WO2007116828A1 - ビスアントラセン誘導体及びそれを利用した有機エレクトロルミネッセンス素子 - Google Patents

ビスアントラセン誘導体及びそれを利用した有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2007116828A1
WO2007116828A1 PCT/JP2007/057149 JP2007057149W WO2007116828A1 WO 2007116828 A1 WO2007116828 A1 WO 2007116828A1 JP 2007057149 W JP2007057149 W JP 2007057149W WO 2007116828 A1 WO2007116828 A1 WO 2007116828A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
carbon atoms
organic
Prior art date
Application number
PCT/JP2007/057149
Other languages
English (en)
French (fr)
Inventor
Mineyuki Kubota
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to EP07740585A priority Critical patent/EP2003107A1/en
Priority to JP2008509824A priority patent/JPWO2007116828A1/ja
Publication of WO2007116828A1 publication Critical patent/WO2007116828A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/27Polycyclic condensed hydrocarbons containing three rings
    • C07C15/28Anthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/257Ethers having an ether-oxygen atom bound to carbon atoms both belonging to six-membered aromatic rings
    • C07C43/263Ethers having an ether-oxygen atom bound to carbon atoms both belonging to six-membered aromatic rings the aromatic rings being non-condensed
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/0805Compounds with Si-C or Si-Si linkages comprising only Si, C or H atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/24Anthracenes; Hydrogenated anthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/26Phenanthrenes; Hydrogenated phenanthrenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems

Definitions

  • the present invention relates to a bisanthracene derivative and an organic electoluminescence (EL) device using the same, and more particularly to a long-life organic EL device and a bisanthracene derivative that realizes the organic EL device.
  • EL organic electoluminescence
  • An organic EL element is a self-luminous element that utilizes the principle that a fluorescent substance emits light by recombination energy of holes injected from an anode and electrons injected from a cathode by applying an electric field.
  • Low-voltage driven organic EL devices using stacked devices (CW Tang, SA Vanslyke, Applied Physics Letters, 51 ⁇ , 913, 1987, etc.) have been made by Eastman Kodak's CW Tang and others. Since then, research on organic EL devices using organic materials as constituent materials has been actively conducted. Tang et al. Use tris (8-hydroxyquinolinol aluminum) for the light-emitting layer and triphenyldiamin derivative for the hole transport layer.
  • the advantages of the stacked structure are that it increases the efficiency of hole injection into the light-emitting layer, increases the efficiency of generating exciters generated by recombination by blocking electrons injected from the cathode, and generates in the light-emitting layer. For example, confining excitons.
  • the device structure of the organic EL device is a hole transport (injection) layer, a two-layer type of electron transporting light emitting layer, or a hole transport (injection) layer, light emitting layer, electron transport (injection).
  • the three-layer type is well known. In such a multilayer structure element, the element structure and the formation method have been devised in order to increase the recombination efficiency of injected holes and electrons.
  • light-emitting materials such as chelate complexes such as tris (8-quinolinolato) aluminum complexes, coumarin derivatives, tetraphenylbutadiene derivatives, bisstyrylarylene derivatives, oxadiazole derivatives, etc. are known.
  • chelate complexes such as tris (8-quinolinolato) aluminum complexes, coumarin derivatives, tetraphenylbutadiene derivatives, bisstyrylarylene derivatives, oxadiazole derivatives, etc.
  • Patent Documents 4 to 7 disclose devices using bisanthracene derivatives as light emitting materials. Although such a bisanthracene derivative is used as a blue light emitting material, there has been a demand for an improvement in device life that does not have a sufficient device life.
  • Patent Document 1 Japanese Patent Laid-Open No. 8-239655
  • Patent Document 2 JP-A-7-138561
  • Patent Document 3 JP-A-3-200289
  • Patent Document 4 JP-A-8-12600
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2000-344691
  • Patent Document 6 Japanese Unexamined Patent Application Publication No. 2004-2351
  • Patent Document 7 Japanese Unexamined Patent Publication No. 2005-15420
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a long-life organic EL device and a novel bisanthracene derivative that realizes the organic EL device.
  • the present inventors have a specific structure in which two anthracenes are linked by a linking group consisting of a naphthylene group and a p-phenylene group.
  • the inventors have found that the above object can be achieved by using a bisanthracene derivative and completed the present invention.
  • the present invention provides a bisanthracene derivative represented by the following general formula (1).
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted aromatic hydrocarbon group having 6 to 50 nuclear carbon atoms or a substituted or unsubstituted condensed aromatic hydrocarbon group having 10 to 50 nuclear carbon atoms.
  • R ⁇ R 16 is independently a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, Substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms, substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, substituted or unsubstituted Aralkyl group having 6 to 50 carbon atoms, substituted or unsubstituted aryloxy group having 5 to 50 carbon atoms, substituted or unsubstituted aryloxy group having 5 to 50 nuclear carbon atoms, substituted or unsubstituted carbon atoms having 1 to 50 carbon atoms Alkoxycarbonyl group, substituted or unsubstituted silyl group, carboxyl group,
  • R is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted carbon group having 1 to 50 carbon atoms.
  • Alkyl groups substituted or unsubstituted cycloalkyl groups having 3 to 50 carbon atoms, substituted or unsubstituted alkoxy groups having 1 to 50 carbon atoms, substituted or unsubstituted carbon atoms having 5 to 50 carbon atoms 6 ⁇ 50 aralkyl groups, substituted or unsubstituted arylene having 5 to 50 nuclear carbon atoms Xyl group, substituted or unsubstituted aryloxy group having 5 to 50 carbon atoms, substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, substituted or unsubstituted silyl group, carboxyl group, halogen atom, cyano group Group, nitro group or hydroxyl group,
  • n and n are each an integer from 0 to 5, and m + n is an integer from:! to 5,
  • p and q are each an integer from 0 to 5, and p + q is an integer from 1 to 5,
  • r and s are each an integer from 0 to 4,
  • t is an integer from 0 to 6
  • each L and R may be the same or different.
  • the organic thin film layer is selected from the bisanthracene derivatives.
  • the present invention provides an organic EL device containing at least one kind alone or as a component of a mixture.
  • the organic EL device containing the bisanthracene derivative of the present invention has a long lifetime.
  • the bisanthracene derivative of the present invention is represented by the following general formula (1).
  • L is a naphthylene group represented by the above general formula (2), and in particular, a naphthylene group represented by the following general formulas (3) to (5): And preferred.
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted aromatic hydrocarbon group having 6 to 50 nuclear carbon atoms or a substituted or unsubstituted nuclear carbon number of 10 to 50. It is a condensed aromatic hydrocarbon group.
  • the aromatic hydrocarbon group and the condensed aromatic hydrocarbon group of Ar 1 and Ar 2 include a monocyclic aromatic hydrocarbon group, a polycyclic aromatic hydrocarbon group, a ring assembly aromatic hydrocarbon group, a condensed polycyclic hydrocarbon group, Ring aromatic hydrocarbon groups such as phenyl group, 1 naphthyl group, 2-naphthyl group, 1 anthryl group, 2 anthryl group, 9 anthryl group, 9— (10 phenyl) anthryl group, 9 — ( 10 naphthyl-1-yl) anthryl group, 9- (10-naphthyl-2-yl) anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group Group, 6 chrysenyl group, 1_naphthacenyl group, 2_naphthacenyl group, 9_naphthacenyl group, Ring aromatic
  • Examples of the substituent for Ar 1 and Ar 2 include an alkyl group (methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, tert-butylene group, n_ Pentyl group, n_hexyl group, n_heptyl group, n-octyl group, hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 2-hydroxyisobutynol group, 1,2 dihydroxy group Tinole group, 1,3 dihydroxyisopropyl, Nore group, 2, 3 dihydroxy tert-butyl group, 1, 2, 3 _trihydroxypropyl group, chloromethyl group, 1 _ chlorodiethyl group, 2_ Black ethyl group, 2_Black butyl isobutyl group, 1,2-Dichloro butyl ethyl group, 1,3-Dichroic iso
  • R ⁇ R 16 each independently represents a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 50 nuclear carbon atoms, or a substituted or unsubstituted nuclear atom number.
  • substituted or unsubstituted alkyl group having 1 to 50 carbon atoms substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms, substituted or unsubstituted carbon number 1 ⁇ 50 alkoxy groups, substituted or unsubstituted nuclear carbon atoms having 5 to 50 carbon atoms, 6 to 50 carbon atoms, substituted or unsubstituted aryloxy groups having 5 to 50 nuclear carbon atoms, substituted or unsubstituted carbon atoms Nuclear aryl group having 5 to 50 carbon atoms, substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, substituted or unsubstituted silyl group, carboxyl group, halogen atom, cyano group, nitro group or hydroxyl group Yes,
  • R is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted carbon group having 1 to 50 carbon atoms.
  • ⁇ 1 to ⁇ 6 aromatic hydrocarbon groups include phenyl, 1_naphthyl, 2-naphthyl, 1_anthrinole, 2_anthrinole, 9-anthryl, 1-phenanthryl, 2_phenanthryl, 3_phenanthryl, 4_phenanthryl, 9_phenanthryl, 1_naphthacenyl, 2_naphthacenyl, 9_naphthacenyl, 1-pyrenyl, 2-pyrenyl, 4-pyrenyl Group, 2 _biphenylyl group, 3 _biphenylyl group, 4-biphenylyl group, p-terphenyl _4-yl group, p-terfeninore _3-ynole group, p-terfeninore _ 2—Inole group, m—Taffeninore _4—In
  • aromatic heterocyclic groups include 1_pyrrolyl group, 2_pyrrolinole group, 3_pyrrolyl group, pyraduryl group, 2_pyridinyl group, 3_pyridinyl group, 4_pyridinyl group, 1-indolyl group, 2_indolyl group, 3_indolyl group, 4_indolyl group, 5_indolyl group, 6 _indolyl group, 7 _indolyl group, 1_isoindolyl group, 2 _isoindolyl group, 3_isoindolyl group, 4 _isoindolyl group, 5 _Isoindolyl group, 6 _isoindolyl group, 7 —isoindolyl group, 2_furyl group, 3_furyl group, 2_benzofuranyl group, 3_benzofuranino group,
  • alkyl groups of ⁇ to 6 include methinole group, ethyl group, propyl group, isopyl pill group, n_butyl group, s_butyl group, isobutyl group, t_butyl group, n_pentyl group, n— Hexyl group, n-heptyl group, n-octyl group, hydroxymethyl group, 1-hydroxycetyl group, 2-hydroxyethyl group, 2-hydroxyisobutyl group, 1,2-dihydroxyethyl group, 1,3-dihydroxyisopropyl 2, 3-dihydroxy mono-t_butyl group, 1, 2, 3_trihydroxypropyl group, chloromethyl group, 1_chloroethyl group, 2_chloroethylenol group, 2_chloroethyl isobutyl group, 1, 2-Dichlorodiethyl group, 1,3-Dichlorod
  • R and! ⁇ Examples of cycloalkyl groups of 1-6, for example, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, hexyl group 4 methylcyclohexyl, 1- ⁇ adamantyl group, 2-Adamanchiru group, 1 over Nonolebonolinore group, 2_norbornyl group, etc. I can get lost.
  • Alkoxy groups R and ⁇ ⁇ 6 is a group represented by -OY, examples of Y are examples similar to the alkyl group.
  • ⁇ to 6 aralkyl groups include benzyl, 1-phenylethyl, 2-phenylethyl, 1_phenylisopropyl, 2_phenylisopropyl, phenyl-t_butyl, Naphthylmethyl group, 1_one-naphthylethyl group, 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, 2_a-naphthylisopropinole group, ⁇ -naphthylmethyl group, 1_ ⁇ -naphthylethyl group, 2- ⁇ - Naphthylethyl, 1_ ⁇ -naphthylisopropyl, 2- ⁇ -naphthylisopropyl, 1_pyrrolylmethyl, 2- (1_pyrrolyl) ethyl, ⁇
  • the aryloxy group of R and ⁇ to 6 is represented as OY ′, and examples of Y ′ include phenyl group, 1 naphthyl group, 2 naphthyl group, 1 anthryl group, 2 anthryl group, 9 anthryl group, 1 phenanthryl Group, 2 phenanthryl group, 3 phenanthryl group, 4 phenanthryl group, 9_ phenanthryl group, 1_ naphthacenyl group, 2_ naphthacenyl group, 9_ naphtha seninole group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group 2_biphenylyl group, 3-biphenylyl group, 4-biphenylyl group, p-terphenyl _4-yl group, p-tert-phenyl _3-yl group, p-terphenyl _2— Group, m-terfeninore _4
  • the arylothio group of R and I ⁇ R 16 is represented as —SY ′, and examples of Y ′ include the same examples as Y ′ of the aryloxy group.
  • Alkoxycarbonyl groups R and ⁇ 1-6 is represented as one COOZ, examples of Z include the same examples as before Symbol alkyl group.
  • silyl groups R and ⁇ ⁇ 6, for example, trimethylsilyl group, Toryechirushiriru group, t-heptyl dimethylsilyl group, Bulle dimethylsilyl group, a propyl dimethylsilyl group and the like.
  • n and n are each an integer of 0 to 5 (preferably 0 to 3, more preferably 0 to 2), and m + n is:! To 5 (preferably :! ⁇ An integer from 3).
  • P and q are each an integer of 0 to 5 (preferably 0 to 3, more preferably 0 to 2), and p + q is 1 to 5 (preferably 1 to 3). Is an integer.
  • r and s are each an integer of 0 to 4 (preferably 0 to 2), and t is an integer of 0 to 6 (preferably 0 to 2).
  • each L and R may be the same or different.
  • the bisanthracene derivative of the present invention can be synthesized by a Suzuki coupling reaction using an aryl boronic acid derivative synthesized by a known method and a halogenated aryl derivative. Examples are shown in the table below:!
  • the bisanthracene derivative of the present invention is particularly preferably a host material for an organic EL device, which is preferably a light emitting material for an organic EL device.
  • the organic EL device of the present invention is an organic electoluminescence device in which an organic thin film layer composed of one or more layers including at least a light emitting layer is sandwiched between an anode and a cathode, wherein the organic thin film layer has the general formula (1) At least one selected from the bisanthracene derivatives described in 1 above or as a component of a mixture.
  • the light emitting layer further comprises an arylamine compound and Z Or, preferably containing a styrylamine compound.
  • Ar 3 is a group selected from a phenyl group, a biphenyl group, a terphenyl group, a stilbene group, and a distyryl group.
  • Ar 4 and Ar 5 each have a hydrogen atom or a carbon number of 6 to 20
  • Ar 3 , Ar 4 and Ar 5 may be substituted,
  • p ′ is an integer of 1 to 4. More preferably, at least one of Ar 4 or Ar 5 is Substituted with a styryl group.
  • At least one of Ar 3 to Ar 5 contains a substituted or unsubstituted styryl group.
  • examples of the aromatic hydrocarbon group having 6 to 20 carbon atoms include a phenyl group, a naphthyl group, an anthranyl group, a phenanthryl group, and a terphenyl group.
  • arylamine compound those represented by the following general formula (B) are preferable.
  • Ar 6 to Ar 8 are each a substituted or unsubstituted aryl group having 5 to 40 nuclear carbon atoms.
  • Q ′ is an integer of 1 to 4.
  • examples of the aryl group having 5 to 40 nuclear carbon atoms include a phenyl group, a naphthyl group, an anthranyl group, a phenanthryl group, a pyrenyl group, a coronyl group, a biphenyl group, a terphenyl group, a pyro group, and the like.
  • Ryl group furanyl group, thiophenyl group, benzothiophenyl group, oxadiazolyl group, diphenylanthranyl group, indolyl group, carbazolyl group, pyridyl group, benzoquinolyl group, fluoranthur group, acenaphthofluoranthur group, stilbene Group, perylenyl group, chrysenyl group, picenyl group, triphenylenyl group, rubicenyl group, benzoanthracenyl group, phenylanthranyl group, bisanthracenyl group, or the following general formula (C), (D)
  • the aryl group shown, and the like, such as naphthyl group, anthranyl group, chrysenyl group, pyrenyl group, or Ariru group is preferably represented by general formula (D).
  • r is an integer of 1 to 3.
  • preferable substituents of the aryl group include alkyl groups having 1 to 6 carbon atoms (ethyl group, methinole group, i propyl group, n propyl group, s butynole group, t butyl group, pentino les).
  • Anode / light emitting layer / cathode (2) Anode / hole injection layer / light emitting layer / cathode
  • the force for which the configuration of (8) is preferably used is not limited to these.
  • the bisanthracene derivative of the present invention may be used in any of the organic layers described above, but is contained in the light emission band or hole transport band in these constituent elements.
  • the amount to be contained is preferably selected from 30 to 100 mol%.
  • This organic EL device is usually fabricated on a translucent substrate.
  • This translucent substrate is a substrate that supports organic EL elements, and the translucency is 50 for light in the visible region of 400 to 700 nm. It is preferable to use a smoother substrate that is more than / o.
  • a translucent substrate for example, a glass plate, a synthetic resin plate, or the like is preferably used.
  • the glass plate include a plate formed of soda-lime glass, norlium-strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, quartz, and the like.
  • Synthetic resin plates include polycarbonate resin, acrylic resin, polyethylene terephthalate resin, polyether sulfide resin, A board such as a sulfone resin may be mentioned.
  • the anode plays a role of injecting holes into the hole transport layer or the light emitting layer, and it is effective to have a work function of 4.5 eV or more.
  • Specific examples of the anode material used in the present invention include indium tin oxide alloy (ITO), indium zinc oxide alloy (IZO), tin oxide (NESA), gold, silver, platinum, copper and the like.
  • the cathode is preferably a material having a low work function for the purpose of injecting electrons into the electron transport layer or the light emitting layer.
  • the anode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the transmittance of the anode for light emission is greater than 10%.
  • the sheet resistance of the anode is preferably several hundred ⁇ / mouth or less.
  • the film thickness of the anode is a force that depends on the material.
  • the light emitting layer comprises
  • Injection function function that can inject holes from the anode or hole injection layer when an electric field is applied, and can inject electrons from the negative electrode or electron injection layer
  • Transport function Function to move injected charges (electrons and holes) by the force of electric field
  • Luminescent function provides a field for recombination of electrons and holes, and has a function to connect this to light emission.
  • the light emitting layer is particularly preferably a molecular deposited film.
  • the molecular deposited film is a thin film formed by deposition from a material compound in a gas phase state or a film formed by solidification from a material compound in a solution state or a liquid phase state.
  • This molecular deposited film can be distinguished from a thin film (molecular accumulation film) formed by the LB method by the difference in aggregated structure and higher-order structure and the functional differences resulting from it.
  • a binder such as a resin and a material compound are dissolved in a solvent to form a solution, which is then thin-filmed by a spin coating method or the like. Also, the light emitting layer can be formed.
  • the bisant of the present invention is optionally added to the light emitting layer.
  • Other known light-emitting materials other than the light-emitting material made of a helical derivative may be contained, or a light-emitting layer containing another known light-emitting material may be laminated on the light-emitting layer containing the light-emitting material of the present invention. .
  • the hole injecting / transporting layer is a layer that helps injecting holes into the light emitting layer and transports them to the light emitting region, and has a large hole mobility and usually has an ion energy of 5.5 eV or less. And small les.
  • a material that transports holes to the light-emitting layer with a lower electric field strength is preferred.
  • the mobility force of holes is, for example, 10 4 ⁇ : When an electric field of OV / cm is applied. , even without least a 10- 4 cm 2 ZV 'seconds is preferable.
  • a material conventionally used as a hole charge transport material in a photoconductive material or a known medium strength arbitrary material used for a hole injection layer of an organic EL element is selected. Can be used.
  • Porphyrin compounds (disclosed in JP-A-63-29556965), aromatic tertiary amine compounds and styrylamine compounds (US) Patent No. 4, 127, 412, JP-A 53-27033, 54-58445, 54-149634, 54-64299, 55-79450, 55-144250 gazette, 56-119132 gazette, 61-295 558 gazette, 61-98353 gazette, 63-295695 gazette, etc.), especially using aromatic tertiary amine compounds preferable.
  • US Pat. No. 5,061,569 has two condensed aromatic rings in the molecule, for example, 4,4,1bis (N_ (1-naphthyl) 1N-phenylamino) biphenyl. (Hereinafter abbreviated as NPD), and four triamineramine units described in JP-A-4-308688 are connected in a starburst type 4, 4 ', 4 "-Tris (N- (3 —Methylphenyl) _N_phenylamino) triphenylamine (hereinafter abbreviated as MTDATA), etc. Can be mentioned.
  • NPD 4,4,1bis (N_ (1-naphthyl) 1N-phenylamino) biphenyl.
  • MTDATA triphenylamine
  • inorganic compounds such as p-type Si and p-type SiC can also be used as the material for the hole injection layer.
  • the hole injection and transport layer can be formed by thin-filming the above-described compound by a known method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method.
  • the thickness of the hole injection or transport layer is not particularly limited, but is usually 5 nm to 5 zm.
  • the organic semiconductor layer is a layer that assists hole injection or electron injection into the light-emitting layer, and preferably has a conductivity of 10-1 Q S / cm or more.
  • Examples of materials for such an organic semiconductor layer include thiophene oligomers, conductive oligomers such as allylamin oligomers disclosed in JP-A-8-193191, and conductive materials such as allylamin dendrimers. Sex dendrimers and the like can be used.
  • the electron injection layer 'transport layer is a layer that assists the injection of electrons into the light emitting layer and transports it to the light emitting region, and has a high electron mobility
  • the adhesion improving layer is the electron injection layer.
  • it is a layer made of a material that particularly adheres well to the cathode.
  • the electron transport layer is appropriately selected with a film thickness of several nm to several ⁇ , but particularly when the film thickness is large, in order to avoid a voltage rise, 10 4 to 10 / ( : 111 electron mobility of at least 10 5 when an electric field is applied in (: 111 2 / ⁇ 3 is preferably the following.
  • 8-hydroxyquinoline or a metal complex of its derivative, a oxadiazole derivative is preferable.
  • Specific examples of the above-mentioned metal complexes of 8-hydroxyquinoline or its derivatives include metal chelate oxinoid compounds containing a chelate of oxine (generally 8_quinolinol or 8-hydroxyquinoline), such as tris (8-quinolino-one).
  • No) Aluminum can be used as an electron injection material.
  • examples of the oxadiazole derivative include electron transfer compounds represented by the following general formula.
  • Ar 1 , Ar 2 , Ar 3 , Ar 5 , Ar 6 , Ar 9 each represents a substituted or unsubstituted aryl group, which may be the same or different from each other.
  • Ar 4 , Ar 7 and Ar 8 each represent a substituted or unsubstituted arylene group, which may be the same or different.
  • the aryl group includes a phenyl group, a biphenyl group, an anthranyl group, a perylenyl group, A pyrenyl group is mentioned.
  • Examples of the arylene group include a phenylene group, a naphthylene group, a biphenylene group, an anthranylene group, a peryleneylene group, and a pyrenylene group.
  • Examples of the substituent include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and a cyan group. This electron transfer compound is preferably a film-forming compound.
  • electron transfer compound examples include the following.
  • materials represented by the following general formulas ( ⁇ ) to ⁇ ) can be used as materials used for the electron injection layer and the electron transport layer.
  • ⁇ ⁇ 3 are each independently a nitrogen atom or a carbon atom.
  • Ar 1 is a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, or a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms
  • Ar 2 is a hydrogen atom, substituted or unsubstituted Aryl group having 6 to 60 nuclear carbon atoms, substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or substituted or unsubstituted carbon number 1 to 20 alkoxy groups, or these divalent groups.
  • any one of Ar 1 and Ar 2 is a substituted or unsubstituted condensed ring group having 10 to 60 nuclear carbon atoms, or a substituted or unsubstituted monoheterocondensed ring group having 3 to 60 nuclear carbon atoms. .
  • ⁇ L 2 and L are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroarylene group having 3 to 60 nuclear carbon atoms, or a substituted or unsubstituted group. It is a substituted fluorenylene group.
  • R represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, a substituted or unsubstituted alkyl group having! To 20 carbon atoms.
  • a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, ⁇ is an integer of 0 to 5 , and when ⁇ is 2 or more, a plurality of Rs may be the same or different.
  • a plurality of adjacent R groups may be bonded together to form a carbocyclic aliphatic ring or carbocyclic aromatic ring. The nitrogen-containing heterocyclic derivative represented by this.
  • HAr is a nitrogen-containing heterocycle having 3 to 40 carbon atoms which may have a substituent
  • L is a single bond and having 6 to 60 carbon atoms which may have a substituent.
  • Ariren group, Les substituted, also good Le, Re has a heteroarylene group or substituent to the 3 to 60 carbon atoms, it may also be a full Oreniren group
  • Ar 1 is, A divalent aromatic hydrocarbon group having 6 to 60 carbon atoms which may have a substituent
  • Ar 2 is an aryl group or substituted having 6 to 60 carbon atoms which may have a substituent.
  • X and Y are each independently a saturated or unsaturated hydrocarbon group having from 6 to 6 carbon atoms: alkoxy group, alkenyloxy group, alkynyloxy group, hydroxy group, substituted or substituted Is a structure in which an unsubstituted aryl group, a substituted or unsubstituted heterocyclic ring, or X and Y are combined to form a saturated or unsaturated ring, R to R are each independently a hydrogen atom,
  • Halogen atom substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, alkoxy group, aryloxy group, perfluoroalkyl group, perfluoroalkoxy group, amino group, alkylcarbonyl group, arylcarbonyl group, Alkoxycarbonyl group, aryloxycarbonyl group, azo group, alkylcarbonyloxy group, arylylcarbonyloxy group, alkoxycarbonyloxy group, aryloxycarbonyloxy group, sulfininole group, sulfonyl group, sulfanyl Group, silinole group, force ruberamoyl group, aryleno group, heterocyclic group, alkenyl group, alkynyl group, nitro group, forminole group, nitroso group, formyloxy group, isocyano group, cyanate group, isocyanate group, thiocynate group, isothiocyanate
  • R to R and Z are each independently a hydrogen atom, a saturated or unsaturated carbonization
  • a hydrogen group, an aromatic hydrocarbon group, a heterocyclic group, a substituted amino group, a substituted boryl group, an alkoxy group or an aryloxy group, and X, Y and Z are each independently saturated or unsaturated.
  • N represents an integer from 1 to 3, and when n is 2 or more, Z may be different.
  • n is 1, X, Y
  • R is a methyl group
  • R is a hydrogen atom or a substituted boryl group
  • n is 3,
  • R is a hydrogen atom, substituted or unsubstituted Substituted alkyl group, substituted or unsubstituted cyclo
  • rings A 1 and A 2 are each a 6-membered aryl ring structure condensed with each other which may have a substituent. ]
  • This metal complex is strong as an n-type semiconductor and has a high electron injection capability. Furthermore, since the generation energy at the time of complex formation is low, the bond between the metal and the ligand of the formed metal complex is strengthened, and the fluorescence quantum efficiency as a light emitting material is also increasing.
  • substituents of the rings A 1 and A 2 that form the ligand of the general formula (K) include chlorine, bromine, iodine, a halogen atom of fluorine, a methylol group, an ethyl group, a propyl group, Butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, stearyl group, trichloromethyl group, etc., substituted or unsubstituted alkyl group, phenyl group, naphthyl group Substituted or unsubstituted aryl such as 3-methylphenyl, 3-methoxyphenyl, 3-fluorophenyl, 3_trichloromethylphenyl, 3_trifluoromethylphenyl, 3_diphenyl Group, methoxy group, n-butoxy group, ter t-butoxy
  • a preferred form of the organic EL device of the present invention is a device containing a reducing dopant in a region for transporting electrons or an interface region between the cathode and the organic layer.
  • the reducing dopant is defined as a substance capable of reducing the electron transporting compound. Accordingly, various materials can be used as long as they have a certain reducibility, such as alkali metals, alkaline earth metals, rare earth metals, alkali metal oxides, alkali metal halides, alkaline earth metals.
  • preferable reducing dopants include Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV) and Cs (work function: 1).
  • 95eV) Force At least one alkali metal selected from the group consisting of Ca (work function: 2.9 eV), Sr (work function: 2.0 to 2.5 eV), and Ba (work function: 2.52 eV) It is particularly preferable that the work function including at least one alkaline earth metal selected from the group of forces is 2.9 eV or less.
  • a more preferred reducing dopant is at least one alkali metal selected from the group consisting of K, Rb and Cs, more preferably Rb or Cs, and most preferably Cs. It is.
  • alkali metals can improve emission brightness and extend the life of organic EL devices by adding a relatively small amount to the electron injection region, which has a particularly high reducing ability.
  • a reducing dopant having a work function of 2.9 eV or less a combination of these two or more alkali metals is also preferred.
  • combinations containing Cs, such as Cs and Na, Cs and K, A combination of Cs and Rb or Cs, Na and ⁇ is preferred.
  • an electron injection layer composed of an insulator or a semiconductor may be further provided between the cathode and the organic layer.
  • an insulator it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides. Ms. If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injection property can be further improved.
  • preferred alkali metal chalcogenides include, for example, LiO, LiO, Na S, Na Se and NaO.
  • alkaline earth metal chalcogenides include, for example, CaO, BaO, SrO, Be 0, BaS, and CaSe.
  • preferable alkali metal halides include, for example, LiF, NaF, KF, LiCl, KC1, and NaCl.
  • alkaline earth metal halides include CaF, BaF, SrF, MgF and
  • Examples include fluorides such as BeF and halides other than fluorides.
  • the inorganic compound constituting the electron transport layer is preferably a microcrystalline or amorphous insulating thin film. If the electron transport layer is composed of these insulating thin films, a more uniform thin film is formed, and pixel defects such as dark spots can be reduced. Examples of such inorganic compounds include the above-mentioned alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides.
  • the cathode those having a low work function, (4 eV or less) metal, an alloy, an electrically conductive compound, and a mixture thereof as an electrode material are used.
  • electrode materials are sodium, sodium-potassium alloy, magnesium, lithium, magnesium silver alloy, aluminum / aluminum oxide, Al / LiO, Al / LiO, Al / LiF, and Rium.
  • Examples include lithium alloys, indium, and rare earth metals.
  • This cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the transmittance for the light emission of the cathode is preferably larger than 10%.
  • the sheet resistance as a cathode is preferably several hundred ⁇ / b or less, and the film thickness is usually 10 nm to l / im, preferably 50 to 200 nm.
  • an organic EL element applies an electric field to an ultra-thin film, pixel defects due to leakage or short-circuiting are likely to occur.
  • an insulating thin film layer may be inserted between the pair of electrodes.
  • Examples of the material used for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, oxidizing power, terium, calcium fluoride, aluminum nitride, titanium oxide, Silicon oxide, germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, vanadium oxide, etc. Can be mentioned. A mixture or laminate of these may be used.
  • an anode, a light emitting layer, a hole injection layer as necessary, and an electron injection layer as necessary are formed by the materials and methods described above.
  • the cathode may be formed.
  • the organic EL element can be fabricated in the reverse order from the cathode to the anode.
  • a thin film made of an anode material is formed by vapor deposition or sputtering so as to have a film thickness of 1 zm or less, preferably in the range of 10 to 200 nm, and used as an anode.
  • a hole injection layer is provided on the anode.
  • the hole injection layer can be formed by a method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method. A homogeneous film can be obtained immediately and pinholes are not easily generated. In view of the above, it is preferable to form the film by a vacuum evaporation method.
  • the deposition conditions vary depending on the compound used (material of the hole injection layer), the crystal structure and recombination structure of the target hole injection layer, etc.
  • a light emitting layer is provided on the hole injection layer.
  • the light emitting layer can also be formed by thinning the light emitting material by a method such as vacuum deposition, sputtering, spin coating, or casting using the light emitting material according to the present invention. It is preferable to form the film by a vacuum vapor deposition method from the viewpoint that it is obtained immediately and does not easily generate pinholes.
  • the vapor deposition conditions vary depending on the compound used, but in general, the medium range of conditions similar to the formation of the hole injection layer can be selected.
  • the film thickness is preferably in the range of 10 to 40 nm.
  • an electron injection layer is provided on the light emitting layer. Also in this case, like the hole injection layer and the light emitting layer, it is preferable to form by a vacuum evaporation method because it is necessary to obtain a homogeneous film.
  • the vapor deposition conditions can be selected from the same condition ranges as those for the hole injection layer and the light emitting layer.
  • the cathode is made of metal. It can be formed by vapor deposition or sputtering. However, vacuum deposition is preferred to protect the underlying organic layer from damage during film formation.
  • the above organic EL device is preferably manufactured from the anode to the cathode consistently by a single vacuum.
  • the method for forming each layer of the organic EL device of the present invention is not particularly limited. Conventionally known methods such as vacuum deposition and spin coating can be used.
  • the organic thin film layer containing the compound represented by the general formula (1) used in the organic EL device of the present invention is prepared by a vacuum deposition method, a molecular beam deposition method (MBE method), or a solution dating method using a solvent. Further, it can be formed by a known method using a coating method such as a spin coating method, a casting method, a bar coating method, or a roll coating method.
  • each organic layer of the organic EL device of the present invention is not particularly limited, but is usually in the range of several nm to 1 zm in order to improve defects such as pinholes and efficiency.
  • this compound was identified as AN-29.
  • a glass substrate with a 25 mm ⁇ 75 mm ⁇ l. 1 mm thick IT ⁇ transparent electrode (Zomatic Co., Ltd.) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, followed by UV ozone cleaning for 30 minutes.
  • the glass substrate with the transparent electrode line after cleaning is mounted on the substrate holder of the vacuum deposition apparatus, and first, the transparent electrode is covered on the surface on which the transparent electrode line is formed.
  • N, 1bis (N, N, 1-diphenyl-2-aminophenyl) — N, N-diphenyl-1, 4, 4, 1-diamino-1, 1, 1-biphenyl film (hereinafter abbreviated as “TPD232 film”) was deposited.
  • This TPD232 film functions as a hole injection layer.
  • a 20 nm thick N, N, ⁇ ⁇ ⁇ ', ⁇ , and one tetra (4-biphenyl) and one diamino biphenylene layer (hereinafter referred to as “TBDB layer”) were formed.
  • This film functions as a hole transport layer.
  • the compound (AN-3) having a thickness of 40 nm was deposited to form a film.
  • This film functions as a light emitting layer.
  • An Alq film having a thickness of lOnm was formed on this film.
  • Li Li source: manufactured by SAES Getter Co., Ltd.
  • Alq Alq
  • metal A1 is evaporated to form a metal cathode and organic EL A light emitting element was formed.
  • Example 1 an organic EL device was produced in the same manner except that the compound shown in Table 1 was used instead of the compound (AN-3) as the material of the light emitting layer. Table 1 shows the results of measuring the half-life of the obtained device in the same manner as in Example 1.
  • An organic EL device was produced in the same manner as in Example 1 except that the following amine compound BD2 was used instead of the amine compound BD1 as the material of the light emitting layer.
  • Table 1 shows the results of measuring the half-life of the obtained device in the same manner as in Example 1.
  • An organic EL device was produced in the same manner as in Example 1, except that the following amine compound BD3 was used instead of the amine compound BD1 as the material of the light emitting layer.
  • Table 1 shows the results of measuring the half-life of the obtained device in the same manner as in Example 1.
  • Example 1 an organic EL device was produced in the same manner except that the compound shown in Table 1 was used in place of the compound (AN-3) and BD1 as the material of the light emitting layer. Table 1 shows the results of measuring the half-life of the obtained element in the same manner as in Example 1.
  • the organic EL device containing the bisanthracene derivative of the present invention has a long lifetime. Therefore, it is extremely useful as an organic EL device that is expected to be used for a long time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 2つのアントラセン間をナフチレン基及びp-フェニレン基からなる連結基で連結した特定構造のビスアントラセン誘導体、並びに、陽極と陰極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、前記有機薄膜層が前記ビスアントラセン誘導体から選ばれる少なくとも1種類を単独もしくは混合物の成分として含有する有機エレクトロルミネッセンス素子であり、長寿命な有機エレクトロルミネッセンス素子を提供する。                                                                                                 

Description

明 細 書
ビスアントラセン誘導体及びそれを利用した有機エレクト口ルミネッセンス 素子
技術分野
[0001] 本発明は、ビスアントラセン誘導体及びそれを利用した有機エレクト口ルミネッセン ス (EL)素子に関し、さらに詳しくは、長寿命な有機 EL素子及びそれを実現するビス アントラセン誘導体に関するものである。
背景技術
[0002] 有機 EL素子は、電界を印可することにより、陽極より注入された正孔と陰極より注 入された電子の再結合エネルギーにより蛍光性物質が発光する原理を利用した自 発光素子である。イーストマン 'コダック社の C. W. Tang等による積層型素子による 低電圧駆動有機 EL素子の報告(C. W. Tang, S. A. Vanslyke,アプライドフィジックス レターズ (Applied Physics Letters) , 51卷、 913頁、 1987年等)がなされて以来、有 機材料を構成材料とする有機 EL素子に関する研究が盛んに行われている。 Tang 等は、トリス(8—ヒドロキシキノリノールアルミニウム)を発光層に、トリフエ二ルジァミン 誘導体を正孔輸送層に用いている。積層構造の利点としては、発光層への正孔の注 入効率を高めること、陰極より注入された電子をブロックして再結合により生成する励 起子の生成効率を高めること、発光層内で生成した励起子を閉じ込めること等が挙 げられる。この例のように有機 EL素子の素子構造としては、正孔輸送 (注入)層、電 子輸送性発光層の二層型、または正孔輸送 (注入)層、発光層、電子輸送 (注入)層 の 3層型等がよく知られている。こうした積層型構造素子では注入された正孔と電子 の再結合効率を高めるため、素子構造や形成方法の工夫がなされている。
また、発光材料としてはトリス(8—キノリノラート)アルミニウム錯体等のキレート錯体 、クマリン誘導体、テトラフェニルブタジエン誘導体、ビススチリルァリーレン誘導体、 ォキサジァゾール誘導体等の発光材料が知られており、それからは青色から赤色ま での可視領域の発光が得られることが報告されており、カラー表示素子の実現が期 待されている (例えば、特許文献 1、特許文献 2、特許文献 3等)。 また、発光材料としてビスアントラセン誘導体を用いた素子が特許文献 4〜7に開示 されている。このようなビスアントラセン誘導体は青色発光材料として用いられるが、 素子寿命が十分でなぐ素子寿命の改善が求められていた。
[0003] 特許文献 1 :特開平 8— 239655号公報
特許文献 2 :特開平 7— 138561号公報
特許文献 3:特開平 3— 200289号公報
特許文献 4:特開平 8— 12600号公報
特許文献 5:特開 2000— 344691号公報
特許文献 6 :特開 2004— 2351号公報
特許文献 7:特開 2005— 15420号公報
発明の開示
発明が解決しょうとする課題
[0004] 本発明は、前記の課題を解決するためになされたもので、長寿命の有機 EL素子及 びそれを実現する新規なビスアントラセン誘導体を提供することを目的とする。
課題を解決するための手段
[0005] 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、 2つのアントラ セン間をナフチレン基及び p—フエ二レン基からなる連結基で連結した特定構造を有 するビスアントラセン誘導体を用いることにより前記の目的を達成することを見出し本 発明を完成したものである。
すなわち、本発明は、下記一般式(1)で表されるビスアントラセン誘導体を提供す るものである。
[0006] [化 1]
Figure imgf000004_0001
Figure imgf000004_0002
( 2 ) [式中、 Lは上記一般式(2)で表されるナフチレン基、
Ar1及び Ar2は、それぞれ独立に、置換もしくは無置換の核炭素数 6〜50の芳香族 炭化水素基又は置換もしくは無置換の核炭素数 10〜50の縮合芳香族炭化水素基
R^R16は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数 6〜50の 芳香族炭化水素基、置換もしくは無置換の核原子数 5〜50の芳香族複素環基、置 換もしくは無置換の炭素数 1〜50のアルキル基、置換もしくは無置換の核炭素数 3 〜50のシクロアルキル基、置換もしくは無置換の炭素数 1〜50のアルコキシ基、置 換もしくは無置換の炭素数 6〜50のァラルキル基、置換もしくは無置換の核炭素数 5 〜50のァリールォキシ基、置換もしくは無置換の核炭素数 5〜50のァリールチオ基 、置換もしくは無置換の炭素数 1〜50のアルコキシカルボニル基、置換もしくは無置 換のシリル基、カルボキシル基、ハロゲン原子、シァノ基、ニトロ基又はヒドロキシル基
Rは、置換もしくは無置換の核炭素数 6〜50の芳香族炭化水素基、置換もしくは無 置換の核原子数 5〜50の芳香族複素環基、置換もしくは無置換の炭素数 1〜50の アルキル基、置換もしくは無置換の核炭素数 3〜50のシクロアルキル基、置換もしく は無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の核炭素数 5〜50の 炭素数 6〜50のァラルキル基、置換もしくは無置換の核炭素数 5〜50のァリールォ キシ基、置換もしくは無置換の核炭素数 5〜50のァリールチオ基、置換もしくは無置 換の炭素数 1〜50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カル ボキシル基、ハロゲン原子、シァノ基、ニトロ基又はヒドロキシル基、
m及び nは、それぞれ 0〜5の整数であり、かつ m + nは:!〜 5の整数、
p及び qは、それぞれ 0〜5の整数であり、かつ p + qは 1〜5の整数、
r及び sは、それぞれ 0〜4の整数、
tは 0〜6の整数であり、
m, n, p, q, r, s及び tが 1以上の時、各々の L及び Rは同一でも異なっていても良 い。 ]
[0008] また、本発明は、陽極と陰極間に少なくとも発光層を含む一層又は複数層からなる 有機薄膜層が挟持されている有機 EL素子において、前記有機薄膜層が前記ビスァ ントラセン誘導体から選ばれる少なくとも 1種類を単独もしくは混合物の成分として含 有する有機 EL素子を提供するものである。
発明の効果
[0009] 本発明のビスアントラセン誘導体を含有する有機 EL素子は、長寿命である。
発明を実施するための最良の形態
[0010] 本発明のビスアントラセン誘導体は、下記一般式(1)で表されるものである。
[化 2]
Figure imgf000005_0001
( 2 ) 一般式(1)において、 Lは上記一般式(2)で表されるナフチレン基であり、特に、下 記一般式(3)〜(5)のレ、ずれかで表されるナフチレン基であると好ましレ、。
[化 3]
Figure imgf000006_0001
( 3 ) ( 4 ) ( 5 )
[0012] 一般式(1)において、 Ar1及び Ar2は、それぞれ独立に、置換もしくは無置換の核 炭素数 6〜50の芳香族炭化水素基又は置換もしくは無置換の核炭素数 10〜50の 縮合芳香族炭化水素基である。
[0013] Ar1及び Ar2の芳香族炭化水素基及び縮合芳香族炭化水素基としては、単環芳香 族炭化水素基、多環芳香族炭化水素基、環集合芳香族炭化水素基、縮合多環芳 香族炭化水素基があり、例えば、フエ二ル基、 1 ナフチル基、 2—ナフチル基、 1 アントリル基、 2 アントリル基、 9 アントリル基、 9— (10 フエニル)アントリル基、 9 — (10 ナフチル— 1 —ィル)アントリル基、 9— (10 ナフチル— 2—ィル)アントリ ル基、 1—フエナントリル基、 2—フエナントリル基、 3—フエナントリル基、 4—フエナン トリル基、 9—フエナントリル基、 6 クリセ二ノレ基、 1 _ナフタセニル基、 2_ナフタセ ニル基、 9 _ナフタセニル基、 1—ピレニル基、 2—ピレニル基、 4—ピレニル基、 2_ ビフエ二ルイル基、 3 _ビフヱ二ルイル基、 4_ビフヱ二ルイル基、 p_ターフェ二ノレ一 4—ィノレ基、 p—ターフェ二ノレ _ 3—ィノレ基、 p—ターフェ二ノレ _ 2—ィノレ基、 m—ター フエ二ノレ _4—ィル基、 m—ターフェニル _ 3—ィル基、 m—ターフェニル _ 2—ィル 基、 o_トリル基、 m—トリル基、 ρ—トリノレ基、 p_t_ブチルフエニル基、 3—メチル— 2_ナフチル基、 4_メチル _ 1 _ナフチル基、 4_メチル _ 1 _アントリル基等が挙 げられる。
[0014] これらの中でも好ましくは、フエニル基、 1 ナフチル基、 2 ナフチル基、 9 (10 —フエニル)アントリル基、 9— (10 ナフチル— 1 —ィル)アントリル基、 9— (10 ナ フチル 2—ィノレ)アントリル基、 9 フエナントリル基、 1—ピレニル基、 2 ピレニノレ 基、 4 ピレニル基、 2 ビフエ二ルイル基、 3 ビフエ二ルイル基、 4 ビフエ二ルイ ル基、 o トリル基、 m トリル基、 ρ トリル基、 ρ— t ブチルフエニル基であり、さら に好ましくは、フエニル基、 1 ナフチル基、 2—ナフチル基、 2—ビフエ二ルイル基、 3 -ビフヱ二ルイル基、 4 -ビフヱ二ルイル基である。
また、前記 Ar1及び Ar2の置換基としては、例えば、アルキル基 (メチル基、ェチル 基、プロピル基、イソプロピル基、 n ブチル基、 s ブチル基、イソブチル基、 tーブ チノレ基、 n_ペンチル基、 n_へキシル基、 n_ヘプチル基、 n—ォクチル基、ヒドロキ シメチル基、 1—ヒドロキシェチル基、 2—ヒドロキシェチル基、 2—ヒドロキシイソブチ ノレ基、 1 , 2 ジヒドロキシェチノレ基、 1, 3 ジヒドロキシイソプロヒ。ノレ基、 2, 3 ジヒド 口キシ一 t_ブチル基、 1, 2, 3 _トリヒドロキシプロピル基、クロロメチル基、 1 _クロ口 ェチル基、 2_クロ口ェチル基、 2_クロ口イソブチル基、 1, 2—ジクロ口ェチル基、 1 , 3—ジクロ口イソプロピル基、 2, 3—ジクロ口一 t_ブチル基、 1, 2, 3 _トリクロ口プロ ピノレ基、ブロモメチル基、 1 ブロモェチル基、 2—ブロモェチル基、 2—ブロモイソブ チル基、 1, 2 ジブロモェチル基、 1, 3 ジブロモイソプロピル基、 2, 3 ジブロモ t ブチル基、 1, 2, 3 トリブロモプロピル基、ョードメチル基、 1ーョードエチル基 、 2—ョードエチル基、 2—ョードイソブチル基、 1 , 2—ジョードエチル基、 1 , 3—ジョ ードイソプロピル基、 2, 3 ジョードー t ブチル基、 1 , 2, 3 トリョードプロピル基、 了ミノメチノレ基、 1 了ミノェチノレ基、 2—了ミノェチノレ基、 2—了ミノイソブチノレ基、 1 , 2—ジアミノエチル基、 1, 3—ジァミノイソプロピル基、 2, 3—ジアミノー t ブチル基 、 1 , 2, 3 トリ了ミノプロピノレ基、シ了ノメチノレ基、 1ーシ了ノエチノレ基、 2 シ了ノエチ ル基、 2 シァノイソブチル基、 1 , 2 ジシァノエチル基、 1 , 3 ジシァノイソプロピ ル基、 2, 3—ジシァノ一 t_ブチル基、 1, 2, 3_トリシアノプロピル基、ニトロメチル基 、 1 _ニトロェチル基、 2_ニトロェチル基、 2_ニトロイソブチル基、 1 , 2—ジニトロェ チノレ基、 1, 3—ジニトロイソプロヒ。ノレ基、 2, 3—ジニトロ一 t—ブチノレ基、 1, 2, 3_トリ ニトロプロピル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキ シノレ基、 4 メチルシクロへキシル基、 1—ァダマンチル基、 2—ァダマンチル基、 1 _ ノルボルニル基、 2_ノルボルニル基等)、炭素数 1〜6のアルコキシ基(エトキシ基、 メトキシ基、 i—プロポキシ基、 n—プロポキシ基、 s—ブトキシ基、 t—ブトキシ基、ペン トキシ基、へキシルォキシ基、シクロペントキシ基、シクロへキシルォキシ基等)、核原 子数 5〜40のァリール基、核原子数 5〜40のァリール基で置換されたァミノ基、核原 子数 5〜40のァリール基を有するエステル基、炭素数 1〜6のアルキル基を有するェ ステル基、シァノ基、ニトロ基、ハロゲン原子等が挙げられる。
[0016] 一般式(1)において、 R^R16は、それぞれ独立に、水素原子、置換もしくは無置 換の核炭素数 6〜50の芳香族炭化水素基、置換もしくは無置換の核原子数 5〜50 の芳香族複素環基、置換もしくは無置換の炭素数 1〜50のアルキル基、置換もしく は無置換の核炭素数 3〜50のシクロアルキル基、置換もしくは無置換の炭素数 1〜5 0のアルコキシ基、置換もしくは無置換の核炭素数 5〜50の炭素数 6〜50のァラルキ ル基、置換もしくは無置換の核炭素数 5〜50のァリールォキシ基、置換もしくは無置 換の核炭素数 5〜50のァリールチオ基、置換もしくは無置換の炭素数 1〜50のアル コキシカルボニル基、置換もしくは無置換のシリル基、カルボキシル基、ハロゲン原子 、シァノ基、ニトロ基又はヒドロキシル基であり、
Rは、置換もしくは無置換の核炭素数 6〜50の芳香族炭化水素基、置換もしくは無 置換の核原子数 5〜50の芳香族複素環基、置換もしくは無置換の炭素数 1〜50の アルキル基、置換もしくは無置換の核炭素数 3〜50のシクロアルキル基、置換もしく は無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の核炭素数 5〜50の 炭素数 6〜50のァラルキル基、置換もしくは無置換の核炭素数 5〜50のァリールォ キシ基、置換もしくは無置換の核炭素数 5〜50のァリールチオ基、置換もしくは無置 換の炭素数 1〜50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カル ボキシル基、ハロゲン原子、シァノ基、ニトロ基又はヒドロキシル基である。
[0017] R及び!^1〜^6の芳香族炭化水素基の例としては、フヱニル基、 1 _ナフチル基、 2 —ナフチル基、 1 _アントリノレ基、 2_アントリノレ基、 9—アントリル基、 1—フエナンスリ ル基、 2_フエナンスリル基、 3_フエナンスリル基、 4_フエナンスリル基、 9 _フエナ ンスリル基、 1 _ナフタセニル基、 2_ナフタセニル基、 9_ナフタセニル基、 1—ピレ ニル基、 2—ピレニル基、 4—ピレニル基、 2 _ビフヱ二ルイル基、 3 _ビフヱ二ルイル 基、 4—ビフエ二ルイル基、 p—ターフェニル _4—ィル基、 p—ターフェ二ノレ _ 3—ィ ノレ基、 p—ターフェ二ノレ _ 2—ィノレ基、 m—ターフェ二ノレ _4—ィノレ基、 m—ターフェ 二ルー 3—ィル基、 m—ターフェ二ルー 2—ィル基、 o トリノレ基、 m—トリノレ基、 p ト リル基、 p— t ブチルフエニル基、 p— (2 フエニルプロピル)フエニル基、 3—メチ ルー 2—ナフチル基、 4ーメチルー 1 ナフチル基、 4ーメチルー 1 アントリル基、 4' -メチルビフエ二ルイル基、 4" _ t _ブチル― p—ターフェニル -4-ィル基等が挙 げられる。
R及び!^〜 6芳香族複素環基の例としては、 1_ピロリル基、 2_ピロリノレ基、 3_ ピロリル基、ピラジュル基、 2_ピリジニル基、 3_ピリジニル基、 4_ピリジニル基、 1 —インドリル基、 2_インドリル基、 3_インドリル基、 4_インドリル基、 5_インドリル基 、 6 _インドリル基、 7 _インドリル基、 1_イソインドリル基、 2 _イソインドリル基、 3_ イソインドリル基、 4 _イソインドリル基、 5 _イソインドリル基、 6 _イソインドリル基、 7 —イソインドリル基、 2_フリル基、 3_フリル基、 2_ベンゾフラニル基、 3_ベンゾフ ラニノレ基、 4 _ベンゾフラニル基、 5 _ベンゾフラニル基、 6 _ベンゾフラニル基、 Ί— ベンゾフラニル基、 1 イソべンゾフラニル基、 3—イソべンゾフラニル基、 4 イソベン ゾフラニル基、 5—イソべンゾフラニル基、 6—イソべンゾフラニル基、 7—イソべンゾフ ラニノレ基、キノリノレ基、 3—キノリノレ基、 4ーキノリノレ基、 5—キノリノレ基、 6—キノリノレ基 、 7—キノリノレ基、 8—キノリノレ基、 1 イソキノリノレ基、 3—イソキノリノレ基、 4 イソキノリ ル基、 5—イソキノリル基、 6—イソキノリル基、 7—イソキノリノレ基、 8—イソキノリル基、 2 キノキサリニル基、 5 キノキサリニル基、 6 キノキサリニル基、 1一力ルバゾリノレ 基、 2 カノレバゾリノレ基、 3 カノレバゾリノレ基、 4一力ルバゾリル基、 9一力ルバゾリル 基、 1 フエナンスリジニル基、 2—フエナンスリジニル基、 3—フエナンスリジニル基、 4 フエナンスリジニル基、 6—フエナンスリジニル基、 7—フエナンスリジニル基、 8— フエナンスリジニル基、 9_フエナンスリジニル基、 10 フエナンスリジニル基、 1—ァ クリジ二ノレ基、 2—アタリジニノレ基、 3—アタリジニノレ基、 4—アタリジニノレ基、 9—アタリ ジニル基、 1, 7 フエナンスロリン一 2 ィル基、 1, 7 フエナンスロリン一 3 ィル基 、 1, 7_フエナンスロリン _4—ィノレ基、 1, 7_フエナンスロリン _5—ィノレ基、 1, 7- フエナンスロリン _ 6—ィノレ基、 1, 7_フエナンスロリン _8—ィノレ基、 1, 7 _フエナン スロリン一 9 ィル基、 1, 7 フエナンスロリン一 10 ィル基、 1, 8 フエナンスロリン _2—ィノレ基、 1, 8_フエナンスロリン _3—ィノレ基、 1, 8_フエナンスロリン _4—ィ ル基、 1 , 8—フエナンスロリン一 5—ィル基、 1, 8—フエナンスロリン一 6—ィル基、 1, 8—フエナンスロリン一 7—イノレ基、 1 , 8—フエナンスロリン一 9—イノレ基、 1 , 8—フエ ナンスロリン一 10—ィル基、 1, 9 フエナンスロリン一 2—ィル基、 1 , 9 フエナンス 口リン _ 3—ィノレ基、 1 , 9_フエナンスロリン _4—ィノレ基、 1 , 9 _フエナンスロリン _ 5 —ィル基、 1 , 9—フエナンスロリン一 6—ィル基、 1, 9—フエナンスロリン一 7—ィル基 、 1 , 9 _フエナンスロリン _8—ィノレ基、 1, 9 _フエナンスロリン一10—ィノレ基、 1 , 10 —フエナンスロリン _ 2—ィノレ基、 1 , 10—フエナンスロリン _ 3—ィノレ基、 1, 10—フエ ナンスロリン一 4—ィル基、 1, 10—フエナンスロリン一 5—ィル基、 2, 9—フエナンス 口リン一 1—ィル基、 2, 9—フエナンスロリン一 3—ィル基、 2, 9—フエナンスロリン一 4 —ィル基、 2, 9—フエナンスロリン一 5—ィル基、 2, 9—フエナンスロリン一 6—ィル基 、 2, 9—フエナンスロリン一 7—イノレ基、 2, 9—フエナンスロリン一 8—イノレ基、 2, 9— フエナンスロリン一 10—ィル基、 2, 8—フエナンスロリン一 1—ィル基、 2, 8—フエナ ンスロリン一 3 ィル基、 2, 8 フエナンスロリン一 4—ィル基、 2, 8 フエナンスロリン 5—ィノレ基、 2, 8 フエナンスロリン 6—ィノレ基、 2, 8 フエナンスロリン 7—ィ ル基、 2, 8 フエナンスロリンー9ーィル基、 2, 8 フエナンスロリン 10—ィル基、 2 , 7 フエナンスロリン 1ーィノレ基、 2, 7 フエナンスロリン 3—ィノレ基、 2, 7 フエ ナンスロリン一 4—ィル基、 2, 7 フエナンスロリン一 5—ィル基、 2, 7 フエナンスロ リン一 6—ィル基、 2, 7 フエナンスロリン一 8—ィル基、 2, 7 フエナンスロリン一 9 ーィル基、 2, 7 フエナンスロリン 10—ィル基、 1 フエナジニル基、 2 フエナジ ニル基、 1ーフエノチアジニル基、 2 フエノチアジニル基、 3 フエノチアジニル基、 4ーフエノチアジニル基、 10—フエノチアジニル基、 1 フエノキサジニル基、 2—フエ ノキサジニル基、 3 _フエノキサジニル基、 4 _フエノキサジニル基、 10—フエノキサジ ニル基、 2—ォキサゾリル基、 4—ォキサゾリル基、 5—ォキサゾリル基、 2—ォキサジ ァゾリル基、 5 _ォキサジァゾリル基、 3—フラザニル基、 2 _チェニル基、 3_チェ二 ル基、 2—メチルピロール— 1—ィル基、 2—メチルビロール— 3—ィル基、 2—メチノレ ピロ一ノレ _4—ィノレ基、 2—メチノレピロ一ノレ _ 5—ィノレ基、 3—メチノレピロ一ノレ _ 1—ィ ル基、 3—メチルピロール— 2—ィル基、 3—メチルビロール— 4—ィル基、 3—メチノレ ピロール— 5—ィル基、 2_t—ブチルピロール— 4—ィル基、 3 _ (2—フエニルプロ ピル)ピロ一ルー 1ーィル基、 2—メチルー 1 インドリル基、 4ーメチルー 1 インドリ ル基、 2—メチルー 3 インドリル基、 4ーメチルー 3 インドリル基、 2— t ブチル 1 インドリル基、 4 t ブチル 1 インドリル基、 2— t ブチル 3—インドリル基、 4 t —プチル 3 _インドリル基等が挙げられる。
[0019] R及び!^〜 6のアルキル基の例としては、メチノレ基、ェチル基、プロピル基、イソプ 口ピル基、 n_ブチル基、 s_ブチル基、イソブチル基、 t_ブチル基、 n_ペンチル基 、 n—へキシル基、 n—ヘプチル基、 n—ォクチル基、ヒドロキシメチル基、 1ーヒドロキ シェチル基、 2—ヒドロキシェチル基、 2—ヒドロキシイソブチル基、 1, 2—ジヒドロキシ ェチル基、 1, 3—ジヒドロキシイソプロピル基、 2, 3—ジヒドロキシ一 t_ブチル基、 1 , 2, 3 _トリヒドロキシプロピル基、クロロメチル基、 1 _クロ口ェチル基、 2_クロロェチ ノレ基、 2_クロ口イソブチル基、 1 , 2—ジクロ口ェチル基、 1, 3—ジクロ口イソプロピノレ 基、 2, 3—ジクロ口— _ブチル基、 1 , 2, 3 _トリクロ口プロピル基、ブロモメチル基、 1ーブロモェチノレ基、 2—ブロモェチノレ基、 2—ブロモイソブチノレ基、 1, 2—ジブロモ ェチル基、 1, 3—ジブロモイソプロピル基、 2, 3—ジブ口モー t ブチル基、 1 , 2, 3 —トリブロモプロピル基、ョードメチル基、 1ーョードエチル基、 2—ョードエチル基、 2 ョードイソブチル基、 1, 2—ジョードエチル基、 1 , 3—ジョードイソプロピル基、 2, 3—ジョードー tーブチノレ基、 1 , 2, 3—トリョードプロピノレ基、アミノメチノレ基、 1 アミ ノエチノレ基、 2—了ミノェチノレ基、 2—了ミノイソブチノレ基、 1 , 2—ジ了ミノェチノレ基、 1 , 3—ジァミノイソプロピル基、 2, 3—ジァミノ一 t ブチル基、 1, 2, 3—トリァミノプロ ピル基、シァノメチル基、 1—シァノエチル基、 2—シァノエチル基、 2—シァノイソブ チル基、 1, 2 ジシァノエチル基、 1, 3 ジシァノイソプロピル基、 2, 3 ジシァノー t_ブチル基、 1, 2, 3_トリシアノプロピル基、ニトロメチル基、 1 _ニトロェチル基、 2 —ニトロェチル基、 2_ニトロイソブチル基、 1 , 2—ジニトロェチル基、 1 , 3—ジニトロ イソプロピル基、 2, 3—ジニトロ— _ブチル基、 1, 2, 3_トリニトロプロピル基等が 挙げられる。
[0020] R及び!^〜 6のシクロアルキル基の例としては、例えば、シクロプロピル基、シクロ ブチル基、シクロペンチル基、シクロへキシル基、 4—メチルシクロへキシル基、 1—ァ ダマンチル基、 2—ァダマンチル基、 1ーノノレボノレニノレ基、 2 _ノルボルニル基等が挙 げられる。
R及び ^〜 6のアルコキシ基は、—OYで表される基であり、 Yの例としては、前記 アルキル基と同様の例が挙げられる。
[0021] R及び!^〜 6のァラルキル基の例としては、ベンジル基、 1—フエニルェチル基、 2 —フエニルェチル基、 1_フエ二ルイソプロピル基、 2 _フエ二ルイソプロピル基、フエ ニル一 t_ブチル基、 ひ一ナフチルメチル基、 1_ひ一ナフチルェチル基、 2- α - ナフチルェチル基、 1- α—ナフチルイソプロピル基、 2_ a—ナフチルイソプロピノレ 基、 β—ナフチルメチル基、 1_ β—ナフチルェチル基、 2- β—ナフチルェチル基 、 1_ β—ナフチルイソプロピル基、 2— β—ナフチルイソプロピル基、 1_ピロリルメ チル基、 2— (1_ピロリル)ェチル基、 ρ_メチルベンジル基、 m_メチルベンジル基 、 o—メチノレべンジノレ基、 p—クロ口べンジノレ基、 m—クロ口べンジノレ基、 o_クロ口ベン ジノレ基、 p_ブロモベンジル基、 m_ブロモベンジル基、 o_ブロモベンジル基、 p_ ョードベンジル基、 m—ョードベンジル基、 o ョードベンジノレ基、 p ヒドロキシベン ジノレ基、 m—ヒドロキシベンジル基、 o ヒドロキシベンジル基、 p ァミノべンジル基、 m—ァミノべンジル基、 o ァミノべンジル基、 p 二トロべンジル基、 m—二トロべンジ ル基、 o 二トロべンジル基、 p シァノベンジル基、 m—シァノベンジル基、 o シァ ノベンジル基、 1—ヒドロキシ一 2—フエニルイソプロピル基、 1—クロ口一 2—フエ二ノレ イソプロピル基等が挙げられる。
[0022] R及び ^〜 6のァリールォキシ基は、 OY'と表され、 Y'の例としてはフエニル基 、 1 ナフチル基、 2 ナフチル基、 1 アントリル基、 2 アントリル基、 9 アントリル 基、 1 フエナンスリル基、 2 フエナンスリル基、 3 フエナンスリル基、 4 フエナン スリル基、 9_フエナンスリル基、 1_ナフタセニル基、 2_ナフタセニル基、 9_ナフタ セニノレ基、 1—ピレニル基、 2—ピレニル基、 4—ピレニル基、 2 _ビフヱ二ルイル基、 3—ビフエ二ルイル基、 4—ビフエ二ルイル基、 p—ターフェニル _4—ィル基、 p—タ 一フエニル _3—ィル基、 p—ターフェニル _2—ィル基、 m—ターフェ二ノレ _4—ィ ノレ基、 m—ターフェ二ノレ _ 3—ィノレ基、 m—ターフェ二ノレ _ 2—ィノレ基、 o_トリノレ基、 m—トリル基、 ρ—トリノレ基、 p_t_ブチルフエニル基、 p_ (2—フエニルプロピノレ)フ ェニノレ基、 3_メチル _2_ナフチル基、 4_メチル _1_ナフチル基、 4_メチノレ一 1 アントリル基、 4'ーメチルビフエ二ルイル基、 4"— tーブチルー p—ターフェ二ルー 4ーィノレ基、 2 ピロリル基、 3 ピロリル基、ピラジュル基、 2 ピリジニル基、 3 ピリ ジニル基、 4 ピリジニノレ基、 2 インドリル基、 3 インドリル基、 4 インドリル基、 5 —インドリル基、 6 _インドリル基、 7 _インドリル基、 1_イソインドリル基、 3 _イソイン ドリノレ基、 4_イソインドリル基、 5_イソインドリル基、 6_イソインドリル基、 7_イソィ ンドリノレ基、 2—フリノレ基、 3—フリノレ基、 2 _ベンゾフラニル基、 3 _ベンゾフラニル基 、 4 _ベンゾフラニル基、 5 _ベンゾフラニル基、 6 _ベンゾフラニル基、 7 _ベンゾフ ラニル基、 1_イソべンゾフラニル基、 3 _イソべンゾフラニル基、 4_イソベンゾフラ二 ル基、 5 _イソべンゾフラニル基、 6 _イソべンゾフラニル基、 7 _イソべンゾフラニル 基、 2—キノリノレ基、 3—キノリノレ基、 4ーキノリノレ基、 5—キノリノレ基、 6—キノリノレ基、 7 —キノリル基、 8—キノリノレ基、 1_イソキノリル基、 3_イソキノリノレ基、 4_イソキノリノレ 基、 5_イソキノリノレ基、 6_イソキノリル基、 7_イソキノリル基、 8_イソキノリノレ基、 2 キノキサリニル基、 5—キノキサリニル基、 6—キノキサリニル基、 1一力ルバゾリル基 、 2 カノレバゾリノレ基、 3 カノレバゾリノレ基、 4一力ルバゾリル基、 1 フエナンスリジ二 ル基、 2 フエナンスリジニル基、 3 フエナンスリジニル基、 4 フエナンスリジニル基 、 6—フエナンスリジニル基、 7—フエナンスリジニル基、 8—フエナンスリジニル基、 9 フエナンスリジニル基、 10—フエナンスリジニル基、 1—アタリジニル基、 2—アタリ ジニル基、 3—アタリジニル基、 4—アタリジニル基、 9—アタリジニル基、 1, 7—フエナ ンスロリン一 2—ィル基、 1, 7 フエナンスロリン一 3—ィル基、 1, 7 フエナンスロリン 4ーィノレ基、 1, 7—フエナンスロリンー5—ィノレ基、 1, 7—フエナンスロリンー6—ィ ル基、 1, 7—フエナンスロリン一 8—ィル基、 1, 7—フエナンスロリン一 9—ィル基、 1, 7_フエナンスロリン一10—ィノレ基、 1, 8_フエナンスロリン _2—ィノレ基、 1, 8_フエ ナンスロリン一 3—ィル基、 1, 8—フエナンスロリン一 4—ィル基、 1, 8—フエナンスロ リン _5—ィノレ基、 1, 8_フエナンスロリン _6—ィノレ基、 1, 8_フエナンスロリン _7 —ィノレ基、 1, 8_フエナンスロリン _9—ィノレ基、 1, 8_フエナンスロリン一10—ィノレ 基、 1, 9_フエナンスロリン _2—ィノレ基、 1, 9_フエナンスロリン _3—ィノレ基、 1, 9 —フエナンスロリン _4—ィノレ基、 1, 9_フエナンスロリン _5—ィノレ基、 1, 9_フエナ ンスロリン一 6—ィル基、 1, 9—フエナンスロリン一 7—ィル基、 1, 9—フエナンスロリン —8—イノレ基、 1 , 9—フエナンスロリン一 10—イノレ基、 1, 10—フエナンスロリン一 2— イノレ基、 1 , 10—フエナンスロリン 3—ィノレ基、 1, 10—フエナンスロリン 4ーィノレ 基、 1 , 10—フエナンスロリン一 5—ィル基、 2, 9—フエナンスロリン一 1—ィル基、 2, 9_フエナンスロリン _ 3—ィノレ基、 2, 9_フエナンスロリン _4—ィノレ基、 2, 9 _フエ ナンスロリン一 5 ィル基、 2, 9 フエナンスロリン一 6 ィル基、 2, 9 フエナンスロ リン一 7 ィル基、 2, 9 フエナンスロリン一 8 ィル基、 2, 9 フエナンスロリン一 10 —ィル基、 2, 8 フエナンスロリン一 1—ィル基、 2, 8 フエナンスロリン一 3 ィル基 、 2, 8 フエナンスロリン一 4 ィル基、 2, 8 フエナンスロリン一 5 ィル基、 2, 8— フエナンスロリン一 6—ィノレ基、 2, 8_フエナンスロリン一 7—ィノレ基、 2, 8 _フエナン スロリン一 9 ィル基、 2, 8 フエナンスロリン一 10 ィル基、 2, 7 フエナンスロリン _ 1—ィノレ基、 2, 7 _フエナンスロリン _ 3—ィノレ基、 2, 7_フエナンスロリン _4—ィ ル基、 2, 7 フエナンスロリン一 5 ィル基、 2, 7 フエナンスロリン一 6 ィル基、 2, 7 フエナンスロリン 8—ィノレ基、 2, 7 フエナンスロリン 9ーィノレ基、 2, 7 フエ ナンスロリン 10—ィル基、 1 フエナジニル基、 2—フエナジニル基、 1ーフエノチア ジニル基、 2 フヱノチアジニル基、 3 フエノチアジニル基、 4 フエノチアジニル基 、 1 フエノキサジニル基、 2 フエノキサジニル基、 3 フエノキサジニル基、 4 フエ ノキサジニル基、 2—ォキサゾリル基、 4ーォキサゾリル基、 5—ォキサゾリル基、 2— ォキサジァゾリル基、 5 ォキサジァゾリル基、 3 フラザニル基、 2 チェニル基、 3 チェニル基、 2 メチルピロ一ルー 1ーィル基、 2 メチルピロ一ルー 3—ィル基、 2 メチルピロ一ルー 4ーィル基、 2—メチルピロ一ルー 5—ィル基、 3—メチルピロ一 ノレ 1ーィノレ基、 3—メチルピロ一ルー 2—ィル基、 3—メチルピロ一ルー 4ーィル基、 3 メチルピロール— 5—ィル基、 2_t—ブチルピロール— 4—ィル基、 3 _ (2_フエ ニルプロピノレ)ピロール— 1—ィル基、 2_メチル_ 1 _ィンドリル基、 4_メチル_ 1 _ インドリル基、 2_メチル _ 3_インドリル基、 4_メチル _ 3_インドリル基、 2_t—ブ チノレ 1 _インドリノレ基、 4_t_ブチル 1 _インドリル基、 2_t_ブチル 3_インドリル基 、 4_t_ブチル 3 _インドリル基等が挙げられる。
R及び I^ R16のァリールチオ基は、—SY'と表され、 Y'の例としては、前記ァリー ルォキシ基の Y'と同様の例が挙げられる。 R及び ^〜 6のアルコキシカルボニル基は一 COOZと表され、 Zの例としては、前 記アルキル基と同様の例が挙げられる。
R及び ^〜 6のシリル基としては、例えば、トリメチルシリル基、トリェチルシリル基、 t—プチルジメチルシリル基、ビュルジメチルシリル基、プロピルジメチルシリル基等が 挙げられる。
R及び I^ R16のハロゲン原子としては、フッ素、塩素、臭素、ヨウ素等が挙げられる また、前記 R及び 〜1 16の置換基としては、前記 Ar1及び Ar2の置換基と同様の例 が挙げられる。
[0024] 一般式(1)において、 m及び nは、それぞれ 0〜5 (好ましくは 0〜3、より好ましくは 0 〜2)の整数であり、かつ m+nは:!〜 5 (好ましくは:!〜 3)の整数である。
一般式(1)において、 P及び qは、それぞれ 0〜5 (好ましくは 0〜3、より好ましくは 0 〜2)の整数であり、かつ p + qは 1〜5 (好ましくは 1〜3)の整数である。
一般式(1)において、 r及び sは、それぞれ 0〜4 (好ましくは 0〜2)の整数、 tは 0〜 6 (好ましくは 0〜2)の整数である。
なお、 m, n, p, q, r, s及び tが 1以上の時、各々の L及び Rは同一でも異なってい ても良い。
[0025] 本発明の一般式(1)で表されるビスアントラセン誘導体の具体例を以下に示すが、 これら例示化合物に限定されるものではない。
[化 4]
Figure imgf000016_0001
[0026] [化 5]
Figure imgf000017_0001
[0027] [化 6]
Figure imgf000018_0001
Figure imgf000018_0002
[0028] [化 7]
Figure imgf000019_0001
ォVM
Figure imgf000019_0002
[0029] 本発明のビスアントラセン誘導体は、公知の方法により合成したァリールボロン酸誘 導体とハロゲン化ァリール誘導体を用いて鈴木カップリング反応を行うことにより合成 すること力 Sできる。その例を下記表の:!〜 11に示す。
(表中、 L、
Figure imgf000019_0003
Ar2、!^〜尺16、 R、 m, n, p, q, r及び sは、前記と同じであり、 R17〜R 2°は各々独立して水酸基又はアルコキシ基、 X1及び X2は、各々ハロゲン原子を示す
。 )
[0030] [表 1]
Figure imgf000020_0001
[0031] [表 2]
Figure imgf000021_0001
本発明のビスアントラセン誘導体は、有機 EL素子用発光材料であると好ましぐま た有機 EL素子用ホスト材料であると特に好ましい。
本発明の有機 EL素子は、陽極と陰極間に少なくとも発光層を含む一層又は複数 層からなる有機薄膜層が挟持されている有機エレクト口ルミネッセンス素子において、 前記有機薄膜層が前記一般式(1)に記載のビスアントラセン誘導体から選ばれる少 なくとも 1種類を単独もしくは混合物の成分として含有する。
また、本発明の有機 EL素子は、前記発光層が、さらにァリールァミン化合物及び Z 又はスチリルアミン化合物を含有すると好ましレ、。
スチリルァミン化合物としては、下記一般式 (A)で表されるものが好ましい。
Figure imgf000022_0001
(式中、 Ar3は、フエニル基、ビフエ二ル基、ターフェニル基、スチルベン基、ジスチリ ルァリール基から選ばれる基であり、 Ar4及び Ar5は、それぞれ水素原子又は炭素数 が 6〜20の芳香族炭化水素基であり、 Ar3、 Ar4及び Ar5は置換されていてもよレ、。 p' は 1〜4の整数である。さらに好ましくは Ar4又は Ar5の少なくとも一方はスチリル基で 置換されている。
ただし、 Ar3〜Ar5のうち少なくとも一つは、置換もしくは無置換のスチリル基を含む
。)
ここで、炭素数が 6〜20の芳香族炭化水素基としては、フヱニル基、ナフチル基、 アントラニル基、フエナンスリル基、ターフェニル基等が挙げられる。
ァリールァミン化合物としては、下記一般式(B)で表されるものが好ましい。
[化 9]
Figure imgf000022_0002
( B )
(式中、 Ar6〜Ar8は、それぞれ置換もしくは無置換の核炭素数 5〜40のァリール基 である。 q'は 1〜4の整数である。 ) [0035] ここで、核炭素数が 5〜40のァリール基としては、例えば、フエニル基、ナフチル基 、アントラニル基、フエナンスリル基、ピレニル基、コロニル基、ビフエ二ル基、ターフェ ニル基、ピロ一リル基、フラニル基、チオフェニル基、ベンゾチオフェニル基、ォキサ ジァゾリル基、ジフエ二ルアントラニル基、インドリル基、カルバゾリル基、ピリジル基、 ベンゾキノリル基、フルオランテュル基、ァセナフトフルオランテュル基、スチルベン 基、ペリレニル基、クリセ二ル基、ピセニル基、トリフヱニレニル基、ルビセニル基、ベ ンゾアントラセニル基、フエ二ルアントラニル基、ビスアントラセニル基、又は下記一般 式(C) , (D)で示されるァリール基等が挙げられ、ナフチル基、アントラニル基、クリセ ニル基、ピレニル基、又は一般式 (D)で示されるァリール基が好ましい。
[0036] [化 10]
Figure imgf000023_0001
(C) (D)
(一般式(C)におレ、て、 r,は 1〜3の整数である。 )
[0037] なお、前記ァリール基の好ましい置換基としては、炭素数 1〜6のアルキル基(ェチ ル基、メチノレ基、 i プロピル基、 n プロピル基、 s ブチノレ基、 t ブチル基、ペン チノレ基、へキシル基、シクロペンチル基、シクロへキシル基等)、炭素数 1〜6のアル コキシ基(エトキシ基、メトキシ基、 i プロポキシ基、 n プロポキシ基、 s ブトキシ基 、 t—ブトキシ基、ペントキシ基、へキシルォキシ基、シクロペントキシ基、シクロへキシ ルォキシ基等)、核炭素数 5〜40のァリール基、核炭素数 5〜40のァリール基で置 換されたアミノ基、核炭素数 5〜40のァリール基を有するエステル基、炭素数:!〜 6の アルキル基を有するエステル基、シァノ基、ニトロ基、ハロゲン原子等が挙げられる。
[0038] 以下、本発明の有機 EL素子の素子構成について説明する。
本発明の有機 EL素子の代表的な素子構成としては、
(1)陽極/発光層/陰極 (2)陽極/正孔注入層/発光層/陰極
(3)陽極/発光層/電子注入層/陰極
(4)陽極/正孔注入層/発光層/電子注入層/陰極
(5)陽極/有機半導体層/発光層/陰極
(6)陽極/有機半導体層/電子障壁層/発光層/陰極
(7)陽極/有機半導体層/発光層/付着改善層/陰極
(8)陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
(9)陽極/絶縁層/発光層/絶縁層/陰極
(10)陽極/無機半導体層/絶縁層/発光層/絶縁層/陰極
(11)陽極/有機半導体層/絶縁層/発光層/絶縁層/陰極
(12)陽極/絶縁層/正孔注入層/正孔輸送層/発光層/絶縁層/陰極
(13)陽極/絶縁層/正孔注入層/正孔輸送層/発光層/電子注入層/陰極 などの構造を挙げることができる。
これらの中で通常(8)の構成が好ましく用いられる力 これらに限定されるものでは ない。
また、本発明の有機 EL素子において、本発明のビスアントラセン誘導体は、上記 のどの有機層に用いられてもよいが、これらの構成要素の中の発光帯域又は正孔輸 送帯域に含有されていることが好ましぐ含有させる量は 30〜: 100モル%から選ばれ る。
この有機 EL素子は、通常透光性の基板上に作製する。この透光性基板は有機 EL 素子を支持する基板であり、その透光性については、 400〜700nmの可視領域の 光の透過率が 50。/o以上であるものが望ましぐさらに平滑な基板を用いるのが好まし レ、。
このような透光性基板としては、例えば、ガラス板、合成樹脂板などが好適に用いら れる。ガラス板としては、特にソーダ石灰ガラス、ノ リウム 'ストロンチウム含有ガラス、 鉛ガラス、アルミノケィ酸ガラス、ホウケィ酸ガラス、バリウムホウケィ酸ガラス、石英な どで成形された板が挙げられる。また、合成樹脂 板としては、ポリカーボネート樹脂 、アクリル樹脂、ポリエチレンテレフタレート樹脂、ポリエーテルサルファイド樹脂、ポリ サルフォン樹脂などの板か挙げられる。
[0040] 次に、陽極は、正孔を正孔輸送層又は発光層に注入する役割を担うものであり、 4 . 5eV以上の仕事関数を有することが効果的である。本発明に用いられる陽極材料 の具体例としては、酸化インジウム錫合金 (ITO)、酸化インジウム亜鉛合金 (IZO)、 酸化錫 (NESA)、金、銀、白金、銅等が適用できる。また陰極としては、電子輸送層 又は発光層に電子を注入する目的で、仕事関数の小さい材料が好ましい。
陽極はこれらの電極物質を蒸着法やスパッタリング法等の方法で薄膜を形成させる ことにより作製することができる。
このように発光層からの発光を陽極から取り出す場合、陽極の発光に対する透過率 が 10%より大きくすることが好ましい。また陽極のシート抵抗は、数百 Ω /口以下が 好ましレ、。陽極の膜厚は材料にもよる力 通常 10nm〜l z m、好ましくは 10〜200n mの範囲で選択される。
[0041] 本発明の有機 EL素子においては、発光層は、
(i)注入機能;電界印加時に陽極又は正孔注入層より正孔を注入することができ、陰 極又は電子注入層より電子を注入することができる機能
(ii)輸送機能;注入した電荷 (電子と正孔)を電界の力で移動させる機能
(iii)発光機能;電子と正孔の再結合の場を提供し、これを発光につなげる機能 を有する。
この発光層を形成する方法としては、例えば蒸着法、スピンコート法、 LB法等の公 知の方法を適用することができる。発光層は、特に分子堆積膜であることが好ましレ、 。ここで分子堆積膜とは、気相状態の材料化合物から沈着され形成された薄膜や、 溶液状態又は液相状態の材料ィヒ合物から固体化され形成された膜のことであり、通 常この分子堆積膜は、 LB法により形成された薄膜 (分子累積膜)とは凝集構造、高 次構造の相違や、それに起因する機能的な相違により区分することができる。
また、特開昭 57— 51781号公報に開示されているように、樹脂等の結着剤と材料 化合物とを溶剤に溶かして溶液とした後、これをスピンコート法等により薄膜ィ匕するこ とによっても、発光層を形成することができる。
本発明の目的が損なわれない範囲で、所望により、発光層に、本発明のビスアント ラセン誘導体からなる発光材料以外の他の公知の発光材料を含有させてもよぐまた 、本発明の発光材料を含む発光層に、他の公知の発光材料を含む発光層を積層し てもよい。
[0042] 次に、正孔注入'輸送層は、発光層への正孔注入を助け、発光領域まで輸送する 層であって、正孔移動度が大きぐイオンィ匕エネルギーが通常 5. 5eV以下と小さレ、。 このような正孔注入 ·輸送層としてはより低い電界強度で正孔を発光層に輸送する材 料が好ましぐさらに正孔の移動度力 例えば 104〜: !OV/cmの電界印加時に、少 なくとも 10— 4cm2ZV'秒であるものが好ましい。このような材料としては、従来、光導 伝材料において正孔の電荷輸送材料として慣用されているものや、有機 EL素子の 正孔注入層に使用されている公知のものの中力 任意のものを選択して用いること ができる。
[0043] 具体例としては、例えば、トリァゾール誘導体 (米国特許 3, 112, 197号明細書等 参照)、ォキサジァゾール誘導体 (米国特許 3, 189, 447号明細書等参照)、イミダ ゾール誘導体(特公昭 37— 16096号公報等参照)、ポリアリールアルカン誘導体( 国 言午 3, 615, 402 明糸田 、同 3, 820, 989 明糸田 、同 ^3, 542, 544 号明細書、特公昭 45— 555号公報、同 51— 10983号公報、特開昭 51— 93224号 公報、同 55— 17105号公報、同 56— 4148号公報、同 55— 108667号公報、同 55 156953号公報、同 56— 36656号公報等参照)、ピラゾリン誘導体及びピラゾロン 誘導体 (米国特許第 3, 180, 729号明細書、同第 4, 278, 746号明細書、特開昭 5 5— 88064号公報、同 55— 88065号公報、同 49— 105537号公報、同 55— 5108 6号公報、同 56— 80051号公報、同 56— 88141号公報、同 57— 45545号公報、 同 54—112637号公報、同 55— 74546号公報等参照)、フエ二レンジァミン誘導体 (米国特許第 3, 615, 404号明細書、特公昭 51— 10105号公報、同 46— 3712号 公報、同 47— 25336号公報、特開昭 54— 53435号公報、同 54— 110536号公報 、同 54— 119925号公報等参照)、ァリールァミン誘導体(米国特許第 3, 567, 450 号明細書、同第 3, 180, 703号明細書、同第 3, 240, 597号明細書、同第 3, 658 , 520 糸田 、
Figure imgf000026_0001
232, 103 糸田 、 ^4, 175, 961 糸田 、 4 , 012, 376号明糸田書、特公昭 49一 35702号公報、同 39— 27577号公報、特開昭 55— 144250号公報、同 56— 119132号公報、同 56— 22437号公報、西独特許 第 1 , 110, 518号明細書等参照)、ァミノ置換カルコン誘導体 (米国特許第 3, 526, 501号明細書等参照)、ォキサゾール誘導体 (米国特許第 3, 257, 203号明細書等 に開示のもの)、スチリルアントラセン誘導体 (特開昭 56— 46234号公報等参照)、フ ルォレノン誘導体 (特開昭 54— 110837号公報等参照)、ヒドラゾン誘導体 (米国特 許第 3, 717, 462号明糸田書、特開昭 54— 59143号公報、同 55— 52063号公報、 同 55— 52064号公報、同 55— 46760号公報、同 55— 85495号公報、同 57— 11 350号公報、同 57— 148749号公報、特開平 2— 311591号公報等参照)、スチル ベン誘導体(特開昭 61— 210363号公報、同第 61— 228451号公報、同 61— 146 42号公報、同 61— 72255号公報、同 62— 47646号公報、同 62— 36674号公報、 同 62— 10652号公報、同 62— 30255号公報、同 60— 93455号公報、同 60— 94 462号公報、同 60— 174749号公報、同 60— 175052号公報等参照)、シラザン誘 導体 (米国特許第 4, 950, 950号明細書)、ポリシラン系(特開平 2— 204996号公 報)、ァニリン系共重合体(特開平 2— 282263号公報)、特開平 1 211399号公報 に開示されてレ、る導電性高分子オリゴマー(特にチォフェンオリゴマー)等を挙げるこ とができる。
正孔注入層の材料としては上記のものを使用することができる力 ポルフィリン化合 物(特開昭 63— 2956965号公報等に開示のもの)、芳香族第三級ァミン化合物及 びスチリルァミン化合物(米国特許第 4, 127, 412号明細書、特開昭 53— 27033号 公報、同 54— 58445号公報、同 54— 149634号公報、同 54— 64299号公報、同 5 5— 79450号公報、同 55— 144250号公報、同 56— 119132号公報、同 61— 295 558号公報、同 61— 98353号公報、同 63— 295695号公報等参照)、特に芳香族 第三級ァミン化合物を用いることが好ましい。
また米国特許第 5, 061 , 569号に記載されている 2個の縮合芳香族環を分子内に 有する、例えば 4, 4,一ビス(N_ (1—ナフチル)一N—フエニルァミノ)ビフエ二ノレ( 以下 NPDと略記する)、また特開平 4— 308688号公報に記載されているトリフエ二 ルァミンユニットが 3つスターバースト型に連結された 4, 4', 4 "—トリス(N— (3—メチ ルフヱニル) _N_フエニルァミノ)トリフエニルァミン(以下 MTDATAと略記する)等 を挙げることができる。
[0044] また、前記ビスアントラセン誘導体の他、 p型 Si、 p型 SiC等の無機化合物も正孔注 入層の材料として使用することができる。
正孔注入、輸送層は上述した化合物を、例えば真空蒸着法、スピンコート法、キヤ スト法、 LB法等の公知の方法により薄膜ィ匕することにより形成することができる。正孔 注入、輸送層としての膜厚は特に制限はなレ、が、通常は 5nm〜5 z mである。
また、有機半導体層は発光層への正孔注入又は電子注入を助ける層であって、 1 0— 1QS/cm以上の導電率を有するものが好適である。このような有機半導体層の材 料としては、含チォフェンオリゴマーゃ特開平 8— 193191号公報に開示してある含 ァリールァミンオリゴマー等の導電性オリゴマー、含ァリールァミンデンドリマー等の 導電性デンドリマー等を用いることができる。
[0045] 次に、電子注入層'輸送層は、発光層への電子の注入を助け、発光領域まで輸送 する層であって、電子移動度が大きぐまた付着改善層は、この電子注入層の中で 特に陰極との付着が良い材料からなる層である。
また、有機 EL素子は発光した光が電極 (この場合は陰極)により反射するため、直 接陽極から取り出される発光と、電極による反射を経由して取り出される発光とが干 渉することが知られている。この干渉効果を効率的に利用するため、電子輸送層は 数 nm〜数 μ ΐηの膜厚で適宜選ばれるが、特に膜厚が厚いとき、電圧上昇を避ける ために、 104〜10 /(:111の電界印加時に電子移動度が少なくとも10—5(:1112/¥3以 上であることが好ましい。
電子注入層に用いられる材料としては、 8—ヒドロキシキノリン又はその誘導体の金 属錯体ゃォキサジァゾール誘導体が好適である。上記 8—ヒドロキシキノリン又はそ の誘導体の金属錯体の具体例としては、ォキシン (一般に 8 _キノリノール又は 8—ヒ ドロキシキノリン)のキレートを含む金属キレートォキシノイド化合物、例えばトリス(8— キノリノ一ノレ)アルミニウムを電子注入材料として用いることができる。
[0046] 一方、ォキサジァゾール誘導体としては、以下の一般式で表される電子伝達化合 物が挙げられる。
[化 11]
Figure imgf000029_0001
(式中、 Ar1, Ar2, Ar3, Ar5, Ar6, Ar9はそれぞれ置換又は無置換のァリール基を示 し、それぞれ互いに同一であっても異なっていてもよレ、。また Ar4, Ar7, Ar8は置換又 は無置換のァリーレン基を示し、それぞれ同一であっても異なっていてもよい) ここでァリール基としてはフエニル基、ビフヱニル基、アントラニル基、ペリレニル基、 ピレニル基が挙げられる。また、ァリーレン基としてはフエ二レン基、ナフチレン基、ビ フエ二レン基、アントラニレン基、ペリレニレン基、ピレニレン基などが挙げられる。また 、置換基としては炭素数 1〜: 10のアルキル基、炭素数 1〜: 10のアルコキシ基又はシ ァノ基等が挙げられる。この電子伝達化合物は薄膜形成性のものが好ましレ、。
上記電子伝達性化合物の具体例としては下記のものを挙げることができる。
[化 12]
Figure imgf000029_0002
さらに、電子注入層及び電子輸送層に用いられる材料として、下記一般式 (Ε)〜α )で表されるものち用いることができる。
[化 13]
Figure imgf000030_0001
(一般式 (Ε)及び (F)中、 Α Α3は、それぞれ独立に、窒素原子又は炭素原子であ る。
Ar1は、置換もしくは無置換の核炭素数 6〜60のァリール基、又は置換もしくは無 置換の核炭素数 3〜60のへテロアリール基であり、 Ar2は、水素原子、置換もしくは 無置換の核炭素数 6〜60のァリール基、置換もしくは無置換の核炭素数 3〜60のへ テロアリール基、置換もしくは無置換の炭素数 1〜20のアルキル基、又は置換もしく は無置換の炭素数 1〜20のアルコキシ基、あるいはこれらの 2価の基である。ただし 、 Ar1及び Ar2のいずれか一方は、置換もしくは無置換の核炭素数 10〜60の縮合環 基、又は置換もしくは無置換の核炭素数 3〜60のモノへテロ縮合環基である。
ΐΛ L2及び Lは、それぞれ独立に、単結合、置換もしくは無置換の核炭素数 6〜60 のァリーレン基、置換もしくは無置換の核炭素数 3〜60のへテロアリーレン基、又は 置換もしくは無置換のフルォレニレン基である。
Rは、水素原子、置換もしくは無置換の核炭素数 6〜60のァリール基、置換もしくは 無置換の核炭素数 3〜60のへテロアリール基、置換もしくは無置換の炭素数:!〜 20 のアルキル基、又は置換もしくは無置換の炭素数 1〜20のアルコキシ基であり、 ηは 05の整数であり、 ηが 2以上の場合、複数の Rは同一でも異なっていてもよぐまた 、隣接する複数の R基同士で結合して、炭素環式脂肪族環又は炭素環式芳香族環 を形成してレ、てもよレ、。 )で表される含窒素複素環誘導体。 [0049] HAr-L-Ar'-A
(式中、 HArは、置換基を有していてもよい炭素数 3〜40の含窒素複素環であり、 L は、単結合、置換基を有していてもよい炭素数 6〜60のァリーレン基、置換基を有し てレ、てもよレ、炭素数 3〜60のへテロアリーレン基又は置換基を有してレ、てもよレ、フル ォレニレン基であり、 Ar1は、置換基を有していてもよい炭素数 6〜60の 2価の芳香族 炭化水素基であり、 Ar2は、置換基を有していてもよい炭素数 6〜60のァリール基又 は置換基を有してレ、てもよレ、炭素数 3〜60のへテロアリール基である。 )で表される 含窒素複素環誘導体。
[0050] [化 14]
Figure imgf000031_0001
[0051] (式中、 X及び Yは、それぞれ独立に炭素数:!〜 6の飽和若しくは不飽和の炭化水素 基、アルコキシ基、アルケニルォキシ基、アルキニルォキシ基、ヒドロキシ基、置換若 しくは無置換のァリール基、置換若しくは無置換のへテロ環又は Xと Yが結合して飽 和又は不飽和の環を形成した構造であり、 R〜Rは、それぞれ独立に、水素原子、
1 4
ハロゲン原子、置換もしくは無置換の炭素数 1から 6までのアルキル基、アルコキシ基 、ァリールォキシ基、パーフルォロアルキル基、パーフルォロアルコキシ基、アミノ基 、アルキルカルボニル基、ァリールカルボニル基、アルコキシカルボニル基、ァリール ォキシカルボニル基、ァゾ基、アルキルカルボニルォキシ基、ァリールカルボニルォ キシ基、アルコキシカルボニルォキシ基、ァリールォキシカルボニルォキシ基、スルフ ィニノレ基、スルフォニル基、スルファニル基、シリノレ基、力ルバモイル基、ァリーノレ基、 ヘテロ環基、アルケニル基、アルキニル基、ニトロ基、ホルミノレ基、ニトロソ基、ホルミ ルォキシ基、イソシァノ基、シァネート基、イソシァネート基、チオシァネート基、イソチ オシァネート基もしくはシァノ基又は隣接した場合には置換若しくは無置換の環が縮 合した構造である。 )で表されるシラシクロペンタジェン誘導体。
[化 15]
Figure imgf000032_0001
( I )
[0053] (式中、 R〜R及び Zは、それぞれ独立に、水素原子、飽和もしくは不飽和の炭化
1 8 2
水素基、芳香族炭化水素基、ヘテロ環基、置換アミノ基、置換ボリル基、アルコキシ 基又はァリールォキシ基を示し、 X、 Y及び Zは、それぞれ独立に、飽和もしくは不飽
1
和の炭化水素基、芳香族炭化水素基、ヘテロ環基、置換アミノ基、アルコキシ基又は ァリールォキシ基を示し、 Zと Zの置換基は相互に結合して縮合環を形成してもよく
1 2
、 nは 1〜3の整数を示し、 nが 2以上の場合、 Zは異なってもよレ、。但し、 nが 1、 X、 Y
1
及び Rがメチル基であって、 Rが、水素原子又は置換ボリル基の場合、及び nが 3で
2 8
zカ チル基の場合を含まない。)で表されるボラン誘導体。
1
[0054] [化 16]
Figure imgf000032_0002
[0055] [式中、 Q及び Qは、それぞれ独立に、下記一般式 (K)で示される配位子を表し、 L
1 2
は、ハロゲン原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロア ルキル基、置換もしくは無置換のァリール基、置換もしくは無置換の複素環基、 O R (Rは、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロ
1 1
アルキル基、置換もしくは無置換のァリール基、置換もしくは無置換の複素環基であ る。)又は— O— Ga— Q (Q ) (Q及び Qは、 Q及び Qと同じ)で示される配位子を
3 4 3 4 1 2
表す。 ]
[0056] [化 17]
Figure imgf000033_0001
[式中、環 A1及び A2は、それぞれ置換基を有してよい互いに縮合した 6員ァリール環 構造である。 ]
[0057] この金属錯体は、 n型半導体としての性質が強ぐ電子注入能力が大きい。さらに は、錯体形成時の生成エネルギーも低いために、形成した金属錯体の金属と配位子 との結合性も強固になり、発光材料としての蛍光量子効率も大きくなつている。
一般式 (K)の配位子を形成する環 A1及び A2の置換基の具体的な例を挙げると、 塩素、臭素、ヨウ素、フッ素のハロゲン原子、メチノレ基、ェチル基、プロピル基、ブチ ル基、 sec—ブチル基、 tert—ブチル基、ペンチル基、へキシル基、ヘプチル基、ォ クチル基、ステアリル基、トリクロロメチル基等の置換もしくは無置換のアルキル基、フ ェニル基、ナフチル基、 3—メチルフエニル基、 3—メトキシフエ二ル基、 3—フルォロ フエニル基、 3 _トリクロロメチルフエニル基、 3 _トリフルォロメチルフエニル基、 3 _二 トロフエニル基等の置換もしくは無置換のァリール基、メトキシ基、 n—ブトキシ基、 ter t—ブトキシ基、トリクロロメトキシ基、トリフルォロエトキシ基、ペンタフルォロプロポキ シ基、 2, 2, 3, 3—テトラフノレ才ロプロポキシ基、 1, 1, 1 , 3, 3, 3 _へキサフノレ才ロ _ 2 _プロポキシ基、 6 - (パーフルォロェチル)へキシルォキシ基等の置換もしくは 無置換のアルコキシ基、フエノキシ基、 p—ニトロフエノキシ基、 p _tert_ブチルフエ ノキシ基、 3 _フルオロフエノキシ基、ペンタフルオロフェニル基、 3 _トリフルォロメチ ルフヱノキシ基等の置換もしくは無置換のァリールォキシ基、メチルチオ基、ェチル チォ基、 tert—ブチルチオ基、へキシルチオ基、ォクチルチオ基、トリフルォロメチル チォ基等の置換もしくは無置換のアルキルチオ基、フエ二ルチオ基、 p一二トロフエ二 ノレチォ基、 ptert—ブチルフエ二ルチオ基、 3—フルオロフェニルチオ基、ペンタフノレ オロフェニルチオ基、 3 _トリフルォロメチルフエ二ルチオ基等の置換もしくは無置換 のァリールチオ基、シァノ基、ニトロ基、アミノ基、メチルァミノ基、ジェチルァミノ基、 ェチルァミノ基、ジェチルァミノ基、ジプロピルアミノ基、ジブチルァミノ基、ジフヱ二ノレ アミノ基等のモノ又はジ置換アミノ基、ビス(ァセトキシメチル)アミノ基、ビス(ァセトキ シェチル)アミノ基、ビスァセトキシプロピル)アミノ基、ビス(ァセトキシブチル)アミノ基 等のァシルァミノ基、水酸基、シロキシ基、ァシル基、メチルカルバモイル基、ジメチ ノレ力ルバモイル基、ェチルカルバモイル基、ジェチルカルバモイル基、プロィピルカ ノレバモイル基、ブチルカルバモイル基、フエ二ルカルバモイル基等の力ルバモイル基 、カルボン酸基、スルフォン酸基、イミド基、シクロペンタン基、シクロへキシル基等の シクロアルキル基、フエニル基、ナフチル基、ビフエ二ル基、アントラニル基、フエナン トリル基、フルォレニル基、ピレニル基等のァリール基、ピリジニル基、ビラジニル基、 ピリミジニル基、ピリダジニル基、トリアジニル基、インドリニル基、キノリニル基、アタリ ジニル基、ピロリジニル基、ジォキサニル基、ピペリジニル基、モルフオリジニル基、ピ ペラジニル基、トリアチュル基、カルバゾリル基、フラニル基、チオフヱニル基、ォキサ ゾリル基、ォキサジァゾリル基、ベンゾォキサゾリル基、チアゾリル基、チアジアゾリノレ 基、ベンゾチアゾリル基、トリァゾリル基、イミダゾリル基、ベンゾイミダゾリル基、プラニ ル基等の複素環基等がある。また、以上の置換基同士が結合してさらなる 6員ァリー ル環もしくは複素環を形成しても良い。
本発明の有機 EL素子の好ましい形態に、電子を輸送する領域又は陰極と有機層 の界面領域に、還元性ドーパントを含有する素子がある。ここで、還元性ドーパントと は、電子輸送性化合物を還元ができる物質と定義される。したがって、一定の還元性 を有するものであれば、様々なものが用いられ、例えば、アルカリ金属、アルカリ土類 金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ 土類金属の酸化物、アルカリ土類金属のハロゲンィヒ物、希土類金属の酸化物又は 希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯 体、希土類金属の有機錯体からなる群から選択される少なくとも一つの物質を好適 に使用することができる。
また、より具体的に、好ましい還元性ドーパントとしては、 Na (仕事関数: 2. 36eV) 、K (仕事関数: 2. 28eV)、Rb (仕事関数: 2. 16eV)及び Cs (仕事関数: 1. 95eV) 力 なる群から選択される少なくとも一つのアルカリ金属や、 Ca (仕事関数: 2. 9eV) 、Sr (仕事関数: 2. 0〜2. 5eV)、及び Ba (仕事関数: 2. 52eV)力 なる群から選択 される少なくとも一つのアルカリ土類金属が挙げられる仕事関数が 2. 9eV以下のも のが特に好ましい。これらのうち、より好ましい還元性ドーパントは、 K、 Rb及び Csか らなる群から選択される少なくとも一つのアルカリ金属であり、さらに好ましくは、 Rb又 は Csであり、最も好ましのは、 Csである。これらのアルカリ金属は、特に還元能力が 高ぐ電子注入域への比較的少量の添加により、有機 EL素子における発光輝度の 向上や長寿命化が図られる。また、仕事関数が 2. 9eV以下の還元性ドーパントとし て、これら 2種以上のアルカリ金属の組合わせも好ましぐ特に、 Csを含んだ組み合 わせ、例えば、 Csと Na、 Csと K、 Csと Rbあるいは Csと Naと Κとの組み合わせである ことが好ましい。 Csを組み合わせて含むことにより、還元能力を効率的に発揮するこ とができ、電子注入域への添加により、有機 EL素子における発光輝度の向上や長 寿命化が図られる。
本発明においては陰極と有機層の間に絶縁体や半導体で構成される電子注入層 をさらに設けても良い。この時、電流のリークを有効に防止して、電子注入性を向上さ せること力 Sできる。このような絶縁体としては、アルカリ金属カルコゲナイド、アルカリ土 類金属カルコゲナイド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲ ン化物からなる群から選択される少なくとも一つの金属化合物を使用するのが好まし レ、。電子注入層がこれらのアルカリ金属カルコゲナイド等で構成されていれば、電子 注入性をさらに向上させることができる点で好ましい。具体的に、好ましいアルカリ金 属カルコゲナイドとしては、例えば、 Li〇、 Li〇、 Na S、 Na Se及び Na〇が挙げられ
、好ましいアルカリ土類金属カルコゲナイドとしては、例えば、 CaO、 BaO、 SrO、 Be 0、 BaS、及び CaSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物として は、例えば、 LiF、 NaF、 KF、 LiCl、 KC1及び NaCl等が挙げられる。また、好ましい アルカリ土類金属のハロゲン化物としては、例えば、 CaF、 BaF、 SrF、 MgF及び
BeFといったフッ化物や、フッ化物以外のハロゲン化物が挙げられる。
また、電子輸送層を構成する半導体としては、 Ba、 Ca、 Sr、 Yb、 Al、 Ga、 In、 Li、 Na、 Cd、 Mg、 Si、 Ta、 Sb及び Znの少なくとも一つの元素を含む酸化物、窒化物又 は酸化窒化物等の一種単独又は二種以上の組み合わせが挙げられる。また、電子 輸送層を構成する無機化合物が、微結晶又は非晶質の絶縁性薄膜であることが好 ましレ、。電子輸送層がこれらの絶縁性薄膜で構成されていれば、より均質な薄膜が 形成されるために、ダークスポット等の画素欠陥を減少させることができる。なお、この ような無機化合物としては、上述したアルカリ金属カルコゲナイド、アルカリ土類金属 カルコゲナイド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物 等が挙げられる。
[0060] 次に、陰極としては、仕事関数の小さレ、(4eV以下)金属、合金、電気伝導性化合 物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具 体例としては、ナトリウム,ナトリウム—カリウム合金、マグネシウム,リチウム,マグネシ ゥム'銀合金,アルミニウム/酸化アルミニウム, Al/Li〇, Al/LiO , Al/LiF,了 ルミユウム.リチウム合金,インジウム,希土類金属などが挙げられる。
この陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成さ せることにより、作製することができる。
ここで、発光層からの発光を陰極力 取り出す場合、陰極の発光に対する透過率 は 10%より大きくすることが好ましい。また、陰極としてのシート抵抗は数百 Ω /ロ以 下が好ましぐさらに、膜厚は通常 10nm〜l /i m、好ましくは 50〜200nmである。
[0061] また、一般に、有機 EL素子は、超薄膜に電界を印可するために、リークやショート による画素欠陥が生じやすい。これを防止するために、一対の電極間に絶縁性の薄 膜層を揷入しても良い。
絶縁層に用いられる材料としては、例えば、酸化アルミニウム、弗化リチウム、酸化リ チウム、弗化セシウム、酸化セシウム、酸化マグネシウム、弗化マグネシウム、酸化力 ノレシゥム、弗化カルシウム、窒化アルミニウム、酸化チタン、酸化珪素、酸化ゲルマ二 ゥム、窒化珪素、窒化ホウ素、酸化モリブデン、酸化ルテニウム、酸化バナジウム等が 挙げられる。これらの混合物や積層物を用いてもよい。
[0062] 次に、本発明の有機 EL素子を作製する方法については、例えば上記の材料及び 方法により陽極、発光層、必要に応じて正孔注入層、及び必要に応じて電子注入層 を形成し、最後に陰極を形成すればよい。また、陰極から陽極へ、前記と逆の順序で 有機 EL素子を作製することもできる。
以下、透光性基板上に、陽極/正孔注入層/発光層/電子注入層/陰極が順次 設けられた構成の有機 EL素子の作製例について説明する。
まず、適当な透光性基板上に、陽極材料からなる薄膜を 1 z m以下、好ましくは 10 〜200nmの範囲の膜厚になるように、蒸着法あるいはスパッタリング法により形成し 、陽極とする。次に、この陽極上に正孔注入層を設ける。正孔注入層の形成は、前述 したように真空蒸着法、スピンコート法、キャスト法、 LB法等の方法により行うことがで きる力 均質な膜が得られやすぐかつピンホールが発生しにくい等の点から真空蒸 着法により形成することが好ましい。真空蒸着法により正孔注入層を形成する場合、 その蒸着条件は使用する化合物(正孔注入層の材料)、 目的とする正孔注入層の結 晶構造や再結合構造等により異なるが、一般に蒸着源温度 50〜450°C、真空度 10— 7〜: 10— 3ton:、蒸着速度 0. 01〜50nm/秒、基板温度— 50〜300°C、膜厚 5nm〜 5 μ mの範囲で適宜選択することが好ましい。
[0063] 次に、この正孔注入層上に発光層を設ける。この発光層の形成も、本発明に係る 発光材料を用いて真空蒸着法、スパッタリング、スピンコート法、キャスト法等の方法 により、発光材料を薄膜ィ匕することにより形成できるが、均質な膜が得られやすぐか つピンホールが発生しにくい等の点から真空蒸着法により形成することが好ましい。 真空蒸着法により発光層を形成する場合、その蒸着条件は使用する化合物により異 なるが、一般的に正孔注入層の形成と同様な条件範囲の中力 選択することができ る。膜厚は 10〜40nmの範囲が好ましい。
[0064] 次に、この発光層上に電子注入層を設ける。この場合にも正孔注入層、発光層と同 様、均質な膜を得る必要から真空蒸着法により形成することが好ましい。蒸着条件は 正孔注入層、発光層と同様の条件範囲から選択することができる。
そして、最後に陰極を積層して有機 EL素子を得ることができる。陰極は金属から構 成されるもので、蒸着法、スパッタリングを用いることができる。しかし、下地の有機物 層を製膜時の損傷から守るためには真空蒸着法が好ましい。
以上の有機 EL素子の作製は、一回の真空引きで、一貫して陽極から陰極まで作 製することが好ましい。
[0065] 本発明の有機 EL素子の各層の形成方法は特に限定されない。従来公知の真空 蒸着法、スピンコーティング法等による形成方法を用いることができる。本発明の有 機 EL素子に用いる、前記一般式(1)で示される化合物を含有する有機薄膜層は、 真空蒸着法、分子線蒸着法 (MBE法)あるいは溶媒に解力 た溶液のデイツビング 法、スピンコーティング法、キャスティング法、バーコート法、ロールコート法等の塗布 法による公知の方法で形成することができる。
本発明の有機 EL素子の各有機層の膜厚は特に制限されないが、ピンホール等の 欠陥や、効率を良くするため、通常は数 nmから 1 z mの範囲が好ましい。
なお、有機 EL素子に直流電圧を印加する場合、陽極を +、陰極を一の極性にして 、 5〜40Vの電圧を印加すると発光が観測できる。また逆の極性で電圧を印加しても 電流は流れず、発光は全く生じない。さらに交流電圧を印加した場合には陽極が + 、陰極が一の極性になった時のみ均一な発光が観測される。印加する交流の波形は 任意でよい。
実施例
[0066] 次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によ つてなんら限定されるものではなレ、。
合成実施例 1 (化合物 (AN— 1)の合成)
アルゴン雰囲気下、公知の方法により合成した 1 _ブロモ _4—ョードナフタレン 10 g、 4_ブロモフエニルボロン酸 6gをトルエン 150mlに溶解し、 2M—炭酸ナトリウム水 溶液 45mlを加えた。更にテトラキストリフエニルホスフィンパラジウム lgを加え、 7時 間加熱還流した。一晩後、有機層をトルエン抽出し、水、飽和食塩水で洗浄した。有 機層を無水硫酸ナトリウムで乾燥した後、溶媒を留去した。残渣をシリカゲルカラムク 口マトグラフィー(展開溶媒:トルエン/へキサン)にて精製することで、 1—プロモー 4 一(4 ブロモフエニル)ナフタレン 6· 3gを得た(収率 58%)。 得られた 1ーブロモー 4一(4 ブロモフエニル)ナフタレン 6gを、公知の方法で合成 した 10 フエ二ルアントラセンー9 ボロン酸 10g、及び DME150mlと混合した。更 にテトラキストリフエニルホスフィンパラジウム 1 · lgと 2M -炭酸ナトリウム水溶液 50ml を加え、アルゴン置換した。 7. 5時間加熱還流した後、放冷し、析出晶をろ別した。 結晶を水、メタノールで洗浄した後、加熱トルエンで洗浄することで、 目的の化合物( AN— 1) 8. 3gを淡黄色固体として得た(収率 70%)。得られた化合物の FD-MS (フ ィールドディソープシヨンマス分析)を測定したところ、 C H = 708に対し m/z = 70
8が得られたことから、この化合物を AN— 1と同定した。
[0067] 合成実施例 2 (化合物 (AN— 3)の合成)
アルゴン雰囲気下、グリニャール反応用 Mgl . 3gに脱水テトラヒドロフラン (THF) 2 5mlを加えた。更に p—ジブロモベンゼン 10gを脱水 THF50mlに溶解し、混合した。 反応が開始した後、 1時間加熱還流し、 4—プロモフヱニルマグネシウムプロミド THF 溶液を調製した。
アルゴン雰囲気下、 6 ブロモー 2 ナフチルトリフルォロメタンスルホネート 12. 5g 、 PdCl (dppp) 0. 85g、 LiBr3gを脱水 THF60mlに分散し氷冷した。これに調製し た 4 ブロモフエニルマグネシウムプロミド THF溶液を滴下し、室温で 1時間攪拌した 。更に 5時間加熱環流した後、放冷した。 10%希塩酸で酸性化後、有機層をトルェ ン抽出し、水、飽和食塩水で洗浄した。有機層を無水硫酸ナトリウムで乾燥した後、 溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:トルエン/へ キサン)にて精製することで、 2 ブロモ 6— (4—ブロモフエニル)ナフタレン 7· 5g ( 収率 58%)を白色固体として得た。
合成実施例 1において、 1 _ブロモ _4_ (4—ブロモフエニル)ナフタレンの代わり に 2_ブロモ _ 6 _ (4 ブロモフエニル)ナフタレンを用いた他は同様の操作を行い 、 目的の化合物 AN— 3を淡黄色固体として得た (収率 57%)。得られた化合物の F D— MSを測定したところ、 C H = 708に対し m/z = 708が得られたことから、この 化合物を AN _ 3と同定した。
[0068] 合成実施例 3 (化合物 (AN— 6)の合成)
合成実施例 1において、 1 _ブロモ _4_ (4—ブロモフエニル)ナフタレンの代わり に 1, 4 ジブ口モナフタレンを用レ、、 10—フエ二ルアントラセン 9 ボロン酸の代 わりに 4一(9 フエ二ルアントラセン 10 ィル)フエニルボロン酸を用いた他は同 様の操作を行い、 目的の化合物 AN— 6を淡黄色固体として得た(収率 72%)。得ら れた化合物の FD— MSを測定したところ、 C H = 784に対し mZz = 784力 S得られ たこと力、ら、この化合物を AN— 6と同定した。
[0069] 合成実施例 4 (化合物 (AN— 12)の合成)
アルゴン雰囲気下、公知の方法により合成した 10—フエ二ルアントラセン _ 9—ポロ ン酸 8g、 2, 6—ジブ口モナフタレン 7. 7gを DME150mlに溶解し、 2M—炭酸ナトリ ゥム水溶液 41mlを加えた。更にテトラキストリフエニルホスフィンパラジウム 0. 93gを 加え、 8時間加熱還流した。一晩後、析出物をろ別し、ろ過母液をトルエン抽出、水、 飽和食塩水で洗浄した。有機層を無水硫酸ナトリウムで乾燥した後、溶媒を留去した 。残渣をメタノール、へキサンで洗浄することで、 2_ブロモ _6 _ (9—フエ二ルアント ラセンー 10—ィル)ナフタレン 7. 2gを得た(収率 58%)。
合成実施例 1において、 1ーブロモー 4一(4 ブロモフエニル)ナフタレンの代わり に 2 ブロモ 6— (9 フエ二ルアントラセン一 10—ィル)ナフタレンを用レ、、 10 フ ェニルアントラセン一 9 -ボロン酸の代わりに 4— (9— (3—ビフエニル)アントラセン一 10—ィル)フエニルボロン酸を用いた他は同様の操作を行い、 目的の化合物 AN— 1 2を淡黄色固体として得た (収率 65%)。得られた化合物の FD— MSを測定したとこ ろ、 C H = 784に対し m/z = 784が得られたことから、この化合物を AN— 12と同 定した。
[0070] 合成実施例 5 (化合物 (AN— 29)の合成)
合成実施例 4において、 10—フエ二ルアントラセン— 9 _ボロン酸の代わりに 4_ (9 —フエ二ルアントラセン一 10—ィル)フエニルボロン酸を用レ、、 2, 6 _ジブ口モナフタ レンの代わりに 1 , 4_ジブ口モナフタレンを用いた他は同様の操作を行レ、、 1 - (4- ブロモナフタレン一 1—ィル) -4- (9—フエ二ルアントラセン一 10—ィノレ)ベンゼン を淡黄色固体として得た (収率 62%)。
アルゴン雰囲気下、 2—ブロモ一6— (9—フエ二ルアントラセン一 10—ィル)ナフタ レン 10gを脱水 THF150mlに分散し、 _63°Cに冷却した後、 1. 6M—ノルマルブ チルリチウムへキサン溶液 16mlを加えた。— 63°Cにて 30分攪拌した後、 0°Cまで一 且昇温し、再度— 63°Cに冷却した。反応液にボロン酸トリイソプロピル 14gをカロえ、 — 63°Cにて 3時間攪拌した。一晩放置した後、 10%希塩酸にて酸性化した後、析出 晶をろ別した。水、トルエンで洗浄、乾燥することにより、 6 - (9—フエ二ルアントラセ ン一 10—ィル)ナフタレン一 2—ボロン酸 5. 4gを得た(収率 58%)。
合成実施例 1において、 1 _ブロモ _4_ (4—ブロモフエニル)ナフタレンの代わり に 1 _ (4—ブロモナフタレン一 1—ィル) -4- (9—フエ二ノレアントラセン _ 10—ィノレ )ベンゼンを用レ、、 10—フエ二ルアントラセン一 9_ボロン酸の代わりに 6 _ (9—フエ 二ルアントラセン _ 10—ィル)ナフタレン _ 2_ボロン酸を用いた他は同様の操作を 行レ、、 目的の化合物 AN— 29を淡黄色固体として得た(収率 62%)。得られた化合 物の FD— MSを測定したところ、 C H = 834に対し m/z = 834が得られたこと力
66 42
ら、この化合物を AN— 29と同定した。
実施例 1 (有機 EL素子の製造)
25mm X 75mm X l . 1mm厚の IT〇透明電極付きガラス基板(ジォマティック社製 )をイソプロピルアルコール中で超音波洗浄を 5分間行なった後、 UVオゾン洗浄を 3 0分間行なった。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホ ルダ一に装着し、まず透明電極ラインが形成されている側の面上に前記透明電極を 覆うようにして膜厚 60nmの Ν, N,一ビス(N, N,一ジフエ二ノレ一 4—ァミノフエニル) — N, N—ジフエニル一 4, 4,一ジァミノ一 1 , 1,一ビフエニル膜(以下「TPD232膜」 と略記する。)を成膜した。この TPD232膜は、正孔注入層として機能する。次に、こ の TPD232膜上に膜厚 20nmの N, N, Ν' , Ν,一テトラ(4—ビフエ二ル)一ジァミノ ビフヱ二レン層(以下「TBDB層」)を成膜した。この膜は正孔輸送層として機能する。 さらに膜厚 40nmの前記化合物 (AN— 3)を蒸着し成膜した。同時に発光分子として 、下記のァミン化合物 BD1を AN— 3に対し、重量比 AN— 3 : BD1 =40 : 2で蒸着し た。この膜は、発光層として機能する。この膜上に膜厚 lOnmの Alq膜を成膜した。こ れは、電子注入層として機能する。この後、還元性ドーパントである Li (Li源:サエス ゲッター社製)と下記 Alqを二元蒸着させ、電子注入層(陰極)として Alq : Li膜 (膜厚 lOnm)を形成した。この Alq : Li膜上に金属 A1を蒸着させ金属陰極を形成し有機 EL 発光素子を形成した。
得られた素子について通電試験を行ったところ、電圧 6. 8V、電流密度 10mA/c m2にて発光輝度 700cd/m2の青色発光が得られた。初期輝度を 1000cd/m2にし てこの有機 EL素子の半減寿命を測定した結果を第 1表に示す。
[化 18]
Figure imgf000042_0001
B D 1 A 1 q
[0073] 実施例 2〜5 (有機 EL素子の製造)
実施例 1において、発光層の材料として化合物 (AN— 3)の代わりに第 1表に記載 の化合物を用いた以外は同様にして有機 EL素子を作製した。得られた素子につい て、実施例 1と同様にして半減寿命を測定した結果を第 1表に示す。
[0074] 実施例 6
実施例 1において、発光層の材料としてアミン化合物 BD1の代わりに下記アミン化 合物 BD2を用いた以外は同様にして有機 EL素子を作製した。得られた素子につい て、実施例 1と同様にして半減寿命を測定した結果を第 1表に示す。
[化 19]
Figure imgf000043_0001
B D 2 実施例 7
実施例 1において、発光層の材料としてアミン化合物 BD1の代わりに下記アミン化 合物 BD3を用いた以外は同様にして有機 EL素子を作製した。得られた素子につい て、実施例 1と同様にして半減寿命を測定した結果を第 1表に示す。
[化 20]
Figure imgf000043_0002
B D 3 比較例:!〜 8
実施例 1におレ、て、発光層の材料として化合物 (AN— 3)及び BD1の代わりに第 1 表に記載の化合物を用いた以外は同様にして有機 EL素子を作製した。得られた素 子について、実施例 1と同様にして半減寿命を測定した結果を第 1表に示す。
なお、第 1表に記載の化合物 an—:!〜 an_6は以下の通りである。
[化 21]
Figure imgf000044_0001
[0077] [表 3]
第 1表
Figure imgf000045_0001
[0078] 第 1表に示したように、本発明のナフチレン基及び ρ—フエ二レン基からなる特定の 連結基を有し一般式(1)で表される構造のビスアントラセン誘導体を用いた実施例 1 〜7の有機 EL素子は、その構造を満たさない化合物を用いた比較例 1〜8の有機 Ε L素子に比べ、長寿命である。
産業上の利用可能性
[0079] 以上詳細に説明したように、本発明のビスアントラセン誘導体を含有する有機 EL素 子は、長寿命である。このため、長期間の継続使用が想定される有機 EL素子として 極めて有用である。

Claims

Figure imgf000046_0001
Figure imgf000046_0002
( 2 )
[式中、 Lは上記一般式(2)で表されるナフチレン基、
Ar1及び Ar2は、それぞれ独立に、置換もしくは無置換の核炭素数 6〜50の芳香族 炭化水素基又は置換もしくは無置換の核炭素数 10〜50の縮合芳香族炭化水素基
R^R16は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数 6〜50の 芳香族炭化水素基、置換もしくは無置換の核原子数 5〜50の芳香族複素環基、置 換もしくは無置換の炭素数 1〜50のアルキル基、置換もしくは無置換の核炭素数 3 〜50のシクロアルキル基、置換もしくは無置換の炭素数 1〜50のアルコキシ基、置 換もしくは無置換の炭素数 6〜50のァラルキル基、置換もしくは無置換の核炭素数 5 〜50のァリールォキシ基、置換もしくは無置換の核炭素数 5〜50のァリールチオ基 、置換もしくは無置換の炭素数 1〜50のアルコキシカルボニル基、置換もしくは無置 換のシリル基、カルボキシル基、ハロゲン原子、シァノ基、ニトロ基又はヒドロキシル基
Rは、置換もしくは無置換の核炭素数 6〜50の芳香族炭化水素基、置換もしくは無 置換の核原子数 5〜50の芳香族複素環基、置換もしくは無置換の炭素数 1〜50の アルキル基、置換もしくは無置換の核炭素数 3〜50のシクロアルキル基、置換もしく は無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の核炭素数 5〜50の 炭素数 6〜50のァラルキル基、置換もしくは無置換の核炭素数 5〜50のァリールォ キシ基、置換もしくは無置換の核炭素数 5〜50のァリールチオ基、置換もしくは無置 換の炭素数:!〜 50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カル ボキシル基、ハロゲン原子、シァノ基、ニトロ基又はヒドロキシル基、
m及び nは、それぞれ 0〜5の整数であり、かつ m + nは:!〜 5の整数、
p及び qは、それぞれ 0〜5の整数であり、かつ p + qは 1〜5の整数、
r及び sは、それぞれ 0〜4の整数、
tは 0〜6の整数であり、
m, n, p, q, r, s及び tが 1以上の時、各々の L及び Rは同一でも異なっていても良 い。 ]
前記一般式(1)において、 Lが下記一般式(3)〜(5)のいずれかで表されるナフチ レン基である請求項 1に記載のビスアントラセン誘導体。
[化 2]
Figure imgf000047_0001
( 3 ) ( 4 ) ( 5 )
(式中、 R及び tは前記と同じである。 )
[3] m+nが:!〜 3である請求項 1に記載のビスアントラセン誘導体。
[4] p + qが:!〜 3である請求項 1に記載のビスアントラセン誘導体。
[5] 陽極と陰極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟 持されている有機エレクト口ルミネッセンス素子において、前記有機薄膜層が請求項
1に記載のビスアントラセン誘導体から選ばれる少なくとも 1種類を単独もしくは混合 物の成分として含有する有機エレクト口ルミネッセンス素子。
[6] 前記発光層が前記ビスアントラセン誘導体をホスト材料として含有する請求項 5に 記載の有機エレクト口ルミネッセンス素子。
[7] 前記発光層が、さらにァリールァミン化合物を含有する請求項 5に記載の有機エレ タトロルミネッセンス素子。
[8] 前記発光層が、さらにスチリルアミンィ匕合物を含有する請求項 5に記載の有機エレ タトロルミネッセンス素子。
PCT/JP2007/057149 2006-04-03 2007-03-30 ビスアントラセン誘導体及びそれを利用した有機エレクトロルミネッセンス素子 WO2007116828A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07740585A EP2003107A1 (en) 2006-04-03 2007-03-30 Bisanthracene derivative and organic electroluminescent device using the same
JP2008509824A JPWO2007116828A1 (ja) 2006-04-03 2007-03-30 ビスアントラセン誘導体及びそれを利用した有機エレクトロルミネッセンス素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-102335 2006-04-03
JP2006102335 2006-04-03

Publications (1)

Publication Number Publication Date
WO2007116828A1 true WO2007116828A1 (ja) 2007-10-18

Family

ID=38581122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057149 WO2007116828A1 (ja) 2006-04-03 2007-03-30 ビスアントラセン誘導体及びそれを利用した有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (1) US20070285009A1 (ja)
EP (1) EP2003107A1 (ja)
JP (1) JPWO2007116828A1 (ja)
KR (1) KR20080114784A (ja)
CN (1) CN101415662A (ja)
TW (1) TW200808684A (ja)
WO (1) WO2007116828A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009524653A (ja) * 2006-01-27 2009-07-02 エルジー・ケム・リミテッド 新規なアントラセン誘導体、その製造方法およびこれを用いた有機電気素子
JP2010529030A (ja) * 2007-06-01 2010-08-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 発光用途のための電荷輸送材料
JP2012167058A (ja) * 2011-02-15 2012-09-06 Chemiprokasei Kaisha Ltd エキシマー特性を有する1,8−アリール置換ナフタレン誘導体及びこれを用いた有機el素子
US8551624B2 (en) 2008-12-01 2013-10-08 E I Du Pont De Nemours And Company Electroactive materials
US8759818B2 (en) 2009-02-27 2014-06-24 E I Du Pont De Nemours And Company Deuterated compounds for electronic applications
WO2020039708A1 (ja) 2018-08-23 2020-02-27 国立大学法人九州大学 有機エレクトロルミネッセンス素子

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8063399B2 (en) * 2007-11-19 2011-11-22 E. I. Du Pont De Nemours And Company Electroactive materials
US8343381B1 (en) 2008-05-16 2013-01-01 E I Du Pont De Nemours And Company Hole transport composition
KR101115255B1 (ko) 2008-07-11 2012-02-15 주식회사 엘지화학 신규한 안트라센 유도체 및 이를 이용한 유기전자소자
JP2012510474A (ja) * 2008-12-01 2012-05-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 電気活性材料
US8420232B2 (en) * 2008-12-04 2013-04-16 E I Du Pont De Nemours And Company Binaphthyl-arylamine polymers
KR101582707B1 (ko) 2009-04-03 2016-01-05 이 아이 듀폰 디 네모아 앤드 캄파니 전기활성 재료
KR101193182B1 (ko) 2009-09-02 2012-10-19 삼성디스플레이 주식회사 유기 발광 소자
JP5715142B2 (ja) 2009-09-29 2015-05-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company ルミネセンス用途用の重水素化合物
CN102596950A (zh) 2009-10-29 2012-07-18 E.I.内穆尔杜邦公司 用于电子应用的氘代化合物
US9752076B2 (en) * 2009-11-04 2017-09-05 Merck Patent Gmbh Compounds for a liquid-crystalline medium, and the use thereof for high-frequency components
KR20110094271A (ko) * 2009-12-16 2011-08-23 이데미쓰 고산 가부시키가이샤 유기 발광 매체
US8617720B2 (en) 2009-12-21 2013-12-31 E I Du Pont De Nemours And Company Electroactive composition and electronic device made with the composition
CN102959757B (zh) 2010-06-25 2016-01-06 剑桥显示技术有限公司 有机发光器件和方法
TW201213277A (en) * 2010-08-11 2012-04-01 Du Pont Electroactive compound and composition and electronic device made with the composition
EP2655547A1 (en) 2010-12-20 2013-10-30 E.I. Du Pont De Nemours And Company Compositions for electronic applications
CN103664495B (zh) * 2013-12-10 2016-07-06 京东方科技集团股份有限公司 蒽类衍生物及制备方法、应用和有机发光器件

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1110518B (de) 1959-04-09 1961-07-06 Kalle Ag Material fuer die elektrophotographische Bilderzeugung
US3112197A (en) 1956-06-27 1963-11-26 Azoplate Corp Electrophotographic member
US3180703A (en) 1963-01-15 1965-04-27 Kerr Mc Gee Oil Ind Inc Recovery process
US3180729A (en) 1956-12-22 1965-04-27 Azoplate Corp Material for electrophotographic reproduction
US3189447A (en) 1956-06-04 1965-06-15 Azoplate Corp Electrophotographic material and method
US3240597A (en) 1961-08-21 1966-03-15 Eastman Kodak Co Photoconducting polymers for preparing electrophotographic materials
US3257203A (en) 1958-08-20 1966-06-21 Azoplate Corp Electrophotographic reproduction material
US3526501A (en) 1967-02-03 1970-09-01 Eastman Kodak Co 4-diarylamino-substituted chalcone containing photoconductive compositions for use in electrophotography
US3542544A (en) 1967-04-03 1970-11-24 Eastman Kodak Co Photoconductive elements containing organic photoconductors of the triarylalkane and tetraarylmethane types
US3567450A (en) 1968-02-20 1971-03-02 Eastman Kodak Co Photoconductive elements containing substituted triarylamine photoconductors
US3615404A (en) 1968-04-25 1971-10-26 Scott Paper Co 1 3-phenylenediamine containing photoconductive materials
US3615402A (en) 1969-10-01 1971-10-26 Eastman Kodak Co Tetra-substituted methanes as organic photoconductors
US3658520A (en) 1968-02-20 1972-04-25 Eastman Kodak Co Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups
US3717462A (en) 1969-07-28 1973-02-20 Canon Kk Heat treatment of an electrophotographic photosensitive member
US3820989A (en) 1969-09-30 1974-06-28 Eastman Kodak Co Tri-substituted methanes as organic photoconductors
US4012376A (en) 1975-12-29 1977-03-15 Eastman Kodak Company Photosensitive colorant materials
US4127412A (en) 1975-12-09 1978-11-28 Eastman Kodak Company Photoconductive compositions and elements
US4175961A (en) 1976-12-22 1979-11-27 Eastman Kodak Company Multi-active photoconductive elements
US4232103A (en) 1979-08-27 1980-11-04 Xerox Corporation Phenyl benzotriazole stabilized photosensitive device
US4278746A (en) 1978-06-21 1981-07-14 Konishiroku Photo Industry Co., Ltd. Photosensitive elements for electrophotography
US4950950A (en) 1989-05-18 1990-08-21 Eastman Kodak Company Electroluminescent device with silazane-containing luminescent zone
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH07138561A (ja) 1993-11-17 1995-05-30 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH08239655A (ja) 1995-03-06 1996-09-17 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
US5935721A (en) * 1998-03-20 1999-08-10 Eastman Kodak Company Organic electroluminescent elements for stable electroluminescent
JP2000344691A (ja) 1999-06-03 2000-12-12 Tdk Corp 有機el素子用化合物および有機el素子
JP2004002351A (ja) 2002-03-27 2004-01-08 Tdk Corp 有機el素子
JP2005015420A (ja) 2003-06-27 2005-01-20 Canon Inc 置換アントリル誘導体およびそれを使用した有機発光素子
JP2005015418A (ja) * 2003-06-27 2005-01-20 Canon Inc アントリル誘導基置換化合物およびそれを使用した有機発光素子
WO2006085434A1 (ja) * 2005-02-10 2006-08-17 Idemitsu Kosan Co., Ltd. ビスアントラセン誘導体及びそれを利用した有機エレクトロルミネッセンス素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1056140B1 (en) * 1992-08-28 2005-07-06 Idemitsu Kosan Company Limited Charge injection auxiliary material
EP0681019B1 (en) * 1994-04-26 1999-09-01 TDK Corporation Phenylanthracene derivative and organic EL element

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3189447A (en) 1956-06-04 1965-06-15 Azoplate Corp Electrophotographic material and method
US3112197A (en) 1956-06-27 1963-11-26 Azoplate Corp Electrophotographic member
US3180729A (en) 1956-12-22 1965-04-27 Azoplate Corp Material for electrophotographic reproduction
US3257203A (en) 1958-08-20 1966-06-21 Azoplate Corp Electrophotographic reproduction material
DE1110518B (de) 1959-04-09 1961-07-06 Kalle Ag Material fuer die elektrophotographische Bilderzeugung
US3240597A (en) 1961-08-21 1966-03-15 Eastman Kodak Co Photoconducting polymers for preparing electrophotographic materials
US3180703A (en) 1963-01-15 1965-04-27 Kerr Mc Gee Oil Ind Inc Recovery process
US3526501A (en) 1967-02-03 1970-09-01 Eastman Kodak Co 4-diarylamino-substituted chalcone containing photoconductive compositions for use in electrophotography
US3542544A (en) 1967-04-03 1970-11-24 Eastman Kodak Co Photoconductive elements containing organic photoconductors of the triarylalkane and tetraarylmethane types
US3567450A (en) 1968-02-20 1971-03-02 Eastman Kodak Co Photoconductive elements containing substituted triarylamine photoconductors
US3658520A (en) 1968-02-20 1972-04-25 Eastman Kodak Co Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups
US3615404A (en) 1968-04-25 1971-10-26 Scott Paper Co 1 3-phenylenediamine containing photoconductive materials
US3717462A (en) 1969-07-28 1973-02-20 Canon Kk Heat treatment of an electrophotographic photosensitive member
US3820989A (en) 1969-09-30 1974-06-28 Eastman Kodak Co Tri-substituted methanes as organic photoconductors
US3615402A (en) 1969-10-01 1971-10-26 Eastman Kodak Co Tetra-substituted methanes as organic photoconductors
US4127412A (en) 1975-12-09 1978-11-28 Eastman Kodak Company Photoconductive compositions and elements
US4012376A (en) 1975-12-29 1977-03-15 Eastman Kodak Company Photosensitive colorant materials
US4175961A (en) 1976-12-22 1979-11-27 Eastman Kodak Company Multi-active photoconductive elements
US4278746A (en) 1978-06-21 1981-07-14 Konishiroku Photo Industry Co., Ltd. Photosensitive elements for electrophotography
US4232103A (en) 1979-08-27 1980-11-04 Xerox Corporation Phenyl benzotriazole stabilized photosensitive device
US4950950A (en) 1989-05-18 1990-08-21 Eastman Kodak Company Electroluminescent device with silazane-containing luminescent zone
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH07138561A (ja) 1993-11-17 1995-05-30 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH08239655A (ja) 1995-03-06 1996-09-17 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
US5935721A (en) * 1998-03-20 1999-08-10 Eastman Kodak Company Organic electroluminescent elements for stable electroluminescent
JP2000344691A (ja) 1999-06-03 2000-12-12 Tdk Corp 有機el素子用化合物および有機el素子
JP2004002351A (ja) 2002-03-27 2004-01-08 Tdk Corp 有機el素子
JP2005015420A (ja) 2003-06-27 2005-01-20 Canon Inc 置換アントリル誘導体およびそれを使用した有機発光素子
JP2005015418A (ja) * 2003-06-27 2005-01-20 Canon Inc アントリル誘導基置換化合物およびそれを使用した有機発光素子
WO2006085434A1 (ja) * 2005-02-10 2006-08-17 Idemitsu Kosan Co., Ltd. ビスアントラセン誘導体及びそれを利用した有機エレクトロルミネッセンス素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C. W. TANG; S. A. VANSLYKE, APPLIED PHYSICS LETTERS, vol. 51, 1987, pages 913

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009524653A (ja) * 2006-01-27 2009-07-02 エルジー・ケム・リミテッド 新規なアントラセン誘導体、その製造方法およびこれを用いた有機電気素子
US8957407B2 (en) 2006-01-27 2015-02-17 Lg Chem, Ltd. Anthracene derivatives, preparation method thereof and organic light emitting diode using the same
JP2010529030A (ja) * 2007-06-01 2010-08-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 発光用途のための電荷輸送材料
US8551624B2 (en) 2008-12-01 2013-10-08 E I Du Pont De Nemours And Company Electroactive materials
US8759818B2 (en) 2009-02-27 2014-06-24 E I Du Pont De Nemours And Company Deuterated compounds for electronic applications
US8890131B2 (en) 2009-02-27 2014-11-18 E I Du Pont De Nemours And Company Deuterated compounds for electronic applications
JP2012167058A (ja) * 2011-02-15 2012-09-06 Chemiprokasei Kaisha Ltd エキシマー特性を有する1,8−アリール置換ナフタレン誘導体及びこれを用いた有機el素子
WO2020039708A1 (ja) 2018-08-23 2020-02-27 国立大学法人九州大学 有機エレクトロルミネッセンス素子

Also Published As

Publication number Publication date
CN101415662A (zh) 2009-04-22
TW200808684A (en) 2008-02-16
KR20080114784A (ko) 2008-12-31
JPWO2007116828A1 (ja) 2009-08-20
US20070285009A1 (en) 2007-12-13
EP2003107A1 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
KR101152999B1 (ko) 방향족 아민 유도체 및 이를 이용한 유기 전기 발광 소자
JP5213705B2 (ja) 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子用材料
WO2007116828A1 (ja) ビスアントラセン誘導体及びそれを利用した有機エレクトロルミネッセンス素子
JP5647291B2 (ja) 有機el素子及び表示装置
WO2007114358A1 (ja) ベンズアントラセン誘導体、及びそれを用いた有機エレクトロルミネッセンス素子
WO2007102361A1 (ja) 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2007099983A1 (ja) フルオランテン誘導体及びインデノペリレン誘導体を用いた有機エレクトロルミネッセンス素子
JP5032317B2 (ja) ビフェニル誘導体、有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子
WO2005121057A1 (ja) アントラセン誘導体及びそれを利用した有機エレクトロルミネッセンス素子
WO2006073054A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2005115950A1 (ja) 非対称ピレン誘導体及びそれを利用した有機エレクトロルミネッセンス素子
WO2007100010A1 (ja) 有機エレクトロルミネッセンス素子
WO2009084268A1 (ja) 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
KR20100038193A (ko) 방향족 아민 유도체 및 그것을 사용한 유기 전기 발광 소자
WO2008062636A1 (en) Aromatic amine derivative and organic electroluminescent element using the same
JPWO2005061656A1 (ja) 有機エレクトロルミネッセンス素子用発光材料、それを利用した有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子用材料
WO2006104044A1 (ja) アントリルアリーレン誘導体、有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子
WO2007080704A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
KR20080112325A (ko) 방향족 아민 유도체 및 그들을 이용한 유기 전기 발광 소자
JPWO2008102740A1 (ja) 有機エレクトロルミネッセンス素子
WO2006085434A1 (ja) ビスアントラセン誘導体及びそれを利用した有機エレクトロルミネッセンス素子
KR20080105112A (ko) 함질소 복소환 유도체 및 그것을 이용한 유기 전기발광 소자
WO2007105448A1 (ja) ナフタセン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP5400623B2 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2008032766A1 (fr) Élément électroluminescent organique et matériau pour élément électroluminescent organique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740585

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008509824

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007740585

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087024177

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 5301/CHENP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200780012125.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE