TWI707969B - 用於含金屬材料的高壓退火過程 - Google Patents
用於含金屬材料的高壓退火過程 Download PDFInfo
- Publication number
- TWI707969B TWI707969B TW108104585A TW108104585A TWI707969B TW I707969 B TWI707969 B TW I707969B TW 108104585 A TW108104585 A TW 108104585A TW 108104585 A TW108104585 A TW 108104585A TW I707969 B TWI707969 B TW I707969B
- Authority
- TW
- Taiwan
- Prior art keywords
- metal
- layer
- containing layer
- substrate
- bar
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 154
- 239000002184 metal Substances 0.000 title claims abstract description 154
- 238000000034 method Methods 0.000 title claims abstract description 94
- 230000008569 process Effects 0.000 title claims abstract description 65
- 238000000137 annealing Methods 0.000 title claims abstract description 49
- 239000000463 material Substances 0.000 title claims description 39
- 239000000758 substrate Substances 0.000 claims abstract description 112
- 238000012545 processing Methods 0.000 claims abstract description 65
- 239000007789 gas Substances 0.000 claims abstract description 54
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 31
- 239000001301 oxygen Substances 0.000 claims abstract description 26
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 25
- 239000000203 mixture Substances 0.000 claims abstract description 20
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 27
- 229910052738 indium Inorganic materials 0.000 claims description 14
- 239000002019 doping agent Substances 0.000 claims description 13
- 239000011787 zinc oxide Substances 0.000 claims description 13
- -1 ZnON Inorganic materials 0.000 claims description 12
- 239000011651 chromium Substances 0.000 claims description 12
- 239000010949 copper Substances 0.000 claims description 12
- 229910052750 molybdenum Inorganic materials 0.000 claims description 12
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 11
- 229910044991 metal oxide Inorganic materials 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 10
- 150000004706 metal oxides Chemical group 0.000 claims description 10
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 9
- 239000011733 molybdenum Substances 0.000 claims description 9
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 8
- 229910052733 gallium Inorganic materials 0.000 claims description 8
- 229910002704 AlGaN Inorganic materials 0.000 claims description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- 229910007717 ZnSnO Inorganic materials 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 229910052715 tantalum Inorganic materials 0.000 claims description 6
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 6
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 239000010937 tungsten Substances 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 229910052798 chalcogen Inorganic materials 0.000 claims description 4
- 229910052714 tellurium Inorganic materials 0.000 claims description 4
- 150000001787 chalcogens Chemical class 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 3
- 239000012159 carrier gas Substances 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- 238000013508 migration Methods 0.000 claims 1
- 230000005012 migration Effects 0.000 claims 1
- 239000004065 semiconductor Substances 0.000 abstract description 7
- 239000010410 layer Substances 0.000 description 177
- 239000010408 film Substances 0.000 description 32
- 230000004888 barrier function Effects 0.000 description 28
- 150000002500 ions Chemical class 0.000 description 27
- 239000012530 fluid Substances 0.000 description 20
- 238000012546 transfer Methods 0.000 description 12
- 238000002513 implantation Methods 0.000 description 11
- 238000002955 isolation Methods 0.000 description 9
- 239000011669 selenium Substances 0.000 description 8
- 239000011810 insulating material Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000012809 cooling fluid Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- 229910052711 selenium Inorganic materials 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 238000003032 molecular docking Methods 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229920001621 AMOLED Polymers 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 150000004770 chalcogenides Chemical class 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical compound [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 210000003437 trachea Anatomy 0.000 description 2
- VUFNLQXQSDUXKB-DOFZRALJSA-N 2-[4-[4-[bis(2-chloroethyl)amino]phenyl]butanoyloxy]ethyl (5z,8z,11z,14z)-icosa-5,8,11,14-tetraenoate Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(=O)OCCOC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 VUFNLQXQSDUXKB-DOFZRALJSA-N 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 229910000792 Monel Inorganic materials 0.000 description 1
- 229920006169 Perfluoroelastomer Polymers 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- WYEMLYFITZORAB-UHFFFAOYSA-N boscalid Chemical compound C1=CC(Cl)=CC=C1C1=CC=CC=C1NC(=O)C1=CC=CN=C1Cl WYEMLYFITZORAB-UHFFFAOYSA-N 0.000 description 1
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- JJQZDUKDJDQPMQ-UHFFFAOYSA-N dimethoxy(dimethyl)silane Chemical compound CO[Si](C)(C)OC JJQZDUKDJDQPMQ-UHFFFAOYSA-N 0.000 description 1
- CSBYFBGXRRMFDS-UHFFFAOYSA-N dimethoxy-methyl-trimethylsilyloxysilane Chemical compound CO[Si](C)(OC)O[Si](C)(C)C CSBYFBGXRRMFDS-UHFFFAOYSA-N 0.000 description 1
- KZFNONVXCZVHRD-UHFFFAOYSA-N dimethylamino(dimethyl)silicon Chemical compound CN(C)[Si](C)C KZFNONVXCZVHRD-UHFFFAOYSA-N 0.000 description 1
- YYLGKUPAFFKGRQ-UHFFFAOYSA-N dimethyldiethoxysilane Chemical compound CCO[Si](C)(C)OCC YYLGKUPAFFKGRQ-UHFFFAOYSA-N 0.000 description 1
- XISYFRGVGQIFHM-UHFFFAOYSA-N dimethylsilylmethyl(trimethyl)silane Chemical compound C[SiH](C)C[Si](C)(C)C XISYFRGVGQIFHM-UHFFFAOYSA-N 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 239000013529 heat transfer fluid Substances 0.000 description 1
- NEXSMEBSBIABKL-UHFFFAOYSA-N hexamethyldisilane Chemical compound C[Si](C)(C)[Si](C)(C)C NEXSMEBSBIABKL-UHFFFAOYSA-N 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000001659 ion-beam spectroscopy Methods 0.000 description 1
- 238000005224 laser annealing Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 1
- VBYLGQXERITIBP-UHFFFAOYSA-N n-[dimethylamino(methyl)silyl]-n-methylmethanamine Chemical compound CN(C)[SiH](C)N(C)C VBYLGQXERITIBP-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000307 polymer substrate Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- BOJSDHZZKKYWAS-UHFFFAOYSA-N tetrakis(trimethylsilyl)silane Chemical compound C[Si](C)(C)[Si]([Si](C)(C)C)([Si](C)(C)C)[Si](C)(C)C BOJSDHZZKKYWAS-UHFFFAOYSA-N 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- PQDJYEQOELDLCP-UHFFFAOYSA-N trimethylsilane Chemical compound C[SiH](C)C PQDJYEQOELDLCP-UHFFFAOYSA-N 0.000 description 1
- GIRKRMUMWJFNRI-UHFFFAOYSA-N tris(dimethylamino)silicon Chemical compound CN(C)[Si](N(C)C)N(C)C GIRKRMUMWJFNRI-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/34—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
- H01L21/38—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions
- H01L21/383—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions using diffusion into or out of a solid from or into a gaseous phase
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/48—Ion implantation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5806—Thermal treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02551—Group 12/16 materials
- H01L21/02554—Oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02565—Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02614—Transformation of metal, e.g. oxidation, nitridation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/34—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
- H01L21/44—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/38 - H01L21/428
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/34—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
- H01L21/44—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/38 - H01L21/428
- H01L21/447—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/38 - H01L21/428 involving the application of pressure, e.g. thermo-compression bonding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/34—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
- H01L21/46—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
- H01L21/477—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67103—Apparatus for thermal treatment mainly by conduction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67155—Apparatus for manufacturing or treating in a plurality of work-stations
- H01L21/6719—Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66742—Thin film unipolar transistors
- H01L29/6675—Amorphous silicon or polysilicon transistors
- H01L29/66757—Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66969—Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/7869—Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/7869—Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
- H01L29/78693—Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate the semiconducting oxide being amorphous
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02488—Insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Thin Film Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
- Recrystallisation Techniques (AREA)
Abstract
本揭示內容提供了用於在TFT顯示應用、半導體、或記憶體應用中在含金屬層上執行退火過程的方法。在一個實例中,一種在基板上形成含金屬層的方法包括以下步驟:在處理腔室中的基板上供應含氧氣體混合物,該基板包括設置在光學透明基板上的含金屬層;將該處理腔室中的該含氧氣體混合物維持在約2巴到約50巴之間的過程壓力下;及在該含氧氣體混合物存在的情況下熱退火該含金屬層。
Description
本發明的實施例大致與用於在可以利用在TFT設備結構、半導體、或記憶體應用中的膜堆疊中形成含金屬層的方法相關。
顯示設備已經被廣泛地用於範圍廣泛的電子應用,例如TV、監視器、手機、MP3播放器、電子書閱讀器、及個人數位助理(PDA)等等。顯示設備一般被設計為用於藉由向液晶施加電場來產生所需的影像,該液晶填充兩個基板之間的間隙且具有控制介電場強度的各向異性的介電常數。藉由調整透射通過基板的光的量,可以高效地控制光及影像的強度、品質、及功率消耗。
可以將各種不同的顯示設備(例如有源矩陣液晶顯示器(AMLCD)或有源矩陣有機發光二極體(AMOLED))採用為利用觸控螢幕面板的顯示設備的光源。在製造TFT設備時,具有高電子遷移率、低洩漏電流、及高擊穿電壓的電子設備會允許更多像素面積用於光透射及電路系統的整合,因此造成更亮的顯像、更高的整體電效率、更快速的響應時間、及更高解析度的顯像。形成於設備中的低膜品質的材料層(例如具有雜質的金屬電極層)通常造成了不良的設備電氣效能及短的設備使用壽命。因此,對於提供具有低的膜洩漏的設備結構,用於在TFT設備中形成膜層及將膜層與TFT設備整合在一起的穩定及可靠的方法變得至關重要,且需要高的擊穿電壓以供用於製造具有較低臨限電壓偏移的電子設備及改善電子設備的整體效能。
因此,需要改善的材料以用於製造產生改善的設備電氣效能及設備穩定性的TFT設備。
本揭示內容提供了用於在TFT顯示應用、半導體、或電阻式隨機存取記憶體(ReRAM)中在含金屬層上執行退火過程的方法。在一個實例中,一種在基板上形成含金屬層的方法包括以下步驟:在處理腔室中的基板上供應含氧氣體混合物,該基板包括設置在光學透明基板上的含金屬層;將該處理腔室中的該含氧氣體混合物維持在2巴到50巴之間的過程壓力下;及在該含氧氣體混合物存在的情況下熱退火該含金屬層。
在另一個實例中,一種用於緻密化設置在基板上的含金屬層的方法包括以下步驟:在大於2巴的壓力下熱處理設置在光學透明基板上的含金屬層;及在熱處理介電層的期間將基板溫度維持小於攝氏500度。
在又另一個實例中,一種用於緻密化設置在基板上的含金屬層的方法包括以下步驟:在基板上形成含金屬層;將摻雜物植入到該含金屬層中;及在大於2巴的壓力下熱處理該基板上的該含金屬層,同時將基板溫度維持小於攝氏500度。
本揭示內容的實施例大致提供了一種TFT設備結構及在該TFT設備結構中的源極、汲極、介面、及接觸區域的有源層上執行熱退火過程以便增強顯示設備的電氣效能的方法。其他的應用(包括半導體或記憶體設備製造過程)也可以利用本文中所述的實施例。熱退火過程可以緻密化基板上的金屬電極、源極/汲極及/或接觸區域、及/或膜層的有源層膜性質。在一個實例中,熱處理過程被執行以提供含金屬層的熱能,例如含金屬層(例如有源層)或金屬電極層(例如金屬閘極電極、源極-汲極及/或接觸區域或電極層、或其他合適的金屬結構)形成於TFT設備中。熱退火過程可以緻密化或最小化有源層膜結構中的氧缺乏,以向設備結構提供良好的品質、介面管理、及熱穩定。熱退火過程也可以增加含金屬材料的結晶度,而改善含金屬層的電氣效能。因此,顯示設備中的源極/汲極及/或接觸區域的金屬電極及有源層所需的膜性質可以高效地增強電晶體及二極體設備的電氣效能。
圖1是用於單個基板的高壓退火過程的單基板處理腔室100的簡化正橫截面圖。單基板處理腔室100具有主體110,該主體具有包封內部容積115的外表面112及內表面113。在例如圖1中的一些實施例中,主體110具有環狀橫截面,然而在其他的實施例中,主體110的橫截面可以是矩形或任何封閉的形狀。可以由抗腐蝕鋼(CRS)(例如但不限於不銹鋼)製作主體110的外表面112。一或更多個隔熱罩125被設置在主體110的內表面113上,該隔熱罩防止來自單基板處理腔室100的熱損失進入外部環境。可以由鎳基鋼合金製作主體110的內表面113以及隔熱罩125,該等鎳基鋼合金展現高度的腐蝕抗性,例如但不限於HASTELLOY®
、ICONEL®
、及MONEL®
。
基板支撐物130被設置在內部容積115內。基板支撐物130具有桿134及由桿134所固持的基板支撐構件132。桿134穿過形成通過腔室主體110的通路122。連接到致動器138的桿139穿過形成通過腔室主體110的第二通路123。桿139被耦接到具有孔136的板135,該孔容納基板支撐物130的桿134。升降銷137被連接到基板支撐構件132。致動器138致動桿139,使得板135上下移動以與升降銷137連接及斷接。隨著升降銷137升高或降低,基板支撐構件132在腔室100的內部容積115內升高或降低。基板支撐構件132具有嵌入在中心內的電阻式加熱元件131。電源133被配置為向電阻式加熱元件131供電。電源133以及致動器138的操作被控制器180控制。
單基板處理腔室100在主體110上具有開口111,通過該開口,可以向及從設置在內部容積115中的基板支撐物130裝載及卸載一或更多個基板120。開口111在主體110上形成隧道121。縫閥128被配置為可密封地封閉隧道121,使得只有在縫閥128開啟時才能夠進出開口111及內部容積115。高壓密封件127被用來將縫閥128密封到主體110,以密封內部容積115以供進行處理。可以由聚合物製作高壓密封件127,例如含氟聚合物,例如但不限於全氟彈性體及聚四氟乙烯(PTFE)。高壓密封件127可以更包括彈簧構件以供偏壓密封件以改善密封效能。冷卻通道124被設置在隧道121上在高壓密封件127附近,以在處理期間將高壓密封件127維持低於高壓密封件127的最大安全操作溫度。可以將來自冷卻流體源126的冷卻劑(例如但不限於惰性、介電、及高效能導熱流體)在冷卻通道124內循環。來自冷卻流體源126的冷卻劑的流量是藉由控制器180通過從溫度感測器116或流量感測器(未示出)所接收的反饋來控制的。環狀熱扼流圈129圍繞隧道221而形成以防止來自內部容積115的熱在縫閥128開啟時流過開口111。
單基板處理腔室100具有通過主體110的端口117,該端口被流體連接到流體迴路190,該流體迴路連接氣體面板150、冷凝器160、及端口117。流體迴路190具有導氣管192、來源導管157、入口隔離閥155、排氣導管163、及出口隔離閥165。許多加熱器196、158、152、154、164、166與流體迴路190的不同部分交接。許多溫度感測器151、153、119、167、及169也被安置在流體迴路190的不同部分處,以截取溫度量度及向控制器180發送資訊。控制器180使用溫度測量資訊來控制加熱器152、154、158、196、164、及166的操作,使得流體迴路190的溫度被維持在高於設置在流體迴路190及內部容積115中的處理流體的冷凝點的溫度。
氣體面板150被配置為在內部容積115的壓力之下提供處理流體。引入到內部容積115中的處理流體的壓力被耦接到主體110的壓力感測器114監測。冷凝器160被流體耦接到冷卻流體源(未示出)且被配置為冷凝通過導氣管192離開內部容積115的氣相處理流體。冷凝的處理流體接著被泵176移除。一或更多個加熱器140被設置在主體110上且被配置為加熱單基板處理腔室100內的內部容積115。加熱器140、152、154、158、196、164、及166在通往冷凝器160的出口隔離閥165開啟的同時將流體迴路190內的處理流體維持在氣相下,以防止流體迴路內的冷凝。
控制器180控制單基板處理腔室100的操作。控制器180控制氣體面板150、冷凝器160、泵170、入口隔離閥155、出口隔離閥165、電源133及145的操作。控制器180也被通訊連接到溫度感測器116、壓力感測器114、致動器138、冷卻流體源126、及溫度讀數設備156及162。
處理流體可以包括含氧的及/或含氮的氣體、及/或硫族或碲(例如S、Se、Te)氣體或蒸氣,例如氧氣、乾蒸汽、水、過氧化氫、氨、S蒸氣、Se蒸氣、H2
S、H2
Se等等。處理流體可以與基板上的金屬材料起反應以形成金屬氮氧化物、金屬氧化物、金屬氧硫族元素化物、或金屬硫族化物。替代於或附加於含氧的及/或含氮的氣體,處理流體可以包括含矽氣體。含矽氣體的實例包括有機矽、正矽酸四烷基酯氣體及二矽氧烷。有機矽氣體包括具有至少一種碳-矽鍵的有機化合物的氣體。正矽酸四烷基酯氣體包括由附接到SiO4 4 −
離子的四個烷基組成的氣體。更特定而言,該一或更多種氣體可以是(二甲基甲矽烷基)(三甲基甲矽烷基)甲烷((Me)3
SiCH2
SiH(Me)2
)、六甲基二矽烷((Me)3
SiSi(Me)3
)、三甲基矽烷((Me)3
SiH)、三甲基甲矽烷基氯((Me)3
SiCl)、四甲基矽烷((Me)4
Si)、四乙氧基矽烷((EtO)4
Si)、四甲氧基矽烷((MeO)4
Si)、四(三甲基甲矽烷基)矽烷((Me3
Si)4
Si)、(二甲基胺基)二甲基矽烷((Me2
N)SiHMe2
)、二甲基二乙氧基矽烷((EtO)2
Si(Me)2
)、二甲基二甲氧基矽烷((MeO)2
Si(Me)2
)、甲基三甲氧基矽烷((MeO)3
Si(Me))、二甲氧基四甲基二矽氧烷(((Me)2
Si(OMe))2
O)、三(二甲基胺基)矽烷((Me2
N)3
SiH)、雙(二甲基胺基)甲基矽烷((Me2
N)2
CH3
SiH)、二矽氧烷((SiH3
)2
O)、及上述項目的組合。
在基板120的處理期間,高壓區域115的環境被維持在將高壓區域內的處理流體維持在氣相的溫度及壓力下。此類壓力及溫度是基於處理流體的組成來選定的。在蒸氣的情況下,溫度及壓力被保持在將蒸氣維持在乾蒸氣狀態的條件下。在一個實例中,高壓區域115被加壓到大於大氣的壓力,例如大於約2巴。在另一個實例中,高壓區域115被加壓到從約10到約50巴(例如從約20到約50巴之間)的壓力。在另一個實例中,高壓區域115被加壓到高達100巴的壓力。在處理期間,高壓區域115也被維持在高溫下,例如超過攝氏225度的溫度(由設置在輸送盒150上的基板155的熱預算所限制),例如在約攝氏300度到約攝氏500度之間。
圖2是示例性處理系統200的示意俯視平面圖,該處理系統包括併入及整合在該處理系統中的處理腔室(例如圖1中所繪示的處理腔室100)中的一或更多者。在一個實施例中,處理系統200可以是可從位於加州聖克拉拉市的應用材料公司購得的Centura®
或Endura®
集成處理系統。預期的是,可以將其他的處理系統(包括來自其他製造商的彼等處理系統)調適為受益於本揭示內容。
系統200包括真空氣密處理平台204、工廠介面202、及系統控制器244。平台204包括複數個處理腔室100、212、232、228、220(例如圖1中所描繪的處理腔室100中的該處理腔室)、及耦接到真空基板傳輸腔室236的至少一個裝載閘腔室222。圖2中示出了兩個裝載閘腔室222。工廠介面202被裝載閘腔室222耦接到傳輸腔室236。
在一個實施例中,工廠介面202包括至少一個對接站208及至少一個工廠介面機器人214以促進基板的傳輸。對接站208被配置為接受一或更多個前開式晶圓傳送盒(FOUP)。圖2的實施例中示出了兩個FOUP 206A-B。具有設置在機器人214的一端上的葉片216的工廠介面機器人214被配置為從工廠介面202向處理平台204傳輸基板以供通過裝載閘腔室222進行處理。可選地,可以將一或更多個度量站518連接到工廠介面202的終端226以促進測量來自FOUP 206A-B的基板。
裝載閘腔室222中的每一者具有耦接到工廠介面202的第一端口及耦接到傳輸腔室236的第二端口。裝載閘腔室222被耦接到壓力控制系統(未示出),該壓力控制系統將裝載閘腔室222抽空及通氣以促進在傳輸腔室236的真空環境與工廠介面202的實質周圍(例如大氣)環境之間傳遞基板。
傳輸腔室236具有設置在其中的真空機器人230。真空機器人230具有葉片234,該葉片能夠在裝載閘腔室222、度量系統210、及處理腔室212、232、228、220之中傳輸基板224。
在系統200的一個實施例中,系統200可以包括一或更多個處理腔室100、212、232、228、220,該一或更多個處理腔室可以是退火腔室(例如高壓退火腔室、RTP腔室、雷射退火腔室)、沉積腔室、蝕刻腔室、清潔腔室、固化腔室、或其他類似類型的半導體處理腔室。在系統200的一些實施例中,處理腔室100、212、232、228、220、傳輸腔室236、工廠介面202、及/或裝載閘腔室222中的至少一者中的一或更多者。
系統控制器244被耦接到處理系統200。系統控制器244(它可以包括計算設備201或被包括在計算設備201內)使用系統200的處理腔室100、212、232、228、220的直接控制來控制處理系統200的操作。或者,系統控制器244可以控制與處理腔室100、212、232、228、及系統200相關聯的電腦(或控制器)。操作時,系統控制器244也允許來自各別腔室的資料收集及反饋以最佳化系統200的效能。
與上述的計算設備201非常相似,系統控制器244一般包括中央處理單元(CPU)238、記憶體240、及支援電路242。CPU 238可以是可以用在工業環境中的任何形式的一般用途電腦處理器中的一者。支援電路242常規上被耦接到CPU 238,且可以包括快取記憶體、時脈電路、輸入/輸出子系統、電源等等。軟體常式將CPU 238轉換成特定用途電腦(控制器)244。也可以由定位在系統200遠端的第二控制器(未示出)儲存及/或執行軟體常式。
圖3描繪TFT設備350的實例,該TFT設備包括含金屬層,該含金屬層可以在高壓退火腔室中經歷熱退火過程,例如圖1中所描繪的高壓退火過程100,可以將該高壓退火腔室合併到圖2中所描繪的系統200中。薄膜電晶體設備結構350是設置在基板301上的底部閘極TFT結構。注意,基板301可以具有先前形成在該基板上的膜、結構、或層的不同組合以促進在基板301上形成不同的設備結構或不同的膜堆疊。在一個實例中,基板301可以具有形成於該基板上的設備結構350,如圖3中所示。或者,基板301可以具有設置於該基板上另一種設備結構450,如圖4中進一步示出,將在下文進一步描述該設備結構。基板301可以是玻璃基板、塑膠基板、聚合物基板、金屬基板、單個基板、卷對卷基板、或用於在其上形成薄膜電晶體的其他合適的透明基板中的任一者。
閘極電極層302被形成及圖案化在基板301上,之後是閘極絕緣層304。在一個實施例中,可以由任何合適的金屬材料製造閘極電極層302,例如鋁(Al)、鎢(W)、鉻(Cr)、鉭(Ta)、鉬(Mo)、銅(Cu)、或上述項目的組合。閘極絕緣體304的合適材料包括氧化矽(SiO2
)、氮氧化矽(SiON)、氮化矽(SiN)等等。注意,圖3中所描繪的薄膜電晶體設備結構350是底部閘極設備結構,其中閘極電極層302被形成於設備結構350的底部上。
有源層306被形成於閘極絕緣層304上。用於有源層306的材料可以選自具有高電子遷移率且適用於低溫製造的透明金屬氧化物材料,這允許在不損傷基板的情況下在低溫下處理柔性基板材料(例如塑膠材料)。可以用於有源層306的材料的合適實例包括a-IGZO(非晶銦鎵鋅氧化物)、InGaZnON、ZnO、ZnON、ZnSnO、CdSnO、GaSnO、TiSnO、CuBO2
、CuAlO2
、CuGaO2
、SrCuO、LaCuOS、GaN、InGaN、AlGaN、或InGaAlN等等。
在形成有源層306之後,可以將屏障層308形成於有源層306上。可以由含金屬材料形成屏障層308,以便向後續形成於該屏障層上的金屬電極層310(例如針對源極-汲極電極)提供良好的介面黏著以及良好的屏障性質(例如擴散屏障)。可以將屏障層308圖案化為在有源層306上形成所需的圖案以促進在後續的蝕刻過程中將特徵轉移在設置在基板301上的膜層上。儘管如圖3中所描繪的屏障層308被圖案化為所需的圖案,但注意,屏障層308可以呈現任何形式,依需要包括設備結構350中的整個連續空白膜或任何不同的特徵,只要屏障層308可以高效地提供阻擋/擴散屏障性質以防止來自有源層306的元素擴散到金屬電極層310中,反之亦然。在一個實施例中,屏障層308可以是由金屬介電層(例如依需要是Ta2
O5
或TiO2
或任何合適的金屬介電層)製造的單層的含金屬介電層,如圖3中所描繪。在另一個實施例中,屏障層308可以依需要呈現複合膜的形式。
在金屬電極層310(例如源極-汲極金屬電極層)被設置在屏障層308上方之後,隨後,執行蝕刻過程以在金屬電極層310中形成通道320。在蝕刻之後,絕緣材料層314(例如鈍化層)接著被形成在金屬電極層310上方以完成形成薄膜電晶體設備結構350的過程。
在一個實施例中,可以用作金屬電極層310的材料的實例包括銅(Cu)、金、銀(Ag)、鋁(Al)、鎢(W)、鉬(Mo)、鉻(Cr)、鉭(Ta)、上述項目的合金、及上述項目的組合。可以用作絕緣材料層314的合適材料包括氧化矽(SiO2
)、氮氧化矽(SiON)、或氮化矽(SiN)等等。
圖4描繪可以形成於基板301上的頂部閘極低溫多晶矽(LTPS)TFT設備結構450的實例,而不是圖3中所描繪的底部閘極設備結構350。LTPS TFT設備450是建造有有源層452的MOS設備,該等有源層包括形成於光學透明基板301上的源極區域409a、通道區域408、及汲極區域409b(例如,或稱為金屬接觸區域或源極-汲極金屬觸點),其中將或不將可選的絕緣層404設置在該光學透明基板上。在一個實例中,可以由透明的含金屬層(例如金屬氧化物材料)製造包括源極區域409a、通道區域408、及汲極區域409b的有源層,該透明的含金屬層具有高的電子遷移率及適於低溫製造,這允許在不損傷基板的情況下在低溫下處理柔性基板材料(例如塑膠材料)。可以用於源極區域409a、通道區域408、及汲極區域409b的此類材料的合適實例包括a-IGZO(非晶銦鎵鋅氧化物)、摻雜的IGZO、InGaZnON、ZnO、ZnON、ZnSnO、CdSnO、GaSnO、TiSnO、CuBO2
、CuAlO2
、CuGaO2
、SrCuO、LaCuOS、GaN、InGaN、AlGaN、或InGaAlN等等。
閘極絕緣層406接著被沉積於沉積的多晶矽層的頂部上,以將設置在該閘極絕緣層上的屏障層411及金屬電極層414(例如閘極電極)與通道區域408、源極區域409a、及汲極區域409b隔離。可以由含金屬材料形成屏障層411,以便向後續形成於該屏障層上的金屬電極層414(例如,閘極電極)提供良好的介面黏著以及良好的屏障性質(例如擴散屏障)。可以將屏障層411圖案化為在閘極絕緣層406上形成所需的圖案以促進在後續的蝕刻過程中將特徵轉移在設置在基板102上的膜層上。屏障層411可以高效地提供阻擋/擴散屏障性質,以防止來自閘極絕緣層406的元素擴散到金屬電極層414中,反之亦然。在一個實施例中,屏障層411可以是由金屬介電層(例如依需要是Ta2
O5
或TiO2
或任何合適的金屬介電層)製造的單層的含金屬介電層,如圖4中所描繪。在另一個實施例中,屏障層411可以依需要呈現複合膜的形式。
閘極電極層414被形成於閘極絕緣層406的頂部上,其中屏障層411介於其間。閘極絕緣層406通常也稱為閘極氧化物層,因為它通常是由二氧化矽(SiO2
)層製作的。絕緣材料層412(例如層間絕緣體)及設備連接件(未示出)接著被製作通過絕緣材料層412以允許控制TFT設備。
在絕緣材料層412形成之後,源極-汲極金屬電極層410a、410b接著被沉積、形成、及圖案化在絕緣材料層412中。在源極-汲極金屬電極層410a、410b被圖案化之後,鈍化層418接著被形成在源極-汲極金屬電極層410a、410b上方。
圖5描繪分別在含金屬層(例如分別在圖3-4中的有源層306、452、或分別在圖3-4中的金屬電極302、310、410a、410b、414)上執行的熱退火過程500的一個實例的流程圖。
方法500藉由提供基板(例如圖3及4中的基板301)開始於操作502處。基板301可以是光學透明基板。基板301可以包括設置在其上的材料層601,如圖6A中所示。材料層601可以是可以用來形成TFT設備結構的單個層或多個層。或者,材料層601可以是可以包括可以用來形成TFT設備結構的多種材料的結構。
基板301更包括形成於材料層601上的含金屬層602,如圖6B中所示。在不存在材料層601的實例中,可以將含金屬層602直接形成於基板301上。在一些實例中,可以將含金屬層602用作圖3或4中的有源層306、452、或圖3-4中的金屬電極302、310、410a、410b、414。在一個實例中,含金屬層602是選自由以下項目所組成的群組的金屬氧化物層:a-IGZO(非晶銦鎵鋅氧化物)、摻雜的IGZO、InGaZnON、ZnO、ZnON、ZnSnO、CdSnO、GaSnO、TiSnO、CuBO2
、CuAlO2
、CuGaO2
、SrCuO、LaCuOS、GaN、InGaN、AlGaN、或InGaAlN等等。在一個實例中,含金屬層602是IGZO或摻雜的IGZO層。或者,含金屬層602可以是金屬層,例如銅(Cu)、金、銀(Ag)、鋁(Al)、鎢(W)、鉬(Mo)、鉻(Cr)、鉭(Ta)、上述項目的合金等等。
在操作504處,執行可選的離子摻雜/植入過程以將離子植入到含金屬層602中,而形成摻雜的含金屬層610,如圖6C中所示。在離子植入過程被消除的實例中,可以直接在含金屬層602上執行操作506處的熱退火過程(下文將更詳細地描述)。離子摻雜/植入過程被執行為在含金屬層602的某些位置上進行摻雜、塗覆、處理、植入、安插、或更改某些膜/表面性質,其中摻雜物形成於該含金屬層中而形成摻雜的含金屬層610。離子摻雜/植入過程利用入射的離子來更改含金屬層602上的膜/表面性質,其中摻雜物被摻雜到該含金屬層以形成摻雜的含金屬層610。可以在任何合適的離子植入/摻雜處理工具中執行離子摻雜/植入過程。可以用所需的濃度將包括所需類型的原子的離子摻雜到含金屬層602中。摻雜到含金屬層602中的離子可以更改含金屬層602的膜/表面性質,這可以影響、改善、或變更含金屬層602的晶格結構、結晶度、鍵合結構、或膜密度,而形成摻雜的含金屬層610。
在含金屬層602包括InGaZnO的實施例中,摻雜到含金屬層602中的離子可以包括銦(In)或鉬(Mo)、鎵(Ga)、鋅(Zn)等等。據信,摻雜到含金屬層602(例如InGaZnO)中的In或Mo摻雜物可以變更InGaZnO材料的電氣性質,例如高遷移率、結晶度(例如來自非晶結構、C軸對準的晶體結構(CAAC)、多晶結構、或甚至單晶結構),因此提供了具有所需膜性質的摻雜的含金屬層610。例如,由InGaZnO材料中的In或Mo摻雜物所提供的較高程度的結晶度據信增加了膜性質的電子遷移率,因此在TFT設備結構或半導體設備中利用摻雜的含金屬層610時增強了TFT設備結構或半導體設備的電氣效能。
並且,也據信,包括在InGaZnO材料中的鎵(Ga)及氧化鋅(ZnO)比率也可以影響摻雜的含金屬層610的生成的晶格結構。據信,包括在InGaZnO材料中的Ga元素的比率可以增加膜透明度以及整體的膜帶隙。包括在InGaZnO材料中的Zn或ZnO元素的比率可以增加遷移率以及減小增強結晶度的熱退火溫度需求。因此,藉由選定摻雜到InGaZnO材料中的適當劑量的In摻雜物,可以獲得所需的InGaZnO材料晶體。並且,所需的InGaZnO材料晶體也可以幫助減小之後的操作506處的熱退火過程中的溫度需求,而在TFT設備應用中提供了過程優勢,因為基板301通常是具有相對低的熱循環預算的光學透明材料。
在一個實施例中,InGaZnO材料中的生成的In摻雜物可以具有形成於摻雜的含金屬層610中的在約5E15離子數/cm2
到約9E15離子數/cm2
之間(例如約8.5E15離子數/cm2
)的摻雜濃度。並且,可以將InGaZnO材料中的In或Mo元素的用原子量計的比率從約10%-13%增加到約14%-16%(在約15%到約30%之間的增加)。
可以在離子摻雜/植入過程期間控制幾個過程參數。可以藉由以下步驟來執行離子摻雜/植入過程:將離子摻雜氣體混合物以及所需的功率能量的量供應到離子摻雜/植入工具中以將來自離子摻雜氣體混合物的離子摻雜到基板301中。可以用在約10 sccm到約1000 sccm之間的流速將離子摻雜氣體混合物供應到離子摻雜/植入工具中。用於在植入期間在所使用的離子摻雜操作中用氣態供應的合適元素包括銦蒸氣及鉬蒸氣。可以將RF電力(例如電容式或感應式RF電力)、DC電力、電磁能、離子束、或磁控濺射供應到離子摻雜/植入過程中以協助在處理期間解離離子摻雜氣體混合物。可以使用藉由向基板支撐物或向基板支撐物上方的氣體入口或向該基板支撐物及該氣體入口施加DC或RF電偏壓產生的電場將由解離能所產生的離子朝向基板加速。在一些實施例中,含氣體的高能離子可以是電漿。可以使用在約20 keV到約80 keV之間(例如在約35 keV到約55 keV之間,例如約45 keV)的能量來將離子植入到含金屬層602中。可以將基板溫度控制在約攝氏5度到約攝氏50度之間,例如約攝氏15度。
在操作506處,執行高壓退火過程。在高過程壓力(例如大於2巴但小於)下執行的退火過程可以協助緻密化及修復摻雜的含金屬層610中的空位,而形成具有所需的膜性質的退火的含金屬層603,如圖6D中所示。在一些實例中,高的過程壓力可以高達100巴。在不執行操作504處的離子摻雜/植入過程的實施例中,可以直接在來自圖6B的含金屬層602上執行高壓退火過程以形成退火的含金屬層603,如圖6D中所示。可以在處理腔室(例如圖1中所描繪的處理腔室100)或其他合適的處理腔室(包括一次處理一個基板的彼等處理腔室)處執行退火過程。
在操作506處執行的高壓退火過程將高壓區域處的處理壓力維持在氣相(例如實質上不存在液滴的乾氣相)下。處理壓力及溫度被控制為緻密化膜結構,以便修復膜缺陷,而驅除雜質及增加膜密度。在一個實例中,高壓區域115被加壓到大於大氣的壓力,例如大於約2巴。在另一個實例中,高壓區域115被加壓到從約5到約100巴的壓力,例如從約5到約50巴,例如約35巴。因為高壓可以高效地協助緻密化膜結構,相對低的處理溫度(例如小於攝氏500度)減小了熱循環損傷基板301的可能性。
在處理期間,高壓區域115被設置在外腔室110內的加熱器122維持在相對低的溫度下,例如小於攝氏500度的溫度,例如在約攝氏150度到約攝氏350度之間。因此,可以藉由利用高壓退火過程以及低溫方案來獲得低的基板熱預算。
據信,高壓過程可以提供驅動力以驅除含金屬層602或摻雜的含金屬層610中的懸鍵,因此在退火過程期間使含金屬層602中的懸鍵修復、反應、及飽和。在一個實例中,可以在退火過程期間供應含氧氣體(例如O3
氣體、O2
氣體、空氣、H2
O、H2
O2
、N2
O、NO2
、CO2
、CO、及乾蒸氣)、或硫族蒸氣(包括硫(S)蒸氣及硒(Se)蒸氣)、或碲蒸氣、或其他合適的氣體。在一個具體實例中,含氧氣體包括蒸氣,例如乾蒸氣及/或空氣。可以將在退火過程期間來自含氧氣體的氧元素驅動到含金屬層602中,而變更其中的鍵合結構及移除原子空位,因此緻密化及增強了含金屬層602的晶格結構及增加了該含金屬層的結晶度。在一些實例中,可以與含氧氣體一起供應惰性氣體或載體氣體(例如Ar、N2
、He、Kr等等)。在一個實施例中,在含氧氣體混合物中供應的含氧氣體是在大於2巴的壓力下供應的乾蒸氣。
在一個示例性的實施方式中,過程壓力被調節在大於2巴的壓力下,例如在5巴到100巴之間,例如在20巴到約80巴之間,例如在約25巴到75巴之間,例如約35巴。可以將過程溫度控制在大於攝氏150度但小於攝氏500度,例如在約攝氏150度到約攝氏380度之間,例如在約攝氏180度到約攝氏400度之間。在一個實例中,可以在用於金屬氧硫族元素(例如包括S或Se的InGaZnO)的退火過程期間供應硫族蒸氣(例如硫(S)蒸氣、硒(Se)蒸氣)。
在高壓下的退火過程之後,與藉由一個大氣壓力左右的壓力下的常規退火過程來退火的含金屬層602或摻雜的含金屬層610相比,含金屬層602或摻雜的含金屬層610具有緻密化的膜結構,這提供了具有非晶形態的相對強健的膜結構,該膜結構提供了更高的膜密度、高的膜遷移率、低的載體濃度、及低的膜電阻率,其中兩種退火過程都處於相同的退火溫度。在一個實例中,與1大氣壓力下且相同退火溫度下的常規退火過程相比,具有銦摻雜物的高壓退火的含金屬層603(由摻雜的含金屬層610所形成)的遷移率增加了約5倍到約20倍之間,電阻率增加了約10倍,且載體濃度減小了約100倍。
在一個實例中,與1大氣壓力下且相同退火溫度下的常規退火過程相比,不具有銦摻雜物的高壓退火的含金屬層603(由含金屬層602所形成)的遷移率增加了約1.5倍到約5倍之間,電阻率增加了約20百分比到約99百分比,且載體濃度減小了約100倍。
因此,提供了用於熱退火含金屬層的方法。可以藉由具有高過程壓力(例如大於2巴但小於50巴)的高壓退火過程來熱處理/退火含金屬層。藉由利用此類高壓退火過程,可以將過程溫度維持小於攝氏500度,因此減小了貢獻給其上形成有含金屬層的基板的熱預算,而提供了具有所需的結晶度及結構整合管理的良好膜品質。
儘管上文是針對本發明的實施例,但可以設計本發明的其他的及另外的實施例而不脫離本發明的基本範圍,且本發明的範圍是由隨後的申請專利範圍所決定的。
100‧‧‧單基板處理腔室
110‧‧‧主體
111‧‧‧開口
112‧‧‧外表面
113‧‧‧內表面
114‧‧‧壓力感測器
115‧‧‧內部容積
116‧‧‧溫度感測器
117‧‧‧端口
119‧‧‧溫度感測器
122‧‧‧加熱器
130‧‧‧基板支撐物
131‧‧‧電阻式加熱元件
132‧‧‧基板支撐構件
133‧‧‧電源
134‧‧‧桿
135‧‧‧板
136‧‧‧孔
137‧‧‧升降銷
138‧‧‧致動器
139‧‧‧桿
140‧‧‧加熱器
145‧‧‧電源
150‧‧‧氣體面板
151‧‧‧溫度感測器
152‧‧‧加熱器
153‧‧‧溫度感測器
154‧‧‧加熱器
155‧‧‧入口隔離閥
156‧‧‧溫度讀數設備
157‧‧‧來源導管
158‧‧‧加熱器
160‧‧‧冷凝器
162‧‧‧溫度讀數設備
163‧‧‧排氣導管
164‧‧‧加熱器
165‧‧‧出口隔離閥
166‧‧‧加熱器
167‧‧‧溫度感測器
169‧‧‧溫度感測器
170‧‧‧泵
176‧‧‧泵
180‧‧‧控制器
190‧‧‧流體迴路
192‧‧‧導氣管
196‧‧‧加熱器
200‧‧‧處理系統
201‧‧‧計算設備
202‧‧‧工廠介面
204‧‧‧真空氣密處理平台
206A‧‧‧FOUP
206B‧‧‧FOUP
208‧‧‧對接站
212‧‧‧處理腔室
214‧‧‧工廠介面機器人
216‧‧‧葉片
220‧‧‧處理腔室
222‧‧‧裝載閘腔室
224‧‧‧基板
226‧‧‧終端
228‧‧‧處理腔室
230‧‧‧真空機器人
232‧‧‧處理腔室
234‧‧‧葉片
236‧‧‧真空基板傳輸腔室
238‧‧‧CPU
240‧‧‧記憶體
242‧‧‧支援電路
244‧‧‧系統控制器
301‧‧‧基板
302‧‧‧金屬電極
304‧‧‧閘極絕緣體
306‧‧‧有源層
308‧‧‧屏障層
310‧‧‧金屬電極
314‧‧‧絕緣材料層
320‧‧‧通道
350‧‧‧設備結構
404‧‧‧絕緣層
406‧‧‧閘極絕緣層
408‧‧‧通道區域
409a‧‧‧源極區域
409b‧‧‧汲極區域
410a‧‧‧金屬電極
410b‧‧‧金屬電極
411‧‧‧屏障層
412‧‧‧絕緣材料層
414‧‧‧金屬電極
418‧‧‧鈍化層
450‧‧‧設備結構
500‧‧‧熱退火過程
502‧‧‧操作
504‧‧‧操作
506‧‧‧操作
508‧‧‧操作
601‧‧‧材料層
602‧‧‧含金屬層
603‧‧‧退火的含金屬層
610‧‧‧摻雜的含金屬層
可以藉由參照實施例來獲得可以用來詳細瞭解上文所載的本發明特徵的方式及上文簡要概述的本發明的更特定描述,該等實施例中的一些被繪示在附圖中。然而,應注意,附圖僅繪示此發明的典型實施例且因此不要將其視為此發明的範圍限制,因為本發明可以容許其他同等有效的實施例。
圖1是依據一些實施例的處理腔室的簡化正橫截面圖,該處理腔室具有設置在其中的輸送盒;
圖2是群集系統,可以將圖1的處理腔室合併到該群集系統;
圖3是薄膜電晶體設備結構的一個實例的截面圖;及
圖4是薄膜電晶體設備結構的另一個實例的截面圖。
圖5描繪依據一些實施例的在含金屬材料中執行的退火過程的流程圖;
圖6A-6D描繪依據一些實施例的圖5的用於將含金屬材料熱退火的序列的一個實施例。
為了促進了解,已經儘可能使用相同的參考標號(例如類似退火條件下的大氣壓力下的退火)來標定圖式共有的相同元件。所預期的是,可以在不另外重述的情況下有益地將一個實施例的元件及特徵併入其他實施例。
然而,要注意,附圖僅繪示此發明的示例性實施例,且因此不要將該等附圖視為此發明的範圍的限制,因為本發明可以容許其他同等有效的實施例。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記)
無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記)
無
100‧‧‧單基板處理腔室
110‧‧‧主體
111‧‧‧開口
112‧‧‧外表面
113‧‧‧內表面
114‧‧‧壓力感測器
115‧‧‧內部容積
116‧‧‧溫度感測器
117‧‧‧端口
119‧‧‧溫度感測器
122‧‧‧加熱器
130‧‧‧基板支撐物
131‧‧‧電阻式加熱元件
132‧‧‧基板支撐構件
133‧‧‧電源
134‧‧‧桿
135‧‧‧板
136‧‧‧孔
137‧‧‧升降銷
138‧‧‧致動器
139‧‧‧桿
140‧‧‧加熱器
145‧‧‧電源
150‧‧‧氣體面板
151‧‧‧溫度感測器
152‧‧‧加熱器
153‧‧‧溫度感測器
154‧‧‧加熱器
155‧‧‧入口隔離閥
156‧‧‧溫度讀數設備
157‧‧‧來源導管
158‧‧‧加熱器
160‧‧‧冷凝器
162‧‧‧溫度讀數設備
163‧‧‧排氣導管
164‧‧‧加熱器
165‧‧‧出口隔離閥
166‧‧‧加熱器
167‧‧‧溫度感測器
169‧‧‧溫度感測器
170‧‧‧泵
176‧‧‧泵
180‧‧‧控制器
190‧‧‧流體迴路
192‧‧‧導氣管
196‧‧‧加熱器
Claims (15)
- 一種在一基板上形成一含金屬層的方法,該方法包括以下步驟:在一處理腔室中的一基板上供應一含氧氣體混合物,該基板包括設置在一光學透明基板上的一含金屬層;將該處理腔室中的該含氧氣體混合物維持在2巴到50巴之間的一過程壓力下;及在一基板溫度下在該含氧氣體混合物存在的情況下熱退火該含金屬層,其中:該含氧氣體混合物包括一含氧氣體、及一惰性氣體或一載體氣體,該含金屬層是一金屬氧化物層或一金屬層,該金屬氧化物層選自由以下項目所組成的一群組:a-IGZO(非晶銦鎵鋅氧化物)、摻雜的IGZO、InGaZnON、ZnO、ZnON、ZnSnO、CdSnO、GaSnO、TiSnO、CuBO2、CuAlO2、CuGaO2、SrCuO、LaCuOS、GaN、InGaN、AlGaN、及InGaAlN,該金屬層選自由以下項目所組成的一群組:鋁(Al)、鎢(W)、鉻(Cr)、鉭(Ta)、鉬(Mo)、銅(Cu)、上述項目的合金、及上述項目的組合,及 在該熱退火步驟之後,與藉由在1大氣壓力下且在與該基板溫度相同的溫度下進行的一退火過程來退火的該含金屬層的遷移率相比,該含金屬層的遷移率增加了約1.5倍到20倍之間。
- 如請求項1所述的方法,其中供應該含氧氣體混合物的步驟更包括以下步驟:將該基板溫度維持小於攝氏400度。
- 如請求項1所述的方法,其中該含氧氣體選自由以下項目所組成的一群組:O3氣體、O2氣體、H2O、H2O2、N2O、NO2、CO2、CO、空氣、乾蒸氣。
- 如請求項1所述的方法,其中含氧氣體混合物包括乾蒸氣或空氣。
- 如請求項1所述的方法,其中該過程壓力是在約5巴到100巴之間。
- 如請求項1所述的方法,更包括以下步驟:在供應該含氧氣體混合物之前將摻雜物植入到該含金屬層中。
- 如請求項6所述的方法,其中植入到該含金屬層中的該等摻雜物包括銦或鉬。
- 如請求項7所述的方法,其中植入到該含金屬層中的該等摻雜物增加了該含金屬層的結晶度。
- 如請求項1所述的方法,其中該含金屬層是一TFT設備結構中的一有源層。
- 如請求項1所述的方法,其中該金屬氧化物層是InGaZnON。
- 如請求項1所述的方法,其中該含金屬層是一TFT設備結構中的一電極。
- 如請求項1所述的方法,其中該含金屬層在該熱退火步驟之後具有較高的一膜密度。
- 一種用於緻密化設置在一基板上的一含金屬層的方法,該方法包括以下步驟:在2巴到50巴之間的一壓力下熱處理設置在一光學透明基板上的一含金屬層;及在熱處理該含金屬層的期間將一基板溫度維持小於攝氏500度,其中:該含金屬層是一金屬氧化物層或一金屬層,該金屬氧化物層選自由以下項目所組成的一群組:a-IGZO(非晶銦鎵鋅氧化物)、摻雜的IGZO、InGaZnON、ZnO、ZnON、ZnSnO、CdSnO、GaSnO、TiSnO、CuBO2、CuAlO2、CuGaO2、SrCuO、LaCuOS、GaN、InGaN、AlGaN、及InGaAlN, 該金屬層選自由以下項目所組成的一群組:鋁(Al)、鎢(W)、鉻(Cr)、鉭(Ta)、鉬(Mo)、銅(Cu)、上述項目的合金、及上述項目的組合,及在該熱處理步驟之後,與藉由在1大氣壓力下且在與該基板溫度相同的溫度下進行的一熱處理過程來退火的該含金屬層的遷移率相比,該含金屬層的遷移率增加了約1.5倍到20倍之間。
- 如請求項13所述的方法,更包括以下步驟:在熱處理該含金屬層的同時向該含金屬層供應乾蒸氣、空氣、硫族蒸氣、或碲蒸氣。
- 一種用於緻密化設置在一基板上的一含金屬層的方法,該方法包括以下步驟:在一基板上形成一含金屬層;將摻雜物植入到該含金屬層中;及在2巴到50巴之間的一壓力下熱處理該基板上的該含金屬層,同時將一基板溫度維持小於攝氏500度,其中:該含金屬層是一金屬氧化物層或一金屬層,該金屬氧化物層選自由以下項目所組成的一群組:a-IGZO(非晶銦鎵鋅氧化物)、摻雜的IGZO、InGaZnON、ZnO、ZnON、ZnSnO、CdSnO、GaSnO、TiSnO、CuBO2、CuAlO2、CuGaO2、 SrCuO、LaCuOS、GaN、InGaN、AlGaN、及InGaAlN,該金屬層選自由以下項目所組成的一群組:鋁(Al)、鎢(W)、鉻(Cr)、鉭(Ta)、鉬(Mo)、銅(Cu)、上述項目的合金、及上述項目的組合,及在該熱處理步驟之後,與藉由在1大氣壓力下且在與該基板溫度相同的溫度下進行的一熱處理過程來退火的該含金屬層的遷移率相比,該含金屬層的遷移率增加了約1.5倍到20倍之間。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862641110P | 2018-03-09 | 2018-03-09 | |
US62/641,110 | 2018-03-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201945570A TW201945570A (zh) | 2019-12-01 |
TWI707969B true TWI707969B (zh) | 2020-10-21 |
Family
ID=67842028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108104585A TWI707969B (zh) | 2018-03-09 | 2019-02-12 | 用於含金屬材料的高壓退火過程 |
Country Status (8)
Country | Link |
---|---|
US (2) | US10998200B2 (zh) |
EP (1) | EP3762962A4 (zh) |
JP (1) | JP7239598B2 (zh) |
KR (2) | KR102702244B1 (zh) |
CN (1) | CN111902929A (zh) |
SG (1) | SG11202008256WA (zh) |
TW (1) | TWI707969B (zh) |
WO (1) | WO2019173006A1 (zh) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10622214B2 (en) | 2017-05-25 | 2020-04-14 | Applied Materials, Inc. | Tungsten defluorination by high pressure treatment |
US10276411B2 (en) | 2017-08-18 | 2019-04-30 | Applied Materials, Inc. | High pressure and high temperature anneal chamber |
JP6947914B2 (ja) * | 2017-08-18 | 2021-10-13 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | 高圧高温下のアニールチャンバ |
CN111095524B (zh) | 2017-09-12 | 2023-10-03 | 应用材料公司 | 用于使用保护阻挡物层制造半导体结构的设备和方法 |
JP7112490B2 (ja) | 2017-11-11 | 2022-08-03 | マイクロマテリアルズ エルエルシー | 高圧処理チャンバのためのガス供給システム |
KR102622303B1 (ko) | 2017-11-16 | 2024-01-05 | 어플라이드 머티어리얼스, 인코포레이티드 | 고압 스팀 어닐링 프로세싱 장치 |
JP2021503714A (ja) | 2017-11-17 | 2021-02-12 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | 高圧処理システムのためのコンデンサシステム |
EP3762962A4 (en) | 2018-03-09 | 2021-12-08 | Applied Materials, Inc. | HIGH PRESSURE ANNEALING PROCESS FOR METAL-BASED MATERIALS |
US10714331B2 (en) | 2018-04-04 | 2020-07-14 | Applied Materials, Inc. | Method to fabricate thermally stable low K-FinFET spacer |
US10950429B2 (en) | 2018-05-08 | 2021-03-16 | Applied Materials, Inc. | Methods of forming amorphous carbon hard mask layers and hard mask layers formed therefrom |
US10748783B2 (en) | 2018-07-25 | 2020-08-18 | Applied Materials, Inc. | Gas delivery module |
US10675581B2 (en) | 2018-08-06 | 2020-06-09 | Applied Materials, Inc. | Gas abatement apparatus |
WO2020092002A1 (en) | 2018-10-30 | 2020-05-07 | Applied Materials, Inc. | Methods for etching a structure for semiconductor applications |
KR20210077779A (ko) | 2018-11-16 | 2021-06-25 | 어플라이드 머티어리얼스, 인코포레이티드 | 강화된 확산 프로세스를 사용한 막 증착 |
WO2020117462A1 (en) | 2018-12-07 | 2020-06-11 | Applied Materials, Inc. | Semiconductor processing system |
US11901222B2 (en) | 2020-02-17 | 2024-02-13 | Applied Materials, Inc. | Multi-step process for flowable gap-fill film |
KR20240018513A (ko) * | 2021-06-09 | 2024-02-13 | 와틀로 일렉트릭 매뉴팩츄어링 컴파니 | 차가운 도관 절연 장치 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140239291A1 (en) * | 2013-02-27 | 2014-08-28 | Inha-Industry Partnership Institute | Metal-oxide semiconductor thin film transistors and methods of manufacturing the same |
US20150091009A1 (en) * | 2008-07-31 | 2015-04-02 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
Family Cites Families (611)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6482262B1 (en) | 1959-10-10 | 2002-11-19 | Asm Microchemistry Oy | Deposition of transition metal carbides |
US4524587A (en) | 1967-01-10 | 1985-06-25 | Kantor Frederick W | Rotary thermodynamic apparatus and method |
US3684592A (en) | 1969-09-30 | 1972-08-15 | Westinghouse Electric Corp | Passivated surfaces and protective coatings for semiconductor devices and processes for producing the same |
US3758316A (en) | 1971-03-30 | 1973-09-11 | Du Pont | Refractory materials and process for making same |
US3749383A (en) | 1971-04-29 | 1973-07-31 | Rca Corp | Apparatus for processing semiconductor devices |
US4409260A (en) | 1979-08-15 | 1983-10-11 | Hughes Aircraft Company | Process for low-temperature surface layer oxidation of a semiconductor substrate |
US4424101A (en) | 1980-11-06 | 1984-01-03 | The Perkin-Elmer Corp. | Method of depositing doped refractory metal silicides using DC magnetron/RF diode mode co-sputtering techniques |
US4589193A (en) | 1984-06-29 | 1986-05-20 | International Business Machines Corporation | Metal silicide channel stoppers for integrated circuits and method for making the same |
US4576652A (en) | 1984-07-12 | 1986-03-18 | International Business Machines Corporation | Incoherent light annealing of gallium arsenide substrate |
JPS634616A (ja) | 1986-06-25 | 1988-01-09 | Hitachi Tokyo Electron Co Ltd | 蒸気処理装置 |
JPS6367721A (ja) | 1986-09-09 | 1988-03-26 | Meidensha Electric Mfg Co Ltd | アモルフアス炭素半導体膜の製造方法 |
JPH0748489B2 (ja) | 1987-07-27 | 1995-05-24 | 富士通株式会社 | プラズマ処理装置 |
US4879259A (en) | 1987-09-28 | 1989-11-07 | The Board Of Trustees Of The Leland Stanford Junion University | Rapid thermal annealing of gallium arsenide with trimethyl arsenic overpressure |
CA1308496C (en) | 1988-02-18 | 1992-10-06 | Rajiv V. Joshi | Deposition of tungsten on silicon in a non-self-limiting cvd process |
US5114513A (en) | 1988-10-27 | 1992-05-19 | Omron Tateisi Electronics Co. | Optical device and manufacturing method thereof |
US5167717A (en) | 1989-02-15 | 1992-12-01 | Charles Boitnott | Apparatus and method for processing a semiconductor wafer |
JP2730695B2 (ja) | 1989-04-10 | 1998-03-25 | 忠弘 大見 | タングステン膜の成膜装置 |
US5126117A (en) | 1990-05-22 | 1992-06-30 | Custom Engineered Materials, Inc. | Device for preventing accidental releases of hazardous gases |
US5175123A (en) | 1990-11-13 | 1992-12-29 | Motorola, Inc. | High-pressure polysilicon encapsulated localized oxidation of silicon |
US5050540A (en) | 1991-01-29 | 1991-09-24 | Arne Lindberg | Method of gas blanketing a boiler |
JP2996524B2 (ja) | 1991-03-18 | 2000-01-11 | 松下電子工業株式会社 | ポリイミド硬化装置 |
US5314541A (en) | 1991-05-28 | 1994-05-24 | Tokyo Electron Limited | Reduced pressure processing system and reduced pressure processing method |
DE69233222T2 (de) | 1991-05-28 | 2004-08-26 | Trikon Technologies Ltd., Thornbury | Verfahren zum Füllen eines Hohlraumes in einem Substrat |
US6238588B1 (en) | 1991-06-27 | 2001-05-29 | Applied Materials, Inc. | High pressure high non-reactive diluent gas content high plasma ion density plasma oxide etch process |
JPH0521310A (ja) | 1991-07-11 | 1993-01-29 | Canon Inc | 微細パタン形成方法 |
JPH0521347A (ja) | 1991-07-11 | 1993-01-29 | Canon Inc | スパツタリング装置 |
JPH05129296A (ja) | 1991-11-05 | 1993-05-25 | Fujitsu Ltd | 導電膜の平坦化方法 |
US5300320A (en) | 1992-06-23 | 1994-04-05 | President And Fellows Of Harvard College | Chemical vapor deposition from single organometallic precursors |
US5319212A (en) | 1992-10-07 | 1994-06-07 | Genus, Inc. | Method of monitoring ion beam current in ion implantation apparatus for use in manufacturing semiconductors |
JPH06283496A (ja) | 1993-03-26 | 1994-10-07 | Dainippon Screen Mfg Co Ltd | 洗浄処理後の基板の乾燥処理装置 |
US5607002A (en) | 1993-04-28 | 1997-03-04 | Advanced Delivery & Chemical Systems, Inc. | Chemical refill system for high purity chemicals |
US5578132A (en) | 1993-07-07 | 1996-11-26 | Tokyo Electron Kabushiki Kaisha | Apparatus for heat treating semiconductors at normal pressure and low pressure |
JPH0766424A (ja) | 1993-08-20 | 1995-03-10 | Semiconductor Energy Lab Co Ltd | 半導体装置およびその作製方法 |
JPH07158767A (ja) | 1993-12-09 | 1995-06-20 | Kokusai Electric Co Ltd | ゲートバルブ |
US5460689A (en) | 1994-02-28 | 1995-10-24 | Applied Materials, Inc. | High pressure plasma treatment method and apparatus |
US5880041A (en) | 1994-05-27 | 1999-03-09 | Motorola Inc. | Method for forming a dielectric layer using high pressure |
US5597439A (en) | 1994-10-26 | 1997-01-28 | Applied Materials, Inc. | Process gas inlet and distribution passages |
US5808245A (en) | 1995-01-03 | 1998-09-15 | Donaldson Company, Inc. | Vertical mount catalytic converter muffler |
JPH08195493A (ja) | 1995-01-13 | 1996-07-30 | Toshiba Corp | 薄膜トランジスタの製造方法 |
US5620524A (en) | 1995-02-27 | 1997-04-15 | Fan; Chiko | Apparatus for fluid delivery in chemical vapor deposition systems |
US5858051A (en) | 1995-05-08 | 1999-01-12 | Toshiba Machine Co., Ltd. | Method of manufacturing optical waveguide |
JP2872637B2 (ja) | 1995-07-10 | 1999-03-17 | アプライド マテリアルズ インコーポレイテッド | マイクロ波プラズマベースアプリケータ |
JP3684624B2 (ja) | 1995-08-02 | 2005-08-17 | ソニー株式会社 | 反応ガス供給装置 |
US5747383A (en) | 1995-09-05 | 1998-05-05 | Taiwan Semiconductor Manufacturing Company Ltd | Method for forming conductive lines and stacked vias |
US5857368A (en) | 1995-10-06 | 1999-01-12 | Applied Materials, Inc. | Apparatus and method for fabricating metal paths in semiconductor substrates through high pressure extrusion |
US5877087A (en) | 1995-11-21 | 1999-03-02 | Applied Materials, Inc. | Low temperature integrated metallization process and apparatus |
JPH09296267A (ja) | 1995-11-21 | 1997-11-18 | Applied Materials Inc | 高圧押出しによる、半導体基板における金属パスの製造装置および方法 |
US5677230A (en) | 1995-12-01 | 1997-10-14 | Motorola | Method of making wide bandgap semiconductor devices |
US6077571A (en) | 1995-12-19 | 2000-06-20 | The Research Foundation Of State University Of New York | Conformal pure and doped aluminum coatings and a methodology and apparatus for their preparation |
US5895274A (en) | 1996-01-22 | 1999-04-20 | Micron Technology, Inc. | High-pressure anneal process for integrated circuits |
US5918149A (en) | 1996-02-16 | 1999-06-29 | Advanced Micro Devices, Inc. | Deposition of a conductor in a via hole or trench |
KR980012044A (ko) | 1996-03-01 | 1998-04-30 | 히가시 데츠로 | 기판건조장치 및 기판건조방법 |
US5998305A (en) | 1996-03-29 | 1999-12-07 | Praxair Technology, Inc. | Removal of carbon from substrate surfaces |
US5738915A (en) | 1996-09-19 | 1998-04-14 | Lambda Technologies, Inc. | Curing polymer layers on semiconductor substrates using variable frequency microwave energy |
US6444037B1 (en) | 1996-11-13 | 2002-09-03 | Applied Materials, Inc. | Chamber liner for high temperature processing chamber |
US6082950A (en) | 1996-11-18 | 2000-07-04 | Applied Materials, Inc. | Front end wafer staging with wafer cassette turntables and on-the-fly wafer center finding |
US5886864A (en) | 1996-12-02 | 1999-03-23 | Applied Materials, Inc. | Substrate support member for uniform heating of a substrate |
TW347570B (en) | 1996-12-24 | 1998-12-11 | Toshiba Co Ltd | Semiconductor device and method for manufacturing the same |
US5888888A (en) | 1997-01-29 | 1999-03-30 | Ultratech Stepper, Inc. | Method for forming a silicide region on a silicon body |
JP2980052B2 (ja) | 1997-03-31 | 1999-11-22 | 日本電気株式会社 | 半導体装置の製造方法 |
US6334249B2 (en) | 1997-04-22 | 2002-01-01 | Texas Instruments Incorporated | Cavity-filling method for reducing surface topography and roughness |
KR100560049B1 (ko) | 1997-05-10 | 2006-05-25 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 성막방법 |
JP2976931B2 (ja) | 1997-06-04 | 1999-11-10 | 日本電気株式会社 | 半導体装置の製造方法 |
US6309713B1 (en) | 1997-06-30 | 2001-10-30 | Applied Materials, Inc. | Deposition of tungsten nitride by plasma enhanced chemical vapor deposition |
US6136664A (en) | 1997-08-07 | 2000-10-24 | International Business Machines Corporation | Filling of high aspect ratio trench isolation |
US20030049372A1 (en) | 1997-08-11 | 2003-03-13 | Cook Robert C. | High rate deposition at low pressures in a small batch reactor |
KR100261017B1 (ko) | 1997-08-19 | 2000-08-01 | 윤종용 | 반도체 장치의 금속 배선층을 형성하는 방법 |
US6348376B2 (en) | 1997-09-29 | 2002-02-19 | Samsung Electronics Co., Ltd. | Method of forming metal nitride film by chemical vapor deposition and method of forming metal contact and capacitor of semiconductor device using the same |
US5963817A (en) | 1997-10-16 | 1999-10-05 | International Business Machines Corporation | Bulk and strained silicon on insulator using local selective oxidation |
JP3199006B2 (ja) | 1997-11-18 | 2001-08-13 | 日本電気株式会社 | 層間絶縁膜の形成方法および絶縁膜形成装置 |
US6442980B2 (en) | 1997-11-26 | 2002-09-03 | Chart Inc. | Carbon dioxide dry cleaning system |
US6140235A (en) | 1997-12-05 | 2000-10-31 | Applied Materials, Inc. | High pressure copper fill at low temperature |
KR100275727B1 (ko) | 1998-01-06 | 2001-01-15 | 윤종용 | 반도체 장치의 커패시터 형성방법 |
JP3296281B2 (ja) | 1998-01-22 | 2002-06-24 | 日本電気株式会社 | スパッタリング装置及びスパッタリング方法 |
US6846739B1 (en) | 1998-02-27 | 2005-01-25 | Micron Technology, Inc. | MOCVD process using ozone as a reactant to deposit a metal oxide barrier layer |
US6164412A (en) | 1998-04-03 | 2000-12-26 | Arvin Industries, Inc. | Muffler |
JP3955386B2 (ja) | 1998-04-09 | 2007-08-08 | 富士通株式会社 | 半導体装置及びその製造方法 |
JPH11354515A (ja) | 1998-06-04 | 1999-12-24 | Ishikawajima Harima Heavy Ind Co Ltd | 加圧式加熱炉 |
US6103585A (en) | 1998-06-09 | 2000-08-15 | Siemens Aktiengesellschaft | Method of forming deep trench capacitors |
KR100319888B1 (ko) | 1998-06-16 | 2002-01-10 | 윤종용 | 선택적 금속층 형성방법, 이를 이용한 커패시터 형성 및 콘택홀 매립방법 |
KR100287180B1 (ko) | 1998-09-17 | 2001-04-16 | 윤종용 | 계면 조절층을 이용하여 금속 배선층을 형성하는 반도체 소자의 제조 방법 |
US6719516B2 (en) | 1998-09-28 | 2004-04-13 | Applied Materials, Inc. | Single wafer load lock with internal wafer transport |
KR100327328B1 (ko) | 1998-10-13 | 2002-05-09 | 윤종용 | 부분적으로다른두께를갖는커패시터의유전막형성방버뵤 |
US20030101938A1 (en) | 1998-10-27 | 2003-06-05 | Applied Materials, Inc. | Apparatus for the deposition of high dielectric constant films |
KR100331544B1 (ko) | 1999-01-18 | 2002-04-06 | 윤종용 | 반응챔버에 가스를 유입하는 방법 및 이에 사용되는 샤워헤드 |
JP2000221799A (ja) | 1999-01-29 | 2000-08-11 | Canon Inc | 画像形成装置 |
KR100804853B1 (ko) | 1999-03-04 | 2008-02-20 | 서페이스 테크놀로지 시스템스 피엘씨 | 삼불화염소가스발생기시스템 |
US6200893B1 (en) | 1999-03-11 | 2001-03-13 | Genus, Inc | Radical-assisted sequential CVD |
US6305314B1 (en) | 1999-03-11 | 2001-10-23 | Genvs, Inc. | Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition |
JP4096440B2 (ja) | 1999-03-11 | 2008-06-04 | 三菱瓦斯化学株式会社 | 多層成形品 |
US6387764B1 (en) | 1999-04-02 | 2002-05-14 | Silicon Valley Group, Thermal Systems Llc | Trench isolation process to deposit a trench fill oxide prior to sidewall liner oxidation growth |
JP3892621B2 (ja) | 1999-04-19 | 2007-03-14 | 株式会社神戸製鋼所 | 配線膜の形成方法 |
US6086730A (en) | 1999-04-22 | 2000-07-11 | Komag, Incorporated | Method of sputtering a carbon protective film on a magnetic disk with high sp3 content |
JP2000340671A (ja) | 1999-05-26 | 2000-12-08 | Fujitsu Ltd | 半導体装置の製造方法及び半導体装置 |
JP2001053066A (ja) | 1999-05-28 | 2001-02-23 | Tokyo Electron Ltd | オゾン処理装置およびその方法 |
US6355558B1 (en) | 1999-06-10 | 2002-03-12 | Texas Instruments Incorporated | Metallization structure, and associated method, to improve crystallographic texture and cavity fill for CVD aluminum/PVD aluminum alloy films |
JP2000357699A (ja) | 1999-06-16 | 2000-12-26 | Seiko Epson Corp | 半導体装置 |
EP1069213A3 (en) | 1999-07-12 | 2004-01-28 | Applied Materials, Inc. | Optimal anneal technology for micro-voiding control and self-annealing management of electroplated copper |
US6468490B1 (en) | 2000-06-29 | 2002-10-22 | Applied Materials, Inc. | Abatement of fluorine gas from effluent |
US6612317B2 (en) | 2000-04-18 | 2003-09-02 | S.C. Fluids, Inc | Supercritical fluid delivery and recovery system for semiconductor wafer processing |
US6334266B1 (en) | 1999-09-20 | 2002-01-01 | S.C. Fluids, Inc. | Supercritical fluid drying system and method of use |
ATE418158T1 (de) | 1999-08-17 | 2009-01-15 | Applied Materials Inc | Oberflächenbehandlung von kohlenstoffdotierten sio2-filmen zur erhöhung der stabilität während der o2-veraschung |
US6299753B1 (en) | 1999-09-01 | 2001-10-09 | Applied Materials, Inc. | Double pressure vessel chemical dispenser unit |
US6511539B1 (en) | 1999-09-08 | 2003-01-28 | Asm America, Inc. | Apparatus and method for growth of a thin film |
JP2001110729A (ja) | 1999-10-06 | 2001-04-20 | Mitsubishi Heavy Ind Ltd | 半導体素子の連続製造装置 |
FI117942B (fi) | 1999-10-14 | 2007-04-30 | Asm Int | Menetelmä oksidiohutkalvojen kasvattamiseksi |
KR100304714B1 (ko) | 1999-10-20 | 2001-11-02 | 윤종용 | 금속 할로겐 가스를 사용한 반도체 소자의 금속 박막 형성방법 |
US6444372B1 (en) | 1999-10-25 | 2002-09-03 | Svg Lithography Systems, Inc. | Non absorbing reticle and method of making same |
US20030148631A1 (en) | 1999-11-08 | 2003-08-07 | Taiwan Semiconductor Manufacturing Company | Oxidative annealing method for forming etched spin-on-glass (SOG) planarizing layer with uniform etch profile |
US6500603B1 (en) | 1999-11-11 | 2002-12-31 | Mitsui Chemicals, Inc. | Method for manufacturing polymer optical waveguide |
KR100629255B1 (ko) | 1999-11-12 | 2006-09-29 | 삼성전자주식회사 | 반도체 포토 공정용 베이크 장치 |
KR100321561B1 (ko) | 1999-11-16 | 2002-01-23 | 박호군 | 휘발 성분이 포함된 다성분 산화물 강유전체 박막의 제조방법 |
US6399486B1 (en) | 1999-11-22 | 2002-06-04 | Taiwan Semiconductor Manufacturing Company | Method of improved copper gap fill |
TW484170B (en) | 1999-11-30 | 2002-04-21 | Applied Materials Inc | Integrated modular processing platform |
US6344419B1 (en) | 1999-12-03 | 2002-02-05 | Applied Materials, Inc. | Pulsed-mode RF bias for sidewall coverage improvement |
US6969448B1 (en) | 1999-12-30 | 2005-11-29 | Cypress Semiconductor Corp. | Method for forming a metallization structure in an integrated circuit |
US6150286A (en) | 2000-01-03 | 2000-11-21 | Advanced Micro Devices, Inc. | Method of making an ultra thin silicon nitride film |
US6541367B1 (en) | 2000-01-18 | 2003-04-01 | Applied Materials, Inc. | Very low dielectric constant plasma-enhanced CVD films |
FI20000099A0 (fi) | 2000-01-18 | 2000-01-18 | Asm Microchemistry Ltd | Menetelmä metalliohutkalvojen kasvattamiseksi |
US6251242B1 (en) | 2000-01-21 | 2001-06-26 | Applied Materials, Inc. | Magnetron and target producing an extended plasma region in a sputter reactor |
US6277249B1 (en) | 2000-01-21 | 2001-08-21 | Applied Materials Inc. | Integrated process for copper via filling using a magnetron and target producing highly energetic ions |
US6319766B1 (en) | 2000-02-22 | 2001-11-20 | Applied Materials, Inc. | Method of tantalum nitride deposition by tantalum oxide densification |
JP2001250787A (ja) | 2000-03-06 | 2001-09-14 | Hitachi Kokusai Electric Inc | 基板処理装置および基板処理方法 |
DE60125338T2 (de) | 2000-03-07 | 2007-07-05 | Asm International N.V. | Gradierte dünne schichten |
US6506653B1 (en) | 2000-03-13 | 2003-01-14 | International Business Machines Corporation | Method using disposable and permanent films for diffusion and implant doping |
JP4637989B2 (ja) | 2000-03-24 | 2011-02-23 | 株式会社神戸製鋼所 | 半導体配線膜の形成方法 |
FI117979B (fi) | 2000-04-14 | 2007-05-15 | Asm Int | Menetelmä oksidiohutkalvojen valmistamiseksi |
US20040025908A1 (en) | 2000-04-18 | 2004-02-12 | Stephen Douglas | Supercritical fluid delivery system for semiconductor wafer processing |
KR100363088B1 (ko) | 2000-04-20 | 2002-12-02 | 삼성전자 주식회사 | 원자층 증착방법을 이용한 장벽 금속막의 제조방법 |
KR100775159B1 (ko) | 2000-05-15 | 2007-11-12 | 에이에스엠 인터내셔널 엔.붸. | 집적회로의 생산 공정 |
US6482733B2 (en) | 2000-05-15 | 2002-11-19 | Asm Microchemistry Oy | Protective layers prior to alternating layer deposition |
US6921722B2 (en) | 2000-05-30 | 2005-07-26 | Ebara Corporation | Coating, modification and etching of substrate surface with particle beam irradiation of the same |
US6620723B1 (en) | 2000-06-27 | 2003-09-16 | Applied Materials, Inc. | Formation of boride barrier layers using chemisorption techniques |
US7964505B2 (en) | 2005-01-19 | 2011-06-21 | Applied Materials, Inc. | Atomic layer deposition of tungsten materials |
US6551929B1 (en) | 2000-06-28 | 2003-04-22 | Applied Materials, Inc. | Bifurcated deposition process for depositing refractory metal layers employing atomic layer deposition and chemical vapor deposition techniques |
US6585823B1 (en) | 2000-07-07 | 2003-07-01 | Asm International, N.V. | Atomic layer deposition |
US7166524B2 (en) | 2000-08-11 | 2007-01-23 | Applied Materials, Inc. | Method for ion implanting insulator material to reduce dielectric constant |
US6660660B2 (en) | 2000-10-10 | 2003-12-09 | Asm International, Nv. | Methods for making a dielectric stack in an integrated circuit |
KR100385947B1 (ko) | 2000-12-06 | 2003-06-02 | 삼성전자주식회사 | 원자층 증착 방법에 의한 박막 형성 방법 |
US6428859B1 (en) | 2000-12-06 | 2002-08-06 | Angstron Systems, Inc. | Sequential method for depositing a film by modulated ion-induced atomic layer deposition (MII-ALD) |
US6416822B1 (en) | 2000-12-06 | 2002-07-09 | Angstrom Systems, Inc. | Continuous method for depositing a film by modulated ion-induced atomic layer deposition (MII-ALD) |
US6630201B2 (en) | 2001-04-05 | 2003-10-07 | Angstron Systems, Inc. | Adsorption process for atomic layer deposition |
US6464779B1 (en) | 2001-01-19 | 2002-10-15 | Novellus Systems, Inc. | Copper atomic layer chemical vapor desposition |
US6852167B2 (en) | 2001-03-01 | 2005-02-08 | Micron Technology, Inc. | Methods, systems, and apparatus for uniform chemical-vapor depositions |
JP4335469B2 (ja) | 2001-03-22 | 2009-09-30 | 株式会社荏原製作所 | 真空排気装置のガス循環量調整方法及び装置 |
US6797336B2 (en) | 2001-03-22 | 2004-09-28 | Ambp Tech Corporation | Multi-component substances and processes for preparation thereof |
TW544797B (en) | 2001-04-17 | 2003-08-01 | Kobe Steel Ltd | High-pressure processing apparatus |
JP2002319571A (ja) | 2001-04-20 | 2002-10-31 | Kawasaki Microelectronics Kk | エッチング槽の前処理方法及び半導体装置の製造方法 |
US7080651B2 (en) | 2001-05-17 | 2006-07-25 | Dainippon Screen Mfg. Co., Ltd. | High pressure processing apparatus and method |
KR100433846B1 (ko) | 2001-05-23 | 2004-06-04 | 주식회사 하이닉스반도체 | 반도체장치의 금속도전막 형성방법 |
US6752585B2 (en) | 2001-06-13 | 2004-06-22 | Applied Materials Inc | Method and apparatus for transferring a semiconductor substrate |
EP1271636A1 (en) | 2001-06-22 | 2003-01-02 | Infineon Technologies AG | Thermal oxidation process control by controlling oxidation agent partial pressure |
US20080268635A1 (en) | 2001-07-25 | 2008-10-30 | Sang-Ho Yu | Process for forming cobalt and cobalt silicide materials in copper contact applications |
US20030029715A1 (en) | 2001-07-25 | 2003-02-13 | Applied Materials, Inc. | An Apparatus For Annealing Substrates In Physical Vapor Deposition Systems |
US9051641B2 (en) | 2001-07-25 | 2015-06-09 | Applied Materials, Inc. | Cobalt deposition on barrier surfaces |
JP2003051474A (ja) | 2001-08-03 | 2003-02-21 | Kobe Steel Ltd | 高圧処理装置 |
US6889627B1 (en) | 2001-08-08 | 2005-05-10 | Lam Research Corporation | Symmetrical semiconductor reactor |
US6781801B2 (en) | 2001-08-10 | 2004-08-24 | Seagate Technology Llc | Tunneling magnetoresistive sensor with spin polarized current injection |
US6531412B2 (en) | 2001-08-10 | 2003-03-11 | International Business Machines Corporation | Method for low temperature chemical vapor deposition of low-k films using selected cyclosiloxane and ozone gases for semiconductor applications |
JP2003077974A (ja) | 2001-08-31 | 2003-03-14 | Hitachi Kokusai Electric Inc | 基板処理装置および半導体装置の製造方法 |
US6619304B2 (en) | 2001-09-13 | 2003-09-16 | Micell Technologies, Inc. | Pressure chamber assembly including non-mechanical drive means |
US6607976B2 (en) | 2001-09-25 | 2003-08-19 | Applied Materials, Inc. | Copper interconnect barrier layer structure and formation method |
US20030059538A1 (en) | 2001-09-26 | 2003-03-27 | Applied Materials, Inc. | Integration of barrier layer and seed layer |
US7105061B1 (en) | 2001-11-07 | 2006-09-12 | Novellus Systems, Inc. | Method and apparatus for sealing substrate load port in a high pressure reactor |
US6620956B2 (en) | 2001-11-16 | 2003-09-16 | Applied Materials, Inc. | Nitrogen analogs of copper II β-diketonates as source reagents for semiconductor processing |
US20030098069A1 (en) | 2001-11-26 | 2003-05-29 | Sund Wesley E. | High purity fluid delivery system |
JP2003166065A (ja) | 2001-11-30 | 2003-06-13 | Sekisui Chem Co Ltd | 放電プラズマ処理装置 |
KR100450564B1 (ko) | 2001-12-20 | 2004-09-30 | 동부전자 주식회사 | 반도체 소자의 금속 배선 후처리 방법 |
JP2003188387A (ja) | 2001-12-20 | 2003-07-04 | Sony Corp | 薄膜トランジスタ及びその製造方法 |
US6939801B2 (en) | 2001-12-21 | 2005-09-06 | Applied Materials, Inc. | Selective deposition of a barrier layer on a dielectric material |
US6620670B2 (en) | 2002-01-18 | 2003-09-16 | Applied Materials, Inc. | Process conditions and precursors for atomic layer deposition (ALD) of AL2O3 |
US6848458B1 (en) | 2002-02-05 | 2005-02-01 | Novellus Systems, Inc. | Apparatus and methods for processing semiconductor substrates using supercritical fluids |
US6632325B2 (en) | 2002-02-07 | 2003-10-14 | Applied Materials, Inc. | Article for use in a semiconductor processing chamber and method of fabricating same |
JP2003243374A (ja) | 2002-02-20 | 2003-08-29 | Tokyo Electron Ltd | 基板処理装置及び基板処理方法 |
US6835503B2 (en) | 2002-04-12 | 2004-12-28 | Micron Technology, Inc. | Use of a planarizing layer to improve multilayer performance in extreme ultra-violet masks |
US7279432B2 (en) | 2002-04-16 | 2007-10-09 | Applied Materials, Inc. | System and method for forming an integrated barrier layer |
US7589029B2 (en) | 2002-05-02 | 2009-09-15 | Micron Technology, Inc. | Atomic layer deposition and conversion |
US7638727B2 (en) | 2002-05-08 | 2009-12-29 | Btu International Inc. | Plasma-assisted heat treatment |
US7910165B2 (en) | 2002-06-04 | 2011-03-22 | Applied Materials, Inc. | Ruthenium layer formation for copper film deposition |
US6657304B1 (en) | 2002-06-06 | 2003-12-02 | Advanced Micro Devices, Inc. | Conformal barrier liner in an integrated circuit interconnect |
US6846380B2 (en) | 2002-06-13 | 2005-01-25 | The Boc Group, Inc. | Substrate processing apparatus and related systems and methods |
US7521089B2 (en) | 2002-06-13 | 2009-04-21 | Tokyo Electron Limited | Method and apparatus for controlling the movement of CVD reaction byproduct gases to adjacent process chambers |
US20070243317A1 (en) | 2002-07-15 | 2007-10-18 | Du Bois Dale R | Thermal Processing System and Configurable Vertical Chamber |
US7335609B2 (en) | 2004-08-27 | 2008-02-26 | Applied Materials, Inc. | Gap-fill depositions introducing hydroxyl-containing precursors in the formation of silicon containing dielectric materials |
US20070212850A1 (en) | 2002-09-19 | 2007-09-13 | Applied Materials, Inc. | Gap-fill depositions in the formation of silicon containing dielectric materials |
JP2004127958A (ja) | 2002-09-30 | 2004-04-22 | Kyoshin Engineering:Kk | 高圧アニール水蒸気処理を行なう装置及び方法 |
WO2004032189A2 (en) | 2002-09-30 | 2004-04-15 | Miasolé | Manufacturing apparatus and method for large-scale production of thin-film solar cells |
US20040060519A1 (en) | 2002-10-01 | 2004-04-01 | Seh America Inc. | Quartz to quartz seal using expanded PTFE gasket material |
US6889508B2 (en) | 2002-10-02 | 2005-05-10 | The Boc Group, Inc. | High pressure CO2 purification and supply system |
US7270761B2 (en) | 2002-10-18 | 2007-09-18 | Appleid Materials, Inc | Fluorine free integrated process for etching aluminum including chamber dry clean |
KR100480634B1 (ko) | 2002-11-19 | 2005-03-31 | 삼성전자주식회사 | 니켈 살리사이드 공정을 이용한 반도체 소자의 제조방법 |
AU2002368383A1 (en) | 2002-11-25 | 2004-06-18 | Koyo Thermo Systems Co., Ltd. | Electric heater for semiconductor processing apparatus |
US20040112409A1 (en) | 2002-12-16 | 2004-06-17 | Supercritical Sysems, Inc. | Fluoride in supercritical fluid for photoresist and residue removal |
US6825115B1 (en) | 2003-01-14 | 2004-11-30 | Advanced Micro Devices, Inc. | Post silicide laser thermal annealing to avoid dopant deactivation |
KR101058882B1 (ko) | 2003-02-04 | 2011-08-23 | 어플라이드 머티어리얼스, 인코포레이티드 | 초-저압에서 암모니아를 이용한 급속 열 어닐링을 통한 실리콘 옥시질화물의 질소 프로파일 테일러링 |
JP3956049B2 (ja) | 2003-03-07 | 2007-08-08 | 東京エレクトロン株式会社 | タングステン膜の形成方法 |
US6809005B2 (en) | 2003-03-12 | 2004-10-26 | Infineon Technologies Ag | Method to fill deep trench structures with void-free polysilicon or silicon |
US7079760B2 (en) | 2003-03-17 | 2006-07-18 | Tokyo Electron Limited | Processing system and method for thermally treating a substrate |
WO2004102055A1 (en) | 2003-05-13 | 2004-11-25 | Applied Materials, Inc. | Methods and apparatus for sealing an opening of a processing chamber |
US6867130B1 (en) | 2003-05-28 | 2005-03-15 | Advanced Micro Devices, Inc. | Enhanced silicidation of polysilicon gate electrodes |
US6939794B2 (en) | 2003-06-17 | 2005-09-06 | Micron Technology, Inc. | Boron-doped amorphous carbon film for use as a hard etch mask during the formation of a semiconductor device |
US7226512B2 (en) | 2003-06-18 | 2007-06-05 | Ekc Technology, Inc. | Load lock system for supercritical fluid cleaning |
WO2005007283A2 (en) | 2003-07-08 | 2005-01-27 | Sundew Technologies, Llc | Apparatus and method for downstream pressure control and sub-atmospheric reactive gas abatement |
KR100539274B1 (ko) | 2003-07-15 | 2005-12-27 | 삼성전자주식회사 | 코발트 막 증착 방법 |
JP4417669B2 (ja) | 2003-07-28 | 2010-02-17 | 日本エー・エス・エム株式会社 | 半導体処理装置および半導体ウエハーの導入方法 |
JP4173781B2 (ja) | 2003-08-13 | 2008-10-29 | 株式会社神戸製鋼所 | 高圧処理方法 |
JP4443879B2 (ja) | 2003-09-03 | 2010-03-31 | 株式会社協真エンジニアリング | 高精度高圧アニール装置 |
US7029966B2 (en) | 2003-09-18 | 2006-04-18 | International Business Machines Corporation | Process options of forming silicided metal gates for advanced CMOS devices |
US6867152B1 (en) | 2003-09-26 | 2005-03-15 | Novellus Systems, Inc. | Properties of a silica thin film produced by a rapid vapor deposition (RVD) process |
US7109087B2 (en) | 2003-10-03 | 2006-09-19 | Applied Materials, Inc. | Absorber layer for DSA processing |
US20070111519A1 (en) | 2003-10-15 | 2007-05-17 | Applied Materials, Inc. | Integrated electroless deposition system |
WO2005057663A2 (en) | 2003-12-10 | 2005-06-23 | Koninklijke Philips Electronics N.V. | Method and apparatus for fabrication of metal-oxide semiconductor integrated circuit devices |
US20050161158A1 (en) | 2003-12-23 | 2005-07-28 | Schumacher John C. | Exhaust conditioning system for semiconductor reactor |
US7158221B2 (en) | 2003-12-23 | 2007-01-02 | Applied Materials, Inc. | Method and apparatus for performing limited area spectral analysis |
US20050136684A1 (en) | 2003-12-23 | 2005-06-23 | Applied Materials, Inc. | Gap-fill techniques |
US20050250347A1 (en) | 2003-12-31 | 2005-11-10 | Bailey Christopher M | Method and apparatus for maintaining by-product volatility in deposition process |
US20050205210A1 (en) | 2004-01-06 | 2005-09-22 | Devine Daniel J | Advanced multi-pressure workpiece processing |
US7030468B2 (en) | 2004-01-16 | 2006-04-18 | International Business Machines Corporation | Low k and ultra low k SiCOH dielectric films and methods to form the same |
US7037816B2 (en) | 2004-01-23 | 2006-05-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | System and method for integration of HfO2 and RTCVD poly-silicon |
US6897118B1 (en) | 2004-02-11 | 2005-05-24 | Chartered Semiconductor Manufacturing Ltd. | Method of multiple pulse laser annealing to activate ultra-shallow junctions |
US20050187647A1 (en) | 2004-02-19 | 2005-08-25 | Kuo-Hua Wang | Intelligent full automation controlled flow for a semiconductor furnace tool |
US7078302B2 (en) | 2004-02-23 | 2006-07-18 | Applied Materials, Inc. | Gate electrode dopant activation method for semiconductor manufacturing including a laser anneal |
US7030016B2 (en) | 2004-03-30 | 2006-04-18 | Taiwan Semiconductor Manufacturing Co., Ltd. | Post ECP multi-step anneal/H2 treatment to reduce film impurity |
JP4393268B2 (ja) | 2004-05-20 | 2010-01-06 | 株式会社神戸製鋼所 | 微細構造体の乾燥方法 |
US20050269291A1 (en) | 2004-06-04 | 2005-12-08 | Tokyo Electron Limited | Method of operating a processing system for treating a substrate |
US7268065B2 (en) | 2004-06-18 | 2007-09-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Methods of manufacturing metal-silicide features |
US7521378B2 (en) | 2004-07-01 | 2009-04-21 | Micron Technology, Inc. | Low temperature process for polysilazane oxidation/densification |
TWI267183B (en) | 2004-09-29 | 2006-11-21 | Sanyo Electric Co | Semiconductor device and manufacturing method of the same |
US7439168B2 (en) | 2004-10-12 | 2008-10-21 | Dcg Systems, Inc | Apparatus and method of forming silicide in a localized manner |
US7491658B2 (en) | 2004-10-13 | 2009-02-17 | International Business Machines Corporation | Ultra low k plasma enhanced chemical vapor deposition processes using a single bifunctional precursor containing both a SiCOH matrix functionality and organic porogen functionality |
US7427571B2 (en) | 2004-10-15 | 2008-09-23 | Asm International, N.V. | Reactor design for reduced particulate generation |
US8585873B2 (en) | 2004-10-16 | 2013-11-19 | Aviza Technology Limited | Methods and apparatus for sputtering |
US20060091493A1 (en) | 2004-11-01 | 2006-05-04 | Silicon-Based Technology Corp. | LOCOS Schottky barrier contact structure and its manufacturing method |
JP2006135161A (ja) | 2004-11-08 | 2006-05-25 | Canon Inc | 絶縁膜の形成方法及び装置 |
US7235472B2 (en) | 2004-11-12 | 2007-06-26 | Infineon Technologies Ag | Method of making fully silicided gate electrode |
US20060156979A1 (en) | 2004-11-22 | 2006-07-20 | Applied Materials, Inc. | Substrate processing apparatus using a batch processing chamber |
US7429402B2 (en) | 2004-12-10 | 2008-09-30 | Applied Materials, Inc. | Ruthenium as an underlayer for tungsten film deposition |
US20060240187A1 (en) | 2005-01-27 | 2006-10-26 | Applied Materials, Inc. | Deposition of an intermediate catalytic layer on a barrier layer for copper metallization |
KR100697280B1 (ko) | 2005-02-07 | 2007-03-20 | 삼성전자주식회사 | 반도체 제조 설비의 압력 조절 방법 |
US9576824B2 (en) | 2005-02-22 | 2017-02-21 | Spts Technologies Limited | Etching chamber with subchamber |
US7211525B1 (en) | 2005-03-16 | 2007-05-01 | Novellus Systems, Inc. | Hydrogen treatment enhanced gap fill |
WO2006098101A1 (ja) | 2005-03-16 | 2006-09-21 | Nec Corporation | 金属材料、金属材料を用いた半導体集積回路用配線および被覆膜 |
WO2006101315A1 (en) | 2005-03-21 | 2006-09-28 | Pkl Co., Ltd. | Device and method for cleaning photomask |
US20060226117A1 (en) | 2005-03-29 | 2006-10-12 | Bertram Ronald T | Phase change based heating element system and method |
US7465650B2 (en) | 2005-04-14 | 2008-12-16 | Micron Technology, Inc. | Methods of forming polysilicon-comprising plugs and methods of forming FLASH memory circuitry |
US20120060868A1 (en) | 2005-06-07 | 2012-03-15 | Donald Gray | Microscale fluid delivery system |
CN101198903B (zh) | 2005-06-10 | 2011-09-07 | 奥贝达克特公司 | 利用中间印模的图案复制 |
JP4747693B2 (ja) | 2005-06-28 | 2011-08-17 | 住友電気工業株式会社 | 樹脂体を形成する方法、光導波路のための構造を形成する方法、および光学部品を形成する方法 |
US7361231B2 (en) | 2005-07-01 | 2008-04-22 | Ekc Technology, Inc. | System and method for mid-pressure dense phase gas and ultrasonic cleaning |
US8148271B2 (en) | 2005-08-05 | 2012-04-03 | Hitachi Kokusai Electric Inc. | Substrate processing apparatus, coolant gas supply nozzle and semiconductor device manufacturing method |
US7534080B2 (en) | 2005-08-26 | 2009-05-19 | Ascentool, Inc. | Vacuum processing and transfer system |
US7531404B2 (en) | 2005-08-30 | 2009-05-12 | Intel Corporation | Semiconductor device having a metal gate electrode formed on an annealed high-k gate dielectric layer |
US8926731B2 (en) | 2005-09-13 | 2015-01-06 | Rasirc | Methods and devices for producing high purity steam |
KR100696178B1 (ko) | 2005-09-13 | 2007-03-20 | 한국전자통신연구원 | 광 도파로 마스터 및 그 제조 방법 |
CN101268012B (zh) | 2005-10-07 | 2012-12-26 | 株式会社尼康 | 微小构造体及其制造方法 |
US7794667B2 (en) | 2005-10-19 | 2010-09-14 | Moore Epitaxial, Inc. | Gas ring and method of processing substrates |
US8460519B2 (en) | 2005-10-28 | 2013-06-11 | Applied Materials Inc. | Protective offset sputtering |
KR101101757B1 (ko) | 2005-11-07 | 2012-01-05 | 주성엔지니어링(주) | 제조비용을 절감한 진공챔버 |
US7387968B2 (en) | 2005-11-08 | 2008-06-17 | Tokyo Electron Limited | Batch photoresist dry strip and ash system and process |
JP2009516080A (ja) | 2005-11-18 | 2009-04-16 | レプリソールス テクノロジーズ アーベー | 電極およびその形成方法 |
US20070116873A1 (en) | 2005-11-18 | 2007-05-24 | Tokyo Electron Limited | Apparatus for thermal and plasma enhanced vapor deposition and method of operating |
US8306026B2 (en) | 2005-12-15 | 2012-11-06 | Toshiba America Research, Inc. | Last hop topology sensitive multicasting key management |
US7432200B2 (en) | 2005-12-15 | 2008-10-07 | Intel Corporation | Filling narrow and high aspect ratio openings using electroless deposition |
KR20070068596A (ko) | 2005-12-27 | 2007-07-02 | 삼성전자주식회사 | 베이크 장치 |
JP2007180310A (ja) | 2005-12-28 | 2007-07-12 | Toshiba Corp | 半導体装置 |
KR100684910B1 (ko) | 2006-02-02 | 2007-02-22 | 삼성전자주식회사 | 플라즈마 처리 장치 및 그의 클리닝 방법 |
US20070187386A1 (en) | 2006-02-10 | 2007-08-16 | Poongsan Microtec Corporation | Methods and apparatuses for high pressure gas annealing |
US7578258B2 (en) | 2006-03-03 | 2009-08-25 | Lam Research Corporation | Methods and apparatus for selective pre-coating of a plasma processing chamber |
US7520969B2 (en) | 2006-03-07 | 2009-04-21 | Applied Materials, Inc. | Notched deposition ring |
JP2007242791A (ja) | 2006-03-07 | 2007-09-20 | Hitachi Kokusai Electric Inc | 基板処理装置 |
TW200746268A (en) | 2006-04-11 | 2007-12-16 | Applied Materials Inc | Process for forming cobalt-containing materials |
JP4983087B2 (ja) | 2006-04-27 | 2012-07-25 | 富士通セミコンダクター株式会社 | 成膜方法、半導体装置の製造方法、コンピュータ可読記録媒体、スパッタ処理装置 |
US8062408B2 (en) | 2006-05-08 | 2011-11-22 | The Board Of Trustees Of The University Of Illinois | Integrated vacuum absorption steam cycle gas separation |
US7825038B2 (en) | 2006-05-30 | 2010-11-02 | Applied Materials, Inc. | Chemical vapor deposition of high quality flow-like silicon dioxide using a silicon containing precursor and atomic oxygen |
US7650965B2 (en) | 2006-06-09 | 2010-01-26 | Emcon Technologies Llc | Exhaust system |
US7709320B2 (en) | 2006-06-28 | 2010-05-04 | International Business Machines Corporation | Method of fabricating trench capacitors and memory cells using trench capacitors |
US7494891B2 (en) | 2006-09-21 | 2009-02-24 | International Business Machines Corporation | Trench capacitor with void-free conductor fill |
JP2008073611A (ja) | 2006-09-21 | 2008-04-03 | Dainippon Screen Mfg Co Ltd | 高圧処理装置 |
JP4814038B2 (ja) | 2006-09-25 | 2011-11-09 | 株式会社日立国際電気 | 基板処理装置および反応容器の着脱方法 |
JP4976796B2 (ja) | 2006-09-25 | 2012-07-18 | 株式会社東芝 | 半導体装置 |
US7521379B2 (en) | 2006-10-09 | 2009-04-21 | Applied Materials, Inc. | Deposition and densification process for titanium nitride barrier layers |
TW200830034A (en) | 2006-10-13 | 2008-07-16 | Asahi Glass Co Ltd | Method of smoothing surface of substrate for EUV mask blank, and EUV mask blank obtained by the method |
JP2008118118A (ja) | 2006-10-13 | 2008-05-22 | Asahi Glass Co Ltd | Euvマスクブランク用の基板表面を平滑化する方法、および該方法により得られるeuvマスクブランク |
US7888273B1 (en) | 2006-11-01 | 2011-02-15 | Novellus Systems, Inc. | Density gradient-free gap fill |
US7790587B2 (en) | 2006-11-07 | 2010-09-07 | Intel Corporation | Method to reduce junction leakage through partial regrowth with ultrafast anneal and structures formed thereby |
JP2008153635A (ja) | 2006-11-22 | 2008-07-03 | Toshiba Matsushita Display Technology Co Ltd | Mos型半導体素子の製造方法 |
JP5200371B2 (ja) | 2006-12-01 | 2013-06-05 | 東京エレクトロン株式会社 | 成膜方法、半導体装置及び記憶媒体 |
US20080132050A1 (en) | 2006-12-05 | 2008-06-05 | Lavoie Adrien R | Deposition process for graded cobalt barrier layers |
US20080169183A1 (en) | 2007-01-16 | 2008-07-17 | Varian Semiconductor Equipment Associates, Inc. | Plasma Source with Liner for Reducing Metal Contamination |
JP2008192642A (ja) | 2007-01-31 | 2008-08-21 | Tokyo Electron Ltd | 基板処理装置 |
US20080233404A1 (en) | 2007-03-22 | 2008-09-25 | 3M Innovative Properties Company | Microreplication tools and patterns using laser induced thermal embossing |
JP5135856B2 (ja) | 2007-03-31 | 2013-02-06 | 東京エレクトロン株式会社 | トラップ装置、排気系及びこれを用いた処理システム |
US20080241384A1 (en) | 2007-04-02 | 2008-10-02 | Asm Genitech Korea Ltd. | Lateral flow deposition apparatus and method of depositing film by using the apparatus |
DE102007017641A1 (de) | 2007-04-13 | 2008-10-16 | Infineon Technologies Ag | Aushärtung von Schichten am Halbleitermodul mittels elektromagnetischer Felder |
CN101690400B (zh) | 2007-04-30 | 2011-11-30 | 伊菲雷知识产权公司 | 用于厚膜介质电致发光显示器的层状厚膜介质结构 |
CN101681398B (zh) | 2007-05-25 | 2016-08-10 | 应用材料公司 | 组装及操作电子器件制造系统的方法和设备 |
US20080311711A1 (en) | 2007-06-13 | 2008-12-18 | Roland Hampp | Gapfill for metal contacts |
WO2008156687A1 (en) | 2007-06-15 | 2008-12-24 | Applied Materials, Inc. | Methods and systems for designing and validating operation of abatement systems |
KR101442238B1 (ko) | 2007-07-26 | 2014-09-23 | 주식회사 풍산마이크로텍 | 고압 산소 열처리를 통한 반도체 소자의 제조방법 |
US7645709B2 (en) | 2007-07-30 | 2010-01-12 | Applied Materials, Inc. | Methods for low temperature oxidation of a semiconductor device |
US7763522B2 (en) | 2007-08-01 | 2010-07-27 | United Microelectronic Corp. | Method of high density plasma gap-filling with minimization of gas phase nucleation |
US8648253B1 (en) | 2010-10-01 | 2014-02-11 | Ascent Solar Technologies, Inc. | Machine and process for continuous, sequential, deposition of semiconductor solar absorbers having variable semiconductor composition deposited in multiple sublayers |
US7951728B2 (en) | 2007-09-24 | 2011-05-31 | Applied Materials, Inc. | Method of improving oxide growth rate of selective oxidation processes |
US7884012B2 (en) | 2007-09-28 | 2011-02-08 | Tokyo Electron Limited | Void-free copper filling of recessed features for semiconductor devices |
US7867923B2 (en) | 2007-10-22 | 2011-01-11 | Applied Materials, Inc. | High quality silicon oxide films by remote plasma CVD from disilane precursors |
US7803722B2 (en) | 2007-10-22 | 2010-09-28 | Applied Materials, Inc | Methods for forming a dielectric layer within trenches |
US7541297B2 (en) | 2007-10-22 | 2009-06-02 | Applied Materials, Inc. | Method and system for improving dielectric film quality for void free gap fill |
CN101835521A (zh) | 2007-10-26 | 2010-09-15 | 应用材料公司 | 利用改进燃料线路的用于智能减废的方法与设备 |
JP5299605B2 (ja) | 2007-11-19 | 2013-09-25 | 日揮触媒化成株式会社 | 低誘電率シリカ系被膜のダメージ修復方法および該方法により修復された低誘電率シリカ系被膜 |
US7651959B2 (en) | 2007-12-03 | 2010-01-26 | Asm Japan K.K. | Method for forming silazane-based dielectric film |
KR20090064279A (ko) | 2007-12-14 | 2009-06-18 | 노벨러스 시스템즈, 인코포레이티드 | 손상 없는 갭 충진을 위한 보호 층 |
US7776740B2 (en) | 2008-01-22 | 2010-08-17 | Tokyo Electron Limited | Method for integrating selective low-temperature ruthenium deposition into copper metallization of a semiconductor device |
US7843063B2 (en) | 2008-02-14 | 2010-11-30 | International Business Machines Corporation | Microstructure modification in copper interconnect structure |
US7964506B1 (en) | 2008-03-06 | 2011-06-21 | Novellus Systems, Inc. | Two step copper electroplating process with anneal for uniform across wafer deposition and void free filling on ruthenium coated wafers |
US20090246952A1 (en) | 2008-03-28 | 2009-10-01 | Tokyo Electron Limited | Method of forming a cobalt metal nitride barrier film |
JP4815464B2 (ja) | 2008-03-31 | 2011-11-16 | 株式会社日立製作所 | 微細構造転写スタンパ及び微細構造転写装置 |
US20090269507A1 (en) | 2008-04-29 | 2009-10-29 | Sang-Ho Yu | Selective cobalt deposition on copper surfaces |
CN104064499B (zh) | 2008-05-02 | 2018-04-20 | 应用材料公司 | 用于旋转基板的非径向温度控制系统 |
KR101496148B1 (ko) | 2008-05-15 | 2015-02-27 | 삼성전자주식회사 | 반도체소자 및 그 제조방법 |
US8133793B2 (en) | 2008-05-16 | 2012-03-13 | Sandisk 3D Llc | Carbon nano-film reversible resistance-switchable elements and methods of forming the same |
US7622369B1 (en) | 2008-05-30 | 2009-11-24 | Asm Japan K.K. | Device isolation technology on semiconductor substrate |
US8736587B2 (en) * | 2008-07-10 | 2014-05-27 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US7655532B1 (en) | 2008-07-25 | 2010-02-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | STI film property using SOD post-treatment |
JP2010080949A (ja) | 2008-08-29 | 2010-04-08 | Kisco Ltd | 銅膜のアニール方法、アニールされた銅配線およびこの銅配線を有するデバイス |
US20100089315A1 (en) | 2008-09-22 | 2010-04-15 | Applied Materials, Inc. | Shutter disk for physical vapor deposition chamber |
US8153533B2 (en) | 2008-09-24 | 2012-04-10 | Lam Research | Methods and systems for preventing feature collapse during microelectronic topography fabrication |
KR20100035000A (ko) | 2008-09-25 | 2010-04-02 | 삼성전자주식회사 | 서로 다른 종횡비를 갖는 소자 분리 트렌치 갭필 방법 및 그를 이용한 반도체 소자 |
WO2010062582A2 (en) | 2008-10-27 | 2010-06-03 | Applied Materials, Inc. | Vapor deposition method for ternary compounds |
US7891228B2 (en) | 2008-11-18 | 2011-02-22 | Mks Instruments, Inc. | Dual-mode mass flow verification and mass flow delivery system and method |
US8557712B1 (en) | 2008-12-15 | 2013-10-15 | Novellus Systems, Inc. | PECVD flowable dielectric gap fill |
KR20100082170A (ko) | 2009-01-08 | 2010-07-16 | 삼성전자주식회사 | 실리콘 산화막 패턴 및 소자 분리막 형성 방법 |
JP2010168607A (ja) | 2009-01-21 | 2010-08-05 | Institute Of National Colleges Of Technology Japan | 組成比制御が可能な対向ターゲット式スパッタ装置 |
US9382621B2 (en) | 2009-02-04 | 2016-07-05 | Applied Materials, Inc. | Ground return for plasma processes |
KR101534678B1 (ko) | 2009-02-12 | 2015-07-08 | 삼성전자주식회사 | 텅스텐 콘택 플러그를 산소 분위기에서 rta 처리하고, rto 처리된 텅스텐 플러그를 수소 분위기에서 환원시키는 반도체 소자의 제조방법 |
JP2012518281A (ja) | 2009-02-15 | 2012-08-09 | ウッドラフ、ジェイコブ | 平衡前駆体から作られる、太陽電池の吸収層 |
JP2010205854A (ja) | 2009-03-02 | 2010-09-16 | Fujitsu Semiconductor Ltd | 半導体装置の製造方法 |
JP4564570B2 (ja) | 2009-03-10 | 2010-10-20 | 三井造船株式会社 | 原子層堆積装置 |
JP4523661B1 (ja) | 2009-03-10 | 2010-08-11 | 三井造船株式会社 | 原子層堆積装置及び薄膜形成方法 |
US8435830B2 (en) | 2009-03-18 | 2013-05-07 | Samsung Electronics Co., Ltd. | Methods of fabricating semiconductor devices |
FR2944147B1 (fr) | 2009-04-02 | 2011-09-23 | Saint Gobain | Procede de fabrication d'une structure a surface externe texturee pour dispositif a diode electroluminescente organique et struture a surface externe texturee |
KR20120004502A (ko) | 2009-04-03 | 2012-01-12 | 어플라이드 머티어리얼스, 인코포레이티드 | 고압 rf-dc 스퍼터링과 이 프로세스의 단차 도포성 및 막 균일성을 개선하기 위한 방법 |
US20100297854A1 (en) | 2009-04-22 | 2010-11-25 | Applied Materials, Inc. | High throughput selective oxidation of silicon and polysilicon using plasma at room temperature |
US20100304027A1 (en) | 2009-05-27 | 2010-12-02 | Applied Materials, Inc. | Substrate processing system and methods thereof |
JP4415062B1 (ja) * | 2009-06-22 | 2010-02-17 | 富士フイルム株式会社 | 薄膜トランジスタ及び薄膜トランジスタの製造方法 |
KR20110000960A (ko) | 2009-06-29 | 2011-01-06 | 삼성전자주식회사 | 반도체 칩, 스택 모듈, 메모리 카드 및 그 제조 방법 |
CN102473748B (zh) | 2009-07-01 | 2014-08-20 | 三菱电机株式会社 | 薄膜太阳能电池及其制造方法 |
JP2012197463A (ja) | 2009-07-03 | 2012-10-18 | Canon Anelva Corp | 薄膜の成膜方法 |
US20110011737A1 (en) | 2009-07-17 | 2011-01-20 | Institute Of Nuclear Energy Research Atomic Energy Council, Executive Yuan | High-power pulse magnetron sputtering apparatus and surface treatment apparatus using the same |
JP5568913B2 (ja) | 2009-07-24 | 2014-08-13 | 株式会社ユーテック | Pzt膜の製造方法及び水蒸気加熱装置 |
US9548228B2 (en) | 2009-08-04 | 2017-01-17 | Lam Research Corporation | Void free tungsten fill in different sized features |
US8741788B2 (en) | 2009-08-06 | 2014-06-03 | Applied Materials, Inc. | Formation of silicon oxide using non-carbon flowable CVD processes |
KR20110023007A (ko) | 2009-08-28 | 2011-03-08 | 삼성전자주식회사 | 박막 태양 전지 및 이의 제조방법 |
JP2011066100A (ja) | 2009-09-16 | 2011-03-31 | Bridgestone Corp | 光硬化性転写シート、及びこれを用いた凹凸パターンの形成方法 |
US8278224B1 (en) | 2009-09-24 | 2012-10-02 | Novellus Systems, Inc. | Flowable oxide deposition using rapid delivery of process gases |
US8449942B2 (en) | 2009-11-12 | 2013-05-28 | Applied Materials, Inc. | Methods of curing non-carbon flowable CVD films |
JP2011108739A (ja) | 2009-11-13 | 2011-06-02 | Dainippon Printing Co Ltd | 薄膜トランジスタ基板、その製造方法及び画像表示装置 |
KR101995704B1 (ko) | 2009-11-20 | 2019-07-03 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치의 제작 방법 |
US20110151677A1 (en) | 2009-12-21 | 2011-06-23 | Applied Materials, Inc. | Wet oxidation process performed on a dielectric material formed from a flowable cvd process |
US8647992B2 (en) | 2010-01-06 | 2014-02-11 | Applied Materials, Inc. | Flowable dielectric using oxide liner |
JP2013516788A (ja) | 2010-01-07 | 2013-05-13 | アプライド マテリアルズ インコーポレイテッド | ラジカル成分cvd用のインサイチュオゾン硬化 |
US8691687B2 (en) | 2010-01-07 | 2014-04-08 | International Business Machines Corporation | Superfilled metal contact vias for semiconductor devices |
EP2526339A4 (en) | 2010-01-21 | 2015-03-11 | Powerdyne Inc | PRODUCTION OF STEAM FROM A CARBON SUBSTANCE |
US20110174363A1 (en) | 2010-01-21 | 2011-07-21 | Aqt Solar, Inc. | Control of Composition Profiles in Annealed CIGS Absorbers |
US8293658B2 (en) | 2010-02-17 | 2012-10-23 | Asm America, Inc. | Reactive site deactivation against vapor deposition |
US20110204518A1 (en) | 2010-02-23 | 2011-08-25 | Globalfoundries Inc. | Scalability with reduced contact resistance |
JP2013521650A (ja) | 2010-03-05 | 2013-06-10 | アプライド マテリアルズ インコーポレイテッド | ラジカル成分cvdによる共形層 |
TW201133974A (en) | 2010-03-23 | 2011-10-01 | Nat Univ Tsing Hua | Method for improving the efficiency of a flexible organic solar cell |
US9129945B2 (en) | 2010-03-24 | 2015-09-08 | Applied Materials, Inc. | Formation of liner and barrier for tungsten as gate electrode and as contact plug to reduce resistance and enhance device performance |
JP2011210778A (ja) * | 2010-03-29 | 2011-10-20 | Dainippon Printing Co Ltd | 薄膜トランジスタ基板 |
US8795488B2 (en) | 2010-03-31 | 2014-08-05 | Applied Materials, Inc. | Apparatus for physical vapor deposition having centrally fed RF energy |
WO2011132625A1 (en) * | 2010-04-23 | 2011-10-27 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of semiconductor device |
JP5697534B2 (ja) | 2010-05-14 | 2015-04-08 | 株式会社半導体エネルギー研究所 | トランジスタの作製方法 |
KR101163711B1 (ko) | 2010-06-15 | 2012-07-09 | 서울대학교산학협력단 | 함몰된 바디에 두개의 게이트를 갖는 1t 디램 소자와 그 동작방법 및 제조방법 |
CN101871043B (zh) | 2010-06-25 | 2012-07-18 | 东莞市康汇聚线材科技有限公司 | 一种退火炉蒸汽发生器及其控制方法 |
US8318584B2 (en) | 2010-07-30 | 2012-11-27 | Applied Materials, Inc. | Oxide-rich liner layer for flowable CVD gapfill |
JP2012049446A (ja) | 2010-08-30 | 2012-03-08 | Toshiba Corp | 超臨界乾燥方法及び超臨界乾燥システム |
EP2426720A1 (en) * | 2010-09-03 | 2012-03-07 | Applied Materials, Inc. | Staggered thin film transistor and method of forming the same |
KR101427502B1 (ko) * | 2010-09-13 | 2014-08-07 | 파나소닉 주식회사 | 금속 산화물 반도체 제조 방법 |
TW201216331A (en) | 2010-10-05 | 2012-04-16 | Applied Materials Inc | Ultra high selectivity doped amorphous carbon strippable hardmask development and integration |
JP2012089744A (ja) | 2010-10-21 | 2012-05-10 | Elpida Memory Inc | 半導体装置の製造方法 |
US20120153483A1 (en) | 2010-12-20 | 2012-06-21 | Akolkar Rohan N | Barrierless single-phase interconnect |
KR101226958B1 (ko) | 2011-01-18 | 2013-01-28 | 연세대학교 산학협력단 | 액상 공정 산화물 박막의 제조 방법, 이를 이용한 전자 소자 및 박막 트랜지스터 |
KR20120100241A (ko) * | 2011-03-03 | 2012-09-12 | 인하대학교 산학협력단 | 박막 트랜지스터 및 그 제조 방법, 박막 트랜지스터를 구비한 평판 표시 장치 |
JP5806827B2 (ja) | 2011-03-18 | 2015-11-10 | 東京エレクトロン株式会社 | ゲートバルブ装置及び基板処理装置並びにその基板処理方法 |
KR20140027917A (ko) | 2011-03-25 | 2014-03-07 | 이서영 | 광도파로 및 그 제조방법 |
JP5450494B2 (ja) | 2011-03-25 | 2014-03-26 | 株式会社東芝 | 半導体基板の超臨界乾燥方法 |
US20120252210A1 (en) | 2011-03-30 | 2012-10-04 | Tokyo Electron Limited | Method for modifying metal cap layers in semiconductor devices |
WO2012133583A1 (ja) | 2011-03-30 | 2012-10-04 | 大日本印刷株式会社 | 超臨界乾燥装置及び超臨界乾燥方法 |
US8524600B2 (en) | 2011-03-31 | 2013-09-03 | Applied Materials, Inc. | Post deposition treatments for CVD cobalt films |
US8637410B2 (en) | 2011-04-08 | 2014-01-28 | Applied Materials, Inc. | Method for metal deposition using hydrogen plasma |
US9299581B2 (en) | 2011-05-12 | 2016-03-29 | Applied Materials, Inc. | Methods of dry stripping boron-carbon films |
JP6085423B2 (ja) | 2011-05-30 | 2017-02-22 | 株式会社東芝 | 基板処理方法、基板処理装置および記憶媒体 |
WO2012165377A1 (ja) | 2011-05-30 | 2012-12-06 | 東京エレクトロン株式会社 | 基板処理方法、基板処理装置および記憶媒体 |
US8435887B2 (en) | 2011-06-02 | 2013-05-07 | International Business Machines Corporation | Copper interconnect formation |
US8466073B2 (en) | 2011-06-03 | 2013-06-18 | Applied Materials, Inc. | Capping layer for reduced outgassing |
GB201110117D0 (en) | 2011-06-16 | 2011-07-27 | Fujifilm Mfg Europe Bv | method and device for manufacturing a barrie layer on a flexible substrate |
KR101228649B1 (ko) * | 2011-06-20 | 2013-01-31 | 성균관대학교산학협력단 | 열전소자의 자발적 초격자구조 다성분계 금속산화물 박막제조방법 |
CN103620758B (zh) | 2011-06-28 | 2017-02-15 | 动力微系统公司 | 半导体储料器系统和方法 |
JP5544666B2 (ja) | 2011-06-30 | 2014-07-09 | セメス株式会社 | 基板処理装置 |
WO2013009505A2 (en) | 2011-07-13 | 2013-01-17 | Applied Materials, Inc. | Methods of manufacturing thin film transistor devices |
WO2013008982A1 (ko) | 2011-07-14 | 2013-01-17 | 엘티씨 (주) | 높은 광추출 성능을 갖는 무기 산란막 {inorganic scattering films having high light extraction performance} |
US9368603B2 (en) | 2011-09-15 | 2016-06-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Contact for high-k metal gate device |
US8546227B2 (en) | 2011-09-15 | 2013-10-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Contact for high-K metal gate device |
US10023954B2 (en) | 2011-09-15 | 2018-07-17 | Applied Materials, Inc. | Slit valve apparatus, systems, and methods |
CN103035513B (zh) | 2011-09-30 | 2016-10-05 | 中芯国际集成电路制造(上海)有限公司 | 无定形碳膜的形成方法 |
KR101568748B1 (ko) | 2011-11-01 | 2015-11-12 | 가부시키가이샤 히다치 고쿠사이 덴키 | 반도체 장치의 제조 방법, 반도체 장치의 제조 장치 및 기록 매체 |
JP5712902B2 (ja) | 2011-11-10 | 2015-05-07 | 東京エレクトロン株式会社 | 基板処理装置、基板処理方法及び記憶媒体 |
KR101305904B1 (ko) | 2011-12-07 | 2013-09-09 | 주식회사 테스 | 반도체소자 제조방법 |
WO2013083129A1 (en) | 2011-12-08 | 2013-06-13 | Inmold Biosystems A/S | Spin-on-glass assisted polishing of rough substrates |
JP2013122493A (ja) | 2011-12-09 | 2013-06-20 | Furukawa Electric Co Ltd:The | 光分岐素子および光分岐回路 |
JP2013206919A (ja) * | 2012-03-27 | 2013-10-07 | Sony Corp | 薄膜トランジスタおよびその製造方法ならびに表示装置 |
US9653614B2 (en) * | 2012-01-23 | 2017-05-16 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
JP2013154315A (ja) | 2012-01-31 | 2013-08-15 | Ricoh Co Ltd | 薄膜形成装置、薄膜形成方法、電気−機械変換素子、液体吐出ヘッド、およびインクジェット記録装置 |
US8993458B2 (en) | 2012-02-13 | 2015-03-31 | Applied Materials, Inc. | Methods and apparatus for selective oxidation of a substrate |
JPWO2013129701A1 (ja) * | 2012-03-02 | 2015-07-30 | 独立行政法人科学技術振興機構 | 導電性膜の形成方法 |
US8871656B2 (en) | 2012-03-05 | 2014-10-28 | Applied Materials, Inc. | Flowable films using alternative silicon precursors |
TWI502645B (zh) * | 2012-03-09 | 2015-10-01 | Air Prod & Chem | 低溫含矽膜 |
KR102140719B1 (ko) * | 2012-03-09 | 2020-08-03 | 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 | 디스플레이 디바이스를 위한 배리어 물질 |
JP5577365B2 (ja) | 2012-03-15 | 2014-08-20 | コマツ産機株式会社 | プレス機械の制動性能確認装置 |
US9330939B2 (en) | 2012-03-28 | 2016-05-03 | Applied Materials, Inc. | Method of enabling seamless cobalt gap-fill |
US9303311B2 (en) | 2012-03-30 | 2016-04-05 | Applied Materials, Inc. | Substrate processing system with mechanically floating target assembly |
US9647066B2 (en) | 2012-04-24 | 2017-05-09 | Taiwan Semiconductor Manufacturing Company, Ltd. | Dummy FinFET structure and method of making same |
US20130288485A1 (en) | 2012-04-30 | 2013-10-31 | Applied Materials, Inc. | Densification for flowable films |
US20130337171A1 (en) | 2012-06-13 | 2013-12-19 | Qualcomm Mems Technologies, Inc. | N2 purged o-ring for chamber in chamber ald system |
KR101224520B1 (ko) | 2012-06-27 | 2013-01-22 | (주)이노시티 | 프로세스 챔버 |
KR20140003776A (ko) | 2012-06-28 | 2014-01-10 | 주식회사 메카로닉스 | 고 저항 산화아연 박막의 제조방법 |
US20150309073A1 (en) | 2012-07-13 | 2015-10-29 | Northwestern University | Multifunctional graphene coated scanning tips |
JP2014019912A (ja) | 2012-07-19 | 2014-02-03 | Tokyo Electron Ltd | タングステン膜の成膜方法 |
CN102790012A (zh) * | 2012-07-20 | 2012-11-21 | 京东方科技集团股份有限公司 | 阵列基板的制造方法及阵列基板、显示装置 |
JP5792390B2 (ja) | 2012-07-30 | 2015-10-14 | 株式会社日立国際電気 | 基板処理装置、半導体装置の製造方法及びプログラム |
US20140034632A1 (en) | 2012-08-01 | 2014-02-06 | Heng Pan | Apparatus and method for selective oxidation at lower temperature using remote plasma source |
US8846448B2 (en) | 2012-08-10 | 2014-09-30 | Taiwan Semiconductor Manufacturing Co., Ltd. | Warpage control in a package-on-package structure |
KR101680152B1 (ko) | 2012-08-24 | 2016-11-28 | 고쿠리츠켄큐카이하츠호진 카가쿠기쥬츠신코키코 | 게르마늄 층 상에 질화 산화 알루미늄 막을 구비하는 반도체 구조 및 그 제조방법 |
KR102002782B1 (ko) | 2012-09-10 | 2019-07-23 | 삼성전자주식회사 | 팽창성 부재를 사용하는 반도체 장치의 제조 방법 |
JP2014060256A (ja) | 2012-09-18 | 2014-04-03 | Tokyo Electron Ltd | 処理システム |
JP6325229B2 (ja) | 2012-10-17 | 2018-05-16 | 株式会社半導体エネルギー研究所 | 酸化物膜の作製方法 |
US9337318B2 (en) | 2012-10-26 | 2016-05-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFET with dummy gate on non-recessed shallow trench isolation (STI) |
US9157730B2 (en) | 2012-10-26 | 2015-10-13 | Applied Materials, Inc. | PECVD process |
SG2013083241A (en) | 2012-11-08 | 2014-06-27 | Novellus Systems Inc | Conformal film deposition for gapfill |
JP6060460B2 (ja) | 2012-11-22 | 2017-01-18 | アーゼット・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ | シリカ質膜の形成方法及び同方法で形成されたシリカ質膜 |
TWI826650B (zh) | 2012-11-26 | 2023-12-21 | 美商應用材料股份有限公司 | 用於高深寬比半導體元件結構具有污染物去除之無黏附乾燥處理 |
WO2014085511A2 (en) | 2012-11-27 | 2014-06-05 | The Regents Of The University Of California | Polymerized metal-organic material for printable photonic devices |
US9123577B2 (en) | 2012-12-12 | 2015-09-01 | Sandisk Technologies Inc. | Air gap isolation in non-volatile memory using sacrificial films |
JP2014141739A (ja) | 2012-12-27 | 2014-08-07 | Tokyo Electron Ltd | 金属マンガン膜の成膜方法、処理システム、電子デバイスの製造方法および電子デバイス |
US9559181B2 (en) | 2013-11-26 | 2017-01-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | Structure and method for FinFET device with buried sige oxide |
WO2014115600A1 (ja) | 2013-01-22 | 2014-07-31 | ピーエスフォー ルクスコ エスエイアールエル | 半導体装置の製造方法 |
US9018108B2 (en) | 2013-01-25 | 2015-04-28 | Applied Materials, Inc. | Low shrinkage dielectric films |
US20140216498A1 (en) | 2013-02-06 | 2014-08-07 | Kwangduk Douglas Lee | Methods of dry stripping boron-carbon films |
CN104995333B (zh) | 2013-02-19 | 2017-09-22 | 应用材料公司 | 使用可流动式cvd膜的hdd图案化 |
KR20140104112A (ko) | 2013-02-20 | 2014-08-28 | 주식회사 에스에프에이 | 평면 디스플레이용 화학 기상 증착장치 |
KR101443792B1 (ko) | 2013-02-20 | 2014-09-26 | 국제엘렉트릭코리아 주식회사 | 건식 기상 식각 장치 |
US9354508B2 (en) | 2013-03-12 | 2016-05-31 | Applied Materials, Inc. | Planarized extreme ultraviolet lithography blank, and manufacturing and lithography systems therefor |
US9680095B2 (en) | 2013-03-13 | 2017-06-13 | Macronix International Co., Ltd. | Resistive RAM and fabrication method |
TWI624897B (zh) | 2013-03-15 | 2018-05-21 | 應用材料股份有限公司 | 多位置批次負載鎖定裝置與系統,以及包括該裝置與系統的方法 |
US9196768B2 (en) | 2013-03-15 | 2015-11-24 | Jehad A. Abushama | Method and apparatus for depositing copper—indium—gallium selenide (CuInGaSe2-CIGS) thin films and other materials on a substrate |
TWI614102B (zh) | 2013-03-15 | 2018-02-11 | 應用材料股份有限公司 | 基板沉積系統、機械手臂運輸設備及用於電子裝置製造之方法 |
US20140271097A1 (en) | 2013-03-15 | 2014-09-18 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
US10224258B2 (en) | 2013-03-22 | 2019-03-05 | Applied Materials, Inc. | Method of curing thermoplastics with microwave energy |
US9190321B2 (en) | 2013-04-08 | 2015-11-17 | International Business Machines Corporation | Self-forming embedded diffusion barriers |
US9087903B2 (en) | 2013-04-26 | 2015-07-21 | Taiwan Semiconductor Manufacturing Company, Ltd. | Buffer layer omega gate |
US9538586B2 (en) | 2013-04-26 | 2017-01-03 | Applied Materials, Inc. | Method and apparatus for microwave treatment of dielectric films |
KR101287035B1 (ko) | 2013-05-07 | 2013-07-17 | 호용종합건설주식회사 | 관 갱생 건증기 공급용 보일러 시스템 |
CN105247664B (zh) | 2013-05-31 | 2018-04-10 | 株式会社日立国际电气 | 衬底处理装置、半导体器件的制造方法及炉口盖体 |
JP6196481B2 (ja) | 2013-06-24 | 2017-09-13 | 株式会社荏原製作所 | 排ガス処理装置 |
KR101542803B1 (ko) | 2013-07-09 | 2015-08-07 | 주식회사 네오세미텍 | 고온고압 송풍식 퍼지수단을 구비한 진공챔버 및 이를 이용한 세정방법 |
KR20150010065A (ko) * | 2013-07-18 | 2015-01-28 | 삼성디스플레이 주식회사 | 산화물 반도체 소자의 제조 방법 및 산화물 반도체 소자를 포함하는 표시 장치의 제조 방법 |
EP2832899A1 (fr) | 2013-08-02 | 2015-02-04 | The Swatch Group Research and Development Ltd. | Revêtement de diamant et procédé de dépôt d'un tel revêtement |
US9178103B2 (en) | 2013-08-09 | 2015-11-03 | Tsmc Solar Ltd. | Apparatus and method for forming chalcogenide semiconductor absorber materials with sodium impurities |
US9748105B2 (en) | 2013-08-16 | 2017-08-29 | Applied Materials, Inc. | Tungsten deposition with tungsten hexafluoride (WF6) etchback |
US9548200B2 (en) | 2013-08-21 | 2017-01-17 | Applied Materials, Inc. | Variable frequency microwave (VFM) processes and applications in semiconductor thin film fabrications |
JP6226648B2 (ja) | 2013-09-04 | 2017-11-08 | 昭和電工株式会社 | SiCエピタキシャルウェハの製造方法 |
US9224734B2 (en) | 2013-09-13 | 2015-12-29 | Taiwan Semiconductor Manufacturing Company, Ltd. | CMOS devices with reduced leakage and methods of forming the same |
KR20150031889A (ko) | 2013-09-17 | 2015-03-25 | 엘지이노텍 주식회사 | 테양전지 |
US9685371B2 (en) | 2013-09-27 | 2017-06-20 | Applied Materials, Inc. | Method of enabling seamless cobalt gap-fill |
JP6165577B2 (ja) | 2013-09-30 | 2017-07-19 | Hoya株式会社 | マスクブランクの製造方法及び転写用マスクの製造方法 |
US9396986B2 (en) | 2013-10-04 | 2016-07-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Mechanism of forming a trench structure |
US9583655B2 (en) | 2013-10-08 | 2017-02-28 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method of making photovoltaic device having high quantum efficiency |
JP6129712B2 (ja) | 2013-10-24 | 2017-05-17 | 信越化学工業株式会社 | 過熱水蒸気処理装置 |
JP6254823B2 (ja) | 2013-11-01 | 2017-12-27 | Jx金属株式会社 | ニッケルシリサイドスパッタリングターゲット及びその製造方法 |
KR102210672B1 (ko) * | 2013-11-15 | 2021-02-04 | 삼성디스플레이 주식회사 | 산화물 반도체 소자의 제조 방법 및 산화물 반도체 소자를 포함하는 표시 장치의 제조 방법 |
KR20150062545A (ko) | 2013-11-29 | 2015-06-08 | 삼성전기주식회사 | 베이크 장치 |
JP6221710B2 (ja) | 2013-12-10 | 2017-11-01 | 住友電気工業株式会社 | 半導体装置の製造方法 |
SG11201604722WA (en) | 2013-12-22 | 2016-07-28 | Applied Materials Inc | Glass ceramic for ultraviolet lithography and method of manufacturing thereof |
US9406547B2 (en) | 2013-12-24 | 2016-08-02 | Intel Corporation | Techniques for trench isolation using flowable dielectric materials |
CN103745978B (zh) * | 2014-01-03 | 2016-08-17 | 京东方科技集团股份有限公司 | 显示装置、阵列基板及其制作方法 |
US9677172B2 (en) | 2014-01-21 | 2017-06-13 | Applied Materials, Inc. | Methods for forming a cobalt-ruthenium liner layer for interconnect structures |
US9257527B2 (en) | 2014-02-14 | 2016-02-09 | International Business Machines Corporation | Nanowire transistor structures with merged source/drain regions using auxiliary pillars |
US9818603B2 (en) | 2014-03-06 | 2017-11-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor devices and methods of manufacture thereof |
US9496145B2 (en) | 2014-03-19 | 2016-11-15 | Applied Materials, Inc. | Electrochemical plating methods |
US10333017B2 (en) | 2014-03-21 | 2019-06-25 | Brookhaven Science Associates, Llc | Hole blocking, electron transporting and window layer for optimized CuIn(1−x)Ga(x)Se2 solar cells |
US11183375B2 (en) | 2014-03-31 | 2021-11-23 | Applied Materials, Inc. | Deposition system with multi-cathode and method of manufacture thereof |
KR101571715B1 (ko) | 2014-04-23 | 2015-11-25 | 주식회사 풍산 | 고압 열처리를 이용한 스핀 온 글래스 절연막 형성방법 |
US9984915B2 (en) | 2014-05-30 | 2018-05-29 | Infineon Technologies Ag | Semiconductor wafer and method for processing a semiconductor wafer |
KR101561924B1 (ko) * | 2014-06-12 | 2015-10-22 | 연세대학교 산학협력단 | 산화물 박막 후처리 방법, 및 그를 이용한 반도체 소자 제조 방법 |
CN104047676A (zh) | 2014-06-14 | 2014-09-17 | 马根昌 | 改良式对冲消声器 |
CN106463358B (zh) | 2014-06-16 | 2020-04-24 | 英特尔公司 | 金属互连件的接缝愈合 |
CN104089491B (zh) | 2014-07-03 | 2015-11-04 | 肇庆宏旺金属实业有限公司 | 退火炉的余热回收利用系统 |
US9257314B1 (en) | 2014-07-31 | 2016-02-09 | Poongsan Corporation | Methods and apparatuses for deuterium recovery |
US9695503B2 (en) | 2014-08-22 | 2017-07-04 | Applied Materials, Inc. | High power impulse magnetron sputtering process to achieve a high density high SP3 containing layer |
JPWO2016038664A1 (ja) | 2014-09-08 | 2017-04-27 | 三菱電機株式会社 | 半導体アニール装置 |
US9773865B2 (en) | 2014-09-22 | 2017-09-26 | International Business Machines Corporation | Self-forming spacers using oxidation |
US9484461B2 (en) | 2014-09-29 | 2016-11-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated circuit structure with substrate isolation and un-doped channel |
US9362107B2 (en) | 2014-09-30 | 2016-06-07 | Applied Materials, Inc. | Flowable low-k dielectric gapfill treatment |
US20160111342A1 (en) * | 2014-10-17 | 2016-04-21 | Lam Research Corporation | Method and apparatus for characterizing metal oxide reduction |
US9711414B2 (en) | 2014-10-21 | 2017-07-18 | Samsung Electronics Co., Ltd. | Strained stacked nanosheet FETS and/or quantum well stacked nanosheet |
US20160118391A1 (en) | 2014-10-22 | 2016-04-28 | SanDisk Technologies, Inc. | Deuterium anneal of semiconductor channels in a three-dimensional memory structure |
KR102079501B1 (ko) | 2014-10-24 | 2020-02-20 | 버슘머트리얼즈 유에스, 엘엘씨 | 규소-함유 필름의 증착을 위한 조성물 및 이를 사용하는 방법 |
US10204764B2 (en) | 2014-10-28 | 2019-02-12 | Applied Materials, Inc. | Methods for forming a metal silicide interconnection nanowire structure |
US9768060B2 (en) | 2014-10-29 | 2017-09-19 | Applied Materials, Inc. | Systems and methods for electrochemical deposition on a workpiece including removing contamination from seed layer surface prior to ECD |
US10236197B2 (en) * | 2014-11-06 | 2019-03-19 | Applied Materials, Inc. | Processing system containing an isolation region separating a deposition chamber from a treatment chamber |
US9543141B2 (en) | 2014-12-09 | 2017-01-10 | Taiwan Semiconductor Manufacturing Co., Ltd | Method for curing flowable layer |
US9780214B2 (en) | 2014-12-22 | 2017-10-03 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device including Fin- FET and manufacturing method thereof |
US9777378B2 (en) | 2015-01-07 | 2017-10-03 | Applied Materials, Inc. | Advanced process flow for high quality FCVD films |
WO2016111833A1 (en) | 2015-01-09 | 2016-07-14 | Applied Materials, Inc. | Direct deposition of nickel silicide nanowire |
TW201639063A (zh) | 2015-01-22 | 2016-11-01 | 應用材料股份有限公司 | 批量加熱和冷卻腔室或負載鎖定裝置 |
EP3460827B1 (en) | 2015-02-06 | 2022-05-25 | Versum Materials US, LLC | Compositions and methods using same for carbon doped silicon containing films |
US9859039B2 (en) | 2015-02-13 | 2018-01-02 | Alexander Otto | Multifilament superconducting wire with high resistance sleeves |
US20160268127A1 (en) | 2015-03-13 | 2016-09-15 | Semiconductor Energy Laboratory Co., Ltd. | Oxide and Manufacturing Method Thereof |
US9711535B2 (en) | 2015-03-13 | 2017-07-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of forming FinFET channel |
US9590102B2 (en) | 2015-04-15 | 2017-03-07 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device and manufacturing method thereof |
US10103046B2 (en) | 2015-04-20 | 2018-10-16 | Applied Materials, Inc. | Buffer chamber wafer heating mechanism and supporting robot |
US20160314964A1 (en) | 2015-04-21 | 2016-10-27 | Lam Research Corporation | Gap fill using carbon-based films |
TWI677046B (zh) * | 2015-04-23 | 2019-11-11 | 美商應用材料股份有限公司 | 半導體處理系統中的外部基板材旋轉 |
US10443934B2 (en) | 2015-05-08 | 2019-10-15 | Varian Semiconductor Equipment Associates, Inc. | Substrate handling and heating system |
US9685303B2 (en) | 2015-05-08 | 2017-06-20 | Varian Semiconductor Equipment Associates, Inc. | Apparatus for heating and processing a substrate |
TWI723993B (zh) | 2015-05-11 | 2021-04-11 | 美商應用材料股份有限公司 | 水平環繞式閘極與鰭式場效電晶體元件的隔離 |
KR101681190B1 (ko) | 2015-05-15 | 2016-12-02 | 세메스 주식회사 | 기판 건조 장치 및 방법 |
US10446706B2 (en) | 2015-05-15 | 2019-10-15 | Beijing Apollo Ding Rong Solar Technology Co., Ltd. | Hexagonal phase epitaxial cadmium sulfide on copper indium gallium selenide for a photovoltaic junction |
WO2016191621A1 (en) | 2015-05-27 | 2016-12-01 | Applied Materials, Inc. | Methods and apparatus for a microwave batch curing process |
US10597779B2 (en) | 2015-06-05 | 2020-03-24 | Applied Materials, Inc. | Susceptor position and rational apparatus and methods of use |
CN107836034B (zh) | 2015-06-05 | 2022-07-19 | 东京毅力科创株式会社 | 用于互连的钌金属特征部填充 |
US9633839B2 (en) | 2015-06-19 | 2017-04-25 | Applied Materials, Inc. | Methods for depositing dielectric films via physical vapor deposition processes |
US9728430B2 (en) | 2015-06-29 | 2017-08-08 | Varian Semiconductor Equipment Associates, Inc. | Electrostatic chuck with LED heating |
US20160379854A1 (en) | 2015-06-29 | 2016-12-29 | Varian Semiconductor Equipment Associates, Inc. | Vacuum Compatible LED Substrate Heater |
US10170608B2 (en) | 2015-06-30 | 2019-01-01 | International Business Machines Corporation | Internal spacer formation from selective oxidation for fin-first wire-last replacement gate-all-around nanowire FET |
US9646850B2 (en) | 2015-07-06 | 2017-05-09 | Globalfoundries Inc. | High-pressure anneal |
US9972504B2 (en) | 2015-08-07 | 2018-05-15 | Lam Research Corporation | Atomic layer etching of tungsten for enhanced tungsten deposition fill |
US10468238B2 (en) | 2015-08-21 | 2019-11-05 | Applied Materials, Inc. | Methods and apparatus for co-sputtering multiple targets |
US9666606B2 (en) | 2015-08-21 | 2017-05-30 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and electronic device |
US9484406B1 (en) | 2015-09-03 | 2016-11-01 | Applied Materials, Inc. | Method for fabricating nanowires for horizontal gate all around devices for semiconductor applications |
US9530737B1 (en) | 2015-09-28 | 2016-12-27 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device and manufacturing method thereof |
US9716142B2 (en) | 2015-10-12 | 2017-07-25 | International Business Machines Corporation | Stacked nanowires |
FR3042400A1 (fr) | 2015-10-15 | 2017-04-21 | Essilor Int | Dispositif de test du comportement visuel d'un individu et methode de determination d'au moins un parametre de conception optique d'une lentille ophtalmique utilisant un tel dispositif |
US9755047B2 (en) | 2015-10-27 | 2017-09-05 | United Microelectronics Corp. | Semiconductor process and semiconductor device |
US9484255B1 (en) | 2015-11-03 | 2016-11-01 | International Business Machines Corporation | Hybrid source and drain contact formation using metal liner and metal insulator semiconductor contacts |
US9754840B2 (en) | 2015-11-16 | 2017-09-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Horizontal gate-all-around device having wrapped-around source and drain |
US9502307B1 (en) | 2015-11-20 | 2016-11-22 | International Business Machines Corporation | Forming a semiconductor structure for reduced negative bias temperature instability |
US9633838B2 (en) | 2015-12-28 | 2017-04-25 | L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Vapor deposition of silicon-containing films using penta-substituted disilanes |
KR20170080796A (ko) * | 2015-12-30 | 2017-07-11 | 삼성디스플레이 주식회사 | 산화물 반도체 소자의 제조 방법 |
JP6856651B2 (ja) | 2016-01-05 | 2021-04-07 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | 半導体アプリケーション用の水平ゲートオールアラウンドデバイスのためのナノワイヤ製造方法 |
US9805976B2 (en) | 2016-01-08 | 2017-10-31 | Applied Materials, Inc. | Co or Ni and Cu integration for small and large features in integrated circuits |
US9570551B1 (en) | 2016-02-05 | 2017-02-14 | International Business Machines Corporation | Replacement III-V or germanium nanowires by unilateral confined epitaxial growth |
US9679810B1 (en) | 2016-02-11 | 2017-06-13 | Globalfoundries Inc. | Integrated circuit having improved electromigration performance and method of forming same |
JP6240695B2 (ja) | 2016-03-02 | 2017-11-29 | 株式会社日立国際電気 | 基板処理装置、半導体装置の製造方法及びプログラム |
CN108780819B (zh) | 2016-03-11 | 2022-06-14 | 株式会社半导体能源研究所 | 复合体及晶体管 |
US11326253B2 (en) | 2016-04-27 | 2022-05-10 | Applied Materials, Inc. | Atomic layer deposition of protective coatings for semiconductor process chamber components |
US10049927B2 (en) | 2016-06-10 | 2018-08-14 | Applied Materials, Inc. | Seam-healing method upon supra-atmospheric process in diffusion promoting ambient |
TWI680535B (zh) | 2016-06-14 | 2019-12-21 | 美商應用材料股份有限公司 | 金屬及含金屬化合物之氧化體積膨脹 |
US9933314B2 (en) | 2016-06-30 | 2018-04-03 | Varian Semiconductor Equipment Associates, Inc. | Semiconductor workpiece temperature measurement system |
US9876019B1 (en) | 2016-07-13 | 2018-01-23 | Globalfoundries Singapore Pte. Ltd. | Integrated circuits with programmable memory and methods for producing the same |
US10020186B2 (en) | 2016-07-29 | 2018-07-10 | Applied Materials, Inc. | Silicon germanium selective oxidation process |
US10115670B2 (en) | 2016-08-17 | 2018-10-30 | International Business Machines Corporation | Formation of advanced interconnects including set of metal conductor structures in patterned dielectric layer |
US10858727B2 (en) | 2016-08-19 | 2020-12-08 | Applied Materials, Inc. | High density, low stress amorphous carbon film, and process and equipment for its deposition |
US20180087418A1 (en) | 2016-09-22 | 2018-03-29 | Castrol Limited | Fluid Method and System |
EP3520136A4 (en) | 2016-09-30 | 2020-05-06 | Applied Materials, Inc. | METHODS OF FORMING SELF-ALIGNED INTERCONNECT HOLES |
US10249525B2 (en) | 2016-10-03 | 2019-04-02 | Applied Materials, Inc. | Dynamic leveling process heater lift |
US9741626B1 (en) | 2016-10-20 | 2017-08-22 | International Business Machines Corporation | Vertical transistor with uniform bottom spacer formed by selective oxidation |
KR102582671B1 (ko) | 2016-12-22 | 2023-09-25 | 삼성전자주식회사 | 반도체 소자 |
TWI758398B (zh) | 2017-01-24 | 2022-03-21 | 美商應用材料股份有限公司 | 用於在基板上形成鈷層的方法 |
US10570506B2 (en) | 2017-01-24 | 2020-02-25 | Applied Materials, Inc. | Method to improve film quality for PVD carbon with reactive gas and bias power |
US10224224B2 (en) | 2017-03-10 | 2019-03-05 | Micromaterials, LLC | High pressure wafer processing systems and related methods |
US10460933B2 (en) | 2017-03-31 | 2019-10-29 | Applied Materials, Inc. | Two-step process for gapfilling high aspect ratio trenches with amorphous silicon film |
KR102271768B1 (ko) | 2017-04-07 | 2021-06-30 | 어플라이드 머티어리얼스, 인코포레이티드 | 반응성 어닐링을 사용하는 갭충전 |
WO2018194807A1 (en) | 2017-04-21 | 2018-10-25 | Applied Materials, Inc. | Improved electrode assembly |
CN116504679A (zh) | 2017-05-01 | 2023-07-28 | 应用材料公司 | 具有真空隔离和预处理环境的高压退火腔室 |
CN110603634A (zh) | 2017-05-03 | 2019-12-20 | 应用材料公司 | 在高温陶瓷加热器上的集成衬底温度测量 |
US10861681B2 (en) | 2017-05-19 | 2020-12-08 | Applied Materials, Inc. | Apparatus for collection and subsequent reaction of liquid and solid effluent into gaseous effluent |
US10622214B2 (en) | 2017-05-25 | 2020-04-14 | Applied Materials, Inc. | Tungsten defluorination by high pressure treatment |
US10847360B2 (en) | 2017-05-25 | 2020-11-24 | Applied Materials, Inc. | High pressure treatment of silicon nitride film |
KR20190137967A (ko) | 2017-06-02 | 2019-12-11 | 어플라이드 머티어리얼스, 인코포레이티드 | 기판 상에 증착된 막들의 품질 개선 |
JP7190450B2 (ja) | 2017-06-02 | 2022-12-15 | アプライド マテリアルズ インコーポレイテッド | 炭化ホウ素ハードマスクのドライストリッピング |
US10388533B2 (en) | 2017-06-16 | 2019-08-20 | Applied Materials, Inc. | Process integration method to tune resistivity of nickel silicide |
US10269571B2 (en) | 2017-07-12 | 2019-04-23 | Applied Materials, Inc. | Methods for fabricating nanowire for semiconductor applications |
US10234630B2 (en) | 2017-07-12 | 2019-03-19 | Applied Materials, Inc. | Method for creating a high refractive index wave guide |
US10179941B1 (en) | 2017-07-14 | 2019-01-15 | Applied Materials, Inc. | Gas delivery system for high pressure processing chamber |
JP6947914B2 (ja) | 2017-08-18 | 2021-10-13 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | 高圧高温下のアニールチャンバ |
US10276411B2 (en) | 2017-08-18 | 2019-04-30 | Applied Materials, Inc. | High pressure and high temperature anneal chamber |
US10096516B1 (en) | 2017-08-18 | 2018-10-09 | Applied Materials, Inc. | Method of forming a barrier layer for through via applications |
US10643867B2 (en) | 2017-11-03 | 2020-05-05 | Applied Materials, Inc. | Annealing system and method |
JP7112490B2 (ja) | 2017-11-11 | 2022-08-03 | マイクロマテリアルズ エルエルシー | 高圧処理チャンバのためのガス供給システム |
KR102622303B1 (ko) | 2017-11-16 | 2024-01-05 | 어플라이드 머티어리얼스, 인코포레이티드 | 고압 스팀 어닐링 프로세싱 장치 |
JP2021503714A (ja) | 2017-11-17 | 2021-02-12 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | 高圧処理システムのためのコンデンサシステム |
KR102649241B1 (ko) | 2018-01-24 | 2024-03-18 | 어플라이드 머티어리얼스, 인코포레이티드 | 고압 어닐링을 사용한 심 힐링 |
US11114333B2 (en) | 2018-02-22 | 2021-09-07 | Micromaterials, LLC | Method for depositing and reflow of a high quality etch resistant gapfill dielectric film |
CN111656510A (zh) | 2018-02-22 | 2020-09-11 | 应用材料公司 | 处理掩模基板以实现更佳的膜质量的方法 |
EP3762962A4 (en) | 2018-03-09 | 2021-12-08 | Applied Materials, Inc. | HIGH PRESSURE ANNEALING PROCESS FOR METAL-BASED MATERIALS |
US10714331B2 (en) | 2018-04-04 | 2020-07-14 | Applied Materials, Inc. | Method to fabricate thermally stable low K-FinFET spacer |
US10916433B2 (en) | 2018-04-06 | 2021-02-09 | Applied Materials, Inc. | Methods of forming metal silicide layers and metal silicide layers formed therefrom |
WO2019204124A1 (en) | 2018-04-20 | 2019-10-24 | Applied Materials, Inc. | Ceramic wafer heater with integrated pressurized helium cooling |
US10950429B2 (en) | 2018-05-08 | 2021-03-16 | Applied Materials, Inc. | Methods of forming amorphous carbon hard mask layers and hard mask layers formed therefrom |
US10566188B2 (en) | 2018-05-17 | 2020-02-18 | Applied Materials, Inc. | Method to improve film stability |
US11499666B2 (en) | 2018-05-25 | 2022-11-15 | Applied Materials, Inc. | Precision dynamic leveling mechanism with long motion capability |
US11434569B2 (en) | 2018-05-25 | 2022-09-06 | Applied Materials, Inc. | Ground path systems for providing a shorter and symmetrical ground path |
US10704141B2 (en) | 2018-06-01 | 2020-07-07 | Applied Materials, Inc. | In-situ CVD and ALD coating of chamber to control metal contamination |
US10790183B2 (en) | 2018-06-05 | 2020-09-29 | Applied Materials, Inc. | Selective oxidation for 3D device isolation |
US20200035513A1 (en) | 2018-07-25 | 2020-01-30 | Applied Materials, Inc. | Processing apparatus |
US10748783B2 (en) | 2018-07-25 | 2020-08-18 | Applied Materials, Inc. | Gas delivery module |
US10675581B2 (en) | 2018-08-06 | 2020-06-09 | Applied Materials, Inc. | Gas abatement apparatus |
WO2020092002A1 (en) | 2018-10-30 | 2020-05-07 | Applied Materials, Inc. | Methods for etching a structure for semiconductor applications |
US11101174B2 (en) | 2019-10-15 | 2021-08-24 | Applied Materials, Inc. | Gap fill deposition process |
US11728449B2 (en) | 2019-12-03 | 2023-08-15 | Applied Materials, Inc. | Copper, indium, gallium, selenium (CIGS) films with improved quantum efficiency |
-
2019
- 2019-01-28 EP EP19764212.7A patent/EP3762962A4/en active Pending
- 2019-01-28 SG SG11202008256WA patent/SG11202008256WA/en unknown
- 2019-01-28 KR KR1020237017300A patent/KR102702244B1/ko active IP Right Grant
- 2019-01-28 JP JP2020547132A patent/JP7239598B2/ja active Active
- 2019-01-28 WO PCT/US2019/015339 patent/WO2019173006A1/en active Application Filing
- 2019-01-28 CN CN201980016419.7A patent/CN111902929A/zh active Pending
- 2019-01-28 KR KR1020207027850A patent/KR102536820B1/ko active IP Right Grant
- 2019-01-30 US US16/262,094 patent/US10998200B2/en active Active
- 2019-02-12 TW TW108104585A patent/TWI707969B/zh active
-
2021
- 2021-05-04 US US17/307,737 patent/US11881411B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150091009A1 (en) * | 2008-07-31 | 2015-04-02 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
US20140239291A1 (en) * | 2013-02-27 | 2014-08-28 | Inha-Industry Partnership Institute | Metal-oxide semiconductor thin film transistors and methods of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
US11881411B2 (en) | 2024-01-23 |
EP3762962A1 (en) | 2021-01-13 |
JP7239598B2 (ja) | 2023-03-14 |
US20190279879A1 (en) | 2019-09-12 |
KR20230079236A (ko) | 2023-06-05 |
US20210257221A1 (en) | 2021-08-19 |
TW201945570A (zh) | 2019-12-01 |
JP2023063338A (ja) | 2023-05-09 |
EP3762962A4 (en) | 2021-12-08 |
CN111902929A (zh) | 2020-11-06 |
JP2021515412A (ja) | 2021-06-17 |
WO2019173006A1 (en) | 2019-09-12 |
US10998200B2 (en) | 2021-05-04 |
KR102536820B1 (ko) | 2023-05-24 |
KR102702244B1 (ko) | 2024-09-03 |
KR20200115677A (ko) | 2020-10-07 |
SG11202008256WA (en) | 2020-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI707969B (zh) | 用於含金屬材料的高壓退火過程 | |
JP6204917B2 (ja) | アルゴンガス希釈によるシリコン含有層を堆積するための方法 | |
KR101670425B1 (ko) | 금속 산질화물 tft들을 위한 캡핑 층들 | |
US9123707B2 (en) | Methods for forming a hydrogen free silicon containing dielectric film | |
US9502242B2 (en) | Indium gallium zinc oxide layers for thin film transistors | |
US20110095288A1 (en) | Thin film transistor and display device | |
TWI515793B (zh) | 沉積薄膜電極與薄膜堆疊的方法 | |
US10224432B2 (en) | Surface treatment process performed on devices for TFT applications | |
US20080132080A1 (en) | Method of avoiding haze formation on surfaces of silicon-containing PECVD-deposited thin films | |
JP7573668B2 (ja) | 金属含有材料の高圧アニーリングプロセス | |
KR20150000125U (ko) | 아연 함량이 저감된 샤워헤드 | |
US10748759B2 (en) | Methods for improved silicon nitride passivation films |