WO2022176922A1 - 有機エレクトロルミネッセンス素子及び電子機器 - Google Patents

有機エレクトロルミネッセンス素子及び電子機器 Download PDF

Info

Publication number
WO2022176922A1
WO2022176922A1 PCT/JP2022/006217 JP2022006217W WO2022176922A1 WO 2022176922 A1 WO2022176922 A1 WO 2022176922A1 JP 2022006217 W JP2022006217 W JP 2022006217W WO 2022176922 A1 WO2022176922 A1 WO 2022176922A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
carbon atoms
ring
Prior art date
Application number
PCT/JP2022/006217
Other languages
English (en)
French (fr)
Inventor
裕美 中野
尚人 松本
拓史 塩見
俊成 荻原
圭一 安川
一成 川本
貴士 徳田
和真 長尾
Original Assignee
出光興産株式会社
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社, 東レ株式会社 filed Critical 出光興産株式会社
Priority to US18/546,535 priority Critical patent/US20240215447A1/en
Publication of WO2022176922A1 publication Critical patent/WO2022176922A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants

Definitions

  • the present invention relates to organic electroluminescence elements and electronic devices.
  • organic electroluminescence device When a voltage is applied to an organic electroluminescence device (hereinafter sometimes referred to as an "organic EL device"), holes are injected into the light-emitting layer from the anode, and electrons are injected into the light-emitting layer from the cathode. Then, in the light-emitting layer, the injected holes and electrons recombine to form excitons. At this time, singlet excitons are generated at a rate of 25% and triplet excitons are generated at a rate of 75% according to the electron spin statistical law. Fluorescent organic EL devices using light emission from singlet excitons are being applied to full-color displays such as mobile phones and televisions, but it is said that the internal quantum efficiency is limited to 25%. Therefore, studies have been made to improve the performance of organic EL elements.
  • triplet excitons will be used in addition to singlet excitons to allow the organic EL device to emit light more efficiently.
  • highly efficient fluorescent organic EL devices using thermally activated delayed fluorescence hereinafter sometimes simply referred to as “delayed fluorescence” have been proposed and studied.
  • the TADF (Thermally Activated Delayed Fluorescence) mechanism (mechanism) is being studied.
  • TADF Thermally Activated Delayed Fluorescence
  • ⁇ ST small energy difference
  • the heat-activated delayed fluorescence is described, for example, in Chihaya Adachi, “Physical Properties of Organic Semiconductor Devices,” Kodansha, April 1, 2012, pp. 261-268.
  • Patent Literature 1 and Patent Literature 2 describe compounds used in organic electroluminescence devices utilizing the TADF mechanism.
  • Patent Document 3 describes a pyrromethene metal complex used in a light-emitting layer together with a thermally activated delayed fluorescent compound.
  • An object of the present invention is to provide a high-performance organic electroluminescence element and electronic equipment.
  • the present invention comprises an anode, a cathode, and a light-emitting layer contained between the anode and the cathode, the light-emitting layer comprising a fluorescent light-emitting first compound and a retardation including a fluorescent second compound and a third compound, wherein the first compound is represented by the following general formula (1), and the second compound is represented by the following general formula (2),
  • the third compound is represented by the following general formula (3), wherein the singlet energy S 1 (M1) of the first compound, the singlet energy S 1 (M2) of the second compound, and the An organic electroluminescence device is provided in which the singlet energy S 1 (M3) of the three compounds satisfies the relationship of the following formula (Formula 1).
  • R 1001 to R 1005 and R 2001 to R 2002 are each independently a hydrogen atom or a substituent, or a set of R 1001 and R 1002 , a set of R 1002 and R 2001 , a set of R 2002 and R 1003 , and any one or more pairs of R 1003 and R 1004 are bonded together to form a ring
  • R 1001 to R 1005 and R 2001 to R 2002 as substituents are each independently a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted halogenated alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 30 ring carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, a substituted or unsub
  • CN is a cyano group
  • D 1 is a group represented by the following general formula (2-1)
  • D 2 is the following general formula (2-2). is a group represented, and a plurality of D 2 are the same group.
  • X4 is a sulfur atom
  • R 131 to R 140 are each independently a hydrogen atom or a substituent
  • R 131 to R 140 as substituents are each independently a substituted or unsubstituted aryl group having 6 to 14 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 14 ring atoms, a substituted or unsubstituted alkylsilyl group having 3 to 6 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 6 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 14 ring carbon atoms, a substituted or unsubstituted alkylamino group having 2 to 12 carbon atoms, A substituted or unsubstituted alkylthio group having 1 to 6 carbon atoms, or a substituted or unsubstituted arylthio group having 6 to 14 ring
  • R 161 to R 168 are each independently a hydrogen atom or a substituent, R 161 to R 168 as substituents are each independently halogen atom, a substituted or unsubstituted aryl group having 6 to 14 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 14 ring atoms, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 30 ring carbon atoms, a substituted or unsubstituted halogenated alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted alkylsilyl group having 3 to 6 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 6 carbon atoms,
  • X 1 is an oxygen atom or a sulfur atom
  • Y 1 is an oxygen atom or a sulfur atom
  • L 1 is a single bond or a linking group
  • L 1 as a linking group is a group derived from a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms
  • R 41 , R 42 and R 44 to R 48 are each independently a hydrogen atom or a substituent, or a set of R 41 and R 42 , a set of R 45 and R 46 , a set of R 46 and
  • an electronic device equipped with the above-described organic electroluminescence element according to one aspect of the present invention.
  • FIG. 1 is a schematic diagram of an apparatus for measuring transient PL
  • FIG. 4 is a diagram showing an example of a decay curve of transient PL
  • FIG. 3 is a diagram showing the energy levels of the first compound, the second compound, and the third compound in the light-emitting layer of one example of the organic EL device according to the first embodiment, and the relationship between the energy transfer.
  • An organic EL element comprises an organic layer between both electrodes of an anode and a cathode. This organic layer is formed by laminating a plurality of layers made of an organic compound. The organic layer may further contain an inorganic compound. In the organic EL element of this embodiment, at least one layer of the organic layers is a light-emitting layer. Therefore, the organic layer may be composed of, for example, one light-emitting layer, or may include layers that can be employed in an organic EL device.
  • the layer that can be employed in the organic EL device is not particularly limited, but for example, at least one selected from the group consisting of a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, and a barrier layer. layer.
  • the organic layers of the organic EL element of this embodiment preferably have the following layer structure.
  • ⁇ Electron-blocking layer/light-emitting layer/hole-blocking layer ⁇ Hole-injection layer/electron-blocking layer/light-emitting layer/hole-blocking layer ⁇ Hole-transporting layer/electron-blocking layer/light-emitting layer/hole-blocking layer ⁇ Hole injection Layer/Hole transport layer/Electron blocking layer/Light emitting layer/Hole blocking layer/Electron blocking layer/Light emitting layer/Hole blocking layer/Electron injection layer/Electron blocking layer/Light emitting layer/Hole blocking layer/Electron injection layer/Electron blocking layer/Light emitting layer/Hole blocking layer/Electron transport layer ⁇ Electron-blocking layer/light-emitting layer/hole-blocking layer/electron-transporting layer/electron-injecting layer ⁇ Hole-injecting layer/electron-blocking layer
  • FIG. 1 shows a schematic configuration of an example of the organic EL element according to this embodiment.
  • the organic EL element 1 has a translucent substrate 2 , an anode 3 , a cathode 4 , and an organic layer 10 arranged between the anode 3 and the cathode 4 .
  • Organic layer 10 includes hole injection layer 6 , hole transport layer 7 , light emitting layer 5 , electron transport layer 8 and electron injection layer 9 .
  • a hole injection layer 6, a hole transport layer 7, a light emitting layer 5, an electron transport layer 8, and an electron injection layer 9 are laminated in this order from the anode 3 side.
  • the light-emitting layer includes a first compound represented by general formula (1), a second compound represented by general formula (2), and a third compound represented by general formula (3).
  • the first compound is a fluorescent compound
  • the second compound is a delayed fluorescent compound.
  • the first compound, the second compound, and the third compound are different compounds.
  • the first compound is also preferably a dopant material (also referred to as a guest material, emitter, or light-emitting material).
  • the second compound is also preferably a host material (sometimes referred to as a matrix material).
  • the third compound is also preferably a host material (sometimes referred to as matrix material). When the second compound and the third compound are host materials, for example, one may be called the first host material and the other may be called the second host material.
  • the light-emitting layer may contain a metal complex, but preferably does not contain a phosphorescent metal complex, and more preferably does not contain a metal complex.
  • the light-emitting layer preferably does not contain a phosphorescent material (phosphorescent dopant material).
  • the light-emitting layer preferably does not contain a heavy metal complex.
  • heavy metal complexes include iridium complexes, osmium complexes, and platinum complexes.
  • the light-emitting layer preferably does not contain a phosphorescent rare earth metal complex.
  • the first compound is a fluorescent compound.
  • the first compound may be a compound with delayed fluorescence or a compound that does not exhibit delayed fluorescence.
  • the first compound is represented by the following general formula (1).
  • R 1001 to R 1005 and R 2001 to R 2002 are each independently a hydrogen atom or a substituent, or a set of R 1001 and R 1002 , a set of R 1002 and R 2001 , a set of R 2002 and R 1003 , and any one or more pairs of R 1003 and R 1004 are bonded together to form a ring
  • R 1001 to R 1005 and R 2001 to R 2002 as substituents are each independently a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted halogenated alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 30 ring carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, a substituted or unsub
  • R 2001 and R 2002 in the general formula (1) are each independently a substituted or unsubstituted aryl group having 6 to 30 ring-forming carbon atoms and a substituted or unsubstituted 5 ring-forming atoms. It is preferably a group selected from the group consisting of ⁇ 30 heteroaryl groups.
  • the compound represented by the general formula (1) is preferably a compound represented by the following general formula (4A) or general formula (4B).
  • R 1001 , R 1002 , R 1004 , R 1005 , R 2001 , Z 1001 and Z 1002 are each independently R 1001 , R 1002 and R 1004 in general formula (1) , R 1005 , R 2001 , Z 1001 and Z 1002 ;
  • R 1001 , R 1004 , R 1005 , Z 1001 and Z 1002 are each independently R 1001 , R 1004 , R 1005 , Z 1001 and Z 1002 in general formula (1).
  • Ar 1001 and Ar 1002 are each independently selected from the group consisting of a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 30 ring-forming carbon atoms and a substituted or unsubstituted aromatic heterocyclic ring having 5 to 30 ring-forming atoms;
  • B 1 is a bridged structure in which three or more atoms are connected in series, and the atoms are a substituted or unsubstituted carbon atom, a substituted or unsubstituted silicon atom, a substituted or unsubstituted nitrogen atom, a substituted or unsubstituted phosphorus atom, selected from the group consisting of an oxygen atom and a sulfur atom;
  • C 1 is a bridged structure in which one or more atoms are connected in series, and the atoms are a substituted or unsubstituted carbon atom, a substituted or unsubstituted silicon atom, a substituted or unsubstituted
  • the double bond shown as part of Ar 1001 in the general formulas (4A) and (4B) represents part of an aromatic hydrocarbon ring or an aromatic heterocyclic ring and is directly bonded to the pyrromethene skeleton. and the carbon atom to which the bridge structure B1 is bonded are adjacent to each other.
  • the double bond shown as part of Ar 1002 in the general formula (4B) represents part of an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and the carbon directly bonded to the pyrromethene skeleton It indicates that the atom is adjacent to the carbon atom to which the bridging structure C1 is attached.
  • R 1001 and R 1004 in general formula (1), general formula (4A) and general formula (4B) are each independently preferably a hydrogen atom, a substituted or unsubstituted 30 alkyl groups, substituted or unsubstituted 3 to 30 ring carbon atoms cycloalkyl groups, substituted or unsubstituted 6 to 30 ring carbon atoms aryl groups, and substituted or unsubstituted 5 to 5 ring carbon atoms It is selected from the group consisting of 30 heteroaryl groups, more preferably a substituted or unsubstituted aryl group having 6 to 30 ring-forming carbon atoms.
  • R 1002 and R 1003 in general formula (1), general formula (4A) and general formula (4B) are each independently preferably a hydrogen atom, a substituted or unsubstituted 30 alkyl groups, substituted or unsubstituted 3 to 30 ring carbon atoms cycloalkyl groups, substituted or unsubstituted 6 to 30 ring carbon atoms aryl groups, and substituted or unsubstituted 5 to 5 ring carbon atoms is selected from the group consisting of 30 heteroaryl groups, or any one or more pairs of the pair of R 1002 and R 2001 and the pair of R 2002 and R 1003 combine together to form a ring.
  • R 1005 in the general formula (1), general formula (4A) and general formula (4B) is preferably a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or consisting of an unsubstituted cycloalkyl group having 3 to 30 ring carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, and a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms; is selected from the group, more preferably a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms.
  • R 2001 and R 2002 in general formula (1), general formula (4A) and general formula (4B) are each independently preferably substituted or unsubstituted ring-forming carbon atoms of 6 to 30 and substituted or unsubstituted heteroaryl groups having 5 to 30 ring atoms, more preferably substituted or unsubstituted aryl groups having 6 to 30 ring atoms.
  • Z 1001 and Z 1002 in general formula (1), general formula (4A) and general formula (4B) are each independently preferably a halogen atom, a cyano group, a substituted or unsubstituted carbon It is selected from the group consisting of a halogenated alkyl group having 1 to 30 carbon atoms and a substituted or unsubstituted halogenated alkoxy group having 1 to 30 carbon atoms, more preferably a fluorine atom.
  • Ar 1001 and Ar 1002 in the general formulas (4A) and (4B) are each independently preferably a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 30 ring-forming carbon atoms. is.
  • B 1 in the general formulas (4A) and (4B) is a bridged structure in which three or more atoms are bonded in series, the atoms are substituted or unsubstituted carbon atoms, and It is preferably selected from the group consisting of oxygen atoms.
  • C 1 in the general formulas (4A) and (4B) is a bridged structure in which one or more atoms are bonded in series, and the atoms are substituted or unsubstituted carbon atoms, substituted Alternatively, it is preferably selected from the group consisting of unsubstituted nitrogen atoms, oxygen atoms, and sulfur atoms, and from the viewpoint of emission peak wavelength control, it is selected from the group consisting of 1 to 3 substituted or unsubstituted carbon atoms. is more preferable. More preferably, C 1 is 3 substituted or unsubstituted carbon atoms because the degree of freedom in molecular design can be increased in response to requests for various emission peak wavelengths.
  • C 1 is more preferably 1 to 2 substituted or unsubstituted carbon atoms, and 1 substituted or unsubstituted carbon atom. is particularly preferred.
  • B 1 in general formula (4A) or general formula (4B) is preferably a crosslinked structure represented by general formula (5A) or general formula (5B) below.
  • R 1011 to R 1016 are each independently a hydrogen atom or a substituent, or one or more groups of two or more adjacent R 1011 to R 1016 are combined with each other to form a ring
  • R 1011 to R 1014 are each independently a hydrogen atom or a substituent, or one or more sets of two or more adjacent R 1011 to R 1014 are mutually combined to form a ring
  • R 1011 to R 1016 as substituents are each independently a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted halogenated alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 30 ring carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 30
  • R 1011 to R 1016 in the general formulas (5A) and (5B) are each independently preferably a hydrogen atom and a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms. is selected from the group consisting of, more preferably a hydrogen atom.
  • R 1004 and R 1001 , B 1 and C 1 , and Ar 1001 and Ar 1002 in general formula (4B) may be the same or different.
  • the former is called a symmetric type, and the latter is called an asymmetric type.
  • a symmetrical type is preferable from the viewpoint of ease of production because the number of production steps is small and by-products can be reduced.
  • the asymmetric type is preferable from the viewpoint of facilitating the adjustment of the emission peak wavelength and the half width of the emission spectrum by combining the respective groups.
  • the 1st compound can be manufactured by a well-known method as shown, for example in international publication 2020/184369.
  • the coordinate bond between the boron atom and the nitrogen atom in the pyrromethene skeleton can be represented in various ways, such as a solid line, a broken line, an arrow, or omitted. In this specification, they are represented by solid lines, dashed lines, or omitted.
  • the second compound is a delayed fluorescent compound.
  • CN is a cyano group
  • D 1 is a group represented by the following general formula (2-1)
  • D 2 is the following general formula (2-2). is a group represented, and a plurality of D 2 are the same group.
  • X4 is a sulfur atom
  • R 131 to R 140 are each independently a hydrogen atom or a substituent
  • R 131 to R 140 as substituents are each independently a substituted or unsubstituted aryl group having 6 to 14 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 14 ring atoms, a substituted or unsubstituted alkylsilyl group having 3 to 6 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 6 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 14 ring carbon atoms, a substituted or unsubstituted alkylamino group having 2 to 12 carbon atoms, A substituted or unsubstituted alkylthio group having 1 to 6 carbon atoms, or a substituted or unsubstituted arylthio group having 6 to 14 ring
  • R 161 to R 168 are each independently a hydrogen atom or a substituent, R 161 to R 168 as substituents are each independently halogen atom, a substituted or unsubstituted aryl group having 6 to 14 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 14 ring atoms, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 30 ring carbon atoms, a substituted or unsubstituted halogenated alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted alkylsilyl group having 3 to 6 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 6 carbon atoms,
  • R 131 to R 140 and R 161 to R 168 in the general formulas (2-1) and (2-2) are each independently hydrogen atom, A substituted or unsubstituted aryl group having 6 to 14 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 14 ring atoms is preferred.
  • R 136 in the general formula (2-1) is A substituted or unsubstituted aryl group having 6 to 14 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 14 ring atoms is preferred.
  • R 136 in the general formula (2-1) is such an aryl group or heterocyclic group, the drive voltage of the organic EL element is further reduced, the life is further increased, and the luminous efficiency is improved.
  • the second compound is manufactured according to the synthesis method described in the examples described later, or by imitating the synthesis method and using known alternative reactions and raw materials according to the target product. be able to.
  • the second compound in this embodiment is preferably a compound that exhibits thermally activated delayed fluorescence generated by such a mechanism.
  • delayed fluorescence emission can be confirmed by transient PL (Photo Luminescence) measurement.
  • Transient PL measurement is a method of irradiating a sample with a pulse laser to excite it, and measuring the attenuation behavior (transient characteristics) of PL emission after stopping the irradiation.
  • PL emission in the TADF material is classified into an emission component from singlet excitons generated by the first PL excitation and an emission component from singlet excitons generated via triplet excitons.
  • the lifetime of singlet excitons generated by the first PL excitation is on the order of nanoseconds and is very short. Therefore, the light emission from the singlet excitons is rapidly attenuated after irradiation with the pulse laser.
  • delayed fluorescence is emitted from singlet excitons generated via long-lived triplet excitons, so it gradually decays.
  • the emission intensity derived from delayed fluorescence can be obtained.
  • FIG. 2 A schematic diagram of an exemplary apparatus for measuring transient PL is shown in FIG. An example of a transient PL measurement method and delayed fluorescence behavior analysis using FIG. 2 will be described.
  • a transient PL measurement apparatus 100 in FIG. A streak camera 104 for forming a dimensional image and a personal computer 105 for taking in and analyzing a two-dimensional image are provided. Note that the measurement of transient PL is not limited to the apparatus shown in FIG.
  • the sample housed in the sample chamber 102 is obtained by forming a thin film on a quartz substrate, which is doped with a doping material at a concentration of 12% by mass with respect to the matrix material.
  • a thin film sample housed in the sample chamber 102 is irradiated with a pulse laser from the pulse laser unit 101 to excite the doping material. Emission is extracted in a direction 90 degrees to the irradiation direction of the excitation light, the extracted light is spectroscopically separated by the spectroscope 103 , and a two-dimensional image is formed in the streak camera 104 .
  • a two-dimensional image can be obtained in which the vertical axis corresponds to time, the horizontal axis corresponds to wavelength, and the bright spots correspond to emission intensity.
  • By cutting out this two-dimensional image along a predetermined time axis it is possible to obtain an emission spectrum in which the vertical axis is the emission intensity and the horizontal axis is the wavelength. Also, by cutting out the two-dimensional image along the wavelength axis, it is possible to obtain an attenuation curve (transient PL) in which the vertical axis is the logarithm of the emission intensity and the horizontal axis is time.
  • the following reference compound H1 was used as the matrix material, and the following reference compound D1 was used as the doping material to prepare the thin film sample A as described above, and the transient PL measurement was performed.
  • the attenuation curves were analyzed using the thin film sample A and thin film sample B described above.
  • a thin film sample B was prepared as described above using the following reference compound H2 as a matrix material and the aforementioned reference compound D1 as a doping material.
  • Fig. 3 shows attenuation curves obtained from transient PL measured for thin film sample A and thin film sample B.
  • the vertical axis is the luminous intensity and the horizontal axis is the time. Based on this emission decay curve, the fluorescence intensity of the fluorescence emitted from the singlet excited state generated by photoexcitation and the delayed fluorescence emitted from the singlet excited state generated by reverse energy transfer via the triplet excited state ratio can be estimated.
  • the ratio of the intensity of delayed fluorescence that decays slowly to the intensity of fluorescence that decays quickly is relatively large.
  • Prompt luminescence is luminescence immediately observed from the excited state after excitation with pulsed light (light emitted from a pulse laser) having a wavelength that the delayed fluorescent material absorbs.
  • Delayed luminescence is luminescence that is not observed immediately after excitation by the pulsed light, but is observed thereafter.
  • the amount and ratio of Prompt luminescence and Delay luminescence can be obtained by a method similar to that described in "Nature 492, 234-238, 2012" (reference document 1). It should be noted that the device used to calculate the amounts of Prompt emission and Delay emission is not limited to the device described in Reference Document 1 or the device described in FIG.
  • a sample prepared by the following method is used for measuring the delayed fluorescence of the second compound.
  • the second compound is dissolved in toluene to prepare a dilute solution with an absorbance of 0.05 or less at the excitation wavelength to remove the self-absorption contribution.
  • the sample solution is freeze-degassed and sealed in a cell with a lid under an argon atmosphere to obtain an oxygen-free sample solution saturated with argon.
  • the fluorescence spectrum of the above sample solution is measured with a spectrofluorophotometer FP-8600 (manufactured by JASCO Corporation), and the fluorescence spectrum of the ethanol solution of 9,10-diphenylanthracene is also measured under the same conditions. Using the fluorescence area intensity of both spectra, Morris et al. J. Phys. Chem. 80 (1976) 969, to calculate the total fluorescence quantum yield.
  • the amount of prompt luminescence (immediate luminescence) of the compound to be measured (second compound) is X P
  • the amount of delay luminescence (delayed luminescence) is X D
  • X D /X P is preferably 0.05 or more.
  • the amount and ratio of prompt luminescence and delay luminescence of compounds other than the second compound in this specification are measured in the same manner as the measurement of the amount and ratio of prompt luminescence and delay luminescence of the second compound.
  • the third compound may be a compound with delayed fluorescence or a compound that does not exhibit delayed fluorescence.
  • X 1 is an oxygen atom or a sulfur atom
  • Y 1 is an oxygen atom or a sulfur atom
  • L 1 is a single bond or a linking group
  • L 1 as a linking group is a group derived from a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms
  • R 41 , R 42 and R 44 to R 48 are each independently a hydrogen atom or a substituent, or a set of R 41 and R 42 , a set of R 45 and R 46 , a set of R 46 and
  • X 1 in the general formula (3) is preferably an oxygen atom.
  • Y 1 in the general formula (3) is preferably an oxygen atom.
  • L 1 in the general formula (3) is a single bond or a linking group
  • L 1 as the linking group is a group derived from a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms. is preferred.
  • R 13 to R 18 , R 21 , R 22 , R 24 , R 25 , R 31 , R 32 , R 34 , R 35 , R 401 to R 404 , R 41 , R 42 and R in the general formula (3) 44 to R 48 are each independently a hydrogen atom or a substituent
  • R 13 to R 18 , R 21 , R 22 , R 24 , R 25 , R 31 , R 32 , R 34 , R 35 , R 401 to R 404 , R 41 , R 42 and R 44 to R as substituents 48 are independently a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, A substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms or a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms is preferred.
  • the 3rd compound can be manufactured by a well-known method.
  • the singlet energy S 1 (M1) of the first compound in the light-emitting layer, the singlet energy S 1 (M2) of the second compound, and the singlet energy of the third compound S 1 (M3) satisfies the relationship of the following formula (Equation 1).
  • the energy gap T 77K (M1) at 77 [K] of the first compound in the light-emitting layer, the energy gap T 77K (M2) at 77 [K] of the second compound, and 77 [K] of the third compound in the light-emitting layer It is preferable that the energy gap T 77K (M3) at satisfy the relationship of the following formula (Equation 2). T77K (M3)> T77K (M2)> T77K (M1) (Equation 2)
  • the difference ⁇ ST (M2) between the singlet energy S1 (M2) of the second compound and the energy gap T 77K (M2) at 77 [K] of the second compound is expressed by the following formula (Formula 1A ) to (number 1D).
  • the difference ⁇ ST (M1) between the singlet energy S 1 (M1) of the first compound and the energy gap T 77K (M1) at 77 [K] of the first compound is expressed by the following formula (number 1E) is preferably satisfied.
  • the difference ⁇ ST (M3) between the singlet energy S 1 (M3) of the third compound and the energy gap T 77K (M3) at 77 [K] of the third compound is expressed by the following formula (number 1F) is preferably satisfied.
  • the energy gap T 77K (M3) at 77 [K] of the third compound is preferably 2.9 eV or more. Since the third compound has such an energy gap T 77K (M3), the triplet energy of the second compound (delayed fluorescence compound) can be effectively confined in the light-emitting layer. it is conceivable that.
  • ⁇ TADF mechanism (mechanism)
  • a compound having a small ⁇ ST(M2) as the second compound. Reverse intersystem crossing to the singlet level is likely to occur.
  • a TADF mechanism is an energy state conversion mechanism in which the excited triplet state of electrically excited excitons in the organic EL element is spin-exchanged to the excited singlet state by reverse intersystem crossing.
  • FIG. 4 is a diagram showing an example of the energy level relationship of the first compound, the second compound, and the third compound in the light-emitting layer.
  • S0 represents the ground state.
  • S1(M1) represents the lowest excited singlet state of the first compound and T1(M1) represents the lowest excited triplet state of the first compound.
  • S1(M2) represents the lowest excited singlet state of the second compound and T1(M2) represents the lowest excited triplet state of the second compound.
  • S1(M3) represents the lowest excited singlet state of the third compound and T1(M3) represents the lowest excited triplet state of the third compound.
  • the energy gap at 77 [K] differs from the triplet energy that is usually defined. Measurement of triplet energy is performed as follows. First, a sample is prepared by sealing a solution of a compound to be measured in an appropriate solvent in a quartz glass tube.
  • the phosphorescence spectrum (vertical axis: phosphorescent emission intensity, horizontal axis: wavelength) was measured at a low temperature (77 [K]), and a tangent line was drawn with respect to the rise on the short wavelength side of the phosphorescence spectrum, Based on the wavelength value at the intersection of the tangent line and the horizontal axis, triplet energy is calculated from a predetermined conversion formula.
  • the heat-activated delayed fluorescence compound is preferably a compound having a small ⁇ ST. When ⁇ ST is small, even at a low temperature (77 [K]), intersystem crossing and reverse intersystem crossing are likely to occur, and an excited singlet state and an excited triplet state coexist.
  • the spectrum measured in the same manner as above includes light emission from both the excited singlet state and the excited triplet state, and it is difficult to distinguish from which state the light is emitted.
  • basically the value of the triplet energy is considered to be dominant. Therefore, in this embodiment, although the measurement method is the same as the normal triplet energy T, in order to distinguish the difference in its strict meaning, the value measured as follows is referred to as the energy gap T 77K . .
  • the phosphorescence spectrum (vertical axis: phosphorescent emission intensity, horizontal axis: wavelength) is measured at a low temperature (77 [K]), and a tangent line is drawn to the rise on the short wavelength side of this phosphorescent spectrum.
  • a tangent line to the rise on the short wavelength side of the phosphorescence spectrum is drawn as follows.
  • This tangent line increases in slope as the curve rises (ie as the vertical axis increases).
  • the tangent line drawn at the point where the value of this slope takes the maximum value is taken as the tangent line to the rise on the short wavelength side of the phosphorescence spectrum.
  • the maximum point with a peak intensity of 15% or less of the maximum peak intensity of the spectrum is not included in the maximum value on the shortest wavelength side described above, and is closest to the maximum value on the short wavelength side.
  • the tangent line drawn at the point where the value is taken is taken as the tangent line to the rise on the short wavelength side of the phosphorescence spectrum.
  • F-4500 type spectrofluorophotometer body manufactured by Hitachi High Technology Co., Ltd. can be used for measurement of phosphorescence.
  • the measuring device is not limited to this, and measurement may be performed by combining a cooling device, a cryogenic container, an excitation light source, and a light receiving device.
  • a method for measuring the singlet energy S1 using a solution includes the following methods.
  • a 10 ⁇ mol/L toluene solution of the compound to be measured is prepared, placed in a quartz cell, and the absorption spectrum (vertical axis: absorption intensity, horizontal axis: wavelength) of this sample is measured at room temperature (300 K).
  • a tangent line is drawn with respect to the fall on the long wavelength side of this absorption spectrum, and the wavelength value ⁇ edge [nm] at the intersection of the tangent line and the horizontal axis is substituted into the following conversion formula (F2) to calculate the singlet energy.
  • Conversion formula (F2): S 1 [eV] 1239.85/ ⁇ edge
  • Examples of the absorption spectrum measuring device include, but are not limited to, a spectrophotometer manufactured by Hitachi (device name: U3310).
  • a tangent to the fall on the long wavelength side of the absorption spectrum is drawn as follows. Among the maximum values of the absorption spectrum, consider the tangent line at each point on the curve when moving from the maximum value on the longest wavelength side to the long wavelength direction on the spectrum curve. This tangent line repeats the slope decreasing and then increasing as the curve falls (that is, as the value on the vertical axis decreases). The tangent line drawn at the point where the slope value takes the minimum value on the long wavelength side (except when the absorbance is 0.1 or less) is taken as the tangent line to the fall on the long wavelength side of the absorption spectrum. The maximum absorbance value of 0.2 or less is not included in the maximum value on the longest wavelength side.
  • the difference (S 1 ⁇ T 77K ) between the singlet energy S 1 and the energy gap T 77K at 77 [K] is defined as ⁇ ST.
  • the fluorescent compound mainly emits light in the light-emitting layer.
  • the organic EL element of this embodiment preferably emits red light or green light.
  • the maximum peak wavelength of the light emitted from the organic EL element is preferably 500 nm or more and 560 nm or less.
  • the maximum peak wavelength of light emitted from the organic EL element is preferably 600 nm or more and 660 nm or less.
  • the maximum peak wavelength of light emitted from the organic EL element is preferably 430 nm or more and 480 nm or less.
  • Measurement of the maximum peak wavelength of light emitted from the organic EL element is performed as follows.
  • a spectral radiance spectrum is measured with a spectral radiance meter CS-2000 (manufactured by Konica Minolta, Inc.) when a voltage is applied to the organic EL element so that the current density is 10 mA/cm 2 .
  • the peak wavelength of the emission spectrum at which the emission intensity is maximum is measured, and this is defined as the maximum peak wavelength (unit: nm).
  • the thickness of the light-emitting layer in the organic EL element of the present embodiment is preferably 5 nm to 50 nm, more preferably 7 nm to 50 nm, and most preferably 10 nm to 50 nm. When it is 5 nm or more, formation of a light-emitting layer and adjustment of chromaticity are likely to be facilitated, and when it is 50 nm or less, an increase in driving voltage is likely to be suppressed.
  • the content rate of the first compound in the light-emitting layer is preferably 0.01% by mass or more and 10% by mass or less, and is preferably 0.01% by mass. % or more and 5 mass % or less, and more preferably 0.01 mass % or more and 1 mass % or less.
  • the content of the second compound is preferably 10% by mass or more and 80% by mass or less, more preferably 10% by mass or more and 60% by mass or less, and 20% by mass or more and 60% by mass or less. More preferred.
  • the content of the third compound is preferably 10% by mass or more and 80% by mass or less.
  • the upper limit of the total content of the first compound, second compound, and third compound in the light-emitting layer is 100% by mass. It should be noted that this embodiment does not exclude that the light-emitting layer contains materials other than the first compound, the second compound, and the third compound.
  • the light-emitting layer may contain only one type of the first compound, or may contain two or more types.
  • the light-emitting layer may contain only one type of the second compound, or may contain two or more types.
  • the light-emitting layer may contain only one type of the third compound, or may contain two or more types thereof.
  • a high-performance organic EL device is realized. According to one aspect of the first embodiment, it is possible to reduce the driving voltage and realize a long-life organic EL element. A particularly high effect is obtained by combining the first compound represented by the general formula (1) and the second compound represented by the general formula (2).
  • the organic EL device according to the first embodiment can be used in electronic devices such as display devices and light-emitting devices.
  • the substrate is used as a support for organic EL elements.
  • the substrate for example, glass, quartz, plastic, or the like can be used.
  • a flexible substrate may be used.
  • a flexible substrate is a (flexible) substrate that can be bent, and examples thereof include a plastic substrate.
  • Materials for forming the plastic substrate include, for example, polycarbonate, polyarylate, polyethersulfone, polypropylene, polyester, polyvinyl fluoride, polyvinyl chloride, polyimide, and polyethylene naphthalate. Inorganic deposition films can also be used.
  • anode For the anode formed on the substrate, it is preferable to use a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a large work function (specifically, 4.0 eV or more).
  • a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a large work function (specifically, 4.0 eV or more).
  • ITO Indium Tin Oxide
  • indium oxide-tin oxide containing silicon or silicon oxide indium oxide-zinc oxide, tungsten oxide, and indium oxide containing zinc oxide , graphene and the like.
  • gold Au
  • platinum Pt
  • nickel Ni
  • tungsten W
  • Cr chromium
  • Mo molybdenum
  • iron Fe
  • Co cobalt
  • Cu copper
  • palladium Pd
  • titanium Ti
  • nitrides of metal materials eg, titanium nitride
  • indium oxide-zinc oxide can be formed by a sputtering method using a target in which 1% by mass or more and 10% by mass or less of zinc oxide is added to indium oxide.
  • indium oxide containing tungsten oxide and zinc oxide contains 0.5% by mass or more and 5% by mass or less of tungsten oxide and 0.1% by mass or more and 1% by mass or less of zinc oxide relative to indium oxide.
  • a target it can be formed by a sputtering method.
  • it may be produced by a vacuum vapor deposition method, a coating method, an inkjet method, a spin coating method, or the like.
  • the hole injection layer formed in contact with the anode is formed using a composite material that facilitates hole injection regardless of the work function of the anode.
  • materials that can be used as electrode materials such as metals, alloys, electrically conductive compounds, and mixtures thereof, as well as elements belonging to Groups 1 and 2 of the Periodic Table of the Elements.
  • Elements belonging to group 1 or 2 of the periodic table which are materials with a small work function, i.e. alkali metals such as lithium (Li) and cesium (Cs), magnesium (Mg), calcium (Ca) and strontium ( Sr) and other alkaline earth metals, alloys containing these (eg, MgAg, AlLi), rare earth metals such as europium (Eu) and ytterbium (Yb), and alloys containing these can also be used.
  • alkali metals such as lithium (Li) and cesium (Cs), magnesium (Mg), calcium (Ca) and strontium ( Sr) and other alkaline earth metals, alloys containing these (eg, MgAg, AlLi), rare earth metals such as europium (Eu) and ytterbium (Yb), and alloys containing these can also be used.
  • alkali metals such as lithium (Li) and cesium (Cs)
  • cathode For the cathode, it is preferable to use a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a small work function (specifically, 3.8 eV or less).
  • cathode materials include elements belonging to Group 1 or Group 2 of the periodic table, ie, alkali metals such as lithium (Li) and cesium (Cs), magnesium (Mg), and calcium (Ca). and alkaline earth metals such as strontium (Sr), alloys containing these (e.g., MgAg, AlLi), rare earth metals such as europium (Eu) and ytterbium (Yb), and alloys containing these.
  • alkali metals such as lithium (Li) and cesium (Cs), magnesium (Mg), and calcium (Ca).
  • alkaline earth metals such as strontium (Sr), alloys containing these (e.g., MgAg, AlLi), rare earth metals such as
  • a vacuum deposition method or a sputtering method can be used.
  • a coating method, an inkjet method, or the like can be used.
  • a cathode is formed using various conductive materials such as Al, Ag, ITO, graphene, silicon, or indium oxide-tin oxide containing silicon oxide, regardless of the magnitude of the work function. can do.
  • These conductive materials can be deposited using a sputtering method, an inkjet method, a spin coating method, or the like.
  • a hole injection layer is a layer containing a substance having a high hole injection property.
  • Substances with high hole injection properties include molybdenum oxide, titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide, silver oxide, Tungsten oxide, manganese oxide, or the like can be used.
  • TDATA 4,4′,4′′-tris(N,N-diphenylamino)triphenylamine
  • TDATA 4,4′,4′′-tris(N,N-diphenylamino)triphenylamine
  • MTDATA 4,4′ , 4′′-tris[N-(3-methylphenyl)-N-phenylamino]triphenylamine
  • DPAB 4,4′-bis[N-(4-diphenylaminophenyl)-N-phenyl Amino]biphenyl
  • DNTPD 1,3,5-tris[N-(4-diphenylaminophenyl)-N-phenylamino]benzene
  • DPA3B 1,3,5-tris[N-(4-diphenylaminophenyl)-N-phenylamino]benzene
  • high-molecular compounds can also be used as substances with high hole-injection properties.
  • PVK poly(N-vinylcarbazole)
  • PVTPA poly(4-vinyltriphenylamine)
  • PTPDMA poly[N-(4- ⁇ N'-[4-(4-diphenylamino) phenyl]phenyl-N'-phenylamino ⁇ phenyl)methacrylamide]
  • PTPDMA poly[N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine]
  • polymer compounds such as Poly-TPD).
  • polymer compounds added with acids such as poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonic acid) (PEDOT/PSS) and polyaniline/poly(styrenesulfonic acid) (PAni/PSS) are used.
  • PDOT/PSS poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonic acid)
  • PAni/PSS polyaniline/poly(styrenesulfonic acid)
  • a hole-transport layer is a layer containing a substance having a high hole-transport property.
  • Aromatic amine compounds, carbazole derivatives, anthracene derivatives and the like can be used in the hole transport layer.
  • NPB 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl
  • TPD N,N'-bis(3-methylphenyl)-N,N'- Diphenyl-[1,1′-biphenyl]-4,4′-diamine
  • BAFLP 4-phenyl-4′-(9-phenylfluoren-9-yl)triphenylamine
  • BAFLP 4-phenyl-4′-bis[N-(9,9-dimethylfluoren-2-yl)-N-phenylamino]biphenyl
  • DFLDPBi 4,4′,4′′-triphenyl
  • CBP 9-[4-(N-carbazolyl)]phenyl-10-phenylanthracene (CzPA), 9-phenyl-3-[4-(10-phenyl-9-anthryl)phenyl]
  • Carbazole derivatives such as -9H-carbazole (PCzPA) and anthracene derivatives such as t-BuDNA, DNA, and DAnth may also be used.
  • Polymer compounds such as poly(N-vinylcarbazole) (abbreviation: PVK) and poly(4-vinyltriphenylamine) (abbreviation: PVTPA) can also be used.
  • the layer containing a substance with a high hole-transport property is not limited to a single layer, and may be a stack of two or more layers containing the above substances.
  • the electron transport layer is a layer containing a substance having a high electron transport property.
  • the electron transport layer contains 1) metal complexes such as aluminum complexes, beryllium complexes and zinc complexes, 2) heteroaromatic compounds such as imidazole derivatives, benzimidazole derivatives, azine derivatives, carbazole derivatives and phenanthroline derivatives, and 3) polymer compounds. can be used.
  • low-molecular-weight organic compounds include Alq, tris(4-methyl-8-quinolinolato)aluminum (abbreviation: Almq 3 ), bis(10-hydroxybenzo[h]quinolinato)beryllium (abbreviation: BeBq 2 ), Metal complexes such as BAlq, Znq, ZnPBO, and ZnBTZ can be used.
  • 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole abbreviation: PBD
  • 1,3-bis[5- (ptert-butylphenyl)-1,3,4-oxadiazol-2-yl]benzene abbreviation: OXD-7
  • 3-(4-tert-butylphenyl)-4-phenyl-5-(4- biphenylyl)-1,2,4-triazole abbreviation: TAZ
  • Complex compounds such as triazole (abbreviation: p-EtTAZ), bathophenanthroline (abbreviation: BPhen), bathocuproine (abbreviation: BCP), 4,4'-bis(5-methylbenzoxa
  • Benzimidazole compounds can be preferably used in this embodiment.
  • the substances described here are mainly substances having an electron mobility of 10 ⁇ 6 cm 2 /(V ⁇ s) or more. Note that a substance other than the above substances may be used for the electron-transporting layer as long as the substance has higher electron-transporting property than hole-transporting property. Further, the electron transport layer may be composed of a single layer, or may be composed of two or more layers of the above substances laminated.
  • a polymer compound can also be used for the electron transport layer.
  • poly[(9,9-dihexylfluorene-2,7-diyl)-co-(pyridine-3,5-diyl)] (abbreviation: PF-Py)
  • poly[(9,9-dioctylfluorene-2 ,7-diyl)-co-(2,2′-bipyridine-6,6′-diyl)] abbreviation: PF-BPy
  • PF-BPy poly[(9,9-dioctylfluorene-2 ,7-diyl)-co-(2,2′-bipyridine-6,6′-diyl)]
  • the electron injection layer is a layer containing a substance with high electron injection properties.
  • the electron injection layer includes lithium (Li), cesium (Cs), calcium (Ca), lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF 2 ), lithium oxide (LiOx), and the like.
  • Alkali metals such as, alkaline earth metals, or compounds thereof can be used.
  • a substance having an electron-transporting property containing an alkali metal, an alkaline earth metal, or a compound thereof, specifically, a substance containing magnesium (Mg) in Alq, or the like may be used. In this case, electron injection from the cathode can be performed more efficiently.
  • a composite material obtained by mixing an organic compound and an electron donor (donor) may be used for the electron injection layer.
  • a composite material has excellent electron-injecting and electron-transporting properties because electrons are generated in the organic compound by the electron donor.
  • the organic compound is preferably a material that is excellent in transporting the generated electrons.
  • a substance (metal complex, heteroaromatic compound, etc.) constituting the electron transport layer described above is used. be able to.
  • the electron donor any substance can be used as long as it exhibits an electron donating property with respect to an organic compound.
  • alkali metals, alkaline earth metals, and rare earth metals are preferred, and examples include lithium, cesium, magnesium, calcium, erbium, and ytterbium.
  • alkali metal oxides and alkaline earth metal oxides are preferred, and examples thereof include lithium oxide, calcium oxide and barium oxide.
  • Lewis bases such as magnesium oxide can also be used.
  • An organic compound such as tetrathiafulvalene (abbreviation: TTF) can also be used.
  • the method for forming each layer of the organic EL element of the present embodiment is not limited to those specifically mentioned above, but dry film formation methods such as a vacuum deposition method, a sputtering method, a plasma method, and an ion plating method, and spin coating methods.
  • a known method such as a coating method, a dipping method, a flow coating method, or a wet film forming method such as an inkjet method can be employed.
  • the film thickness of each organic layer of the organic EL element of the present embodiment is not particularly limited except as mentioned above. A range of several nm to 1 ⁇ m is usually preferable because an applied voltage is required and the efficiency deteriorates.
  • An electronic device is equipped with the organic EL element of the above embodiment.
  • Examples of electronic devices include display devices and light-emitting devices.
  • Examples of display devices include display components (eg, organic EL panel modules, etc.), televisions, mobile phones, tablets, and personal computers.
  • Light-emitting devices include, for example, illumination and vehicle lamps.
  • the light-emitting layer is not limited to one layer, and a plurality of light-emitting layers may be laminated.
  • the organic EL device has a plurality of light-emitting layers, at least one light-emitting layer should satisfy the conditions described in the above embodiments.
  • the other light-emitting layer may be a fluorescent light-emitting layer or a phosphorescent light-emitting layer that utilizes light emission due to electronic transition from the triplet excited state directly to the ground state.
  • the organic EL element has a plurality of light-emitting layers
  • these light-emitting layers may be provided adjacent to each other, or a so-called tandem-type organic EL device in which a plurality of light-emitting units are stacked via an intermediate layer. It may be an EL element.
  • a barrier layer may be provided adjacent to at least one of the anode side and the cathode side of the light emitting layer.
  • a barrier layer is disposed in contact with the light-emitting layer and preferably blocks holes, electrons, and/or excitons.
  • the barrier layer transports electrons, and holes reach a layer closer to the cathode than the barrier layer (e.g., electron transport layer). prevent you from doing
  • the organic EL device includes an electron-transporting layer, it preferably includes the barrier layer between the light-emitting layer and the electron-transporting layer.
  • the barrier layer transports holes, and electrons are transported to a layer closer to the anode than the barrier layer (for example, a hole transport layer). prevent it from reaching.
  • the organic EL device includes a hole-transporting layer, it preferably includes the barrier layer between the light-emitting layer and the hole-transporting layer.
  • a barrier layer may be provided adjacent to the light-emitting layer to prevent excitation energy from leaking from the light-emitting layer to its surrounding layers.
  • Excitons generated in the light-emitting layer are prevented from moving to a layer closer to the electrode than the barrier layer (for example, an electron-transporting layer and a hole-transporting layer). It is preferable that the light-emitting layer and the barrier layer are bonded.
  • the numerical range represented using “to” means a range including the numerical value described before “to” as the lower limit and the numerical value described after “to” as the upper limit. do.
  • Rx and Ry are bonded to each other to form a ring
  • Rx and Ry contain a carbon atom, a nitrogen atom, an oxygen atom, a sulfur atom, a phosphorus atom or a silicon atom
  • an atom contained in Rx (a carbon atom, a nitrogen atom, an oxygen atom, a sulfur atom, a phosphorus atom or a silicon atom) and an atom contained in Ry (a carbon atom, a nitrogen atom, an oxygen atom, a sulfur atom, a phosphorus atom or a silicon atom) is a single bond , a double bond, a triple bond, or a divalent linking group to form a ring having 5 or more ring-forming atoms (specifically, for example, a heterocyclic ring or an aromatic hydrocarbon ring)
  • x is a number, a letter, or a combination of numbers and letters.
  • y is a number, a letter, or a combination of numbers and letters.
  • the divalent linking group is not particularly limited, examples include -O-, -CO-, -CO 2 -, -S-, -SO-, -SO 2 -, -NH-, -NRa-, and these and a group obtained by combining two or more of the linking groups.
  • heterocyclic ring unless otherwise specified, a ring structure ( heterocycle). These heterocycles may have a substituent.
  • aromatic hydrocarbon ring unless otherwise specified, the ring obtained by removing the bond from the "aryl group Sub 1 " exemplified in the "Description of each substituent in the general formula” below structure (aromatic hydrocarbon ring). These aromatic hydrocarbon rings may have substituents.
  • Ra examples include, for example, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms Sub 3 exemplified in the "Description of each substituent in the general formula" below, a substituted or unsubstituted ring-forming carbon number of 6 to 30 aryl group Sub 1 , substituted or unsubstituted heteroaryl group Sub 2 having 5 to 30 ring-forming atoms, and the like.
  • Rx and Ry are bonded to each other to form a ring means that, in the molecular structure represented by the following general formula (E1), an atom contained in Rx 1 and an atom contained in Ry 1 are in the general formula ( Forming a ring (ring structure) E represented by E2); in the molecular structure represented by general formula (F1), an atom contained in Rx 1 and an atom contained in Ry 1 forming a ring F represented by F2); in the molecular structure represented by general formula (G1), an atom contained in Rx 1 and an atom contained in Ry 1 are represented by general formula (G2); in the molecular structure represented by the general formula (H1), an atom contained in Rx 1 and an atom contained in Ry 1 form a ring H represented by the general formula (H2) in the molecular structure represented by general formula (I1), the atoms contained in Rx 1 and the atoms contained in Ry 1 form ring I represented by general formula (I2) means ; In general formulas (E1), an
  • E to I each represent a ring structure (a ring having 5 or more ring-forming atoms).
  • * each independently represents a bonding position with another atom in one molecule.
  • Two * in general formula (E2) respectively correspond to two * in general formula (E1).
  • two * in general formulas (F2) to (I2) correspond to two * in general formulas (F1) to (I1), respectively.
  • the number of ring-forming carbon atoms refers to a compound having a structure in which atoms are cyclically bonded (e.g., monocyclic compounds, condensed ring compounds, bridged compounds, carbocyclic compounds, heterocyclic compounds). Represents the number of carbon atoms in an atom. When the ring is substituted with a substituent, the carbon contained in the substituent is not included in the number of ring-forming carbon atoms. Unless otherwise specified, the same applies to the "number of ring-forming carbon atoms" described below.
  • a benzene ring has 6 ring carbon atoms
  • a naphthalene ring has 10 ring carbon atoms
  • a pyridinyl group has 5 ring carbon atoms
  • a furanyl group has 4 ring carbon atoms.
  • the benzene ring or naphthalene ring is substituted with, for example, an alkyl group as a substituent, the number of carbon atoms in the alkyl group is not included in the number of ring-forming carbon atoms.
  • the number of carbon atoms in the fluorene ring as the substituent is not included in the number of ring-forming carbon atoms.
  • the number of ring-forming atoms means a compound (e.g., monocyclic compound, condensed ring compound, bridged compound, carbocyclic compound, heterocyclic ring compound) represents the number of atoms constituting the ring itself. Atoms that do not constitute a ring and atoms included in substituents when the ring is substituted are not included in the number of ring-forming atoms. Unless otherwise specified, the same shall apply to the "number of ring-forming atoms" described below. For example, a pyridine ring has 6 ring atoms, a quinazoline ring has 10 ring atoms, and a furan ring has 5 ring atoms.
  • Hydrogen atoms bonded to carbon atoms of the pyridine ring and quinazoline ring and atoms constituting substituents are not included in the number of ring-forming atoms. Further, when a fluorene ring is bonded as a substituent to the fluorene ring (including a spirofluorene ring), the number of atoms of the fluorene ring as a substituent is not included in the number of ring-forming atoms.
  • the aryl group (sometimes referred to as an aromatic hydrocarbon group) is, for example, an aryl group Sub 1
  • the aryl group Sub 1 is, for example, a phenyl group, a biphenyl group, or a terphenyl group.
  • the aryl group Sub 1 in the present specification preferably has 6 to 30 ring carbon atoms, more preferably 6 to 20 carbon atoms, still more preferably 6 to 14 carbon atoms, and 6 to 12 carbon atoms. It is even more preferable to have Among the above aryl groups Sub 1 , phenyl group, biphenyl group, naphthyl group, phenanthryl group, terphenyl group and fluorenyl group are preferred.
  • the heteroaryl group (which may be referred to as a heterocyclic group, a heteroaromatic ring group, or an aromatic heterocyclic group) in the present specification is, for example, a heterocyclic group Sub2 .
  • the heterocyclic group Sub 2 is a group containing at least one atom selected from the group consisting of nitrogen, sulfur, oxygen, silicon, selenium and germanium atoms as a heteroatom.
  • the heterocyclic group Sub 2 is preferably a group containing at least one atom selected from the group consisting of nitrogen, sulfur and oxygen as a heteroatom.
  • the heterocyclic group Sub 2 herein is, for example, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, triazinyl, quinolyl, isoquinolinyl, napthyridinyl, phthalazinyl, quinoxalinyl, quinazolinyl, phenanthridinyl acridinyl group, phenanthrolinyl group, pyrrolyl group, imidazolyl group, pyrazolyl group, triazolyl group, tetrazolyl group, indolyl group, benzimidazolyl group, indazolyl group, imidazopyridinyl group, benztriazolyl group, carbazolyl group , furyl, thienyl, oxazolyl, thiazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, thiadiazolyl,
  • the heterocyclic group Sub 2 preferably has 5 to 30 ring-forming atoms, more preferably 5 to 20 atoms, even more preferably 5 to 14 atoms.
  • 1-carbazolyl group 2-carbazolyl group, 3-carbazolyl group and 4-carbazolyl group, a substituted or unsubstituted aryl group Sub 1 or a substituted or unsubstituted heterocyclic It is preferred that the ring group Sub 2 is substituted.
  • heterocyclic group Sub 2 may be, for example, a group derived from partial structures represented by the following general formulas (XY-1) to (XY-18).
  • X A and Y A are each independently a hetero atom, and an oxygen atom, a sulfur atom, a selenium atom, a silicon atom, or a germanium atom. is preferred.
  • the partial structures represented by the general formulas (XY-1) to (XY-18) have a bond at an arbitrary position to form a heterocyclic group, and the heterocyclic group has a substituent. good too.
  • heterocyclic group Sub 2 may be, for example, groups represented by the following general formulas (XY-19) to (XY-22). Also, the position of the binding hand can be changed as appropriate.
  • Alkyl group The alkyl group in the present specification may be either a straight-chain alkyl group or a branched-chain alkyl group.
  • An alkyl group herein is, for example, an alkyl group Sub 3 .
  • a straight chain alkyl group herein is, for example, a straight chain alkyl group Sub 31 .
  • a branched alkyl group herein is, for example, a branched alkyl group Sub 32 .
  • the alkyl group Sub 3 is, for example, at least one group selected from the group consisting of a linear alkyl group Sub 31 and a branched alkyl group Sub 32 .
  • a straight-chain alkyl group Sub 31 or a branched alkyl group Sub 32 is, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, s-butyl, isobutyl, t-butyl , n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group , n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, neopentyl group, amyl group, isoamyl group, 1-methylpentyl group, 2-
  • a straight-chain alkyl group or branched-chain alkyl group The number of carbon atoms in the straight-chain alkyl group Sub 31 or branched-chain alkyl group Sub 32 in the present specification is preferably 1-30, more preferably 1-20. is more preferred, 1 to 10 is more preferred, and 1 to 6 is even more preferred.
  • the straight-chain alkyl group Sub 31 or branched-chain alkyl group Sub 32 includes methyl, ethyl, propyl, isopropyl, n-butyl, s-butyl, isobutyl, t-butyl, n -pentyl, n-hexyl, amyl, isoamyl and neopentyl groups are even more preferred.
  • Cyclic Alkyl Group The cyclic alkyl group in the present specification is, for example, the cyclic alkyl group Sub 33 .
  • a cyclic alkyl group Sub 33 herein is, for example, a cycloalkyl group Sub 331 .
  • the cycloalkyl group Sub 331 in the present specification is, for example, at least one group selected from the group consisting of a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a 4-methylcyclohexyl group, an adamantyl group, and a norbornyl group. is.
  • the number of ring-forming carbon atoms in the cycloalkyl group Sub 331 is preferably 3 to 30, more preferably 3 to 20, even more preferably 3 to 10, even more preferably 5 to 8. preferable.
  • a cyclopentyl group and a cyclohexyl group are even more preferable.
  • Halogenated alkyl group in the present specification is, for example, the halogenated alkyl group Sub 4 , and the halogenated alkyl group Sub 4 is, for example, the alkyl group Sub 3 has one or more halogen atoms, preferably fluorine It is an atom-substituted alkyl group.
  • Halogenated alkyl groups Sub 4 herein are, for example, the group consisting of fluoromethyl, difluoromethyl, trifluoromethyl, fluoroethyl, trifluoromethylmethyl, trifluoroethyl, and pentafluoroethyl is at least one group selected from The number of carbon atoms in the halogenated alkyl group Sub 4 is preferably 1-30, more preferably 1-10, even more preferably 1-6.
  • Substituted silyl group herein is, for example, a substituted silyl group Sub 5 , and the substituted silyl group Sub 5 is selected, for example, from the group consisting of an alkylsilyl group Sub 51 and an arylsilyl group Sub 52 . It is at least one group.
  • the alkylsilyl group Sub 51 herein is, for example, a trialkylsilyl group Sub 511 having the above alkyl group Sub 3 .
  • the number of carbon atoms in the alkylsilyl group Sub 51 is preferably 3-30, more preferably 3-10, even more preferably 3-6.
  • Trialkylsilyl group Sub 511 is, for example, trimethylsilyl group, triethylsilyl group, tri-n-butylsilyl group, tri-n-octylsilyl group, triisobutylsilyl group, dimethylethylsilyl group, dimethylisopropylsilyl group, dimethyl-n -At least one selected from the group consisting of a propylsilyl group, a dimethyl-n-butylsilyl group, a dimethyl-t-butylsilyl group, a diethylisopropylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, and a triisopropylsilyl group is the base.
  • the three alkyl groups Sub 3 in the trialkylsilyl group Sub 511 may be the same or different.
  • the arylsilyl group Sub 52 in the present specification is, for example, at least one group selected from the group consisting of a dialkylarylsilyl group Sub 521 , an alkyldiarylsilyl group Sub 522 , and a triarylsilyl group Sub 523 .
  • the number of ring-forming carbon atoms in the arylsilyl group Sub 52 is preferably 6-60.
  • the dialkylarylsilyl group Sub 521 is, for example, a dialkylarylsilyl group having two alkyl groups Sub 3 above and one aryl group Sub 1 above.
  • the dialkylarylsilyl group Sub 521 preferably has 8 to 30 carbon atoms.
  • the alkyldiarylsilyl group Sub 522 is, for example, an alkyldiarylsilyl group having one alkyl group Sub 3 and two aryl groups Sub 1 described above.
  • the number of carbon atoms in the alkyldiarylsilyl group Sub 522 is preferably 13-30.
  • the triarylsilyl group Sub 523 is, for example, a triarylsilyl group having three of the above aryl groups Sub 1 .
  • the number of carbon atoms in the triarylsilyl group Sub 523 is preferably 18-30.
  • alkylsulfonyl group in the present specification is, for example, the alkylsulfonyl group Sub 6 , and the alkylsulfonyl group Sub 6 is represented by —SO 2 R w .
  • R w in —SO 2 R w represents the substituted or unsubstituted alkyl group Sub 3 described above.
  • the aralkyl group (sometimes referred to as an arylalkyl group) in the present specification is, for example, the aralkyl group Sub 7 .
  • the aryl group in the aralkyl group Sub 7 includes, for example, at least one of the aryl group Sub 1 and the heteroaryl group Sub 2 .
  • the aralkyl group Sub 7 herein is preferably a group having an aryl group Sub 1 and is represented as -Z 3 -Z 4 .
  • This Z3 is, for example , an alkylene group corresponding to the above alkyl group Sub3 .
  • This Z 4 is, for example, the aryl group Sub 1 described above.
  • the aralkyl group Sub 7 has an aryl portion having 6 to 30 carbon atoms (preferably 6 to 20, more preferably 6 to 12) and an alkyl portion having 1 to 30 carbon atoms (preferably 1 to 20, more preferably 1 to 10, more preferably 1 to 6).
  • the aralkyl group Sub 7 is, for example, a benzyl group, 2-phenylpropan-2-yl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylisopropyl group, 2-phenylisopropyl group, phenyl-t- butyl group, ⁇ -naphthylmethyl group, 1- ⁇ -naphthylethyl group, 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, 2- ⁇ -naphthylisopropyl group, ⁇ -naphthylmethyl group, 1- ⁇ -naphthylethyl group, 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, and 2- ⁇ -naphthylisopropyl group.
  • Alkoxy group The alkoxy group in the present specification is, for example, the alkoxy group Sub 8 , and the alkoxy group Sub 8 is represented as -OZ 1 .
  • This Z 1 is, for example, the above alkyl group Sub 3 .
  • Alkoxy group Sub 8 is, for example, at least one group selected from the group consisting of methoxy, ethoxy, propoxy, butoxy, pentyloxy, and hexyloxy groups.
  • the number of carbon atoms in the alkoxy group Sub 8 is preferably 1-30, more preferably 1-20, even more preferably 1-6.
  • Halogenated alkoxy group in the present specification is, for example, the halogenated alkoxy group Sub 9 , and the halogenated alkoxy group Sub 9 is, for example, the above alkoxy group Sub 8 is one or more halogen atoms, preferably It is an alkoxy group substituted with a fluorine atom.
  • the number of carbon atoms in the halogenated alkoxy group Sub 9 is preferably 1-30, more preferably 1-10, even more preferably 1-6.
  • the aryloxy group (sometimes referred to as an arylalkoxy group) in the present specification is an arylalkoxy group Sub 10 , for example.
  • the aryl group in the arylalkoxy group Sub 10 includes at least one of the aryl group Sub 1 and the heteroaryl group Sub 2 .
  • the arylalkoxy group Sub 10 herein is represented as -OZ2 .
  • This Z 2 is, for example, an aryl group Sub 1 or a heteroaryl group Sub 2 .
  • the number of ring-forming carbon atoms in the arylalkoxy group Sub 10 is preferably 6-30, more preferably 6-20, even more preferably 6-14.
  • the arylalkoxy group Sub 10 includes, for example, a phenoxy group.
  • the substituted amino group herein is, for example, a substituted amino group Sub 11
  • the substituted amino group Sub 11 is selected from the group consisting of, for example, an arylamino group Sub 111 and an alkylamino group Sub 112 . It is at least one group.
  • Arylamino group Sub 111 is represented as —NHR V1 or —N(R V1 ) 2 . This R V1 is, for example, an aryl group Sub 1 . Two R V1 in -N(R V1 ) 2 are the same or different from each other.
  • the number of ring-forming carbon atoms in the arylamino group Sub 111 is preferably 6-60.
  • the alkylamino group Sub 112 is represented as -NHR V2 or -N(R V2 ) 2 .
  • This R V2 is, for example, an alkyl group Sub 3 .
  • Two R V2 in -N(R V2 ) 2 are the same or different from each other.
  • the number of carbon atoms in the alkylamino group Sub 112 is preferably 2-30, more preferably 2-12.
  • the alkenyl group in the present specification is, for example, the alkenyl group Sub 12 , and the alkenyl group Sub 12 is either linear or branched, for example, vinyl group, propenyl group, butenyl group, oleyl group , eicosapentaenyl group, docosahexaenyl group, styryl group, 2,2-diphenylvinyl group, 1,2,2-triphenylvinyl group, and 2-phenyl-2-propenyl It is either group.
  • the alkenyl group Sub 12 preferably has 2 to 30 carbon atoms.
  • the cycloalkenyl group in the present specification is an unsaturated alicyclic hydrocarbon group containing a double bond.
  • a cycloalkenyl group is, for example, the cycloalkenyl group Sub 122 .
  • the cycloalkenyl group Sub 122 is, for example, at least one group selected from the group consisting of a cyclopentenyl group, a cyclopentadienyl group and a cyclohexenyl group.
  • the number of ring-forming carbon atoms in the cycloalkenyl group Sub 122 is preferably 3-30.
  • An alkynyl group herein is, for example, an alkynyl group Sub 13 , and the alkynyl group Sub 13 may be either linear or branched, for example ethynyl, propynyl, and 2-phenylethynyl. is at least one group selected from the group consisting of The alkynyl group Sub 13 preferably has 2 to 30 carbon atoms.
  • Alkylthio group in the present specification is, for example, the alkylthio group Sub 14 .
  • the alkylthio group Sub 14 is represented as -SR V3 .
  • This R V3 is, for example, an alkyl group Sub 3 .
  • the number of carbon atoms in the alkylthio group Sub 14 is preferably 1-30, more preferably 1-20, even more preferably 1-6.
  • the arylthio group in the present specification is, for example, the arylthio group Sub 15 .
  • the arylthio group Sub 15 is represented as -SR V4 .
  • This R V4 is, for example, an aryl group Sub 1 .
  • the number of ring-forming carbon atoms in the arylthio group Sub 15 is preferably 6-30, more preferably 6-20, even more preferably 6-14.
  • Halogen atom in the present specification includes a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like, and a fluorine atom is preferred.
  • Substituted phosphino group herein is, for example, the substituted phosphino group Sub 16
  • the substituted phosphino group Sub 16 is, for example, the phenylphosphanyl group.
  • Arylcarbonyl group The arylcarbonyl group in the present specification is, for example, the arylcarbonyl group Sub 17 , and the arylcarbonyl group Sub 17 is represented as -COY'. This Y' is, for example, an aryl group Sub 1 .
  • the arylcarbonyl group Sub 17 in the present specification is, for example, at least one group selected from the group consisting of a phenylcarbonyl group, a diphenylcarbonyl group, a naphthylcarbonyl group, and a triphenylcarbonyl group.
  • the acyl group in this specification is, for example, the acyl group Sub 18 , and the acyl group Sub 18 is represented as -COR'.
  • This R′ is, for example, any group selected from the group consisting of an alkyl group Sub 3 , a cycloalkyl group Sub 331 , an alkenyl group Sub 12 , an alkynyl group Sub 13 , an aryl group Sub 1 and a heterocyclic group Sub 2 . and these alkyl group Sub 3 , cycloalkyl group Sub 331 , alkenyl group Sub 12 , alkynyl group Sub 13 , aryl group Sub 1 and heterocyclic group Sub 2 may be further substituted.
  • the acyl group Sub 18 in this specification is, for example, at least any group selected from the group consisting of an acetyl group, a propionyl group, a benzoyl group and an acryloyl group.
  • the number of carbon atoms in the acyl group Sub 18 is not particularly limited, it is preferably 2-40, more preferably 2-30.
  • the substituted phosphoryl group in the present specification is, for example, a substituted phosphoryl group Sub 19 such as an arylphosphoryl group and an alkylphosphoryl group, and the substituted phosphoryl group Sub 19 is represented by the following general formula (P).
  • Ar P1 and Ar P2 are any substituent selected from the group consisting of the alkyl group Sub 3 and the aryl group Sub 1 .
  • the number of ring-forming carbon atoms in the arylphosphoryl group is preferably 6-60.
  • ester group in the present specification is, for example, the ester group Sub 20
  • the ester group Sub 20 is, for example, at least one group selected from the group consisting of an alkyl ester group and an aryl ester group.
  • Alkyl ester groups herein are, for example, alkyl ester groups Sub 201
  • R E is, for example, a substituted or unsubstituted alkyl group Sub 3 above.
  • R Ar is, for example, a substituted or unsubstituted aryl group Sub 1 as described above.
  • siloxanyl group in the present specification is, for example, the siloxanyl group Sub 21 , and the siloxanyl group Sub 21 is a silicon compound group through an ether bond.
  • the siloxanyl group Sub 21 is, for example, a trimethylsiloxanyl group.
  • Carbamoyl group The carbamoyl group in the present specification is represented by -CONH2 .
  • a substituted carbamoyl group in this specification is, for example, a carbamoyl group Sub 22
  • the carbamoyl group Sub 22 is represented by -CONH-Ar C or -CONH-R C .
  • Ar C is, for example, selected from the group consisting of a substituted or unsubstituted aryl group Sub 1 (preferably 6 to 10 ring carbon atoms) and a heteroaryl group Sub 2 (preferably 5 to 14 ring atoms) is at least one group.
  • Ar 1 C may be a group in which an aryl group Sub 1 and a heteroaryl group Sub 2 are bonded.
  • R C is, for example, a substituted or unsubstituted alkyl group Sub 3 (preferably having 1 to 6 carbon atoms).
  • ring-forming carbon means a carbon atom that constitutes a saturated ring, unsaturated ring, or aromatic ring.
  • Ring-forming atom means carbon atoms and heteroatoms that form a heterocyclic ring (including saturated, unsaturated and aromatic rings).
  • a hydrogen atom includes isotopes with different numbers of neutrons, that is, protium, deuterium, and tritium.
  • the alkyl group Sub 3 refers to any one or more of the straight-chain alkyl group Sub 31 , the branched-chain alkyl group Sub 32 , and the cyclic alkyl group Sub 33 described in "Description of Each Substituent".
  • the substituted silyl group Sub 5 means any one or more of the alkylsilyl group Sub 51 and the arylsilyl group Sub 52 .
  • the substituted amino group Sub 11 means one or more of the arylamino group Sub 111 and the alkylamino group Sub 112 .
  • the substituent in the case of "substituted or unsubstituted” is, for example, a substituent R F1
  • the substituent R F1 includes an aryl group Sub 1 , a heteroaryl group Sub 2 , an alkyl group Sub 3 , Halogenated alkyl group Sub 4 , substituted silyl group Sub 5 , alkylsulfonyl group Sub 6 , aralkyl group Sub 7 , alkoxy group Sub 8 , halogenated alkoxy group Sub 9 , arylalkoxy group Sub 10 , substituted amino group Sub 11 , alkenyl group Sub 12 , cycloalkenyl group Sub 122 , alkynyl group Sub 13 , alkylthio group Sub 14 , arylthio group Sub 15 , substituted phosphino group Sub 16 , arylcarbonyl group Sub 17 , acyl group Sub 18 , substituted phosphoryl group Sub 19 , ester
  • the substituent R F1 in the case of “substituted or unsubstituted” may be a diarylboron group (Ar B1 Ar B2 B—).
  • Ar B1 and Ar B2 include the aryl group Sub 1 described above.
  • Ar B1 and Ar B2 in Ar B1 Ar B2 B- are the same or different.
  • substituent R F1 include the substituents in "Description of Each Substituent” (e.g., aryl group Sub 1 , heteroaryl group Sub 2 , alkyl group Sub 3 , halogenated alkyl group Sub 4 , Substituted silyl group Sub 5 , alkylsulfonyl group Sub 6 , aralkyl group Sub 7 , alkoxy group Sub 8 , halogenated alkoxy group Sub 9 , arylalkoxy group Sub 10 , substituted amino group Sub 11 , alkenyl group Sub 12 , cycloalkenyl group Sub 122 , alkynyl group Sub 13 , alkylthio group Sub 14 , arylthio group Sub 15 , substituted phosphino group Sub 16 , arylcarbonyl group Sub 17 , acyl group Sub 18 , substituted phosphoryl group Sub 19 , ester group Sub 20 , siloxanyl group Sub 21 , aryl group Sub
  • Substituents R F1 in the case of “substituted or unsubstituted” include aryl group Sub 1 , heteroaryl group Sub 2 , alkyl group Sub 3 , halogenated alkyl group Sub 4 , substituted silyl group Sub 5 , alkylsulfonyl group Sub 6 , aralkyl group Sub 7 , alkoxy group Sub 8 , halogenated alkoxy group Sub 9 , arylalkoxy group Sub 10 , substituted amino group Sub 11 , alkenyl group Sub 12 , cycloalkenyl group Sub 122 , alkynyl group Sub 13 , alkylthio group Sub 14 , arylthio group Sub 15 , substituted phosphino group Sub 16 , arylcarbonyl group Sub 17 , acyl group Sub 18 , substituted phosphoryl group Sub 19 , ester group Sub 20 , siloxanyl group Sub 21 , carbamoyl group Sub 22
  • substituted or unsubstituted XX to YY carbon number ZZ group refers to the number of carbon atoms in the case where the ZZ group is unsubstituted.
  • the number of carbon atoms in the substituent R F1 is not included.
  • the structure of the ring is a saturated ring, unsaturated ring, aromatic hydrocarbon ring, or heterocyclic ring.
  • the aromatic hydrocarbon group in the linking group includes, for example, a divalent or higher valent group obtained by removing one or more atoms from the monovalent aryl group Sub 1 described above.
  • the heterocyclic group in the linking group includes, for example, a divalent or higher valent group obtained by removing one or more atoms from the monovalent heteroaryl group Sub 2 described above.
  • Example 1-1 The organic EL device of Example 1-1 was manufactured as follows. On a glass substrate, a silver alloy APC (Ag-Pd-Cu) layer (reflective layer) (thickness 100 nm) and an indium zinc oxide (IZO) layer (thickness 10 nm), The films were formed in this order by a sputtering method. As a result, a conductive material layer composed of an APC layer and an IZO layer was obtained. IZO is a registered trademark.
  • the conductive material layer was patterned by etching using a resist pattern as a mask to form an anode.
  • the substrate on which the anode as the lower electrode was formed was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes and then to UV ozone cleaning for 30 minutes.
  • the compound HT and the compound HA were co-evaporated using a vacuum evaporation method to form a hole injection layer with a thickness of 10 nm.
  • the concentration of compound HT in the hole injection layer was set to 97 mass %, and the concentration of HA was set to 3 mass %.
  • a compound HT was deposited on the hole injection layer to form a hole transport layer (HT) with a thickness of 185 nm.
  • compound EBL-1 was deposited on the hole transport layer to form an electron blocking layer as a first layer with a thickness of 10 nm.
  • a fluorescent compound RD-1 as a first compound, a delayed fluorescent compound TADF-1 as a second compound, and a compound Matrix as a third compound -1 was co-deposited to form a light-emitting layer with a thickness of 25 nm.
  • the concentration of compound RD-1 in the light-emitting layer was 1% by mass, the concentration of compound TADF-1 was 25% by mass, and the concentration of compound Matrix-1 was 74% by mass.
  • compound HBL-1 was vapor-deposited on the light emitting layer to form a hole blocking layer as a second layer with a thickness of 15 nm.
  • a compound ET was vapor-deposited on this hole blocking layer to form an electron transporting layer with a thickness of 45 nm.
  • lithium fluoride (LiF) was deposited on the electron transport layer to form an electron injecting electrode (cathode) with a thickness of 1 nm.
  • the numbers in parentheses indicate the film thickness (unit: nm).
  • the percentage numbers (97%:3%) indicate the proportions (% by mass) of the compound HT and the compound HA in the hole injection layer, and the percentage numbers (74%:25%: 1%) indicates the ratio (% by mass) of the third compound, the second compound, and the first compound in the light-emitting layer, and (15%:85%) indicates the ratio of Mg and Ag in the cathode ( mass %).
  • the same notation is used.
  • Example 1-2 and Example 1-3 In the organic EL devices of Examples 1-2 and 1-3, the film thickness of the hole transport layer in the organic EL device of Example 1-1 was changed as shown in Table 1, and the first compound in the light emitting layer was changed as shown in Table 1, and was produced in the same manner as the organic EL device of Example 1-1.
  • Example 1-4 The organic EL devices of Examples 1-4 were produced as follows. On a glass substrate, a silver alloy APC (Ag-Pd-Cu) layer (reflective layer) (thickness 100 nm) and an indium zinc oxide (IZO) layer (thickness 10 nm), The films were formed in this order by a sputtering method. As a result, a conductive material layer composed of an APC layer and an IZO layer was obtained. Subsequently, using a normal lithographic technique, the conductive material layer was patterned by etching using a resist pattern as a mask to form an anode.
  • APC silver alloy APC
  • IZO indium zinc oxide
  • the substrate on which the anode as the lower electrode was formed was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes and then to UV ozone cleaning for 30 minutes.
  • compounds HT and HA were co-deposited using a vacuum deposition method to form a hole injection layer with a thickness of 10 nm.
  • the concentration of compound HT in the hole injection layer was set to 97 mass %, and the concentration of HA was set to 3 mass %.
  • a compound HT was deposited on the hole injection layer to form a hole transport layer (HT) with a thickness of 175 nm.
  • compound EBL-1 was deposited on the hole transport layer to form an electron blocking layer as a first layer with a thickness of 10 nm.
  • a fluorescent compound RD-4 as a first compound, a delayed fluorescent compound TADF-1 as a second compound, and a compound Matrix as a third compound -1 was co-deposited to form a light-emitting layer with a thickness of 25 nm.
  • the concentration of compound RD-4 in the light-emitting layer was 1% by mass
  • the concentration of compound TADF-1 was 25% by mass
  • the concentration of compound Matrix-1 was 74% by mass.
  • compound HBL-1 was vapor-deposited on the light emitting layer to form a hole blocking layer as a second layer with a thickness of 15 nm.
  • a compound ET was vapor-deposited on this hole blocking layer to form a first electron transporting layer with a thickness of 35 nm.
  • compounds ET and Liq were co-deposited on the first electron transport layer to form a second electron transport layer with a thickness of 20 nm.
  • the concentration of compound ET in the second electron-transporting layer was set to 50% by mass, and the concentration of Liq was set to 50% by mass.
  • ytterbium (Yb) was deposited on the second electron transport layer to form an electron injecting electrode (cathode) with a thickness of 1 nm.
  • Example 1-5 and 1-6 The organic EL devices of Examples 1-5 and 1-6 were the same as those of Example 1-4 except that the second compound in the light-emitting layer in the organic EL device of Example 1-4 was changed as shown in Table 2. It was manufactured in the same manner as the organic EL device.
  • Examples 1-7 to 1-9 In the organic EL devices of Examples 1-7 to 1-9, the film thickness of the hole transport layer in the organic EL device of Example 1-1 was changed as shown in Table 3, and the first compound in the light emitting layer , except that the second compound and the third compound were changed as shown in Table 3, in the same manner as the organic EL device of Example 1-1.
  • Driving voltage A voltage (unit: V) was measured when electricity was applied between the anode and the cathode so that the current density was 10 mA/cm 2 .
  • ⁇ Maximum peak wavelength ⁇ p and emission half width FWHM when the device is driven A spectral radiance spectrum was measured with a spectral radiance meter CS-2000 (manufactured by Konica Minolta, Inc.) when a voltage was applied to the organic EL element so that the current density of the organic EL element was 10 mA/cm 2 . From the obtained spectral radiance spectrum, the maximum peak wavelength ⁇ p (unit: nm) and the emission half width FWHM (unit: nm) were obtained.
  • the organic EL devices of Examples 1-1 to 1-9 had a lower drive voltage and a longer life than the organic EL devices of Comparative Examples 1-1 to 1-3.
  • the organic EL devices of Examples 1-4 to 1-6 had a lower drive voltage, a longer life, and improved luminous efficiency compared to the organic EL device of Example 1-9.
  • Example 2-1 Manufacture of bottom emission type organic EL element
  • the organic EL device of Example 2-1 was manufactured as follows. A 25 mm ⁇ 75 mm ⁇ 1.1 mm thick glass substrate (manufactured by Geomatec Co., Ltd.) with an ITO transparent electrode (anode) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, followed by UV ozone cleaning for 1 minute. The film thickness of ITO was set to 130 nm. After washing, the glass substrate with the transparent electrode lines was mounted on a substrate holder of a vacuum vapor deposition apparatus. First, the compound HT and the compound HA were co-coated so as to cover the transparent electrode on the side on which the transparent electrode lines were formed.
  • Vapor deposition to form a hole injection layer with a thickness of 10 nm The concentration of the compound HT in the hole injection layer was set to 97 mass %, and the concentration of the compound HA was set to 3 mass %.
  • a compound HT was deposited on the hole injection layer to form a hole transport layer with a thickness of 200 nm.
  • compound EBL-1 was deposited on the hole transport layer to form an electron blocking layer as a first layer with a thickness of 10 nm.
  • a fluorescent compound RD-1 as a first compound, a delayed fluorescent compound TADF-1 as a second compound, and a compound Matrix as a third compound -1 was co-deposited to form a light-emitting layer with a thickness of 25 nm.
  • the concentration of compound RD-1 in the light-emitting layer was 1% by mass
  • the concentration of compound TADF-1 was 25% by mass
  • the concentration of compound Matrix-1 was 74% by mass.
  • compound HBL-1 was vapor-deposited on the light-emitting layer to form a hole blocking layer as a second layer with a thickness of 10 nm.
  • a compound ET was vapor-deposited on this hole blocking layer to form an electron transporting layer with a thickness of 30 nm.
  • lithium fluoride (LiF) was deposited on the electron transport layer to form an electron injecting electrode (cathode) with a thickness of 1 nm.
  • Metal aluminum (Al) was vapor-deposited on this electron-injecting electrode to form a metal Al cathode with a film thickness of 80 nm.
  • the element configuration of the organic EL element of Example 2-1 is schematically shown below.
  • Examples 2-2 to 2-13 In the organic EL devices of Examples 2-2 to 2-13, the first compound, the second compound and the third compound in the light-emitting layer in the organic EL device of Example 2-1 are shown in Tables 4 to 4. It was manufactured in the same manner as the organic EL device of Example 2-1, except that it was changed as in 7.
  • the organic EL elements of Examples 2-1 to 2-8 had a lower drive voltage and a longer life than the organic EL elements of Comparative Examples 2-1 to 2-4.
  • the organic EL element of Example 2-9 had a lower drive voltage and a longer life than the organic EL element of Comparative Example 2-5.
  • the organic EL elements of Examples 2-10 to 2-12 had a lower drive voltage and a longer life than the organic EL elements of Comparative Examples 2-6 to 2-8.
  • the organic EL element of Example 2-13 had a lower drive voltage and a longer life than the organic EL element of Comparative Example 2-9.
  • the organic EL devices of Examples 2-8 to 2-10 had a further reduced driving voltage, a longer life, and improved luminous efficiency compared to the organic EL device of Example 2-13.
  • Table 8 shows the physical property values of the first compound, second compound, and third compound used in the examples.
  • ⁇ Description of the table “-” means not measured. “ ⁇ 0.01” means that ⁇ ST is less than 0.01 eV.
  • the fluorescence spectrum of the above sample solution was measured with a spectrofluorophotometer FP-8600 (manufactured by JASCO Corporation), and the fluorescence spectrum of an ethanol solution of 9,10-diphenylanthracene was also measured under the same conditions. Using the fluorescence area intensity of both spectra, Morris et al. J. Phys. Chem. 80 (1976) 969, the total fluorescence quantum yield was calculated according to formula (1).
  • the delayed fluorescence emission in this example means that the amount of delayed emission (delayed emission) is 5% or more of the amount of prompt emission (immediate emission). Specifically, when the amount of prompt light emission (immediate light emission) is X P and the amount of delay light emission (delayed light emission) is X D , the value of X D /X P is 0.05 or more. means.
  • the amount and ratio of prompt luminescence and delay luminescence can be obtained by a method similar to that described in “Nature 492, 234-238, 2012” (reference document 1). It should be noted that the device used to calculate the amounts of Prompt emission and Delay emission is not limited to the device described in Reference Document 1 or the device described in FIG.
  • Compounds TADF-2, TADF-3 and TADF-4 were also measured in the same manner as compound TADF-1. For compounds TADF-1, TADF-2, TADF-3 and TADF-4, it was confirmed that the amount of delayed luminescence (delayed luminescence) was 5% or more of the amount of prompt luminescence (immediate luminescence). Specifically, the compounds TADF-1, TADF-2, TADF-3 and TADF-4 had X D /X P values of 0.05 or more.
  • the energy gap T 77K at 77 [K] was measured, and ⁇ ST was confirmed from the result and the above singlet energy S 1 value.
  • the energy gap T 77K was measured by the method for measuring the energy gap T 77K described in the above "Relationship between triplet energy and energy gap at 77 [K]".
  • ⁇ Maximum peak wavelength ⁇ of the compound was measured by the following method. A 5 ⁇ mol/L toluene solution of the compound to be measured was prepared and placed in a quartz cell, and the emission spectrum (vertical axis: emission intensity, horizontal axis: wavelength) of this sample was measured at room temperature (300 K). In this example, the emission spectrum was measured with a spectrofluorophotometer (apparatus name: F-7000) manufactured by Hitachi High-Tech Science Co., Ltd. Note that the emission spectrum measuring device is not limited to the device used here. In the emission spectrum, the peak wavelength of the emission spectrum at which the emission intensity is maximum was defined as the maximum peak wavelength ⁇ .
  • Organic EL element 3... Anode, 4... Cathode, 5... Light emitting layer, 7... Hole transport layer, 8... Electron transport layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

陽極(3)と陰極(4)との間に含まれる発光層(5)は、一般式(1)で表される蛍光発光性の第一の化合物と、一般式(2)で表される遅延蛍光性の第二の化合物と、一般式(3)で表される第三の化合物と、を含み、第一の化合物の一重項エネルギーS(M1)と、第二の化合物の一重項エネルギーS(M2)と、第三の化合物の一重項エネルギーS(M3)とが、下記数式(数1)の関係を満たす、有機エレクトロルミネッセンス素子(1)。 S(M3)>S(M2)>S(M1)…(数1)

Description

有機エレクトロルミネッセンス素子及び電子機器
 本発明は、有機エレクトロルミネッセンス素子及び電子機器に関する。
 有機エレクトロルミネッセンス素子(以下、「有機EL素子」という場合がある。)に電圧を印加すると、陽極から正孔が発光層に注入され、また陰極から電子が発光層に注入される。そして、発光層において、注入された正孔と電子とが再結合し、励起子が形成される。このとき、電子スピンの統計則により、一重項励起子が25%の割合で生成し、及び三重項励起子が75%の割合で生成する。
 一重項励起子からの発光を用いる蛍光型の有機EL素子は、携帯電話及びテレビ等のフルカラーディスプレイへ応用されつつあるが、内部量子効率25%が限界といわれている。そのため、有機EL素子の性能を向上するための検討が行われている。
 また、一重項励起子に加えて三重項励起子を利用し、有機EL素子をさらに効率的に発光させることが期待されている。このような背景から、熱活性化遅延蛍光(以下、単に「遅延蛍光」という場合がある。)を利用した高効率の蛍光型の有機EL素子が提案され、研究がなされている。
 例えば、TADF(Thermally Activated Delayed Fluorescence、熱活性化遅延蛍光)機構(メカニズム)が研究されている。このTADFメカニズムは、一重項準位と三重項準位とのエネルギー差(ΔST)の小さな材料を用いた場合に、三重項励起子から一重項励起子への逆項間交差が熱的に生じる現象を利用するメカニズムである。熱活性化遅延蛍光については、例えば、『安達千波矢編、「有機半導体のデバイス物性」、講談社、2012年4月1日発行、261-268ページ』に記載されている。
 例えば、特許文献1及び特許文献2には、TADFメカニズムを利用した有機エレクトロルミネッセンス素子に用いる化合物が記載されている。また、例えば、特許文献3には、熱活性化遅延蛍光性化合物と共に発光層に用いるピロメテン金属錯体が記載されている。
国際公開第2020/022378号 国際公開第2020/122118号 国際公開第2020/184369号
 TADFメカニズムを利用した有機EL素子において、更なる性能の向上が求められている。
 本発明の目的は、高性能な有機エレクトロルミネッセンス素子及び電子機器を提供することである。
 本発明の一態様によれば、陽極と、陰極と、前記陽極と前記陰極との間に含まれる発光層と、を有し、前記発光層は、蛍光発光性の第一の化合物と、遅延蛍光性の第二の化合物と、第三の化合物と、を含み、前記第一の化合物は下記一般式(1)で表され、前記第二の化合物は下記一般式(2)で表され、前記第三の化合物は下記一般式(3)で表され、前記第一の化合物の一重項エネルギーS(M1)と、前記第二の化合物の一重項エネルギーS(M2)と、前記第三の化合物の一重項エネルギーS(M3)とが、下記数式(数1)の関係を満たす、有機エレクトロルミネッセンス素子が提供される。
 S(M3)>S(M2)>S(M1)…(数1)
Figure JPOXMLDOC01-appb-C000008
(前記一般式(1)において、
 R1001~R1005およびR2001~R2002は、それぞれ独立に、水素原子もしくは置換基であるか、又はR1001及びR1002の組、R1002及びR2001の組、R2002及びR1003の組、並びにR1003及びR1004の組のいずれか1つ以上の組が互いに結合して環を形成し、
 置換基としてのR1001~R1005およびR2001~R2002は、それぞれ独立に、
  置換もしくは無置換の炭素数1~30のアルキル基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の炭素数1~30のアルコキシ基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルコキシ基、
  置換もしくは無置換の炭素数1~30のアルキルチオ基、
  置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
  置換もしくは無置換の環形成炭素数6~30のアリールチオ基、
  置換もしくは無置換の炭素数2~30のアルケニル基、
  置換もしくは無置換の環形成炭素数3~30のシクロアルケニル基、
  置換もしくは無置換の炭素数2~30のアルキニル基、
  置換もしくは無置換の環形成原子数5~30のヘテロアリール基、
  ハロゲン原子、
  カルボキシ基、
  ホルミル基、
  置換もしくは無置換のアシル基、
  置換もしくは無置換のエステル基、
  置換もしくは無置換のカルバモイル基、
  置換もしくは無置換のアミノ基、
  ヒドロキシ基、
  チオール基、
  ニトロ基、
  シアノ基、
  置換もしくは無置換のシリル基、及び
  置換もしくは無置換のシロキサニル基からなる群から選択され、
 Z1001及びZ1002は、それぞれ独立に、
  ハロゲン原子、
  シアノ基、
  置換もしくは無置換の炭素数1~30のアルキル基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の炭素数1~30のアルコキシ基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルコキシ基、及び
  置換もしくは無置換の環形成炭素数6~30のアリールオキシ基からなる群から選択される。)
Figure JPOXMLDOC01-appb-C000009
(前記一般式(2)において、CNは、シアノ基であり、Dは、下記一般式(2-1)で表される基であり、Dは、下記一般式(2-2)で表される基であり、複数のDは、互いに同一の基である。)
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
(前記一般式(2-1)において、
 Xは、硫黄原子であり、
 R131~R140は、それぞれ独立に、水素原子または置換基であり、
 置換基としてのR131~R140は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~14のアリール基、
  置換もしくは無置換の環形成原子数5~14の複素環基、
  置換もしくは無置換の炭素数3~6のアルキルシリル基、
  置換もしくは無置換の炭素数1~6のアルコキシ基、
  置換もしくは無置換の環形成炭素数6~14のアリールオキシ基、
  置換もしくは無置換の炭素数2~12のアルキルアミノ基、
  置換もしくは無置換の炭素数1~6のアルキルチオ基、または
  置換もしくは無置換の環形成炭素数6~14のアリールチオ基である。
 *は、前記一般式(2)中におけるベンゼン環との結合位置を表す。)
(前記一般式(2-2)において、
 R161~R168は、それぞれ独立に、水素原子または置換基であり、
 置換基としてのR161~R168は、それぞれ独立に、
  ハロゲン原子、
  置換もしくは無置換の環形成炭素数6~14のアリール基、
  置換もしくは無置換の環形成原子数5~14の複素環基、
  置換もしくは無置換の炭素数1~6のアルキル基、
  置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
  置換もしくは無置換の炭素数3~6のアルキルシリル基、
  置換もしくは無置換の炭素数1~6のアルコキシ基、
  置換もしくは無置換の環形成炭素数6~14のアリールオキシ基、
  置換もしくは無置換の炭素数2~12のアルキルアミノ基、
  置換もしくは無置換の炭素数1~6のアルキルチオ基、または
  置換もしくは無置換の環形成炭素数6~14のアリールチオ基である。
 *は、それぞれ独立に、前記一般式(2)中におけるベンゼン環との結合位置を表す。)
Figure JPOXMLDOC01-appb-C000012
(前記一般式(3)において、
 Xは、酸素原子又は硫黄原子であり、
 Yは、酸素原子又は硫黄原子であり、
 Lは、単結合又は連結基であり、
 連結基としてのLは、
 置換もしくは無置換の環形成炭素数6~30のアリール基から誘導される基、
 置換もしくは無置換の環形成原子数5~30の複素環基から誘導される基、又は
 置換もしくは無置換の環形成炭素数6~30のアリール基から誘導される基、及び置換もしくは無置換の環形成原子数5~30の複素環基から誘導される基からなる群から選択される2つの基が結合した基であり、
 R41、R42及びR44~R48は、それぞれ独立に、水素原子もしくは置換基であるか、又はR41及びR42の組、R45及びR46の組、R46及びR47の組、並びにR47及びR48の組のいずれか1つ以上の組が互いに結合して環を形成し、
 R31、R32、R34及びR35は、それぞれ独立に、水素原子もしくは置換基であり、
 R21、R22、R24及びR25は、それぞれ独立に、水素原子もしくは置換基であり、
 R13~R18及びR401~R404は、それぞれ独立に、水素原子もしくは置換基であるか、又はR13及びR14の組、R15及びR16の組、R16及びR17の組、R17及びR18の組、R401及びR402の組、R402及びR403の組、並びにR403及びR404の組のいずれか1つ以上の組が互いに結合して環を形成し、
 置換基としてのR41、R42、R44~R48、R31、R32、R34、R35、R21、R22、R24、R25、R13~R18及びR401~R404は、それぞれ独立に、
 ハロゲン原子、
 シアノ基、
 置換もしくは無置換の環形成炭素数6~30のアリール基、
 置換もしくは無置換の環形成原子数5~30の複素環基、
 置換もしくは無置換の炭素数1~30のアルキル基、
 置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
 置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
 置換もしくは無置換の炭素数2~30のアルケニル基、
 置換もしくは無置換の炭素数2~30のアルキニル基、
 置換もしくは無置換の炭素数3~30のアルキルシリル基、
 置換もしくは無置換の環形成炭素数6~60のアリールシリル基、
 置換もしくは無置換の環形成炭素数6~60のアリールホスホリル基、
 ヒドロキシ基、
 置換もしくは無置換の炭素数1~30のアルコキシ基、
 置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
 アミノ基、
 置換もしくは無置換の炭素数2~30のアルキルアミノ基、
 置換もしくは無置換の環形成炭素数6~60のアリールアミノ基、
 チオール基、
 置換もしくは無置換の炭素数1~30のアルキルチオ基、又は
 置換もしくは無置換の環形成炭素数6~30のアリールチオ基である。)
 本発明の一態様によれば、前述の本発明の一態様に係る有機エレクトロルミネッセンス素子を搭載した電子機器が提供される。
 本発明の一態様によれば、高性能な有機エレクトロルミネッセンス素子及び電子機器を提供することができる。
第一実施形態に係る有機EL素子の一例の概略構成を示す図である。 過渡PLを測定する装置の概略図である。 過渡PLの減衰曲線の一例を示す図である。 第一実施形態に係る有機EL素子の一例の発光層における第一の化合物、第二の化合物及び第三の化合物のエネルギー準位、並びにエネルギー移動の関係を示す図である。
〔第一実施形態〕
 本発明の第一実施形態に係る有機EL素子の構成について説明する。
 有機EL素子は、陽極および陰極の両電極間に有機層を備える。この有機層は、有機化合物で構成される複数の層が積層されてなる。有機層は、無機化合物をさらに含んでいてもよい。本実施形態の有機EL素子において、有機層のうち少なくとも一層は、発光層である。ゆえに、有機層は、例えば、一つの発光層で構成されていてもよいし、有機EL素子に採用され得る層を含んでいてもよい。有機EL素子に採用され得る層としては、特に限定されないが、例えば、正孔注入層、正孔輸送層、電子注入層、電子輸送層、及び障壁層からなる群から選択される少なくともいずれかの層が挙げられる。
 例えば、本実施形態の有機EL素子の有機層は、以下の層構成であることが好ましい。
・電子障壁層/発光層/正孔障壁層
・正孔注入層/電子障壁層/発光層/正孔障壁層
・正孔輸送層/電子障壁層/発光層/正孔障壁層
・正孔注入層/正孔輸送層/電子障壁層/発光層/正孔障壁層
・電子障壁層/発光層/正孔障壁層/電子注入層
・電子障壁層/発光層/正孔障壁層/電子輸送層
・電子障壁層/発光層/正孔障壁層/電子輸送層/電子注入層
・正孔注入層/電子障壁層/発光層/正孔障壁層/電子注入層
・正孔注入層/電子障壁層/発光層/正孔障壁層/電子輸送層
・正孔注入層/電子障壁層/発光層/正孔障壁層/電子輸送層/電子注入層
・正孔輸送層/電子障壁層/発光層/正孔障壁層/電子注入層
・正孔輸送層/電子障壁層/発光層/正孔障壁層/電子輸送層
・正孔輸送層/電子障壁層/発光層/正孔障壁層/電子輸送層/電子注入層
・正孔注入層/正孔輸送層/電子障壁層/発光層/正孔障壁層/電子注入層
・正孔注入層/正孔輸送層/電子障壁層/発光層/正孔障壁層/電子輸送層
・正孔注入層/正孔輸送層/電子障壁層/発光層/正孔障壁層/電子輸送層/電子注入層
 図1に、本実施形態に係る有機EL素子の一例の概略構成を示す。
 有機EL素子1は、透光性の基板2と、陽極3と、陰極4と、陽極3と陰極4との間に配置された有機層10と、を有する。有機層10は、正孔注入層6、正孔輸送層7、発光層5、電子輸送層8、及び電子注入層9を含む。有機層10は、陽極3側から順に、正孔注入層6、正孔輸送層7、発光層5、電子輸送層8、及び電子注入層9が、この順番で積層されている。
<発光層>
 発光層は、一般式(1)で表される第一の化合物と、一般式(2)で表される第二の化合物と、一般式(3)で表される第三の化合物とを含む。第一の化合物は、蛍光発光性の化合物であり、第二の化合物は、遅延蛍光性の化合物である。第一の化合物と、第二の化合物と、第三の化合物とは、互いに異なる化合物である。
 第一の化合物は、ドーパント材料(ゲスト材料、エミッター、発光材料と称する場合もある。)であることも好ましい。第二の化合物は、ホスト材料(マトリックス材料と称する場合もある。)であることも好ましい。第三の化合物は、ホスト材料(マトリックス材料と称する場合もある。)であることも好ましい。第二の化合物及び第三の化合物がホスト材料である場合、例えば、一方を第一のホスト材料と称し、他方を第二のホスト材料と称する場合もある。
 本実施形態の一態様においては、発光層は、金属錯体を含んでいてもよいが、燐光発光性の金属錯体を含まないことが好ましく、金属錯体を含まないことがより好ましい。
 また、本実施形態の一態様においては、発光層は、燐光発光性材料(燐光発光性のドーパント材料)を含まないことが好ましい。
 また、本実施形態の一態様においては、発光層は、重金属錯体を含まないことが好ましい。重金属錯体としては、例えば、イリジウム錯体、オスミウム錯体、及び白金錯体等が挙げられる。
 また、本実施形態の一態様においては、発光層は、燐光発光性の希土類金属錯体を含まないことが好ましい。
(第一の化合物)
 第一の化合物は、蛍光発光性の化合物である。第一の化合物は、遅延蛍光性の化合物でもよいし、遅延蛍光性を示さない化合物でもよい。
 第一の化合物は下記一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000013
 (前記一般式(1)において、
 R1001~R1005およびR2001~R2002は、それぞれ独立に、水素原子もしくは置換基であるか、又はR1001及びR1002の組、R1002及びR2001の組、R2002及びR1003の組、並びにR1003及びR1004の組のいずれか1つ以上の組が互いに結合して環を形成し、
 置換基としてのR1001~R1005およびR2001~R2002は、それぞれ独立に、
  置換もしくは無置換の炭素数1~30のアルキル基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の炭素数1~30のアルコキシ基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルコキシ基、
  置換もしくは無置換の炭素数1~30のアルキルチオ基、
  置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
  置換もしくは無置換の環形成炭素数6~30のアリールチオ基、
  置換もしくは無置換の炭素数2~30のアルケニル基、
  置換もしくは無置換の環形成炭素数3~30のシクロアルケニル基、
  置換もしくは無置換の炭素数2~30のアルキニル基、
  置換もしくは無置換の環形成原子数5~30のヘテロアリール基、
  ハロゲン原子、
  カルボキシ基、
  ホルミル基、
  置換もしくは無置換のアシル基、
  置換もしくは無置換のエステル基、
  置換もしくは無置換のカルバモイル基、
  置換もしくは無置換のアミノ基、
  ヒドロキシ基、
  チオール基、
  ニトロ基、
  シアノ基、
  置換もしくは無置換のシリル基、及び
  置換もしくは無置換のシロキサニル基からなる群から選択され、
 Z1001及びZ1002は、それぞれ独立に、
  ハロゲン原子、
  シアノ基、
  置換もしくは無置換の炭素数1~30のアルキル基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の炭素数1~30のアルコキシ基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルコキシ基、及び
  置換もしくは無置換の環形成炭素数6~30のアリールオキシ基からなる群から選択される。)
 本実施形態において、前記一般式(1)におけるR2001及びR2002が、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール基、及び置換もしくは無置換の環形成原子数5~30のヘテロアリール基からなる群から選択される基であることが好ましい。
 前記一般式(1)において、R1002及びR2001の組、並びにR2002及びR1003の組のいずれか1つ以上の組が互いに結合して環を形成することも好ましい。
 本実施形態において、前記一般式(1)で表される化合物が、下記一般式(4A)または一般式(4B)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000014
(前記一般式(4A)において、R1001、R1002、R1004、R1005、R2001、Z1001及びZ1002は、それぞれ独立に、前記一般式(1)におけるR1001、R1002、R1004、R1005、R2001、Z1001及びZ1002と同義であり、
 前記一般式(4B)において、R1001、R1004、R1005、Z1001及びZ1002は、それぞれ独立に、前記一般式(1)におけるR1001、R1004、R1005、Z1001及びZ1002と同義であり、
 Ar1001及びAr1002は、それぞれ独立に、
 置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素環、及び
 置換もしくは無置換の環形成原子数5~30の芳香族複素環からなる群から選択され、
 Bは、3個以上の原子が直列に結合した架橋構造であり、前記原子が、
  置換もしくは無置換の炭素原子、
  置換もしくは無置換のケイ素原子、
  置換もしくは無置換の窒素原子、
  置換もしくは無置換のリン原子、
  酸素原子、及び
  硫黄原子からなる群から選択され、
 Cは、1個以上の原子が直列に結合した架橋構造であり、前記原子が、
  置換もしくは無置換の炭素原子、
  置換もしくは無置換のケイ素原子、
  置換もしくは無置換の窒素原子、
  置換もしくは無置換のリン原子、
  酸素原子、及び
  硫黄原子からなる群から選択され、
 ただし、Bがトリメチレン基である場合、R1004は、水素原子及びハロゲン原子ではない。)
 前記一般式(4A)及び一般式(4B)においてAr1001の一部として示される二重結合は、芳香族炭化水素環または芳香族複素環の一部を表しており、ピロメテン骨格に直接結合している炭素原子と、架橋構造Bが結合している炭素原子とが隣接していることを示している。
 同様に、前記一般式(4B)においてAr1002の一部として示される二重結合は、芳香族炭化水素環または芳香族複素環の一部を表しており、ピロメテン骨格に直接結合している炭素原子と、架橋構造Cが結合している炭素原子とが隣接していることを示している。
 本実施形態において、前記一般式(1)、一般式(4A)及び一般式(4B)におけるR1001及びR1004は、それぞれ独立に、好ましくは、水素原子、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、及び置換もしくは無置換の環形成原子数5~30のヘテロアリール基からなる群から選択され、より好ましくは、置換もしくは無置換の環形成炭素数6~30のアリール基である。
 本実施形態において、前記一般式(1)、一般式(4A)及び一般式(4B)におけるR1002及びR1003は、それぞれ独立に、好ましくは、水素原子、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、及び置換もしくは無置換の環形成原子数5~30のヘテロアリール基からなる群から選択されるか、又はR1002及びR2001の組、並びにR2002及びR1003の組のいずれか1つ以上の組が互いに結合して環を形成する。
 本実施形態において、前記一般式(1)、一般式(4A)及び一般式(4B)におけるR1005は、好ましくは、水素原子、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、及び置換もしくは無置換の環形成原子数5~30のヘテロアリール基からなる群から選択され、より好ましくは、置換もしくは無置換の環形成炭素数6~30のアリール基である。
 本実施形態において、前記一般式(1)、一般式(4A)及び一般式(4B)におけるR2001及びR2002は、それぞれ独立に、好ましくは、置換もしくは無置換の環形成炭素数6~30のアリール基、及び置換もしくは無置換の環形成原子数5~30のヘテロアリール基からなる群から選択され、より好ましくは、置換もしくは無置換の環形成炭素数6~30のアリール基である。
 本実施形態において、前記一般式(1)、一般式(4A)及び一般式(4B)におけるZ1001及びZ1002は、それぞれ独立に、好ましくは、ハロゲン原子、シアノ基、置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、及び置換もしくは無置換の炭素数1~30のハロゲン化アルコキシ基からなる群から選択され、より好ましくは、フッ素原子である。
 本実施形態において、前記一般式(4A)及び一般式(4B)におけるAr1001及びAr1002は、それぞれ独立に、好ましくは、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素環である。
 本実施形態において、前記一般式(4A)及び一般式(4B)におけるBは、3個以上の原子が直列に結合した架橋構造であり、前記原子が、置換もしくは無置換の炭素原子、及び酸素原子からなる群から選択されることが好ましい。
 本実施形態において、前記一般式(4A)及び一般式(4B)におけるCは、1個以上の原子が直列に結合した架橋構造であり、前記原子が、置換もしくは無置換の炭素原子、置換もしくは無置換の窒素原子、酸素原子、及び硫黄原子からなる群から選択されることが好ましく、発光ピーク波長制御の観点から、1~3個の置換もしくは無置換の炭素原子からなる群から選択されることがより好ましい。さらに多様な発光ピーク波長の要望に対し分子設計の自由度を大きくできることから、Cは3個の置換もしくは無置換の炭素原子であることがさらに好ましい。一方、発光スペクトルの半値幅を狭くし、色純度を向上させることができることから、Cは1~2個の置換もしくは無置換の炭素原子であることがさらに好ましく、1個の置換もしくは無置換の炭素原子であることが特に好ましい。
 本実施形態において、前記一般式(4A)または一般式(4B)におけるBが、下記一般式(5A)または一般式(5B)で表される架橋構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000015
(前記一般式(5A)において、R1011~R1016は、それぞれ独立に、水素原子もしくは置換基であるか、R1011~R1016のうちの隣接する2つ以上からなる組の1組以上が互いに結合して環を形成し、
 前記一般式(5B)において、R1011~R1014は、それぞれ独立に、水素原子もしくは置換基であるか、R1011~R1014のうちの隣接する2つ以上からなる組の1組以上が互いに結合して環を形成し、
 置換基としてのR1011~R1016は、それぞれ独立に、
  置換もしくは無置換の炭素数1~30のアルキル基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の環形成原子数5~30のヘテロアリール基、
  置換もしくは無置換の炭素数1~30のアルコキシ基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルコキシ基、
  置換もしくは無置換の炭素数1~30のアルキルチオ基、
  置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
  置換もしくは無置換の環形成炭素数6~30のアリールチオ基、
  置換もしくは無置換の炭素数2~30のアルケニル基、
  置換もしくは無置換の環形成炭素数3~30のシクロアルケニル基、
  置換もしくは無置換の炭素数2~30のアルキニル基、
  ハロゲン原子、
  カルボキシ基、
  ホルミル基、
  置換もしくは無置換のアシル基、
  置換もしくは無置換のエステル基、
  置換もしくは無置換のカルバモイル基、
  置換もしくは無置換のアミノ基、
  ヒドロキシ基、
  チオール基、
  ニトロ基、
  シアノ基、
  置換もしくは無置換のシリル基、及び
  置換もしくは無置換のシロキサニル基からなる群から選択され、
 *は、前記一般式(4A)及び一般式(4B)中、ピロール環との連結部を示し、**は、Ar1001との連結部を示す。)
 本実施形態において、前記一般式(5A)及び一般式(5B)におけるR1011~R1016は、それぞれ独立に、好ましくは、水素原子、及び置換もしくは無置換の炭素数1~30のアルキル基からなる群から選択され、より好ましくは、水素原子である。
 本実施形態において、前記一般式(4B)におけるR1004とR1001、BとC、およびAr1001とAr1002が、それぞれ同一であってもよく、異なっていてもよい。ここで前者を対称型、後者を非対称型と呼ぶ。製造工程数が少なく副生成物を少なくできるため製造が容易である観点からは、対称型が好ましい。一方、それぞれの基の組み合わせにより発光ピーク波長や発光スペクトルの半値幅調整が容易となる観点からは、非対称型が好ましい。
・第一の化合物の製造方法
 第一の化合物は、例えば、国際公開第2020/184369号に示すような公知の方法により製造することができる。
・第一の化合物の具体例
 本実施形態に係る第一の化合物(一般式(1)で表される化合物)の具体例を以下に示す。なお、本発明における第一の化合物は、これらの具体例に限定されない。
 なお、ピロメテン骨格中におけるホウ素原子と窒素原子との配位結合は、実線、破線、矢印、もしくは省略するなど、種々の表記方法がある。本明細書においては、実線で表すか、破線で表すか、又は記載を省略する。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
(第二の化合物)
 第二の化合物は、遅延蛍光性の化合物である。
Figure JPOXMLDOC01-appb-C000020
(前記一般式(2)において、CNは、シアノ基であり、Dは、下記一般式(2-1)で表される基であり、Dは、下記一般式(2-2)で表される基であり、複数のDは、互いに同一の基である。)
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
(前記一般式(2-1)において、
 Xは、硫黄原子であり、
 R131~R140は、それぞれ独立に、水素原子または置換基であり、
 置換基としてのR131~R140は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~14のアリール基、
  置換もしくは無置換の環形成原子数5~14の複素環基、
  置換もしくは無置換の炭素数3~6のアルキルシリル基、
  置換もしくは無置換の炭素数1~6のアルコキシ基、
  置換もしくは無置換の環形成炭素数6~14のアリールオキシ基、
  置換もしくは無置換の炭素数2~12のアルキルアミノ基、
  置換もしくは無置換の炭素数1~6のアルキルチオ基、または
  置換もしくは無置換の環形成炭素数6~14のアリールチオ基である。
 *は、前記一般式(2)中におけるベンゼン環との結合位置を表す。)
(前記一般式(2-2)において、
 R161~R168は、それぞれ独立に、水素原子または置換基であり、
 置換基としてのR161~R168は、それぞれ独立に、
  ハロゲン原子、
  置換もしくは無置換の環形成炭素数6~14のアリール基、
  置換もしくは無置換の環形成原子数5~14の複素環基、
  置換もしくは無置換の炭素数1~6のアルキル基、
  置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
  置換もしくは無置換の炭素数3~6のアルキルシリル基、
  置換もしくは無置換の炭素数1~6のアルコキシ基、
  置換もしくは無置換の環形成炭素数6~14のアリールオキシ基、
  置換もしくは無置換の炭素数2~12のアルキルアミノ基、
  置換もしくは無置換の炭素数1~6のアルキルチオ基、または
  置換もしくは無置換の環形成炭素数6~14のアリールチオ基である。
 *は、それぞれ独立に、前記一般式(2)中におけるベンゼン環との結合位置を表す。)
 前記一般式(2-1)及び(2-2)におけるR131~R140及びR161~R168は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の環形成炭素数6~14のアリール基、または
  置換もしくは無置換の環形成原子数5~14の複素環基であることが好ましい。
 前記一般式(2-1)におけるR136は、
  置換もしくは無置換の環形成炭素数6~14のアリール基、または
  置換もしくは無置換の環形成原子数5~14の複素環基であることが好ましい。
 前記一般式(2-1)におけるR136がこのようなアリール基、または複素環基であることにより、有機EL素子の駆動電圧がさらに低減し、寿命がさらに長くなり、発光効率が向上する。
・第二の化合物の製造方法
 第二の化合物は、後述する実施例に記載の合成方法に従って、又は当該合成方法に倣い、目的物に合わせた既知の代替反応及び原料を用いることで、製造することができる。
・第二の化合物の具体例
 本実施形態に係る第二の化合物(一般式(2)で表される化合物)の具体例を以下に示す。なお、本発明における第二の化合物は、これらの具体例に限定されない。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
・遅延蛍光性
 遅延蛍光については、「有機半導体のデバイス物性」(安達千波矢編、講談社発行)の261~268ページで解説されている。その文献の中で、蛍光発光材料の励起一重項状態と励起三重項状態のエネルギー差ΔE13を小さくすることができれば、通常は遷移確率が低い励起三重項状態から励起一重項状態への逆エネルギー移動が高効率で生じ、熱活性化遅延蛍光(ThermallyActivated delayed Fluorescence,TADF)が発現すると説明されている。さらに、当該文献中の図10.38で、遅延蛍光の発生メカニズムが説明されている。本実施形態における第二の化合物は、このようなメカニズムで発生する熱活性化遅延蛍光を示す化合物であることが好ましい。
 一般に、遅延蛍光の発光は過渡PL(Photo Luminescence)測定により確認できる。
 過渡PL測定から得た減衰曲線に基づいて遅延蛍光の挙動を解析することもできる。過渡PL測定とは、試料にパルスレーザーを照射して励起させ、照射を止めた後のPL発光の減衰挙動(過渡特性)を測定する手法である。TADF材料におけるPL発光は、最初のPL励起で生成する一重項励起子からの発光成分と、三重項励起子を経由して生成する一重項励起子からの発光成分に分類される。最初のPL励起で生成する一重項励起子の寿命は、ナノ秒オーダーであり、非常に短い。そのため、当該一重項励起子からの発光は、パルスレーザーを照射後、速やかに減衰する。
 一方、遅延蛍光は、寿命の長い三重項励起子を経由して生成する一重項励起子からの発光のため、ゆるやかに減衰する。このように最初のPL励起で生成する一重項励起子からの発光と、三重項励起子を経由して生成する一重項励起子からの発光とでは、時間的に大きな差がある。そのため、遅延蛍光由来の発光強度を求めることができる。
 図2には、過渡PLを測定するための例示的装置の概略図が示されている。図2を用いた過渡PLの測定方法、および遅延蛍光の挙動解析の一例を説明する。
 図2の過渡PL測定装置100は、所定波長の光を照射可能なパルスレーザー部101と、測定試料を収容する試料室102と、測定試料から放射された光を分光する分光器103と、2次元像を結像するためのストリークカメラ104と、2次元像を取り込んで解析するパーソナルコンピュータ105とを備える。なお、過渡PLの測定は、図2に記載の装置に限定されない。
 試料室102に収容される試料は、マトリックス材料に対し、ドーピング材料が12質量%の濃度でドープされた薄膜を石英基板に成膜することで得られる。
 試料室102に収容された薄膜試料に対し、パルスレーザー部101からパルスレーザーを照射してドーピング材料を励起させる。励起光の照射方向に対して90度の方向へ発光を取り出し、取り出した光を分光器103で分光し、ストリークカメラ104内で2次元像を結像する。その結果、縦軸が時間に対応し、横軸が波長に対応し、輝点が発光強度に対応する2次元画像を得ることができる。この2次元画像を所定の時間軸で切り出すと、縦軸が発光強度であり、横軸が波長である発光スペクトルを得ることができる。また、当該2次元画像を波長軸で切り出すと、縦軸が発光強度の対数であり、横軸が時間である減衰曲線(過渡PL)を得ることができる。
 例えば、マトリックス材料として、下記参考化合物H1を用い、ドーピング材料として下記参考化合物D1を用いて上述のようにして薄膜試料Aを作製し、過渡PL測定を行った。
Figure JPOXMLDOC01-appb-C000025
 ここでは、前述の薄膜試料A、および薄膜試料Bを用いて減衰曲線を解析した。薄膜試料Bは、マトリックス材料として下記参考化合物H2を用い、ドーピング材料として前記参考化合物D1を用いて、上述のようにして薄膜試料を作製した。
 図3には、薄膜試料Aおよび薄膜試料Bについて測定した過渡PLから得た減衰曲線が示されている。
Figure JPOXMLDOC01-appb-C000026
 上記したように過渡PL測定によって、縦軸を発光強度とし、横軸を時間とする発光減衰曲線を得ることができる。この発光減衰曲線に基づいて、光励起により生成した一重項励起状態から発光する蛍光と、三重項励起状態を経由し、逆エネルギー移動により生成する一重項励起状態から発光する遅延蛍光との、蛍光強度比を見積もることができる。遅延蛍光性の材料では、素早く減衰する蛍光の強度に対し、緩やかに減衰する遅延蛍光の強度の割合が、ある程度大きい。
 具体的には、遅延蛍光性の材料からの発光としては、Prompt発光(即時発光)と、Delay発光(遅延発光)とが存在する。Prompt発光(即時発光)とは、当該遅延蛍光性の材料が吸収する波長のパルス光(パルスレーザーから照射される光)で励起された後、当該励起状態から即座に観察される発光である。Delay発光(遅延発光)とは、当該パルス光による励起後、即座には観察されず、その後観察される発光である。
 Prompt発光とDelay発光の量とその比は、“Nature 492, 234-238, 2012”(参考文献1)に記載された方法と同様の方法により求めることができる。なお、Prompt発光とDelay発光の量の算出に使用される装置は、前記参考文献1に記載の装置、または図2に記載の装置に限定されない。
 また、本明細書では、第二の化合物の遅延蛍光性の測定には、次に示す方法により作製した試料を用いる。例えば、第二の化合物をトルエンに溶解し、自己吸収の寄与を取り除くため励起波長において吸光度が0.05以下の希薄溶液を調製する。また酸素による消光を防ぐため、試料溶液を凍結脱気した後にアルゴン雰囲気下で蓋付きのセルに封入することで、アルゴンで飽和された酸素フリーの試料溶液とする。
 上記試料溶液の蛍光スペクトルを分光蛍光光度計FP-8600(日本分光社製)で測定し、また同条件で9,10-ジフェニルアントラセンのエタノール溶液の蛍光スペクトルを測定する。両スペクトルの蛍光面積強度を用いて、Morris et al. J.Phys.Chem.80(1976)969中の(1)式により全蛍光量子収率を算出する。
 本実施形態においては、測定対象化合物(第二の化合物)のPrompt発光(即時発光)の量をXとし、Delay発光(遅延発光)の量をXとしたときに、X/Xの値が0.05以上であることが好ましい。
 本明細書における第二の化合物以外の化合物のPrompt発光とDelay発光の量とその比の測定も、第二の化合物のPrompt発光とDelay発光の量とその比の測定と同様である。
(第三の化合物)
 第三の化合物は、遅延蛍光性の化合物でもよいし、遅延蛍光性を示さない化合物でもよい。
Figure JPOXMLDOC01-appb-C000027
(前記一般式(3)において、
 Xは、酸素原子又は硫黄原子であり、
 Yは、酸素原子又は硫黄原子であり、
 Lは、単結合又は連結基であり、
 連結基としてのLは、
 置換もしくは無置換の環形成炭素数6~30のアリール基から誘導される基、
 置換もしくは無置換の環形成原子数5~30の複素環基から誘導される基、又は
 置換もしくは無置換の環形成炭素数6~30のアリール基から誘導される基、及び置換もしくは無置換の環形成原子数5~30の複素環基から誘導される基からなる群から選択される2つの基が結合した基であり、
 R41、R42及びR44~R48は、それぞれ独立に、水素原子もしくは置換基であるか、又はR41及びR42の組、R45及びR46の組、R46及びR47の組、並びにR47及びR48の組のいずれか1つ以上の組が互いに結合して環を形成し、
 R31、R32、R34及びR35は、それぞれ独立に、水素原子もしくは置換基であり、
 R21、R22、R24及びR25は、それぞれ独立に、水素原子もしくは置換基であり、
 R13~R18及びR401~R404は、それぞれ独立に、水素原子もしくは置換基であるか、又はR13及びR14の組、R15及びR16の組、R16及びR17の組、R17及びR18の組、R401及びR402の組、R402及びR403の組、並びにR403及びR404の組のいずれか1つ以上の組が互いに結合して環を形成し、
 置換基としてのR41、R42、R44~R48、R31、R32、R34、R35、R21、R22、R24、R25、R13~R18及びR401~R404は、それぞれ独立に、
 ハロゲン原子、
 シアノ基、
 置換もしくは無置換の環形成炭素数6~30のアリール基、
 置換もしくは無置換の環形成原子数5~30の複素環基、
 置換もしくは無置換の炭素数1~30のアルキル基、
 置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
 置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
 置換もしくは無置換の炭素数2~30のアルケニル基、
 置換もしくは無置換の炭素数2~30のアルキニル基、
 置換もしくは無置換の炭素数3~30のアルキルシリル基、
 置換もしくは無置換の環形成炭素数6~60のアリールシリル基、
 置換もしくは無置換の環形成炭素数6~60のアリールホスホリル基、
 ヒドロキシ基、
 置換もしくは無置換の炭素数1~30のアルコキシ基、
 置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
 アミノ基、
 置換もしくは無置換の炭素数2~30のアルキルアミノ基、
 置換もしくは無置換の環形成炭素数6~60のアリールアミノ基、
 チオール基、
 置換もしくは無置換の炭素数1~30のアルキルチオ基、又は
 置換もしくは無置換の環形成炭素数6~30のアリールチオ基である。)
 前記一般式(3)におけるXは、酸素原子であることが好ましい。
 前記一般式(3)におけるYは、酸素原子であることが好ましい。
 前記一般式(3)におけるLは、単結合又は連結基であり、連結基としてのLは、置換もしくは無置換の環形成炭素数6~30のアリール基から誘導される基であることが好ましい。
 前記一般式(3)におけるR13~R18、R21、R22、R24、R25、R31、R32、R34、R35、R401~R404、R41、R42及びR44~R48は、それぞれ独立に、水素原子もしくは置換基であり、
 置換基としてのR13~R18、R21、R22、R24、R25、R31、R32、R34、R35、R401~R404、R41、R42及びR44~R48は、それぞれ独立に、
 置換もしくは無置換の環形成炭素数6~30のアリール基、
 置換もしくは無置換の環形成原子数5~30の複素環基、または
 置換もしくは無置換の炭素数1~30のアルキル基であることが好ましい。
・第三の化合物の製造方法
 第三の化合物は、公知の方法により製造することができる。
・第三の化合物の具体例
 本実施形態に係る第三の化合物(一般式(3)で表される化合物)の具体例を以下に示す。なお、本発明における第三の化合物は、これらの具体例に限定されない。
Figure JPOXMLDOC01-appb-C000028
<発光層における第一の化合物、第二の化合物、及び第三の化合物の関係>
 本実施形態の有機EL素子において、発光層における第一の化合物の一重項エネルギーS(M1)と、第二の化合物の一重項エネルギーS(M2)と、第三の化合物の一重項エネルギーS(M3)とが、下記数式(数1)の関係を満たす。
 S(M3)>S(M2)>S(M1) …(数1)
 発光層における第一の化合物の77[K]におけるエネルギーギャップT77K(M1)と、第二の化合物の77[K]におけるエネルギーギャップT77K(M2)と、第三の化合物の77[K]におけるエネルギーギャップT77K(M3)とが、下記数式(数2)の関係を満たすことが好ましい。
 T77K(M3)>T77K(M2)>T77K(M1) …(数2)
 本実施形態において、第二の化合物の一重項エネルギーS1(M2)と、第二の化合物の77[K]におけるエネルギーギャップT77K(M2)との差ΔST(M2)は、下記数式(数1A)~(数1D)のいずれかの関係を満たすことが好ましい。
 ΔST(M2)=S(M2)-T77K(M2)<0.3eV …(数1A)
 ΔST(M2)=S(M2)-T77K(M2)<0.2eV …(数1B)
 ΔST(M2)=S(M2)-T77K(M2)<0.1eV …(数1C)
 ΔST(M2)=S(M2)-T77K(M2)<0.01eV …(数1D)
 本実施形態において、第一の化合物の一重項エネルギーS(M1)と、第一の化合物の77[K]におけるエネルギーギャップT77K(M1)との差ΔST(M1)は、下記数式(数1E)の関係を満たすことが好ましい。
 ΔST(M1)=S(M1)-T77K(M1)>0.3[eV] …(数1E)
 本実施形態において、第三の化合物の一重項エネルギーS(M3)と、第三の化合物の77[K]におけるエネルギーギャップT77K(M3)との差ΔST(M3)は、下記数式(数1F)の関係を満たすことが好ましい。
 ΔST(M3)=S(M3)-T77K(M3)>0.3[eV] …(数1F)
 本実施形態において、第三の化合物の77[K]におけるエネルギーギャップT77K(M3)は、2.9eV以上であることが好ましい。第三の化合物が、このようなエネルギーギャップT77K(M3)を有することで、発光層において、第二の化合物(遅延蛍光性の化合物)の三重項エネルギーを発光層に有効に閉じ込めることができると考えられる。
・TADF機構(メカニズム)
 本実施形態の有機EL素子では、第二の化合物としてΔST(M2)が小さい化合物を用いることが好ましく、外部から与えられる熱エネルギーによって、第二の化合物の三重項準位から第二の化合物の一重項準位への逆項間交差が起こり易くなる。有機EL素子内部の電気励起された励起子の励起三重項状態が、逆項間交差によって、励起一重項状態へスピン交換がされるエネルギー状態変換機構をTADF機構と呼ぶ。
 図4は、発光層における第一の化合物、第二の化合物、及び第三の化合物のエネルギー準位の関係の一例を示す図である。図4において、S0は、基底状態を表す。S1(M1)は、第一の化合物の最低励起一重項状態を表し、T1(M1)は、第一の化合物の最低励起三重項状態を表す。S1(M2)は、第二の化合物の最低励起一重項状態を表し、T1(M2)は、第二の化合物の最低励起三重項状態を表す。S1(M3)は、第三の化合物の最低励起一重項状態を表し、T1(M3)は、第三の化合物の最低励起三重項状態を表す。図4中のS1(M2)からS1(M1)へ向かう破線の矢印は、第二の化合物の最低励起一重項状態から第一の化合物の最低励起一重項状態へのフェルスター型エネルギー移動を表す。
 図4に示すように、第二の化合物としてΔST(M2)の小さな化合物を用いると、最低励起三重項状態T1(M2)は、熱エネルギーにより、最低励起一重項状態S1(M2)に逆項間交差が可能である。そして、第二の化合物の最低励起一重項状態S1(M2)から第一の化合物へのフェルスター型エネルギー移動が生じ、最低励起一重項状態S1(M1)が生成する。この結果、第一の化合物の最低励起一重項状態S1(M1)からの蛍光発光を観測することができる。このTADFメカニズムによる遅延蛍光を利用することによっても、理論的に内部量子効率を100%まで高めることができると考えられている。
・三重項エネルギーと77[K]におけるエネルギーギャップとの関係
 ここで、三重項エネルギーと77[K]におけるエネルギーギャップとの関係について説明する。本実施形態では、77[K]におけるエネルギーギャップは、通常定義される三重項エネルギーとは異なる点がある。
 三重項エネルギーの測定は、次のようにして行われる。まず、測定対象となる化合物を適切な溶媒中に溶解した溶液を石英ガラス管内に封入した試料を作製する。この試料について、低温(77[K])で燐光スペクトル(縦軸:燐光発光強度、横軸:波長とする。)を測定し、この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値に基づいて、所定の換算式から三重項エネルギーを算出する。
 ここで、本実施形態に係る化合物の内、熱活性化遅延蛍光性の化合物は、ΔSTが小さい化合物であることが好ましい。ΔSTが小さいと、低温(77[K])状態でも、項間交差、及び逆項間交差が起こりやすく、励起一重項状態と励起三重項状態とが混在する。その結果、上記と同様にして測定されるスペクトルは、励起一重項状態、及び励起三重項状態の両者からの発光を含んでおり、いずれの状態から発光したのかについて峻別することは困難であるが、基本的には三重項エネルギーの値が支配的と考えられる。
 そのため、本実施形態では、通常の三重項エネルギーTと測定手法は同じであるが、その厳密な意味において異なることを区別するため、次のようにして測定される値をエネルギーギャップT77Kと称する。測定対象となる化合物をEPA(ジエチルエーテル:イソペンタン:エタノール=5:5:2(容積比))中に、濃度が10μmol/Lとなるように溶解し、この溶液を石英セル中に入れて測定試料とする。この測定試料について、低温(77[K])で燐光スペクトル(縦軸:燐光発光強度、横軸:波長とする。)を測定し、この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]に基づいて、次の換算式(F1)から算出されるエネルギー量を77[K]におけるエネルギーギャップT77Kとする。
  換算式(F1):T77K[eV]=1239.85/λedge
 燐光スペクトルの短波長側の立ち上がりに対する接線は以下のように引く。燐光スペクトルの短波長側から、スペクトルの極大値のうち、最も短波長側の極大値までスペクトル曲線上を移動する際に、長波長側に向けて曲線上の各点における接線を考える。この接線は、曲線が立ち上がるにつれ(つまり縦軸が増加するにつれ)、傾きが増加する。この傾きの値が極大値をとる点において引いた接線(すなわち変曲点における接線)が、当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
 なお、スペクトルの最大ピーク強度の15%以下のピーク強度をもつ極大点は、上述の最も短波長側の極大値には含めず、最も短波長側の極大値に最も近い、傾きの値が極大値をとる点において引いた接線を当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
 燐光の測定には、(株)日立ハイテクノロジー製のF-4500形分光蛍光光度計本体を用いることができる。なお、測定装置はこの限りではなく、冷却装置、及び低温用容器と、励起光源と、受光装置とを組み合わせることにより、測定してもよい。
・一重項エネルギーS
 溶液を用いた一重項エネルギーSの測定方法(溶液法と称する場合がある。)としては、下記の方法が挙げられる。
 測定対象となる化合物の10μmol/Lトルエン溶液を調製して石英セルに入れ、常温(300K)でこの試料の吸収スペクトル(縦軸:吸収強度、横軸:波長とする。)を測定する。この吸収スペクトルの長波長側の立ち下がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を次に示す換算式(F2)に代入して一重項エネルギーを算出する。
  換算式(F2):S[eV]=1239.85/λedge
 吸収スペクトル測定装置としては、例えば、日立社製の分光光度計(装置名:U3310)が挙げられるが、これに限定されない。
 吸収スペクトルの長波長側の立ち下がりに対する接線は以下のように引く。吸収スペクトルの極大値のうち、最も長波長側の極大値から長波長方向にスペクトル曲線上を移動する際に、曲線上の各点における接線を考える。この接線は、曲線が立ち下がるにつれ(つまり縦軸の値が減少するにつれ)、傾きが減少しその後増加することを繰り返す。傾きの値が最も長波長側(ただし、吸光度が0.1以下となる場合は除く)で極小値をとる点において引いた接線を当該吸収スペクトルの長波長側の立ち下がりに対する接線とする。
 なお、吸光度の値が0.2以下の極大点は、上記最も長波長側の極大値には含めない。
 本実施形態では、一重項エネルギーSと、77[K]におけるエネルギーギャップT77Kとの差(S-T77K)をΔSTとして定義する。
 本実施形態の有機EL素子を発光させたときに、発光層において、主に蛍光発光性の化合物が発光していることが好ましい。
 本実施形態の有機EL素子は、赤色発光または緑色発光することが好ましい。
 本実施形態の有機EL素子が緑色発光する場合、有機EL素子から発光する光の最大ピーク波長は、500nm以上560nm以下であることが好ましい。
 本実施形態の有機EL素子が赤色発光する場合、有機EL素子から発光する光の最大ピーク波長は、600nm以上660nm以下であることが好ましい。
 本実施形態の有機EL素子が青色発光する場合、有機EL素子から発光する光の最大ピーク波長は、430nm以上480nm以下であることが好ましい。
 有機EL素子から発光する光の最大ピーク波長の測定は、以下のようにして行う。
 電流密度が10mA/cmとなるように有機EL素子に電圧を印加した時の分光放射輝度スペクトルを分光放射輝度計CS-2000(コニカミノルタ株式会社製)で計測する。得られた分光放射輝度スペクトルにおいて、発光強度が最大となる発光スペクトルのピーク波長を測定し、これを最大ピーク波長(単位:nm)とする。
・発光層の膜厚
 本実施形態の有機EL素子における発光層の膜厚は、好ましくは5nm以上50nm以下、より好ましくは7nm以上50nm以下、最も好ましくは10nm以上50nm以下である。5nm以上であると、発光層形成及び色度の調整が容易になりやすく、50nm以下であると、駆動電圧の上昇が抑制されやすい。
・発光層における化合物の含有率
 本実施形態の有機EL素子では、発光層において、第一の化合物の含有率は、0.01質量%以上10質量%以下であることが好ましく、0.01質量%以上5質量%以下であることがより好ましく、0.01質量%以上1質量%以下であることがさらに好ましい。
 第二の化合物の含有率は、10質量%以上80質量%以下であることが好ましく、10質量%以上60質量%以下であることがより好ましく、20質量%以上60質量%以下であることがさらに好ましい。
 第三の化合物の含有率は、10質量%以上80質量%以下であることが好ましい。
 発光層における第一の化合物、第二の化合物、及び第三の化合物の合計含有率の上限は、100質量%である。なお、本実施形態は、発光層に、第一の化合物、第二の化合物、及び第三の化合物以外の材料が含まれることを除外しない。
 発光層は、第一の化合物を1種のみ含んでもよいし、2種以上含んでもよい。発光層は、第二の化合物を1種のみ含んでもよいし、2種以上含んでもよい。発光層は、第三の化合物を1種のみ含んでもよいし、2種以上含んでもよい。
 第一実施形態によれば、高性能な有機EL素子が実現される。第一実施形態の一態様によれば、駆動電圧が低減し、長寿命な有機EL素子が実現される。一般式(1)で表される第一の化合物と一般式(2)で表される第二の化合物との組み合わせにおいて特に高い効果が得られる。
 第一実施形態に係る有機EL素子は、表示装置、及び発光装置等の電子機器に使用できる。
 有機EL素子の構成についてさらに説明する。以下、符号の記載は省略することがある。
(基板)
 基板は、有機EL素子の支持体として用いられる。基板としては、例えば、ガラス、石英、及びプラスチック等を用いることができる。また、可撓性基板を用いてもよい。可撓性基板とは、折り曲げることができる(フレキシブル)基板のことであり、例えば、プラスチック基板等が挙げられる。プラスチック基板を形成する材料としては、例えば、ポリカーボネート、ポリアリレート、ポリエーテルスルフォン、ポリプロピレン、ポリエステル、ポリフッ化ビニル、ポリ塩化ビニル、ポリイミド、及びポリエチレンナフタレート等が挙げられる。また、無機蒸着フィルムを用いることもできる。
(陽極)
 基板上に形成される陽極には、仕事関数の大きい(具体的には4.0eV以上)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。具体的には、例えば、酸化インジウム-酸化スズ(ITO:Indium Tin Oxide)、珪素もしくは酸化珪素を含有した酸化インジウム-酸化スズ、酸化インジウム-酸化亜鉛、酸化タングステン、および酸化亜鉛を含有した酸化インジウム、グラフェン等が挙げられる。この他、金(Au)、白金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、チタン(Ti)、または金属材料の窒化物(例えば、窒化チタン)等が挙げられる。
 これらの材料は、通常、スパッタリング法により成膜される。例えば、酸化インジウム-酸化亜鉛は、酸化インジウムに対し1質量%以上10質量%以下の酸化亜鉛を加えたターゲットを用いることにより、スパッタリング法で形成することができる。また、例えば、酸化タングステン、および酸化亜鉛を含有した酸化インジウムは、酸化インジウムに対し酸化タングステンを0.5質量%以上5質量%以下、酸化亜鉛を0.1質量%以上1質量%以下含有したターゲットを用いることにより、スパッタリング法で形成することができる。その他、真空蒸着法、塗布法、インクジェット法、スピンコート法などにより作製してもよい。
 陽極上に形成されるEL層のうち、陽極に接して形成される正孔注入層は、陽極の仕事関数に関係なく正孔(ホール)注入が容易である複合材料を用いて形成されるため、電極材料として可能な材料(例えば、金属、合金、電気伝導性化合物、およびこれらの混合物、その他、元素周期表の第1族または第2族に属する元素も含む)を用いることができる。
 仕事関数の小さい材料である、元素周期表の第1族または第2族に属する元素、すなわちリチウム(Li)及びセシウム(Cs)等のアルカリ金属、マグネシウム(Mg)、カルシウム(Ca)及びストロンチウム(Sr)等のアルカリ土類金属、並びにこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)及びイッテルビウム(Yb)等の希土類金属並びにこれらを含む合金等を用いることもできる。なお、アルカリ金属、アルカリ土類金属、およびこれらを含む合金を用いて陽極を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。さらに、銀ペーストなどを用いる場合には、塗布法やインクジェット法などを用いることができる。
(陰極)
 陰極には、仕事関数の小さい(具体的には3.8eV以下)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。このような陰極材料の具体例としては、元素周期表の第1族または第2族に属する元素、すなわちリチウム(Li)及びセシウム(Cs)等のアルカリ金属、マグネシウム(Mg)、カルシウム(Ca)及びストロンチウム(Sr)等のアルカリ土類金属、並びにこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)及びイッテルビウム(Yb)等の希土類金属並びにこれらを含む合金等が挙げられる。
 なお、アルカリ金属、アルカリ土類金属、これらを含む合金を用いて陰極を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。また、銀ペーストなどを用いる場合には、塗布法やインクジェット法などを用いることができる。
 なお、電子注入層を設けることにより、仕事関数の大小に関わらず、Al、Ag、ITO、グラフェン、珪素もしくは酸化珪素を含有した酸化インジウム-酸化スズ等様々な導電性材料を用いて陰極を形成することができる。これらの導電性材料は、スパッタリング法やインクジェット法、スピンコート法等を用いて成膜することができる。
(正孔注入層)
 正孔注入層は、正孔注入性の高い物質を含む層である。正孔注入性の高い物質としては、モリブデン酸化物、チタン酸化物、バナジウム酸化物、レニウム酸化物、ルテニウム酸化物、クロム酸化物、ジルコニウム酸化物、ハフニウム酸化物、タンタル酸化物、銀酸化物、タングステン酸化物、マンガン酸化物等を用いることができる。
 また、正孔注入性の高い物質としては、低分子の有機化合物である4,4’,4’’-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’-ビス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ビフェニル(略称:DPAB)、4,4’-ビス(N-{4-[N’-(3-メチルフェニル)-N’-フェニルアミノ]フェニル}-N-フェニルアミノ)ビフェニル(略称:DNTPD)、1,3,5-トリス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ベンゼン(略称:DPA3B)、3-[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA1)、3,6-ビス[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA2)、3-[N-(1-ナフチル)-N-(9-フェニルカルバゾール-3-イル)アミノ]-9-フェニルカルバゾール(略称:PCzPCN1)等の芳香族アミン化合物等やジピラジノ[2,3-f:20,30-h]キノキサリン-2,3,6,7,10,11-ヘキサカルボニトリル(HAT-CN)も挙げられる。
 また、正孔注入性の高い物質としては、高分子化合物(オリゴマー、デンドリマー、ポリマー等)を用いることもできる。例えば、ポリ(N-ビニルカルバゾール)(略称:PVK)、ポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N-(4-{N’-[4-(4-ジフェニルアミノ)フェニル]フェニル-N’-フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)ベンジジン](略称:Poly-TPD)などの高分子化合物が挙げられる。また、ポリ(3,4-エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(PEDOT/PSS)、ポリアニリン/ポリ(スチレンスルホン酸)(PAni/PSS)等の酸を添加した高分子化合物を用いることもできる。
(正孔輸送層)
 正孔輸送層は、正孔輸送性の高い物質を含む層である。正孔輸送層には、芳香族アミン化合物、カルバゾール誘導体、アントラセン誘導体等を使用する事ができる。具体的には、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略称:NPB)やN,N’-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン(略称:TPD)、4-フェニル-4’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:BAFLP)、4,4’-ビス[N-(9,9-ジメチルフルオレン-2-イル)-N-フェニルアミノ]ビフェニル(略称:DFLDPBi)、4,4’,4’’-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’-ビス[N-(スピロ-9,9’-ビフルオレン-2-イル)-N―フェニルアミノ]ビフェニル(略称:BSPB)などの芳香族アミン化合物等を用いることができる。ここに述べた物質は、主に10-6cm/(V・s)以上の正孔移動度を有する物質である。
 正孔輸送層には、CBP、9-[4-(N-カルバゾリル)]フェニル-10-フェニルアントラセン(CzPA)、9-フェニル-3-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(PCzPA)のようなカルバゾール誘導体や、t-BuDNA、DNA、DPAnthのようなアントラセン誘導体を用いても良い。ポリ(N-ビニルカルバゾール)(略称:PVK)やポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)等の高分子化合物を用いることもできる。
 但し、電子よりも正孔の輸送性の高い物質であれば、これら以外のものを用いてもよい。なお、正孔輸送性の高い物質を含む層は、単層のものだけでなく、上記物質からなる層が二層以上積層したものとしてもよい。
 正孔輸送層を二層以上配置する場合、エネルギーギャップのより大きい材料を発光層に近い側に配置することが好ましい。
(電子輸送層)
 電子輸送層は、電子輸送性の高い物質を含む層である。電子輸送層には、1)アルミニウム錯体、ベリリウム錯体、亜鉛錯体等の金属錯体、2)イミダゾール誘導体、ベンゾイミダゾール誘導体、アジン誘導体、カルバゾール誘導体、フェナントロリン誘導体等の複素芳香族化合物、3)高分子化合物を使用することができる。具体的には低分子の有機化合物として、Alq、トリス(4-メチル-8-キノリノラト)アルミニウム(略称:Almq)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(略称:BeBq)、BAlq、Znq、ZnPBO、ZnBTZなどの金属錯体等を用いることができる。また、金属錯体以外にも、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、1,3-ビス[5-(ptert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、3-(4-tert-ブチルフェニル)-4-フェニル-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:TAZ)、3-(4-tert-ブチルフェニル)-4-(4-エチルフェニル)-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:p-EtTAZ)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)、4,4’-ビス(5-メチルベンゾオキサゾール-2-イル)スチルベン(略称:BzOs)などの複素芳香族化合物も用いることができる。本実施態様においては、ベンゾイミダゾール化合物を好適に用いることができる。ここに述べた物質は、主に10-6cm/(V・s)以上の電子移動度を有する物質である。なお、正孔輸送性よりも電子輸送性の高い物質であれば、上記以外の物質を電子輸送層として用いてもよい。また、電子輸送層は、単層で構成されていてもよいし、上記物質からなる層が二層以上積層されて構成されていてもよい。
 また、電子輸送層には、高分子化合物を用いることもできる。例えば、ポリ[(9,9-ジヘキシルフルオレン-2,7-ジイル)-co-(ピリジン-3,5-ジイル)](略称:PF-Py)、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(2,2’-ビピリジン-6,6’-ジイル)](略称:PF-BPy)などを用いることができる。
(電子注入層)
 電子注入層は、電子注入性の高い物質を含む層である。電子注入層には、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)、リチウム酸化物(LiOx)等のようなアルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。その他、電子輸送性を有する物質にアルカリ金属、アルカリ土類金属、またはそれらの化合物を含有させたもの、具体的にはAlq中にマグネシウム(Mg)を含有させたもの等を用いてもよい。なお、この場合には、陰極からの電子注入をより効率良く行うことができる。
 あるいは、電子注入層に、有機化合物と電子供与体(ドナー)とを混合してなる複合材料を用いてもよい。このような複合材料は、電子供与体によって有機化合物に電子が発生するため、電子注入性および電子輸送性に優れている。この場合、有機化合物としては、発生した電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述した電子輸送層を構成する物質(金属錯体や複素芳香族化合物等)を用いることができる。電子供与体としては、有機化合物に対し電子供与性を示す物質であればよい。具体的には、アルカリ金属やアルカリ土類金属や希土類金属が好ましく、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金属酸化物やアルカリ土類金属酸化物が好ましく、リチウム酸化物、カルシウム酸化物、バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。
(層形成方法)
 本実施形態の有機EL素子の各層の形成方法としては、上記で特に言及した以外には制限されないが、真空蒸着法、スパッタリング法、プラズマ法、イオンプレーティング法などの乾式成膜法や、スピンコーティング法、ディッピング法、フローコーティング法、インクジェット法などの湿式成膜法などの公知の方法を採用することができる。
(膜厚)
 本実施形態の有機EL素子の各有機層の膜厚は、上記で特に言及した以外には制限されないが、一般に膜厚が薄すぎるとピンホール等の欠陥が生じやすく、逆に厚すぎると高い印加電圧が必要となり効率が悪くなるため、通常は数nmから1μmの範囲が好ましい。
〔第二実施形態〕
[電子機器]
 本実施形態に係る電子機器は、上述の実施形態の有機EL素子を搭載している。電子機器としては、例えば、表示装置及び発光装置等が挙げられる。表示装置としては、例えば、表示部品(例えば、有機ELパネルモジュール等)、テレビ、携帯電話、タブレット、及びパーソナルコンピュータ等が挙げられる。発光装置としては、例えば、照明及び車両用灯具等が挙げられる。
〔実施形態の変形〕
 なお、本発明は、上述の実施形態に限定されず、本発明の目的を達成できる範囲での変更、改良等は、本発明に含まれる。
 例えば、発光層は、1層に限られず、複数の発光層が積層されていてもよい。有機EL素子が複数の発光層を有する場合、少なくとも1つの発光層が上記実施形態で説明した条件を満たしていればよい。例えば、その他の発光層が、蛍光発光型の発光層であっても、三重項励起状態から直接基底状態への電子遷移による発光を利用した燐光発光型の発光層であってもよい。
 また、有機EL素子が複数の発光層を有する場合、これらの発光層が互いに隣接して設けられていてもよいし、中間層を介して複数の発光ユニットが積層された、いわゆるタンデム型の有機EL素子であってもよい。
 また、例えば、発光層の陽極側、及び陰極側の少なくとも一方に障壁層を隣接させて設けてもよい。障壁層は、発光層に接して配置され、正孔、電子、及び励起子の少なくともいずれかを阻止することが好ましい。
 例えば、発光層の陰極側で接して障壁層が配置された場合、当該障壁層は、電子を輸送し、かつ正孔が当該障壁層よりも陰極側の層(例えば、電子輸送層)に到達することを阻止する。有機EL素子が、電子輸送層を含む場合は、発光層と電子輸送層との間に当該障壁層を含むことが好ましい。
 また、発光層の陽極側で接して障壁層が配置された場合、当該障壁層は、正孔を輸送し、かつ電子が当該障壁層よりも陽極側の層(例えば、正孔輸送層)に到達することを阻止する。有機EL素子が、正孔輸送層を含む場合は、発光層と正孔輸送層との間に当該障壁層を含むことが好ましい。
 また、励起エネルギーが発光層からその周辺層に漏れ出さないように、障壁層を発光層に隣接させて設けてもよい。発光層で生成した励起子が、当該障壁層よりも電極側の層(例えば、電子輸送層及び正孔輸送層等)に移動することを阻止する。
 発光層と障壁層とは接合していることが好ましい。
 その他、本発明の実施における具体的な構造、及び形状等は、本発明の目的を達成できる範囲で他の構造等としてもよい。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前に記載される数値を下限値とし、「~」の後に記載される数値を上限値として含む範囲を意味する。
 本明細書において、Rx及びRyが互いに結合して環を形成するとは、例えば、Rx及びRyが炭素原子、窒素原子、酸素原子、硫黄原子、リン原子又はケイ素原子を含み、Rxに含まれる原子(炭素原子、窒素原子、酸素原子、硫黄原子、リン原子又はケイ素原子)と、Ryに含まれる原子(炭素原子、窒素原子、酸素原子、硫黄原子、リン原子又はケイ素原子)とが、単結合、二重結合、三重結合、又は二価の連結基を介して結合し、環形成原子数が5以上の環(具体的には、例えば、複素環又は芳香族炭化水素環)を形成することを意味する。xは、数字、文字、又は、数字と文字との組み合わせである。yは、数字、文字、又は、数字と文字との組み合わせである。
 二価の連結基としては特に制限されないが、例えば、-O-、-CO-、-CO-、-S-、-SO-、-SO-、-NH-、-NRa-、及びこれらの連結基を2以上組み合わせた基等が挙げられる。
 本明細書において、複素環の具体例としては、特筆しない限り、後述の「一般式中における各置換基についての説明」で例示した「ヘテロアリール基Sub」から結合手を除いた環構造(複素環)が挙げられる。これらの複素環は、置換基を有していてもよい。
 本明細書において、芳香族炭化水素環の具体例としては、特筆しない限り、後述の「一般式中における各置換基についての説明」で例示した「アリール基Sub」から結合手を除いた環構造(芳香族炭化水素環)が挙げられる。これらの芳香族炭化水素環は、置換基を有していてもよい。
 Raとしては、例えば、後述の「一般式中における各置換基についての説明」で例示した置換もしくは無置換の炭素数1~30のアルキル基Sub、置換もしくは無置換の環形成炭素数6~30のアリール基Sub、置換もしくは無置換の環形成原子数5~30のヘテロアリール基Sub等が挙げられる。
 例えば、Rx及びRyが互いに結合して環を形成するとは、下記一般式(E1)で表される分子構造において、Rxに含まれる原子と、Ry1に含まれる原子とが、一般式(E2)で表される環(環構造)Eを形成すること;一般式(F1)で表される分子構造において、Rxに含まれる原子と、Ry1に含まれる原子とが、一般式(F2)で表される環Fを形成すること;一般式(G1)で表される分子構造において、Rxに含まれる原子と、Ry1に含まれる原子とが、一般式(G2)で表される環Gを形成すること;一般式(H1)で表される分子構造において、Rxに含まれる原子と、Ry1に含まれる原子とが、一般式(H2)で表される環Hを形成すること;一般式(I1)で表される分子構造において、Rxに含まれる原子と、Ry1に含まれる原子とが、一般式(I2)で表される環Iを形成すること;を意味する。
 一般式(E1)~(I1)中、*は、それぞれ独立に、一分子中の他の原子との結合位置を表す。一般式(E1)中の2つの*は一般式(E2)中の2つの*にそれぞれ対応し、一般式(F1)中の2つの*は一般式(F2)中の2つの*にそれぞれ対応し、一般式(G1)中の2つの*は一般式(G2)中の2つの*にそれぞれ対応し、一般式(H1)中の2つの*は一般式(H2)中の2つの*にそれぞれ対応し、一般式(I1)中の2つの*は一般式(I2)中の2つの*にそれぞれ対応する。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
 一般式(E2)~(I2)で表される分子構造において、E~Iはそれぞれ環構造(前記環形成原子数が5以上の環)を表す。一般式(E2)~(I2)中、*は、それぞれ独立に、一分子中の他の原子との結合位置を表す。一般式(E2)中の2つの*は一般式(E1)中の2つの*にそれぞれ対応する。一般式(F2)~(I2)中の2つの*についても同様に、一般式(F1)~(I1)中の2つの*にそれぞれ対応する。
 例えば、一般式(E1)において、Rx及びRyが互いに結合して一般式(E2)中の環Eを形成し、環Eが無置換のベンゼン環である場合、一般式(E1)で表される分子構造は、下記一般式(E3)で表される分子構造になる。ここで、一般式(E3)中の2つの*は、それぞれ独立に、一般式(E2)および一般式(E1)中の2つの*に対応する。
 例えば、一般式(E1)において、Rx及びRyが互いに結合して一般式(E2)中の環Eを形成し、環Eが無置換のピロール環である場合、一般式(E1)で表される分子構造は、下記一般式(E4)で表される分子構造になる。ここで、一般式(E4)中の2つの*は、それぞれ独立に、一般式(E2)および一般式(E1)中の2つの*に対応する。一般式(E3)及び(E4)中、*は、それぞれ独立に、一分子中の他の原子との結合位置を表す。
Figure JPOXMLDOC01-appb-C000031
 本明細書において、環形成炭素数とは、原子が環状に結合した構造の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子のうちの炭素原子の数を表す。当該環が置換基によって置換される場合、置換基に含まれる炭素は環形成炭素数には含まない。以下で記載される「環形成炭素数」については、特筆しない限り同様とする。例えば、ベンゼン環は環形成炭素数が6であり、ナフタレン環は環形成炭素数が10であり、ピリジニル基は環形成炭素数が5であり、フラニル基は環形成炭素数4である。また、ベンゼン環やナフタレン環に置換基として例えばアルキル基が置換している場合、当該アルキル基の炭素数は、環形成炭素数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の炭素数は環形成炭素数の数に含めない。
 本明細書において、環形成原子数とは、原子が環状に結合した構造(例えば単環、縮合環、環集合)の化合物(例えば単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子の数を表す。環を構成しない原子や、当該環が置換基によって置換される場合の置換基に含まれる原子は環形成原子数には含まない。以下で記載される「環形成原子数」については、特筆しない限り同様とする。例えば、ピリジン環は、環形成原子数が6であり、キナゾリン環は、環形成原子数が10であり、フラン環は、環形成原子数が5である。ピリジン環やキナゾリン環の炭素原子にそれぞれ結合している水素原子や置換基を構成する原子については、環形成原子数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の原子数は環形成原子数の数に含めない。
・〔一般式中における各置換基についての説明(各置換基の説明)〕
 本明細書における一般式中における各置換基について説明する。
・アリール基
 本明細書におけるアリール基(芳香族炭化水素基と称する場合がある。)は、例えば、アリール基Subであり、アリール基Subは、例えば、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、アントリル基、フェナントリル基、フルオレニル基、ピレニル基、クリセニル基、フルオランテニル基、ベンゾ[a]アントリル基、ベンゾ[c]フェナントリル基、トリフェニレニル基、ベンゾ[k]フルオランテニル基、ベンゾ[g]クリセニル基、ベンゾ[b]トリフェニレニル基、ピセニル基、及びペリレニル基からなる群から選択される少なくともいずれかの基である。
 本明細書におけるアリール基Subとしては、環形成炭素数が、6~30であることが好ましく、6~20であることがより好ましく、6~14であることがさらに好ましく、6~12であることがよりさらに好ましい。上記アリール基Subの中でもフェニル基、ビフェニル基、ナフチル基、フェナントリル基、ターフェニル基、及びフルオレニル基が好ましい。1-フルオレニル基、2-フルオレニル基、3-フルオレニル基及び4-フルオレニル基については、9位の炭素原子に、後述する本明細書における置換もしくは無置換のアルキル基Subや、置換もしくは無置換のアリール基Subが置換されていることが好ましい。
・複素環基
 本明細書におけるヘテロアリール基(複素環基、ヘテロ芳香族環基、または芳香族複素環基と称する場合がある。)は、例えば、複素環基Subである。複素環基Subは、ヘテロ原子として、窒素、硫黄、酸素、ケイ素、セレン原子、及びゲルマニウム原子からなる群から選択される少なくともいずれかの原子を含む基である。複素環基Subは、ヘテロ原子として、窒素、硫黄、及び酸素からなる群から選択される少なくともいずれかの原子を含む基であることが好ましい。
 本明細書における複素環基Subは、例えば、ピリジル基、ピリミジニル基、ピラジニル基、ピリダジニル基、トリアジニル基、キノリル基、イソキノリニル基、ナフチリジニル基、フタラジニル基、キノキサリニル基、キナゾリニル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、ピロリル基、イミダゾリル基、ピラゾリル基、トリアゾリル基、テトラゾリル基、インドリル基、ベンズイミダゾリル基、インダゾリル基、イミダゾピリジニル基、ベンズトリアゾリル基、カルバゾリル基、フリル基、チエニル基、オキサゾリル基、チアゾリル基、イソキサゾリル基、イソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、ベンゾフラニル基、ベンゾチエニル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、ベンゾイソキサゾリル基、ベンゾイソチアゾリル基、ベンゾオキサジアゾリル基、ベンゾチアジアゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、ピペリジニル基、ピロリジニル基、ピペラジニル基、モルホリル基、フェナジニル基、フェノチアジニル基、及びフェノキサジニル基からなる群から選択される少なくともいずれかの基である。
 本明細書における複素環基Subとしては、環形成原子数が、5~30であることが好ましく、5~20であることがより好ましく、5~14であることがさらに好ましい。上記複素環基Subの中でも1-ジベンゾフラニル基、2-ジベンゾフラニル基、3-ジベンゾフラニル基、4-ジベンゾフラニル基、1-ジベンゾチエニル基、2-ジベンゾチエニル基、3-ジベンゾチエニル基、4-ジベンゾチエニル基、1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、及び9-カルバゾリル基がさらにより好ましい。1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基及び4-カルバゾリル基については、9位の窒素原子に、本明細書における置換もしくは無置換のアリール基Subや、置換もしくは無置換の複素環基Subが置換していることが好ましい。
 また、本明細書において、複素環基Subは、例えば、下記一般式(XY-1)~(XY-18)で表される部分構造から誘導される基であってもよい。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
 前記一般式(XY-1)~(XY-18)において、X及びYは、それぞれ独立に、ヘテロ原子であり、酸素原子、硫黄原子、セレン原子、ケイ素原子、またはゲルマニウム原子であることが好ましい。前記一般式(XY-1)~(XY-18)で表される部分構造は、任意の位置で結合手を有して複素環基となり、この複素環基は、置換基を有していてもよい。
 また、本明細書において、複素環基Subは、例えば、下記一般式(XY-19)~(XY-22)で表される基であってもよい。また、結合手の位置も適宜変更され得る。
Figure JPOXMLDOC01-appb-C000035
・アルキル基
 本明細書におけるアルキル基は、直鎖のアルキル基または分岐鎖のアルキル基のいずれであってもよい。
 本明細書におけるアルキル基は、例えば、アルキル基Subである。
 本明細書における直鎖のアルキル基は、例えば、直鎖のアルキル基Sub31である。
 本明細書における分岐鎖のアルキル基は、例えば、分岐鎖のアルキル基Sub32である。
 アルキル基Subは、例えば、直鎖のアルキル基Sub31及び分岐鎖のアルキル基Sub32からなる群から選択される少なくともいずれかの基である。
 直鎖のアルキル基Sub31または分岐鎖のアルキル基Sub32は、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、ネオペンチル基、アミル基、イソアミル基、1-メチルペンチル基、2-メチルペンチル基、1-ペンチルヘキシル基、1-ブチルペンチル基、1-ヘプチルオクチル基、及び3-メチルペンチル基からなる群から選択される少なくともいずれかの基である。
・直鎖のアルキル基または分岐鎖のアルキル基
 本明細書における直鎖のアルキル基Sub31または分岐鎖のアルキル基Sub32の炭素数は、1~30であることが好ましく、1~20であることがより好ましく、1~10であることがさらに好ましく、1~6であることがよりさらに好ましい。上記直鎖のアルキル基Sub31または分岐鎖のアルキル基Sub32としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、アミル基、イソアミル基、及びネオペンチル基がさらにより好ましい。
・環状のアルキル基
 本明細書における環状のアルキル基は、例えば、環状のアルキル基Sub33である。本明細書における環状のアルキル基Sub33は、例えば、シクロアルキル基Sub331である。
 本明細書におけるシクロアルキル基Sub331は、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、4-メチルシクロヘキシル基、アダマンチル基、及びノルボルニル基からなる群から選択される少なくともいずれかの基である。シクロアルキル基Sub331の環形成炭素数は、3~30であることが好ましく、3~20であることがより好ましく、3~10であることがさらに好ましく、5~8であることがよりさらに好ましい。シクロアルキル基Sub331の中でも、シクロペンチル基やシクロヘキシル基がさらにより好ましい。
・ハロゲン化アルキル基
 本明細書におけるハロゲン化アルキル基は、例えば、ハロゲン化アルキル基Subであり、ハロゲン化アルキル基Subは、例えば、アルキル基Subが1以上のハロゲン原子、好ましくはフッ素原子で置換されたアルキル基である。
 本明細書におけるハロゲン化アルキル基Subは、例えば、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、トリフルオロメチルメチル基、トリフルオロエチル基、及びペンタフルオロエチル基からなる群から選択される少なくともいずれかの基である。ハロゲン化アルキル基Subの炭素数は、1~30であることが好ましく、1~10であることがより好ましく、1~6であることがさらに好ましい。
・置換シリル基
 本明細書における置換シリル基は、例えば、置換シリル基Subであり、置換シリル基Subは、例えば、アルキルシリル基Sub51及びアリールシリル基Sub52からなる群から選択される少なくともいずれかの基である。
 本明細書におけるアルキルシリル基Sub51は、例えば、上記アルキル基Subを有するトリアルキルシリル基Sub511である。アルキルシリル基Sub51の炭素数は、3~30であることが好ましく、3~10であることがより好ましく、3~6であることがさらに好ましい。
 トリアルキルシリル基Sub511は、例えば、トリメチルシリル基、トリエチルシリル基、トリ-n-ブチルシリル基、トリ-n-オクチルシリル基、トリイソブチルシリル基、ジメチルエチルシリル基、ジメチルイソプロピルシリル基、ジメチル-n-プロピルシリル基、ジメチル-n-ブチルシリル基、ジメチル-t-ブチルシリル基、ジエチルイソプロピルシリル基、ビニルジメチルシリル基、プロピルジメチルシリル基、及びトリイソプロピルシリル基からなる群から選択される少なくともいずれかの基である。トリアルキルシリル基Sub511における3つのアルキル基Subは、互いに同一でも異なっていてもよい。
 本明細書におけるアリールシリル基Sub52は、例えば、ジアルキルアリールシリル基Sub521、アルキルジアリールシリル基Sub522、及びトリアリールシリル基Sub523からなる群から選択される少なくともいずれかの基である。アリールシリル基Sub52の環形成炭素数は、6~60であることが好ましい。
 ジアルキルアリールシリル基Sub521は、例えば、上記アルキル基Subを2つ有し、上記アリール基Subを1つ有するジアルキルアリールシリル基である。ジアルキルアリールシリル基Sub521の炭素数は、8~30であることが好ましい。
 アルキルジアリールシリル基Sub522は、例えば、上記アルキル基Subを1つ有し、上記アリール基Subを2つ有するアルキルジアリールシリル基である。アルキルジアリールシリル基Sub522の炭素数は、13~30であることが好ましい。
 トリアリールシリル基Sub523は、例えば、上記アリール基Subを3つ有するトリアリールシリル基である。トリアリールシリル基Sub523の炭素数は、18~30であることが好ましい。
・アルキルスルホニル基
 本明細書における置換もしくは無置換のアルキルスルホニル基は、例えば、アルキルスルホニル基Subであり、アルキルスルホニル基Subは、-SOで表される。-SOにおけるRは、置換もしくは無置換の上記アルキル基Subを表す。
・アラルキル基
 本明細書におけるアラルキル基(アリールアルキル基と称する場合がある)は、例えば、アラルキル基Subである。アラルキル基Subにおけるアリール基は、例えば、上記アリール基Sub及び上記ヘテロアリール基Subの少なくとも一方を含む。
 本明細書におけるアラルキル基Subは、アリール基Subを有する基であることが好ましく、-Z-Zと表される。このZは、例えば、上記アルキル基Subに対応するアルキレン基等である。このZは、例えば、上記アリール基Subである。このアラルキル基Subは、アリール部分が炭素数6~30(好ましくは6~20、より好ましくは6~12)、アルキル部分が炭素数1~30(好ましくは1~20、より好ましくは1~10、さらに好ましくは1~6)であることが好ましい。このアラルキル基Subは、例えば、ベンジル基、2-フェニルプロパン-2-イル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルイソプロピル基、2-フェニルイソプロピル基、フェニル-t-ブチル基、α-ナフチルメチル基、1-α-ナフチルエチル基、2-α-ナフチルエチル基、1-α-ナフチルイソプロピル基、2-α-ナフチルイソプロピル基、β-ナフチルメチル基、1-β-ナフチルエチル基、2-β-ナフチルエチル基、1-β-ナフチルイソプロピル基、及び2-β-ナフチルイソプロピル基からなる群から選択される少なくともいずれかの基である。
・アルコキシ基
 本明細書におけるアルコキシ基は、例えば、アルコキシ基Subであり、アルコキシ基Subは、-OZと表される。このZは、例えば、上記アルキル基Subである。アルコキシ基Subは、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、及びヘキシルオキシ基からなる群から選択される少なくともいずれかの基である。アルコキシ基Subの炭素数は、1~30であることが好ましく、1~20であることがより好ましく、1~6であることがさらに好ましい。
・ハロゲン化アルコキシ基
 本明細書におけるハロゲン化アルコキシ基は、例えば、ハロゲン化アルコキシ基Subであり、ハロゲン化アルコキシ基Subは、例えば、上記アルコキシ基Subが1以上のハロゲン原子、好ましくはフッ素原子で置換されたアルコキシ基である。ハロゲン化アルコキシ基Subの炭素数は、1~30であることが好ましく、1~10であることがより好ましく、1~6であることがさらに好ましい。
・アリールオキシ基
 本明細書におけるアリールオキシ基(アリールアルコキシ基と称する場合がある)は、例えば、アリールアルコキシ基Sub10である。アリールアルコキシ基Sub10におけるアリール基は、アリール基Sub及びヘテロアリール基Subの少なくとも一方を含む。
 本明細書におけるアリールアルコキシ基Sub10は、-OZと表される。このZは、例えば、アリール基Subまたはヘテロアリール基Subである。アリールアルコキシ基Sub10の環形成炭素数は、6~30であることが好ましく、6~20であることがより好ましく、6~14であることがさらに好ましい。このアリールアルコキシ基Sub10としては、例えば、フェノキシ基が挙げられる。
・置換アミノ基
 本明細書における置換アミノ基は、例えば、置換アミノ基Sub11であり、置換アミノ基Sub11は、例えば、アリールアミノ基Sub111及びアルキルアミノ基Sub112からなる群から選択される少なくともいずれかの基である。
 アリールアミノ基Sub111は、-NHRV1、または-N(RV1と表される。このRV1は、例えば、アリール基Subである。-N(RV1における2つのRV1は、互いに同一であるか又は異なる。アリールアミノ基Sub111の環形成炭素数は、6~60であることが好ましい。
 アルキルアミノ基Sub112は、-NHRV2、または-N(RV2と表される。このRV2は、例えば、アルキル基Subである。-N(RV2における2つのRV2は、互いに同一であるか又は異なる。アルキルアミノ基Sub112の炭素数は、2~30であることが好ましく、2~12であることがより好ましい。
・アルケニル基
 本明細書におけるアルケニル基は、例えば、アルケニル基Sub12であり、アルケニル基Sub12は、直鎖または分岐鎖のいずれかであり、例えば、ビニル基、プロペニル基、ブテニル基、オレイル基、エイコサペンタエニル基、ドコサヘキサエニル基、スチリル基、2,2-ジフェニルビニル基、1,2,2-トリフェニルビニル基、及び2-フェニル-2-プロペニルからなる群から選択される少なくともいずれかの基である。アルケニル基Sub12の炭素数は、2~30であることが好ましい。
・シクロアルケニル基
 本明細書におけるシクロアルケニル基は、二重結合を含む不飽和脂環式炭化水素基である。シクロアルケニル基は、例えば、シクロアルケニル基Sub122である。シクロアルケニル基Sub122は、例えば、シクロペンテニル基、シクロペンタジエニル基及びシクロヘキセニル基からなる群から選択される少なくともいずれかの基である。シクロアルケニル基Sub122の環形成炭素数は、3~30であることが好ましい。
・アルキニル基
 本明細書におけるアルキニル基は、例えば、アルキニル基Sub13であり、アルキニル基Sub13は、直鎖または分岐鎖のいずれであってもよく、例えば、エチニル、プロピニル、および2-フェニルエチニルからなる群から選択される少なくともいずれかの基である。アルキニル基Sub13の炭素数は、2~30であることが好ましい。
・アルキルチオ基
 本明細書におけるアルキルチオ基は、例えば、アルキルチオ基Sub14である。
 アルキルチオ基Sub14は、-SRV3と表される。このRV3は、例えば、アルキル基Subである。アルキルチオ基Sub14の炭素数は、1~30であることが好ましく、1~20であることがより好ましく、1~6であることがさらに好ましい。
・アリールチオ基
 本明細書におけるアリールチオ基は、例えば、アリールチオ基Sub15である。
 アリールチオ基Sub15は、-SRV4と表される。このRV4は、例えば、アリール基Subである。アリールチオ基Sub15の環形成炭素数は、6~30であることが好ましく、6~20であることがより好ましく、6~14であることがさらに好ましい。
・ハロゲン原子
 本明細書におけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子等が挙げられ、フッ素原子が好ましい。
・置換ホスフィノ基
 本明細書における置換ホスフィノ基は、例えば、置換ホスフィノ基Sub16であり、置換ホスフィノ基Sub16は、例えば、フェニルホスファニル基である。
・アリールカルボニル基
 本明細書におけるアリールカルボニル基は、例えば、アリールカルボニル基Sub17であり、アリールカルボニル基Sub17は、-COY’と表される。このY’は、例えば、アリール基Subである。本明細書におけるアリールカルボニル基Sub17は、例えば、フェニルカルボニル基、ジフェニルカルボニル基、ナフチルカルボニル基、及びトリフェニルカルボニル基からなる群から選択される少なくともいずれかの基である。
・アシル基
 本明細書におけるアシル基は、例えば、アシル基Sub18であり、アシル基Sub18は、-COR’と表される。このR’は、例えば、アルキル基Sub、シクロアルキル基Sub331、アルケニル基Sub12、アルキニル基Sub13、アリール基Sub及び複素環基Subからなる群から選択されるいずれかの基であり、これらアルキル基Sub、シクロアルキル基Sub331、アルケニル基Sub12、アルキニル基Sub13、アリール基Sub及び複素環基Subは、さらに置換されていてもよい。本明細書におけるアシル基Sub18は、例えば、アセチル基、プロピオニル基、ベンゾイル基及びアクリロイル基からなる群から選択される少なくともいずれかの基である。アシル基Sub18の炭素数は、特に限定されないが、好ましくは、2~40であり、より好ましくは2~30である。
・置換ホスホリル基
 本明細書における置換ホスホリル基は、例えば、アリールホスホリル基及びアルキルホスホリル基等の置換ホスホリル基Sub19であり、置換ホスホリル基Sub19は、下記一般式(P)で表される。
Figure JPOXMLDOC01-appb-C000036
 前記一般式(P)において、ArP1及びArP2は、上記アルキル基Sub、及び上記アリール基Subからなる群から選択されるいずれかの置換基である。アリールホスホリル基の環形成炭素数は、6~60であることが好ましい。
・エステル基
 本明細書におけるエステル基は、例えば、エステル基Sub20であり、エステル基Sub20は、例えば、アルキルエステル基及びアリールエステル基からなる群から選択される少なくともいずれかの基である。
 本明細書におけるアルキルエステル基は、例えば、アルキルエステル基Sub201であり、アルキルエステル基Sub201は、-C(=O)ORで表される。Rは、例えば、置換もしくは無置換の上記アルキル基Subである。
 本明細書におけるアリールエステル基は、例えば、アリールエステル基Sub202であり、アリールエステル基Sub202は、-C(=O)ORArで表される。RArは、例えば、置換もしくは無置換の上記アリール基Subである。
・シロキサニル基
 本明細書におけるシロキサニル基は、例えば、シロキサニル基Sub21であり、シロキサニル基Sub21は、エーテル結合を介したケイ素化合物基である。シロキサニル基Sub21は、例えば、トリメチルシロキサニル基である。
・カルバモイル基
 本明細書におけるカルバモイル基は、-CONHで表される。
 本明細書における置換のカルバモイル基は、例えば、カルバモイル基Sub22であり、カルバモイル基Sub22は、-CONH-Ar、または-CONH-Rで表される。Arは、例えば、置換もしくは無置換の上記アリール基Sub(好ましくは環形成炭素数6~10)及び上記ヘテロアリール基Sub(好ましくは環形成原子数5~14)からなる群から選択される少なくともいずれかの基である。Arは、アリール基Subとヘテロアリール基Subとが結合した基であってもよい。
 Rは、例えば、置換もしくは無置換の上記アルキル基Sub(好ましくは炭素数1~6)である。
 本明細書において、「環形成炭素」とは飽和環、不飽和環、または芳香環を構成する炭素原子を意味する。「環形成原子」とはヘテロ環(飽和環、不飽和環、及び芳香環を含む)を構成する炭素原子及びヘテロ原子を意味する。
 また、本明細書において、水素原子とは、中性子数の異なる同位体、すなわち、軽水素(Protium)、重水素(Deuterium)、三重水素(Tritium)を包含する。
 以下、アルキル基Subとは、「各置換基の説明」で説明した直鎖のアルキル基Sub31、分岐鎖のアルキル基Sub32、及び環状のアルキル基Sub33のいずれか1以上の基を意味する。
 同様に、置換シリル基Subとは、アルキルシリル基Sub51及びアリールシリル基Sub52のいずれか1以上の基を意味する。
 同様に、置換アミノ基Sub11とは、アリールアミノ基Sub111及びアルキルアミノ基Sub112のいずれか1以上の基を意味する。
 本明細書において、「置換もしくは無置換の」という場合における置換基としては、例えば置換基RF1であり、置換基RF1は、アリール基Sub、ヘテロアリール基Sub、アルキル基Sub、ハロゲン化アルキル基Sub、置換シリル基Sub、アルキルスルホニル基Sub、アラルキル基Sub、アルコキシ基Sub、ハロゲン化アルコキシ基Sub、アリールアルコキシ基Sub10、置換アミノ基Sub11、アルケニル基Sub12、シクロアルケニル基Sub122、アルキニル基Sub13、アルキルチオ基Sub14、アリールチオ基Sub15、置換ホスフィノ基Sub16、アリールカルボニル基Sub17、アシル基Sub18、置換ホスホリル基Sub19、エステル基Sub20、シロキサニル基Sub21、カルバモイル基Sub22、無置換のアミノ基、無置換のシリル基、ハロゲン原子、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、チオール基、及びホルミル基からなる群から選択される少なくとも一種の基である。
 本明細書において、「置換もしくは無置換の」という場合における置換基RF1は、ジアリールホウ素基(ArB1ArB2B-)であってもよい。このArB1及びArB2の例としては、上述のアリール基Subが挙げられる。ArB1ArB2B-におけるArB1及びArB2は、互いに同一であるかまたは異なる。
 置換基RF1の具体例及び好ましい基としては、「各置換基の説明」中の置換基(例えば、アリール基Sub、ヘテロアリール基Sub、アルキル基Sub、ハロゲン化アルキル基Sub、置換シリル基Sub、アルキルスルホニル基Sub、アラルキル基Sub、アルコキシ基Sub、ハロゲン化アルコキシ基Sub、アリールアルコキシ基Sub10、置換アミノ基Sub11、アルケニル基Sub12、シクロアルケニル基Sub122、アルキニル基Sub13、アルキルチオ基Sub14、アリールチオ基Sub15、置換ホスフィノ基Sub16、アリールカルボニル基Sub17、アシル基Sub18、置換ホスホリル基Sub19、エステル基Sub20、シロキサニル基Sub21、及びカルバモイル基Sub22)の具体例及び好ましい基と同様の基が挙げられる。
 「置換もしくは無置換の」という場合における置換基RF1は、アリール基Sub、ヘテロアリール基Sub、アルキル基Sub、ハロゲン化アルキル基Sub、置換シリル基Sub、アルキルスルホニル基Sub、アラルキル基Sub、アルコキシ基Sub、ハロゲン化アルコキシ基Sub、アリールアルコキシ基Sub10、置換アミノ基Sub11、アルケニル基Sub12、シクロアルケニル基Sub122、アルキニル基Sub13、アルキルチオ基Sub14、アリールチオ基Sub15、置換ホスフィノ基Sub16、アリールカルボニル基Sub17、アシル基Sub18、置換ホスホリル基Sub19、エステル基Sub20、シロキサニル基Sub21、カルバモイル基Sub22、無置換のアミノ基、無置換のシリル基、ハロゲン原子、シアノ基、ヒドロキシ基、ニトロ基、及びカルボキシ基からなる群から選択される少なくとも一種の基(以下、置換基RF2とも称する)によってさらに置換されてもよい。また、これらの置換基RF2は複数が互いに結合して環を形成してもよい。
 「置換もしくは無置換の」という場合における「無置換」とは前記置換基RF1で置換されておらず、水素原子が結合していることを意味する。
 なお、本明細書において、「置換もしくは無置換の炭素数XX~YYのZZ基」という表現における「炭素数XX~YY」は、ZZ基が無置換である場合の炭素数を表し、置換されている場合の置換基RF1の炭素数は含めない。
 本明細書において、「置換もしくは無置換の原子数XX~YYのZZ基」という表現における「原子数XX~YY」は、ZZ基が無置換である場合の原子数を表し、置換されている場合の置換基RF1の原子数は含めない。
 本明細書において説明する化合物、またはその部分構造において、「置換もしくは無置換の」という場合についても、前記と同様である。
 本明細書において、置換基同士が互いに結合して環が構築される場合、当該環の構造は、飽和環、不飽和環、芳香族炭化水素環、または複素環である。
 本明細書において、連結基における芳香族炭化水素基としては、例えば、上述した一価のアリール基Subから、1つ以上の原子を除いて得られる二価以上の基が挙げられる。
 本明細書において、連結基における複素環基としては、例えば、上述した一価のヘテロアリール基Subから、1つ以上の原子を除いて得られる二価以上の基が挙げられる。
 以下、本発明に係る実施例を説明する。本発明は、これらの実施例によって何ら限定されない。
<化合物>
 実施例の有機EL素子の製造に用いた、一般式(1)で表される化合物、一般式(2)で表される化合物および一般式(3)で表される化合物を以下に示す。
(一般式(1)で表される化合物)
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
(一般式(2)で表される化合物)
Figure JPOXMLDOC01-appb-C000040
(一般式(3)で表される化合物)
Figure JPOXMLDOC01-appb-C000041
 比較例の有機EL素子の製造に用いた、他の化合物の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000042
 実施例及び比較例の有機EL素子の製造に用いた、他の化合物の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
<有機EL素子の製造及び評価>
[トップエミッション型有機EL素子の製造]
(実施例1-1)
 実施例1-1の有機EL素子は以下のように製造した。
 ガラス基板の上に、銀合金であるAPC(Ag-Pd-Cu)の層(反射層)(膜厚100nm)、及び酸化インジウム亜鉛(Indium zinc oxide;IZO)の層(膜厚10nm)を、この順にスパッタリング法により成膜した。これにより、APCの層とIZOの層とからなる導電材料層を得た。IZOは、登録商標である。
 続いて、通常のリソグラフィ技術を用いて、レジストパターンをマスクに用いたエッチングにより、この導電材料層をパターニングし、陽極を形成した。下部電極としての陽極が形成された基板をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。
 その後、真空蒸着法を用いて化合物HT及び化合物HAを共蒸着し、膜厚10nmの正孔注入層を形成した。正孔注入層における化合物HTの濃度を97質量%とし、HAの濃度を3質量%とした。
 次に、正孔注入層上に、化合物HTを蒸着し、膜厚185nmの正孔輸送層(HT)を成膜した。
 次に、この正孔輸送層上に、化合物EBL-1を蒸着し、膜厚10nmの第一の層としての電子障壁層を形成した。
 次に、この電子障壁層上に、第一の化合物である蛍光発光性の化合物RD-1と、第二の化合物である遅延蛍光性の化合物TADF-1と、第三の化合物である化合物Matrix-1とを共蒸着し、膜厚25nmの発光層を形成した。発光層における化合物RD-1の濃度を1質量%とし、化合物TADF-1の濃度を25質量%とし、化合物Matrix-1の濃度を74質量%とした。
 次に、この発光層上に、化合物HBL-1を蒸着し、膜厚15nmの第二の層としての正孔障壁層を形成した。
 次に、この正孔障壁層上に、化合物ETを蒸着し、膜厚45nmの電子輸送層を形成した。
 次に、この電子輸送層上に、フッ化リチウム(LiF)を蒸着し、膜厚1nmの電子注入性電極(陰極)を形成した。
 そして、この電子注入性電極上に、MgとAgとを15:85の質量比で蒸着成膜し、半透過性のMgAg合金からなる膜厚15nmの陰極を形成した。
 陰極の上に化合物Capを真空蒸着法によって成膜し、膜厚65nmのキャッピング層を形成した。
 実施例1-1の有機EL素子の素子構成を略式的に示すと、次のとおりである。
APC(100)/IZO(10)/HT:HA(10,97%:3%)/HT(185)/EBL-1(10)/Matrix-1:TADF-1:RD-1(25,74%:25%:1%)/HBL-1(15)/ET(45)/LiF(1)/MgAg(15,15%:85%)/Cap(65)
 なお、括弧内の数字は、膜厚(単位:nm)を示す。
 同じく括弧内において、パーセント表示された数字(97%:3%)は、正孔注入層における化合物HT及び化合物HAの割合(質量%)を示し、パーセント表示された数字(74%:25%:1%)は、発光層における第三の化合物、第二の化合物、及び第一の化合物の割合(質量%)を示し、(15%:85%)は、陰極におけるMgとAgとの割合(質量%)を示す。以下、同様の表記とする。
(実施例1-2及び実施例1-3)
 実施例1-2及び実施例1-3の有機EL素子は、実施例1-1の有機EL素子における正孔輸送層の膜厚を表1の通り変更し、発光層中の第一の化合物を表1の通り変更した以外は実施例1-1の有機EL素子と同様にして製造した。
(実施例1-4)
 実施例1-4の有機EL素子は以下のように製造した。
 ガラス基板の上に、銀合金であるAPC(Ag-Pd-Cu)の層(反射層)(膜厚100nm)、及び酸化インジウム亜鉛(Indium zinc oxide;IZO)の層(膜厚10nm)を、この順にスパッタリング法により成膜した。これにより、APCの層とIZOの層とからなる導電材料層を得た。
 続いて、通常のリソグラフィ技術を用いて、レジストパターンをマスクに用いたエッチングにより、この導電材料層をパターニングし、陽極を形成した。下部電極としての陽極が形成された基板をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。
 その後、真空蒸着法を用いて化合物HT及びHAを共蒸着し、膜厚10nmの正孔注入層を形成した。正孔注入層における化合物HTの濃度を97質量%とし、HAの濃度を3質量%とした。
 次に、正孔注入層上に、化合物HTを蒸着し、膜厚175nmの正孔輸送層(HT)を成膜した。
 次に、この正孔輸送層上に、化合物EBL-1を蒸着し、膜厚10nmの第一の層としての電子障壁層を形成した。
 次に、この電子障壁層上に、第一の化合物である蛍光発光性の化合物RD-4と、第二の化合物である遅延蛍光性の化合物TADF-1と、第三の化合物である化合物Matrix-1とを共蒸着し、膜厚25nmの発光層を形成した。発光層における化合物RD-4の濃度を1質量%とし、化合物TADF-1の濃度を25質量%とし、化合物Matrix-1の濃度を74質量%とした。
 次に、この発光層上に、化合物HBL-1を蒸着し、膜厚15nmの第二の層としての正孔障壁層を形成した。
 次に、この正孔障壁層上に、化合物ETを蒸着し、膜厚35nmの第一電子輸送層を形成した。
 次に、この第一電子輸送層上に、化合物ETおよびLiqを共蒸着し、膜厚20nmの第二電子輸送層を形成した。第二電子輸送層における化合物ETの濃度を50質量%とし、Liqの濃度を50質量%とした。
 次に、この第二電子輸送層上に、イッテルビウム(Yb)を蒸着し、膜厚1nmの電子注入性電極(陰極)を形成した。
 そして、この電子注入性電極上に、MgとAgを10:90の質量比で蒸着成膜し、半透過性のMgAg合金からなる膜厚15nmの陰極を形成した。
 陰極の上に化合物Capを真空蒸着法によって成膜し、膜厚65nmのキャッピング層を形成した。
 実施例1-4の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 APC(100)/IZO(10)/HT:HA(10,97%:3%)/HT(175)/EBL-1(10)/Matrix-1:TADF-1:RD-4(25,74%:25%:1%)/HBL-1(15)/ET(35)/ET:Liq(20,50%:50%)/Yb(1)/MgAg(15,10%:90%)/Cap(65)
(実施例1-5及び実施例1-6)
 実施例1-5及び実施例1-6の有機EL素子は、実施例1-4の有機EL素子における発光層中の第二の化合物を表2の通り変更した以外は実施例1-4の有機EL素子と同様にして製造した。
(実施例1-7~実施例1-9)
 実施例1-7~実施例1-9の有機EL素子は、実施例1-1の有機EL素子における正孔輸送層の膜厚を表3の通り変更し、発光層中の第一の化合物、第二の化合物及び第三の化合物を表3の通り変更した以外は実施例1-1の有機EL素子と同様にして製造した。
(比較例1-1~比較例1-3)
 比較例1-1~比較例1-3の有機EL素子は、実施例1-1の有機EL素子における正孔輸送層の膜厚を表3の通り変更し、発光層中の第一の化合物、第二の化合物及び第三の化合物を表3の通り変更した以外は実施例1-1の有機EL素子と同様にして製造した。
[トップエミッション型有機EL素子の評価]
 実施例1-1~実施例1-9及び比較例1-1~比較例1-3の有機EL素子について、以下の評価を行った。測定結果を表1~表3に示す。
・駆動電圧
 電流密度が10mA/cmとなるように陽極と陰極との間に通電したときの電圧(単位:V)を計測した。
・電流効率L/J
 電流密度が、10mA/cmとなるように素子に電圧を印加した時の分光放射輝度スペクトルを、分光放射輝度計CS-2000(コニカミノルタ株式会社製)で計測した。得られた分光放射輝度スペクトルから、ランバシアン放射を行ったと仮定し電流効率(単位:cd/A)を算出した。
・素子駆動時の最大ピーク波長λp及び発光半値幅FWHM
 有機EL素子の電流密度が10mA/cmとなるように素子に電圧を印加した時の分光放射輝度スペクトルを分光放射輝度計CS-2000(コニカミノルタ株式会社製)で計測した。得られた分光放射輝度スペクトルから、最大ピーク波長λp(単位:nm)及び発光半値幅FWHM(単位:nm)を求めた。
・CIE1931色度
 電流密度が10mA/cmとなるように素子に電圧を印加した時のCIE1931色度座標(x、y)を分光放射輝度計CS-2000(コニカミノルタ株式会社製)で計測した。
・寿命LT95
 得られた有機EL素子に、電流密度が50mA/cmとなるように電圧を印加し、初期輝度に対して輝度が95%となるまでの時間(LT95(単位:時間))を測定した。
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
 実施例1-1~1-9の有機EL素子は、比較例1-1~1-3の有機EL素子に比べて、駆動電圧が低減し、長寿命であった。
 実施例1-4~1-6の有機EL素子は、実施例1-9の有機EL素子に比べて、駆動電圧がさらに低減し、さらに長寿命であり、発光効率が向上した。
[ボトムエミッション型有機EL素子の製造]
(実施例2-1)
 実施例2-1の有機EL素子は以下のように製造した。
 25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板(ジオマテック株式会社製)を、イソプロピルアルコール中で5分間超音波洗浄を行った後、UVオゾン洗浄を1分間行った。ITOの膜厚は、130nmとした。
 洗浄後の透明電極ライン付き前記ガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして化合物HTと化合物HAとを共蒸着し、膜厚10nmの正孔注入層を形成した。正孔注入層における化合物HTの濃度を97質量%とし、化合物HAの濃度を3質量%とした。
 次に、正孔注入層上に、化合物HTを蒸着し、膜厚200nmの正孔輸送層を形成した。
 次に、この正孔輸送層上に、化合物EBL-1を蒸着し、膜厚10nmの第一の層としての電子障壁層を形成した。
 次に、この電子障壁層上に、第一の化合物である蛍光発光性の化合物RD-1と、第二の化合物である遅延蛍光性の化合物TADF-1と、第三の化合物である化合物Matrix-1とを共蒸着し、膜厚25nmの発光層を形成した。発光層における化合物RD-1の濃度を1質量%とし、化合物TADF-1の濃度を25質量%とし、化合物Matrix-1の濃度を74質量%とした。
 次に、この発光層上に、化合物HBL-1を蒸着し、膜厚10nmの第二の層としての正孔障壁層を形成した。
 次に、この正孔障壁層上に、化合物ETを蒸着し、膜厚30nmの電子輸送層を形成した。
 次に、この電子輸送層上に、フッ化リチウム(LiF)を蒸着し、膜厚1nmの電子注入性電極(陰極)を形成した。
 そして、この電子注入性電極上に、金属アルミニウム(Al)を蒸着し、膜厚80nmの金属Al陰極を形成した。
 実施例2-1の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO(130)/HT:HA(10,97%:3%)/HT(200)/EBL-1(10)/Matrix-1:TADF-1:RD-1(25,74%:25%:1%)/HBL-1(10)/ET(30)/LiF(1)/Al(80)
 なお、括弧内の数字は、膜厚(単位:nm)を示す。
(実施例2-2~実施例2-13)
 実施例2-2~実施例2-13の有機EL素子は、実施例2-1の有機EL素子における発光層中の第一の化合物、第二の化合物及び第三の化合物を表4~表7の通り変更した以外は実施例2-1の有機EL素子と同様にして製造した。
(比較例2-1~比較例2-9)
 比較例2-1~比較例2-9の有機EL素子は、実施例2-1の有機EL素子における発光層中の第一の化合物、第二の化合物及び第三の化合物を表4~表7の通り変更した以外は実施例2-1の有機EL素子と同様にして製造した。
[ボトムエミッション型有機EL素子の評価]
 実施例2-1~実施例2-13及び比較例2-1~比較例2-9の有機EL素子について、以下の評価を行った。測定結果を表4~表7に示す。外部量子効率EQE以外の評価方法は、トップエミッション型有機EL素子の評価方法と同様である。
・外部量子効率EQE
 電流密度が10mA/cmとなるように素子に電圧を印加した時の分光放射輝度スペクトルを分光放射輝度計CS-2000(コニカミノルタ株式会社製)で計測した。得られた分光放射輝度スペクトルから、ランバシアン放射を行ったと仮定し外部量子効率EQE(単位:%)を算出した。
Figure JPOXMLDOC01-appb-T000048
 実施例2-1~2-8の有機EL素子は、比較例2-1~2-4の有機EL素子に比べて、駆動電圧が低減し、長寿命であった。
Figure JPOXMLDOC01-appb-T000049
 実施例2-9の有機EL素子は、比較例2-5の有機EL素子に比べて、駆動電圧が低減し、長寿命であった。
Figure JPOXMLDOC01-appb-T000050
 実施例2-10~2-12の有機EL素子は、比較例2-6~2-8の有機EL素子に比べて、駆動電圧が低減し、長寿命であった。
Figure JPOXMLDOC01-appb-T000051
 実施例2-13の有機EL素子は、比較例2-9の有機EL素子に比べて、駆動電圧が低減し、長寿命であった。
 実施例2-8~2-10の有機EL素子は、実施例2-13の有機EL素子に比べて、駆動電圧がさらに低減し、さらに長寿命であり、発光効率が向上した。
 実施例で使用した第一の化合物、第二の化合物、及び第三の化合物の物性値を表8に示す。
Figure JPOXMLDOC01-appb-T000052
・表の説明
 「-」は、測定していないことを表す。
 「<0.01」は、ΔSTが0.01eV未満であることを表す。
<化合物の評価>
 表8中に記載した化合物の物性値は、以下の方法で測定した。
・化合物の遅延蛍光性
 遅延蛍光性は図2に示す装置を利用して過渡PLを測定することにより確認した。前記化合物TADF-1をトルエンに溶解し、自己吸収の寄与を取り除くため励起波長において吸光度が0.05以下の希薄溶液を調製した。また酸素による消光を防ぐため、試料溶液を凍結脱気した後にアルゴン雰囲気下で蓋付きのセルに封入することで、アルゴンで飽和された酸素フリーの試料溶液とした。
 上記試料溶液の蛍光スペクトルを分光蛍光光度計FP-8600(日本分光社製)で測定し、また同条件で9,10-ジフェニルアントラセンのエタノール溶液の蛍光スペクトルを測定した。両スペクトルの蛍光面積強度を用いて、Morris et al. J.Phys.Chem.80(1976)969中の(1)式により全蛍光量子収率を算出した。
 前記化合物TADF-1が吸収する波長のパルス光(パルスレーザーから照射される光)で励起された後、当該励起状態から即座に観察されるPrompt発光(即時発光)と、当該励起後、即座には観察されず、その後観察されるDelay発光(遅延発光)とが存在する。本実施例における遅延蛍光発光とは、Delay発光(遅延発光)の量がPrompt発光(即時発光)の量に対して5%以上を意味する。具体的には、Prompt発光(即時発光)の量をXとし、Delay発光(遅延発光)の量をXとしたときに、X/Xの値が0.05以上であることを意味する。
 Prompt発光とDelay発光の量とその比は、“Nature 492, 234-238, 2012” (参考文献1)に記載された方法と同様の方法により求めることができる。なお、Prompt発光とDelay発光の量の算出に使用される装置は、前記参考文献1に記載の装置、または図2に記載の装置に限定されない。
 化合物TADF-2、TADF-3及びTADF-4についても、化合物TADF-1と同様に測定した。
 化合物TADF-1、TADF-2、TADF-3及びTADF-4について、Delay発光(遅延発光)の量がPrompt発光(即時発光)の量に対して5%以上であることが確認された。具体的には、化合物TADF-1、TADF-2、TADF-3及びTADF-4について、X/Xの値が0.05以上であった。
・一重項エネルギーS
 一重項エネルギーSは、前述の溶液法により測定した。
・ΔST
 化合物TADF-1、TADF-2、TADF-3及びTADF-4について、77[K]におけるエネルギーギャップT77Kを測定し、その結果と上記の一重項エネルギーSの値からΔSTを確認した。エネルギーギャップT77Kは前述の「三重項エネルギーと77[K]におけるエネルギーギャップとの関係」で記載したエネルギーギャップT77Kの測定方法により測定した。
・化合物の最大ピーク波長λ
 化合物の最大ピーク波長λは、以下の方法により測定した。
 測定対象となる化合物の5μmol/Lトルエン溶液を調製して石英セルに入れ、常温(300K)でこの試料の発光スペクトル(縦軸:発光強度、横軸:波長とする。)を測定した。本実施例では、発光スペクトルを株式会社日立ハイテクサイエンス製の分光蛍光光度計(装置名:F-7000)で測定した。なお、発光スペクトル測定装置は、ここで用いた装置に限定されない。発光スペクトルにおいて、発光強度が最大となる発光スペクトルのピーク波長を最大ピーク波長λとした。
<化合物の合成>
〔合成実施例1〕
 化合物TADF-2の合成方法を以下に説明する。
Figure JPOXMLDOC01-appb-C000053
 窒素雰囲気下、300mLの三口フラスコに、5-ブロモ-2-クロロ-アニリン(10g、49mmol)、2-ビフェニルボロン酸(9.7g、49mmol)、酢酸パラジウム(0.11g、0.5mmol)、炭酸ナトリウム(10g、98mmol)及びメタノール100mLを入れ、80℃で6時間撹拌した。反応混合物にイオン交換水100mLを加え、析出した固体をシリカゲルカラムクロマトグラフィーで精製し、13.3gの白色固体を得た。GC-MS(Gas Chromatograph Mass Spectometer)の分析により化合物M-aと同定した(収率97%)。
Figure JPOXMLDOC01-appb-C000054
 窒素雰囲気下、200mLの三口フラスコに4-ブロモジベンゾチオフェン(10g、38mmol)、化合物M-a(11g、38mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Pddba)(0.35g、0.38mmol)、トリ-tert-ブチルホスホニウムテトラフルオロボラート(P(t-Bu)HBF)(0.44g、1.5mmol)、ナトリウムtert-ブトキシド(NaOtBu)(5.5g、57mmol)及びトルエン120mLを加えて、60℃で4時間加熱撹拌後に室温(25℃)まで冷却した。反応溶液をシリカゲルカラムクロマトグラフィーで精製し、16gの白色固体を得た。GC-MSの分析により、化合物M-bと同定した(収率91%)。
 窒素雰囲気下、200mLの三口フラスコに、化合物M-b(16g、35mmol)、1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾリウムクロリド(IPrHCl)(0.30g、0.70mmol)、酢酸パラジウム(II)(Pd(OAc)2)(78mg、0.35mmol)、炭酸カリウム(9.7g、70mmol)及びN,N-ジメチルアセトアミド(DMAc)100mLを加えて、160℃で3時間撹拌後に室温(25℃)まで冷却した。反応溶液をシリカゲルカラムクロマトグラフィーで精製し、10.6gの白色固体を得た。GC-MSの分析により、化合物M-cと同定した(収率72%)。
Figure JPOXMLDOC01-appb-C000055
 窒素雰囲気下、50mLの三口フラスコに、1,4-ベンゼンジカルボニトリル,2,3,5-トリ-9H-カルバゾール-9-イル-6-クロロ-(3.0g、4.6mmol)、化合物M-c(2.4g、5.5mmol)、炭酸カリウム(1.1g、8.2mmol)及びN,N-ジメチルホルムアミド(DMF)20mLを入れ、120℃で4時間撹拌した。反応混合物に飽和塩化アンモニウム水溶液10mLを加え、析出した固体をシリカゲルカラムクロマトグラフィーで精製し、4.2gの赤色固体を得た。ASAP-MS(Atmospheric Pressure Solid Analysis Probe Mass Spectrometry)の分析によりTADF-2と同定した(収率88%)。
〔合成実施例2〕
 化合物TADF-3の合成方法を以下に説明する。
Figure JPOXMLDOC01-appb-C000056
 窒素雰囲気下、300mLの三口フラスコに、5-ブロモ-2-クロロ-アニリン(10g、49mmol)、1-ジベンゾフラニルボロン酸(10.4g、49mmol)、酢酸パラジウム(0.11g、0.5mmol)、炭酸ナトリウム(10g、98mmol)及びメタノール100mLを入れ、80℃で8時間撹拌した。反応混合物にイオン交換水100mLを加え、析出した固体をシリカゲルカラムクロマトグラフィーで精製し、13.7gの白色固体を得た。GC-MSの分析により化合物M-dと同定した(収率95%)。
Figure JPOXMLDOC01-appb-C000057
 窒素雰囲気下、200mLの三口フラスコに4-ブロモジベンゾチオフェン(10g、38mmol)、化合物M-d(11.2g、38mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Pddba)(0.35g、0.38mmol)、トリ-tert-ブチルホスホニウムテトラフルオロボラート(P(t-Bu)HBF)(0.44g、1.5mmol)、ナトリウムtert-ブトキシド(NaOtBu)(5.5g、57mmol)及びトルエン120mLを加えて、60℃で4時間加熱撹拌後に室温(25℃)まで冷却した。反応溶液をシリカゲルカラムクロマトグラフィーで精製し、17.7gの白色固体を得た。GC-MSの分析により、化合物M-eと同定した(収率98%)。
 窒素雰囲気下、200mLの三口フラスコに、化合物M-e(17.7g、37.2mmol)、1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾリウムクロリド(IPrHCl)(0.32g、0.74mmol)、酢酸パラジウム(II)(Pd(OAc)2)(84mg、0.37mmol)、炭酸カリウム(10.2g、74mmol)及びN,N-ジメチルアセトアミド(DMAc)100mLを加えて、160℃で3時間撹拌後に室温(25℃)まで冷却した。反応溶液をシリカゲルカラムクロマトグラフィーで精製し、14.4gの白色固体を得た。GC-MSの分析により、化合物M-fと同定した(収率88%)。
Figure JPOXMLDOC01-appb-C000058
 窒素雰囲気下、50mLの三口フラスコに、1,4-ベンゼンジカルボニトリル,2,3,5-トリ-9H-カルバゾール-9-イル-6-クロロ-(3.0g、4.6mmol)、化合物M-f(2.4g、5.5mmol)、炭酸カリウム(1.1g、8.2mmol)及びDMF20mLを入れ、120℃で4時間撹拌した。反応混合物に飽和塩化アンモニウム水溶液10mLを加え、析出した固体をシリカゲルカラムクロマトグラフィーで精製し、3.5gの赤色固体を得た。ASAP-MSの分析により化合物TADF-3と同定した(収率71%)。
 1…有機EL素子、3…陽極、4…陰極、5…発光層、7…正孔輸送層、8…電子輸送層。

Claims (13)

  1.  陽極と、
     陰極と、
     前記陽極と前記陰極との間に含まれる発光層と、を有し、
     前記発光層は、蛍光発光性の第一の化合物と、遅延蛍光性の第二の化合物と、第三の化合物と、を含み、
     前記第一の化合物は下記一般式(1)で表され、
     前記第二の化合物は下記一般式(2)で表され、
     前記第三の化合物は下記一般式(3)で表され、
     前記第一の化合物の一重項エネルギーS(M1)と、前記第二の化合物の一重項エネルギーS(M2)と、前記第三の化合物の一重項エネルギーS(M3)とが、下記数式(数1)の関係を満たす、
     有機エレクトロルミネッセンス素子。
     S(M3)>S(M2)>S(M1)…(数1)
    Figure JPOXMLDOC01-appb-C000001

    (前記一般式(1)において、
     R1001~R1005およびR2001~R2002は、それぞれ独立に、水素原子もしくは置換基であるか、又はR1001及びR1002の組、R1002及びR2001の組、R2002及びR1003の組、並びにR1003及びR1004の組のいずれか1つ以上の組が互いに結合して環を形成し、
     置換基としてのR1001~R1005およびR2001~R2002は、それぞれ独立に、
      置換もしくは無置換の炭素数1~30のアルキル基、
      置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
      置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
      置換もしくは無置換の環形成炭素数6~30のアリール基、
      置換もしくは無置換の炭素数1~30のアルコキシ基、
      置換もしくは無置換の炭素数1~30のハロゲン化アルコキシ基、
      置換もしくは無置換の炭素数1~30のアルキルチオ基、
      置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
      置換もしくは無置換の環形成炭素数6~30のアリールチオ基、
      置換もしくは無置換の炭素数2~30のアルケニル基、
      置換もしくは無置換の環形成炭素数3~30のシクロアルケニル基、
      置換もしくは無置換の炭素数2~30のアルキニル基、
      置換もしくは無置換の環形成原子数5~30のヘテロアリール基、
      ハロゲン原子、
      カルボキシ基、
      ホルミル基、
      置換もしくは無置換のアシル基、
      置換もしくは無置換のエステル基、
      置換もしくは無置換のカルバモイル基、
      置換もしくは無置換のアミノ基、
      ヒドロキシ基、
      チオール基、
      ニトロ基、
      シアノ基、
      置換もしくは無置換のシリル基、及び
      置換もしくは無置換のシロキサニル基からなる群から選択され、
     Z1001及びZ1002は、それぞれ独立に、
      ハロゲン原子、
      シアノ基、
      置換もしくは無置換の炭素数1~30のアルキル基、
      置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
      置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
      置換もしくは無置換の環形成炭素数6~30のアリール基、
      置換もしくは無置換の炭素数1~30のアルコキシ基、
      置換もしくは無置換の炭素数1~30のハロゲン化アルコキシ基、及び
      置換もしくは無置換の環形成炭素数6~30のアリールオキシ基からなる群から選択される。)
    Figure JPOXMLDOC01-appb-C000002

    (前記一般式(2)において、CNは、シアノ基であり、Dは、下記一般式(2-1)で表される基であり、Dは、下記一般式(2-2)で表される基であり、複数のDは、互いに同一の基である。)
    Figure JPOXMLDOC01-appb-C000003

    Figure JPOXMLDOC01-appb-C000004

    (前記一般式(2-1)において、
     Xは、硫黄原子であり、
     R131~R140は、それぞれ独立に、水素原子または置換基であり、
     置換基としてのR131~R140は、それぞれ独立に、
      置換もしくは無置換の環形成炭素数6~14のアリール基、
      置換もしくは無置換の環形成原子数5~14の複素環基、
      置換もしくは無置換の炭素数3~6のアルキルシリル基、
      置換もしくは無置換の炭素数1~6のアルコキシ基、
      置換もしくは無置換の環形成炭素数6~14のアリールオキシ基、
      置換もしくは無置換の炭素数2~12のアルキルアミノ基、
      置換もしくは無置換の炭素数1~6のアルキルチオ基、または
      置換もしくは無置換の環形成炭素数6~14のアリールチオ基である。
     *は、前記一般式(2)中におけるベンゼン環との結合位置を表す。)
    (前記一般式(2-2)において、
     R161~R168は、それぞれ独立に、水素原子または置換基であり、
     置換基としてのR161~R168は、それぞれ独立に、
      ハロゲン原子、
      置換もしくは無置換の環形成炭素数6~14のアリール基、
      置換もしくは無置換の環形成原子数5~14の複素環基、
      置換もしくは無置換の炭素数1~6のアルキル基、
      置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
      置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
      置換もしくは無置換の炭素数3~6のアルキルシリル基、
      置換もしくは無置換の炭素数1~6のアルコキシ基、
      置換もしくは無置換の環形成炭素数6~14のアリールオキシ基、
      置換もしくは無置換の炭素数2~12のアルキルアミノ基、
      置換もしくは無置換の炭素数1~6のアルキルチオ基、または
      置換もしくは無置換の環形成炭素数6~14のアリールチオ基である。
     *は、それぞれ独立に、前記一般式(2)中におけるベンゼン環との結合位置を表す。)
    Figure JPOXMLDOC01-appb-C000005

    (前記一般式(3)において、
     Xは、酸素原子又は硫黄原子であり、
     Yは、酸素原子又は硫黄原子であり、
     Lは、単結合又は連結基であり、
     連結基としてのLは、
     置換もしくは無置換の環形成炭素数6~30のアリール基から誘導される基、
     置換もしくは無置換の環形成原子数5~30の複素環基から誘導される基、又は
     置換もしくは無置換の環形成炭素数6~30のアリール基から誘導される基、及び置換もしくは無置換の環形成原子数5~30の複素環基から誘導される基からなる群から選択される2つの基が結合した基であり、
     R41、R42及びR44~R48は、それぞれ独立に、水素原子もしくは置換基であるか、又はR41及びR42の組、R45及びR46の組、R46及びR47の組、並びにR47及びR48の組のいずれか1つ以上の組が互いに結合して環を形成し、
     R31、R32、R34及びR35は、それぞれ独立に、水素原子もしくは置換基であり、
     R21、R22、R24及びR25は、それぞれ独立に、水素原子もしくは置換基であり、
     R13~R18及びR401~R404は、それぞれ独立に、水素原子もしくは置換基であるか、又はR13及びR14の組、R15及びR16の組、R16及びR17の組、R17及びR18の組、R401及びR402の組、R402及びR403の組、並びにR403及びR404の組のいずれか1つ以上の組が互いに結合して環を形成し、
     置換基としてのR41、R42、R44~R48、R31、R32、R34、R35、R21、R22、R24、R25、R13~R18及びR401~R404は、それぞれ独立に、
     ハロゲン原子、
     シアノ基、
     置換もしくは無置換の環形成炭素数6~30のアリール基、
     置換もしくは無置換の環形成原子数5~30の複素環基、
     置換もしくは無置換の炭素数1~30のアルキル基、
     置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
     置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
     置換もしくは無置換の炭素数2~30のアルケニル基、
     置換もしくは無置換の炭素数2~30のアルキニル基、
     置換もしくは無置換の炭素数3~30のアルキルシリル基、
     置換もしくは無置換の環形成炭素数6~60のアリールシリル基、
     置換もしくは無置換の環形成炭素数6~60のアリールホスホリル基、
     ヒドロキシ基、
     置換もしくは無置換の炭素数1~30のアルコキシ基、
     置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
     アミノ基、
     置換もしくは無置換の炭素数2~30のアルキルアミノ基、
     置換もしくは無置換の環形成炭素数6~60のアリールアミノ基、
     チオール基、
     置換もしくは無置換の炭素数1~30のアルキルチオ基、又は
     置換もしくは無置換の環形成炭素数6~30のアリールチオ基である。)
  2.  請求項1に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(1)におけるR2001及びR2002が、それぞれ独立に、
      置換もしくは無置換の環形成炭素数6~30のアリール基、及び
      置換もしくは無置換の環形成原子数5~30のヘテロアリール基からなる群から選択される基である、
     有機エレクトロルミネッセンス素子。
  3.  請求項1または請求項2に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(1)で表される化合物が、下記一般式(4A)または一般式(4B)で表される化合物である、
     有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000006

    (前記一般式(4A)において、R1001、R1002、R1004、R1005、R2001、Z1001及びZ1002は、それぞれ独立に、前記一般式(1)におけるR1001、R1002、R1004、R1005、R2001、Z1001及びZ1002と同義であり、
     前記一般式(4B)において、R1001、R1004、R1005、Z1001及びZ1002は、それぞれ独立に、前記一般式(1)におけるR1001、R1004、R1005、Z1001及びZ1002と同義であり、
     Ar1001及びAr1002は、それぞれ独立に、
     置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素環、及び
     置換もしくは無置換の環形成原子数5~30の芳香族複素環からなる群から選択され、
     Bは、3個以上の原子が直列に結合した架橋構造であり、前記原子が、
      置換もしくは無置換の炭素原子、
      置換もしくは無置換のケイ素原子、
      置換もしくは無置換の窒素原子、
      置換もしくは無置換のリン原子、
      酸素原子、及び
      硫黄原子からなる群から選択され、
     Cは、1個以上の原子が直列に結合した架橋構造であり、前記原子が、
      置換もしくは無置換の炭素原子、
      置換もしくは無置換のケイ素原子、
      置換もしくは無置換の窒素原子、
      置換もしくは無置換のリン原子、
      酸素原子、及び
      硫黄原子からなる群から選択され、
     ただし、Bがトリメチレン基である場合、R1004は、水素原子及びハロゲン原子ではない。)
  4.  請求項3に記載の有機エレクトロルミネッセンス素子において、
     Bが、下記一般式(5A)または一般式(5B)で表される架橋構造である、
     有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000007

    (前記一般式(5A)において、R1011~R1016は、それぞれ独立に、水素原子もしくは置換基であるか、R1011~R1016のうちの隣接する2つ以上からなる組の1組以上が互いに結合して環を形成し、
     前記一般式(5B)において、R1011~R1014は、それぞれ独立に、水素原子もしくは置換基であるか、R1011~R1014のうちの隣接する2つ以上からなる組の1組以上が互いに結合して環を形成し、
     置換基としてのR1011~R1016は、それぞれ独立に、
      置換もしくは無置換の炭素数1~30のアルキル基、
      置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
      置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
      置換もしくは無置換の環形成炭素数6~30のアリール基、
      置換もしくは無置換の環形成原子数5~30のヘテロアリール基、
      置換もしくは無置換の炭素数1~30のアルコキシ基、
      置換もしくは無置換の炭素数1~30のハロゲン化アルコキシ基、
      置換もしくは無置換の炭素数1~30のアルキルチオ基、
      置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
      置換もしくは無置換の環形成炭素数6~30のアリールチオ基、
      置換もしくは無置換の炭素数2~30のアルケニル基、
      置換もしくは無置換の環形成炭素数3~30のシクロアルケニル基、
      置換もしくは無置換の炭素数2~30のアルキニル基、
      ハロゲン原子、
      カルボキシ基、
      ホルミル基、
      置換もしくは無置換のアシル基、
      置換もしくは無置換のエステル基、
      置換もしくは無置換のカルバモイル基、
      置換もしくは無置換のアミノ基、
      ヒドロキシ基、
      チオール基、
      ニトロ基、
      シアノ基、
      置換もしくは無置換のシリル基、及び
      置換もしくは無置換のシロキサニル基からなる群から選択され、
     *は、前記一般式(4A)及び一般式(4B)中、ピロール環との連結部を示し、**は、Ar1001との連結部を示す。)
  5.  請求項1から請求項4のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(2-1)及び(2-2)におけるR131~R140及びR161~R168は、それぞれ独立に、
      水素原子、
      置換もしくは無置換の環形成炭素数6~14のアリール基、または
      置換もしくは無置換の環形成原子数5~14の複素環基である、
     有機エレクトロルミネッセンス素子。
  6.  請求項1から請求項5のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(2-1)におけるR136は、
      置換もしくは無置換の環形成炭素数6~14のアリール基、または
      置換もしくは無置換の環形成原子数5~14の複素環基である、
     有機エレクトロルミネッセンス素子。
  7.  請求項1から請求項6のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(3)におけるXは、酸素原子である、
     有機エレクトロルミネッセンス素子。
  8.  請求項1から請求項7のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(3)におけるYは、酸素原子である、
     有機エレクトロルミネッセンス素子。
  9.  請求項1から請求項8のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(3)におけるLは、単結合又は連結基であり、
     連結基としてのLは、置換もしくは無置換の環形成炭素数6~30のアリール基から誘導される基である、
     有機エレクトロルミネッセンス素子。
  10.  請求項1から請求項9のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(3)におけるR13~R18、R21、R22、R24、R25、R31、R32、R34、R35、R401~R404、R41、R42及びR44~R48は、それぞれ独立に、水素原子もしくは置換基であり、
     置換基としてのR13~R18、R21、R22、R24、R25、R31、R32、R34、R35、R401~R404、R41、R42及びR44~R48は、それぞれ独立に、
     置換もしくは無置換の環形成炭素数6~30のアリール基、
     置換もしくは無置換の環形成原子数5~30の複素環基、または
     置換もしくは無置換の炭素数1~30のアルキル基である、
     有機エレクトロルミネッセンス素子。
  11.  請求項1から請求項10のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記発光層は、金属錯体を含まない、
     有機エレクトロルミネッセンス素子。
  12.  請求項1から請求項10のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記発光層は、重金属錯体を含まない、
     有機エレクトロルミネッセンス素子。
  13.  請求項1から請求項12のいずれか一項に記載の有機エレクトロルミネッセンス素子を搭載した電子機器。
PCT/JP2022/006217 2021-02-19 2022-02-16 有機エレクトロルミネッセンス素子及び電子機器 WO2022176922A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/546,535 US20240215447A1 (en) 2021-02-19 2022-02-16 Organic electroluminescent element and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021025488A JP2024075797A (ja) 2021-02-19 2021-02-19 有機エレクトロルミネッセンス素子及び電子機器
JP2021-025488 2021-02-19

Publications (1)

Publication Number Publication Date
WO2022176922A1 true WO2022176922A1 (ja) 2022-08-25

Family

ID=82930645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006217 WO2022176922A1 (ja) 2021-02-19 2022-02-16 有機エレクトロルミネッセンス素子及び電子機器

Country Status (3)

Country Link
US (1) US20240215447A1 (ja)
JP (1) JP2024075797A (ja)
WO (1) WO2022176922A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020122118A1 (ja) * 2018-12-14 2020-06-18 出光興産株式会社 有機エレクトロルミネッセンス素子、化合物、有機エレクトロルミネッセンス素子用材料、及び電子機器
WO2021015177A1 (ja) * 2019-07-24 2021-01-28 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2021166553A1 (ja) * 2020-02-17 2021-08-26 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2021166552A1 (ja) * 2020-02-17 2021-08-26 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020122118A1 (ja) * 2018-12-14 2020-06-18 出光興産株式会社 有機エレクトロルミネッセンス素子、化合物、有機エレクトロルミネッセンス素子用材料、及び電子機器
WO2021015177A1 (ja) * 2019-07-24 2021-01-28 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2021166553A1 (ja) * 2020-02-17 2021-08-26 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2021166552A1 (ja) * 2020-02-17 2021-08-26 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器

Also Published As

Publication number Publication date
US20240215447A1 (en) 2024-06-27
JP2024075797A (ja) 2024-06-05

Similar Documents

Publication Publication Date Title
CN107431136B (zh) 有机电致发光元件、电子设备和化合物
JP7252959B2 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、および電子機器
JP6148731B2 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、および電子機器
JP6088995B2 (ja) 有機エレクトロルミネッセンス素子および電子機器
JP6742236B2 (ja) 有機エレクトロルミネッセンス素子および電子機器
WO2017146192A1 (ja) 有機エレクトロルミネッセンス素子、及び電子機器
JPWO2017010438A1 (ja) 有機エレクトロルミネッセンス素子および電子機器
WO2021066059A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2021015177A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2017146191A1 (ja) 有機エレクトロルミネッセンス素子、及び電子機器
JP7393345B2 (ja) 有機エレクトロルミネッセンス素子、化合物、有機エレクトロルミネッセンス素子用材料、及び電子機器
WO2017115788A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2022196749A1 (ja) 有機エレクトロルミネッセンス素子、化合物、及び電子機器
JP6387311B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子用材料、および電子機器
JP2020158425A (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
JP7374187B2 (ja) 有機エレクトロルミネッセンス素子、化合物及び電子機器
WO2022196634A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
JP2020174072A (ja) 有機エレクトロルミネッセンス素子及び電子機器
KR20230043986A (ko) 유기 일렉트로루미네센스 소자, 유기 일렉트로루미네센스 발광 장치, 및 전자 기기
CN114450815A (zh) 有机电致发光元件以及电子设备
CN114514232A (zh) 有机电致发光元件及电子设备
WO2022176922A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
CN113892194A (zh) 有机电致发光元件以及电子设备
WO2018180830A1 (ja) 有機エレクトロルミネッセンス素子、電子機器、及び化合物
JP2019137617A (ja) 化合物、有機エレクトロルミネッセンス素子、及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756240

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18546535

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22756240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP