体を用いることができる。なお、測定装置はこの限りではなく、冷却装置、及び低温用容器と、励起光源と、受光装置とを組み合わせることにより、測定してもよい。
・一重項エネルギーS
 溶液を用いた一重項エネルギーSの測定方法(溶液法と称する場合がある。)としては、下記の方法が挙げられる。
 測定対象となる化合物の10μmol/Lトルエン溶液を調製して石英セルに入れ、常温(300K)でこの試料の吸収スペクトル(縦軸:吸収強度、横軸:波長とする。)を測定する。この吸収スペクトルの長波長側の立ち下がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を次に示す換算式(F2)に代入して一重項エネルギーを算出する。
  換算式(F2):S[eV]=1239.85/λedge
 吸収スペクトル測定装置としては、例えば、日立社製の分光光度計(装置名:U3310)が挙げられるが、これに限定されない。
 吸収スペクトルの長波長側の立ち下がりに対する接線は以下のように引く。吸収スペクトルの極大値のうち、最も長波長側の極大値から長波長方向にスペクトル曲線上を移動する際に、曲線上の各点における接線を考える。この接線は、曲線が立ち下がるにつれ(つまり縦軸の値が減少するにつれ)、傾きが減少しその後増加することを繰り返す。傾きの値が最も長波長側(ただし、吸光度が0.1以下となる場合は除く)で極小値をとる点において引いた接線を当該吸収スペクトルの長波長側の立ち下がりに対する接線とする。
 なお、吸光度の値が0.2以下の極大点は、上記最も長波長側の極大値には含めない。
 本実施形態では、一重項エネルギーSと、77[K]におけるエネルギーギャップT77Kとの差(S-T77K)をΔSTとして定義する。
 本実施形態の有機EL素子1を発光させたときに、発光層5において、主に蛍光発光性の化合物が発光していることが好ましい。
 本実施形態の有機EL素子1は、赤色発光または緑色発光することが好ましい。
 本実施形態の有機EL素子1が緑色発光する場合、有機EL素子1から発光する光の主ピーク波長は、500nm以上560nm以下であることが好ましい。
 本実施形態の有機EL素子1が赤色発光する場合、有機EL素子1から発光する光の主ピーク波長は、600nm以上660nm以下であることが好ましい。
 本実施形態の有機EL素子1が青色発光する場合、有機EL素子1から発光する光の主ピーク波長は、430nm以上480nm以下であることが好ましい。
 有機EL素子1から発光する光の主ピーク波長の測定は、以下のようにして行う。
 電流密度が10mA/cmとなるように有機EL素子1に電圧を印加した時の分光放射輝度スペクトルを分光放射輝度計CS-2000(コニカミノルタ社製)で計測する。
 得られた分光放射輝度スペクトルにおいて、発光強度が最大となる発光スペクトルのピーク波長を測定し、これを主ピーク波長(単位:nm)とする。
・発光層の膜厚
 本実施形態の有機EL素子1における発光層5の膜厚は、好ましくは5nm以上50nm以下、より好ましくは7nm以上50nm以下、最も好ましくは10nm以上50nm以下である。5nm以上であると、発光層形成及び色度の調整が容易になりやすく、50nm以下であると、駆動電圧の上昇が抑制されやすい。
・発光層における化合物の含有率
 本実施形態の有機EL素子1では、発光層5において、第一の化合物の含有率は、0.01質量%以上10質量%以下であることが好ましく、0.01質量%以上5質量%以下であることがより好ましく、0.01質量%以上1質量%以下であることがさらに好ましい。
 第二の化合物の含有率は、10質量%以上80質量%以下であることが好ましく、10質量%以上60質量%以下であることがより好ましく、20質量%以上60質量%であることがさらに好ましい。
 第三の化合物の含有率は、10質量%以上80質量%以下であることが好ましい。
 発光層5における第一の化合物、第二の化合物、及び第三の化合物の合計含有率の上限は、100質量%である。なお、本実施形態は、発光層5に、第一の化合物、第二の化合物、及び第三の化合物以外の材料が含まれることを除外しない。
 発光層5は、第一の化合物を1種のみ含んでもよいし、2種以上含んでもよい。発光層5は、第二の化合物を1種のみ含んでもよいし、2種以上含んでもよい。発光層5は、第三の化合物を1種のみ含んでもよいし、2種以上含んでもよい。
 第一実施形態によれば、高性能な有機EL素子1が実現される。第一実施形態に係る有機EL素子1は、表示装置、及び発光装置等の電子機器に使用できる。
 有機EL素子1の構成についてさらに説明する。以下、符号の記載は省略することがある。
(基板)
 基板は、有機EL素子の支持体として用いられる。基板としては、例えば、ガラス、石英、及びプラスチック等を用いることができる。また、可撓性基板を用いてもよい。可撓性基板とは、折り曲げることができる(フレキシブル)基板のことであり、例えば、プラスチック基板等が挙げられる。プラスチック基板を形成する材料としては、例えば、ポリカーボネート、ポリアリレート、ポリエーテルスルフォン、ポリプロピレン、ポリエステル、ポリフッ化ビニル、ポリ塩化ビニル、ポリイミド、及びポリエチレンナフタレート等が挙げられる。また、無機蒸着フィルムを用いることもできる。
(陽極)
 基板上に形成される陽極には、仕事関数の大きい(具体的には4.0eV以上)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。具体的には、例えば、酸化インジウム-酸化スズ(ITO:Indium Tin Oxide)、珪素もしくは酸化珪素を含有した酸化インジウム-酸化スズ、酸化インジウム-酸化亜鉛、酸化タングステン、および酸化亜鉛を含有した酸化インジウム、グラフェン等が挙げられる。この他、金(Au)、白金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、チタン(Ti)、または金属材料の窒化物(例えば、窒化チタン)等が挙げられる。
 これらの材料は、通常、スパッタリング法により成膜される。例えば、酸化インジウム-酸化亜鉛は、酸化インジウムに対し1質量%以上10質量%以下の酸化亜鉛を加えたターゲットを用いることにより、スパッタリング法で形成することができる。また、例えば、酸化タングステン、および酸化亜鉛を含有した酸化インジウムは、酸化インジウムに対し酸化タングステンを0.5質量%以上5質量%以下、酸化亜鉛を0.1質量%以上1質量%以下含有したターゲットを用いることにより、スパッタリング法で形成することができる。その他、真空蒸着法、塗布法、インクジェット法、スピンコート法などにより作製してもよい。
 陽極上に形成されるEL層のうち、陽極に接して形成される正孔注入層は、陽極の仕事関数に関係なく正孔(ホール)注入が容易である複合材料を用いて形成されるため、電極材料として可能な材料(例えば、金属、合金、電気伝導性化合物、およびこれらの混合物、その他、元素周期表の第1族または第2族に属する元素も含む)を用いることができる。
 仕事関数の小さい材料である、元素周期表の第1族または第2族に属する元素、すなわちリチウム(Li)及びセシウム(Cs)等のアルカリ金属、マグネシウム(Mg)、カルシウム(Ca)及びストロンチウム(Sr)等のアルカリ土類金属、並びにこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)及びイッテルビウム(Yb)等の希土類金属並びにこれらを含む合金等を用いることもできる。なお、アルカリ金属、アルカリ土類金属、およびこれらを含む合金を用いて陽極を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。さらに、銀ペーストなどを用いる場合には、塗布法やインクジェット法などを用いることができる。
(陰極)
 陰極には、仕事関数の小さい(具体的には3.8eV以下)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。このような陰極材料の具体例としては、元素周期表の第1族または第2族に属する元素、すなわちリチウム(Li)及びセシウム(Cs)等のアルカリ金属、マグネシウム(Mg)、カルシウム(Ca)及びストロンチウム(Sr)等のアルカリ土類金属、並びにこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)及びイッテルビウム(Yb)等の希土類金属並びにこれらを含む合金等が挙げられる。
 なお、アルカリ金属、アルカリ土類金属、これらを含む合金を用いて陰極を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。また、銀ペーストなどを用いる場合には、塗布法やインクジェット法などを用いることができる。
 なお、電子注入層を設けることにより、仕事関数の大小に関わらず、Al、Ag、ITO、グラフェン、珪素もしくは酸化珪素を含有した酸化インジウム-酸化スズ等様々な導電性材料を用いて陰極を形成することができる。これらの導電性材料は、スパッタリング法やインクジェット法、スピンコート法等を用いて成膜することができる。
(正孔注入層)
 正孔注入層は、正孔注入性の高い物質を含む層である。正孔注入性の高い物質としては、モリブデン酸化物、チタン酸化物、バナジウム酸化物、レニウム酸化物、ルテニウム酸化物、クロム酸化物、ジルコニウム酸化物、ハフニウム酸化物、タンタル酸化物、銀酸化物、タングステン酸化物、マンガン酸化物等を用いることができる。
 また、正孔注入性の高い物質としては、低分子の有機化合物である4,4’,4’’-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’-ビス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ビフェニル(略称:DPAB)、4,4’-ビス(N-{4-[N’-(3-メチルフェニル)-N’-フェニルアミノ]フェニル}-N-フェニルアミノ)ビフェニル(略称:DNTPD)、1,3,5-トリス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ベンゼン(略称:DPA3B)、3-[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA1)、3,6-ビス[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA2)、3-[N-(1-ナフチル)-N-(9-フェニルカルバゾール-3-イル)アミノ]-9-フェニルカルバゾール(略称:PCzPCN1)等の芳香族アミン化合物等やジピラジノ[2,3-f:20,30-h]キノキサリン-2,3,6,7,10,11-ヘキサカルボニトリル(HAT-CN)も挙げられる。
 また、正孔注入性の高い物質としては、高分子化合物(オリゴマー、デンドリマー、ポリマー等)を用いることもできる。例えば、ポリ(N-ビニルカルバゾール)(略称:PVK)、ポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N-(4-{N’-[4-(4-ジフェニルアミノ)フェニル]フェニル-N’-フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)ベンジジン](略称:Poly-TPD)などの高分子化合物が挙げられる。また、ポリ(3,4-エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(PEDOT/PSS)、ポリアニリン/ポリ(スチレンスルホン酸)(PAni/PSS)等の酸を添加した高分子化合物を用いることもできる。
(正孔輸送層)
 正孔輸送層は、正孔輸送性の高い物質を含む層である。正孔輸送層には、芳香族アミン化合物、カルバゾール誘導体、アントラセン誘導体等を使用する事ができる。具体的には、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略称:NPB)やN,N’-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン(略称:TPD)、4-フェニル-4’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:BAFLP)、4,4’-ビス[N-(9,9-ジメチルフルオレン-2-イル)-N-フェニルアミノ]ビフェニル(略称:DFLDPBi)、4,4’,4’’-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’-ビス[N-(スピロ-9,9’-ビフルオレン-2-イル)-N―フェニルアミノ]ビフェニル(略称:BSPB)などの芳香族アミン化合物等を用いることができる。ここに述べた物質は、主に10-6cm/(V・s)以上の正孔移動度を有する物質である。
 正孔輸送層には、CBP、9-[4-(N-カルバゾリル)]フェニル-10-フェニルアントラセン(CzPA)、9-フェニル-3-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(PCzPA)のようなカルバゾール誘導体や、t-BuDNA、DNA、DPAnthのようなアントラセン誘導体を用いても良い。ポリ(N-ビニルカルバゾール)(略称:PVK)やポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)等の高分子化合物を用いることもできる。
 但し、電子よりも正孔の輸送性の高い物質であれば、これら以外のものを用いてもよい。なお、正孔輸送性の高い物質を含む層は、単層のものだけでなく、上記物質からなる層が二層以上積層したものとしてもよい。
 正孔輸送層を二層以上配置する場合、エネルギーギャップのより大きい材料を発光層に近い側に配置することが好ましい。このような材料として、後記する実施例で用いた、HT-2が挙げられる。
(電子輸送層)
 電子輸送層は、電子輸送性の高い物質を含む層である。電子輸送層には、1)アルミニウム錯体、ベリリウム錯体、亜鉛錯体等の金属錯体、2)イミダゾール誘導体、ベンゾイミダゾール誘導体、アジン誘導体、カルバゾール誘導体、フェナントロリン誘導体等の複素芳香族化合物、3)高分子化合物を使用することができる。具体的には低分子の有機化合物として、Alq、トリス(4-メチル-8-キノリノラト)アルミニウム(略称:Almq)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(略称:BeBq)、BAlq、Znq、ZnPBO、ZnBTZなどの金属錯体等を用いることができる。また、金属錯体以外にも、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、1,3-ビス[5-(ptert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、3-(4-tert-ブチルフェニル)-4-フェニル-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:TAZ)、3-(4-tert-ブチルフェニル)-4-(4-エチルフェニル)-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:p-EtTAZ)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)、4,4’-ビス(5-メチルベンゾオキサゾール-2-イル)スチルベン(略称:BzOs)などの複素芳香族化合物も用いることができる。本実施態様においては、ベンゾイミダゾール化合物を好適に用いることができる。ここに述べた物質は、主に10-6cm/(V・s)以上の電子移動度を有する物質である。なお、正孔輸送性よりも電子輸送性の高い物質であれば、上記以外の物質を電子輸送層として用いてもよい。また、電子輸送層は、単層で構成されていてもよいし、上記物質からなる層が二層以上積層されて構成されていてもよい。
 また、電子輸送層には、高分子化合物を用いることもできる。例えば、ポリ[(9,9-ジヘキシルフルオレン-2,7-ジイル)-co-(ピリジン-3,5-ジイル)](略称:PF-Py)、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(2,2’-ビピリジン-6,6’-ジイル)](略称:PF-BPy)などを用いることができる。
(電子注入層)
 電子注入層は、電子注入性の高い物質を含む層である。電子注入層には、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)、リチウム酸化物(LiOx)等のようなアルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。その他、電子輸送性を有する物質にアルカリ金属、アルカリ土類金属、またはそれらの化合物を含有させたもの、具体的にはAlq中にマグネシウム(Mg)を含有させたもの等を用いてもよい。なお、この場合には、陰極からの電子注入をより効率良く行うことができる。
 あるいは、電子注入層に、有機化合物と電子供与体(ドナー)とを混合してなる複合材料を用いてもよい。このような複合材料は、電子供与体によって有機化合物に電子が発生するため、電子注入性および電子輸送性に優れている。この場合、有機化合物としては、発生した電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述した電子輸送層を構成する物質(金属錯体や複素芳香族化合物等)を用いることができる。電子供与体としては、有機化合物に対し電子供与性を示す物質であればよい。具体的には、アルカリ金属やアルカリ土類金属や希土類金属が好ましく、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金属酸化物やアルカリ土類金属酸化物が好ましく、リチウム酸化物、カルシウム酸化物、バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。
(層形成方法)
 本実施形態の有機EL素子の各層の形成方法としては、上記で特に言及した以外には制限されないが、真空蒸着法、スパッタリング法、プラズマ法、イオンプレーティング法などの乾式成膜法や、スピンコーティング法、ディッピング法、フローコーティング法、インクジェット法などの湿式成膜法などの公知の方法を採用することができる
(膜厚)
 本実施形態の有機EL素子の各有機層の膜厚は、上記で特に言及した以外には制限されないが、一般に膜厚が薄すぎるとピンホール等の欠陥が生じやすく、逆に厚すぎると高い印加電圧が必要となり効率が悪くなるため、通常は数nmから1μmの範囲が好ましい。
〔第二実施形態〕
[電子機器]
 本実施形態に係る電子機器は、上述の実施形態の有機EL素子を搭載している。電子機器としては、例えば、表示装置及び発光装置等が挙げられる。表示装置としては、例えば、表示部品(例えば、有機ELパネルモジュール等)、テレビ、携帯電話、タブレット、及びパーソナルコンピュータ等が挙げられる。発光装置としては、例えば、照明及び車両用灯具等が挙げられる。
〔実施形態の変形〕
 なお、本発明は、上述の実施形態に限定されず、本発明の目的を達成できる範囲での変更、改良等は、本発明に含まれる。
 例えば、発光層は、1層に限られず、複数の発光層が積層されていてもよい。有機EL素子が複数の発光層を有する場合、少なくとも1つの発光層が上記実施形態で説明した条件を満たしていればよい。例えば、その他の発光層が、蛍光発光型の発光層であっても、三重項励起状態から直接基底状態への電子遷移による発光を利用した燐光発光型の発光層であってもよい。
 また、有機EL素子が複数の発光層を有する場合、これらの発光層が互いに隣接して設けられていてもよいし、中間層を介して複数の発光ユニットが積層された、いわゆるタンデム型の有機EL素子であってもよい。
 また、発光層の陽極側、及び陰極側の少なくとも一方に障壁層を隣接させて設けることが好ましい。障壁層は、発光層に接して配置され、正孔、電子、及び励起子の少なくともいずれかを阻止することが好ましい。
 具体的には、本実施形態では、発光層の陽極側に、第一の層として、電子障壁層を発光層に隣接させて設ける。第一の層は一般式(A)で表される化合物を含むので、第一の層が電子障壁層であると、イオン化ポテンシャルIpがより深く(絶対値が大きく)なると考えられる。その結果、効率よく電子をブロックすることができる。
 また、発光層の陰極側に、本実施形態では、第二の層として、正孔障壁層を発光層に隣接させて設ける。第二の層は一般式(B)で表される化合物を含むので、第二の層が正孔障壁層であると、電子アフィニティ準位Afがより浅く(絶対値が小さく)なると考えられる。その結果、効率よく正孔をブロックすることができる。
 発光層と電子障壁層とは接合していることが好ましい。発光層と正孔障壁層とは接合していることが好ましい。
 その他、本発明の実施における具体的な構造、及び形状等は、本発明の目的を達成できる範囲で他の構造等としてもよい。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前に記載される数値を下限値とし、「~」の後に記載される数値を上限値として含む範囲を意味する。
 本明細書において、Rx及びRyが互いに結合して環を形成するとは、例えば、Rx及びRyが炭素原子、窒素原子、酸素原子、硫黄原子、リン原子又はケイ素原子を含み、Rxに含まれる原子(炭素原子、窒素原子、酸素原子、硫黄原子、リン原子又はケイ素原子)と、Ryに含まれる原子(炭素原子、窒素原子、酸素原子、硫黄原子、リン原子又はケイ素原子)とが、単結合、二重結合、三重結合、又は二価の連結基を介して結合し、環形成原子数が5以上の環(具体的には、例えば、複素環又は芳香族炭化水素環)を形成することを意味する。xは、数字、文字、又は、数字と文字との組み合わせである。yは、数字、文字、又は、数字と文字との組み合わせである。
 二価の連結基としては特に制限されないが、例えば、-O-、-CO-、-CO-、-S-、-SO-、-SO-、-NH-、-NRa-、及びこれらの連結基を2以上組み合わせた基等が挙げられる。
 本明細書において、複素環の具体例としては、特筆しない限り、後述の「一般式中における各置換基についての説明」で例示した「ヘテロアリール基Sub」から結合手を除いた環構造(複素環)が挙げられる。これらの複素環は置換基を有していてもよい。
 本明細書において、芳香族炭化水素環の具体例としては、特筆しない限り、後述の「一般式中における各置換基についての説明」で例示した「アリール基Sub」から結合手を除いた環構造(芳香族炭化水素環)が挙げられる。これらの芳香族炭化水素環は置換基を有していてもよい。
 Raとしては、例えば、後述の「一般式中における各置換基についての説明」で例示した置換もしくは無置換の炭素数1~30のアルキル基Sub、置換もしくは無置換の環形成炭素数6~30のアリール基Sub、置換もしくは無置換の環形成原子数5~30のヘテロアリール基Sub等が挙げられる。
 例えば、Rx及びRyが互いに結合して環を形成するとは、下記一般式(E1)で表される分子構造において、Rxに含まれる原子と、Ry1に含まれる原子とが、一般式(
E2)で表される環(環構造)Eを形成すること;一般式(F1)で表される分子構造において、Rxに含まれる原子と、Ry1に含まれる原子とが、一般式(F2)で表され
る環Fを形成すること;一般式(G1)で表される分子構造において、Rxに含まれる原子と、Ry1に含まれる原子とが、一般式(G2)で表される環Gを形成すること;一
般式(H1)で表される分子構造において、Rxに含まれる原子と、Ry1に含まれる
原子とが、一般式(H2)で表される環Hを形成すること;一般式(I1)で表される分子構造において、Rxに含まれる原子と、Ry1に含まれる原子とが、一般式(I2)
で表される環Iを形成すること;を意味する。
 一般式(E1)~(I1)中、*は、それぞれ独立に、一分子中の他の原子との結合位置を表す。一般式(E1)中の2つの*は一般式(E2)中の2つの*にそれぞれ対応し、一般式(F1)中の2つの*は一般式(F2)中の2つの*にそれぞれ対応し、一般式(G1)中の2つの*は一般式(G2)中の2つの*にそれぞれ対応し、一般式(H1)中の2つの*は一般式(H2)中の2つの*にそれぞれ対応し、一般式(I1)中の2つの*は一般式(I2)中の2つの*にそれぞれ対応する。
Figure JPOXMLDOC01-appb-C000149
Figure JPOXMLDOC01-appb-C000150
 一般式(E2)~(I2)で表される分子構造において、E~Iはそれぞれ環構造(前記環形成原子数が5以上の環)を表す。一般式(E2)~(I2)中、*は、それぞれ独立に、一分子中の他の原子との結合位置を表す。一般式(E2)中の2つの*は一般式(E1)中の2つの*にそれぞれ対応する。一般式(F2)~(I2)中の2つの*についても同様に、一般式(F1)~(I1)中の2つの*にそれぞれ対応する。
 例えば、一般式(E1)において、Rx及びRyが互いに結合して一般式(E2)中の環Eを形成し、環Eが無置換のベンゼン環である場合、一般式(E1)で表される分子構造は、下記一般式(E3)で表される分子構造になる。ここで、一般式(E3)中の2つの*は、それぞれ独立に、一般式(E2)および一般式(E1)中の2つの*に対応する。
 例えば、一般式(E1)において、Rx及びRyが互いに結合して一般式(E2)中の環Eを形成し、環Eが無置換のピロール環である場合、一般式(E1)で表される分子構造は、下記一般式(E4)で表される分子構造になる。ここで、一般式(E4)中の2つの*は、それぞれ独立に、一般式(E2)および一般式(E1)中の2つの*に対応する。一般式(E3)及び(E4)中、*は、それぞれ独立に、一分子中の他の原子との結合位置を表す。
Figure JPOXMLDOC01-appb-C000151
 本明細書において、環形成炭素数とは、原子が環状に結合した構造の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子のうちの炭素原子の数を表す。当該環が置換基によって置換される場合、置換基に含まれる炭素は環形成炭素数には含まない。以下で記載される「環形成炭素数」については、特筆しない限り同様とする。例えば、ベンゼン環は環形成炭素数が6であり、ナフタレン環は環形成炭素数が10であり、ピリジニル基は環形成炭素数が5であり、フラニル基は環形成炭素数4である。また、ベンゼン環やナフタレン環に置換基として例えばアルキル基が置換している場合、当該アルキル基の炭素数は、環形成炭素数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の炭素数は環形成炭素数の数に含めない。
 本明細書において、環形成原子数とは、原子が環状に結合した構造(例えば単環、縮合環、環集合)の化合物(例えば単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子の数を表す。環を構成しない原子や、当該環が置換基によって置換される場合の置換基に含まれる原子は環形成原子数には含まない。以下で記載される「環形成原子数」については、特筆しない限り同様とする。例えば、ピリジン環は、環形成原子数が6であり、キナゾリン環は、環形成原子数が10であり、フラン環は、環形成原子数が5である。ピリジン環やキナゾリン環の炭素原子にそれぞれ結合している水素原子や置換基を構成する原子については、環形成原子数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の原子数は環形成原子数の数に含めない。
・本明細書における一般式中における各置換基についての説明(各置換基の説明)
 本明細書におけるアリール基(芳香族炭化水素基と称する場合がある。)は、例えば、
アリール基Subであり、アリール基Subは、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、アントリル基、フェナントリル基、フルオレニル基、ピレニル基、クリセニル基、フルオランテニル基、ベンゾ[a]アントリル基、ベンゾ[c]フェナントリル基、トリフェニレニル基、ベンゾ[k]フルオランテニル基、ベンゾ[g]クリセニル基、ベンゾ[b]トリフェニレニル基、ピセニル基、及びペリレニル基からなる群から選択される少なくともいずれかの基である。
 本明細書におけるアリール基Subとしては、環形成炭素数が、6~30であることが好ましく、6~20であることがより好ましく、6~14であることがさらに好ましく、6~12であることがよりさらに好ましい。上記アリール基Subの中でもフェニル基、ビフェニル基、ナフチル基、フェナントリル基、ターフェニル基、及びフルオレニル基が好ましい。1-フルオレニル基、2-フルオレニル基、3-フルオレニル基及び4-フルオレニル基については、9位の炭素原子に、後述する本明細書における置換もしくは無置換のアルキル基Subや、置換もしくは無置換のアリール基Subが置換されていることが好ましい。
 本明細書におけるヘテロアリール基(複素環基、ヘテロ芳香族環基、または芳香族複素環基と称する場合がある。)は、例えば、複素環基Subである。複素環基Subは、ヘテロ原子として、窒素、硫黄、酸素、ケイ素、セレン原子、及びゲルマニウム原子からなる群から選択される少なくともいずれかの原子を含む基である。複素環基Subは、ヘテロ原子として、窒素、硫黄、及び酸素からなる群から選択される少なくともいずれかの原子を含む基であることが好ましい。
 本明細書における複素環基Subは、例えば、ピリジル基、ピリミジニル基、ピラジニル基、ピリダジニル基、トリアジニル基、キノリル基、イソキノリニル基、ナフチリジニル基、フタラジニル基、キノキサリニル基、キナゾリニル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、ピロリル基、イミダゾリル基、ピラゾリル基、トリアゾリル基、テトラゾリル基、インドリル基、ベンズイミダゾリル基、インダゾリル基、イミダゾピリジニル基、ベンズトリアゾリル基、カルバゾリル基、フリル基、チエニル基、オキサゾリル基、チアゾリル基、イソキサゾリル基、イソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、ベンゾフラニル基、ベンゾチエニル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、ベンゾイソキサゾリル基、ベンゾイソチアゾリル基、ベンゾオキサジアゾリル基、ベンゾチアジアゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、ピペリジニル基、ピロリジニル基、ピペラジニル基、モルホリル基、フェナジニル基、フェノチアジニル基、及びフェノキサジニル基からなる群から選択される少なくともいずれかの基である。
 本明細書における複素環基Subとしては、環形成原子数が、5~30であることが好ましく、5~20であることがより好ましく、5~14であることがさらに好ましい。上記複素環基Subの中でも1-ジベンゾフラニル基、2-ジベンゾフラニル基、3-ジベンゾフラニル基、4-ジベンゾフラニル基、1-ジベンゾチエニル基、2-ジベンゾチエニル基、3-ジベンゾチエニル基、4-ジベンゾチエニル基、1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、及び9-カルバゾリル基がさらにより好ましい。1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基及び4-カルバゾリル基については、9位の窒素原子に、本明細書における置換もしくは無置換のアリール基Subや、置換もしくは無置換の複素環基Subが置換していることが好ましい。
 また、本明細書において、複素環基Subは、例えば、下記一般式(XY-1)~(XY-18)で表される部分構造から誘導される基であってもよい。
Figure JPOXMLDOC01-appb-C000152
Figure JPOXMLDOC01-appb-C000153
Figure JPOXMLDOC01-appb-C000154
 前記一般式(XY-1)~(XY-18)において、X及びYは、それぞれ独立に、ヘテロ原子であり、酸素原子、硫黄原子、セレン原子、ケイ素原子、またはゲルマニウム原子であることが好ましい。前記一般式(XY-1)~(XY-18)で表される部分構造は、任意の位置で結合手を有して複素環基となり、この複素環基は、置換基を有していてもよい。
 また、本明細書において、複素環基Subは、例えば、下記一般式(XY-19)~(XY-22)で表される基であってもよい。また、結合手の位置も適宜変更され得る。
Figure JPOXMLDOC01-appb-C000155
 本明細書におけるアルキル基は、直鎖のアルキル基、分岐鎖のアルキル基または環状のアルキル基のいずれであってもよい。
 本明細書におけるアルキル基は、例えば、アルキル基Subである。
 本明細書における直鎖のアルキル基は、例えば、直鎖のアルキル基Sub31である。
 本明細書における分岐鎖のアルキル基は、例えば、分岐鎖のアルキル基Sub32である。
 本明細書における環状のアルキル基は、例えば、環状のアルキル基Sub33である。
 アルキル基Subは、例えば、直鎖のアルキル基Sub31、分岐鎖のアルキル基Sub32、及び環状のアルキル基Sub33からなる群から選択される少なくともいずれかの基である。
 直鎖のアルキル基Sub31または分岐鎖のアルキル基Sub32は、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、ネオペンチル基、アミル基、イソアミル基、1-メチルペンチル基、2-メチルペンチル基、1-ペンチルヘキシル基、1-ブチルペンチル基、1-ヘプチルオクチル基、及び3-メチルペンチル基からなる群から選択される少なくともいずれかの基である。
 本明細書における直鎖のアルキル基Sub31または分岐鎖のアルキル基Sub32の炭素数は、1~30であることが好ましく、1~20であることがより好ましく、1~10であることがさらに好ましく、1~6であることがよりさらに好ましい。上記直鎖のアルキル基Sub31または分岐鎖のアルキル基Sub32としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、アミル基、イソアミル基、及びネオペンチル基がさらにより好ましい。
 本明細書における環状のアルキル基Sub33は、例えば、シクロアルキル基Sub331である。
 本明細書におけるシクロアルキル基Sub331は、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、4-メチルシクロヘキシル基、アダマンチル基、及びノルボルニル基からなる群から選択される少なくともいずれかの基である。シクロアルキル基Sub331の環形成炭素数は、3~30であることが好ましく、3~20であることがより好ましく、3~10であることがさらに好ましく、5~8であることがよりさらに好ましい。シクロアルキル基Sub331の中でも、シクロペンチル基やシクロヘキシル基がさらにより好ましい。
 本明細書におけるハロゲン化アルキル基は、例えば、ハロゲン化アルキル基Subであり、ハロゲン化アルキル基Subは、例えば、アルキル基Subが1以上のハロゲン原子、好ましくはフッ素原子で置換されたアルキル基である。
 本明細書におけるハロゲン化アルキル基Subは、例えば、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、トリフルオロメチルメチル基、トリフルオロエチル基、及びペンタフルオロエチル基からなる群から選択される少なくともいずれかの基である。
 本明細書における置換シリル基は、例えば、置換シリル基Subであり、置換シリル基Subは、例えば、アルキルシリル基Sub51及びアリールシリル基Sub52からなる群から選択される少なくともいずれかの基である。
 本明細書におけるアルキルシリル基Sub51は、例えば、上記アルキル基Subを有するトリアルキルシリル基Sub511である。
 トリアルキルシリル基Sub511は、例えば、トリメチルシリル基、トリエチルシリル基、トリ-n-ブチルシリル基、トリ-n-オクチルシリル基、トリイソブチルシリル基、ジメチルエチルシリル基、ジメチルイソプロピルシリル基、ジメチル-n-プロピルシリル基、ジメチル-n-ブチルシリル基、ジメチル-t-ブチルシリル基、ジエチルイソプロピルシリル基、ビニルジメチルシリル基、プロピルジメチルシリル基、及びトリイソプロピルシリル基からなる群から選択される少なくともいずれかの基である。トリアルキルシリル基Sub511における3つのアルキル基Subは、互いに同一でも異なっていてもよい。
 本明細書におけるアリールシリル基Sub52は、例えば、ジアルキルアリールシリル基Sub521、アルキルジアリールシリル基Sub522、及びトリアリールシリル基Sub523からなる群から選択される少なくともいずれかの基である。
 ジアルキルアリールシリル基Sub521は、例えば、上記アルキル基Subを2つ有し、上記アリール基Subを1つ有するジアルキルアリールシリル基である。ジアルキルアリールシリル基Sub521の炭素数は、8~30であることが好ましい。
 アルキルジアリールシリル基Sub522は、例えば、上記アルキル基Subを1つ有し、上記アリール基Subを2つ有するアルキルジアリールシリル基である。アルキルジアリールシリル基Sub522の炭素数は、13~30であることが好ましい。
 トリアリールシリル基Sub523は、例えば、上記アリール基Subを3つ有するトリアリールシリル基である。トリアリールシリル基Sub523の炭素数は、18~30であることが好ましい。
 本明細書における置換もしくは無置換のアルキルスルホニル基は、例えば、アルキルスルホニル基Subであり、アルキルスルホニル基Subは、-SOで表される。-SOにおけるRは、置換もしくは無置換の上記アルキル基Subを表す。
 本明細書におけるアラルキル基(アリールアルキル基と称する場合がある)は、例えば、アラルキル基Subである。アラルキル基Subにおけるアリール基は、例えば、上記アリール基Sub及び上記ヘテロアリール基Subの少なくとも一方を含む。
 本明細書におけるアラルキル基Subは、アリール基Subを有する基であることが好ましく、-Z-Zと表される。このZは、例えば、上記アルキル基Subに対応するアルキレン基等である。このZは、例えば、上記アリール基Subである。このアラルキル基Subは、アリール部分が炭素数6~30(好ましくは6~20、より好ましくは6~12)、アルキル部分が炭素数1~30(好ましくは1~20、より好ましくは1~10、さらに好ましくは1~6)であることが好ましい。このアラルキル基Subは、例えば、ベンジル基、2-フェニルプロパン-2-イル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルイソプロピル基、2-フェニルイソプロピル基、フェニル-t-ブチル基、α-ナフチルメチル基、1-α-ナフチルエチル基、2-α-ナフチルエチル基、1-α-ナフチルイソプロピル基、2-α-ナフチルイソプロピル基、β-ナフチルメチル基、1-β-ナフチルエチル基、2-β-ナフチルエチル基、1-β-ナフチルイソプロピル基、及び2-β-ナフチルイソプロピル基からなる群から選択される少なくともいずれかの基である。
 本明細書におけるアルコキシ基は、例えば、アルコキシ基Subであり、アルコキシ基Subは、-OZと表される。このZは、例えば、上記アルキル基Subである。アルコキシ基Subは、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、及びヘキシルオキシ基からなる群から選択される少なくともいずれかの基である。アルコキシ基Subの炭素数は、1~30であることが好ましく、1~20であることがより好ましい。
 本明細書におけるハロゲン化アルコキシ基は、例えば、ハロゲン化アルコキシ基Subであり、ハロゲン化アルコキシ基Subは、例えば、上記アルコキシ基Subが1以上のハロゲン原子、好ましくはフッ素原子で置換されたアルコキシ基である。
 本明細書におけるアリールオキシ基(アリールアルコキシ基と称する場合がある)は、例えば、アリールアルコキシ基Sub10である。アリールアルコキシ基Sub10におけるアリール基は、アリール基Sub及びヘテロアリール基Subの少なくとも一方を含む。
 本明細書におけるアリールアルコキシ基Sub10は、-OZと表される。このZのは、例えば、アリール基Subまたはヘテロアリール基Subである。アリールアルコキシ基Sub10の環形成炭素数は、6~30であることが好ましく、6~20であることがより好ましい。このアリールアルコキシ基Sub10としては、例えば、フェノキシ基が挙げられる。
 本明細書における置換アミノ基は、例えば、置換アミノ基Sub11であり、置換アミノ基Sub11は、例えば、アリールアミノ基Sub111及びアルキルアミノ基Sub112からなる群から選択される少なくともいずれかの基である。
 アリールアミノ基Sub111は、-NHRV1、または-N(RV1と表される。このRV1は、例えば、アリール基Subである。-N(RV1における2つのRV1は、同一または異なる。
 アルキルアミノ基Sub112は、-NHRV2、または-N(RV2と表される。このRV2は、例えば、アルキル基Subである。-N(RV2における2つのRV2は、同一または異なる。
 本明細書におけるアルケニル基は、例えば、アルケニル基Sub12であり、アルケニル基Sub12は、直鎖または分岐鎖のいずれかであり、例えば、ビニル基、プロペニル基、ブテニル基、オレイル基、エイコサペンタエニル基、ドコサヘキサエニル基、スチリル基、2,2-ジフェニルビニル基、1,2,2-トリフェニルビニル基、及び2-フェニル-2-プロペニルからなる群から選択される少なくともいずれかの基である。
 本明細書におけるアルキニル基は、例えば、アルキニル基Sub13であり、アルキニル基Sub13は、直鎖または分岐鎖のいずれであってもよく、例えば、エチニル、プロピニル、および2-フェニルエチニルからなる群から選択される少なくともいずれかの基である。
 本明細書におけるアルキルチオ基は、例えば、アルキルチオ基Sub14である。
 アルキルチオ基Sub14は、-SRV3と表される。このRV3は、例えば、アルキル基Subである。アルキルチオ基Sub14の炭素数は、1~30であることが好ましく、1~20であることがより好ましい。
 本明細書におけるアリールチオ基は、例えば、アリールチオ基Sub15である。
 アリールチオ基Sub15は、-SRV4と表される。このRV4は、例えば、アリール基Subである。アリールチオ基Sub15の環形成炭素数は、6~30であることが好ましく、6~20であることがより好ましい。
 本明細書におけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子等が挙げられ、フッ素原子が好ましい。
 本明細書における置換ホスフィノ基は、例えば、置換ホスフィノ基Sub16であり、置換ホスフィノ基Sub16は、例えば、フェニルホスファニル基である。
 本明細書におけるアリールカルボニル基は、例えば、アリールカルボニル基Sub17であり、アリールカルボニル基Sub17は、-COY’と表される。このY’は、例えば、アリール基Subである。本明細書におけるアリールカルボニル基Sub17は、例えば、フェニルカルボニル基、ジフェニルカルボニル基、ナフチルカルボニル基、及びトリフェニルカルボニル基からなる群から選択される少なくともいずれかの基である。
 本明細書におけるアシル基は、例えば、アシル基Sub18であり、アシル基Sub18は、-COR’と表される。このR’は、例えば、アルキル基Subである。本明細書におけるアシル基Sub18は、例えば、アセチル基及びプロピオニル基からなる群から選択される少なくともいずれかの基である。
 本明細書における置換ホスホリル基は、例えば、アリールホスホリル基及びアルキルホスホリル基等の置換ホスホリル基Sub19であり、置換ホスホリル基Sub19は、下記一般式(P)で表される。
Figure JPOXMLDOC01-appb-C000156
 前記一般式(P)において、ArP1及びArP2は、上記アルキル基Sub、及び上記アリール基Subからなる群から選択されるいずれかの置換基である。
 本明細書におけるエステル基は、例えば、エステル基Sub20であり、エステル基Sub20は、例えば、アルキルエステル基及びアリールエステル基からなる群から選択される少なくともいずれかの基である。
 本明細書におけるアルキルエステル基は、例えば、アルキルエステル基Sub201であり、アルキルエステル基Sub201は、-C(=O)ORで表される。Rは、例えば、置換もしくは無置換の上記アルキル基Subである。
 本明細書におけるアリールエステル基は、例えば、アリールエステル基Sub202であり、アリールエステル基Sub202は、-C(=O)ORArで表される。RArは、例えば、置換もしくは無置換の上記アリール基Subである。
 本明細書におけるシロキサニル基は、例えば、シロキサニル基Sub21であり、シロキサニル基Sub21は、エーテル結合を介したケイ素化合物基である。シロキサニル基Sub21は、例えば、トリメチルシロキサニル基である。
 本明細書におけるカルバモイル基は、-CONHで表される。
 本明細書における置換のカルバモイル基は、例えば、カルバモイル基Sub22であり、カルバモイル基Sub22は、-CONH-Ar、または-CONH-Rで表される。Arは、例えば、置換もしくは無置換の上記アリール基Sub(好ましくは環形成炭素数6~10)及び上記ヘテロアリール基Sub(好ましくは環形成原子数5~14)からなる群から選択される少なくともいずれかの基である。Arは、アリール基Subとヘテロアリール基Subとが結合した基であってもよい。
 Rは、例えば、置換もしくは無置換の上記アルキル基Sub(好ましくは炭素数1~6)である。
 本明細書において、「環形成炭素」とは飽和環、不飽和環、または芳香環を構成する炭素原子を意味する。「環形成原子」とはヘテロ環(飽和環、不飽和環、及び芳香環を含む)を構成する炭素原子及びヘテロ原子を意味する。
 また、本明細書において、水素原子とは、中性子数の異なる同位体、すなわち、軽水素(Protium)、重水素(Deuterium)、三重水素(Tritium)を包含する。
 以下、アルキル基Subとは、「各置換基の説明」で説明した直鎖のアルキル基Sub31、分岐鎖のアルキル基Sub32、及び環状のアルキル基Sub33のいずれか1以上の基を意味する。
 同様に、置換シリル基Subとは、アルキルシリル基Sub51及びアリールシリル基Sub52のいずれか1以上の基を意味する。
 同様に、置換アミノ基Sub11とは、アリールアミノ基Sub111及びアルキルアミノ基Sub112のいずれか1以上の基を意味する。
 本明細書において、「置換もしくは無置換の」という場合における置換基としては、例えば置換基RF1であり、置換基RF1は、アリール基Sub、ヘテロアリール基Sub、アルキル基Sub、ハロゲン化アルキル基Sub、置換シリル基Sub、アルキルスルホニル基Sub、アラルキル基Sub、アルコキシ基Sub、ハロゲン化アルコキシ基Sub、アリールアルコキシ基Sub10、置換アミノ基Sub11、アルケニル基Sub12、アルキニル基Sub13、アルキルチオ基Sub14、アリールチオ基Sub15、置換ホスフィノ基Sub16、アリールカルボニル基Sub17、アシル基Sub18、置換ホスホリル基Sub19、エステル基Sub20、シロキサニル基Sub21、カルバモイル基Sub22、無置換のアミノ基、無置換のシリル基、ハロゲン原子、シアノ基、ヒドロキシ基、ニトロ基、及びカルボキシ基からなる群から選択される少なくとも一種の基である。
 本明細書において、「置換もしくは無置換の」という場合における置換基RF1は、ジアリールホウ素基(ArB1ArB2B-)であってもよい。このArB1及びArB2の例としては、上述のアリール基Subが挙げられる。ArB1ArB2B-におけるArB1及びArB2は同一または異なる。
 置換基RF1の具体例及び好ましい基としては、「各置換基の説明」中の置換基(例えば、アリール基Sub、ヘテロアリール基Sub、アルキル基Sub、ハロゲン化アルキル基Sub、置換シリル基Sub、アルキルスルホニル基Sub、アラルキル基Sub、アルコキシ基Sub、ハロゲン化アルコキシ基Sub、アリールアルコキシ基Sub10、置換アミノ基Sub11、アルケニル基Sub12、アルキニル基Sub13、アルキルチオ基Sub14、アリールチオ基Sub15、置換ホスフィノ基Sub16、アリールカルボニル基Sub17、アシル基Sub18、置換ホスホリル基Sub19、エステル基Sub20、シロキサニル基Sub21、及びカルバモイル基Sub22)の具体例及び好ましい基と同様の基が挙げられる。
 「置換もしくは無置換の」という場合における置換基RF1は、アリール基Sub、ヘテロアリール基Sub、アルキル基Sub、ハロゲン化アルキル基Sub、置換シリル基Sub、アルキルスルホニル基Sub、アラルキル基Sub、アルコキシ基Sub、ハロゲン化アルコキシ基Sub、アリールアルコキシ基Sub10、置換アミノ基Sub11、アルケニル基Sub12、アルキニル基Sub13、アルキルチオ基Sub14、アリールチオ基Sub15、置換ホスフィノ基Sub16、アリールカルボニル基Sub17、アシル基Sub18、置換ホスホリル基Sub19、エステル基Sub20、シロキサニル基Sub21、カルバモイル基Sub22、無置換のアミノ基、無置換のシリル基、ハロゲン原子、シアノ基、ヒドロキシ基、ニトロ基、及びカルボキシ基からなる群から選択される少なくとも一種の基(以下、置換基RF2とも称する)によってさらに置換されてもよい。また、これらの置換基RF2は複数が互いに結合して環を形成してもよい。
 「置換もしくは無置換の」という場合における「無置換」とは前記置換基RF1で置換されておらず、水素原子が結合していることを意味する。
 なお、本明細書において、「置換もしくは無置換の炭素数XX~YYのZZ基」という表現における「炭素数XX~YY」は、ZZ基が無置換である場合の炭素数を表し、置換されている場合の置換基RF1の炭素数は含めない。
 本明細書において、「置換もしくは無置換の原子数XX~YYのZZ基」という表現における「原子数XX~YY」は、ZZ基が無置換である場合の原子数を表し、置換されている場合の置換基RF1の原子数は含めない。
 本明細書において説明する化合物、またはその部分構造において、「置換もしくは無置換の」という場合についても、前記と同様である。
 本明細書において、置換基同士が互いに結合して環が構築される場合、当該環の構造は、飽和環、不飽和環、芳香族炭化水素環、または複素環である。
 本明細書において、連結基における芳香族炭化水素基としては、例えば、上述した一価のアリール基Subから、1つ以上の原子を除いて得られる二価以上の基が挙げられる。
 本明細書において、連結基における複素環基としては、例えば、上述した一価のヘテロアリール基Subから、1つ以上の原子を除いて得られる二価以上の基が挙げられる。
 以下、本発明に係る実施例を説明する。本発明はこれらの実施例によって何ら限定されない。
<化合物>
 実施例の有機EL素子の製造に用いた、一般式(A)で表される化合物及び一般式(B)で表される化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000157
 実施例1の有機EL素子の製造に用いた、一般式(1)で表される化合物及び一般式(2)で表される化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000158
 実施例の有機EL素子の製造に用いた、一般式(3)で表される化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000159
 実施例の有機EL素子の製造に用いた、他の化合物の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000160
Figure JPOXMLDOC01-appb-C000161
<有機EL素子の作製>
 有機EL素子を以下のように作製し、評価した。
〔実施例1〕
[ボトムエミッション型有機EL素子の製造]
 25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板(ジオマテック株式会社製)を、イソプロピルアルコール中で5分間超音波洗浄を行った後、UVオゾン洗浄を1分間行った。ITOの膜厚は、130nmとした。
 洗浄後の透明電極ライン付き前記ガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして化合物HTと化合物HAとを共蒸着し、膜厚10nmの正孔注入層を形成した。正孔注入層における化合物HTの濃度を97質量%とし、化合物HAの濃度を3質量%とした。
 次に、正孔注入層上に、化合物HTを蒸着し、膜厚200nmの正孔輸送層を形成した。
 次に、この正孔輸送層上に、化合物EBL-1を蒸着し、膜厚10nmの第一の層としての電子障壁層を形成した。
 次に、この電子障壁層上に、第一の化合物である蛍光発光性の化合物RD-1と、第二の化合物である遅延蛍光性の化合物TADF-1と、第三の化合物である化合物D-1とを共蒸着し、膜厚25nmの発光層を形成した。発光層における化合物RD-1の濃度を1質量%とし、化合物TADF-1の濃度を25質量%とし、化合物D-1の濃度を74質量%とした。
 次に、この発光層上に、化合物HBL-1を蒸着し、膜厚10nmの第二の層としての正孔障壁層を形成した。
 次に、この正孔障壁層上に、化合物ETを蒸着し、膜厚30nmの電子輸送層を形成した。
 次に、この電子輸送層上に、フッ化リチウム(LiF)を蒸着し、膜厚1nmの電子注入性電極(陰極)を形成した。
 そして、この電子注入性電極上に、金属アルミニウム(Al)を蒸着し、膜厚80nmの金属Al陰極を形成した。
 実施例1の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO(130)/HT:HA(10,97%:3%)/HT(200)/EBL-1(10)/D-1:TADF-1:RD-1(25,74%:25%:1%)/HBL-1(10)/ET(30)/LiF(1)/Al(80)
 なお、括弧内の数字は、膜厚(単位:nm)を示す。
 同じく括弧内において、パーセント表示された数字(97%:3%)は、正孔注入層における化合物HT及び化合物HAの割合(質量%)を示し、パーセント表示された数字(74%:25%:1%)は、発光層における第三の化合物、第二の化合物、及び第一の化合物の割合(質量%)を示す。以下、同様の表記とする。
 表1に、実施例1で作製した有機EL素子の電子障壁層、発光層及び正孔障壁層の構成を示す。
Figure JPOXMLDOC01-appb-T000162
<評価>
 実施例1で作製した有機EL素子を駆動させた。その結果、実施例1の有機EL素子は赤色に発光した。
<化合物の評価>
 表1、2中に記載した化合物の物性値は、以下の方法で測定した。
<イオン化ポテンシャルIp>
 化合物EBL-1のイオン化ポテンシャルIpを以下の方法で測定した。
 イオン化ポテンシャルIpは、大気下で、光電子分光装置(理研計器株式会社製、「AC-3」)を用いて測定した。具体的には、測定対象材料に光を照射し、その際に電荷分離によって生じる電子量を測定することにより測定した。
・化合物TADF-1の遅延蛍光性
 遅延蛍光性は図2に示す装置を利用して過渡PLを測定することにより確認した。前記化合物TADF-1をトルエンに溶解し、自己吸収の寄与を取り除くため励起波長において吸光度が0.05以下の希薄溶液を調製した。また酸素による消光を防ぐため、試料溶液を凍結脱気した後にアルゴン雰囲気下で蓋付きのセルに封入することで、アルゴンで飽和された酸素フリーの試料溶液とした。
 上記試料溶液の蛍光スペクトルを分光蛍光光度計FP-8600(日本分光社製)で測定し、また同条件で9,10-ジフェニルアントラセンのエタノール溶液の蛍光スペクトルを測定した。両スペクトルの蛍光面積強度を用いて、Morris et al. J.Phys.Chem.80(1976)969中の(1)式により全蛍光量子収率を算出した。
 前記化合物TADF-1が吸収する波長のパルス光(パルスレーザーから照射される光)で励起された後、当該励起状態から即座に観察されるPrompt発光(即時発光)と、当該励起後、即座には観察されず、その後観察されるDelay発光(遅延発光)とが存在する。本実施例における遅延蛍光発光とは、Delay発光(遅延発光)の量がPrompt発光(即時発光)の量に対して5%以上を意味する。具体的には、Prompt発光(即時発光)の量をXとし、Delay発光(遅延発光)の量をXとしたときに、X/Xの値が0.05以上であることを意味する。
 Prompt発光とDelay発光の量とその比は、“Nature 492, 234-238, 2012” (参考文献1)に記載された方法と同様の方法により求める
ことができる。なお、Prompt発光とDelay発光の量の算出に使用される装置は、前記参考文献1に記載の装置、または図2に記載の装置に限定されない。
 化合物TADF-1について、Delay発光(遅延発光)の量がPrompt発光(即時発光)の量に対して5%以上あることが確認された。
 具体的には、化合物TADF-1について、X/Xの値が0.05以上であった。
・一重項エネルギーS
 化合物RD-1、化合物TADF-1、及び化合物D-1の一重項エネルギーSは、前述の溶液法により測定した。
・77[K]におけるエネルギーギャップT77K
 化合物TADF-1の77[K]におけるエネルギーギャップT77Kを測定し、その結果と上記の一重項エネルギーSの値からΔSTを確認した。化合物TADF-1は、前述の「三重項エネルギーと77[K]におけるエネルギーギャップとの関係」で記載したエネルギーギャップT77Kの測定方法により測定した。
・化合物の主ピーク波長λ
 化合物RD-1の主ピーク波長λは、以下の方法により測定した。
 測定対象となる化合物の5μmol/Lトルエン溶液を調製して石英セルに入れ、常温(300K)でこの試料の発光スペクトル(縦軸:発光強度、横軸:波長とする。)を測定した。本実施例では、発光スペクトルを日立社製の分光光度計(装置名:F-7000)で測定した。なお、発光スペクトル測定装置は、ここで用いた装置に限定されない。発光スペクトルにおいて、発光強度が最大となる発光スペクトルのピーク波長を主ピーク波長λとした。
Figure JPOXMLDOC01-appb-T000163
・表2の説明
 「-」は、測定していないことを表す。
 「<0.01」は、ΔSTが0.01eV未満であることを表す。
〔実施例2〕
[ボトムエミッション型有機EL素子の製造]
 発光層中の化合物RD-1を下記の化合物RD-2に変更した以外は実施例1と同様にして、実施例2の有機EL素子を作成した。
Figure JPOXMLDOC01-appb-C000164
 実施例2の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO(130)/HT:HA(10,97%:3%)/HT(200)/EBL-1(10)/D-1:TADF-1:RD-2(25,74%:25%:1%)/HBL-1(10)/ET(30)/LiF(1)/Al(80)
〔実施例3〕
[ボトムエミッション型有機EL素子の製造]
 発光層中の化合物RD-1を下記化合物RD-3に変更した以外は実施例1と同様にして、実施例3の有機EL素子を作成した。
Figure JPOXMLDOC01-appb-C000165
 実施例3の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO(130)/HT:HA(10,97%:3%)/HT(200)/EBL-1(10)/D-1:TADF-1:RD-3(25,74%:25%:1%)/HBL-1(10)/ET(30)/LiF(1)/Al(80)
<有機EL素子の評価>
 実施例2および3の有機EL素子について、以下の評価を行った。測定結果を表3に示す。
・駆動電圧
 電流密度が10mA/cmとなるように陽極と陰極との間に通電したときの電圧(単位:V)を計測した。
・外部量子効率EQE
 電流密度が10mA/cmとなるように素子に電圧を印加した時の分光放射輝度スペクトルを分光放射輝度計CS-2000(コニカミノルタ株式会社製)で計測した。得られた分光放射輝度スペクトルから、ランバシアン放射を行ったと仮定し外部量子効率EQE(単位:%)を算出した。
・素子駆動時の主ピーク波長λp及び発光半値幅FWHM
 有機EL素子の電流密度が10mA/cmとなるように素子に電圧を印加した時の分光放射輝度スペクトルを分光放射輝度計CS-2000(コニカミノルタ株式会社製)で計測した。得られた分光放射輝度スペクトルから、主ピーク波長λp(単位:nm)及び発光半値幅FWHM(単位:nm)を求めた。
・CIE1931色度
 電流密度が10mA/cmとなるように素子に電圧を印加した時のCIE1931色度座標(x、y)を分光放射輝度計CS-1000(コニカミノルタ社製)で計測した。
・寿命LT95
 得られた有機EL素子に、電流密度が50mA/cmとなるように電圧を印加し、初期輝度に対して輝度が95%となるまでの時間(LT95(単位:時間))を測定した。
Figure JPOXMLDOC01-appb-T000166
〔実施例4〕
[トップエミッション型有機EL素子の製造]
 ガラス基板の上に、銀合金であるAPC(Ag-Pd-Cu)の層(反射層)(膜厚100nm)、及び酸化インジウム亜鉛(Indium zinc oxide;IZO)の層(膜厚10nm)を、この順にスパッタリング法により成膜した。
 続いて、通常のリソグラフィ技術を用いて、レジストパターンをマスクに用いたエッチングにより、この導電材料層をパターニングし、陽極を形成した。下部電極が形成された基板をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。
 その後、真空蒸着法を用いて化合物HTおよびHAを共蒸着し、膜厚10nmの正孔注入層を形成した。正孔注入層における化合物HTの濃度を97質量%とし、HAの濃度を3質量%とした。
 次に、正孔注入層上に、化合物HTを蒸着し、膜厚180nmの正孔輸送層(HT)を成膜した。
 次に、この正孔輸送層上に、化合物EBL-1を蒸着し、膜厚10nmの第一の層としての電子障壁層を形成した。
 次に、この電子障壁層上に、第一の化合物である蛍光発光性の化合物RD-2と、第二の化合物である遅延蛍光性の化合物TADF-1と、第三の化合物である化合物D-1とを共蒸着し、膜厚25nmの発光層を形成した。発光層における化合物RD-2の濃度を1質量%とし、化合物TADF-1の濃度を25質量%とし、化合物D-1の濃度を74質量%とした。
 次に、この発光層上に、化合物HBL-1を蒸着し、膜厚15nmの第二の層としての正孔障壁層を形成した。
 次に、この正孔障壁層上に、化合物ETを蒸着し、膜厚45nmの電子輸送層を形成した。
 次に、この電子輸送層上に、フッ化リチウム(LiF)を蒸着し、膜厚1nmの電子注入性電極(陰極)を形成した。
 そして、この電子注入性電極上に、MgとAgを15:85の膜厚比で蒸着成膜し、半透過性のMgAg合金からなる膜厚15nmの陰極を形成した。陰極の上にCapを真空蒸着法によって成膜し、膜厚65nmのキャッピング層を形成した。
 実施例4の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 APC(100)/IZO(10)/HT:HA(10,97%:3%)/HT(180)/EBL-1(10)/D-1:TADF-1:RD-2(25,74%:25%:1%)/HBL-1(15)/ET(45)/LiF(1)/MgAg(15)/Cap(65)
〔実施例5~8〕
[トップエミッション型有機EL素子の製造]
 正孔輸送層(HT)の膜厚を表4に示すとおりに変更し、発光層中の化合物RD-2を化合物RD-3に変更した以外は実施例4と同様にして、実施例5~8の有機EL素子を作製した。
<有機EL素子の評価>
 実施例5~8の有機EL素子について、駆動電圧、素子駆動時の主ピーク波長λp及び発光半値幅FWHM、CIE1931色度、並びに寿命LT95を実施例2および3と同様にして評価した。また、輝度-電流効率(L/J)を以下の方法で測定した。
・輝度-電流効率(L/J)
電流密度が10mA/cmとなるように、作製した有機EL発光装置に電圧を印加し、その時の輝度L(単位cd/m)を、分光放射輝度計(コニカミノルタ株式会社製、商品名:CS-2000)を用いて計測した。
 得られた輝度に対し、輝度-電流効率(単位cd/A)を算出した。
 測定結果を表4に示す。
Figure JPOXMLDOC01-appb-T000167
[合成実施例1:化合物D-1の合成]
(1-1)化合物D-1の合成
 化合物D-1の合成スキームを以下に示す。
Figure JPOXMLDOC01-appb-C000168
 窒素雰囲気下、12H-ベンゾフロ[2,3-a]カルバゾール(26.6g,103mmol)、9-(4’-ブロモ-[1,1’-ビフェニル]-4-イル)-9H-カルバゾール(41.2g,103mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(1.90g,2.07mmol)、トリ-tert-ブチルホスホニウムテトラフルオロボラート(1.20g,4.14mmol)、及びナトリウムtert-ブトキシド(11.9g,124mmol)の混合物にキシレン(675mL)を加え、130℃で8時間撹拌した。反応終了後、固体を濾取した。濾取した固体をトルエンを用いて再結晶させ、化合物D-1を得た(51.5g、収率87%)。LC-MS(Liquid chromatography mass spectrometry)の分析により、化合物D-1と同定した。
[合成実施例2:化合物TADF-1の合成]
(2-1)中間体A1及び中間体A2の合成
Figure JPOXMLDOC01-appb-C000169
 窒素雰囲気下、2000mLの三口フラスコに、テトラフルオロテレフタロニトリル(25g、125mmol)、1,4-ジオキサン625mL及び水400mLをいれた。
次に30質量%アンモニア水13mLを入れ、80℃で10時間加熱撹拌後に室温(25℃)に戻した。エバポレータを用いて溶媒を留去し、得られた固体をシリカゲルカラムクロマトグラフィーで精製した。24gの白固体を得た。GC-MS(Gas Chromatograph Mass Spectrometry)により中間体A1と同定した(収率98%)。
 窒素雰囲気下、2000mLの三口フラスコに、中間体A1(24g、122mmol)、p-トルエンスルホン酸(p-TsOH)(25g、146mmol)、ベンジルトリメチルアンモニウムクロリド(BTAC)(45.3g、244mmol)、塩化銅(II)(0.16g、1.22mmol)及びアセトニトリル400mLをいれた。次に亜硝酸tert-ブチル(t-BuONO)(15g、146mmol)を入れ、25℃で6時間撹拌後した。エバポレータを用いて溶媒を留去し、得られた固体をシリカゲルカラムクロマトグラフィーで精製した。17gの白固体を得た。GC-MSにより中間体A2と同定した(収率65%)。
(2-2)中間体A3の合成
Figure JPOXMLDOC01-appb-C000170
 窒素雰囲気下、1000mLの三口フラスコに、中間体A2(10g、46mmol)、カルバゾール(23g、138mmol)、炭酸カリウム(19g、138mmol)及びDMF450mLをいれ、0℃で24時間撹拌した。反応混合物に飽和塩化アンモニウム水溶液300mLを加え、析出した固体をシリカゲルカラムクロマトグラフィーで精製し、26gの黄色固体を得た。ASAP-MS(Atmospheric Pressure Solid Analysis Probe Mass Spectrometry)の分析により中間体A3と同定した(収率85%)。
(2-3)中間体C2及び中間体D2の合成
Figure JPOXMLDOC01-appb-C000171
 窒素雰囲気下、1Lの三口フラスコに4-ブロモジベンゾチオフェン(26.0g、100mmol)、2-クロロ-4-メチルアニリン(17g、120mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Pddba)(0.9g、1mmol)、トリ-tert-ブチルホスホニウムテトラフルオロボラート(P(t-Bu)HBF)(2.3g、8mmol)、ナトリウムtert-ブトキシド(NaOtBu)(11.5g、120mmol)及びトルエン350mLを加えて、60℃で7時間加熱撹拌後に室温(25℃)まで冷却した。反応溶液をシリカゲルカラムクロマトグラフィーで精製し、26gの白色固体を得た。GC-MSの分析により、中間体C2と同定した(収率80%)。
 窒素雰囲気下、1Lの三口フラスコに、中間体C2(26.0g、80mmol)、1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾリウムクロリド(IPrHCl)(1.4g、3.2mmol)、酢酸パラジウム(II)(Pd(OAc))(0.36g、1.6mmol)、炭酸カリウム(22.0g、160mmol)及びN,N-ジメチルアセトアミド(DMAc)400mLを加えて、130℃で7時間撹拌後に室温(25℃)まで冷却した。反応溶液をシリカゲルカラムクロマトグラフィーで精製し、21gの白色固体を得た。GC-MSの分析により、中間体D2と同定した(収率91%)。
(2-4)化合物TADF-1の合成
Figure JPOXMLDOC01-appb-C000172
 窒素雰囲気下、100mLの三口フラスコに、中間体A3(2g、3.0mmol)、中間体D2(1.0g、3.6mmol)、炭酸カリウム(0.6g、4.5mmol)及びDMF30mLをいれ、70℃で8時間撹拌した。反応混合物に飽和塩化アンモニウム水溶液50mLを加え、析出した固体をシリカゲルカラムクロマトグラフィーで精製し、1.8gの赤色固体を得た。ASAP-MSの分析によりTADF-1と同定した(収率66%)。
[合成実施例3:化合物RD-2の合成]
 ピロール化合物(2-1)2.5gと、4-メトキシ-2,3,6-トリメチルベンズアルデヒド0.73gをジクロロメタン50mlに溶解し、これにトリフルオロ酢酸10滴を加え、窒素気流下25℃で24時間撹拌した。水を加えたのち有機層を分離し、飽和食塩水50mlで洗浄したのち、硫酸マグネシウムを添加しろ過した。ろ液からエバポレーターにより溶媒を除去し、残留物であるピロメタン化合物(2-2)を得た。
 得られたピロメタン化合物(2-2)を1,2-ジクロロエタン50mLに溶解し、2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン(DDQ)0.9gを加えて、窒素気流下、室温(25℃)で2時間撹拌し、LC-MS分析により化合物(2-3)の生成を確認した後、続いてジイソプロピルエチルアミン5.4mLと、三フッ化ホウ素ジエチルエーテル錯体3.9mLとを加え、80℃で1時間攪拌した。反応液を室温まで冷却したのち、水50mLを注入し、酢酸エチル50mLで抽出した。有機層を水50mLで洗浄した後、硫酸マグネシウムを添加し、ろ過した。ろ液からエバポレーターにより溶媒を除去し、続いて残留物をシリカゲルカラムクロマトグラフィー(ヘプタン/トルエン=1/2、容積比)により精製した。さらに濃縮した精製物にメタノール50mLを加え60℃で10分間加熱攪拌したのち放冷し、析出した固体を濾過し、真空乾燥して、赤紫色粉末1.7gを得た。得られた粉末を LC-MSにより分析し、赤紫色粉末がピロメテン金属錯体である化合物RD-2であることを確認した。
 化合物RD-2:MS(m/z) 分子量;817
 化合物RD-2は、油拡散ポンプを用いて1×10-3Paの圧力下、270℃で昇華精製を行った。ガラス管壁に付着した固体を回収しLC-MS分析による純度が99%であることを確認した。
 化合物RD-2の溶液中の発光特性を以下に示す。
 化合物RD-2の一重項エネルギーSは、前述の溶液法により測定した。化合物RD-2の主ピーク波長λは、前述の化合物RD-1の主ピーク波長λと同様の方法により測定した。
  化合物RD-2の主ピーク波長λ: 622nm
  化合物RD-2の一重項エネルギーS:1.99eV
Figure JPOXMLDOC01-appb-C000173
[合成実施例4:化合物RD-3の合成]
 ピロール化合物(3-1)2.0gと、1-ナフトイルクロリド1.2gと、o-キシレン60mLとの混合溶液を、窒素気流下、130℃で5時間加熱撹拌した。室温(25℃)に冷却後、メタノールを添加し、析出した固体をろ過し、真空乾燥して、化合物(3-2)2.5gを得た。
 次に化合物(3-2)2.5gと、ピロール化合物(3-1)1.7gとトリフルオロメタンスルホン酸無水物2.9gと、トルエン100mLとの混合溶液を、窒素気流下、110℃で6時間加熱撹拌した。室温に冷却後、水100mLを注入し、酢酸エチル100mLで抽出した。有機層を水50mLで洗浄した後、硫酸マグネシウムを添加し、ろ過した。ろ液からエバポレーターにより溶媒を除去し、残留物であるピロメテン体(3-3)を得た。
 続いて、得られたピロメテン体(3-3)とトルエン100mLとの混合溶液に、窒素気流下、ジイソプロピルエチルアミン5.4mLと、三フッ化ホウ素ジエチルエーテル錯体3.9mLとを加え、80℃で1時間撹拌した。続いて水100mLを注入し、酢酸エチル100mLで抽出した。有機層を水50mLで洗浄した後、硫酸マグネシウムを添加し、ろ過した。ろ液からエバポレーターにより溶媒を除去し、続いて残留物をシリカゲルカラムクロマトグラフィー(ヘプタン/トルエン=1/2、容積比)により精製した。さらに濃縮した精製物にメタノール100mLを加え60℃で10分間加熱攪拌したのち放冷し、析出した固体を濾過し、真空乾燥して、赤紫色粉末2.1gを得た。得られた粉末をLC-MSにより分析し、赤紫色粉末がピロメテン金属錯体である化合物RD-3であることを確認した。
 化合物RD-3:MS(m/z) 842[M+H]
 化合物RD-3は、油拡散ポンプを用いて1×10-3Paの圧力下、290℃で昇華精製を行った。ガラス管壁に付着した固体を回収しLC-MS分析による純度が99%であることを確認した。
 化合物RD-3の溶液中の発光特性を以下に示す。
 化合物RD-3の一重項エネルギーSは、前述の溶液法により測定した。化合物RD-3の主ピーク波長λは、前述の化合物RD-1の主ピーク波長λと同様の方法により測定した。
  化合物RD-3の主ピーク波長λ: 613nm
  化合物RD-3の一重項エネルギーS: 2.01eV
Figure JPOXMLDOC01-appb-C000174
 1…有機EL素子、2…基板、3…陽極、4…陰極、5…発光層、6…第一の層、7…第二の層、10…有機層。
 
 

Claims (22)

  1.  陽極と、
     陰極と、
     前記陽極と前記陰極との間に含まれる発光層と、
     前記陽極と前記発光層との間に含まれ、前記発光層に隣接する第一の層と、
     前記陰極と前記発光層との間に含まれ、前記発光層に隣接する第二の層と、を有し、
     前記発光層は、第一の化合物と、第二の化合物と、第三の化合物と、を含み、
     前記第一の層は、下記一般式(A)で表される化合物を含み、
     前記第二の層は、下記一般式(B)で表される化合物を含み、
     前記第一の化合物は、蛍光発光性の化合物であり、下記一般式(1)で表され、
     前記第二の化合物は、遅延蛍光性の化合物であり、下記一般式(2)で表され、
     前記第三の化合物は、下記一般式(3)で表され、
     前記第一の化合物の一重項エネルギーS(M1)と、前記第二の化合物の一重項エネルギーS(M2)と、前記第三の化合物の一重項エネルギーS(M3)とが、下記数式(数1)の関係を満たす、
     有機エレクトロルミネッセンス素子。
     S(M3)>S(M2)>S(M1)…(数1)
    Figure JPOXMLDOC01-appb-C000001

    (前記一般式(A)において、
     Ra~Ra、Rb~Rb及びRc~Rcは、それぞれ独立に、水素原子もしくは置換基であり、置換基としてのRa~Ra、Rb~Rb及びRc~Rcは、それぞれ独立に、
      ハロゲン原子、
      シアノ基、
      置換もしくは無置換の環形成炭素数6~30のアリール基、または
      置換もしくは無置換の環形成原子数5~30のヘテロアリール基であり、
     Rcは、水素原子もしくは置換基であるか、またはRc及びRcの組が互いに結合して環を形成し、置換基としてのRcは、
      置換もしくは無置換の環形成炭素数6~12のアリール基であり、
     Rcは、水素原子もしくは置換基であるか、またはRc及びRcの組が互いに結合して環を形成し、Rc及びRcの組が互いに結合して環を形成する場合の環は、少なくとも5員環を含み、前記5員環は、炭素原子、酸素原子、硫黄原子、及び窒素原子の少なくともいずれかの原子を含み、ただし、Rc及びRcは同時に水素原子ではなく、
     置換基としてのRcは、
      置換もしくは無置換の環形成炭素数6~30のアリール基、
      置換もしくは無置換の環形成原子数5~30のヘテロアリール基、
      置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
      置換もしくは無置換の環形成炭素数6~30のアリールチオ基、または
      置換もしくは無置換のアミノ基である。)
    Figure JPOXMLDOC01-appb-C000002

    (前記一般式(B)において、
     X~Xは、それぞれ独立に、窒素原子又はCRであり、ただし、X~Xのうち、少なくともいずれか1つは、窒素原子であり、
     Rは、水素原子又は置換基であり、
     置換基としてのRは、それぞれ独立に、
      ハロゲン原子、
      シアノ基、
      置換もしくは無置換の環形成炭素数6~30のアリール基、
      置換もしくは無置換の環形成原子数5~30のヘテロアリール基、
      置換もしくは無置換の炭素数1~30のアルキル基、
      置換もしくは無置換の炭素数2~30のアルケニル基、
      置換もしくは無置換の炭素数2~30のアルキニル基、
      置換もしくは無置換のシリル基、
      置換もしくは無置換の炭素数1~30のアルコキシ基、
      置換もしくは無置換の炭素数7~30のアラルキル基、または
      置換もしくは無置換の環形成炭素数6~30のアリールオキシ基であり、
     ArおよびArは、それぞれ独立に、
      下記一般式(1B)で表されるか、
      置換もしくは無置換の環形成炭素数6~30のアリール基、または、
      置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。
     Aは、下記一般式(1B)で表される。)
    Figure JPOXMLDOC01-appb-C000003

    (前記一般式(1B)において、
     HArは、下記一般式(2B)で表され、
     aは、1、2、3、4、又は5であり、
     aが1のとき、Lは、単結合または二価の連結基であり、
     aが2、3、4、又は5のとき、Lは、三価以上六価以下の連結基であり、
     複数のHArは、互いに同一または異なり、
     前記連結基は、
      置換もしくは無置換の環形成炭素数6~30のアリール基から誘導される基、
      置換もしくは無置換の環形成原子数5~30のヘテロアリール基から誘導される基、
      置換もしくは無置換の環形成炭素数6~30のアリール基及び置換もしくは無置換の環形成原子数5~30のヘテロアリール基からなる群から選択された2つの基が互いに結合した基から誘導される基、または
      置換もしくは無置換の環形成炭素数6~30のアリール基及び置換もしくは無置換の環形成原子数5~30のヘテロアリール基からなる群から選択された3つの基が互いに結合した基から誘導される基であり、
     なお、互いに結合した基は、互いに同一または異なる。)
    Figure JPOXMLDOC01-appb-C000004

    (前記一般式(2B)において、
     X11~X18は、それぞれ独立に、窒素原子、CR13、またはLに対して結合する炭素原子であり、
     複数のR13は互いに同一または異なり、
     Yは、酸素原子、硫黄原子、NR18、SiR1112、CR1415、Lに対して結合する窒素原子、R16及びLに対してそれぞれ結合するケイ素原子、またはR17及びLに対してそれぞれ結合する炭素原子であり、
     ただし、Lに対して結合するのは、X11からX18まで、R11からR12まで、及びR14からR15までにおける炭素原子、並びにYにおける窒素原子、ケイ素原子及び炭素原子のいずれか一つであり、
     R11及びR12は互いに同一または異なり、R14及びR15は互いに同一または異なり、
     R11~R18は、それぞれ独立に、水素原子もしくは置換基であるか、隣接するR13の組、R11及びR12の組、並びにR14及びR15の組のいずれか1つ以上の組が互いに結合して環を形成し、
     置換基としてのR11~R18は、それぞれ独立に、
      ハロゲン原子、
      シアノ基、
      置換もしくは無置換の環形成炭素数6~30のアリール基、
      置換もしくは無置換の環形成原子数5~30のヘテロアリール基、
      置換もしくは無置換の炭素数1~30のアルキル基、
      置換もしくは無置換の炭素数2~30のアルケニル基、
      置換もしくは無置換の炭素数2~30のアルキニル基、
      置換もしくは無置換のシリル基、
      置換もしくは無置換の炭素数1~30のアルコキシ基、
      置換もしくは無置換の炭素数7~30のアラルキル基、または
      置換もしくは無置換の環形成炭素数6~30のアリールオキシ基である。
    Figure JPOXMLDOC01-appb-C000005

    (前記一般式(1)において、
     Xは、窒素原子、又はYと結合する炭素原子であり、
     Yは、水素原子又は置換基であり、
     R21~R26は、それぞれ独立に、水素原子もしくは置換基であるか、又はR21及びR22の組、R22及びR23の組、R24及びR25の組、並びにR25及びR26の組のいずれか1つ以上の組が互いに結合して環を形成し、
     置換基としてのY、及びR21~R26は、それぞれ独立に、
      置換もしくは無置換の炭素数1~30のアルキル基、
      置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
      置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
      置換もしくは無置換の環形成炭素数6~30のアリール基、
      置換もしくは無置換の炭素数1~30のアルコキシ基、
      置換もしくは無置換の炭素数1~30のハロゲン化アルコキシ基、
      置換もしくは無置換の炭素数1~30のアルキルチオ基、
      置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
      置換もしくは無置換の環形成炭素数6~30のアリールチオ基、
      置換もしくは無置換の炭素数2~30のアルケニル基、
      置換もしくは無置換の炭素数7~30のアラルキル基、
      置換もしくは無置換の環形成原子数5~30のヘテロアリール基、
      ハロゲン原子、
      カルボキシ基、
      置換もしくは無置換のエステル基、
      置換もしくは無置換のカルバモイル基、
      置換もしくは無置換のアミノ基、
      ニトロ基、
      シアノ基、
      置換もしくは無置換のシリル基、及び
      置換もしくは無置換のシロキサニル基からなる群から選択され、
     Z21及びZ22は、それぞれ独立に、置換基であるか、又はZ21及びZ22が互いに結合して環を形成し、
     置換基としてのZ21及びZ22は、それぞれ独立に、
      ハロゲン原子、
      置換もしくは無置換の炭素数1~30のアルキル基、
      置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
      置換もしくは無置換の環形成炭素数6~30のアリール基、
      置換もしくは無置換の炭素数1~30のアルコキシ基、
      置換もしくは無置換の炭素数1~30のハロゲン化アルコキシ基、及び
      置換もしくは無置換の環形成炭素数6~30のアリールオキシ基からなる群から選択される。)
    Figure JPOXMLDOC01-appb-C000006

    (前記一般式(2)において、Dは、下記一般式(2-1)で表される基であり、Dは、下記一般式(2-2)で表される基であり、複数のDは、互いに同一の基である。)
    Figure JPOXMLDOC01-appb-C000007

    (前記一般式(2-1)において、Xは、酸素原子または硫黄原子であり、R131~R140は、それぞれ独立に、水素原子または置換基であり、
     置換基としてのR131~R140は、それぞれ独立に、
      置換もしくは無置換の環形成炭素数6~14のアリール基、
      置換もしくは無置換の環形成原子数5~14の複素環基、
      置換もしくは無置換の炭素数1~6のアルキル基、
      置換もしくは無置換の炭素数3~6のアルキルシリル基、
      置換もしくは無置換の炭素数1~6のアルコキシ基、
      置換もしくは無置換の環形成炭素数6~14のアリールオキシ基、
      置換もしくは無置換の炭素数2~12のアルキルアミノ基、
      置換もしくは無置換の炭素数1~6のアルキルチオ基、または
      置換もしくは無置換の環形成炭素数6~14のアリールチオ基である。
     *は、前記一般式(2)中におけるベンゼン環との結合位置を表す。)
    Figure JPOXMLDOC01-appb-C000008

    (前記一般式(2-2)において、R161~R168は、それぞれ独立に、水素原子または置換基であり、
     置換基としてのR161~R168は、それぞれ独立に、
      ハロゲン原子、
      置換もしくは無置換の環形成炭素数6~14のアリール基、
      置換もしくは無置換の環形成原子数5~14の複素環基、
      置換もしくは無置換の炭素数1~6のアルキル基、
      置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
      置換もしくは無置換の炭素数3~6のアルキルシリル基、
      置換もしくは無置換の炭素数1~6のアルコキシ基、
      置換もしくは無置換の環形成炭素数6~14のアリールオキシ基、
      置換もしくは無置換の炭素数2~12のアルキルアミノ基、
      置換もしくは無置換の炭素数1~6のアルキルチオ基、または
      置換もしくは無置換の環形成炭素数6~14のアリールチオ基である。
     *は、それぞれ独立に、前記一般式(2)中におけるベンゼン環との結合位置を表す。)
    Figure JPOXMLDOC01-appb-C000009

    (前記一般式(3)において、A31は、下記一般式(31a)、一般式(31b)、一般式(31c)、一般式(31d)、一般式(31e)又は一般式(31f)で表される基であり、
     R31~R38は、それぞれ独立に、水素原子もしくは置換基であり、R401~R404及びR409~R412は、それぞれ独立に、水素原子もしくは置換基であり、
     置換基としてのR31~R38並びに置換基としてのR401~R404及びR409~R412は、それぞれ独立に、
      ハロゲン原子、
      置換もしくは無置換の環形成炭素数6~30のアリール基、
      置換もしくは無置換の環形成原子数5~30の複素環基、
      置換もしくは無置換の炭素数1~30のアルキル基、
      置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
      置換もしくは無置換の炭素数2~30のアルケニル基、
      置換もしくは無置換の炭素数2~30のアルキニル基、
      置換もしくは無置換の炭素数3~30のアルキルシリル基、
      置換もしくは無置換の環形成炭素数6~60のアリールシリル基、
      置換もしくは無置換の環形成炭素数6~60のアリールホスホリル基、
      ヒドロキシ基、
      置換もしくは無置換の炭素数1~30のアルコキシ基、
      置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
      アミノ基、
      置換もしくは無置換の炭素数2~30のアルキルアミノ基、
      置換もしくは無置換の環形成炭素数6~60のアリールアミノ基、
      チオール基、
      置換もしくは無置換の炭素数1~30のアルキルチオ基、又は
      置換もしくは無置換の環形成炭素数6~30のアリールチオ基である。)
    Figure JPOXMLDOC01-appb-C000010

    Figure JPOXMLDOC01-appb-C000011

    Figure JPOXMLDOC01-appb-C000012

    (前記一般式(31a)、一般式(31b)、一般式(31c)、一般式(31d)、一般式(31e)及び一般式(31f)において、
     R310~R319は、それぞれ独立に、水素原子もしくは置換基であり、
     R320~R329は、それぞれ独立に、水素原子もしくは置換基であり、
     R330~R339は、それぞれ独立に、水素原子もしくは置換基であり、
     R340~R349は、それぞれ独立に、水素原子もしくは置換基であり、
     R350~R359は、それぞれ独立に、水素原子もしくは置換基であり、
     R360~R369は、それぞれ独立に、水素原子もしくは置換基であり、
     置換基としてのR310~R319、R320~R329、R330~R339、R340~R349、R350~R359及びR360~R369は、それぞれ独立に、前記一般式(3)における置換基としてのR31~R38並びに置換基としてのR401~R404及びR409~R412と同義である。*は、それぞれ独立に、前記一般式(3)中、R401~R404を有するベンゼン環との結合位置を表す。)
  2.  請求項1に記載の有機エレクトロルミネッセンス素子において、
     Rcは、水素原子もしくは置換基であり、
     Rcは、水素原子もしくは置換基である、
     有機エレクトロルミネッセンス素子。
  3.  請求項1または請求項2に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(A)で表される化合物は、下記一般式(1X)で表される、
     有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000013

    (前記一般式(1X)において、Ra~Ra及びRb~Rbは、それぞれ、前記一般式(A)におけるRa~Ra及びRb~Rbと同義であり、
     Rは、水素原子又は置換基であり、
     置換基としてのRは、それぞれ独立に、
      ハロゲン原子、
      シアノ基、
      置換もしくは無置換の環形成炭素数6~30のアリール基、
      置換もしくは無置換の環形成原子数5~30のヘテロアリール基、
      置換もしくは無置換の炭素数1~30のアルキル基、
      置換もしくは無置換の炭素数2~30のアルケニル基、
      置換もしくは無置換の炭素数2~30のアルキニル基、
      置換もしくは無置換のシリル基、
      置換もしくは無置換の炭素数1~30のアルコキシ基、
      置換もしくは無置換の炭素数7~30のアラルキル基、または
      置換もしくは無置換の環形成炭素数6~30のアリールオキシ基であり、複数のRが存在する場合、Rは互いに同一または異なる。)
  4.  請求項1から請求項3のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     Ra~Ra及びRb~Rbは、それぞれ独立に、水素原子、または置換もしくは無置換の環形成原子数5~30のヘテロアリール基である、
     有機エレクトロルミネッセンス素子。
  5.  請求項1から請求項4のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     Ra~Raの内、1つが置換基であり、当該置換基でないRa~Raは水素原子であり、
     Rb~Rbの内、1つが置換基であり、当該置換基でないRb~Rbは水素原子であり、
     Rc~Rcは、水素原子である、
     有機エレクトロルミネッセンス素子。
  6.  請求項1から請求項5のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(A)で表される化合物のイオン化ポテンシャルIpは、5.78eV以上である、
     有機エレクトロルミネッセンス素子。
  7.  請求項1から請求項6のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(B)におけるXからXまでのうち、2つもしくは3つが窒素原子である、
     有機エレクトロルミネッセンス素子。
  8.  請求項1から請求項7のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     連結基としてのLは、置換もしくは無置換の環形成炭素数6~30のアリール基から誘導される三価以上六価以下の残基である、
     有機エレクトロルミネッセンス素子。
  9.  請求項1から請求項7のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(1B)におけるaが2であり、Lが、連結基であって、
     連結基としてのLは、置換もしくは無置換の環形成炭素数6~30のアリール基から誘導される三価の残基、または
      置換もしくは無置換の環形成原子数5~30のヘテロアリール基から誘導される三価の残基である、
     有機エレクトロルミネッセンス素子。
  10.  請求項1から請求項9のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(2B)におけるYが、酸素原子又は硫黄原子である、
     有機エレクトロルミネッセンス素子。
  11.  請求項1から請求項10のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(2B)におけるYが、酸素原子又は硫黄原子であり、
     X11からX18までのうち一つが、Lに対して結合する炭素原子であり、それ以外は、CR13である、
     有機エレクトロルミネッセンス素子。
  12.  請求項1から請求項11のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(2B)におけるX13またはX16がLに対して結合する炭素原子である、
     有機エレクトロルミネッセンス素子。
  13.  請求項1から請求項12のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(2-1)及び(2-2)において、R131~R140及びR161~R168は、それぞれ独立に、
      水素原子、
      置換もしくは無置換の環形成炭素数6~14のアリール基、
      置換もしくは無置換の環形成原子数5~14の複素環基、または
      置換もしくは無置換の炭素数1~6のアルキル基である、
     有機エレクトロルミネッセンス素子。
  14.  請求項1から請求項13のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(2-1)及び(2-2)において、R131~R140及びR161~R168は、それぞれ独立に、
      水素原子、
      置換もしくは無置換の環形成炭素数6~14のアリール基、または
      置換もしくは無置換の炭素数1~6のアルキル基である、
     有機エレクトロルミネッセンス素子。
  15.  請求項1から請求項14のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(2-1)及び(2-2)において、R131~R140及びR161~R168は、それぞれ独立に、
      水素原子、または
      置換もしくは無置換の炭素数1~6のアルキル基である、
     有機エレクトロルミネッセンス素子。
  16.  請求項1から請求項15のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(1)で表される化合物が、下記一般式(n)で表される化合物である、
     有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000014

    (前記一般式(n)において、
     Ar1001及びAr1002は、それぞれ独立に、
      置換もしくは無置換の環形成炭素数6~30のアリール基、及び
      置換もしくは無置換の環形成原子数5~30のヘテロアリール基からなる群から選択され、
     R1001~R1005は、それぞれ独立に、水素原子もしくは置換基であるか、又はR1001及びR1002の組、R1002及びAr1001の組、Ar1002及びR1003の組、並びにR1003及びR1004の組のいずれか1つ以上の組が互いに結合して環を形成し、
     置換基としてのR1001~R1005は、それぞれ独立に、
      置換もしくは無置換の炭素数1~30のアルキル基、
      置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
      置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
      置換もしくは無置換の環形成炭素数6~30のアリール基、
      置換もしくは無置換の炭素数1~30のアルコキシ基、
      置換もしくは無置換の炭素数1~30のハロゲン化アルコキシ基、
      置換もしくは無置換の炭素数1~30のアルキルチオ基、
      置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
      置換もしくは無置換の環形成炭素数6~30のアリールチオ基、
      置換もしくは無置換の炭素数2~30のアルケニル基、
      置換もしくは無置換の環形成原子数5~30のヘテロアリール基、
      ハロゲン原子、
      カルボキシ基、
      置換もしくは無置換のエステル基、
      置換もしくは無置換のカルバモイル基、
      置換もしくは無置換のアミノ基、
      ニトロ基、
      シアノ基、
      置換もしくは無置換のシリル基、及び
      置換もしくは無置換のシロキサニル基からなる群から選択され、
     Z1001及びZ1002は、それぞれ独立に、
      ハロゲン原子、
      置換もしくは無置換の炭素数1~30のアルキル基、
      置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
      置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
      置換もしくは無置換の環形成炭素数6~30のアリール基、
      置換もしくは無置換の炭素数1~30のアルコキシ基、
      置換もしくは無置換の炭素数1~30のハロゲン化アルコキシ基、及び
      置換もしくは無置換の環形成炭素数6~30のアリールオキシ基からなる群から選択される。)
  17.  請求項16に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(n)で表される化合物が、下記一般式(n+1A)または一般式(n+1B)で表される化合物である、
     有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000015

    (前記一般式(n+1A)において、R1001、R1002、R1004、R1005、Ar1001、Z1001及びZ1002は、それぞれ独立に、前記一般式(n)におけるR1001、R1002、R1004、R1005、Ar1001、Z1001及びZ1002と同義であり、
     前記一般式(n+1B)において、R1001、R1004、R1005、Z1001及びZ1002は、それぞれ独立に、前記一般式(n)におけるR1001、R1004、R1005、Z1001及びZ1002と同義であり、
     Ar1003及びAr1004は、それぞれ独立に、
     置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素環、及び
     置換もしくは無置換の環形成原子数5~30の芳香族複素環からなる群から選択され、
     Bは3個以上の原子が直列に結合した架橋構造であり、前記原子が、
      置換もしくは無置換の炭素原子、
      置換もしくは無置換のケイ素原子、
      置換もしくは無置換の窒素原子、
      置換もしくは無置換のリン原子、
      酸素原子、及び
      硫黄原子からなる群から選択され、
     Cは1個以上の原子が直列に結合した架橋構造であり、前記原子が、
      置換もしくは無置換の炭素原子、
      置換もしくは無置換のケイ素原子、
      置換もしくは無置換の窒素原子、
      置換もしくは無置換のリン原子、
      酸素原子、及び
      硫黄原子からなる群から選択され、
     ただし、Bがトリメチレン基である場合、R1004は水素原子およびハロゲン原子ではない。)
  18.  請求項17に記載の有機エレクトロルミネッセンス素子において、
     Bが、下記一般式(n+2A)または一般式(n+2B)で表される架橋構造である、
     有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000016

    (前記一般式(n+2A)において、R1011~R1016は、それぞれ独立に、水素原子もしくは置換基であるか、R1011~R1016のうちの隣接する2つ以上からなる組の1組以上が互いに結合して環を形成し、
     前記一般式(n+2B)において、R1011~R1014は、それぞれ独立に、水素原子もしくは置換基であるか、R1011~R1014のうちの隣接する2つ以上からなる組の1組以上が互いに結合して環を形成し、
     置換基としてのR1011~R1016は、それぞれ独立に、
      置換もしくは無置換の炭素数1~30のアルキル基、
      置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
      置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
      置換もしくは無置換の環形成炭素数6~30のアリール基、
      置換もしくは無置換の環形成原子数5~30のヘテロアリール基、
      置換もしくは無置換の炭素数1~30のアルコキシ基、
      置換もしくは無置換の炭素数1~30のハロゲン化アルコキシ基、
      置換もしくは無置換の炭素数1~30のアルキルチオ基、
      置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
      置換もしくは無置換の環形成炭素数6~30のアリールチオ基、
      置換もしくは無置換の炭素数2~30のアルケニル基、
      置換もしくは無置換の炭素数2~30のアルキニル基、
      ハロゲン原子、
      カルボキシ基、
      置換もしくは無置換のアミノ基、
      ニトロ基、
      シアノ基、
      置換もしくは無置換のシリル基、
      ヒドロキシ基、
      エステル基、
      シロキサニル基、または
      カルバモイル基であり、
     *は、前記一般式(n+1A)及び一般式(n+1B)中、ピロール環との連結部を示し、**は、Ar1003との連結部を示す。)
  19.  請求項16から請求項18のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     R1005が下記一般式(n+3)で表される基である、
     有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000017

    (前記一般式(n+3)において、
     R1021およびR1022は、それぞれ独立に、
      置換もしくは無置換の炭素数1~30のアルキル基、
      置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
      置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
      置換もしくは無置換の環形成炭素数6~30のアリール基、及び
      置換もしくは無置換の環形成原子数5~30のヘテロアリール基からなる群から選択され、
     R1023~R1025は、それぞれ独立に、水素原子もしくは置換基であるか、又はR1023及びR1024の組、並びにR1024及びR1025の組のいずれか1つ以上の組が互いに結合して環を形成し、
     置換基としてのR1023~R1025は、それぞれ独立に、
      置換もしくは無置換の炭素数1~30のアルキル基、
      置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
      置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
      置換もしくは無置換の環形成炭素数6~30のアリール基、
      置換もしくは無置換の環形成原子数5~30のヘテロアリール基、
      置換もしくは無置換の炭素数1~30のアルコキシ基、
      置換もしくは無置換の炭素数1~30のハロゲン化アルコキシ基、
      置換もしくは無置換の炭素数1~30のアルキルチオ基、
      置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
      置換もしくは無置換の環形成炭素数6~30のアリールチオ基、
      置換もしくは無置換の炭素数2~30のアルケニル基、
      置換もしくは無置換の炭素数2~30のアルキニル基、
      置換もしくは無置換の炭素数1~30のアルキルスルホニル基、
      置換もしくは無置換の環形成炭素数6~30のアリールカルボニル基、
      置換もしくは無置換の炭素数1~30のアシル基、
      ハロゲン原子、
      カルボキシ基、
      置換もしくは無置換のアミノ基、
      ニトロ基、
      シアノ基、
      置換もしくは無置換のシリル基、
      ヒドロキシ基、
      エステル基、
      シロキサニル基、または
      カルバモイル基であり、
     前記一般式(n+3)中、***は、前記一般式(n)におけるR1005と結合する炭素原子との結合位置を表す。)
  20.  請求項1から請求項17のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     「置換もしくは無置換の」という場合の置換基は、
      置換もしくは無置換の炭素数1~30のアルキル基、
      置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
      置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
      置換もしくは無置換の環形成炭素数6~30のアリール基、
      置換もしくは無置換の環形成原子数5~30のヘテロアリール基、
      置換もしくは無置換の炭素数1~30のアルコキシ基、
      置換もしくは無置換の炭素数1~30のハロゲン化アルコキシ基、
      置換もしくは無置換の炭素数1~30のアルキルチオ基、
      置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
      置換もしくは無置換の環形成炭素数6~30のアリールチオ基、
      置換もしくは無置換の炭素数2~30のアルケニル基、
      置換もしくは無置換の炭素数2~30のアルキニル基、
      置換もしくは無置換の炭素数7~30のアラルキル基、
      置換もしくは無置換の炭素数1~30のアルキルスルホニル基、
      置換もしくは無置換の環形成炭素数6~30のアリールカルボニル基、
      置換もしくは無置換の炭素数1~30のアシル基、
      ハロゲン原子、
      カルボキシ基、
      置換もしくは無置換のアミノ基、
      ニトロ基、
      シアノ基、
      置換もしくは無置換のシリル基、
      置換ホスホリル基、
      ヒドロキシ基、
      置換ホスフィノ基、
      エステル基、
      シロキサニル基、または
      カルバモイル基である、
     有機エレクトロルミネッセンス素子。
  21.  請求項1から請求項20のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記発光層は、金属錯体を含まない、
     有機エレクトロルミネッセンス素子。
  22.  請求項1から請求項21のいずれか一項に記載の有機エレクトロルミネッセンス素子を搭載した電子機器。
     
     
PCT/JP2020/028145 2019-07-24 2020-07-20 有機エレクトロルミネッセンス素子及び電子機器 WO2021015177A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021534033A JPWO2021015177A1 (ja) 2019-07-24 2020-07-20
CN202080051906.XA CN114127979A (zh) 2019-07-24 2020-07-20 有机电致发光元件以及电子设备
KR1020227004307A KR20220038370A (ko) 2019-07-24 2020-07-20 유기 일렉트로루미네센스 소자 및 전자 기기
US17/629,289 US20220263030A1 (en) 2019-07-24 2020-07-20 Organic electroluminescent element and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019136109 2019-07-24
JP2019-136109 2019-07-24

Publications (1)

Publication Number Publication Date
WO2021015177A1 true WO2021015177A1 (ja) 2021-01-28

Family

ID=74193682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028145 WO2021015177A1 (ja) 2019-07-24 2020-07-20 有機エレクトロルミネッセンス素子及び電子機器

Country Status (5)

Country Link
US (1) US20220263030A1 (ja)
JP (1) JPWO2021015177A1 (ja)
KR (1) KR20220038370A (ja)
CN (1) CN114127979A (ja)
WO (1) WO2021015177A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168956A1 (ja) 2021-02-04 2022-08-11 株式会社Kyulux 化合物、発光材料および有機発光素子
WO2022168825A1 (ja) * 2021-02-04 2022-08-11 株式会社Kyulux 有機エレクトロルミネッセンス素子、発光組成物の設計方法およびプログラム
WO2022176922A1 (ja) * 2021-02-19 2022-08-25 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2022270113A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 有機エレクトロルミネッセンス素子
WO2023282224A1 (ja) 2021-07-06 2023-01-12 株式会社Kyulux 有機発光素子およびその設計方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307884A (ja) * 2000-04-26 2001-11-02 Toray Ind Inc 発光素子
US20170186974A1 (en) * 2015-12-24 2017-06-29 Samsung Electronics Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
WO2017115788A1 (ja) * 2015-12-28 2017-07-06 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2018030446A1 (ja) * 2016-08-10 2018-02-15 出光興産株式会社 有機エレクトロルミネッセンス素子、及び電子機器
JP2018509403A (ja) * 2015-08-27 2018-04-05 エルジー・ケム・リミテッド ヘテロ環化合物およびこれを含む有機発光素子
CN109411634A (zh) * 2018-08-31 2019-03-01 昆山国显光电有限公司 一种有机电致发光器件和显示装置
JP2019140188A (ja) * 2018-02-07 2019-08-22 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2019230708A1 (ja) * 2018-05-28 2019-12-05 出光興産株式会社 有機エレクトロルミネッセンス素子、表示装置及び電子機器
WO2020022378A1 (ja) * 2018-07-27 2020-01-30 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、および電子機器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160056559A (ko) 2014-11-12 2016-05-20 한화테크윈 주식회사 포인터를 이용한 로봇의 주행 시스템 및 방법
CN110892541B (zh) 2017-07-10 2022-06-24 东丽株式会社 发光元件、包含该发光元件的显示器、照明装置及传感器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307884A (ja) * 2000-04-26 2001-11-02 Toray Ind Inc 発光素子
JP2018509403A (ja) * 2015-08-27 2018-04-05 エルジー・ケム・リミテッド ヘテロ環化合物およびこれを含む有機発光素子
US20170186974A1 (en) * 2015-12-24 2017-06-29 Samsung Electronics Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
WO2017115788A1 (ja) * 2015-12-28 2017-07-06 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2018030446A1 (ja) * 2016-08-10 2018-02-15 出光興産株式会社 有機エレクトロルミネッセンス素子、及び電子機器
JP2019140188A (ja) * 2018-02-07 2019-08-22 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2019230708A1 (ja) * 2018-05-28 2019-12-05 出光興産株式会社 有機エレクトロルミネッセンス素子、表示装置及び電子機器
WO2020022378A1 (ja) * 2018-07-27 2020-01-30 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、および電子機器
CN109411634A (zh) * 2018-08-31 2019-03-01 昆山国显光电有限公司 一种有机电致发光器件和显示装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168956A1 (ja) 2021-02-04 2022-08-11 株式会社Kyulux 化合物、発光材料および有機発光素子
WO2022168825A1 (ja) * 2021-02-04 2022-08-11 株式会社Kyulux 有機エレクトロルミネッセンス素子、発光組成物の設計方法およびプログラム
WO2022176922A1 (ja) * 2021-02-19 2022-08-25 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2022270113A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 有機エレクトロルミネッセンス素子
WO2023282224A1 (ja) 2021-07-06 2023-01-12 株式会社Kyulux 有機発光素子およびその設計方法

Also Published As

Publication number Publication date
CN114127979A (zh) 2022-03-01
JPWO2021015177A1 (ja) 2021-01-28
KR20220038370A (ko) 2022-03-28
US20220263030A1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
JP6761796B2 (ja) 有機エレクトロルミネッセンス素子、電子機器、および化合物
JP7252959B2 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、および電子機器
WO2021015177A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2017146192A1 (ja) 有機エレクトロルミネッセンス素子、及び電子機器
WO2021066059A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
JP7393345B2 (ja) 有機エレクトロルミネッセンス素子、化合物、有機エレクトロルミネッセンス素子用材料、及び電子機器
JP6829583B2 (ja) 化合物、組成物、有機エレクトロルミネッセンス素子、及び電子機器
WO2017146191A1 (ja) 有機エレクトロルミネッセンス素子、及び電子機器
WO2020085446A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、および電子機器
WO2022196749A1 (ja) 有機エレクトロルミネッセンス素子、化合物、及び電子機器
JP2021119583A (ja) 有機エレクトロルミネッセンス素子、及び電子機器
JP2020050650A (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、および電子機器
JP2020158425A (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2021215446A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2020241580A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
JP7374187B2 (ja) 有機エレクトロルミネッセンス素子、化合物及び電子機器
WO2020059862A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、および電子機器
JP2021020857A (ja) 化合物、有機エレクトロルミネッセンス素子及び電子機器
JP2020174072A (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2022196634A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2022075270A1 (ja) 有機エレクトロルミネッセンス素子、化合物、有機エレクトロルミネッセンス素子用材料、及び電子機器
WO2022025021A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス発光装置、及び電子機器
WO2021166552A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2021166553A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
KR20240019325A (ko) 유기 일렉트로루미네센스 소자, 유기 일렉트로루미네센스 표시 장치 및 전자 기기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844337

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021534033

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227004307

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20844337

Country of ref document: EP

Kind code of ref document: A1