TWI606587B - 碳摻雜半導體元件 - Google Patents

碳摻雜半導體元件 Download PDF

Info

Publication number
TWI606587B
TWI606587B TW103109713A TW103109713A TWI606587B TW I606587 B TWI606587 B TW I606587B TW 103109713 A TW103109713 A TW 103109713A TW 103109713 A TW103109713 A TW 103109713A TW I606587 B TWI606587 B TW I606587B
Authority
TW
Taiwan
Prior art keywords
iii
layer
semiconductor layer
semiconductor
substrate
Prior art date
Application number
TW103109713A
Other languages
English (en)
Other versions
TW201448208A (zh
Inventor
凱勒斯塔夏
史文森布萊恩L
費希滕寶尼可拉斯
Original Assignee
全斯法姆公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 全斯法姆公司 filed Critical 全斯法姆公司
Publication of TW201448208A publication Critical patent/TW201448208A/zh
Application granted granted Critical
Publication of TWI606587B publication Critical patent/TWI606587B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • H01L29/7784Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material with delta or planar doped donor layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02584Delta-doping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/32Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Chemical Vapour Deposition (AREA)
  • Recrystallisation Techniques (AREA)

Description

碳摻雜半導體元件
本揭示案大體而言係關於製造半導體元件,且特定言之,係關於碳摻雜半導體元件。
用於電力電子應用中之許多電晶體已用矽(Si)半導體材料製造。用於電力應用之普通電晶體元件包括Si低導通電阻功率電晶體(CoolMOS)、Si電力金屬氧化物半導體場效電晶體(Power MOSFET)及Si絕緣閘雙極電晶體(Insulated Gate Bipolar Transistor;IGBT)。儘管Si功率元件並不昂貴,但該等元件有許多缺點,包括相對低之切換速度及高位準之電雜訊。最近,碳化矽(SiC)功率元件由於該等元件之優越特性而被考慮。現III族氮化物或III-N半導體元件(諸如,基於氮化鎵(GaN)之元件)正作為有吸引力之候選物脫穎而出,以承載大電流、支援高電壓及提供非常低之導通電阻及快速切換時間。
在一個態樣中,一種用於製造半導體元件之方法可包括:在反應器中形成III-N半導體層;及在形成III-N半導體 層時將烴前驅物注入至反應器內,從而碳摻雜III-N半導體層及使III-N半導體層絕緣或半絕緣。
在第二態樣中,一種半導體元件可包括基板及在基板上之碳摻雜絕緣或半絕緣III-N半導體層。III-N半導體層中之碳摻雜密度大於1×1018cm-3、5×1018cm-3或1×1019cm-3,及III-N半導體層中之差排密度小於2×109cm-2
在第三態樣中,一種用於形成半導體材料結構之方法可包括:在反應器中於基板上形成第一III-N半導體層;及在形成第一III-N半導體層時,將烴前驅物注入至反應器內,從而碳摻雜第一III-N半導體層及使第一III-N半導體層絕緣或半絕緣。該方法可進一步包括在第一III-N半導體層上形成第二III-N材料層,其中第二III-N材料層具有實質上比該第一III-N材料層低之碳濃度。
在第四態樣中,一種材料結構可包括在異質基板上之第一III-N半導體層及在第一III-N材料結構之與該異質基板相對之一側上之第二III-N半導體層,第二III-N半導體層比第一III-N半導體層薄。第一III-N半導體層貫穿該層可具有大於1×1018cm-3之碳濃度,及貫穿第二III-N半導體層之碳濃度可小於貫穿第一III-N半導體層之碳濃度。此外,第二III-N材料層之與基板相對之表面可具有小於5個特徵結構每平方公分之目視特徵結構密度,其中目視特徵結構中之每一者具有大於100奈米之平均高度。
在第五態樣中,一種材料結構可包括在異質基板上之第一III-N半導體層及第一III-N材料結構之與異質基板相對 之一側上之第二III-N半導體層,第二III-N半導體層比第一III-N半導體層薄。第一III-N半導體層可為具有大於1×1018cm-3之碳濃度之絕緣或半絕緣層。第二III-N半導體層之碳濃度可小於第一III-N半導體層之碳濃度,及在第二III-N半導體層之與異質基板相對之表面處之差排密度可小於2×109cm-2
本文所述之方法及元件可各自包括以下特徵中之一或多者。注入烴前驅物可包含注入具有化學式(CxHy)之烴前驅物,其中x及y為大於或等於1之整數。在基板上形成III-N半導體層可包含在矽基板上於III-N成核層上形成III-N半導體層以作為III-N緩衝層。該等方法可包含在III-N緩衝層之上形成III-N溝道層及在III-N溝道層之上形成III-N障壁層,從而鄰近於溝道層與障壁層之間的界面形成二維電子氣(2DEG)主動溝道。形成III-N半導體層以作為III-N緩衝層可包含在複數個生長條件下形成III-N緩衝層,且形成III-N溝道層可包含在該等相同或實質上相同的生長條件下形成III-N溝道層。複數個生長條件可包含表面溫度及反應器壓力。複數個生長條件進一步可包含III族前驅物流動速率與V族前驅物流動速率之比率。在基板上形成III-N半導體層可包含藉由金屬有機化學氣相沉積(metal organic chemical vapor deposition;MOCVD)形成III-N半導體層。障壁層可包含AlGaN,溝道層可包含無摻雜或無意摻雜(unintentionally doped;UID)GaN,且緩衝層可包含AlGaN或GaN或上述兩者。
形成III-N半導體層可包含以III族前驅物莫耳流動速率將III族前驅物注入至反應器中,及將烴前驅物注入至反應器中可包含以烴前驅物莫耳流動速率將烴前驅物注入至反應器中,其中烴前驅物莫耳流動速率至少為III族前驅物莫耳流動速率之0.02倍。形成III-N半導體層可包含以III族前驅物莫耳流動速率將III族前驅物注入至反應器中,及將烴前驅物注入至反應器中可包含以烴前驅物莫耳流動速率將烴前驅物注入至反應器中,其中該烴前驅物莫耳流動速率大於III族前驅物莫耳流動速率。烴前驅物可包含丙烷或甲烷或上述兩者。該等方法可進一步包含向半導體元件添加閘極端子、汲極端子及源極端子,從而形成III-N高電子遷移率電晶體(high electron mobility transistor;HEMT)。該等方法可進一步包含向半導體元件添加陽極端子及陰極端子,從而形成III-N二極體。使III-N半導體層絕緣或半絕緣可包含使III-N半導體層具有至少1×105Ω.cm或1×107Ω.cm之電阻率。碳摻雜III-N半導體層可導致III-N半導體層具有大於1×1018cm-3之碳濃度。烴前驅物可在形成第一III-N材料層時而不是在形成第二III-N材料層時注入至反應器。
III-N半導體層可具有在基板遠端之第一側及在第一側與基板之間的第二側,其中III-N半導體層中之差排密度為鄰近於III-N半導體層之第一側之差排密度。III-N半導體層可包含在III-N成核層上之III-N緩衝層,其中基板為矽基板。元件可進一步包含在III-N緩衝層上之III-N溝道層及在III-N溝道層上之III-N障壁層,從而鄰近溝道層與障壁層之間的界 面形成二維電子氣(2DEG)主動溝道。障壁層可包含AlGaN,溝道層可包含無摻雜或無意摻雜(UID)GaN,且緩衝層可包含AlGaN或GaN或上述兩者。基板可為異質基板。元件可進一步包含閘極端子、汲極端子及源極端子,其中半導體元件為III-N高電子遷移率電晶體(HEMT)。元件可進一步包含陽極端子及陰極端子,其中半導體元件為III-N二極體。III-N半導體層中之碳摻雜密度可小於5×1021cm-3
第二III-N材料層之與基板相對之表面可具有小於5個特徵結構每平方公分之目視特徵結構密度,其中目視特徵結構中之每一者具有大於100奈米之平均高度。第一III-N半導體層與第二III-N半導體層之組合厚度可小於6微米,例如,小於5微米、小於4微米或小於3微米。第二III-N材料層比第一III-N材料層薄。
本說明書中所述之標的物之特定實施例可經實施以實現以下優點中之一或多者。相較於習知技術,絕緣或半絕緣碳摻雜III-N層可在對層之一或多個生長參數之較少約束的情況下以根據廣泛濃度範圍(1e16cm-3至1e22cm-3)之碳摻雜位準形成。絕緣或半絕緣層可經形成具有低差排密度及生長在異質基板(例如Si或SiC基板)上之平滑表面。在金屬有機化學氣相沉積(MOCVD)期間注入無鹵素前驅物(例如,烴前驅物)可降低或消除含鹵素分子與金屬有機前驅物之相互作用,從而避免在碳摻雜AlGaN之MOCVD生長期間CX4(X=鹵素)前驅物對合金組成物(亦即,AlGaN中Al與Ga之比率)之影響。
100‧‧‧III族氮化物半導體元件
102‧‧‧基板
104‧‧‧成核層
106‧‧‧緩衝層
108‧‧‧III-N溝道層
110‧‧‧III-N障壁層
112‧‧‧二維電子氣
114‧‧‧源極
116‧‧‧汲極
118‧‧‧閘極
200‧‧‧示例性方法
202‧‧‧矽基板
204‧‧‧成核層
206‧‧‧反應器
208‧‧‧緩衝層
210‧‧‧溝道層
212‧‧‧III-N材料層結構
300‧‧‧系統
302‧‧‧反應器
304‧‧‧基板
306‧‧‧III-N層
308‧‧‧反應器控制系統
310‧‧‧壓力控制模組
312‧‧‧沉積溫度控制模組
314‧‧‧生長速率模組
316‧‧‧載體氣體
318‧‧‧V族前驅物氣體
320‧‧‧III族前驅物氣體
322‧‧‧烴前驅物氣體
402‧‧‧基板
404‧‧‧成核層
406‧‧‧緩衝層
418‧‧‧附加層
420‧‧‧III-N材料結構
500‧‧‧目視特徵結構
502‧‧‧平均直徑
504‧‧‧平均高度
520‧‧‧III-N材料結構
第1A圖及第1B圖為示例性III-N半導體元件之橫截面視圖。
第2圖為用於製造包括碳摻雜層之III-N半導體元件之示例性方法之流程圖。
第3圖為用於製造具有經碳摻雜之至少一個層之III-N半導體元件之系統之方塊圖。
第4圖為示例性III-N半導體材料結構之橫截面視圖。
第5A圖及第5B圖分別為形成在III-N材料結構之表面上之目視特徵結構之橫截面示意圖及平面示意圖。
在各種圖式中相同元件符號指示相同元件。
第1A圖為示例性III族氮化物(亦即,III-N)半導體元件100之橫截面視圖。舉例而言,元件可藉由向元件添加源極114端子、汲極116端子及閘極118端子(如在第1B圖中所示)而成為電晶體,例如III-N高電子遷移率電晶體(HEMT)。在另一實例中,元件可藉由向元件添加陽極端子及陰極端子(未圖示)而成為二極體。
元件包括基板102。基板可為(例如)矽、SiC、氮化鋁(AlN)、GaN、藍寶石(Al2O3)或用於III-N材料之生長之任意其他合適生長基板。因大的天然基板(亦即,由III-N材料形成之基板)當前難以獲得且趨於非常昂貴的,故元件通常形成在異質基板(亦即,由並非III-N材料之材料形成之基板)上,諸如矽、碳化矽或藍寶石。元件包括在基板上之 成核層104。成核層可為III-N成核層及可包括,例如AlN。
元件可包括緩衝層106。緩衝層可為III-N緩衝層及可包括,例如,C摻雜AlGaN或GaN或上述兩者。緩衝層可包括若干不同層,例如,一些層更接近基板及具有較高Al濃度,而一些層距離基板較遠及具有較低Al濃度。緩衝層可藉由碳摻雜緩衝層而製成絕緣的或半絕緣的。此舉可有用於(例如)防止表面下之洩露或過早崩潰。
元件包括III-N溝道層108及III-N障壁層110,其中溝道層及障壁層之組成物經選擇以誘發鄰近於溝道層與障壁層之間的界面的二維電子氣(2DEG)112主動溝道。舉例而言,溝道層可包括無摻雜或無意摻雜(UID)GaN,且障壁層可包括AlGaN。
術語III族氮化物或III-N材料、層、元件及結構可指根據化學計量通式BwAlxInyGazN由化合物半導體材料組成之材料、元件或結構,其中w+x+y+z約為1,且w、x、y及z各自大於或等於零且小於或等於1。在III族氮化物或III-N元件中,導電溝道可部分或整體包含在III-N材料層內。
元件之層可藉由在反應器中之分子束磊晶(molecular beam epitaxy;MBE)或金屬有機化學氣相沉積(MOCVD)或其他技術來形成。實現在以NH3作為氮前驅物藉由MOCVD形成之III-N層中之碳摻雜的一種方式為調節層生長條件以使得來自金屬有機前驅物(例如,TMGa或TMAl或上述兩者)之碳併入層中。舉例而言,有利於碳併入之一些生長條件包括:低反應器壓力、低NH3分壓、低沉積溫度及高生長速率。
當為足以使層絕緣或半絕緣以用於某些應用之位準的碳摻雜而實施該等生長條件時,該等生長條件受限以相對於層之其他特徵(例如,層之螺旋差排密度及表面粗糙度)校準。舉例而言,考慮形成在異質(亦即,非III-N)基板(例如,矽(Si)、碳化矽(SiC)或藍寶石(Al2O3))上之層。
此類層可在包括較低反應器壓力、較低NH3分壓、較低沉積溫度及較高生長速率中之一或多者之生長條件下形成,但該等生長條件亦可導致層中之較高差排密度及較高位準之點缺陷。使用該等方法將碳摻雜位準增加至大於約5×1018cm-3(及在一些情況下大於8×1017cm-3)可附加地導致表面粗糙或不良表面形態或上述兩者。
實現層中之碳摻雜之另一方式為在層之生長期間將烴前驅物注入至反應器。烴前驅物包括化學組成物(CxHy)之分子,其中x及y為大於或等於1之整數。烴之實例包括丙烷(C3H8)、甲烷(CH4)及C2H2
實現碳摻雜之此方式可導致層具有超過1×1018cm-3、5×1018cm-3、1×1019cm-3或3×1019cm-3之碳摻雜同時具有小於2×109cm-2(例如,約1×109cm-2或更小或約8×108cm-2或更小)之差排密度。III-N半導體層中之碳摻雜密度可在1×1019cm-3與5×1021cm-3之間,或在1×1018cm-3與5×1021cm-3之間。在一些實施方式中,成核層之厚度介於20nm至50nm之間,緩衝層之厚度介於1微米至10微米之間(例如,約5微米),溝道層之厚度為約200nm至1000nm(通常約400nm),且障壁層之厚度介於10nm至40nm之間(例如, 約25nm)。
第2圖為用於製造包括碳摻雜層之III-N半導體元件之示例性方法200之流程圖。為說明之目的,將參考第1圖之示例性元件100描述方法,但該方法可用於製造其他元件及用於碳摻雜其他元件中之其他類型之層。
成核層形成在矽基板(202)上。舉例而言,矽基板可置入反應器(諸如MOCVD反應器)中,且成核層可(例如,作為AlN層)沉積在反應器內。
緩衝層形成在成核層(204)上。舉例而言,緩衝層可沉積例如,以作為AlGaN或GaN或上述兩者之層。在一些實施方式中,緩衝層包含超過一個層。AlGaN層經沉積在每一連續層中具有減少量之Al。最後,一或多個GaN層可經沉積。
當緩衝層形成時,烴前驅物經注入至反應器(206)。舉例而言,烴前驅物可在將III族及/或V族前驅物注入至反應器時同時或交替注入至反應器。
溝道層形成在緩衝層(208)上。舉例而言,溝道層可經沉積,例如,以作為無摻雜或無意摻雜(UID)GaN層。在一些實施方式中,溝道層在與緩衝層相同或實質上相同之生長條件下形成。在緩衝層包括最高位準之GaN層之情況下,溝道層可藉由中斷注入烴前驅物及在不改變反應器中之任意其他生長條件之情況下繼續沉積GaN來沉積。換言之,反應器壓力及/或溫度及/或至反應器中之總氣體莫耳流動速率及/或V族前驅物莫耳流動速率與III族前驅物莫耳流動速 率之比率對於溝道層及對於緩衝層之直接鄰近於溝道層之部分而言可能相同,其中烴前驅物在緩衝層之直接鄰近於溝道層之部分之生長期間而不是在溝道層之生長期間注入至反應器。
障壁層形成在溝道層(210)上。舉例而言,障壁層可經沉積(例如)以作為AlGaN層。鄰近於溝道層與障壁層之間的界面誘發二維電子氣(2DEG)主動溝道。障壁層可具有比溝道層大之帶隙,此帶隙又可至少部分地在溝道層中誘發2DEG。為形成電晶體,源極端子、閘極端子及汲極端子隨後形成在III-N材料層結構(212)上。或者,為形成二極體,陽極端子及陰極端子隨後形成在III-N材料層結構(未圖示)上。
第3圖為用於製造具有經碳摻雜之至少一個層之III-N半導體元件之系統300的方塊圖。系統可用於(例如)執行第2圖之方法以製造第1A圖及第1B圖之元件。
系統包括反應器302,例如MOCVD反應器。基板304置入反應器中且III-N層306形成在基板上。反應器控制系統308藉由調節一或多個生長條件來控制層306之形成。反應器控制系統可控制一或多種材料至反應器中之注入,該等材料包括載體氣體316(例如,惰性載體氣體,諸如H2或N2或上述兩者)、V族前驅物氣體318(例如,NH3)、III族前驅物氣體320(例如,TMGa或TMAl或上述兩者)及烴前驅物氣體322(例如,C3H8、CH4及C2H2中之一或多者)。
反應器控制系統可(例如)作為一或多個電腦之系統 實施,該系統自操作者接收輸入及(例如)向反應器及氣體之儲存模組提供輸出控制訊號。例如,反應器控制系統可包括壓力控制模組310(例如,以控制反應器中之壓力)、沉積溫度控制模組312(例如,以控制形成之層之表面溫度)、生長速率模組314及其他模組。生長速率模組314可藉由控制影響生長速率之變數(諸如,反應器壓力、表面溫度及各種前驅物及載體氣體之流動速率)而間接控制生長速率。
在一些實施方式中,反應器控制系統經組態以藉由以III族前驅物莫耳流動速率將III族前驅物注入至反應器中及藉由以烴前驅物莫耳流動速率將烴前驅物注入至反應器來形成III-N半導體層。層中碳摻雜之量可藉由改變烴前驅物莫耳速率與III族前驅物莫耳流動速率之間的比率來至少部分地控制。
已發現,對用於在III-N材料之MOCVD生長期間之III-N材料之碳摻雜的一些烴前驅物而言,特定言之對於丙烷(C3H8)而言,摻雜物併入效率比通常在III-N材料之MOCVD生長期間引入之其他摻雜物之併入效率低得多。舉例而言,對於摻雜物(諸如,矽)而言,在矽烷或二矽烷用作矽前驅物之情況下,當矽前驅物莫耳流動速率與III族前驅物莫耳流動速率之比率為約1/1000(及在一些情況下甚至更低)時,III-N材料中之矽摻雜位準約等於III-N材料中之摻雜物之飽和位準,該位準可為約1×1021cm-3。使矽前驅物莫耳流動速率相對於III族前驅物莫耳流動速率增加至更高值實質上不增加層中之電性主動矽之濃度,及通常導致所得III-N層之更加 不良的結構品質,例如,導致較高差排及點缺陷密度以及不良表面形態。然而,對於在MOCVD生長期間使用丙烷作為碳前驅物之III-N材料之碳摻雜而言,當在不存在丙烷前驅物之情況下在對應於低碳摻雜位準(例如,小於1×1017cm-3)之反應器條件下執行生長時,以III族前驅物莫耳流動速率之約1/1000之莫耳流動速率添加丙烷實質上不增加III-N材料中之碳摻雜,及仍通常獲得小於1×1017cm-3之碳摻雜位準。
在一些系統中,且特定而言當丙烷(C3H8)用作烴前驅物時,可能需要約為或至少為III族前驅物莫耳流動速率之0.02倍之烴前驅物莫耳流動速率,以便層中之碳摻雜位準在約1×1017cm-3與1×1019cm-3之間或超過1×1017cm-3。在一些系統中,當烴前驅物莫耳流動速率約為或至少為III族前驅物莫耳流動速率之0.02倍時,層中之碳摻雜位準可為約1×1018cm-3或超過1×1018cm-3或在約1×1018cm-3與1×1020cm-3之間。在一些系統中,當烴前驅物莫耳流動速率實質上大於III族前驅物莫耳流動速率,例如為III族前驅物莫耳流動速率之2倍或20倍或200倍或2000倍或20,000倍時,層中之碳摻雜位準可為約或超過1×1018cm-3或1×1019cm-3或1×1020cm-3。對於約1e18cm-3或更大之碳摻雜位準而言,用丙烷前驅物形成之碳摻雜層之電阻率可大於1×105Ω.cm,或對於約1×1019cm-3或更大之碳摻雜位準而言大於1×107Ω.cm,或對於約1×1020cm-3或更大之碳摻雜位準而言大於1×108Ω.cm。
在一些實施方式中,反應器控制系統經組態以在1077℃之表面溫度及200mBarr之壓力下形成至少一個層(例如, UID GaN溝道層)。反應器控制系統使氮前驅物(例如,氨(NH3))以0.54mol/min之速率流入反應器中、使三甲基鎵(TMGa)以0.65mmol/min之速率流入反應器中及控制至反應器中之總氣體流量至80公升每分鐘或約80公升每分鐘。反應器控制系統可藉由增加或降低載體氣體流量以補償其他流量之增加或減少而將總氣體流量維持在實質上恆定之速率下。此情況導致此層中之約5×1016cm-3或更低之碳摻雜。
反應器控制系統可藉由使烴前驅物流入反應器中而在相同或實質上相同之生長條件下形成碳摻雜層。舉例而言,對於碳摻雜層而言,若藉由使烴前驅物流入反應器中而將表面溫度維持在1077℃、壓力維持在200mBarr、氨流動速率維持在0.54mol/min、TMGa流動速率維持在0.65mmol/min及流入反應器中之總氣體流動速率維持在約80公升每分鐘,則可實現大於1×1018cm-3、大於5×1018cm-3、大於1×1019cm-3或大於1×1020cm-3之碳摻雜位準。同時,若碳摻雜III-N層形成在異質基板(諸如,矽)上,則碳摻雜III-N層之上部分(亦即,鄰近於碳摻雜III-N層之距離基板最遠之表面之部分)之差排密度可維持在小於2×109cm-2及通常甚至小於1×109cm-2之位準下,即使在結構中之III-N層之總厚度小於6微米、小於5微米、小於4微米或小於3微米之情況下亦如此。
藉助於比較,當烴前驅物不在碳摻雜層之生長期間流入反應器時,反應器控制系統可調節一或多個或全部生長參數以併入足夠碳來使碳摻雜層絕緣至指定程度。舉例而言, 反應器控制系統可降低壓力至50mBarr、降低溫度至1020℃、降低NH3流動速率至0.045mol/min、維持總氣體流量為約80公升每分鐘及維持III族前驅物氣體之流量。
對生長條件之該等調節可導致碳摻雜高達約5×1018cm-3。當層在該等條件下生長時,層之上表面處之差排密度可大於2×109cm-2,且通常在5×109cm-2與6×109cm-2之間。進一步調節反應器條件以進一步增加彼等層中之碳濃度可使材料結構之表面形態實質降級,並通常亦導致甚至更高之差排密度。
現參看第4圖,在許多III-N半導體元件中,元件之主動部分包含在III-N材料結構420之距離基板402最遠之層418內。舉例而言,參看第1A圖及第1B圖之電晶體結構,元件溝道112包含在溝道層108(因此,包含在對應於第4圖之附加層418的第1A圖及第1B圖之溝道層108及障壁層110)內。在此等元件中,在導致附加層418中之最小缺陷及/或阱之條件下形成附加層418時,通常較佳的是使基板402及/或成核層404及/或緩衝層406與附加層418電絕緣。如先前所述,此可如下實現:藉由分別在成核層404及/或緩衝層406之生長期間將烴前驅物注入至反應器,以便在生長一些或全部附加層418以作為無摻雜(或無意摻雜)層時用碳摻雜該等層及使該等層絕緣或半絕緣,其中使用實質上較低位準之碳。在許多情況下,緩衝層406之厚度大於附加層418之厚度,以使得至少一半厚度之III-N材料結構具有實質碳摻雜。相較於成核層及/或緩衝層之碳摻雜藉由其他方法實現的 情況,此類結構可導致在附加層418之表面處之降低差排密度以及使III-N材料結構420之上表面實質上更光滑。該等改良之特徵導致改良之元件效能及較高收益。
舉例而言,當碳摻雜藉由先前所述之其他方法(諸如,在碳摻雜層之生長期間降低反應器壓力及溫度)實現時,已發現在異質基板(諸如,矽基板)上生長之所得III-N膜在表面上具有大目視特徵結構。當該等特徵結構趨於在該等結構之間具有相當大之空間間隔時,直接形成在該等特徵結構上之元件是不實用的抑或性能實質上比晶圓上之其他元件更差。
形成在III-N材料結構520之表面上之目視特徵結構500之示意圖在第5A圖及第5B圖中圖示,該III-N材料結構520在導致此類特徵結構之較高密度之條件下生長。第5A圖為特徵結構500之橫截面視圖,及第5B圖為特徵結構500之平面圖(俯視圖)。如在第5B圖中之平面圖中所示,特徵結構500可具有六邊形形狀。特徵結構之平均直徑502通常大於20微米,且更具體而言,在約20微米至500微米之範圍中,且特徵結構之平均高度504通常大於100奈米,例如約200奈米至500奈米。為作比較,在晶圓之不包括該等目視特徵結構之區域中,表面高度之平均偏差通常遠小於20奈米。
再次參看第4圖,已發現,當成核層404及/或緩衝層406分別具有大於1×1018cm-3之碳摻雜密度時,當碳摻雜藉由調節反應器條件(例如,藉由減低表面溫度及反應器壓力以便將更高濃度之碳併入III-N層)來實現時,III-N材料 結構420之表面具有大於8個特徵結構每平方公分之目視特徵結構500之密度。另一方面,當碳摻雜藉由在層404及/或層406之生長期間注入烴前驅物(諸如,丙烷)來實現時,可使得目視特徵結構500之密度小於5個特徵結構每平方公分,且通常小於2個特徵結構每平方公分。
已描述許多實施方式。然而,將瞭解,可在不脫離本文中所述之技術及元件之精神及範疇之情況下執行各種修改。舉例而言,用於形成碳摻雜III-N層之本文中所述之方法可用於製造需要絕緣或半絕緣層之其他元件(例如,光伏電池、雷射及LED)。因此,其他實施方式在以下申請專利範圍之範疇內。
200‧‧‧示例性方法
202‧‧‧矽基板
204‧‧‧成核層
206‧‧‧反應器
208‧‧‧緩衝層
210‧‧‧溝道層
212‧‧‧III-N材料層結構

Claims (37)

  1. 一種用於製造一半導體元件之方法,該方法包含以下步驟:在一反應器中於一基板上形成一III-N半導體層;及在形成該III-N半導體層時將一烴前驅物注入至該反應器內,從而碳摻雜該III-N半導體層並使該III-N半導體層絕緣或半絕緣。
  2. 如請求項1所述之方法,其中注射該烴前驅物包含注射具有一化學式(CxHy)之一烴前驅物,其中x及y為大於或等於1之整數。
  3. 如請求項1所述之方法,其中於該基板上形成該III-N半導體層包含以下步驟:在一矽基板之上於一III-N成核層上形成該III-N半導體層以作為一III-N緩衝層。
  4. 如請求項3所述之方法,該方法進一步包含以下步驟:在該III-N緩衝層之上形成一III-N溝道層及在該III-N溝道層之上形成一III-N障壁層,從而鄰近該溝道層與該障壁層之間的一界面形成一二維電子氣(2DEG)主動溝道。
  5. 如請求項4所述之方法,其中形成該III-N半導體層以作為一III-N緩衝層包含以下步驟:在複數個生長條件下形成該III-N緩衝層,且其中形成該III-N溝道層包含以下步驟:在 該等相同或實質上相同的生長條件下形成該III-N溝道層。
  6. 如請求項5所述之方法,其中該等複數個生長條件包含一表面溫度及一反應器壓力。
  7. 如請求項6所述之方法,其中該等複數個生長條件進一步包含III族前驅物流動速率與V族前驅物流動速率之一比率。
  8. 如請求項4所述之方法,其中該障壁層包含AlGaN,該溝道層包含無摻雜或無意摻雜(UID)GaN,及該緩衝層包含AlGaN或GaN或上述兩者。
  9. 如請求項1至8中任一項所述之方法,其中於該基板上形成該III-N半導體層包含以下步驟:藉由金屬有機化學氣相沉積(MOCVD)形成該III-N半導體層。
  10. 如請求項1至8中任一項所述之方法,其中形成該III-N半導體層包含以一III族前驅物莫耳流動速率將一III族前驅物注入至該反應器中,及將該烴前驅物注入至該反應器中包含以下步驟:以一烴前驅物莫耳流動速率將該烴前驅物注入至該反應器中,其中該烴前驅物莫耳流動速率至少為該III族前驅物莫耳流動速率之0.02倍。
  11. 如請求項1至8中任一項所述之方法,其中形成該III-N半導體層包含以下步驟:以一III族前驅物莫耳流動速率將一III族前驅物注入至該反應器中,及將該烴前驅物注入至該反應器中包含以下步驟:以一烴前驅物莫耳流動速率將該烴前驅物注入至該反應器中,其中該烴前驅物莫耳流動速率大於該III族前驅物莫耳流動速率。
  12. 如請求項1至8中任一項所述之方法,其中該烴前驅物包含丙烷或甲烷或上述兩者。
  13. 如請求項1至8中任一項所述之方法,該方法進一步包含以下步驟:向該半導體元件添加一閘極端子、一汲極端子及一源極端子,從而形成一III-N高電子遷移率電晶體(HEMT)。
  14. 如請求項1至8中任一項所述之方法,該方法進一步包含以下步驟:向該半導體元件添加一陽極端子及一陰極端子,從而形成一III-N二極體。
  15. 如請求項1至8中任一項所述之方法,其中使該III-N半導體層絕緣或半絕緣包含以下步驟:使該III-N半導體層具有至少1×107Ω.cm之一電阻率。
  16. 如請求項1至8中任一項所述之方法,其中使該III-N半 導體層絕緣或半絕緣包含以下步驟:使該III-N半導體層具有至少1×105Ω.cm之一電阻率。
  17. 如請求項1至8中任一項所述之方法,其中碳摻雜該III-N半導體層導致該III-N半導體層具有大於1×1018cm-3之一碳濃度。
  18. 一種半導體元件,該元件包含:一基板;及一碳摻雜絕緣或半絕緣III-N半導體層,該III-N半導體層係位於該基板上,該III-N半導體層包含在一III-N成核層上之一III-N緩衝層,該III-N緩衝層中之碳摻雜密度大於該III-N成核層之碳摻雜密度,其中該III-N緩衝層中之碳摻雜密度大於5×1018cm-3且該III-N半導體層中之一差排密度小於2×109cm-2
  19. 如請求項18所述之半導體元件,其中該III-N半導體層具有在該基板遠端之一第一側及在該第一側與該基板之間的一第二側,及該III-N半導體層中之該差排密度為鄰近於該III-N半導體層之該第一側之一差排密度。
  20. 如請求項19所述之半導體元件,其中該基板為一異質基 板。
  21. 如請求項19所述之半導體元件,其中該基板為一矽基板。
  22. 如請求項21所述之半導體元件,該元件進一步包含在該III-N緩衝層上之一III-N溝道層及在該III-N溝道層上之一III-N障壁層,從而鄰近於該溝道層與該障壁層之間的一界面形成一二維電子氣(2DEG)主動溝道。
  23. 如請求項22所述之半導體元件,其中該障壁層包含AlGaN,該溝道層包含無摻雜或無意摻雜(UID)GaN,及該緩衝層包含AlGaN或GaN或上述兩者。
  24. 如請求項18至23中之任一項所述之半導體元件,該元件進一步包含一閘極端子、一汲極端子及一源極端子,其中該半導體元件為一III-N高電子遷移率電晶體(HEMT)。
  25. 如請求項18至23中之任一項所述之半導體元件,該元件進一步包含一陽極端子及一陰極端子,其中該半導體元件為一III-N二極體。
  26. 如請求項18至23中之任一項所述之半導體元件,其中該III-N緩衝層中之該碳摻雜密度小於5×1021cm-3
  27. 一種用於形成一半導體材料結構之方法,該方法包含以下步驟:在一反應器中於一基板上形成一第一III-N半導體層;在形成該第一III-N半導體層時,將一烴前驅物注入至該反應器內,從而碳摻雜該第一III-N半導體層及使該第一III-N半導體層絕緣或半絕緣;及在該第一III-N半導體層上形成一第二III-N材料層;其中該第二III-N材料層具有一實質上比該第一III-N材料層低之碳濃度。
  28. 如請求項27所述之方法,其中該基板為一異質基板。
  29. 如請求項28所述之方法,其中該第二III-N材料層之與該基板相對之一表面具有小於5個特徵結構每平方公分之一目視特徵結構密度,其中該等目視特徵結構中之每一者具有大於100奈米之一平均高度。
  30. 如請求項27至29中之任一項所述之方法,其中在形成該第一III-N材料層時將該烴前驅物注入至該反應器中,但在形成該第二III-N材料層時不將該烴前驅物注入至該反應器中。
  31. 如請求項30所述之方法,其中該烴前驅物包含丙烷。
  32. 如請求項30所述之方法,其中該第二III-N材料層比該第一III-N材料層薄。
  33. 一種材料結構,該材料結構包含:一第一III-N半導體層,在一異質基板上;及一第二III-N半導體層,在該第一III-N材料結構之與該異質基板相對之一側上,該第二III-N半導體層比該第一III-N半導體層薄;其中該第一III-N半導體層貫穿該層具有大於1×1018cm-3之一碳濃度;貫穿該第二III-N半導體層之一碳濃度小於貫穿該第一III-N半導體層之該碳濃度;及該第二III-N材料層之與該基板相對之一表面具有小於5個特徵結構每平方公分之一目視特徵結構密度,其中該等目視特徵結構中之每一者具有大於100奈米之一平均高度。
  34. 如請求項33所述之材料結構,該第二III-N半導體層包含一III-N障壁層及一III-N溝道層,其中一二維電子氣(2DEG)主動溝道鄰近於該III-N溝道層與該III-N障壁層之間的一界面。
  35. 如請求項33至34中之任一項所述之材料結構,其中該第一III-N半導體層與該第二III-N半導體層之一組合厚度小 於6微米。
  36. 一種材料結構,該材料結構包含:一第一III-N半導體層,在一異質基板上;及一第二III-N半導體層,在該第一III-N材料結構之與該異質基板相對之一側上,該第二III-N半導體層比該第一III-N半導體層薄;其中該第一III-N半導體層為具有大於1×1018cm-3之一碳濃度之一絕緣或半絕緣層;該第二III-N半導體層之一碳濃度小於該第一III-N半導體層之該碳濃度;及在該第二III-N半導體層之與該異質基板相對之一表面處之一差排密度小於2×109cm-2
  37. 如請求項36所述之材料結構,其中該第一III-N半導體層與該第二III-N半導體層之一組合厚度小於6微米。
TW103109713A 2013-03-15 2014-03-14 碳摻雜半導體元件 TWI606587B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201361791395P 2013-03-15 2013-03-15

Publications (2)

Publication Number Publication Date
TW201448208A TW201448208A (zh) 2014-12-16
TWI606587B true TWI606587B (zh) 2017-11-21

Family

ID=51523607

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103109713A TWI606587B (zh) 2013-03-15 2014-03-14 碳摻雜半導體元件

Country Status (6)

Country Link
US (4) US9245992B2 (zh)
EP (1) EP2973716A4 (zh)
JP (1) JP2016521450A (zh)
CN (1) CN105247679B (zh)
TW (1) TWI606587B (zh)
WO (1) WO2014152605A1 (zh)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9087718B2 (en) 2013-03-13 2015-07-21 Transphorm Inc. Enhancement-mode III-nitride devices
US9245992B2 (en) 2013-03-15 2016-01-26 Transphorm Inc. Carbon doping semiconductor devices
JP2015176936A (ja) * 2014-03-13 2015-10-05 株式会社東芝 半導体装置
JP6283250B2 (ja) * 2014-04-09 2018-02-21 サンケン電気株式会社 半導体基板及び半導体素子
US9318593B2 (en) 2014-07-21 2016-04-19 Transphorm Inc. Forming enhancement mode III-nitride devices
US9608103B2 (en) * 2014-10-02 2017-03-28 Toshiba Corporation High electron mobility transistor with periodically carbon doped gallium nitride
JP6530905B2 (ja) * 2014-11-13 2019-06-12 古河機械金属株式会社 単結晶半導体層、自立基板及び積層構造体の製造方法
US9536966B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Gate structures for III-N devices
US9536967B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Recessed ohmic contacts in a III-N device
US11335799B2 (en) * 2015-03-26 2022-05-17 Chih-Shu Huang Group-III nitride semiconductor device and method for fabricating the same
US9419125B1 (en) * 2015-06-16 2016-08-16 Raytheon Company Doped barrier layers in epitaxial group III nitrides
CN105390532A (zh) * 2015-10-28 2016-03-09 大连理工大学 一种带有InGaN插入层的非故意掺杂高阻GaN薄膜及其制备方法
CN105405872A (zh) * 2015-10-30 2016-03-16 江苏能华微电子科技发展有限公司 一种三级管用外延片及其制备方法
CN105336769A (zh) * 2015-10-30 2016-02-17 江苏能华微电子科技发展有限公司 三级管用外延片及其制备方法
CN105390533A (zh) * 2015-10-30 2016-03-09 江苏能华微电子科技发展有限公司 GaN薄膜材料及其制备方法
CN105405871A (zh) * 2015-10-30 2016-03-16 江苏能华微电子科技发展有限公司 二级管用外延片及其制备方法
CN105428426B (zh) * 2015-11-09 2019-07-19 江苏能华微电子科技发展有限公司 一种肖特基二极管用外延片及其制备方法
CN105336605B (zh) * 2015-11-09 2018-05-11 江苏能华微电子科技发展有限公司 二极管用外延片及其制备方法
KR20180100562A (ko) * 2015-12-10 2018-09-11 아이큐이, 피엘씨 증가된 압축 응력으로 실리콘 기판 위에 성장된 iii-질화물 구조체
CN108604597B (zh) 2016-01-15 2021-09-17 创世舫电子有限公司 具有al(1-x)sixo栅极绝缘体的增强模式iii-氮化物器件
FR3047607B1 (fr) * 2016-02-04 2018-04-27 Commissariat A L'energie Atomique Et Aux Energies Alternatives Transistor a heterojonction a confinement de gaz d’electrons ameliore
US10224401B2 (en) 2016-05-31 2019-03-05 Transphorm Inc. III-nitride devices including a graded depleting layer
US10170611B1 (en) * 2016-06-24 2019-01-01 Hrl Laboratories, Llc T-gate field effect transistor with non-linear channel layer and/or gate foot face
CN106876459B (zh) * 2017-02-22 2019-11-05 中国科学院苏州纳米技术与纳米仿生研究所 Ⅲ族氮化物hemt模块及其制法
TWI656640B (zh) * 2017-09-08 2019-04-11 黃知澍 N-face AlGaN/GaN磊晶結構及其主動元件與其積體化之極性反轉製作方法
DE102017120896A1 (de) 2017-09-11 2019-03-14 Aixtron Se Verfahren zum Abscheiden einer C-dotierten AlN-Schicht auf einem Siliziumsubstrat und aus einer derartigen Schichtstruktur aufgebautes Halbleiter-Bauelement
FR3071854A1 (fr) * 2017-10-03 2019-04-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de fabrication d'un composant electronique a heterojonction muni d'une couche barriere enterree
EP3486939B1 (en) 2017-11-20 2020-04-01 IMEC vzw Method for forming a semiconductor structure for a gallium nitride channel device
US10630285B1 (en) 2017-11-21 2020-04-21 Transphorm Technology, Inc. Switching circuits having drain connected ferrite beads
US10756207B2 (en) 2018-10-12 2020-08-25 Transphorm Technology, Inc. Lateral III-nitride devices including a vertical gate module
JP7433014B2 (ja) * 2018-10-30 2024-02-19 ローム株式会社 半導体装置
TWI741243B (zh) * 2018-12-25 2021-10-01 晶元光電股份有限公司 半導體元件以及其製作方法
CN113826206A (zh) 2019-03-21 2021-12-21 创世舫科技有限公司 Iii-氮化物器件的集成设计
JP6826627B2 (ja) * 2019-04-03 2021-02-03 古河機械金属株式会社 単結晶半導体層、自立基板、積層構造体及びこれらの製造方法
CN110643934A (zh) * 2019-09-20 2020-01-03 深圳市晶相技术有限公司 一种半导体设备
US11749656B2 (en) 2020-06-16 2023-09-05 Transphorm Technology, Inc. Module configurations for integrated III-Nitride devices
US20230299190A1 (en) 2020-08-05 2023-09-21 Transphorm Technology, Inc. Iii-nitride devices including a depleting layer
CN112956029B (zh) * 2021-01-26 2022-07-08 英诺赛科(苏州)科技有限公司 半导体器件及其制造方法
TWI839891B (zh) * 2022-10-13 2024-04-21 財團法人工業技術研究院 具有平衡應力的半導體基板

Family Cites Families (231)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4300091A (en) 1980-07-11 1981-11-10 Rca Corporation Current regulating circuitry
US4645562A (en) 1985-04-29 1987-02-24 Hughes Aircraft Company Double layer photoresist technique for side-wall profile control in plasma etching processes
US4728826A (en) 1986-03-19 1988-03-01 Siemens Aktiengesellschaft MOSFET switch with inductive load
US4821093A (en) 1986-08-18 1989-04-11 The United States Of America As Represented By The Secretary Of The Army Dual channel high electron mobility field effect transistor
JPH07120807B2 (ja) 1986-12-20 1995-12-20 富士通株式会社 定電流半導体装置
US5051618A (en) 1988-06-20 1991-09-24 Idesco Oy High voltage system using enhancement and depletion field effect transistors
JPH04146680A (ja) * 1990-10-08 1992-05-20 Mitsubishi Electric Corp P型化合物半導体の製造方法、半導体発光装置及びその製造方法
US5329147A (en) 1993-01-04 1994-07-12 Xerox Corporation High voltage integrated flyback circuit in 2 μm CMOS
US6097046A (en) 1993-04-30 2000-08-01 Texas Instruments Incorporated Vertical field effect transistor and diode
US5550404A (en) 1993-05-20 1996-08-27 Actel Corporation Electrically programmable antifuse having stair aperture
US5740192A (en) 1994-12-19 1998-04-14 Kabushiki Kaisha Toshiba Semiconductor laser
US5646069A (en) 1995-06-07 1997-07-08 Hughes Aircraft Company Fabrication process for Alx In1-x As/Gay In1-y As power HFET ohmic contacts
US5618384A (en) 1995-12-27 1997-04-08 Chartered Semiconductor Manufacturing Pte, Ltd. Method for forming residue free patterned conductor layers upon high step height integrated circuit substrates using reflow of photoresist
JP3677350B2 (ja) 1996-06-10 2005-07-27 三菱電機株式会社 半導体装置、及び半導体装置の製造方法
US6008684A (en) 1996-10-23 1999-12-28 Industrial Technology Research Institute CMOS output buffer with CMOS-controlled lateral SCR devices
US5714393A (en) 1996-12-09 1998-02-03 Motorola, Inc. Diode-connected semiconductor device and method of manufacture
US5909103A (en) 1997-07-24 1999-06-01 Siliconix Incorporated Safety switch for lithium ion battery
US6316820B1 (en) 1997-07-25 2001-11-13 Hughes Electronics Corporation Passivation layer and process for semiconductor devices
JP4282778B2 (ja) 1997-08-05 2009-06-24 株式会社半導体エネルギー研究所 半導体装置
JP3222847B2 (ja) 1997-11-14 2001-10-29 松下電工株式会社 双方向形半導体装置
JP3129264B2 (ja) 1997-12-04 2001-01-29 日本電気株式会社 化合物半導体電界効果トランジスタ
JP2000012950A (ja) 1998-04-23 2000-01-14 Matsushita Electron Corp 半導体レ―ザ装置
US6316793B1 (en) 1998-06-12 2001-11-13 Cree, Inc. Nitride based transistors on semi-insulating silicon carbide substrates
JP3111985B2 (ja) 1998-06-16 2000-11-27 日本電気株式会社 電界効果型トランジスタ
JP2000068498A (ja) 1998-08-21 2000-03-03 Nippon Telegr & Teleph Corp <Ntt> 絶縁性窒化物膜およびそれを用いた半導体装置
JP3180776B2 (ja) 1998-09-22 2001-06-25 日本電気株式会社 電界効果型トランジスタ
CA2311061C (en) * 1999-06-11 2009-10-06 National Research Council Of Canada Molecular beam epitaxy (mbe) growth of semi-insulating c-doped gan
JP2000058871A (ja) 1999-07-02 2000-02-25 Citizen Watch Co Ltd 電子機器の集積回路
US6984571B1 (en) 1999-10-01 2006-01-10 Ziptronix, Inc. Three dimensional device integration method and integrated device
JP2001135813A (ja) 1999-11-08 2001-05-18 Hitachi Cable Ltd 電界効果トランジスタ用ウエハ
US6586781B2 (en) 2000-02-04 2003-07-01 Cree Lighting Company Group III nitride based FETs and HEMTs with reduced trapping and method for producing the same
JP5130641B2 (ja) 2006-03-31 2013-01-30 サンケン電気株式会社 複合半導体装置
JP3751791B2 (ja) 2000-03-28 2006-03-01 日本電気株式会社 ヘテロ接合電界効果トランジスタ
US7125786B2 (en) 2000-04-11 2006-10-24 Cree, Inc. Method of forming vias in silicon carbide and resulting devices and circuits
US6475889B1 (en) 2000-04-11 2002-11-05 Cree, Inc. Method of forming vias in silicon carbide and resulting devices and circuits
US7892974B2 (en) 2000-04-11 2011-02-22 Cree, Inc. Method of forming vias in silicon carbide and resulting devices and circuits
US6580101B2 (en) 2000-04-25 2003-06-17 The Furukawa Electric Co., Ltd. GaN-based compound semiconductor device
US6624452B2 (en) 2000-07-28 2003-09-23 The Regents Of The University Of California Gallium nitride-based HFET and a method for fabricating a gallium nitride-based HFET
US6727531B1 (en) 2000-08-07 2004-04-27 Advanced Technology Materials, Inc. Indium gallium nitride channel high electron mobility transistors, and method of making the same
US6548333B2 (en) 2000-12-01 2003-04-15 Cree, Inc. Aluminum gallium nitride/gallium nitride high electron mobility transistors having a gate contact on a gallium nitride based cap segment
US6649287B2 (en) 2000-12-14 2003-11-18 Nitronex Corporation Gallium nitride materials and methods
TW466768B (en) 2000-12-30 2001-12-01 Nat Science Council An In0.34Al0.66As0.85Sb0.15/InP HFET utilizing InP channels
US7233028B2 (en) 2001-02-23 2007-06-19 Nitronex Corporation Gallium nitride material devices and methods of forming the same
US6830976B2 (en) 2001-03-02 2004-12-14 Amberwave Systems Corproation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
US6849882B2 (en) 2001-05-11 2005-02-01 Cree Inc. Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer
JP3834589B2 (ja) 2001-06-27 2006-10-18 株式会社ルネサステクノロジ 半導体装置の製造方法
JP3866540B2 (ja) 2001-07-06 2007-01-10 株式会社東芝 窒化物半導体素子およびその製造方法
CN1557024B (zh) 2001-07-24 2010-04-07 美商克立股份有限公司 绝缘栅铝镓氮化物/氮化钾高电子迁移率晶体管(hemt)
JP4177048B2 (ja) 2001-11-27 2008-11-05 古河電気工業株式会社 電力変換装置及びそれに用いるGaN系半導体装置
US7030428B2 (en) 2001-12-03 2006-04-18 Cree, Inc. Strain balanced nitride heterojunction transistors
JP2003244943A (ja) 2002-02-13 2003-08-29 Honda Motor Co Ltd 電源装置の昇圧装置
US7919791B2 (en) 2002-03-25 2011-04-05 Cree, Inc. Doped group III-V nitride materials, and microelectronic devices and device precursor structures comprising same
US6982204B2 (en) 2002-07-16 2006-01-03 Cree, Inc. Nitride-based transistors and methods of fabrication thereof using non-etched contact recesses
KR100497890B1 (ko) 2002-08-19 2005-06-29 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조방법
AU2003265691A1 (en) 2002-08-26 2004-03-11 University Of Florida GaN-TYPE ENHANCEMENT MOSFET USING HETERO STRUCTURE
US7199640B2 (en) 2002-10-29 2007-04-03 Dxp B.V. Bi-directional double NMOS switch
JP4385205B2 (ja) 2002-12-16 2009-12-16 日本電気株式会社 電界効果トランジスタ
US7169634B2 (en) 2003-01-15 2007-01-30 Advanced Power Technology, Inc. Design and fabrication of rugged FRED
WO2004070791A2 (en) 2003-02-04 2004-08-19 Great Wall Semiconductor Bi-directional power switch
JP2004260114A (ja) 2003-02-27 2004-09-16 Shin Etsu Handotai Co Ltd 化合物半導体素子
US7112860B2 (en) 2003-03-03 2006-09-26 Cree, Inc. Integrated nitride-based acoustic wave devices and methods of fabricating integrated nitride-based acoustic wave devices
US7658709B2 (en) 2003-04-09 2010-02-09 Medtronic, Inc. Shape memory alloy actuators
US6979863B2 (en) 2003-04-24 2005-12-27 Cree, Inc. Silicon carbide MOSFETs with integrated antiparallel junction barrier Schottky free wheeling diodes and methods of fabricating the same
CA2427039C (en) 2003-04-29 2013-08-13 Kinectrics Inc. High speed bi-directional solid state switch
US7078743B2 (en) 2003-05-15 2006-07-18 Matsushita Electric Industrial Co., Ltd. Field effect transistor semiconductor device
TWI430341B (zh) 2003-09-09 2014-03-11 Univ California 單一或多重閘極場平板之製造
US7501669B2 (en) 2003-09-09 2009-03-10 Cree, Inc. Wide bandgap transistor devices with field plates
WO2005062745A2 (en) 2003-10-10 2005-07-14 The Regents Of The University Of California GaN/AlGaN/GaN DISPERSION-FREE HIGH ELECTRON MOBILITY TRANSISTORS
US7268375B2 (en) 2003-10-27 2007-09-11 Sensor Electronic Technology, Inc. Inverted nitride-based semiconductor structure
US6867078B1 (en) 2003-11-19 2005-03-15 Freescale Semiconductor, Inc. Method for forming a microwave field effect transistor with high operating voltage
US7488992B2 (en) 2003-12-04 2009-02-10 Lockheed Martin Corporation Electronic device comprising enhancement mode pHEMT devices, depletion mode pHEMT devices, and power pHEMT devices on a single substrate and method of creation
US7071498B2 (en) 2003-12-17 2006-07-04 Nitronex Corporation Gallium nitride material devices including an electrode-defining layer and methods of forming the same
US20050133816A1 (en) 2003-12-19 2005-06-23 Zhaoyang Fan III-nitride quantum-well field effect transistors
US7045404B2 (en) 2004-01-16 2006-05-16 Cree, Inc. Nitride-based transistors with a protective layer and a low-damage recess and methods of fabrication thereof
US7901994B2 (en) 2004-01-16 2011-03-08 Cree, Inc. Methods of manufacturing group III nitride semiconductor devices with silicon nitride layers
US8174048B2 (en) 2004-01-23 2012-05-08 International Rectifier Corporation III-nitride current control device and method of manufacture
US7382001B2 (en) 2004-01-23 2008-06-03 International Rectifier Corporation Enhancement mode III-nitride FET
US7170111B2 (en) 2004-02-05 2007-01-30 Cree, Inc. Nitride heterojunction transistors having charge-transfer induced energy barriers and methods of fabricating the same
US7612390B2 (en) 2004-02-05 2009-11-03 Cree, Inc. Heterojunction transistors including energy barriers
US7550781B2 (en) 2004-02-12 2009-06-23 International Rectifier Corporation Integrated III-nitride power devices
US7465997B2 (en) 2004-02-12 2008-12-16 International Rectifier Corporation III-nitride bidirectional switch
US7084475B2 (en) 2004-02-17 2006-08-01 Velox Semiconductor Corporation Lateral conduction Schottky diode with plural mesas
US7573078B2 (en) 2004-05-11 2009-08-11 Cree, Inc. Wide bandgap transistors with multiple field plates
US7550783B2 (en) 2004-05-11 2009-06-23 Cree, Inc. Wide bandgap HEMTs with source connected field plates
US7432142B2 (en) 2004-05-20 2008-10-07 Cree, Inc. Methods of fabricating nitride-based transistors having regrown ohmic contact regions
US7332795B2 (en) 2004-05-22 2008-02-19 Cree, Inc. Dielectric passivation for semiconductor devices
JP4810072B2 (ja) 2004-06-15 2011-11-09 株式会社東芝 窒素化合物含有半導体装置
US7859014B2 (en) 2004-06-24 2010-12-28 Nec Corporation Semiconductor device
JP2006032552A (ja) 2004-07-14 2006-02-02 Toshiba Corp 窒化物含有半導体装置
JP4744109B2 (ja) 2004-07-20 2011-08-10 トヨタ自動車株式会社 半導体装置とその製造方法
JP2006033723A (ja) 2004-07-21 2006-02-02 Sharp Corp 電力制御用光結合素子およびこの電力制御用光結合素子を用いた電子機器
US7238560B2 (en) 2004-07-23 2007-07-03 Cree, Inc. Methods of fabricating nitride-based transistors with a cap layer and a recessed gate
JP2006114886A (ja) 2004-09-14 2006-04-27 Showa Denko Kk n型III族窒化物半導体積層構造体
US20060076677A1 (en) 2004-10-12 2006-04-13 International Business Machines Corporation Resist sidewall spacer for C4 BLM undercut control
US7265399B2 (en) 2004-10-29 2007-09-04 Cree, Inc. Asymetric layout structures for transistors and methods of fabricating the same
US7109552B2 (en) 2004-11-01 2006-09-19 Silicon-Based Technology, Corp. Self-aligned trench DMOS transistor structure and its manufacturing methods
JP4650224B2 (ja) 2004-11-19 2011-03-16 日亜化学工業株式会社 電界効果トランジスタ
JP4637553B2 (ja) 2004-11-22 2011-02-23 パナソニック株式会社 ショットキーバリアダイオード及びそれを用いた集積回路
US7709859B2 (en) 2004-11-23 2010-05-04 Cree, Inc. Cap layers including aluminum nitride for nitride-based transistors
US7456443B2 (en) 2004-11-23 2008-11-25 Cree, Inc. Transistors having buried n-type and p-type regions beneath the source region
US7161194B2 (en) 2004-12-06 2007-01-09 Cree, Inc. High power density and/or linearity transistors
US7834380B2 (en) 2004-12-09 2010-11-16 Panasonic Corporation Field effect transistor and method for fabricating the same
KR100580752B1 (ko) * 2004-12-23 2006-05-15 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조방법
US9640649B2 (en) 2004-12-30 2017-05-02 Infineon Technologies Americas Corp. III-nitride power semiconductor with a field relaxation feature
US7217960B2 (en) 2005-01-14 2007-05-15 Matsushita Electric Industrial Co., Ltd. Semiconductor device
US7429534B2 (en) 2005-02-22 2008-09-30 Sensor Electronic Technology, Inc. Etching a nitride-based heterostructure
US7253454B2 (en) 2005-03-03 2007-08-07 Cree, Inc. High electron mobility transistor
US11791385B2 (en) 2005-03-11 2023-10-17 Wolfspeed, Inc. Wide bandgap transistors with gate-source field plates
US7321132B2 (en) 2005-03-15 2008-01-22 Lockheed Martin Corporation Multi-layer structure for use in the fabrication of integrated circuit devices and methods for fabrication of same
US7465967B2 (en) 2005-03-15 2008-12-16 Cree, Inc. Group III nitride field effect transistors (FETS) capable of withstanding high temperature reverse bias test conditions
US7439557B2 (en) 2005-03-29 2008-10-21 Coldwatt, Inc. Semiconductor device having a lateral channel and contacts on opposing surfaces thereof
JP4912604B2 (ja) 2005-03-30 2012-04-11 住友電工デバイス・イノベーション株式会社 窒化物半導体hemtおよびその製造方法。
US20060226442A1 (en) 2005-04-07 2006-10-12 An-Ping Zhang GaN-based high electron mobility transistor and method for making the same
WO2006114883A1 (ja) 2005-04-22 2006-11-02 Renesas Technology Corp. 半導体装置
US7544963B2 (en) 2005-04-29 2009-06-09 Cree, Inc. Binary group III-nitride based high electron mobility transistors
US7615774B2 (en) 2005-04-29 2009-11-10 Cree.Inc. Aluminum free group III-nitride based high electron mobility transistors
US7364988B2 (en) 2005-06-08 2008-04-29 Cree, Inc. Method of manufacturing gallium nitride based high-electron mobility devices
US7326971B2 (en) 2005-06-08 2008-02-05 Cree, Inc. Gallium nitride based high-electron mobility devices
US7408399B2 (en) 2005-06-27 2008-08-05 International Rectifier Corporation Active driving of normally on, normally off cascoded configuration devices through asymmetrical CMOS
US7855401B2 (en) 2005-06-29 2010-12-21 Cree, Inc. Passivation of wide band-gap based semiconductor devices with hydrogen-free sputtered nitrides
JP5202312B2 (ja) 2005-07-06 2013-06-05 インターナショナル レクティフィアー コーポレイション 第iii族窒化物エンハンスメント型デバイス
JP4712459B2 (ja) 2005-07-08 2011-06-29 パナソニック株式会社 トランジスタ及びその動作方法
JP4730529B2 (ja) 2005-07-13 2011-07-20 サンケン電気株式会社 電界効果トランジスタ
US20070018199A1 (en) 2005-07-20 2007-01-25 Cree, Inc. Nitride-based transistors and fabrication methods with an etch stop layer
US7548112B2 (en) 2005-07-21 2009-06-16 Cree, Inc. Switch mode power amplifier using MIS-HEMT with field plate extension
KR100610639B1 (ko) 2005-07-22 2006-08-09 삼성전기주식회사 수직 구조 질화갈륨계 발광다이오드 소자 및 그 제조방법
JP4751150B2 (ja) 2005-08-31 2011-08-17 株式会社東芝 窒化物系半導体装置
JP4997621B2 (ja) 2005-09-05 2012-08-08 パナソニック株式会社 半導体発光素子およびそれを用いた照明装置
EP2312634B1 (en) 2005-09-07 2019-12-25 Cree, Inc. Transistors with fluorine treatment
EP1932181A4 (en) 2005-09-16 2009-06-17 Univ California ENRICHMENT FIELD EFFECT TRANSISTOR, GALLIUM NITRIDE / ALUMINUM NITRIDE AND N-POLARITY GALLIUM
US7482788B2 (en) 2005-10-12 2009-01-27 System General Corp. Buck converter for both full load and light load operations
US7547925B2 (en) 2005-11-14 2009-06-16 Palo Alto Research Center Incorporated Superlattice strain relief layer for semiconductor devices
US8114717B2 (en) 2005-11-15 2012-02-14 The Regents Of The University Of California Methods to shape the electric field in electron devices, passivate dislocations and point defects, and enhance the luminescence efficiency of optical devices
JP2007149794A (ja) 2005-11-25 2007-06-14 Matsushita Electric Ind Co Ltd 電界効果トランジスタ
JP2007150074A (ja) 2005-11-29 2007-06-14 Rohm Co Ltd 窒化物半導体発光素子
US7932539B2 (en) 2005-11-29 2011-04-26 The Hong Kong University Of Science And Technology Enhancement-mode III-N devices, circuits, and methods
JP2007157829A (ja) 2005-12-01 2007-06-21 Matsushita Electric Ind Co Ltd 半導体装置
TW200723624A (en) 2005-12-05 2007-06-16 Univ Nat Chiao Tung Process of producing group III nitride based reflectors
KR100661602B1 (ko) 2005-12-09 2006-12-26 삼성전기주식회사 수직 구조 질화갈륨계 led 소자의 제조방법
JP2007165446A (ja) 2005-12-12 2007-06-28 Oki Electric Ind Co Ltd 半導体素子のオーミックコンタクト構造
US7419892B2 (en) 2005-12-13 2008-09-02 Cree, Inc. Semiconductor devices including implanted regions and protective layers and methods of forming the same
JP5065595B2 (ja) 2005-12-28 2012-11-07 株式会社東芝 窒化物系半導体装置
US8853666B2 (en) 2005-12-28 2014-10-07 Renesas Electronics Corporation Field effect transistor, and multilayered epitaxial film for use in preparation of field effect transistor
US7709269B2 (en) 2006-01-17 2010-05-04 Cree, Inc. Methods of fabricating transistors including dielectrically-supported gate electrodes
US7592211B2 (en) 2006-01-17 2009-09-22 Cree, Inc. Methods of fabricating transistors including supported gate electrodes
JP2007215331A (ja) 2006-02-10 2007-08-23 Hitachi Ltd 昇圧回路
US7566918B2 (en) 2006-02-23 2009-07-28 Cree, Inc. Nitride based transistors for millimeter wave operation
JP2007242853A (ja) 2006-03-08 2007-09-20 Sanken Electric Co Ltd 半導体基体及びこれを使用した半導体装置
WO2007108055A1 (ja) 2006-03-16 2007-09-27 Fujitsu Limited 化合物半導体装置及びその製造方法
TW200742076A (en) 2006-03-17 2007-11-01 Sumitomo Chemical Co Semiconductor field effect transistor and method of manufacturing the same
WO2007109301A2 (en) 2006-03-20 2007-09-27 International Rectifier Corporation Merged gate cascode transistor
US7388236B2 (en) 2006-03-29 2008-06-17 Cree, Inc. High efficiency and/or high power density wide bandgap transistors
US7745851B2 (en) 2006-04-13 2010-06-29 Cree, Inc. Polytype hetero-interface high electron mobility device and method of making
US7629627B2 (en) 2006-04-18 2009-12-08 University Of Massachusetts Field effect transistor with independently biased gates
JP5065616B2 (ja) 2006-04-21 2012-11-07 株式会社東芝 窒化物半導体素子
EP1883141B1 (de) 2006-07-27 2017-05-24 OSRAM Opto Semiconductors GmbH LD oder LED mit Übergitter-Mantelschicht
TW200830550A (en) 2006-08-18 2008-07-16 Univ California High breakdown enhancement mode gallium nitride based high electron mobility transistors with integrated slant field plate
JP5200936B2 (ja) 2006-09-20 2013-06-05 富士通株式会社 電界効果トランジスタおよびその製造方法
KR100782430B1 (ko) 2006-09-22 2007-12-05 한국과학기술원 고전력을 위한 내부전계전극을 갖는 갈륨나이트라이드기반의 고전자 이동도 트랜지스터 구조
JP4282708B2 (ja) 2006-10-20 2009-06-24 株式会社東芝 窒化物系半導体装置
US8193020B2 (en) 2006-11-15 2012-06-05 The Regents Of The University Of California Method for heteroepitaxial growth of high-quality N-face GaN, InN, and AlN and their alloys by metal organic chemical vapor deposition
JP5332168B2 (ja) 2006-11-17 2013-11-06 住友電気工業株式会社 Iii族窒化物結晶の製造方法
US7692263B2 (en) 2006-11-21 2010-04-06 Cree, Inc. High voltage GaN transistors
JP5211468B2 (ja) 2006-11-24 2013-06-12 日産自動車株式会社 半導体装置の製造方法
WO2008127469A2 (en) 2006-12-15 2008-10-23 University Of South Carolina A novel fabrication technique for high frequency, high power group iii nitride electronic devices
JP5114947B2 (ja) 2006-12-28 2013-01-09 富士通株式会社 窒化物半導体装置とその製造方法
JP2008199771A (ja) 2007-02-13 2008-08-28 Fujitsu Ten Ltd 昇圧回路制御装置、及び昇圧回路
US7655962B2 (en) 2007-02-23 2010-02-02 Sensor Electronic Technology, Inc. Enhancement mode insulated gate heterostructure field-effect transistor with electrically isolated RF-enhanced source contact
US8110425B2 (en) 2007-03-20 2012-02-07 Luminus Devices, Inc. Laser liftoff structure and related methods
US7501670B2 (en) 2007-03-20 2009-03-10 Velox Semiconductor Corporation Cascode circuit employing a depletion-mode, GaN-based FET
US20090085065A1 (en) 2007-03-29 2009-04-02 The Regents Of The University Of California Method to fabricate iii-n semiconductor devices on the n-face of layers which are grown in the iii-face direction using wafer bonding and substrate removal
US7935985B2 (en) 2007-03-29 2011-05-03 The Regents Of The University Of Califonia N-face high electron mobility transistors with low buffer leakage and low parasitic resistance
FR2914500B1 (fr) 2007-03-30 2009-11-20 Picogiga Internat Dispositif electronique a contact ohmique ameliore
JP5292716B2 (ja) 2007-03-30 2013-09-18 富士通株式会社 化合物半導体装置
WO2008129071A1 (en) 2007-04-24 2008-10-30 Ingenium Pharmaceuticals Gmbh Inhibitors of protein kinases
JP2008288289A (ja) 2007-05-16 2008-11-27 Oki Electric Ind Co Ltd 電界効果トランジスタとその製造方法
CN101312207B (zh) 2007-05-21 2011-01-05 西安捷威半导体有限公司 增强型hemt器件及其制造方法
US7728356B2 (en) 2007-06-01 2010-06-01 The Regents Of The University Of California P-GaN/AlGaN/AlN/GaN enhancement-mode field effect transistor
JP2008306130A (ja) 2007-06-11 2008-12-18 Sanken Electric Co Ltd 電界効果型半導体装置及びその製造方法
EP2164115A4 (en) 2007-06-15 2012-10-03 Rohm Co Ltd NITRIDE SEMICONDUCTOR LIGHT ELEMENT AND METHOD FOR PRODUCING A NITRIDE SEMICONDUCTOR
JP4478175B2 (ja) 2007-06-26 2010-06-09 株式会社東芝 半導体装置
US7598108B2 (en) 2007-07-06 2009-10-06 Sharp Laboratories Of America, Inc. Gallium nitride-on-silicon interface using multiple aluminum compound buffer layers
CN101359686B (zh) 2007-08-03 2013-01-02 香港科技大学 可靠的常关型ⅲ-氮化物有源器件结构及相关方法和系统
JP4775859B2 (ja) 2007-08-24 2011-09-21 シャープ株式会社 窒化物半導体装置とそれを含む電力変換装置
US7875537B2 (en) 2007-08-29 2011-01-25 Cree, Inc. High temperature ion implantation of nitride based HEMTs
US7859021B2 (en) 2007-08-29 2010-12-28 Sanken Electric Co., Ltd. Field-effect semiconductor device
JP5767811B2 (ja) 2007-09-12 2015-08-19 トランスフォーム インコーポレイテッドTransphorm Inc. Iii族窒化物双方向スイッチ
US7795642B2 (en) 2007-09-14 2010-09-14 Transphorm, Inc. III-nitride devices with recessed gates
US20090075455A1 (en) 2007-09-14 2009-03-19 Umesh Mishra Growing N-polar III-nitride Structures
US20090072269A1 (en) 2007-09-17 2009-03-19 Chang Soo Suh Gallium nitride diodes and integrated components
US7915643B2 (en) 2007-09-17 2011-03-29 Transphorm Inc. Enhancement mode gallium nitride power devices
JP2009081406A (ja) 2007-09-27 2009-04-16 Showa Denko Kk Iii族窒化物半導体発光素子及びその製造方法、並びにランプ
JP2009081379A (ja) 2007-09-27 2009-04-16 Showa Denko Kk Iii族窒化物半導体発光素子
WO2009066466A1 (ja) 2007-11-21 2009-05-28 Mitsubishi Chemical Corporation 窒化物半導体および窒化物半導体の結晶成長方法ならびに窒化物半導体発光素子
US7851825B2 (en) 2007-12-10 2010-12-14 Transphorm Inc. Insulated gate e-mode transistors
JP5100413B2 (ja) 2008-01-24 2012-12-19 株式会社東芝 半導体装置およびその製造方法
US7965126B2 (en) 2008-02-12 2011-06-21 Transphorm Inc. Bridge circuits and their components
JP5809802B2 (ja) 2008-03-12 2015-11-11 ルネサスエレクトロニクス株式会社 半導体装置
US8076699B2 (en) 2008-04-02 2011-12-13 The Hong Kong Univ. Of Science And Technology Integrated HEMT and lateral field-effect rectifier combinations, methods, and systems
US8519438B2 (en) 2008-04-23 2013-08-27 Transphorm Inc. Enhancement mode III-N HEMTs
US7985986B2 (en) 2008-07-31 2011-07-26 Cree, Inc. Normally-off semiconductor devices
TWI371163B (en) 2008-09-12 2012-08-21 Glacialtech Inc Unidirectional mosfet and applications thereof
US9112009B2 (en) 2008-09-16 2015-08-18 International Rectifier Corporation III-nitride device with back-gate and field plate for improving transconductance
US8289065B2 (en) 2008-09-23 2012-10-16 Transphorm Inc. Inductive load power switching circuits
JP2010087076A (ja) 2008-09-30 2010-04-15 Oki Electric Ind Co Ltd 半導体装置
US7898004B2 (en) 2008-12-10 2011-03-01 Transphorm Inc. Semiconductor heterostructure diodes
JP2010171416A (ja) 2008-12-26 2010-08-05 Furukawa Electric Co Ltd:The 半導体装置、半導体装置の製造方法および半導体装置のリーク電流低減方法
US7884394B2 (en) 2009-02-09 2011-02-08 Transphorm Inc. III-nitride devices and circuits
JP2010239034A (ja) * 2009-03-31 2010-10-21 Furukawa Electric Co Ltd:The 半導体装置の製造方法および半導体装置
TWI409859B (zh) 2009-04-08 2013-09-21 Efficient Power Conversion Corp 氮化鎵緩衝層中之摻雜劑擴散調變技術
US8742459B2 (en) 2009-05-14 2014-06-03 Transphorm Inc. High voltage III-nitride semiconductor devices
US8390000B2 (en) 2009-08-28 2013-03-05 Transphorm Inc. Semiconductor devices with field plates
CN102217070B (zh) 2009-09-03 2013-09-25 松下电器产业株式会社 半导体装置及其制造方法
JP5188545B2 (ja) * 2009-09-14 2013-04-24 コバレントマテリアル株式会社 化合物半導体基板
EP2502275A1 (en) 2009-11-19 2012-09-26 Freescale Semiconductor, Inc. Lateral power transistor device and method of manufacturing the same
US8389977B2 (en) 2009-12-10 2013-03-05 Transphorm Inc. Reverse side engineered III-nitride devices
JP2011166067A (ja) * 2010-02-15 2011-08-25 Panasonic Corp 窒化物半導体装置
KR101046055B1 (ko) 2010-03-26 2011-07-01 삼성전기주식회사 반도체 소자 및 그 제조 방법
US8223458B2 (en) 2010-04-08 2012-07-17 Hitachi Global Storage Technologies Netherlands B.V. Magnetic head having an asymmetrical shape and systems thereof
US8772832B2 (en) 2010-06-04 2014-07-08 Hrl Laboratories, Llc GaN HEMTs with a back gate connected to the source
US8643062B2 (en) 2011-02-02 2014-02-04 Transphorm Inc. III-N device structures and methods
JP5775321B2 (ja) 2011-02-17 2015-09-09 トランスフォーム・ジャパン株式会社 半導体装置及びその製造方法、電源装置
US8786327B2 (en) 2011-02-28 2014-07-22 Transphorm Inc. Electronic components with reactive filters
US8716141B2 (en) 2011-03-04 2014-05-06 Transphorm Inc. Electrode configurations for semiconductor devices
KR20120120829A (ko) 2011-04-25 2012-11-02 삼성전기주식회사 질화물 반도체 소자 및 그 제조방법
JP5075264B1 (ja) 2011-05-25 2012-11-21 シャープ株式会社 スイッチング素子
JP2013026321A (ja) * 2011-07-19 2013-02-04 Sharp Corp 窒化物系半導体層を含むエピタキシャルウエハ
US8901604B2 (en) 2011-09-06 2014-12-02 Transphorm Inc. Semiconductor devices with guard rings
US8598937B2 (en) 2011-10-07 2013-12-03 Transphorm Inc. High power semiconductor electronic components with increased reliability
US20130328061A1 (en) 2012-06-07 2013-12-12 Hrl Laboratories, Llc. Normally-off gallium nitride transistor with insulating gate and method of making the same
US9245992B2 (en) 2013-03-15 2016-01-26 Transphorm Inc. Carbon doping semiconductor devices

Also Published As

Publication number Publication date
US20160126342A1 (en) 2016-05-05
US9245992B2 (en) 2016-01-26
US9865719B2 (en) 2018-01-09
US20140264370A1 (en) 2014-09-18
US20140264455A1 (en) 2014-09-18
US9245993B2 (en) 2016-01-26
CN105247679B (zh) 2019-11-12
EP2973716A4 (en) 2016-11-02
EP2973716A1 (en) 2016-01-20
JP2016521450A (ja) 2016-07-21
CN105247679A (zh) 2016-01-13
WO2014152605A1 (en) 2014-09-25
TW201448208A (zh) 2014-12-16
US20160133737A1 (en) 2016-05-12

Similar Documents

Publication Publication Date Title
TWI606587B (zh) 碳摻雜半導體元件
EP2117040B1 (en) Compound semiconductor device and process for producing the same
WO2012164750A1 (ja) 窒化物電子デバイス、窒化物電子デバイスを作製する方法
US9287389B2 (en) Method and system for doping control in gallium nitride based devices
KR102293962B1 (ko) 반도체 장치의 제조 방법, 반도체 장치
CN102427084B (zh) 氮化镓基高电子迁移率晶体管及制作方法
US9401402B2 (en) Nitride semiconductor device and nitride semiconductor substrate
JP6652042B2 (ja) Iii−v族窒化物半導体エピタキシャルウェハの製造方法
JP2006004970A (ja) 窒化物半導体薄膜の作製方法
CN111009468A (zh) 一种半导体异质结构制备方法及其用途
KR102077674B1 (ko) 질화물 반도체 소자 및 그 제조 방법
KR102111459B1 (ko) 질화물 반도체 소자 및 그 제조 방법
JP5460751B2 (ja) 半導体装置
JP5560866B2 (ja) 窒化物電子デバイス、窒化物電子デバイスを作製する方法
US20120248577A1 (en) Controlled Doping in III-V Materials
KR102067597B1 (ko) 질화물 반도체 소자 및 그 제조 방법
JP2008103546A (ja) Iii−v族化合物半導体素子及びiii−v族化合物半導体エピタキシャルウェハ
KR102111458B1 (ko) 질화물 반도체 소자 및 그 제조 방법
CN112342524B (zh) 一种氮化镓高铝组分的外延生长方法
JP5059205B2 (ja) ウェーハ及び結晶成長方法
KR102526814B1 (ko) 반도체 장치 및 반도체 장치의 제조 방법
JP2011146441A (ja) 半導体装置とその製造方法
KR20150123538A (ko) 질화물 반도체 성장 방법 및 이를 이용하여 제조된 발광소자