CN105336605B - 二极管用外延片及其制备方法 - Google Patents

二极管用外延片及其制备方法 Download PDF

Info

Publication number
CN105336605B
CN105336605B CN201510755544.3A CN201510755544A CN105336605B CN 105336605 B CN105336605 B CN 105336605B CN 201510755544 A CN201510755544 A CN 201510755544A CN 105336605 B CN105336605 B CN 105336605B
Authority
CN
China
Prior art keywords
layers
gan cushions
doping
ngan
sapphire substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510755544.3A
Other languages
English (en)
Other versions
CN105336605A (zh
Inventor
王东盛
苗操
李亦衡
魏鸿源
严文胜
张葶葶
朱廷刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU NENGHUA MICROELECTRONIC TECHNOLOGY DEVELOPMENT Co Ltd
Original Assignee
JIANGSU NENGHUA MICROELECTRONIC TECHNOLOGY DEVELOPMENT Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGSU NENGHUA MICROELECTRONIC TECHNOLOGY DEVELOPMENT Co Ltd filed Critical JIANGSU NENGHUA MICROELECTRONIC TECHNOLOGY DEVELOPMENT Co Ltd
Priority to CN201510755544.3A priority Critical patent/CN105336605B/zh
Publication of CN105336605A publication Critical patent/CN105336605A/zh
Application granted granted Critical
Publication of CN105336605B publication Critical patent/CN105336605B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66143Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Led Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本发明提供一种二极管用外延片及其制备方法,由其制成的二极管电子器件漏电较低、击穿电压较高、寿命较长。一种二极管用外延片的制备方法,依次包括如下步骤:A、将图形化蓝宝石衬底放入MOCVD设备中加热升温至1020~1200℃,在H2中高温净化5~20min;B、MOCVD设备降温至800~1050℃,压力为30~200mbar,在所述图形化蓝宝石衬底的上表面生长多晶AlN成核层;C、升温至1040~1080℃,压力为30~400mbar,在所述AlN成核层的上表面生长C掺杂的GaN缓冲层;D、在所述GaN缓冲层的上表面生长外延结构层。

Description

二极管用外延片及其制备方法
技术领域
本发明涉及一种二极管用外延片及其制备方法。
背景技术
目前用于二极管的外延片的衬底主要有两种,即蓝宝石衬底和碳化硅衬底。但由于碳化硅的价格昂贵,故蓝宝石衬底的使用更为广泛。现有技术中普遍使用的平片状蓝宝石衬底由于其位错密度较高,制成的二极管电子器件漏电流较高、易击穿。
发明内容
针对上述问题,本发明的目的是提供一种二极管用外延片及其制备方法,由其制成的二极管电子器件漏电较低、击穿电压较高、寿命较长。
为解决上述技术问题,本发明采用的技术方案为:
一种二极管用外延片的制备方法,其特征在于,依次包括如下步骤:
A、将图形化蓝宝石衬底放入MOCVD设备中加热升温至1020~1200℃,在H2中高温净化5~20min;
B、MOCVD设备降温至800~1050℃,压力为30~200mbar,在所述图形化蓝宝石衬底的上表面生长多晶AlN成核层;
C、升温至1040~1080℃,压力为30~400mbar,在所述AlN成核层的上表面生长C掺杂的GaN缓冲层;
D、在所述GaN缓冲层的上表面生长外延结构层。
优选地,步骤B中,采用氨气作为N原子的先驱物,TMAl(三甲基铝)或TEAl(三乙基铝)作为Al源,氨气和Al源的摩尔比为100~1000。
优选地,步骤D依次包括如下步骤:
D1、温度为950~1050℃,在所述GaN缓冲层的上表面生长AlGaN层;
D2、温度为1000~1080℃,压力为100~700mbar,在所述AlGaN层的上表面生长重掺杂nGaN层;
D3、保持温度和压力不变,在所述重掺杂nGaN层的上表面生长轻掺杂nGaN层。
本发明采用的又一技术方案为:
一种所述的制备方法制备的二极管用外延片,包括:
图形化蓝宝石衬底;
AlN成核层,通过MOCVD技术沉积于所述图形化蓝宝石衬底的上表面;
GaN缓冲层,其沉积于所述AlN成核层的上表面,所述GaN缓冲层为C掺杂的GaN缓冲层;
外延结构层,其沉积于所述GaN缓冲层的上表面。
优选地,所述图形化蓝宝石衬底的图形高度为1~2μm,图形宽度为1.5~6μm,图形间隙为0.1~2μm。
优选地,所述AlN成核层是厚度为5~25nm的多晶AlN层。
优选地,所述GaN缓冲层中C的掺杂源为TMGa、CCl4或C2H2
优选地,所述GaN缓冲层中C的掺杂浓度为5E15~1E19 cm-3,且所述GaN缓冲层的厚度为2~3μm。
优选地,所述外延结构层包括:
AlGaN层,其沉积于所述GaN缓冲层的上表面且厚度为30~300nm;
重掺杂nGaN层,其沉积于所述AlGaN层的上表面且掺杂浓度为5E18~2E19 cm-3,所述重掺杂nGaN层的厚度为2.5~3μm;
轻掺杂nGaN层,其沉积于所述重掺杂nGaN层的上表面且掺杂浓度为4E15~2E16cm-3,所述轻掺杂nGaN层的厚度为5~15μm。
优选地,所述AlGaN层中Al的摩尔百分含量为5~20%。
本发明采用以上技术方案,相比现有技术具有如下优点:在图形化蓝宝石衬底沉积AlN成核层,并在AlN上生长外延结构层的掺C的GaN缓冲层,相比使用其它类型的蓝宝石衬底(如蓝宝石平片)制作的肖特基二极管,晶体质量较好,位错密度由现有技术中的1E9cm-3降低至6E7cm-3。本发明的二极管外延片制作的肖特基二极管器件漏电较低,散热较好,击穿电压较高,寿命较长。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1为本发明的二极管用外延片的结构示意图。
上述附图中,1、衬底;2、AlN成核层;3、GaN缓冲层;4、AlGaN层;5、重掺杂nGaN层;6、轻掺杂nGaN层。
具体实施方式
下面对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域的技术人员理解。
图1所示为本发明的一种二极管用外延片。结合图1所示,该二极管用外延片包括自下至上依次层叠的衬底1、AlN成核层2、GaN缓冲层3、AlGaN层4、重掺杂nGaN层5、轻掺杂nGaN层6。其中, AlGaN层4、重掺杂nGaN层5、轻掺杂nGaN层6构成外延片的外延结构层。
衬底1为图形化蓝宝石衬底(PSS)1。图形化蓝宝石衬底1的图形高度为1~2μm,图形宽度为1.5~6μm,图形间隙为0.1~2μm。图形化蓝宝石衬底通过纳米压印光刻技术、stepper光刻技术、干法刻蚀技术或湿法刻蚀技术制备而成。图像化蓝宝石衬底1的图像为正圆锥形,或者为类圆锥形,类圆锥形是指其侧壁为向外突的弧形。
成核层2通过MOCVD技术沉积于图形化蓝宝石衬底1的上表面。AlN成核层是厚度为5~25nm的多晶AlN层。
缓冲层为C掺杂的GaN缓冲层3,C的掺杂源为TMGa、CCl4或C2H2。GaN缓冲层3中C的掺杂浓度为5E15~1E19 cm-3,GaN缓冲层3的厚度为2~3μm。
层4、重掺杂nGaN层5、轻掺杂nGaN层6构成三级管用外延片的外延结构层。其中,AlGaN层4沉积于GaN缓冲层3的上表面且厚度为30~300nm,AlGaN层4中Al的摩尔百分含量为5~20%;重掺杂nGaN层5沉积于AlGaN层的上表面且掺杂浓度为5E18~2E19 cm-3,重掺杂nGaN层5的厚度为2.5~3μm;轻掺杂nGaN层6沉积于重掺杂nGaN层6的上表面且掺杂浓度为4E15~2E16 cm-3,轻掺杂nGaN层6的厚度为5~15μm。
一种上述二极管用外延片的制备方法,依次包括如下步骤:
A、将图形化蓝宝石衬底放入MOCVD设备中加热升温至1020~1200℃,在H2中高温净化5~20min;
B、MOCVD设备降温至800~1050℃,压力为30~200mbar,在图形化蓝宝石衬底的上表面生长多晶AlN成核层,采用氨气作为N原子的先驱物,TMAl或TEAl作为Al源,氨气和Al源的摩尔比为100~1000;
C、升温至1040~1080℃,压力为30~400mbar,在所述AlN成核层的上表面生长C掺杂的GaN缓冲层;
D、在所述GaN缓冲层的上表面生长外延结构层。
步骤D又依次包括如下步骤:
D1、温度为950~1050℃,在GaN缓冲层的上表面生长AlGaN层;
D2、温度为1000~1080℃,压力为100~700mbar,在AlGaN层的上表面生长重掺杂nGaN层;
D3、保持温度和压力不变,在重掺杂nGaN层的上表面生长轻掺杂nGaN层。
相比平片蓝宝石衬底制成的三极管外延片,本发明在图像化蓝宝石衬底上通过MOCVD技术生长一层多晶AlN成核层,再通过MOCVD技术生长一层掺C的GaN缓冲层,在此基础上制成的二极管外延片的位错密度由现有技术中的1E9cm-3降低至6E7cm-3
上述实施例只为说明本发明的技术构思及特点,是一种优选的实施例,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明的精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (10)

1.一种二极管用外延片的制备方法,其特征在于,依次包括如下步骤:
A、将图形化蓝宝石衬底放入MOCVD设备中加热升温至1020~1200℃,在H2中高温净化5~20min;
B、MOCVD设备降温至800~1050℃,压力为30~200mbar,在所述图形化蓝宝石衬底的上表面生长多晶AlN成核层;
C、升温至1040~1080℃,压力为30~400mbar,在所述AlN成核层的上表面生长C掺杂的GaN缓冲层;
D、在所述GaN缓冲层的上表面生长外延结构层。
2.根据权利要求1所述的制备方法,其特征在于:步骤B中,采用氨气作为N原子的先驱物,TMAl或TEAl作为Al源,氨气和Al源的摩尔比为100~1000。
3.根据权利要求1所述的制备方法,其特征在于,步骤D依次包括如下步骤:
D1、温度为950~1050℃,在所述GaN缓冲层的上表面生长AlGaN层;
D2、温度为1000~1080℃,压力为100~700mbar,在所述AlGaN层的上表面生长重掺杂nGaN层;
D3、保持温度和压力不变,在所述重掺杂nGaN层的上表面生长轻掺杂nGaN层。
4.一种如权利要求1~3任一项所述的制备方法制备的二极管用外延片,其特征在于,包括:
图形化蓝宝石衬底;
AlN成核层,通过MOCVD技术沉积于所述图形化蓝宝石衬底的上表面;
GaN缓冲层,其沉积于所述AlN成核层的上表面,所述GaN缓冲层为C掺杂的GaN缓冲层;
外延结构层,其沉积于所述GaN缓冲层的上表面。
5.根据权利要求4所述的二极管用外延片,其特征在于:所述图形化蓝宝石衬底的图形高度为1~2μm,图形宽度为1.5~6μm,图形间隙为0.1~2μm。
6.根据权利要求4所述的二极管用外延片,其特征在于:所述AlN成核层是厚度为5~25nm的多晶AlN层。
7.根据权利要求4所述的二极管用外延片,其特征在于:所述GaN缓冲层中C的掺杂源为TMGa、CCl4或C2H2
8.根据权利要求4所述的二极管用外延片,其特征在于:所述GaN缓冲层中C的掺杂浓度为5E15~1E19 cm-3,且所述GaN缓冲层的厚度为2~3μm。
9.根据权利要求4所述的二极管用外延片,其特征在于,所述外延结构层包括:
AlGaN层,其沉积于所述GaN缓冲层的上表面且厚度为30~300nm;
重掺杂nGaN层,其沉积于所述AlGaN层的上表面且掺杂浓度为5E18~2E19 cm-3,所述重掺杂nGaN层的厚度为2.5~3μm;
轻掺杂nGaN层,其沉积于所述重掺杂nGaN层的上表面且掺杂浓度为4E15~2E16 cm-3,所述轻掺杂nGaN层的厚度为5~15μm。
10.根据权利要求9所述的二极管用外延片,其特征在于:所述AlGaN层中Al的摩尔百分含量为5~20%。
CN201510755544.3A 2015-11-09 2015-11-09 二极管用外延片及其制备方法 Active CN105336605B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510755544.3A CN105336605B (zh) 2015-11-09 2015-11-09 二极管用外延片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510755544.3A CN105336605B (zh) 2015-11-09 2015-11-09 二极管用外延片及其制备方法

Publications (2)

Publication Number Publication Date
CN105336605A CN105336605A (zh) 2016-02-17
CN105336605B true CN105336605B (zh) 2018-05-11

Family

ID=55287049

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510755544.3A Active CN105336605B (zh) 2015-11-09 2015-11-09 二极管用外延片及其制备方法

Country Status (1)

Country Link
CN (1) CN105336605B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105742180A (zh) * 2016-03-11 2016-07-06 成都海威华芯科技有限公司 GaN HEMT器件的制作方法
CN108400082B (zh) * 2017-02-08 2020-09-08 英诺赛科(珠海)科技有限公司 一种在硅衬底上生长氮化镓薄膜的方法、结构及功率器件

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103026491A (zh) * 2010-07-06 2013-04-03 香港科技大学 常关断型三族氮化物金属-二维电子气隧穿结场效应晶体管
EP2767620A1 (en) * 2013-02-15 2014-08-20 Azzurro Semiconductors AG P-doping of group-III-nitride buffer layer structure on a heterosubstrate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014043187A1 (en) * 2012-09-11 2014-03-20 University Of Florida Research Foundation, Incorporated High electron mobility transistors having improved reliability
US9245992B2 (en) * 2013-03-15 2016-01-26 Transphorm Inc. Carbon doping semiconductor devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103026491A (zh) * 2010-07-06 2013-04-03 香港科技大学 常关断型三族氮化物金属-二维电子气隧穿结场效应晶体管
EP2767620A1 (en) * 2013-02-15 2014-08-20 Azzurro Semiconductors AG P-doping of group-III-nitride buffer layer structure on a heterosubstrate

Also Published As

Publication number Publication date
CN105336605A (zh) 2016-02-17

Similar Documents

Publication Publication Date Title
CN105428426B (zh) 一种肖特基二极管用外延片及其制备方法
KR101278063B1 (ko) 나노포러스 구조를 이용한 반도체소자 분리방법
US8835983B2 (en) Nitride semiconductor device including a doped nitride semiconductor between upper and lower nitride semiconductor layers
CN104201196B (zh) 表面无微裂纹的Si基III族氮化物外延片
JP2012214376A5 (zh)
JP2004524250A (ja) 窒化ガリウム材料および方法
JP6123408B2 (ja) 単結晶4H−SiC基板及びその製造方法
JP6248532B2 (ja) 3C−SiCエピタキシャル層の製造方法、3C−SiCエピタキシャル基板および半導体装置
JPWO2011122322A1 (ja) エピタキシャル基板およびエピタキシャル基板の製造方法
CN105336605B (zh) 二极管用外延片及其制备方法
WO2002099859A1 (fr) Procede de production d'un semiconducteur au nitrure iii
CN104051590A (zh) 第iii族氮化物半导体发光器件及其制造方法
JP6313809B2 (ja) 半導体装置
CN106783533B (zh) 含Al氮化物半导体结构及其外延生长方法
CN104465720A (zh) 一种半导体外延结构及其生长方法
JP3976745B2 (ja) 窒化ガリウム系化合物半導体の製造方法
JP6861849B2 (ja) 窒化物半導体装置およびその製造方法
JP6815278B2 (ja) 窒化物半導体積層物、半導体装置、窒化物半導体積層物の製造方法および半導体装置の製造方法
CN105336769A (zh) 三级管用外延片及其制备方法
CN106887495A (zh) 发光二极管的外延片及其制作方法
CN101442010A (zh) 图形衬底上生长碳化硅厚膜的方法
Wu et al. Preparation of freestanding GaN wafer by hydride vapor phase epitaxy on porous silicon
CN104319233A (zh) 一种MOCVD中InN/LT-AlN复合应力释放缓冲层技术
KR101256465B1 (ko) 질화물계 반도체 소자 및 그 제조 방법
WO2024057698A1 (ja) 窒化物半導体層付き単結晶シリコン基板及び窒化物半導体層付き単結晶シリコン基板の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant