KR20110074629A - 자율 운전 차량의 제어 및 시스템 - Google Patents

자율 운전 차량의 제어 및 시스템 Download PDF

Info

Publication number
KR20110074629A
KR20110074629A KR1020117011845A KR20117011845A KR20110074629A KR 20110074629 A KR20110074629 A KR 20110074629A KR 1020117011845 A KR1020117011845 A KR 1020117011845A KR 20117011845 A KR20117011845 A KR 20117011845A KR 20110074629 A KR20110074629 A KR 20110074629A
Authority
KR
South Korea
Prior art keywords
vehicle
processor
path
control
navigation
Prior art date
Application number
KR1020117011845A
Other languages
English (en)
Other versions
KR101736977B1 (ko
Inventor
폴 제라드 트레파그니어
조지 에밀리오 나겔
매튜 테일러 두너
마이클 토마스 데웬터
네일 마이클 트라프트
세르게이 드라쿠노브
포웰 키네이
아론 리
Original Assignee
그레이 앤 컴퍼니, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 그레이 앤 컴퍼니, 인크. filed Critical 그레이 앤 컴퍼니, 인크.
Publication of KR20110074629A publication Critical patent/KR20110074629A/ko
Application granted granted Critical
Publication of KR101736977B1 publication Critical patent/KR101736977B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • G05D1/0248Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means in combination with a laser
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • G05D1/024Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/027Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising intertial navigation means, e.g. azimuth detector
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS

Abstract

차량의 위치 및 방향을 나타내는 위치 신호를 발생하도록 구성된 위치 센서를 포함하는 내비게이션 및 제어 시스템. 본 시스템은 입력을 받아 차량의 동작을 제어하는 출력을 생성하는 하나 이상의 작동 제어 메커니즘을 포함하고, 작동 제어 메커니즘으로부터 원격지에 배치된 자체-완비된 자율 제어기(self-contained autonomous controller)를 포함한다. 자율 제어기는 위치 센서로부터 위치 신호를 수신하고 차량의 업데이트된 이동 경로를 정의하는 작동 제어 신호를 발생하도록 구성된 프로세서와, 위치 센서, 작동 제어 메커니즘 및 프로세서 간의 통신을 제공하는 프로그램가능 인터페이스를 포함한다. 프로그램가능 인터페이스는 위치 센서로부터 프로세서로의 입력을 정규화하고 작동 제어 메커니즘에 입력으로 인가되는 호환 작동 제어 신호를 발생하도록 구성되어 있으며, 그로써 자체-완비된 자율 제어기는 각종의 상이한 센서 및 상이한 작동 제어 메커니즘과 동작하도록 구성가능하다.

Description

자율 운전 차량의 제어 및 시스템{CONTROL AND SYSTEMS FOR AUTONOMOUSLY DRIVEN VEHICLES}
<관련 출원의 상호 참조>
본 출원은 대리인 사건 번호 제284361US호로 2006년 3월 16일자로 출원된, 발명의 명칭이 "NAVIGATION AND CONTROL SYSTEM FOR AUTONOMOUS VEHICLES"인 미국 특허 출원 제11/376,160호에 관한 것이다. 이 출원의 전체 내용은 참조 문헌으로서 본 명세서에 포함된다.
본 발명은 자율 운전 차량(autonomously driven vehicle)을 제어 및 방향 전환(direct)시키는 통합 센서 및 컴퓨터-기반 알고리즘 시스템에 관한 것이다.
최근의 차량에서, 운전자가 차량의 제어 시스템의 중요한 구성요소로 남아 있는데, 그 이유는 운전자가 속도, 조향(steering), 장애물 및 위험 인식, 그리고 이들의 회피를 포함하는 차량의 안전 조작에 관한 수많은 결정을 하기 때문이다. 그러나, 운전자 피로, 운전자 장애, 운전자 부주의, 또는 운전자가 성공적으로 위험을 피하는 데 필요한 반응 시간을 감소시키는 가시도 등의 다른 요인과 같은 물리적 요인으로 인해 이들 기능 모두를 수행할 수 있는 운전자의 능력이 떨어질 수 있다.
게다가, 예를 들어, 전쟁 상황에서 또는 유독물 또는 핵 방사능 위험이 존재하는 상황에서와 같은 환경적으로 위험한 상황에서, 운전자는 위험에 처해 있다. 실제로, 이라크에서의 도로변 폭탄은 군대에 물자를 전달하는 보급 트럭이 무인이었다면 많은 상황에서 피할 수 있었을 인명 손실의 단지 한 최근의 예에 불과하다.
보다 종래의 다른 환경에서, 운전자는 방향 감각을 잃게 될 수 있거나, 작동자가 의료 응급 상황에 처하는 경우 또는, 예를 들어, 운전자가 운전 상태에서 방향 감각을 잃게 된 경우에 일어나게 되는 것처럼 물리적으로 차량에 명령을 내릴 수 없게 될 수 있다. 이러한 방향 감각을 잃게 만들거나 무력하게 만드는 상황의 한 예는 위험이 다가오거나 배에 접근하고 있는 위험을 인지하고 반응하는 능력에 있어서 운전자(또는 선박의 선장)가 장애를 갖게 되는 눈, 안개, 비, 및/또는 야간 정전 상태에서 차량 또는 선박을 운전 또는 조향하는 것이다.
따라서, 차량의 제어에 있어서의 사람의 결점을 해결하든 또는 사람에 의한 제어가 바람직하지 않은 환경적으로 위험한 상태에 있든 간에, 차량의 경로에 있거나 차량의 경로로 들어오는 정지 및 이동 물체를 차량에서 식별하는 시스템 및 방법를 구비하는 것이 필요하다.
이하의 참조 문헌들(이들 모두는 참조 문헌으로서 본 명세서에 포함됨)과 같은 자율 운전 차량과 레이저 검출 및 시각화 시스템의 개발에 관한 수많은 논문이 보고되었다.
1) H. Wang, J. Kearney, J. Cremer, and P. Willemsen, "Steering Autonomous Driving Agents Through Intersections in Virtual Urban Environments," 2004 International Conference on Modeling, Simulation, and Visualization Methods, (2004),
2) R. Frezza, G. Picci, and S. Soatto, "A Lagrangian Formulation of Nonholonomic Path Following," The Confluence of Vision and Control, (A. S. Morse et al. (eds), Springer Verlag, 1998),
3) J. Shirazi, Java Performance Tuning, (OReilly & Associates, 2000),
4) J. Witt, C. Crane III, and D. Armstrong, "Autonomous Ground Vehicle Path Tracking," Journal of Robotic Systems, (21(8), 2004),
5) C. Crane III, D. Armstrong Jr., M. Torrie, and S. Gray, "Autonomous Ground Vehicle Technologies Applied to the DARPA Grand Challenge," International Conference on Control, Automation, and Systems, (2004),
6) T. Berglund, H. Jonsson, and I. Soderkvist, "An Obstacle-Avoiding Minimum Variation B-spline Problem," International Conference on Geometric Modeling and Graphics, (July, 2003),
7) D. Coombs, B. Yoshimi, T. Tsai, and E. Kent, 'Visualizing Terrain and Navigation Data," NISTIR 6720, (March 01, 2001),
8) 미국 특허 제5,644,386호(Jenkins 등),
9) 미국 특허 제5,870,181호(Andressen),
10) 미국 특허 제5,200,606호(Krasutsky 등), 및
11) 미국 특허 제6,844,924호(Ruff 등).
이 연구에도 불구하고, 적절한 시각화, 장애 식별, 및 장애 회피 시스템 및 방법의 실현이 차량의 작동을 제한하는 문제가 없는 것은 아니었으며, 도심 환경에서의 자율 방향 전환(autonomous direction)과 관련하여 특히 그렇다.
본 발명의 일 실시예에서, 내비게이션 및 제어 시스템은 차량의 위치 및 방향(heading)을 나타내는 위치 신호를 발생하도록 구성된 하나 이상의 위치 센서를 포함한다. 본 시스템은 입력을 갖고 차량의 작동을 제어하는 출력을 생성하는 하나 이상의 작동 제어 메커니즘을 포함하고, 작동 제어 메커니즘으로부터 원격지에 배치된 자체-완비된 자율 제어기(self-contained autonomous controller)를 포함한다. 자율 제어기는 위치 센서로부터 위치 신호를 수신하고 차량에 대해 업데이트된 이동 경로를 정의하는 작동 제어 신호를 발생하도록 구성된 프로세서와, 위치 센서, 작동 제어 메커니즘 및 프로세서 간의 통신을 제공하는 프로그램가능 인터페이스를 포함한다. 프로그램가능 인터페이스는 위치 센서로부터 프로세서로의 입력을 정규화하고 작동 제어 메커니즘에 입력으로 인가되는 호환 작동 제어 신호를 발생하도록 구성되어 있으며, 그로써 자체-완비된 자율 제어기는 각종의 상이한 센서 및 상이한 작동 제어 메커니즘과 동작하도록 구성가능하다.
본 발명의 일 실시예에서, 차량의 내비게이션 및 제어 방법은 차량의 위치 및 방향을 나타내는 위치 신호를 발생하는 단계, 프로그램가능 인터페이스를 통해 위치 신호를 정규화하여 정규화된 위치 신호를 생성하는 단계, 정규화된 위치 신호로부터 작동 제어 신호를 생성하는 단계, 및 프로그램가능 인터페이스를 통해 작동 제어 신호를 정규화하여, 차량의 업데이트된 이동 경로를 따라 차량의 작동을 제어하는 정규화된 작동 제어 신호를 생성하는 단계를 포함한다.
본 발명의 이상의 개괄적인 설명 및 이하의 상세한 설명 둘다가 예시적인 것이며 본 발명을 제한하는 것이 아님을 잘 알 것이다.
첨부 도면들과 관련하여 고려될 때 이하의 상세한 설명을 참조하면 더 잘 이해되는 것처럼, 본 발명 및 본 발명의 많은 부수적인 이점들에 대한 보다 완전한 이해가 용이하게 이루어질 것이다.
도 1a는 차량의 소정의 축에 수직인 평면의 섹터에서 2차원(2D) 스캔이 행해지는, 본 발명의 일 실시예에 따른 자율 차량의 개략도이다.
도 1b는 차량의 소정의 축에 수직인 평면을 벗어난 스캔을 변위시킴으로써 3차원(3D) 스캔이 행해지는, 본 발명의 일 실시예에 따른 자율 차량의 개략도이다.
도 2는 본 발명의 일 실시예에 따른 방출기 및 검출기 시스템을 간략히 나타낸 도면이다.
도 3a의 (1)은 본 발명의 일 실시예에서 하나의 레이저 스캐너 시스템에 의해 스캔되는 한 영역을 개략적으로 나타낸 도면이다.
도 3a의 (2)는 본 발명의 일 실시예에서 또 다른 레이저 스캐너 시스템에 의해 스캔되는 상보적 영역을 개략적으로 나타낸 도면이다.
도 3b는 스캐닝 시스템은 물론 광학 이미징 시스템을 포함하는, 본 발명의 일 실시예에 따른 자율 차량의 개략도이다.
도 4a는 본 발명의 통합 자율 차량 시스템 플랫폼을 나타낸 하드웨어 개략도이다.
도 4b는 본 발명의 자율 차량을 제어하는 다수의 프로세서의 상호연결을 나타낸 기능 개략도이다.
도 4c는 자율 차량 시스템 플랫폼의 구성을 위해 사용자에게 제공되는 그래픽 디스플레이의 스크린 샷이다.
도 5a 내지 도 5c는 GPS 신호가 완전히 상실되는 터널을 통과할 때 본 발명의 자율 차량의 작동 동안에 조향 제어기로부터 수집된 데이터를 나타낸 도면이다.
도 6a는 본 발명의 일 실시예에 따른 가변 구조물 관찰자 알고리즘 이용을 나타낸 도면이다.
도 6b는 원래의 속도 계획 및 관찰된 장애물을 고려하여 정정된 경로를 나타낸 예시적인 S-T 다이어그램이다.
도 6c는 일 실시예의 VPP 계산 프로세스를 나타낸 흐름도이다.
도 7은 도심 환경에서 본 발명의 차량의 조향 제어기에 대한 표준 편차를 나타낸 도면이다.
도 8은 30 km/hr의 일정 속도로 급커브를 포함하는 지그재그 코스를 빠져나가는 동안에도 본 발명의 자율 차량이 계획된 경로로부터 25 cm 미만의 표준 편차를 유지하는 것을 나타낸 도면이다.
도 9는 본 발명의 레이저 스캐닝 시스템으로부터의 속도 값을 필터링하는 것을 나타낸 도면이다.
도 10은 자율 차량 궤적을 예측하는 완전한 논홀로노믹 모델(completely nonholonomic model)을 나타낸 개략도이다.
도 11은 자율 차량 궤적을 예측하는 부분적 논홀로노믹 모델(partially nonholonomic model)을 나타낸 개략도이다.
도 12는 AVS 콘솔 개략도이다.
도 13은 본 발명에 적합한 컴퓨터 시스템의 개략도이다.
이제부터, 유사한 참조 번호가 몇개의 도면에 걸쳐 동일하거나 대응하는 부분을 가리키는 도면들, 보다 상세하게는, 일 실시예에서, 차량(10)의 상부에 장착되어 있는 이미징 센서(8)를 나타내는 도 1a를 참조하면, 차량(10)의 소정의 축에 수직인 평면(11)(본 명세서에서, 설명을 위해 "수직" 스캐닝 평면이라고 함)의 섹터에서 2차원(2D) 스캔이 행해진다. 이 이미징 센서 및 그의 작동은 미국 특허 출원 제11/376,160호에 더 상세히 기술되어 있다. 이 이미징 센서는 본 발명에서 사용될 수 있는 이미징 센서의 한 예에 불과하다.
그럼에도 불구하고, 여기서의 설명은 본 발명이 적용되는 하나의 상황을 제공하기 위해 이미징 센서(8)의 작동에 대해 간략히 기술한다. 일 실시예에서, 이미징 센서(8)는 이미징 센서(8)로부터 차량(10) 부근의 환경으로 레이저 펄스(또는 광)(14)를 전송하는 방출기(12)(도 2에 도시됨)를 포함한다. 도 1a에 도시된 바와 같이, 레이저(또는 광) 펄스(14)는 수직 스캐닝 평면(11) 내로 방출된다. 3차원(3D) 이미지를 생성하기 위해, 이미징 센서(8)가 평면(11) 내외로 패닝(또는 발진)되어, 도 1b에 도시된 바와 같은 3D 스캐닝 체적(16)을 생성한다. 이미징 센서(8)는 물체(22)(도 1b에 도시됨)로부터 반사된 광을 검출함으로써 차량(10) 근처 환경의 물체(22)를 검출한다.
본 발명의 일 실시예에서, 자율 차량(10)은 이하에서 더 상세히 기술되는 2개의 레이저 스캐너 시스템(40)을 사용한다.
도 2에 도시된 바와 같이, 이미징 센서(8)는 에코된 신호(20)의 복귀를 검출하는 검출기(18)를 포함한다. 이미징 센서(8)는 프로세서(24)를 이용하여, 레이저 펄스(14)의 타이밍 및 방출을 제어하고 레이저 펄스(14)의 방출을 에코된 신호(20)의 수신과 상관시킨다. 프로세서(24)는 차량에 탑재되어 있거나 이미징 센서(8)의 일부일 수 있다. 예시적인 프로세서 및 그의 기능에 대한 상세한 사항은 나중에 제공된다.
예시적인 예에서, 방출기(12)로부터의 레이저 펄스(14)는 빔 확대기(beam expander)(13a) 및 콜리메이터(collimator)(13b)를 통과한다. 레이저 펄스(14)는 정지 거울(15a)에서 회전 거울(26)로 반사되고, 이어서 렌즈(27a) 및 망원경(27b)를 통해 전달되어 직경 1-10mm의 레이저 펄스(14)용 빔을 형성하여, 합성된 3차원 시야의 대응하는 분해능을 제공한다. 망원경(27b)은 물체(22)로부터 반사된 광을 수집하는 역할을 한다.
본 발명의 일 실시예에서, 검출기(18)는, 물체로부터 반사되어 검출기로 다시 오는 레이저 광을 배경 광과 구분하기 위해, 방출된 광의 파장의 광만을 검출하도록 구성되어 있다. 그에 따라, 본 발명의 일 실시예에서, 이미징 센서(8)는 물체(22)에 의해 반사되어, 물체가 검출기(18)의 감도 범위 내에 있기만 하다면, 검출기(18)에 의해 측정되는 레이저 펄스(14)를 송출하는 동작을 한다. 레이저 펄스의 방출과 수신 사이의 경과 시간을 사용하여 프로세서(24)는 물체(22)와 검출기(18) 사이의 거리를 계산할 수 있다. 본 발명의 일 실시예에서, 광학계(즉, 13a, 13b, 15a, 26, 27a, 27b)는 빔을 순간적으로 도 1a에 도시된 섹터 내로 지향시키도록 구성되어 있고, 검출기(18)는 도 1a에 도시된 각자의 각도 방향 α1에 대응하는 소정의 각도 위치에서 수신 신호를 수신하는 FPGA(field-programmable gate array)이다.
회전 거울(26)을 통해, 레이저 펄스(14)는 도 1a에 예시적으로 도시된 바와 같이 평면(11) 내에서 방사상 섹터 α에 걸쳐 스위프(sweep)된다. 본 발명의 일 실시예에서, 이미징 센서(8)의 전방의 시야에서 물체의 매핑을 달성하기 위해, 회전 거울(26)은 100 - 10000 도/초 범위의 각속도로 30도 내지 90도 범위의 각도 변위에 걸쳐 회전된다.
3차원(3D) 이미지를 생성하기 위해, 본 발명의 일 실시예에서, 이미징 센서(8)가 평면(11) 내외로 패닝(또는 발진)되어, 도 1b에 도시된 바와 같은 3D 스캐닝 체적(16)을 생성한다. 예시를 위해, 도 1b는 각도 α(수직 스캐닝 방향에서) 및 각도 β(수평 스캐닝 방향에서)에 의해 스캐닝 체적(16)을 정의한다. 각도 α는, 앞서 살펴본 바와 같이, 30도 내지 70도 범위에 있으며, 각속도는 100 - 1000 도/초 범위에 있다. 각도 β(즉, 패닝 각도)는 1도 내지 270도 범위에 있으며, 패닝 레이트(panning rate)는 1 - 150 도/초 범위에 있다. 종합하면, 이미징 센서(8)는 통상적으로 3D 스캐닝 체적(16)을 초당 3회 이상 완전히 스캔할 수 있다.
본 발명의 일 실시예에서, 프로세서(24)에서, 물체와 차량 간의 거리 및 차량으로부터의 물체의 방향에 기초하여, 시야에서의 물체의 지리 공간 위치를 계산하는 데 순간 차량 위치(instantaneous vehicle position)의 지리 공간 위치 데이터가 이용된다. 도 2에 도시된 바와 같이, 프로세서(24)는, 예를 들어, 초당 여러번 차량의 위치, 방향, 고도, 및 속도를 프로세서(24)로 전송하는 GPS(global positioning system) 및/또는 INS(inertial navigation system) 등의 실시간 위치 결정 디바이스(25)와 통신하고 있다. 실시간 위치 결정 디바이스(25)는 통상적으로 차량(10)에 장착되어 있고, 데이터(차량의 위치, 방향, 고도 및 속도 등)를 차량(10) 상의 모든 이미징 센서(8)(및 모든 프로세서(24))로 전송한다.
상업적으로 이용가능한 GPS 및 INS 유닛에서, 프로세서(24)는 시야에 있는 물체의 위치를 10 cm보다 나은 정확도로 결정할 수 있다. 본 발명의 일 실시예에서, 프로세서(24)는 GPS 위치, LADAR 측정치, 및 편향각(angle of deflection) 데이터를 상관시켜 차량의 경로에 있는 장애물의 지도를 생성한다. 지도의 정확도는 위치 결정 디바이스(25)로부터의 데이터의 정확도에 의존한다. 이하는 이러한 데이터의 정확도의 예시적인 예이다: 위치 10 cm, 전방 속도(forward velocity) 0.07 km/hr, 가속도 0.01 %, 롤/피치(roll/pitch) 0.03 도, 방향 0.1 도, 측방 속도(lateral velocity) 0.2 %.
본 발명의 일 실시예에서, Kalman 필터(상업적으로 통합되어 있음)는 프로세서(24)로의 모든 데이터 입력을 분류한다. Kalman 필터는 잡음성 데이터의 재귀적 측정에 기초하여 시스템의 상태를 추정하는 공지의 방법이다. 이 경우에, Kalman 필터는 각각의 유형의 센서에 본질적인 잡음의 유형을 고려하고 실제 위치의 최적의 추정치를 생성함으로써 차량 위치를 훨씬 더 정확하게 추정할 수 있다. 이러한 필터링은 A. Kelly의 "A 3d State Space Formulation of a Navigation Kalman Filter for Autonomous Vehicles," CMU Robotics Institute, Tech. Rep., 1994에 기술되어 있으며, 이 문서의 전체 내용은 참조 문헌으로서 본 명세서에 포함된다.
범위 측정(ranging measurement)을 제공하기 위해 방출기(12) 및 검출기(18)에 상업적으로 이용가능한 구성요소가 사용될 수 있다. 일 실시예에서, 방출기(12), 검출기(18) 및 연관된 광학계는 LADAR(laser radar) 시스템을 구성하지만, 예를 들어, LIDAR(light detection and ranging) 센서, 레이더, 또는 카메라 등의 정확한 거리 측정을 할 수 있는 기타 시스템이 본 발명에서 사용될 수 있다. LIDAR(Light Detection and Ranging 또는 Laser Imaging Detection and Ranging)는 레이저 펄스를 사용하여 물체 또는 표면까지의 거리를 결정하는 기술이다.
도 3a의 (1)은 본 발명의 일 실시예에서 하나의 레이저 스캐너 시스템에 의해 스캔되는 하나의 영역을 개략적으로 나타낸 것이다. 도 3a의 (2)는 본 발명의 일 실시예에서 또 하나의 레이저 스캐너 시스템에 의해 스캔되는 상보적 영역을 개략적으로 나타낸 것이다. 각각의 레이저 스캐너 시스템(40)은 레이저 펄스(14)를 방출하여 센서의 전방을, 예를 들어, 270° 스위프하기 위해 회전 거울과 함께 4개의 레이저를 사용한다. 본 발명은 정확하게 270° 원호(arc)를 스위프하는 것으로 제한되지 않으며, 180°에서 270°, 360°에 이르는 다른 원호 범위가 사용될 수 있다. 이 예에서, 거울이 곧바로 전방으로 그리고 0°로 직접적으로 측면으로 향해 있을 때 빔이 유닛으로부터 0.8°씩 오프셋되어 있는 4개의 상이한 스캐닝 평면 상에 방출된다. 이러한 방식으로 다수의 레이저를 사용함으로써, 차량이 조종 동안에 피칭(pitch) 및 롤링(roll)할 때에도, 스캐너 시스템(40)은 충분한 시야를 유지할 수 있다.
스캐너 시스템(40)은 지면으로부터 상이한 높이에 장착될 수 있다. 예를 들어, 센서를 0.5 미터의 비교적 낮은 높이에 장착함으로써, 센서가 차량의 높은 곳에 장착되어 있는 경우 보다 효과적으로 작은 장애물을 검출할 수 있다. 한편, 일부 수평으로 장착된 센서는 낮게 장착되어 있을 때 그만큼 효과적이지 못한데, 그 이유는 차량이 피칭(pitch) 및 롤링(roll)할 때 센서의 스캐닝 평면이 지면에 의해 빈번히 방해되기 때문이다.
종래에는, 완전 360° 스캐너 범위(scanner coverage)를 필요로 했던 차량은 차량의 전방에 있는 하나의 스캐너 시스템 및 차량의 후방에 있는 하나의 독립형 스캐너(standalone scanner)를 사용하였다. 2개의 ECU(전방 센서 및 후방 센서에 대해 하나씩)를 사용하는 이러한 방식에서는 시스템은 단일 고장점에 대해 취약하다. 본 발명은 2개의 스캐너를 사용함으로써 단일 고장점의 문제를 해결하며, 각각의 스캐너는 완전한 360° 시야를 가짐으로써 주변 환경의 중복 시야를 제공한다. 각각의 스캐너 시스템은, 도 3a의 (1) 및 도 3a의 (2)에 도시된 바와 같이, 각각의 센서의 ECU와 함께, 차량의 전방 코너 중 하나에 센서를 가지고 차량의 반대쪽 후방 코너에 센서를 가진다. 실제로, 도 3b는 스캐닝 시스템(예를 들어, 2개의 레이저 스캐너 시스템(40) 등)은 물론 광학 이미징 시스템(42)을 포함하는, 본 발명의 일 실시예에 따른 자율 차량의 개략도이다.
도심 환경에서 작동하는 자율 차량에는 몇가지 중요한 기술적 과제가 있다. 이들 과제는 본 발명의 혁신적인 하드웨어 및 소프트웨어 설계를 통해 해결된다. 1) 도심 환경에 존재하는 빌딩 및 기타 장애물로 인해 GPS 데이터가 빈번히 이용가능하지 않게 될 것이다. 자율 차량의 임무의 요소 중 다수가 GPS 좌표를 통해 지정되기 때문에, 본 발명에서 GPS 데이터를 보충하기 위해 부가의 위치 측정 정보(localization information)가 사용될 수 있다. 2) 도심 환경에는, 정적 장애물과 함께, 많은 이동 차량이 존재한다. 본 발명의 일 실시예에서, 차량의 소프트웨어는 다른 차량의 이동을 추적하고, 그와 상호작용하며, 때때로 그를 예측한다. 3) 자율 차량은 항상 모든 적용되는 교통 법규를 준수해야만 한다. 4) 도심 환경에서의 자율 차량은 때때로 다른 차량을 추월, 주차, U턴을 수행, 반대쪽 차선을 넘어 좌회전을 수행, 및 혼잡한 교통을 빠져나가는 등의 진보된 조종을 수행한다. 5) 도심 환경의 일부 지역에서, 도로가 단지 일련의 듬성듬성 있는 웨이포인트(waypoint)만으로 지정될 것이며, 본 발명의 자율 차량은 센서를 사용하여 따라갈 적절한 경로를 검출할 것이다.
이들 과제가 본 발명에서는 환경에서, 특히 교차로에서 자율 차량 및 기타 차량 모두의 상태를 추적하는 소프트웨어 시스템에 의해 해결된다.
시스템 구성요소
연구 차량: 2005 Ford Escape Hybrid™(이후부터 연구 차량이라고 함)가 본 발명의 이미징 센서(8)를 포함하도록 개조되었다. 연구 차량은 거의 항상 전기 엔진이 작동하고 가스 엔진(gas engine)이 여분의 마력을 제공하거나 전기 엔진의 배터리를 충전하기 위해 자동으로 켜지고 꺼지는 하이브리드 드라이브 시스템(hybrid drive system)을 사용하였다. 330 볼트 배터리에 의해 전원이 공급되는 연구 차량의 전기 시스템은 연구 차량에 장착된 장비에 1300 와트 이상의 전력을 제공한다.
연구 차량은, 자동차를 물리적으로 제어하기 위해, EMC(Electronic Mobility Controls)로부터 상업적으로 이용가능한 AEVIT(Advanced Electronic Vehicle Interface Technology) "드라이브 바이 와이어(drive-by-wire)" 시스템을 이용하였다. AEVIT 시스템은 중복 서보 및 모터를 사용하여 핸들을 돌리고 기어를 바꾸며 가속을 하고 제동을 한다. EMC Corporation로부터 상업적으로 이용가능한 이 해결책은 스티어링 칼럼(steering column), 브레이크 페달, 쓰로틀 와이어(throttle wire), 비상 브레이크, 및 자동 변속기에 장착된 액츄에이터(actuator) 및 서보를 포함한다. 이는 또한 차량의 회전 신호 및 시동(ignition)도 제어할 수 있다. 전자 운전 보조 제어 시스템(electronic driving aid control system)을 사용함으로써, 모든 관점에서 차량은 하나의 완전 통합 시스템을 통해 제어되고, 그로써 전체적인 복잡도를 감소시키고 고장점을 제거한다. 전자 운전 보조 제어 시스템은 또한, 트리거될 때, 차량의 1차 브레이크 시스템을 적용하고 이어서 차량의 시동을 끄는 비상-정지(E-Stop) 메커니즘을 자율 차량에 제공하였다. 마지막으로, 약간의 지연 후에, 차량의 비상 브레이크가 적용되고 유지된다. 이것은 E-Stop 명령이 수신될 때 차량이 효과적으로 정지할 수 있고 차량이 경사면에 있을 경우에도 정지된 채로 있을 수 있도록 한다. 이들 기능이 본 발명에서 선택적인 것으로 간주된다.
하드웨어 플랫폼: 본 발명의 AVS(Autonomous Vehicle System) 플랫폼은 각종의 자율 운전 응용을 위해 설계되었다. AVS 플랫폼은 하드웨어 계층 및 소프트웨어 계층을 포함한다. 하드웨어 계층은 GPS 수신기 또는 장애물 센서와 같은 외부 센서에 전력을 제공하는 것 및 그와 통신하는 것 둘 다를 위해 인쇄 회로 기판 또는 그외의 자체-완비된 배선 및 배선을 포함하는 디바이스 구성체는 물론, 입력을 갖고 차량의 작동을 제어하는 출력을 생성하는 작동 제어 메커니즘도 포함한다. 일 실시예에서, 이를 위해 ASIC(application-specific integrated circuit)이 사용될 수 있다.
도 4a는 본 발명의 통합 자율 차량 시스템 플랫폼을 나타낸 하드웨어 개략도이다. 도 4a는 사용자 또는 프로그램 인터페이스(52), 컴퓨터(53, 54), FPGA 디바이스(56), 안전 무선기(safety radio)(58), 하드웨어 와치독(hardware watchdog)(60), 이더넷 링크 디바이스(62), 전력 배분 구성요소(64), 비상 정지(E-Stop) 논리 디바이스(66), 내부 및 외부 CAN(controller area network)(68), 디지털 및 아날로그 입/출력 디바이스(70), 그리고 RS-232 및 RS-422 포트(80)를 포함하는 AVS 인쇄 회로 기판(50)을 구체적으로 나타낸 것이다. 이들 구성요소를 인쇄 회로 기판에 통합함으로써, AVS(autonomous vehicle system) 플랫폼은 센서 데이터를 처리하고 자율 차량을 지향시키는 컴퓨팅 기능과 각종의 센서를 통합하기 위한 하드웨어를 제공한다. 게다가, 대부분의 물리적 배선을 수작업에 의한 배선보다는 인쇄 회로 기판상에 구현함으로써, 본 발명의 AVS 플랫폼에서의 하드웨어 계층은 향상된 신뢰성을 보여주었다.
더욱이, 본 발명 이전에, 자율 차량은 특정의 센서와 운전 및 조향 제어에 맞게 특정하여 설계되거나 개조되었다. 이들 프로토타입 차량 대부분은, 자율 엔지니어가 알고 있었던 기지의 문제점에 대한 특정한 해결책으로, 업계에서 이들 차량을 개발할 때 자율 차량의 개발에서의 특정의 문제를 해결하는 데 사용되었다. 따라서, 그 때에는 더 보편적인 자율 차량 제어 플랫폼을 제작하고자 하는 실제적인 동기가 없었다. 게다가, 어느 종류의 센서 및 어느 종류의 운전 제어 시스템이 포함되어야 하는지의 미해결된 문제는, 그 분야에서 이러한 보편적인 해결책을 고려하기에는 너무 시기 상조인 상태에서 자율 차량을 감지하고 제어하기 위한 수많은 선택 사항들을 정합시킬 수 있는 시스템의 설계를 남겨 두었다.
따라서, 본 발명의 일 실시예에서, 사용자는 사용자 또는 프로그램 인터페이스(52)를 사용하여 특정의 센서 및 특정의 운전 조향 제어를 위한 구성가능 인터페이스 디바이스를 프로그램할 수 있다. 예를 들어, AVS 인쇄 회로 기판(50)을 자율 차량에 설치하는 엔지니어는, 예를 들어, AEVIT 드라이브-바이-와이어 시스템(즉, 작동 제어 메커니즘)에 필요한 제어 등의 특정의 운전 및 조향 제어를 위해 자율 차량 상의 특정의 센서 모음에 대한 FPGA 디바이스(56)(즉, 구성가능 인터페이스 디바이스)를 프로그램할 것이다. 다른 예에서, 현장 또는 서비스 기술자는 자율 차량에 새로운 센서를 설치할 수도 있고, 그 때 새로 설치된 센서와 호환되도록 FPGA 디바이스(56)를 재프로그램할 수도 있다.
일 실시예에서, 인쇄 회로 기판(50)은 안전 무선기(58)의 E-Stop 무선기와 그리고 AEVIT 드라이브-바이-와이어 시스템(도 4a에 도시된 컴퓨터들 중 하나를 구성함)과 인터페이스되었다. 일 실시예에서, 하드웨어 계층은 하드웨어의 작동을 모니터링하고 고장난 구성요소를 전원-사이클링(power-cycling)할 수 있거나(예를 들어, 전력 배분 구성요소(64)를 통해) 심지어 심각한 오류가 검출되는 경우 차량을 정지시킬 수 있는(예를 들어, E-Stop 논리 디바이스(60)를 통해) 프로그램가능 논리 디바이스(즉, 하드웨어 와치독(60))를 포함한다. 일 실시예에서, AVS 하드웨어 계층은 컴퓨터(53, 54)로서 QNX 하드 실시간 운영 체제를 실행하는 Intel Core Duo 컴퓨터를 포함한다. 이들 컴퓨터는 AVS 소프트웨어 플랫폼을 실행시키는 데 사용되었다.
시스템내 통신: 도 4b는 CAN(controller area network) 및 AVS 소프트웨어/하드웨어 및 센서 간의 프로세스 관계를 나타낸 기능 개략도이다. AVS 플랫폼의 개별 구성요소 내에서의 통신은 포함된 메시지의 중요성(criticality) 및 규칙성(punctuality)에 기초하여 분할될 수 있다. 일 실시예에서, AVS 소프트웨어와 드라이브 바이 와이어 시스템 간의 차량 제어 메시지는 독립적인 CAN(Controller Area Network)을 통해 전송될 수 있다. 일 실시예에서, CAN(68)은 예측가능 실시간 통신(예를 들어, 운전 및 제어 신호)을 제공하고 전자기 간섭에 대한 강건함을 제공하는 통합 우선순위 시스템(integrated priority system)을 가진다. 본 발명의 하나의 우선순위 제어 시스템에서, 비상 제어와, 필요한 경우, 차량의 정지가 최고 우선순위를 가지며, CAN 버스 상의 임의의 다른 통신을 대신한다. 이따금씩 긴급 메시지가 존재하는 것을 방지함으로써, 계획 소프트웨어와 드라이브 바이 와이어 시스템 간의 제어 통신이 두번째 우선순위로서 소정의 시간 동안 방해를 받지 않고 일어날 수 있다.
일 실시예에서, 인쇄 회로 기판(50) 상에서, 다른 형태의 통신을 가능하게 하거나 그렇지 않을 수 있는, 자동차용으로 특별히 설계된 센서와의 통신(예를 들어, 센서 신호)을 위해 별도의 CAN 버스가 사용된다. 제어 네트워크를 센서에 전용시킴으로써, 제어 패킷이 입력 센서 패킷에 우선하는 것이 방지된다. 또한, 이 분리는 센서 네트워크 상의 오작동 디바이스가 제어 CAN 버스를 교란시키는 것을 방지하는 데 도움을 주는데, 그 이유는 이러한 교란이 자율 차량의 안전 운전에 악영향을 줄 수 있기 때문이다.
일 실시예에서, 인쇄 회로 기판(50) 상에, 센서와 계획 컴퓨터(53, 54) 간의 고대역폭 통신이 이더넷 링크 디바이스(62)를 통해 일어난다. AVS 플랫폼에 연결된 고정밀도 센서는 이더넷 링크 디바이스(62)에 의해 제공되는 고대역폭, 낮은 레이턴시(latency), 및 고장 내성(fault tolerance)에 아주 적합한 대량의 데이터를 발생할 수 있다. 일 실시예에서, 위치 측정 센서로부터의 위치 데이터 및 장애물 스캐너로부터의 물체 데이터 둘다는 이들의 데이터의 결정론적 전송을 필요없게 만드는 타임스탬프를 포함한다. 위치 및 장애물 데이터는 이동 계획 컴퓨터(trip planning computer)(53, 54) 내에서 재구성 및 재정렬되어 센서들 중 임의의 센서의 세상에 대한 시야를 재구성할 수 있다.
일 실시예에서, 인쇄 회로 기판(50) 상에서, FPGA 디바이스(56)는 위치 및 이동 정보를 수집하고, 데이터가 컴퓨터(53, 54)로 전송되기 전에, 관성 시스템에서의 드리프트 및 GPS 시스템에서의 작동 정지(outage)를 보상할 수 있다. 이어서, 정정된 데이터가 이더넷 및 CAN을 통해 컴퓨터(53, 54)로 전송된다. 정정된 데이터는 또한 전용 CAN 버스를 통해 장애물 스캐너로 전송된다. 이 데이터는, 차량의 위치, 속도, 및 배향이 잠재적으로 스캐너의 장애물 데이터를 정정하는 데 도움이 되게 사용될 수 있도록, 장애물 스캐너로 전송된다. 이어서, 컴퓨터(53, 54)는 장애물, 로봇의 위치, 및 임무 웨이포인트(mission waypoint)를 동일한 좌표 집합에 상관시킬 수 있다. FPGA 디바이스(56)는 위치 센서, 작동 제어 메커니즘, 및 프로세서 간의 통신을 제공할 수 있고, 1) 위치 또는 물체 센서로부터 프로세서로의 입력을 정규화하며, 2) 예를 들어, (전술한 AEVIT(Advanced Electronic Vehicle Interface Technology)과 같은) 작동 제어 메커니즘에 입력으로서 인가되는 호환 작동 제어 신호를 발생할 수 있다. 이러한 방식으로, 인쇄 회로 기판(50)(즉, 자체-완비된 자율 제어기)은 각종의 상이한 센서 및 상이한 작동 제어 메커니즘과 동작하도록 구성가능하다.
따라서, 통합형 인쇄 회로 플랫폼 실시예는 자율 차량에 탑재된 센서로부터 입력을 수신하고, 한 목적지로부터 다른 목적지로의 이동 경로를 식별하며, 이동 경로를 따라 정지 장애물과 이동 장애물 및 웨이포인트를 식별하고, 정지 장애물과 이동 장애물 둘 다를 피하기 위해 이동 경로를 정정하도록 구성된 프로세서를 포함하는 새로운 구성을 통해 본 발명의 자율 차량에 독자적인 기능을 제공한다. 통합형 인쇄 회로 플랫폼은 자율 차량 센서로부터의 입력과 운전 및 조향 제어에 대한 출력 둘 다를 수용하여 정규화할 수 있는 능력을 제공하는 프로그램가능 디바이스를 기능상 중심 위치에 포함한다. 따라서, 이 플랫폼은 1) 인쇄 회로 기판 상에 각종의 입/출력 디바이스를 포함하고 2) 사용자가 일련의 특정 센서 및 조향 제어를 위해 플랫폼을 "커스터마이즈"하는 데 사용될 수 있는 인터페이스를 제공함으로써 광범위한 자율 차량 센서를 수용할 수 있다.
전술한 바와 같이, 사용자 또는 프로그램 인터페이스(52)는 자율 차량에 포함되어 있는 다양한 센서와 운전 및 조향 제어를 수용하도록 FPGA(56)를 프로그램하는 데 사용될 수 있는 메커니즘을 사용자에게 제공한다. 도 4c는 사용자 인터페이스에 액세스할 때 사용자에게 제공되는 그래픽 디스플레이(70)의 스크린 샷이다. 그래픽 디스플레이(70)는 사용자가, 예를 들어, 전압(V), 차량 CAN 피드백, EMC CAN 피드백, 및 비례 이득 제어(proportion gain control) 등의 필드를 선택할 수 있게 하는 컨트롤을 포함한다. 도 4b에 도시된 바와 같이, 사용자 또는 프로그램 인터페이스(52)는 하나의 컴퓨터(53 또는 54) (또는 둘다)와의 상호작용을 통해 또는 FPGA 디바이스(56)과의 직접적인 상호작용을 통해 자율 차량 시스템 플랫폼을 구성할 수 있게 한다.
센서: 자율 차량은 어떤 환경에서도 안전하게 이동하기 위해 주변 환경의 정확한 사진 및 그 자신의 글로벌 위치(global position)를 필요로 한다. 도심 환경에서 동작하기 위한 부가의 과제가 있다. 이하에서는, 본 발명의 다양한 실시예에서, 본 발명의 자율 차량에 설치된 상이한 유형의 센서에 대해 기술한다.
장소 또는 위치 센서: 도심 환경에 진입하는 자율 차량 또는 로봇에 대한 과제들 중 하나는 로봇 주변의 세계의 지도를 작성하는 것과 그 지도 내에서 그 자신의 위치를 확인하는 것이다. 세계에서의 어떤 절대적 위치 또는 차량에 대해 상대적인 어떤 위치에 대해 장애물 및 차선 검출 센서로부터 수집된 데이터가 참조된다. 차량의 위치, 방향 및 속도에 관한 정확한 정보가 없는 경우, 다른 데이터가 쓸모 없게 될 수 있다. 세계에서 교통과 관련하여 경로를 계획하는 것은 차량에 관해 수집된 모든 정보를 일련의 글로벌 좌표로 변환함으로써 단순화된다. 이 변환을 하려면 데이터가 수집될 때의 차량의 위치에 대한 정확한 정보가 필요하다. 이 정보로부터, 자율 차량 주변의 지역의 지도가 생성될 수 있고, 이 지도로부터, 자율 차량의 경로가 계획될 수 있다.
기본적으로, 자율 차량의 경로를 계획하는 것 및 센서로부터 수집된 데이터를 합성하는 것은 정확한 위치 측정 정보를 필요로 한다. 전술한 연구 차량은 차량 위치 측정(즉, 위치 결정 데이터)을 제공하기 위해 Oxford Technical Solutions의 RT3000™ 위치 결정 디바이스를 이용하였다. RT3000™은 10 cm 이하의 위치 정확도를 제공하기 위해 그리고 0.1 도 이내로 정확한 방향 측정을 제공하기 위해 Omnistar™ HP 디퍼런셜(differential) GPS 신호를 사용한다. RT3000™에서의 통합형 INS(inertial navigational system)는 RT3000™이 30초 까지의 GPS 동작 정지에도 성능 열화가 거의 없이 잘 동작할 수 있게 한다. INS는 가속도 및 롤 정보를 제공한다. 관성 시스템 내의 가속도계 및 자이로스코프에 부가하여, ABS(anti-braking system) 인터페이스 보드를 통해 Ford Escape Hybrid의 후방 ABS 바퀴 속도 센서들 중 하나로부터의 바퀴 속도 입력이 RT3000 센서에 제공된다. AVS 인터페이스 보드는 Ford Escape의 ABS 센서로부터 Ford Escape의 ECU로의 통신 신호를 판독하고, 이를 GPS가 사용할 수 있는 신호로 변환한다. RT3000 센서는 RT300 센서에 내부적으로 제공되는 Kalman 필터링 및 알고리즘의 조합을 사용하여 내부적으로 각각의 소스로부터의 데이터를 통합한다.
RT3000 센서가 본 발명에서 효과적인 위치 측정 센서의 한 예로서 사용된다. GPS 신호가 부분적으로 또는 전체적으로 상실되는 경우에서도, RT3000 센서는 상실된 신호를 적절히 보상할 수 있다. 도 5a 내지 도 5c는 터널을 통해 자율 차량이 이동하는 동안에 조향 제어기로부터 수집된 데이터를 나타낸 것이며, 이 경우 GPS 신호는 10초 내지 15초 동안 완전히 상실되었다. GPS 신호를 재획득할 때 차량이 원하는 경로로부터 단지 50 cm만 벗어났다는 사실은 RT3000 센서의 신뢰성과, RT300 센서로부터 방출되는 데이터와 관련하여 제어 시스템이 잘 동작할 수 있다는 능력에 대해 말한다. 이들 도면에서, Y-오차는 제어 시스템 알고리즘에 대한 입력 신호이고, 경로 오차는 차량의 중심선이 원하는 경로로부터 벗어나는 실제량이며, 조향 각도는 차량의 전방 타이어의 각도이다. Y-오차 신호가 증가할 때, 실제 경로 오차를 최소화시키기 위해 조향 각도가 조정될 것이다.
장애물 또는 물체 센서: 앞서 일반적으로 기술된 바와 같은 일 실시예에서, 본 발명의 자율 차량은 그의 1차 장애물 회피 센서용으로 2개의 Ibeo ALASCA XT 융합 시스템 센서(Ibeo Automobile Sensor GmbH, Merkurring 20, 22143 Hamburg, Deutschland)를 사용한다. 각각의 ALASCA XT 융합 시스템 센서는 2개의 Ibeo ALASCA XT 레이저 스캐너 및 하나의 Ibeo ECU(Electronic Control Unit)를 포함한다. 연구 차량 내의 각각의 ALASCA XT 레이저 스캐너는 센서의 전방에 270°원호를 스위프하는 회전 거울과 관련하여 4안 안전 레이저(four eye-safe laser)를 사용하였다. 거울이 곧바로 전방으로 그리고 0°로 직접적으로 측면으로 향해 있을 때 ALASCA XT 레이저 스캐너에서의 4개의 빔 전부는 유닛으로부터 0.8°씩 오프셋되어 있는 4개의 상이한 스캐닝 평면상에 방출된다.
그의 시야의 유연성으로 인해, 이 예시에서, ALASCA XT 레이저 스캐너는 지면으로부터 대략 0.5 미터의 높이에서 차량에 견고하게 장착되었다. 본 발명에는 다른 높이 위치가 적당하다. 센서를 0.5 미터의 비교적 낮은 높이에 장착함으로써, 센서가 차량의 높은 곳에 장착되어 있는 경우 보다 효과적으로 작은 장애물을 검출할 수 있다. 일부 수평으로 장착된 센서는 이렇게 낮게 장착되어 있을 때 그만큼 효과적이지 못한데, 그 이유는 차량이 피칭할 때 센서의 스캐닝 평면이 지면에 의해 빈번히 방해되기 때문이다.
ALASCA XT 레이저 스캐너는 하나의 레이저 빔으로부터 다수의 에코를 검출할 수 있는 그 능력 때문에 광범위한 날씨 조건에서 동작할 수 있다. 빔이 유리창 또는 빗방울과 같은 투명한 물체에 도달하는 경우, 빔은 레이저 스캐너에 의해 인식되고 간주되는 부분 에코(partial echo)를 생성할 것이다. 이러한 다중-타겟 성능(Multi-Target Capability)은 ALASCA XT 레이저 스캐너가 폭풍우를 비롯한 많은 상이한 유형의 악천후에서 작동할 수 있게 한다.
ALASCA XT 레이저 스캐너의 다른 장점은 차량 주변의 물체의 지도를 생성하기 위해 2개의 ALASCA XT 센서로부터의 레이저 각도 및 범위 정보를 포함할 수 있는 ECU(electronic control unit)의 능력이다. 빗방울 및 지면 등의 관심없는 레이저 에코(laser echo)를 제거하기 위한 필터링 후에, ALASCA XT 레이저 스캐너 제어 시스템은 양쪽 레이저 스캐너로부터의 데이터를 결합하여 에코 그룹 주위에 다각형을 피팅한다(fit). 그 다음에, ECU 내의 소프트웨어 알고리즘은 각각의 장애물의 속도 벡터를 계산하고 그 자신의 고유 식별 번호로 각각의 장애물을 식별한다. 통신 오버헤드를 감소시키기 위해, ECU는 특정의 우선순위 분류 알고리즘을 만족시키는 장애물만을 전송한다. 본 발명의 일 실시예에서, 자율 차량은 이 분류를 위한 1차 기준으로서 물체 속도 및 차량으로부터의 거리 둘다에 기초한 알고리즘을 사용한다. 얻어진 다각형은 CAN을 통해 컴퓨터(53, 54)로 전송된다. 이 실시예에서, 이 처리의 전부가 ALASCA XT 레이저 스캐너의 ECU 상에서 국부적으로 행해지기 때문에, 컴퓨터(53, 54)는 이 부가의 처리 오버헤드를 겪지 않는다.
양쪽 장애물 검출 시스템(40)으로부터 반환된 장애물의 컬렉션은 차량의 장애물 저장소에 포함된다. 하나의 스캐너 시스템이 장애물의 리스트를 반환하지 못하는 경우, 차량은 그 시야 중 어떤 것도 상실하지 않고 다른 스캐너 시스템을 이용하여 단절없이 작동을 계속한다. 하나의 스캐너 시스템의 고장이 검출될 때, AVS 플랫폼의 하드웨어 계층은, 재시작 시에 복구가 일어나는지를 알아보기 위해, 시스템을 재부팅할 수 있다.
본 발명의 다른 실시예에서, Velodyne LIDAR(예를 들어, 360도 HFOV 및 26.8도 VFOV를 전달하는 64-요소 LIDAR 센서인 모델 HDL-64E)가 장애물 검출기(40)로서 사용된다. 이 LIDAR 시스템은 5-15 Hz의 프레임 레이트 및 초당 130만 이상의 데이터 포인트를 특징으로 한다. 이 시스템이 생성하는 포인트 구름(point cloud)은 지형 및 환경 정보를 제공한다. 이더넷 출력 패킷 페이로드(payload)에서 거리 및 세기(intensity) 데이터 둘다 제공된다. 전적으로 환경에 관한 정보를 위해 HDL-64E에 의존할 수 있고, 따라서 HDL-64E는 전술한 다른 센서들과의 중복성을 제공한다. HDL-64E 센서는 64개의 레이저를 이용하여 0.09도 각도 분해능(방위각)을 가지는 360도 시야(방위각)를 제공하고, 위로 +2° 아래로 -24.8°인 26.8도 수직 시야(고도각)는 64개의 똑같은 간격의 각도 세분(대략 0.4°)을 가진다. HDL-64E의 정확도는 2 cm 미만이다. HDL-64E는 5 내지 15 Hz(사용자 선택가능함)의 레이트로 시야를 업데이트하고, 포장 도로(~0.10 반사율)에 대해서는 50 미터 범위를 가지고, 자동차 및 나뭇잎(~0.80 반사율)에 대해서는 120 미터 범위를 가진다.
차선/도로 검출 센서: 때때로, 단지 듬성 듬성 있는 웨이포인트의 컬렉션만이 차선/도로를 식별하는 경우에 자율 차량은 적절한 차선/도로를 찾아 따라가야만 한다. 이 문제를 해결하기 위해, 본 발명의 자율 차량의 일 실시예에서, 비디오-기반 차선-검출 시스템, 예를 들어, Iteris, Inc.(Iteris, Inc., Santa Ana, California)의 모델 LDW가 이미징 디바이스(42)로서 이용되었다. Iteris LDW 시스템은 광 센서 및 이미지 처리 시스템을 사용하여 차선 표시들을 검출하고 추적한다. LDW 시스템 내의 이미징 센서는 LDW 시스템이 차선 표시선을 찾고 있는 차량 전방의 영역의 2차원 디지털화된 사진을 생성한다. 연구 차량에서, 이미징 센서는 차량 앞유리의 상부에 설치되었지만, 앞쪽을 바라보는 다른 위치가 적합할 것이다. 비디오-기반 차선-검출 시스템은 좌측 및 우측 차선 표시들의 위치, 좌측 및 우측 차선 표시들의 유형(실선, 점선 등), 차선 내에서의 차량의 각도, 및 차선의 곡률을 자율 차량에 제공한다. 이 정보는 CAN(68b)을 통해 초당 25회의 레이트로 AVS 플랫폼 소프트웨어에 제공된다. 차선 모델을 더 잘 준수하기 위해 차량의 계획된 경로를 조정하도록 차량의 소프트웨어 시스템에 의해 사용될 수 있는 현재 차선의 모델을 작성하기 위해 비디오-기반 차선-검출 시스템으로부터의 정보가 사용된다.
소프트웨어 플랫폼: 자율 차량이 도심 환경에서 성공적으로 작동하는 데 필요한 소프트웨어의 분량 및 복잡성은 소프트웨어 아키텍처를 쉽게 압도할 수 있다.
AVS 소프트웨어 플랫폼은 많은 상이한 유형의 자율 차량 응용 애플리케이션에 대해 사용될 수 있는 일반 자율 애플리케이션 프레임워크로서 설계되었다. AVS 소프트웨어 플랫폼은 센서 통합 기능, 장애물 회피 기능, 내비게이션 기능, 안전 시스템, 이벤트 로그 시스템, 위치 측정 시스템, 실시간 차량 모니터링 기능, 및 네트워크 통합 기능을 (많은 다른 기본적인 자율 차량 요구사항과 함께) 제공한다.
연구 차량에서의 AVS 소프트웨어 플랫폼은 자바 프로그래밍 언어를 사용하였지만, 본 발명이 이 프로그래밍 언어로 제한되지 않는다. 자바의 플랫폼-독립성으로 인해, 동일한 코드 베이스가 다양한 수의 하드웨어 시스템에서 실행될 수 있으며 신뢰할 수 있고 반복가능한 결과가 얻어진다. 이하에서 기술되는 AVS 소프트웨어 프레임워크는 자율 차량 애플리케이션 설계의 복잡성을 감소시키기 위해 여러 상이한 소프트웨어 설계 패턴 또는 설계 원칙을 사용한다. 이들 설계 패턴 각각은 복잡성을 감소시키고 엔터프라이즈 애플리케이션 개발에서 소프트웨어 개발의 신뢰성을 향상시키는 데 성공적인 것으로 증명되었다.
본 발명의 AVS 소프트웨어 프레임워크에서 사용되는 주요 소프트웨어 설계 원칙들 중 하나는, 큰 문제를 해결이 보다 쉽도록 설계되어 있는 일련의 느슨하게 결합된 하위 문제들로 분해함으로써, 개발에서의 복잡성을 감소시키는 "사안들의 분리(Separation of Concerns)" 패러다임이다. 따라서, 소프트웨어 시스템이 최소한의 중복을 가지는 가능한 한 많은 개별 구성요소로 분리된다. 소프트웨어를 기능상 개별적인 구성요소로 분리함으로써, 한 구성요소에서의 사소한 고장이 다른 구성요소에 악영향을 주어서는 안된다.
IoC(Inversion of Control) 컨테이너에 중점을 둔 아키텍처를 사용하여 AVS 소프트웨어 프레임워크가 구현되었다. IoC(Inversion of Control)는 프레임워크가 개개의 애플리케이션 구성요소의 실행을 조정하고 제어하는 컨테이너로서 작동하는 설계 패턴이다. IoC 프레임워크는 애플리케이션 설계를 단순화시키는데, 그 이유는 애플리케이션보다는 프레임워크가 구성요소들을 서로 링크시키고 이벤트를 애플리케이션 내의 적당한 구성요소로 보내는 일을 맡고 있기 때문이다. AVS 프레임워크에서, IoC 컨테이너는, 스레드 스케줄링, 로깅 서비스, 컴퓨팅 클러스터에 걸친 애플리케이션 자산의 분배, 고장 내성, 및 네트워크 통신을 포함하는 적절한 실시간 자율 차량 애플리케이션에 필요한 모든 서비스를 제공한다.
AVS 소프트웨어 프레임워크의 스레드 스케줄링 기능은 자율 차량 애플리케이션의 개발을 상당히 향상시켰다. 사안의 분리 패러다임이 가장 효과적이기 위해, 구성요소들이 가능한 한 격리되어 있어야 한다. 이상적으로는, 한 구성요소에서의 고장으로 인해 후속 구성요소의 실행이 중단되지 않도록 구성요소들이 순차적이기 보다는 병렬로 실행되어야 한다. AVS 소프트웨어 프레임워크는, 심지어 다수의 컴퓨터에 걸쳐서, 각각의 구성요소를 그 자신의 실행 스레드로서 자동으로 실행하고, 개별적인 구성요소 간의 데이터 공유를 투명하게 조정한다. AVS 소프트웨어 프레임워크는 또한 많은 상이한 프로세서 부하 레벨 하에서 설정된 빈도수로 이들 구성요소를 실행할 수 있으며, 이는 자율 차량 작동에 필요한 많은 제어 시스템에 유익한데, 그 이유는 이들 제어 시스템 각각이 정확한 차량 제어를 위한 정밀한 타이밍을 필요로 하기 때문이다.
일 실시예에서, AVS 소프트웨어 프레임워크는 (도 4a에 도시된 단지 2개의 컴퓨터(53, 54) 대신에) 하나 이상의 코어 내장형 컴퓨터상에서 실행될 수 있다. 실제로, 3개의 코어 내장형 컴퓨터가 분산 클러스터로서 작동되었다. 클러스터 내의 각각의 컴퓨터는 사전 설정된 시간 제약들 내에서 자율 애플리케이션의 결정론적 실행을 지원하기 위해 AVS 소프트웨어 프레임워크의 실시간 기능과 연결된 하드 실시간 운영 체제를 실행한다. 실시간 지원이 인에이블되면, 프로세스의 동작 빈도수가 급격히 안정된다. AVS 소프트웨어 프레임워크의 실시간 기능은 자율 애플리케이션이 보다 일관성있게 거동할 수 있게 하고, 심지어 소프트웨어 문제의 경우에도, 안전 모니터와 같은 높은 우선순위 구성요소 및 저 레벨 운전 알고리즘이 적절히 실행될 수 있도록 한다.
소프트웨어 구현: 소프트웨어 논리가 AVS 소프트웨어 프레임워크에 대한 모듈로서 구현되었다. AVS 소프트웨어 프레임워크는 그 자신의 독립적인 실행 스레드로 이들 모듈 각각을 실행할 수 있고, 다수의 구성요소 간의 의존관계를 자동으로 관리한다. 이하의 서브섹션에서는 본 발명에서 이용되는 소프트웨어 모듈에 대해 기술한다.
경로 계획: 자율 차량의 설계에서 환경과 장거리 경로 계획의 매핑이 중요한 관심사이다. 이용된 설계 모델은 시각적 매핑을 논리적 매핑 및 경로 계획으로부터 분리시킨다. 온보드 컴퓨터에 의해 수행되는 논리적 매핑 기능은 교차로 식별 구성요소, 센서-감지가능(sensor-visible) 랜드마크(landmark)의 매핑, 및 미정의(under-defined) 지도 영역의 정정을 포함한다. 미정의 지도 영역은 로봇(즉, 자율 차량)에 제공된 지도가 실세계 환경에 불충분하게 상관되어 있는 지역으로 이루어져 있다. 이 경우에, 로봇은 그의 이동 경로를 따라 그 영역을 탐색하고 식별해야만 한다.
본 발명의 일 실시예에서, 기존의 지도를 좌표 데이터로 변환하는 것은, 측량 등의 다른 방법보다 방향을 조향하는 것을 획득하는 더 효율적인 방법인 것으로 밝혀졌다. 어떤 상황에서, 기존의 지도가 이용가능하지 않을 수 있다. 자율 차량이 "폐쇄" 경로(즉, 물리적 또는 소프트웨어-결정(software-directed) 경계에 의해 설정된 경로)에 걸쳐 동작하도록 설계되어 있는 경우, 자율 차량이 폐쇄 경로를 계획하는 동안 통상적으로 자율 차량을 제어하는 데 사람에 의한 차량의 제어가 사용될 수 있다. 자율 차량은 그의 GPS, 장애물 스캐너, 및 차선 검출 센서로부터의 정보를 상관시킴으로써 지정된 경로를 계획할 수 있다.
경로 및 경로를 따라 있는 웨이포인트를 나타내는 논리적 지도가 얻어지면, 논리적 지도가, 예를 들어, RNDF(Route Network Definition File) 형식으로 온보드 컴퓨터(53, 54)에 제공되지만, 다른 형식이 사용될 수 있다. 2-패스 파서(two pass parser)는 모든 웨이포인트 참조가 유효한지를 검증하기 전에 모든 웨이포인트를 식별한다. 이 지도는 RNDF 형식의 객체-지향 구성 형태로 저장되고, RNDF 파일로부터 도출된 지도 특징에 대한 확장을 포함한다.
RNDF의 데이터로부터 획득된 제1 도출 특징은 정류소 및 진출로/진입로 웨이포인트를 교차로로 그룹화하는 것이다. 이하는 예시적인 매핑/웨이포인트 알고리즘이다. 알고리즘은 먼저 임의의 정류소 웨이포인트를 선택하고, 이어서 그 지점을 빠져나가는 모든 진출로 및 그 지점으로 가는 모든 진입로를 찾는다. 그 다음에, 교차로에서의 각각의 진출로에 대해, 진출로 다음에 오는 웨이포인트가 진입로인 경우, 진입로/진출로 쌍이 교차로에 추가된다. 마찬가지로, 교차로에서의 각각의 진입로에 대해, 진입로 이전의 웨이포인트가 진출로 웨이포인트인 경우, 진출로/진입로 쌍이 교차로에 추가된다. 마지막으로, 임의의 정류소 또는 진출로가 교차로의 경계로부터 정의된 거리 내에 있는 경우, 이들도 역시 교차로에 추가된다. 각각의 정류소 또는 진출로만이 하나의 교차로에 속하는 것을 보장하도록 프로비전(provision)이 이루어진다.
RNDF의 데이터로부터 획득된 제2 도출 특징은 웨이포인트 간의 이동과 연관된 비용의 저장이다. 한 웨이포인트로부터 그 다음 웨이포인트로 운전하는 데 걸리는 시간이 최적의 경로를 선택하는 데 사용되는 메트릭의 제1 후보이다. 시간 메트릭은 웨이포인트, 진출로 및 구역 객체에 저장된다. 구간 최고 속도 제한을 웨이포인트와 그것의 이전 웨이포인트 사이의 거리로 나눔으로써 각각의 웨이포인트에 대한 초기 비용이 최적으로 계산된다. 웨이포인트가 차선의 시작에 있는 경우, 그 웨이포인트는 비용이 0이다. 진출로의 비용은 진입로 구간의 속도 및 고정 벌점에 기초하여 계산된다.
본 발명의 한가지 경로 발견 알고리즘은 로봇(즉, 자율 차량)이 그의 환경을 더 탐색할 때 그 계획에 있어서 보다 효율적으로 될 수 있게 하는 학습 구성요소를 포함할 수 있다. 웨이포인트 사이를, 교차로를 통해 그리고 구역에 걸쳐 이동하는 데 걸리는 시간을 기록함으로써, 이동 시간이 최적으로 되는 경로가 계산된다. 다수의 경로에 걸쳐 사용되는 주어진 RNDF에 대해 이동 시간의 기록이 유지된다. 시간이 지남에 따라 교통 패턴이 변할 때, 새로운 혼잡 영역이 표시되고, 이전의 관찰 내용은 신뢰되지 않는다. 기하급수적으로 감소하는 가중치를 가지는 식 1에 나타낸 바와 같은 가중 평균 수식이 특정의 이동 단위의 비용을 계산하는 데 사용된다. 가장 최근의 관찰 내용이 0.5의 가중치를 가지며, 각각의 이전의 관찰 내용의 가중치는 1/2로 감소된다.
Sn = 샘플
N = 샘플의 수
N = 1 : 합 S0
N > 1 : 합 =
Figure pct00001
(1)
본 발명의 일 실시예에서,
Figure pct00002
추론-안내 검색(heuristic-guided search)으로 공지된 검색 알고리즘을 적용함으로써 체크포이트들 사이의 최적의 경로가 결정된다. 다른 알고리즘도 마찬가지로 사용될 수 있다.
Figure pct00003
검색 알고리즘은 탐색된 경로의 우선순위 큐를 유지한다. 경로의 현재 비용(g(x)) 및 목표까지의 추정된 비용(h(x))에 의해 우선순위가 결정된다. 경로 계획을 위한
Figure pct00004
의 구현에서, g(x)는 이미 탐색된 이동 단위에 대한 관찰된 평균 이동 시간의 합이다. 추론 h(x)는 목표 체크포인트까지의 직선 거리를 경로에 대한 최대 속도 제한으로 나눈 것이다. 이 추론은 가장 직접적인 경로가 먼저 탐색되는 거동에 영향을 미친다.
Figure pct00005
알고리즘은 시뮬레이션 및 실제 테스트 모두에서 정확한 경로를 생성하는 것으로 증명되었다.
VSO(Variable Structure Observer, 가변 구조물 관찰자): VSO의 주요 기능은 정보 통합과 자율 차량의 근방 환경(대략 150 미터 이내)에 있는 모든 정지 장애물 및 이동 장애물의 좌표 및 궤적의 예측을 제공하는 것이다. 가변 구조물 관찰자 알고리즘은 다수의 정지 물체 및 이동 물체를 추적한다. 가변 구조물 관찰자 알고리즘은 차량의 상황 인식을 향상시키고, 센서 데이터가 일시적으로 상실되거나 일시적으로 신뢰할 수 없게 되는 경우에도, 차량의 지능적 작동 및 이동을 유지하는 기능을 제공한다. 이것은, 다른 차량이 자율 차량의 전방에서 교차로를 주행하여 통과하고 있을 때와 같이, 한 장애물이 다른 장애물에 의해 일시적으로 가려져 있는 상황에서 극히 유용하다.
도 6a는 본 발명의 일 실시예에 따른 VSO 알고리즘 이용을 나타낸 것이다. 구체적으로는, 도 6b는 자율 차량의 계획된 경로(즉, PP로 나타낸 곡선)가 작은 이동 직사각형(82)의 시퀀스로 도시된 레이더 추적된 차량(이동 장애물)의 경로와 교차하는 시나리오에서 개발된 가변 구조물 관찰자를 나타낸 것이다. 이 예에서, 레이더 빔(즉, 좌측 하부 코너로부터 뻗어 있는 각도 변위된 선)이 2개의 트레일러(84)(즉, 큰 직사각형)에 의해 차단된다. 추적된 이동 장애물(82)이 트레일러(84)에 의한 차단으로 인해 레이더 스크린으로부터 사라질 때, 가변 구조물 관찰자는 그의 모델을 실행하여 이동 차량의 예측된 위치를 생성함으로써 이를 메모리에 유지한다. 자율 차량 경로를 따르는 속도 계획은 이동 장애물이 경로와 교차하는 시간을 고려한다. 점선의 원형 영역에서의 중첩하는 직사각형은 불확실성으로 인한 예측된 위치의 오차를 나타낸다. 따라서, 가변 구조물 관찰자는 데이터의 흐름이 중단될 때에도 충돌을 방지한다. 개발된 가변 구조물 관찰자는 시스템의 계산 능력에 의해서만 제한되는, 무한한 수의 이동 장애물의 추적을 가능하게 한다.
VSO 원리는 Drakunov, S. V., "Sliding-Mode Observers Based on Equivalent Control Method," Proceedings of the 31st IEEE Conference on Decision and Control (CDC), Tucson, Arizona, December 16-18, 1992, pp. 2368-2370에서 제안된 슬라이딩 모드 관찰자(sliding mode observer)의 사상에 기초하며, 가변 구조물 시스템의 일반 이론에 기초하고 있으며, 이 문서의 전체 내용은 참조 문헌으로서 본 명세서에 포함된다. 그 원리는 다음과 같이 기술될 수 있다: 장애물이 센서 시스템에 의해 검출되면, 장애물의 위치, 기하 형태 및 속도 벡터를 알아내기 위해 예비 데이터 처리가 사용된다. VSO 알고리즘은 장애물에 대한 "식별자" 및 그의 움직임의 수학적 모델을 자동으로 생성할 것이다.
그 결과, 식별된 장애물에 대한 상태 벡터[위치, 기하 형태, 형상, 속도 등]가 생성된다. 상태 벡터(즉, 그것의 파라미터)가 인입하는 센서 데이터 스트림에 기초하여 끊임없이 업데이트된다. 센서 데이터가 일시적으로 상실되는 경우, VSO 알고리즘은 센서 데이터가 재획득될 때까지 일시적으로 가려진 차량이 안전하게 정지하거나 장애물을 피할 수 있게 하도록 장애물의 위치 및 속도의 예측을 (시뮬레이션을 통해) 계속하여 제공할 것이다.
VSO 알고리즘을 전방으로 장래의 시간까지 실행함으로써, VSO는 경로 계획 및 속도 계획을 위해 이 장애물의 현재 위치 뿐만 아니라 장래 위치도 예측할 수 있다. 특정 규칙이 뒤따른다. 예를 들어, 식별된 물체가 자율 차량과 동일한 도로를 따라 이동하는 이동 물체인 경우, VSO는 식별된 물체가 도로 상에 있는 것으로 가정할 것이다. 예를 들어, 식별된 물체가 자율 차량과 동일한 도로를 따라 이동했고 거의 일정한 속도로 이동한 이동 물체인 경우, VSO는 식별된 물체가 도로 상에 있고 (따라서 다른 물체가 끼어들지 않는 한) 계속하여 동일한 속도에 있는 것으로 가정할 것이다. VSO는 근처 환경 내의 모든 장애물의 상태 벡터를 차량의 동작 환경의 하나의 가변 구조물 모델 내로 결합하며, 가변 구조물 모델은 환경에 따라 동적으로 변화한다. 관찰자의 상태 벡터의 차원은 항상 변하는데, 그 이유는 VSO가 이 영역에 진입하는 장애물에 대한 새로운 모델을 추가하고 장애물이 그 영역에서 빠져나갈 때 장애물을 제거할 것이기 때문이다.
본 발명의 일 실시예에서, 가변 구조물 관찰자는 슬라이딩 모드를 갖는 시스템의 이론에 기초한다. 슬라이딩 모드의 사용은 비선형 수학으로부터 이해되며, 시스템의 시간 거동을 분석하기 위해 다른 "시스템"에서 사용되었다. 본 발명의 가변 구조물 관찰자에서, 불확실성의 존재 하에서 강한 비선형 시스템에 대한 관찰 데이터로부터 상태 벡터를 재구성하는 데 슬라이딩 모드가 사용된다. 경로 계획과 관련하여 VSO를 이용하는 것에 대한 보다 상세한 설명이 이하에 포함되어 있다.
실제로, VSO는 또 다른 이점을 제공한다. 그것의 계산에 있어서 차량 움직임의 수학적 모델을 포함시킴으로써, VSO는 센서 데이터에서 발생할 수 있는 변동을 자동으로 필터링하여 제거한다. 이것은 레이저 스캐너 센서와 관련하여 특히 중요한데, 그 이유는 (이들 센서가 계산하는) 속도 벡터가 상당한 지터를 포함할 수 있기 때문이다.
경로 계획: 본 발명의 경로 계획 알고리즘은 장애물을 피하고 항상 계획된 경로 내에서 차량을 조종한다. 일 실시예에서, 이들 알고리즘은 이유 없이 차량을 계획된 경로부터 벗어나게 하지 않을 것이다. 그러나, 차량이 어떤 이유로 경로를 벗어나는 경우, 내비게이션 시스템은 이것을 검출하고 경로로 되돌아오는 안전한 경로를 제공한다. 웨이포인트를 놓친 경우, 내비게이션 시스템은 단순히 경로 상의 그 다음 이용가능한 웨이포인트로 계속 진행할 것이다. 경로가 장애물로 차단되어 있는 경우, 경로 계획 시스템은 장애물 근방의 경로를 결정할 것이다.
본 발명의 일 실시예에서, 여전히 차량이 이동하는 것이 불가능하지 않도록 하면서 계획된 경로의 중앙을 따르도록 설계된 큐빅 B-스플라인(cubic b-spline)의 사용을 통해 경로 계획이 달성된다. 이러한 보장은 경로를 따르는 임의의 포인트에서의 곡률이 차량이 성공적으로 따라갈 수 있는 최대 곡률 미만이라는 것을 의미한다. 또한, 계속하기 전에 새 위치로 핸들을 돌리기 위해 차량을 정지시킬 필요가 없도록 곡률이 연속하게 유지된다. 경로 계획 알고리즘에서 사용하기 위해 B-스플라인이 선택된 주된 이유는 그의 결과적인 곡선의 형상이 쉽게 제어될 수 있기 때문이다. 경로의 중앙을 따르는 초기 경로가 생성된 후에, 이 경로가 안전한 경로인지를 판정하기 위해 장애물 저장소와 대조하여 검사된다. 경로가 안전하지 않은 경우, 간단한 알고리즘은 스플라인이 유효 최대 곡률을 여전히 포함하면서 모든 기지의 장애물을 피할 때까지 곡선의 문제 지점에 제어 포인트들을 발생하고 조정한다. 이 시점에서, 경로는 안전하고 주행가능하다.
본 발명의 경로 계획은 또한 장애물 근방의 경로를 계획하기 위해 몇개의 계획 알고리즘과 함께 LOD(Level of Detail) 기반 장애물 회피 알고리즘을 사용할 수 있다. 본 발명의 일 실시예에서, LOD 분석은 상이한 LOD에서 동일한 알고리즘을 실행한다. 예를 들어, 적은 디테일로 실행될 때(예를 들어, 큰 안전 마진(safety margin)을 수용하기 위해), 유효한 경로가 발견될 때까지 (예를 들어, 작은 안전 마진을 수용하기 위해) 디테일을 반복적으로 증가시킨다. 유효한 경로가 발견될 때까지 몇가지 상이한 파라미터를 사용하여 경로 계획 알고리즘이 실행된다. 초기 파라미터는 안전 마진을 사용하는 반면(예를 들어, 차량과 장애물 간의 여유 또는 장애물들 간의 여유), 최종 파라미터는 장애물 근방의 안전 마진을 사용하지 않는다. 이것은 큰 오차 마진(예를 들어, 차량 측방 여유)으로 장애물을 피하는 경로가 이용가능한 경우, 경로 계획 소프트웨어는 그 경로를 선택한다. 그렇지 않은 경우, 계획 알고리즘은 유효한 경로가 결정될 때까지 계속하여 장애물 근방의 안전 마진을 감소시킬 것이다.
본 발명은 차량 추력(vehicle thrust) 및 차량에 대한 외력 등의 요인들을 수용한다. 실제 차량 시스템과 동일한 방식(또는 유사한 방식)으로 거동하는 전달 함수를 구하기 위해 시스템으로의 입력 신호를 시스템의 응답과 관련시킴으로써 시스템을 정의하는 파라미터를 결정하는 데 사용될 수 있는 본 발명에서 사용되는 방법은 시스템 식별(system identification)이다. 예를 들어, 차량의 속도를 제어하려고 할 때, 입력은 브레이크와 액셀러레이터 위치이고, 출력은 차량의 속도이다. 시스템 모델은 다음과 같이 전달 함수 H(S)로 표현될 수 있다:
Figure pct00006
여기서, u(s)는 시스템 입력(브레이크 및 액셀러레이터 위치)이고, y(s)는 시스템 출력(속도)이다. 정확한 전달 함수라는 확신이 얻어질 때까지, 예를 들어, 연구 차량에 대해 경험적으로 테스트된 차량 시스템의 전달 함수 H(s)에 도달하기 위해 시스템 식별이 차량 추진 시스템으로부터의 실세계 데이터에 적용되었다.
따라서, 본 발명에 따른 차량의 속도 제어는 액셀러레이터 및 브레이크 기능을 수용했을 뿐만 아니라 물리적 엔진 시스템에서의 많은 다른 인자들도 수용하였다. 예를 들어, 연구 차량이 가스-전기(gas-electric) 하이브리드 엔진을 가지고 있기 때문에, 2개의 추진 시스템의 결합이 연료 효율성을 위해 조정된 액세스가능하지 않은 공장에서 설치된 온보드 컴퓨터에 의해 제어되었다. 결과적으로, 요청된 페달 위치와 달성된 실제 위치의 매핑이 선형이 아니며, 경험적 결정에 의해 소프트웨어로 재매핑되어야만 한다. 본 발명의 일 실시예에서, 통합된 PD(proportional-derivative) 제어기에 의해 차량의 속도가 제어된다. 이 제어기의 출력은 이전의 출력과 현재 오차 및 오차의 미분에 기초한다. 시간 영역에서, 제어기는 다음과 같이 쓰여질 수 있다:
Figure pct00007
여기서, Kp 및 Kd는 조정가능한 계수이고, u(t)는 시간 t에서의 제어기의 출력이며, e(t)는 시간 t에서의 오차이다. 오차는 목표 출력에서 실제 출력을 뺀 것으로 정의되었다. 실제 출력은 RT3000™에 의해 보고되었고, 목표 속도는 경로 계획 알고리즘으로부터 도출되었다.
통합된 PD 제어기가 설계되고 전술한 도출된 전달 함수에 대해 조정되었다. 예를 들어, 도출된 전달 함수의 계산 모델에 대해 최적의 성능을 위해 필요한 (PD 제어기에서의 비례 제어를 위한) 가중치가 먼저 도출되었고 이어서 차량에서 작동될 때 조정되었다.
연구 차량에서 둘다 경로 계획 시스템과 독립적인 2개의 개별적인 프로세스를 사용하여 액셀러레이터 및 핸들 제어가 달성되었다. 경로 계획 알고리즘에 의해 경로가 결정되었으면, 선택된 경로를 유지하기 위해 가속도 및 조향이 배타적으로 사용된다. 경로들은 생성 시에 실행가능성에 대해 검사되기 때문에, 제어 시스템에서 차량에 대해 주어진 모든 경로는 달성가능한 것으로 제어 시스템에 의해 가정되었다. 이러한 방식으로(비록 본 발명이 다른 시작 가정을 사용할 수 있지만), 선택된 경로를 따라가기 위해 얼마나 최선으로 진행할 것인지를 결정하는 일은 제어 시스템의 부담이 된다.
일 실시예에서, 연구 차량의 조향 제어기는, 그 전체 내용이 참조 문헌으로서 본 명세서에 포함되는, Riekert 및 Schunck의 "Zur fahrmechanik des gummibereiften kraftfahrzeugs," in Ingenieur Archiv, vol. 1 1, 1940, pp. 210-224에 의해 설명된 고전적인 단일-트랙 모델 또는 자전거 모델에 기초하는 리드-래그(lead-lag) 제어기였다. 리드 보상기(lead compensator)는 시스템의 응답성을 향상시키고, 래그 보상기(lag compensator)는 정상 상태 오차(steady state error)를 감소시킨다(그러나, 제거하지는 않는다). 리드-래그 보상기는 시스템의 주파수 응답에 기초하였다. 리드-래그 보상기는, 그 전체 내용이 참조 문헌으로서 본 명세서에 포함되는, D. Bernstein의 A students guide to classical control, IEEE Control Systems Magazine, vol. 17, pp. 96-100 (1997)에 기술된 것과 유사하였다. 연구 차량의 결과적인 제어기는 2개의 리드 및 래그 함수의 콘벌루션을, 0.045인 저주파 이득과 곱한 것이었다. 적응적 추정 파라미터가 사용되었다. 적응적 추정은 먼저 이론적 함수를 적용하여 얻어진 일련의 값(파라미터)을 사용하고 이어서 파라미터가 완전하게 될 때까지 파라미터를 실세계 시나리오(예를 들어, 깊은 모래, 거친 지형, 및 기타 지형 유형)에서 테스트하고 수정한다.
Figure pct00008
Figure pct00009
(12) 및 (13)에 나타낸 바와 같이 이산화된 제어기(discretized controller)가 구현되었으며, 여기서 x는 상태 벡터이고,
Figure pct00010
는 시간에 대한 상태 벡터의 미분이며, u는 입력 벡터이고, δf는 타이어에서 중심선에 대해 측정된 출력 조향 각도이다. 상태 벡터 x는 [ys ψ]로서 정의되고, 여기서 ys는 가상 센서로부터 참조 경로까지의 거리를 지칭하고, ψ는 차량의 요 레이트(yaw rate)이다. 가상 센서는 차량의 중심선을 따라 차량의 전방으로 주어진 거리만큼 투사된(projected) 지점이다. 이 지점은 흔히 전방 주시 지점(look-ahead point)이라고 하고, 전방 주시 지점에서 RT3000까지의 거리는 전방 주시 거리(look-ahead distance)라고 한다.
Figure pct00011
Figure pct00012
제어기에 대한 입력 벡터 u는 [ys]로서 정의된다. 제어기의 출력은 타이어에서 중심선에 대해 측정된 조향 각도이다.
연구 차량에서의 조향 및 제어 시스템은 핸들 각도와 얻어진 타이어 각도 간의 관계가 선형이고 차량의 중력 중심의 위치가 전방 차축과 후방 차축 사이의 웨이포인트에 있는 것으로 가정하였다. 안전성 척도로서, 차량이 불안정하게 되는 것을 방지하기 위해 ys 신호의 크기가 모니터링되었다. ys가 주어진 임계값을 가로지르는 경우, 차량이 경로로부터 심각하게 벗어나 있음을 의미하며, 차량의 속도가 2 mph로 감소되었다. 이것에 의해 차량이 원하는 경로로 복귀할 수 있고 가능한 전복을 방지하였다.
따라서, 자율 차량이 일반적으로 따라가야 하는 글로벌 경로(global route)를 생성하기 위해 경로 계획 모델이 사용되지만, 글로벌 경로로부터 현재 로컬 경로(local path)로 변환하기 위해 VPP(Velocity and Path Planner)라고 하는 로컬 경로 계획 모델이 사용된다. 로컬 경로는 차량의 계획된 위치 및 차량의 계획된 목표 속도 둘 다를 포함한다. 차량의 상태 및 주변 환경 둘 다 변하기 때문에, 로컬 경로가 초당 여러번 재생성될 수 있다.
VPP는 VSO로부터의 정보를 사용하여 자율 차량의 시간-공간 궤적 및 속도 프로파일을 계획 및 업데이트한다. VPP는 적절한 경로 계획에 의해 정적 장애물을 피하는 것(즉, 정적 장애물로부터 떨어지게 조향하는 것)을 목표로 하고, 자율 차량의 계획된 경로를 가로지르게 될 이동 장애물을 피하기 위해(필요한 경우 장애물을 피하기 위해 완전히 정지하게 되는 것을 포함함) 자율 차량의 속도를 조절하는 것을 목표로 한다. 장애물의 시간-공간 특성 및 그의 장래 위치를 포함하는 확장된 영역에서 최적 경로 계산이 수행된다. 이 설명을 단순화하기 위해 이러한 방식으로 본 명세서에 제시되는 3개의 논리적 단계에서 궤적 계산이 행해진다.
제1 단계 동안에, VPP는 글로벌 경로로부터 제공된 GPS 포인트들에 기초하여 (x,y)-공간 궤적을 계산한다. 이들 지점은 이어서 큐빅 또는 고차 스플라인 보간을 사용하여 계산된 부드러운 곡선으로 연결된다.
제2 단계에서, VPP는 속도 제약들(최대 및 최소 속도 제한)을 만족시키고 임의의 기지의 또는 검출된 장애물을 피하는 확장된 시간-공간 영역
Figure pct00013
에서의 시간-최적 궤적을 계산한다. 변분법, Bellman 동적 프로그래밍, 및 Pontryagin의 최소 원리의 조합을 사용하여 전술한 제약들을 가지는 최적의 궤적 및 준최적의(quasi-optimal) 궤적이 계산된다. Pontryagin의 최소 원리는 제어 및 상태 변수 제약들의 경우에 시간-최적 제어를 위한 필요 조건을 제공한다. 이 계산은 전술한 바와 같은 슬라이딩 모드 알고리즘을 사용하여 행해진다. 도 6b는 원래의 속도 계획(대각선) 및 관찰된 장애물(즉, 타원 형상)을 고려하는 정정된 경로(우측으로 벗어나서 원래의 속도 경로에 평행하게 대각선으로 진행하는 선)를 도시하는 예시적인 거리 대 시간 S-T 다이어그램이다. 이 차트에서, s는 경로를 따른 거리를 나타내고, 시간은 경로를 따라 그 포인트에 있게 될 예상 시간이다.
제3 단계에서, VPP는 속도 및 차량 안전성을 유지하면서 가속/감속 제약들을 만족시키는 단계 2에서 계산된 궤적에 가장 가까운 궤적의 온라인 준최적 계산을 사용한다. 이 시점에서, 안전 작동을 방해하지 않는 경우, 승차감이 고려될 수 있다. 일 실시예에서, 이 궤적 계산은 슬라이딩 모드 알고리즘을 사용하여 VPP 의해 수행된다.
VPP는 차량의 속도를 변경함으로써, 공간-시간 영역(S-T 영역)에서 모든 유형의 장애물의 회피를 가능하게 한다. 수학적 해가 없고 차량이 감속함으로써 장애물을 피할 수 없는 경우, 그 다음에, 장애물을 피할 수 있는 경우, 장애물을 피하기 위해 방향 전환 조종(swerving maneuver)이 구현된다. 예를 들어, 다른 차량이 이상하게 거동하지 않는 경우, 이러한 유형의 방향 전환 조종은 수용가능하다.
차선 변경 또는 기타 경로-변경 조종이 시도되어야만 하는 지를 판정하기 위해 VPP의 결과가 반복하여 평가된다. VPP의 한가지 목표는 최적의 속도를 달성하는 것일 수 있으며, 따라서 다른 차량이 너무 오랫동안 정지해 있는 경우 또는 심지어 자율 차량의 속도가 그 전방에 있는 다른 차량에 의해 너무 많이 느려지는 경우, 계획 알고리즘은 다른 차량을 추월하려고 시도할 것이다.
보다 일반적으로, 본 발명의 VPP 알고리즘은 도 6c에서 설명될 수 있다. 구체적으로는, 도 6c는 일 실시예의 VPP 계산 프로세스를 나타낸 흐름도이다. 이 프로세스는 의도된 이동 경로 계획(예를 들어, 수치 스플라인으로서 표현됨)을 수신하고 이어서 경로 파라미터(예를 들어, 거리, 접선 벡터, 요 각도(yaw angle) 등)를 계산함으로써 시작하는 것으로 개념화될 수 있다. 그 다음에, 이 프로세스는 계산된 경로 파라미터에 대해 수행되는 곡률 계산을 고려하고, 전방 및 후방 슬라이딩 모드 리미터 계산 둘 다를 수행하는 데 있어서의 가속/감속 제약들을 고려한다. 속도 계획이 생성된다.
이제 의도된 이동 경로 계획 및 계산된 속도 계획을 가지는 프로세스가 계속하여 이동 경로를 따라 시간 분포를 계산한다. 후속하여, 이 프로세스는 공간-시간 영역 속도 계획을 재계산하여 의도된 이동 경로를 가로지르는 이동 장애물을 피하기 위해 이동 장애물 데이터를 고려하고, 그에 의해 수정된 속도 계획을 생성한다. 수정된 속도 계획이 소정의 또는 사전 설정된 가속/감속 제약들을 만족시키는 경우, 이 실시예에서 이동 장애물을 피하는 수정된 속도 계획이 수용된다. 그렇지 않은 경우, 전방 슬라이딩 모드 리미터 계산에 의해 새로운 속도 계획을 다시 계산하기 시작함으로써 이 프로세스가 재반복된다.
조향 제어 시스템: 경로가 곡률 및 속도에 관련된 특정의 제약들을 만족시키는 한, 소프트웨어 계획 모듈은 어떤 경로라도 생성할 수 있다. 차량은 높은 수준의 정밀도로 경로를 정확하게 따라갈 수 있다. 이 높은 수준의 운전 정밀도로 인해, 계획 모듈은 조밀한 장애물 영역을 뚫고 성공적으로 빠져나가는 경로를 생성할 수 있다. 다수의 계획 모듈이 중복성을 위해 사용될 수 있고, 또한 다수의 후보 경로를 동시에 생성하는 데 사용될 수 있다. 다수의 경로가 생성되는 경우, 최상의 점수(점수는 많은 상이한 방식(최단 시간, 최단 거리, 장애물이 최소로 있는 것, 기타)으로 계산될 수 있음)를 가지는 것이 사용된다.
게다가, 차량이 생성된 경로를 정확하게 주행할 수 있을 때 경로 계획 구성요소가 가장 효과적으로 동작하기 때문에, 본 발명의 자율 차량의 개발 동안 조향 제어기에 특별히 중점을 두었다. 이하에서는 본 발명의 고성능 조향 알고리즘에 대해 보다 상세히 기술된다. 고성능 조향 알고리즘에 대해 실현된 결과가 도 7 내지 도 9에 도시되어 있다.
도 7은 도심 환경에서 본 발명의 차량의 조향 제어기에 대한 표준 편차를 나타낸 도면이다. 도 7이 차량의 조향 제어기가, 심지어 도심 환경에서도 고속으로, 극히 높은 정확도로 주행할 수 있다는 것을 나타내기 때문에, 자율 차량이 구불구불한 도심 경로 동안 더 높은 안정된 속도를 달성할 수 있게 한다. 도심 주행 동안, GPS로부터의 신호는 고층 빌딩 및 나무가 GPS 신호에 미칠 수 있는 영향으로 인해 노이즈가 아주 많을 수 있다. 이 노이즈는 도심 환경에서의 고속의 자율 주행을 훨씬 더 어렵게 만들 수 있다.
도 8은, 심지어 30 km/hr의 일정한 속도로 급커브를 포함하는 어려운 지그재그 코스를 주행하는 동안에도, 본 발명의 조향 제어기가 경로로부터의 표준 편차가 25 cm 미만으로 유지할 수 있다는 것을 보여준다. 이러한 유형의 정확도는 고속으로 급커브하는 동안 달성하기 어려운데, 그 이유는 차량의 타이어가 지면 상에서 슬라이딩/스키딩(skidding)하기 때문이며, 이는 이들 조종 동안에 조향 제어 알고리즘에 의해 고려되어야 하는 추가의 변수이다.
정밀 주행 능력에 부가하여, 통계 평균 및 필터링 방법을 사용하는 데이터 필터링 알고리즘은 본 발명의 자율 차량 상의 장애물 센서에서의 노이즈를 감소시키는 것으로 밝혀졌다. 도 9는 레이저 스캐닝 시스템으로부터의 속도 값을 필터링한 결과를 나타낸 것이다. 도 9는 상당한 노이즈를 포함하고 있었던, 레이저 스캐너에 의해 제공된 속도 값이 성공적으로 제거된다는 것을 보여준다.
고성능 조향 알고리즘: 본 발명의 일 실시예에서, 새로운 자율 차량 조향 방법이 제공된다. 이 방법은 조향 명령을 생성하기 위해 지면 상의 경로를 따라 이동 포인트
Figure pct00014
를 따라가는 단계를 포함한다. 조향을 실행하는 방법은 경로를 따라 이동하는 지점의 원점으로부터의 거리의 피제어 시간-함수(controlled time-function) s(t)에 기초한다. 지면 상의 이동 포인트
Figure pct00015
로부터의 실제 차량 위치(x(t), y(t))의 벡터 오차
Figure pct00016
가 다음과 같도록 함수 s(t)의 제어 및 조향 각도
Figure pct00017
가 선택되고,
Figure pct00018
은, 예를 들어,
Figure pct00019
(여기서, 이득 k>0) 또는 보다 일반적인
Figure pct00020
형태의 원하는 점근적 안정 미분 방정식(asymptotically stable differential equation)을 만족시킨다. 그 결과, 오차가 0에 수렴하며, 따라서 경로를 따라 차량의 강건한 조향을 제공한다. 이하에서, 이 방법의 한가지 가능한 구현을 제공하며, 제어기 이득 k의 선택은 최적의 수렴 조건에 기초한다.
완전한 논홀로노믹 모델(도 10 참조)의 경우, 전방 타이어 및 후방 타이어 둘 다의 측면 슬립(side slip)이 없는 것으로 가정된다. 리어 디퍼렌셜(rear differential)로부터의 거리 x0에 대해 차량 세로축 상에 위치하는 포인트의 X-Y 좌표를 나타내는 논홀로노믹 모델의 운동학 부분(kinematical part)은 다음과 같고
Figure pct00021
여기서, x,y는 글로벌 프레임에서 판독 포인트의 좌표이고, θ는 요 각도이며,
Figure pct00022
는 전방 진행 각도이고, vf는 전방 속도이다. 후방 바퀴 속도는
Figure pct00023
이다.
이제, 전방 바퀴가 슬립하지 않는 동안, 후방 바퀴 측면 슬립의 가능성을 생각해보자. 도 11을 참조하기 바란다.
경로를 따른 거리 s의 함수인 원하는 경로:
Figure pct00024
경로 시작점으로부터의 가상 포인트의 거리:
Figure pct00025
시간 t에서의 가상 포인트의 XY-위치:
Figure pct00026
가상 포인트로부터의 현재 차량 위치의 벡터 오차:
Figure pct00027
오차에 대한 시스템:
Figure pct00028
여기서 w는 경로를 따른 가상 포인트 속도이다(이것이 가상 제어임).
Figure pct00029
은 가상 포인트 방향 (단위) 벡터이다.
Figure pct00030
속도가 주어진 경우 오차의 최대 수렴율의 조건으로부터 가상 제어를 선택할 시에, 수학식 2에서의 제1 방정식의 우변은 다음과 같고,
Figure pct00031
이어서,
Figure pct00032
이것은 오차가 지수함수적 레이트(exponential rate) k로 0에 수렴하는 것을 보장한다:
Figure pct00033
에 따라
Figure pct00034
수학식 3으로부터, 타이어 각도
Figure pct00035
는 다음을 만족해야만 한다.
Figure pct00036
수학식 4의 양변에 제곱 놈(norm squared)을 취하면, 수학식 5가 얻어진다.
Figure pct00037
이 방정식으로부터 k가 주어지면, 다음과 같이 w를 구할 수 있다.
Figure pct00038
여기서
Figure pct00039
은 포인트 x0의 속도를 나타낸다.
한편, 수학식 5로부터, 수학식 5를 w에 대해 미분하고 k의 도함수를 0으로 설정함으로써 k의 최적 값을 구할 수 있다.
Figure pct00040
최적 지점에서,
Figure pct00041
이다. 쉽게 알 수 있는 바와 같이, 이 최적값은 영역
Figure pct00042
에서의 최대값이다. 실제로, 수학식 5는 wk-평면에서의 2차 곡선
Figure pct00043
을 나타낸다.
Figure pct00044
이기 때문에,
B2<AC이고, 따라서, 이것은 타원이다. 따라서, kopt > 0이 최대값이다.
수학식 7로부터,
Figure pct00045
이다.
따라서,
Figure pct00046
이거나
수학식 5로부터
Figure pct00047
이고,
이로부터
Figure pct00048
이다.
오차 E(t)가 0으로 수렴할 때, kopt의 값은 아주 크게 될 수 있다. k를 제한하기 위해, 최적 근사값(near optimal value)을 사용할 수 있다.
여기서, ε > 0은 작은 상수이고(이것은
Figure pct00050
가 바운드(bound)되는 것을 보장함), 수학식 8을 도입하면
Figure pct00051
을 얻는다.
수학식 6에 수학식 8을 대입하면, w의 최적 근사값
Figure pct00052
을 얻으며, 여기서
Figure pct00053
이다.
따라서,
Figure pct00054
이다.
수학식 4로부터,
Figure pct00055
이 얻어진다.
이것으로부터,
Figure pct00056
이 얻어진다.
이들 방정식의 우변에서,
Figure pct00057
은 진행 각도
Figure pct00058
에도 의존한다. 따라서,
Figure pct00059
를 표현하는 한가지 방식은
Figure pct00060
를 구하기 위해 2개의 방정식을 나누는 것이다.
그 결과,
Figure pct00061
가 얻어진다.
이제, 전방 바퀴가 슬립하지 않는 동안, 후방 바퀴 측면 슬립의 가능성을 생각해보자. 도 11을 참조하기 바란다.
이 경우에, 후방 지점의 속도 v r 이 자동차 세로축과 정렬될 필요는 없다. 질량 중심은 차량에서의 하나의 표준 기준 포인트이지만, 실제로 회전의 기준으로서 어떤 포인트라도 고려될 수 있다. 이 예에서, 시스템이 논홀로노믹이기 때문에, 질량 중심보다는 전방 바퀴 사이의 포인트를 고려하는 것이 더 편리하다. 따라서, 기준 포인트로서의 질량 중심은 스키드를 갖는 코너링 제어에 사용될 수 있다.
이어서,
Figure pct00062
이 얻어지고,
따라서,
Figure pct00063
여기서 마지막 방정식에서 두번째 항은 원심력의 근사를 나타낸다. 이 표현식에서,
Figure pct00064
은 대략 순간 회전 반경이다.
Figure pct00065
여기서,
Figure pct00066
알 수 있는 바와 같이, Flateral은 변수 σ의 불연속 함수이다. 이러한 시스템에서, 슬라이딩 모드의 현상이 일어날 수 있다(예를 들어, DeCarlo R. 및 S. Zak, S. V. Drakunov의 "Variable Structure and Sliding Mode Control," chapter in The Control Handbook, a Volume in the Electrical Engineering Handbook Series, CRC Press, Inc., 1996을 참조할 것, 이 문서의 전체 내용은 참조 문헌으로서 본 명세서에 포함됨). 이 시스템에서, 측방 마찰력의 충분한 마진이 있는 경우 슬라이딩 모드가 일어난다. 즉,
Figure pct00067
슬라이딩 모드에서,
Figure pct00068
이고, 시스템의 제1 방정식(수학식 10)은 수학식 1로 된다. 슬라이딩 모드에서, 측방력은 슬라이딩 모드에서의 불연속 함수가 등식
Figure pct00069
으로부터 구해진 동등한 값으로 대체될 수 있다고 하는 동등한 제어 방법(예를 들어, 상기 참조 문헌을 참고할 것)을 사용하여 구할 수 있다.
미분하면,
Figure pct00070
이 얻어진다.
여기로부터,
Figure pct00071
이다.
이 표현식 및 부등식(수학식 13)은 속도 및/또는 조향 각도를 조작함으로써 스키드를 제어(원하는 순간에 시작하거나 방지)하는 데 사용된다.
(낮은 측방 마찰력의 자연적 조건 또는 인위적으로 생성된 조건으로 인해) 스키드가 일어나는 경우, 이하에서 기술되는 조향 알고리즘이 사용된다. 수학식 1 대신에 수정된 모델(수학식 10)을 고려하여 이전의 경우와 유사하게 가상 포인트 속도가 계산된다. 그 결과,
Figure pct00072
이 얻어지고,
여기서,
Figure pct00073
이전과 같다.
Figure pct00074
따라서,
Figure pct00075
임무 관리자: 본 발명의 자율 차량 내에서의 상당한 양의 상위 레벨 처리 및 의사 결정이 임무 관리자 모듈에 의해 처리된다. 임무 관리자 모듈은, 적절한 작동을 위해 각각의 구성요소를 모니터링하는 것에 부가하여, AVS 아키텍처 내의 모든 다른 구성요소 간에 조정을 한다. 임무 관리자 모듈 자체는 구성요소 구현과 독립적으로 작동하도록 설계되어 있으며, 따라서 하나의 유형의 센서를 다른 설계의 센서로 대체하는 것이 차량의 적절한 작동에 영향을 주지 않을 것이다. 이 소프트웨어 성능은 사용자 또는 프로그램 인터페이스(52) 및 FPGA(56)에 의해 제공되는 구성가능한 하드웨어 성능을 보충한다.
본 발명의 일 실시예에서, 지시된 경로의 성공적인 완수에 필요한 일련의 이벤트를 통해 자율 차량을 지향시키는 일을 맡고 있는 FSM(Finite State Machine)이 이용된다. FSM은 차량이 가질 수 있는 일련의 상태 및 상태들 간의 천이로 정의된다. 이들 상태는 운전, 추월, 교차로에서의 대기 등의 이벤트를 포함한다. 이들 상태 각각으로부터, FSM은 차량이 한 상태에서 다른 상태로 진행하기 위해 수행할 수 있는 천이인 일련의 정의된 "탈출(exit)"를 포함한다. 차량이 원하는 경로를 차단하고 있을 때 이러한 탈출이 발생할 수 있으며, 이로 인해 차량이 "주행" 상태로부터 "추월" 상태로 변할 수 있다.
FSM은 교통 법규를 포함할 수 있는데, 그 이유는 이러한 법규가 일반적으로 이들이 적용되어야 하는 아주 구체적인 상황들을 포함하고 있기 때문이다. 차량의 동작이 한번에 하나의 상태에 의해서만 제어될 수 있기 때문에, 일 실시예에서, FSM은 나중에 버그 및 논리적 오류에 대해 분석될 수 있는 일련의 시간순 거동 및 이들 거동을 개시한 이유를 생성한다.
AVS 임무 관리자는 제공된 MDF(Mission Data File) 및 RNDF에 기초하여 상위-레벨 계획을 수행하는 임무 계획기(Mission Planner) 구성요소를 모니터링할 수 있다. MDF의 규정된(prescribed) 검사점들을 따라 웨이포인트에서 웨이포인트로 차량을 이동시키는 글로벌 계획이 생성되면, 이 계획에 대한 수정이 임무 계획기에 의해 추적되고 검증된다. 일 실시예에서, 고속도로 또는 기타 경로를 따르는 도로변 디바이스는 그들의 지리 공간 좌표를 브로드캐스트할 수 있고, 자율 차량은 이를 수신하고, 자율 차량이 그의 위치를 확인하기 위해 도로변 디바이스로부터 수신된 신호를 처리한다. 그에 따라, 차량의 물체 센서는 차량으로부터 원격지에 있는 구성요소 디바이스를 포함할 수 있다.
임무 관리자의 또 다른 기능은 하나의 구성요소로부터 다른 구성요소로의 요청이 차량의 안전 작동에 악영향을 주지 않도록 하는 것이다. 예를 들어, 조향 제어 모듈로부터 전송된 조향 명령은, 차량의 액츄에이터로 전달되기 전에, 먼저 임무 관리자에 의해 차량의 상황(속도, 롤, 기타)에 적절한 것인지 검증된다. 임무 관리자는 또한 일시정지 명령을 검출하고, 차량의 매끄러운 정지를 조정한다.
임무 관리자의 또 다른 기능은 임무 관리자의 자율 차량에 근접하여 작동하는 다른 자율 차량을 모니터링하는 것이다. 다른 자율 차량을 모니터링하는 한가지 방식은 각각의 자율 차량이 그 자신의 위치를 동일한 네트워크 상의 임의의 다른 자율 차량으로 전송하게 하는 것이다. 이 기능은 각각의 자율 차량(또는 심지어 위치 정보를 브로드캐스트하는 다른 비자율 차량)이 서로 통신하고 있는 경우로 당연히 확장될 수 있다. 한가지 이러한 응용은 유한한 경로가 있고 유한한 수의 차량이 추적되는 광산 어플리케이션일 것이다.
경로 시각화: AVS 콘솔은 자율 차량 및 그의 환경의 실시간 디스플레이 및 이전의 자율 차량 주행의 재생 둘 다를 가능하게 하는 AVS 플랫폼의 구성요소이다. 도 12는 실시간 디스플레이(80)를 나타낸 AVS 콘솔 개략도이다.
로깅 모듈에 의해 규칙적인 간격으로 AVS 소프트웨어 플랫폼 내의 각각의 내부 모듈을 쿼리한다. 이 간격은 각각의 개별 모듈에 대한 데이터가 얼마나 시간에 민감한지에 따라, 특정의 애플리케이션에 적절한 것으로 생각되는 임의의 인자들에 따라, 1 Hz 미만에서 250 Hz까지 변할 수 있다.
AVS 플랫폼은 모듈이 그의 데이터를 어떻게 로그하는지에 대한 표준화된 이진 형식을 제공한다. 먼저, 모듈은 그의 내부 상태가 마지막으로 변경된 때를 나타내는 8 바이트 타임스탬프를 기록한다. 그 다음에, 모듈은 모듈을 식별하는 데 사용되는 2 바이트 수치 식별자를 기록한다. 그 다음에, 모듈은 모듈의 데이터의 길이를 포함하는 4 바이트 정수를 기록할 것이다. 마지막으로, 모듈은 그의 데이터를 메모리에 기록할 수 있다.
로깅 모듈은 각각의 모듈에 대한 데이터를 받아서 이를 프로세서의 디스크 드라이브에 순차적으로 기록한다. AVS 콘솔은 자율 차량의 재생을 용이하게 하도록 나중에 TCP 연결을 통해 이 데이터를 검색한다. 또한, AVS 콘솔은 UDP 및 TCP 통신의 결합을 사용하여 이 데이터를 AVS로부터 실시간으로 검색한다. 자율적으로 작동하기 위해 AVS 콘솔이 존재할 필요가 없지만, AVS 콘솔이 존재하는 경우, 이는 자율 차량 및 그의 환경의 실시간 보기를 디스플레이할 것이다.
로깅 모듈은 AVS 콘솔로부터의 TCP 연결을 기다리고, 이어서 임의의 요청된 모듈에 대한 데이터를 이 동일한 TCP 연결을 통해 AVS 콘솔로 전송한다. 또한, 특정의 애플리케이션에 적절한 것으로 생각되는 임의의 인자들에 따라, 일부 모듈에 대한 데이터가 연속적인 UDP 브로드캐스트로서 자율 차량과 동일한 이더넷 네트워크 상의 임의의 컴퓨터로 전송된다.
AVS 콘솔은 OpenGL 프레임워크 내장 3D 디스플레이를 포함한다. 각각의 모듈에 대한 데이터는 AVS 콘솔에 의해 처리되고 이어서 3D 디스플레이에 디스플레이된다. 디스플레이되는 데이터의 유형은 특정의 모듈에 의존한다. 항상 디스플레이되는 표준 데이터는, 자율 차량에 의해 현재 감지되는 임의의 장애물과 함께, 차량의 위치, 위도 및 속도를 포함한다. 이전의 주행을 재생하기 위해, AVS 콘솔은 이전에 저장된 데이터를 판독할 수 있고, 이 데이터를 3D 디스플레이에 로드할 수 있다.
컴퓨터 구현: 도 13은 본 발명의 프로세서(24)(또는 이하에서 기술되는 특정 프로세서들 중 임의의 프로세서)가 구현될 수 있는 컴퓨터 시스템(1201)의 일 실시예를 나타낸 것이다. 컴퓨터 시스템(1201)은 전술한 기능들 중 일부 또는 전부를 수행하도록 프로그램되고/되거나 구성된다. 게다가, 각각의 기능이 차량에 탑재된 상이한 컴퓨터들 간에 분할될 수 있다. 이들 컴퓨터는 통신 네트워크(1216)(이하에서 기술함)를 통해 서로 통신하고 있을 수 있다. 컴퓨터 시스템(1201)은 정보를 통신하기 위한 버스(1202) 또는 기타 통신 메커니즘, 및 정보를 처리하기 위해 버스(1202)와 결합되어 있는, 내부 프로세서(1203)를 포함한다. 컴퓨터 시스템(1201)은 내부 프로세서(1203)에서 실행될 명령어 및 정보를 저장하기 위해 버스(1202)에 결합되어 있는 랜덤 액세스 메모리(RAM) 또는 기타 동적 저장 디바이스(예를 들어, DRAM(dynamic RAM), SRAM(static RAM), 및 SDRAM(synchronous DRAM)) 등의 메모리(1204)를 포함한다. 또한, 메모리(1204)는 내부 프로세서(1203)에 의한 명령어들의 실행 동안 임시 변수 또는 기타 중간 정보를 저장하는 데 사용될 수 있다. 컴퓨터 시스템(1201)은 바람직하게는 내부 프로세서(1203)에 대한 정적 정보 및 명령어를 저장하기 위해 버스(1202)에 결합되어 있는 비휘발성 메모리(예를 들어, 판독 전용 메모리(ROM)(1205) 또는 기타 정적 저장 디바이스(예를 들어, PROM(programmable ROM), EPROM(erasable PROM), 및 EEPROM(electrically erasable PROM)) 등)를 포함한다.
컴퓨터 시스템(1201)은 또한 특수 목적 논리 디바이스(예를 들어, ASIC(application specific integrated circuit)) 또는 구성가능 논리 디바이스(예를 들어, SPLD(simple programmable logic device), CPLD(complex programmable logic device), 및 FPGA)도 포함할 수 있다. 컴퓨터 시스템은 또한 Texas Instruments의 TMS320 시리즈 칩, Motorola의 DSP56000, DSP56100, DSP56300, DSP56600, 및 DSP96000 시리즈 칩, Lucent Technologies의 DSP 1600 및 DSP3200 시리즈 또는 Analog Devices의 ADSP2100 및 ADSP21000 시리즈 등의 하나 이상의 디지털 신호 처리기(DSP)를 포함할 수 있다. 디지털 영역으로 변환된 아날로그 신호를 처리하도록 특별히 설계된 다른 프로세서도 사용될 수 있다(이하의 동작 예에서 상세히 설명함).
컴퓨터 시스템(1201)은 내부 프로세서(1203)가 메인 메모리(1204) 등의 메모리에 포함된 하나 이상의 명령어의 하나 이상의 시퀀스를 실행한 것에 응답하여 본 발명의 처리 단계들 중 일부 또는 전부를 수행한다. 이러한 명령어는 하드 디스크(1207) 또는 착탈식 매체 드라이브(1208) 등의 또 다른 컴퓨터 판독가능 매체로부터 메인 메모리(1204) 내로 판독될 수 있다. 이러한 명령어는 USB 플래시 드라이브 또는 점프 드라이브 등의 또 다른 컴퓨터 판독가능 매체로부터 메인 메모리(1204) 내로 판독될 수 있다. 이러한 드라이브는 대부분의 컴퓨터 운영 체제 하에서 플로피 디스크 또는 하드 드라이브로서 기능할 수 있는 고상 메모리 디바이스가다. 다중-처리 구성에서의 하나 이상의 프로세서는 또한 주 메모리(1204)에 포함된 명령어 시퀀스를 실행하는 데도 이용될 수 있다. 대안의 실시예에서, 소프트웨어 명령어 대신에 또는 그와 함께 하드와이어 회로(hardwired circuitry)가 사용될 수 있다. 따라서, 실시예가 하드웨어 회로 및 소프트웨어의 임의의 특정의 조합으로 제한되지 않는다.
전술한 바와 같이, 컴퓨터 시스템(1201)은 본 발명의 개시 내용에 따라 프로그램된 명령어를 보유하고 본 명세서에 기술된 데이터 구조, 테이블, 레코드 또는 기타 데이터를 포함하는 적어도 하나의 컴퓨터 판독가능 매체 또는 메모리를 포함한다. 본 발명에 적합한 컴퓨터 판독가능 매체의 예는 컴팩트 디스크, 하드 디스크, 플로피 디스크, 테이프, 광자기 디스크, PROM(EPROM, EEPROM, 플래시 EPROM), DRAM, SRAM, SDRAM, 또는 임의의 다른 자기 매체, 콤펙트 디스크(예를 들어, CD-ROM) 또는 임의의 다른 광 매체, 펀치 카드, 종이 테이프, 또는 구멍 패턴을 가지는 기타 물리적 매체, 반송파(이하에서 기술함), 또는 컴퓨터가 판독할 수 있는 임의의 다른 매체이다.
본 발명은, 컴퓨터 판독가능 매체들 중 임의의 하나 또는 조합에 저장된, 본 발명을 구현하는 디바이스 또는 디바이스들을 구동하도록 컴퓨터 시스템(1201)을 제어하고 컴퓨터 시스템(1201)이 사람 사용자(예를 들어, 운전자)와 상호작용할 수 있게 하는 소프트웨어를 포함한다. 이러한 소프트웨어는 디바이스 드라이버, 운영 체제, 개발 도구, 및 응용 프로그램 소프트웨어를 포함할 수 있지만, 이들로 제한되지 않는다. 이러한 컴퓨터 판독가능 매체는 또한 본 발명을 구현하는 데 수행되는 처리의 전부 또는 일부(처리가 분산되어 있는 경우)를 수행하는 본 발명의 컴퓨터 프로그램 제품을 포함한다. 본 발명의 컴퓨터 코드 디바이스는 스크립트, 해석가능한 프로그램(interpretable program), DLL(dynamic link library), 자바 클래스, 및 완전한 실행가능 프로그램을 포함하지만, 이들로 제한되지 않는 임의의 해석가능하거나 실행가능한 코드 메커니즘일 수 있다. 게다가, 더 나은 성능, 신뢰성 및/또는 비용을 위해 본 발명의 처리의 일부가 분산될 수 있다.
본 명세서에서 사용되는 바와 같이 "컴퓨터 판독가능 매체"라는 용어는 실행하기 위해 내부 프로세서(1203)에 명령어를 제공하는 데 참여하는 임의의 매체를 지칭한다. 컴퓨터 판독가능 매체는 비휘발성 매체, 휘발성 매체 및 전송 매체를 포함하지만, 이들로 제한되지 않는 많은 형태를 취할 수 있다. 비휘발성 매체는, 예를 들어, 하드 디스크(1207) 또는 착탈식 매체 드라이브(1208)와 같은 광, 자기 디스크, 및 광자기 디스크를 포함한다. 휘발성 매체는 주 메모리(1204)와 같은 동적 메모리를 포함한다. 전송 매체는 버스(1202)를 구성하는 배선을 비롯하여, 동축 케이블, 구리 전선 및 광섬유를 포함한다. 전송 매체는 또한 무선파 및 적외선 데이터 통신 동안에 발생되는 것들과 같은 음향파 또는 광파의 형태를 취할 수 있다.
실행을 위해 내부 프로세서(1203)에 대한 하나 이상의 명령어의 하나 이상의 시퀀스를 수행하기 위해 다양한 형태의 컴퓨터 판독가능 매체가 수반될 수 있다. 예를 들어, 명령어는 처음에 디스크 상에서 원격 컴퓨터로 전달될 수 있다. 버스(1202)에 결합된 적외선 검출기는 적외선 신호로 전달되는 데이터를 수신하고 이 데이터를 버스(1202) 상에 배치할 수 있다. 버스(1202)는 데이터를 주 메모리(1204)로 전달하고, 내부 프로세서(1203)는 주 메모리(1204)로부터 명령어를 검색하고 실행한다. 주 메모리(1204)에 의해 수신된 명령어는 선택적으로 내부 프로세서(1203)에 의한 실행 이전 또는 이후에 저장 디바이스(1207 또는 1208)에 저장될 수 있다.
예를 들어, 본 발명의 일 실시예에서, 컴퓨터 판독가능 매체는, 프로세서에 의해 실행될 때, 프로세서로 하여금 차량의 위치 및 방향을 나타내는 위치 신호를 수신하게 하는 차량 내의 프로세서에서의 실행을 위한 프로로그램 명령어를 포함한다. 수신된 위치 신호는 프로그램가능 인터페이스를 통해 정규화되어 정규화된 위치 신호를 생성한다. 프로세서는 정규화된 위치 신호로부터 작동 제어 신호를 생성하고, 작동 제어 신호를 프로그램가능 인터페이스로 출력하여 정규화된 작동 제어 신호를 생성하며, 이 정규화된 작동 제어 신호는 차량의 업데이트된 이동 경로를 따라 차량의 작동을 제어한다.
본 발명의 일 실시예에서, 컴퓨터 판독가능 매체는, 프로세서에 의해 실행될 때, 프로세서로 하여금 방향 및 속도 제어 명령어 중 적어도 하나를 드라이브 바이 와이어 형식으로 차량에 제공하거나, 웨이포인트 위치를 프로세서에 저장한 것에 기초하여 물체의 존재 및 위치를 결정하거나, 이동 경로를 따라 회피할 정지 또는 이동 물체를 식별함으로써 웨이포인트들 사이에서 차량을 방향 전환하게 하는 차량 내의 프로세서에서 실행하기 위한 프로그램 명령어를 포함한다.
자동차 산업에서의 드라이브 바이 와이어 기술에서, 종래의 기계 및 유압 제어 시스템이 페달 및 조향 느낌 에뮬레이터와 같은 사람-기계 인터페이스 및 전자기계 액츄에이터를 사용하는 전자 제어 시스템으로 대체된다. 따라서, 스티어링 칼럼, 중간 샤프트, 펌프, 호스, 유체, 벨트, 냉각기 및 브레이크 부스터(brake booster), 그리고 마스터 실린더와 같은 종래의 구성요소가 차량으로부터 제거된다. 일 실시예에서, 본 발명은 드라이브 바이 와이어 기능을 용이하게 하는데, 그 이유는 자율 차량 시스템 플랫폼 FPGA 및 입/출력 모듈이 자율 차량의 조향, 제동, 및 추력에 영향을 주는 전자 제어 시스템과 인터페이싱하는 데 도움이 되기 때문이다.
본 발명의 일 실시예에서, 컴퓨터 판독가능 매체는, 프로세서에 의해 실행될 때, 프로세서로 하여금 차량에 대한 물체의 위치를 물체까지의 각각의 거리, 물체로의 각각의 방향, 차량의 방향, 및 차량의 지리 공간 위치에 기초하여 지리 공간 좌표로 변환하게 하는 차량 내의 프로세서에서 실행하기 위한 프로그램 명령어를 포함한다. 상기한 GPS 및 INS 시스템으로부터의 입력은 프로세서(24)에서 물체 위치의 이 변환을 달성하는 데 사용될 수 있다.
본 발명의 일 실시예에서, 컴퓨터 판독가능 매체는, 프로세서에 의해 실행될 때, 프로세서로 하여금 장애물들 중 하나의 위치, 속도, 및 기하 형태를 식별하고, 시간 상에서의 식별된 장애물의 위치 및 속력을 예측하며, 식별된 장애물의 장래 위치를 추정하게 하는 차량 내의 프로세서에서 실행하기 위한 프로그램 명령어를 포함한다. 경로 발견 알고리즘은 2개의 웨이포인트 사이의 기록된 교통 패턴에 기초하여 2개의 웨이포인트 사이의 차량의 경로를 결정할 수 있다. 일 실시예에서, 경로 발견 알고리즘은 2개의 웨이포인트 사이의 기록된 이동 시간, 2개의 웨이포인트 사이의 혼잡 영역의 이력, 및 실시간 혼잡 보고 중 적어도 하나에 기초하여 경로를 결정할 수 있다. 일 실시예에서, 경로 발견 알고리즘은 2개의 웨이포인트 사이의 다수의 특정의 이동 경로에 대한 각각의 가중 평균, 2개의 웨이포인트 사이의 기록된 이동 시간, 2개의 웨이포인트 사이의 혼잡 영역 이력, 실시간 혼잡 보고 중 상기 적어도 하나를 포함한 각자의 가중 평균에 기초하여 경로를 결정할 수 있다.
본 발명의 일 실시예에서, 컴퓨터 판독가능 매체는, 프로세서에 의해 실행될 때, 프로세서(24)로 하여금 (지도 저장 영역에서) 하나의 웨이포인트로부터 다른 웨이포인트로의 방향을 제공하는 웨이포인트의 하나 이상의 논리적 지도에 액세스하게 하는 차량 내의 프로세서에서 실행하기 위한 프로그램 명령어를 포함한다. 논리적 지도는 웨이포인트의 지리 공간 좌표, 차량의 이동 경로를 따르는 도로의 교차로에 대한 교차로 웨이포인트, 및 상이한 웨이포인트 사이의 이동과 연관된 (기록된 또는 계산된) 시간을 포함할 수 있다. 프로세서(24)는 물체 위치를 웨이포인트의 지리 공간 좌표와 비교함으로써 장애물들 중 하나가 장애물인지 상기 웨이포인트 중 하나인지를 판정하도록 장애물 식별 알고리즘을 이용하여 프로그램될 수 있다.
게다가, 본 발명의 컴퓨터 판독가능 매체는 특정의 지역과 연관된 지리적 정보를 상세히 기술하는 프로그램 명령어, 경로 계획 알고리즘(이하에 기술됨), 내비게이션 명령어, 차량에 설치된 이미지 센서에 특유한 명령어, 입체 카메라 또는 차량 바퀴 속도 센서 등의 부가의 센서로부터의 명령 및/또는 데이터의 수신, 또는 운전자 입력 제어 디바이스 또는 기타 온보드 디바이스(나중에 기술됨)로부터의 데이터의 수신을 위한 명령어, 경로 계획 알고리즘, 사용 중인 자율 차량에 대한 차량 추력 및 외력에 대한 응답에 관한 데이터를 포함하는 특수화된 차량 전달 함수, 및 사용 중인 자율 차량에 대한 조향 제어를 포함할 수 있다.
예를 들어, 본 발명의 다양한 실시예에서, 프로그램 명령어는 프로세서로 하여금 섹터들 중 하나로부터의 이미지를 제공하는 카메라로부터의 입력을 처리하게 하도록 구성되어 있다. 프로세서는 이미지에 기초하여 자율 차량의 이동 경로에 대한 차선을 식별한다. 프로세서는 식별된 차선에 장애물이 있는지를 판정할 수 있고, 장애물 주위의 회피 경로를 결정할 수 있다.
컴퓨터 시스템(1201)은 또한 버스(1202)에 결합된 통신 인터페이스(1213)를 포함한다. 통신 인터페이스(1213)는 적어도 일시적으로, 예를 들어, LAN(local area network)(1215)에 또는 소프트웨어를 프로세서(24)로 다운로드하는 동안 다른 통신 네트워크(1216)(인터넷 등)에 또는 차량에 탑재된 다수의 컴퓨터 간의 내부 네트워크에 연결되는 네트워크 링크(1214)에 양방향 데이터 통신 접속을 제공한다. 예를 들어, 통신 인터페이스(1213)는 임의의 패킷 교환 LAN에 접속되는 네트워크 인터페이스 카드일 수 있다. 다른 예로서, 통신 인터페이스(1213)는 대응하는 유형의 통신 회선에 데이터 통신 연결을 제공하는 ADSL(asymmetrical digital subscriber line) 카드, ISDN(integrated services digital network) 카드, 또는 모뎀일 수 있다. 무선 링크는 또한 온보드 컴퓨터, 이미지 센서, 바퀴 속도 센서, 생체 인식 센서, 및/또는 운전자 명령 입력 디바이스 중 임의의 것과의 데이터 교환을 제공하기 위한 통신 인터페이스(1213)의 일부로서 구현될 수 있다. 임의의 이러한 구현에서, 통신 인터페이스(1213)는 다양한 유형의 정보를 표현하는 디지털 데이터 스트림을 전달하는 전기, 전자기 또는 광학 신호를 전송하고 수신한다.
네트워크 링크(1214)는 통상적으로 온보드 컴퓨터, 이미지 센서, 바퀴 속도 센서, 생체 인식 센서, 및/또는 운전자 명령 입력 디바이스 중 임의의 것과의 데이터 교환을 제공하기 위해 하나 이상의 네트워크를 통해 다른 데이터 디바이스로의 데이터 통신을 제공한다. 예를 들어, 네트워크 링크(1214)는 로컬 네트워크(1215)(예를 들어, LAN)를 통해 또는 통신 네트워크(1216)를 통해 통신 서비스를 제공하는 서비스 공급자에 의해 운영되는 장비를 통해 다른 컴퓨터로의 일시적인 접속을 제공할 수 있다. 도 13에 도시된 바와 같이, 컴퓨팅 시스템(1201)은, 예를 들어, 디지털 데이터 스트림을 전달하는 전기, 전자기, 또는 광 신호를 사용하는 로컬 네트워크(1215) 및 통신 네트워크(1216), 및 관련 물리 계층(예를 들어, CAT 5 케이블, 동축 케이블, 광섬유 등)을 통해 입력 디바이스(1217)와 통신하고 있을 수 있다. 컴퓨터 시스템(1201)으로/으로부터 디지털 데이터를 전달하는, 다양한 네트워크를 통한 신호 및 통신 인터페이스(1213)를 통한 네트워크 링크(1214) 상의 신호가 기저 대역 신호 또는 반송파 기반 신호로 구현될 수 있다. 기저 대역 신호는 디지털 데이터 비트의 스트림을 나타내는 디지털 데이터를 비변조 전기 펄스로서 전달하며, "비트"라는 용어는 광의적으로 심볼을 의미하는 것으로 해석되어야 하며, 여기서 각각의 심볼은 적어도 하나 이상의 정보 비트를 전달한다. 디지털 데이터는 또한 전도성 매체를 통해 전파되거나 전파 매체를 통해 전자기파로서 전송되는 진폭, 위상 및/또는 주파수 천이 변조 신호에서와 같이 반송파를 변조하는 데 사용될 수 있다. 따라서, 디지털 데이터는 "유선" 통신 채널을 통해 비변조 기저대역 데이터로서 전송될 수 있고 및/또는 반송파를 변조함으로써 기저 대역과 다른 소정의 주파수 대역 내에서 전송될 수 있다. 컴퓨터 시스템(1201)은 네트워크(들)(1215, 1216), 네트워크 링크(1214) 및 통신 인터페이스(1213)를 통해 프로그램 코드를 포함하는 데이터를 전송 및 수신할 수 있다. 게다가, 네트워크 링크(1214)는 LAN(1215)을 통해 차량에 탑재된 다양한 GPS 및 INS 시스템으로의 접속을 제공할 수 있다. 본 발명의 다양한 실시예에서, 입력 디바이스(1217)는 프로세서(24)에 입력을 제공하고, 본 발명에서 논의된 이미지 센서, 바퀴 속도 센서, 생체 인식 센서, 및/또는 운전자 명령 입력 디바이스를 나타낸다.
응용 분야
본 발명은 본 발명이 각각 기본 모드 또는 보조 모드에서 기능하는 자율 주행 차량 및 사람 주행 차량 둘다에서 광범위한 응용이 있다.
일반적으로, 전술한 속성들 중 몇개를 갖는 본 발명이 각종의 주행가능 디바이스에 포함될 수 있다. 본 발명의 일 실시예에서, 이러한 디바이스는, 예를 들어, 자동차, 트럭, 스포츠 유틸리티 차량, 장갑 차량, 보트, 선박, 바지선, 유조선, 및 장갑 선박을 포함하는 육상 또는 수상 동력 운송 수단이다. 선박의 경우, 본 발명은 가시성이 제한되고 다른 선박의 회피가 요망되는 날씨 또는 야간 조건에서 항행할 때 뿐만 아니라 도크 구조물 및 고정 구조물의 선박에 대한 손상을 최소화하기 위해 도크 구조물과 고정 구조물 사이에서의 선박의 제어가 중요한 도킹 및 고정 동작 시에도 사용될 수 있다.
본 발명은 또한 항공기에도 적용된다. 상세하게는, 고속 항공기에 대한 적용은 비행기가 올바른 조치를 취할 수 있을 정도로 비행기로부터 충분한 거리에서 물체의 존제를 판정하기 위해 검출기 감도 및 정확도에 의존할 것이다. 그러나, 속도가 높지 않은 공항 진입 및 이륙에서 본 발명이 유용하다. 예를 들어, 이륙 및 착륙 시에, 한가지 관심사는 종종 활주로 끝에 있는 새떼가 엔진에 위험이 된다는 것이다. 새는 사람의 눈으로 멀리서 보기 힘들고 항공기 레이더에 의해 검출하기 어렵다. 게다가, 본 발명은 헬리콥터에 적용되며, 많은 경우에 조종사의 시야로부터 보이지 않는 장애물이 있는 임시 지역에 빈번히 착륙하는 구조 헬리콥터에 특히 그렇다.
다른 응용 분야는 공기보다 가벼운 운송 수단(예를 들어, 자율 기상 관측 기구, 예를 들어, 원격 제어 소형 항공기를 포함하는 자율 경계 순찰 시스템), 기타 소형 정찰 항공기, 및 수륙 양용 차량(예를 들어, 호버크라프트 등을 비롯한 수륙 공격 차량 등)을 포함한다.
본 발명의 일 실시예에서, 주행가능 디바이스는 운전자-보조 제어를 사용하지 않는 자율 차량이거나 컴퓨터-보조 제어를 사용하는 운전자-제어 차량일 수 있다. 본 발명의 일 실시예에 따르면, 자율 차량은 운전자가 위험에 처하게 될 상기한 환경적으로 위험한 상황에서 응용이 있다. 본 발명의 운전자-제어 차량은 운전자가 방향 감각을 잃게 될 수 있거나, 운전자가 의료 응급 상황에 처하는 경우 또는, 예를 들어, 운전자가 좋지 않은 운전 상태에서 방향 감각을 잃게 된 경우에 일어나게 되는 것처럼 물리적으로 차량에 명령을 내릴 수 없게 될 수 있는 상기한 보다 종래의 환경에서 응용이 있다. 따라서, 본 발명의 일 실시예에서, 프로세서(24)는 운전자 장애의 경우에, 또는 즉각적인 경로 차단의 경우에 또는 운전자 요청의 경우에 차량을 제어하도록 구성되어 있다.
본 발명의 이 실시예의 예시적인 예로서, 자율 차량은 소정의 경로와 비교하여 운전자가 어디에서 운전하고 있는지를 관찰함으로써 운전자 장애를 인식할 수 있다. 차량의 현재 경로 및 소정의 경로가 유사하지 않은 경우, 자율 차량은, 예를 들어, 운전자가 최근에 핸들을 회전했는지 및/또는 브레이크 또는 쓰로틀을 밟았는지를 알아보기 위해 검사를 할 수 있다. 의사 결정 프로세스에 비교와 조향 및 브레이크 검사 둘다가 포함될 수 있는데, 그 이유는 운전자가 크루즈 제어를 켠 상태에서 직선 도로를 오랫동안 주행한 경우, 운전자가 핸들을 능동적으로 회전하거나 브레이크 또는 쓰로틀을 적용하지 않을 수 있기 때문이다. 동일한 논리에 의해, 운전자가 능동적으로 자동차를 조향하고 있는 한, 운전자는 자율 차량의 경로와 일치하지 않는 경로를 주행할 수 있다. 자율 차량이 인계할 필요가 있는 경우, 본 발명의 일 실시예에서, 자율 차량은 먼저 자율 차량이 인계할 것임을 청각적으로 또한 시각적으로 운전자에게 경고를 하고, 이어서 인계를 하고, 차량을 가능한 한 매끄럽고 안전하게 안전한 정지 위치로 조향한다. 운전자가 다시 제어를 하고자 하는 경우, 일 실시예에서, 본 발명의 자율 차량은 운전자가 제어를 재개할 누름 버튼 또는 기타 입력 디바이스를 제공한다. 본 발명의 다른 실시예에서, 운전자는 또다시 제어를 자율 차량으로 넘기기 위해 버튼(또는 명령 입력)을 누를 수 있다. 따라서, 다양한 실시예에서, 본 발명은 협동적 자율 주행 모드를 제공한다.
본 발명의 다른 실시예에서, 생체 인식 센서는 다른 입력 디바이스를 나타낼 수 있다. 이 실시예에서, 생체 인식 센서는 운전자가, 예를 들어, 차량의 핸들에 내장된 심장 박동 모니터로부터 프로세서(24)로의 입력을 통해 능동적으로 운전하고 있는지를 판정한다. 본 발명에 적합한 심장 박동 모니터의 한 예는 운동 장비에서 사용되는 심장 박동이며, 이는 일 실시예에서 핸들에 통합되어 있거나, 대안으로서, 운전자가 착용하고 있고 프로세서(24)와 무선 통신하고 있을 수 있다. 프로세서(24)가 심장 박동의 완전 상실 또는 긴 기간(예를 들어, 5초) 동안 극히 낮은 심장 박동을 검출한 경우, 프로세서(24)는 차량을 제어하도록 구성되어 있다. 프로세서는, 자동차가 적당한 제어 하에 있을 때 운전자의 정상 심장 박동을 모니터링함으로써, 예를 들어, 운전자가 운전 중에 졸았거나, 경련을 일으켰거나 심장 마비가 있는 것으로 인해 장애가 있는지를 판정하는 기초로 삼을 것이다. 협동적 동작 모드(전술함)에서도 이 실시예가 구현될 수 있다. 이전과 같이, 본 발명의 일 실시예에서, 차량의 제어를 인계하고 차량을 조종하여 안전하게 정지시키기 전에 가청 경보가 발행된다. 운전자가 실제로 장애가 없는 경우, 운전자는 프로세서(24)로부터 제어를 다시 받기 위해 단순히 버튼(또는 다른 입력 디바이스)을 누를 수 있다.
본 발명의 다른 실시예에서, 자율 차량은 소정의 경로에 걸쳐 반복적으로 동작될 수 있다. 예를 들어, 사람 운전자는 자율 차량을 기록 모드로 전환하는 버튼을 누른다. 사람은 자율 차량이 경로를 주행하기를 원하는 것과 똑같이 차량을 작동한다. 사람 운전자는 이어서 버튼을 다시 누르고, 자율 차량은 아주 높은 수준의 신뢰성 및 반복성으로 기록된 경로를 되풀이해서 주행한다. (반복성은 자동차 테스터의 문제이다.) 이 기능은 또한 차량이 연속하여 며칠 동안 위험한 상태에서 오프로드로 주행되는 내구성 테스트 차량에 유용하며, 현재는 사람의 신체가 비교적 약한 것으로 인해 많은 사람 운전자가 이 작업을 수행하는 데 사용된다. 이 기능은 또한 장거리 동안 일정한 속도로 차량을 운전하는 데 유용하다. 예를 들어, 이 기능은 연료 소모 성능에 대해 경주 트랙에서 고속도로 속도로 차량을 테스트하는 데 유용할 것이다.
본 발명의 다른 실시예에서, 사용자가 목적지를 선택할 수 있는 지도 프로그램(예를 들어, 랩톱 상에서 실행됨)과 관련하여 주행가능 디바이스가 사용될 수 있다. 이 시점에서, 자율 내비게이션 소프트웨어는 지도 소프트웨어에 액세스하고 "메인 스트리트에서 좌회전"과 같은 사람 지시에서보다는 GPS 웨이포인트를 제외하고 (소프트웨어가 보통 하는 것처럼) 경로를 발생할 것이다. 이 시점에서, 자율 차량은 그 경로를 따라 계속하여 정상 동작하고 있다. 일 실시예에서, 지도 소프트웨어는 도로폭 및 속도 제한 등의 부가 정보를 자율 내비게이션 프로그램에 제공하도록 커스터마이즈된다.
본 발명의 내비게이션 및 제어 시스템에 대한 다른 응용 분야는 1) 예를 들어, 들판에서 작물을 수확하는 것, 경작하는 것, 풀을 베는 것 등의 예측된 경로에서 반복적인 작업을 수행하는 농업용 장비, 2) 예를 들어, 통상적으로 탈출을 방해하게 될 정전 또는 연기로 가득찬 통로를 통해 자재 또는 사람을 운송할 수 있는 광산 장비(예를 들어, 동력 카트를 포함함), 3) 동굴 탐험 장비, 4) 가시성 장애가 응급 차량이 전방으로 진행하는 것에 방해가 되어서는 안되는, 예를 들어, 소방, 앰뷸런스 및 구조대 등의 응급 또는 경찰 차량, 또는 차량의 유인화가 운전자를 위험에 처하게 하는 위험한 환경적 조건에서 동작하는 차량, 5) 팰릿, 상자 등을 보관/검색하는 데 사용되는 창고 관리 장비, 및 6) 장난감을 포함하지만, 이들로 제한되지 않는다.
본 발명의 자율 차량을 경찰 차량에 적용하는 것의 예시적인 예로서, 뉴올리언즈주의 코즈웨이 다리(길이가 24마일인 세계에서 가장 긴 다리)에서는, 상당한 안개 시기가 있다. 안개가 짙은 아침에, 그 다리에 걸쳐 35 mph로 주행하는 경찰차에 의해 교통이 호위된다. 극히 짧은 가시성으로 인해 저속이 요구된다. 안개가 강한 아침에, 호위도 가능하지 않기 때문에 다리가 폐쇄된다. 호위 중인 인도 경찰차가 상기한 협동적 모드에서 동작하는 본 발명의 자율 차량인 경우, 경찰차는 어떤 유형의 안개에서도 안전하게 호위할 수 있으며, RIEGL™ 이미징 센서가 사용될 때 특히 그렇다. 야간에 주행하는 경우에도 마찬가지이다. 본 발명의 자율 차량은 어둠에 의해 영향을 받지 않는다.
상기 개시 내용을 바탕으로 본 발명의 많은 수정 및 변형이 가능하다. 따라서, 첨부된 특허청구범위의 범위 내에서, 본 발명이 본 명세서에 구체적으로 개시된 것과 다른 방식으로 실시될 수 있다는 것을 잘 알 것이다.

Claims (36)

  1. 내비게이션 및 제어 시스템으로서,
    차량의 위치 및 방향을 나타내는 위치 신호들을 발생하도록 구성된 하나 이상의 위치 센서;
    입력들을 갖고 상기 차량의 작동을 제어하는 출력들을 생성하는 하나 이상의 작동 제어 메커니즘; 및
    상기 작동 제어 메커니즘들로부터 원격지에 배치된 자체-완비된 자율 제어기를
    포함하고, 상기 자체-완비된 자율 제어기는,
    상기 위치 센서들로부터 상기 위치 신호들을 수신하고 상기 차량의 업데이트된 이동 경로를 정의하는 작동 제어 신호들을 발생하도록 구성된 프로세서, 및
    상기 위치 센서들, 상기 작동 제어 메커니즘들 및 상기 프로세서 간의 통신을 제공하고, 상기 위치 센서들로부터 상기 프로세서로의 입력들을 정규화하고 상기 작동 제어 메커니즘들에 입력들로서 인가되는 호환 작동 제어 신호들을 발생하도록 구성된 프로그램가능 인터페이스를 포함하며, 이에 의해 상기 자체-완비된 자율 제어기는 각종의 상이한 센서들 및 상이한 작동 제어 메커니즘들과 작동하도록 구성가능한 네비게이션 및 제어 시스템.
  2. 제1항에 있어서, 상기 차량의 이동 경로에 대해 물체들을 나타내는 물체 신호들을 발생하도록 구성된 하나 이상의 물체 센서를 더 포함하고,
    상기 프로세서는, 상기 물체 센서들로부터 상기 물체 신호들을 수신하고, 상기 물체 신호들로부터 정지해 있는 물체들 및 상기 차량의 상기 이동 경로에 대해 이동하는 물체들을 식별하며, 상기 식별된 정지 물체들 및 이동 물체들과 상기 위치 신호들을 고려하여 상기 업데이트된 이동 경로를 정의하는 작동 제어 신호들을 발생하도록 구성되어 있는 네비게이션 및 제어 시스템.
  3. 제2항에 있어서, 상기 프로그램가능 인터페이스는, 상기 위치 센서들, 상기 물체 센서들, 상기 작동 제어 메커니즘들, 및 상기 프로세서 간의 통신을 제공하도록 구성되고, 상기 물체 센서들로부터 상기 프로세서로의 입력들을 정규화하도록 구성되어 있는 네비게이션 및 제어 시스템.
  4. 제2항에 있어서, 상기 물체 센서들은, 빔을 생성하고 상기 물체들로부터 상기 빔의 반사를 검출하도록 구성된 광 검출 및 범위 디바이스를 포함하는 네비게이션 및 제어 시스템.
  5. 제2항에 있어서, 상기 물체 센서들은, 빔을 생성하고 상기 물체들로부터 방출된 빔의 파장에서의 반사를 검출하도록 구성된 레이저 레이더 디바이스를 포함하는 네비게이션 및 제어 시스템.
  6. 제2항에 있어서, 상기 물체 센서들은 물체들이 식별되는 이동 경로의 이미지를 제공하도록 구성된 카메라를 포함하는 네비게이션 및 제어 시스템.
  7. 제1항에 있어서, 상기 프로그램가능 인터페이스에 프로그래밍 명령어들을 입력하도록 구성된 프로그램 인터페이스를 더 포함하는 네비게이션 및 제어 시스템.
  8. 제1항에 있어서, 상기 프로세서는, 방향 및 속도 제어 명령어들 중 적어도 하나를 드라이브 바이 와이어(drive by wire) 형식으로 상기 작동 제어 메커니즘들에 제공하도록 구성되고, 이에 의해 상기 프로세서가 엔진 쓰로틀링(engine throttling), 차량 조향, 및 차량 제동 중 적어도 하나를 전기적으로 제어하는 네비게이션 및 제어 시스템.
  9. 제1항에 있어서, 상기 이동 경로를 따르는 웨이포인트(waypoint)들의 논리적 지도들을 저장하도록 구성된 지도 저장 영역을 더 포함하고, 상기 논리적 지도는 하나의 웨이포인트로부터 다른 웨이포인트로의 방향들, 상기 웨이포인트들의 지리 공간 좌표들, 상기 차량의 이동 경로를 따르는 도로들의 교차로들, 및 상이한 웨이포인트들 간의 이동과 연관된 시간들 중 적어도 하나를 포함하는 네비게이션 및 제어 시스템.
  10. 제9항에 있어서, 상기 프로세서는 물체 위치를 상기 웨이포인트들의 지리 공간 좌표들과 비교함으로써 상기 차량에 근접해 있는 물체들이 상기 웨이포인트들인지를 판정하도록 장애물 식별 알고리즘으로 프로그램되는 네비게이션 및 제어 시스템.
  11. 제1항에 있어서, 상기 위치 센서는 GPS(global positioning system) 디바이스 또는 INS(inertial navigation system) 중 적어도 하나를 포함하는 네비게이션 및 제어 시스템.
  12. 제1항에 있어서, 상기 프로세서는,
    상기 차량에 근접해 있는 물체들의 위치, 속도, 및 기하 형태를 식별하고, 상기 식별된 물체들의 위치 및 속도를 제시간에 예측하며, 상기 식별된 물체들의 장래 위치들을 추정하도록 구성된 가변 구조물 관찰자를 포함하는 네비게이션 및 제어 시스템.
  13. 제1항에 있어서, 상기 프로세서는,
    상기 이동 경로에 대해, 2개의 웨이포인트들 사이의 기록된 교통 패턴들에 기초하여 상기 2개의 웨이포인트들 사이의 상기 차량의 경로를 결정하도록 구성된 경로 발견 알고리즘을 포함하는 네비게이션 및 제어 시스템.
  14. 제13항에 있어서, 상기 경로 발견 알고리즘은 상기 2개의 웨이포인트들 사이의 혼잡 영역들의 이력, 실시간 혼잡 보고들, 및 상기 2개의 웨이포인트들 사이의 기록된 이동 시간들 중 적어도 하나에 기초하여 상기 경로를 결정하도록 구성되는 네비게이션 및 제어 시스템.
  15. 제14항에 있어서, 상기 경로 발견 알고리즘은 상기 2개의 웨이포인트들 사이의 다수의 특정의 이동 경로에 대한 각각의 가중 평균들에 기초하여 상기 경로를 결정하도록 구성되고, 각각의 가중 평균들은 상기 2개의 웨이포인트들 사이의 상기 혼잡 영역들의 이력, 상기 실시간 혼잡 보고들, 상기 2개의 웨이포인트들 사이의 상기 기록된 이동 시간들 중 상기 적어도 하나를 포함하는 네비게이션 및 제어 시스템.
  16. 제1항에 있어서, 상기 이동 경로의 이미지를 제공하도록 구성된 카메라를 더 포함하고;
    상기 프로세서는 상기 이미지에 기초하여 자율 차량의 이동 경로에 대한 차선을 식별하는 네비게이션 및 제어 시스템.
  17. 제16항에 있어서, 상기 프로세서는 상기 식별된 차선에 장애물이 있는지를 판정하도록 구성되는 네비게이션 및 제어 시스템.
  18. 제1항에 있어서, 상기 프로세서는 정지 물체들 또는 이동 물체들 중 적어도 하나의 주위의 회피 경로를 결정하도록 구성되는 네비게이션 및 제어 시스템.
  19. 제18항에 있어서, 상기 프로세서는 상기 정지 물체들 또는 이동 물체들과의 충돌 가능성을 예측함으로써 상기 회피 경로를 결정하도록 구성되고,
    제1 동작으로서, 상기 회피 경로에 대한 제1 해결책이 존재하는지를 판정하기 위해 상기 이동 경로를 따라 차량의 속도가 수정되고;
    제2 동작으로서, 상기 제1 해결책이 존재하지 않을 때, 상기 회피 경로에 대한 제2 해결책이 존재하는지를 판정하기 위해 상기 이동 경로를 따라 슬라이딩 모드 알고리즘에서의 방향 전환 조종이 구현되며;
    제3 동작으로서, 상기 제1 해결책 또는 상기 제2 해결책이 존재하지 않을 때, 상기 차량이 정지되는 네비게이션 및 제어 시스템.
  20. 제18항에 있어서, 상기 프로세서는 상기 정지 물체들 및 이동 물체들의 회피를 위한 최적 궤적을 예측하기 위해 슬라이딩 모드 프로그램을 이용하는 가상 경로 분석에 기초하여 상기 회피 경로를 결정하도록 구성되고,
    상기 슬라이딩 모드 분석은 1) 상기 이동 경로로부터의 상기 차량의 이동 지점
    Figure pct00076
    , 2) 상기 이동 경로로부터 상기 차량의 거리 s(t), 및 3) 상기 이동 지점
    Figure pct00077
    으로부터 실제 차량 위치
    Figure pct00078
    의 오차 벡터 E(t)에 기초하여 조향 명령을 발생하도록 프로그램되며,
    상기 오차 벡터 E(t)는 상기 차량이 상기 이동 경로로부터 벗어나게 하거나 접근 경로로부터 벗어나 상기 이동 경로로 가게 할 수 있는 시간 의존적인 비선형 인자들(time dependent non-linear factors)을 수용하는 네비게이션 및 제어 시스템.
  21. 차량의 내비게이션 및 제어 방법으로서,
    차량의 위치 및 방향을 나타내는 위치 신호들을 발생하는 단계;
    프로그램가능 인터페이스를 통해 상기 위치 신호들을 정규화하여 정규화된 위치 신호들을 생성하는 단계;
    상기 정규화된 위치 신호들부터 작동 제어 신호들을 생성하는 단계; 및
    상기 프로그램가능 인터페이스를 통해 상기 작동 제어 신호들을 정규화하여, 상기 차량의 업데이트된 이동 경로를 따라 상기 차량의 작동을 제어하는 정규화된 작동 제어 신호들을 생성하는 단계
    를 포함하는 차량의 네비게이션 및 제어 방법.
  22. 운행가능 유닛으로서,
    차량을 포함하고,
    상기 차량은,
    차량의 위치 및 방향을 나타내는 위치 신호들을 발생하도록 구성된 하나 이상의 위치 센서;
    입력들을 갖고 상기 차량의 작동을 제어하는 출력들을 생성하는 하나 이상의 작동 제어 메커니즘; 및
    상기 적어도 하나의 작동 제어 메커니즘으로부터 원격지에 배치된 자체-완비된 자율 제어기를 포함하고,
    상기 자체-완비된 자율 제어기는,
    상기 위치 센서들로부터 상기 위치 신호들을 수신하고 상기 차량의 업데이트된 이동 경로를 정의하는 작동 제어 신호들을 발생하도록 구성된 프로세서, 및
    상기 위치 센서들, 상기 작동 제어 메커니즘들 및 상기 프로세서 간의 통신을 제공하고, 상기 위치 센서들로부터 상기 프로세서로의 입력들을 정규화하고 상기 작동 제어 메커니즘들에 입력들로서 인가되는 호환 작동 제어 신호들을 발생하도록 구성된 프로그램가능 인터페이스를 포함하며, 이에 의해 상기 자체-완비된 자율 제어기는 각종의 상이한 센서들 및 상이한 작동 제어 메커니즘들과 동작하도록 구성가능한 운행가능 유닛.
  23. 제22항에 있어서, 상기 차량은 랜드-기반(land-based) 차량을 포함하는 운행가능 유닛.
  24. 제23항에 있어서, 상기 랜드-기반 차량은 자동차, 트럭, 스포츠 유틸리티 차량, 구조 차량, 농업용 차량, 광산 차량, 에스코트 차량, 장난감 차량, 정찰 차량, 테스트-추적 차량, 및 장갑 차량 중 적어도 하나를 포함하는 운행가능 유닛.
  25. 제22항에 있어서, 상기 차량은 선박을 포함하는 운행가능 유닛.
  26. 제25항에 있어서, 상기 선박은 보트(boat), 배(ship), 바지선(barge), 유조선(tanker), 수륙 양용 차량(amphibious vehicle), 호버크라프트(hovercraft), 및 장갑선(armored ship) 중 적어도 하나를 포함하는 운행가능 유닛.
  27. 제22항에 있어서, 상기 차량은 운전자-보조 제어(driver-assisted control)가 없는 자율 차량을 포함하는 운행가능 유닛.
  28. 제22항에 있어서, 상기 차량은 컴퓨터-보조 제어(computer-assisted control)를 갖는 운전자-제어 차량을 포함하는 운행가능 유닛.
  29. 제28항에 있어서, 상기 프로세서는 운전자 장애를 인식하도록 구성되는 운행가능 유닛.
  30. 제29항에 있어서, 상기 프로세서는 상기 차량의 운전자-제어의 분석으로부터 또는 생체 인식 센서로부터 운전자 장애를 인식하도록 구성되는 운행가능 유닛.
  31. 제28항에 있어서, 상기 프로세서는 입력 명령의 경우에 상기 차량을 제어하도록 구성되는 운행가능 유닛.
  32. 차량 내의 프로세서 상에서 실행되는 프로그램 명령어들을 포함하는 컴퓨터 판독가능 매체로서, 상기 프로그램 명령어들은 상기 프로세서에 의해 실행될 때, 상기 프로세서로 하여금,
    차량의 위치 및 방향을 나타내는 위치 신호들을 수신하는 기능 - 상기 위치 신호들은 프로그램가능 인터페이스를 통해 정규화되어 정규화된 위치 신호들을 생성함 -;
    상기 정규화된 위치 신호들로부터 작동 제어 신호들을 생성하는 기능; 및
    상기 프로그램가능 인터페이스에 상기 작동 제어 신호들을 출력하여, 상기 차량의 업데이트된 이동 경로를 따라 상기 차량의 작동을 제어하는 정규화된 작동 제어 신호들을 생성하는 기능을 수행하게 하는 컴퓨터 판독가능 매체.
  33. 내비게이션 및 제어 시스템으로서,
    입력들을 갖고 차량의 작동을 제어하는 출력들을 생성하는 하나 이상의 작동 제어 메커니즘; 및
    1) 이동 경로로부터의 상기 차량의 이동 지점
    Figure pct00079
    , 2) 상기 이동 경로로부터 상기 차량의 거리 s(t), 및 3) 상기 이동 지점
    Figure pct00080
    으로부터 실제 차량 위치
    Figure pct00081
    의 오차 벡터 E(t)에 기초하여 조향 명령을 발생하도록 구성된 프로세서를 포함하고,
    상기 오차 벡터 E(t)가 상기 차량이 상기 이동 경로로부터 벗어나게 하거나 접근 경로로부터 벗어나 상기 이동 경로로 가게 할 수 있는 시간 의존적인 비선형 인자들을 수용하는 내비게이션 및 제어 시스템.
  34. 제33항에 있어서, 상기 프로세서는 상기 오차 벡터 E(t)가
    Figure pct00082
    형태의 미분 방정식을 만족시키고 최적 이동 방향을 위해 0으로 수렴하는 것에 기초하여 상기 차량의 이동 방향을 결정하도록 구성되어 있는 내비게이션 및 제어 시스템.
  35. 제33항에 있어서, 상기 프로세서가 상기 이동 경로를 따라 상기 이동 지점
    Figure pct00083
    을 결정하는 것은 전방 바퀴 속도, 후방 바퀴 속도, 이들 사이의 슬립 정도, 및 차량 미끄러짐(vehicle skid) 중 적어도 하나를 포함하는 비선형 인자들을 결정하는 것을 포함하는 내비게이션 및 제어 시스템.
  36. 제33항에 있어서, 상기 프로세서가 상기 이동 경로를 따라 상기 이동 지점
    Figure pct00084
    을 결정하는 것은 상기 비선형 인자들을 고려하기 위해 상기 이동 경로에 대해 s(t)의 시간 도함수를 결정하는 것을 포함하는 내비게이션 및 제어 시스템.
KR1020117011845A 2008-10-24 2009-10-26 자율 운전 차량의 제어 및 시스템 KR101736977B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/289,325 US8126642B2 (en) 2008-10-24 2008-10-24 Control and systems for autonomously driven vehicles
US12/289,325 2008-10-24
PCT/US2009/062059 WO2010048611A1 (en) 2008-10-24 2009-10-26 Control and systems for autonomously driven vehicles

Publications (2)

Publication Number Publication Date
KR20110074629A true KR20110074629A (ko) 2011-06-30
KR101736977B1 KR101736977B1 (ko) 2017-05-17

Family

ID=42118294

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020117011845A KR101736977B1 (ko) 2008-10-24 2009-10-26 자율 운전 차량의 제어 및 시스템

Country Status (8)

Country Link
US (6) US8126642B2 (ko)
EP (1) EP2338029B1 (ko)
JP (4) JP2012507088A (ko)
KR (1) KR101736977B1 (ko)
CN (2) CN104133473B (ko)
AU (1) AU2009308192B2 (ko)
CA (1) CA2739989C (ko)
WO (1) WO2010048611A1 (ko)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168944A1 (en) * 2013-04-10 2014-10-16 Google Inc. Mapping active and inactive construction zones for autonomous driving
KR101470190B1 (ko) * 2013-07-09 2014-12-05 현대자동차주식회사 자율주행 시스템의 고장 처리 장치 및 그 방법
KR101491849B1 (ko) * 2013-07-23 2015-02-06 현대오트론 주식회사 차간 거리용 센서 고장 보상 시스템 및 방법
KR20160051861A (ko) * 2013-09-05 2016-05-11 크라운 이큅먼트 코포레이션 동적 오퍼레이터 거동 분석기
KR20180073540A (ko) * 2018-06-25 2018-07-02 엘지전자 주식회사 자동주차 보조장치 및 이를 포함하는 차량
US10073458B2 (en) 2016-11-11 2018-09-11 Hyundai Motor Company Path determining apparatus for autonomous driving vehicle and path determining method
KR101897992B1 (ko) * 2017-03-28 2018-09-13 재단법인대구경북과학기술원 자율주행 자동차 설계를 위한 자율 주행 제어 개발 키트
KR20190028365A (ko) * 2016-03-23 2019-03-18 누토노미 인크. 차량 주행 및 무인 운전을 용이하게 하는 것
KR102097715B1 (ko) * 2019-04-29 2020-04-06 주식회사 트위니 실시간 웨이포인트 경로 개선 방법, 이를 구현하기 위한 프로그램이 저장된 기록매체 및 이를 구현하기 위해 매체에 저장된 컴퓨터프로그램
US10737689B2 (en) 2016-10-04 2020-08-11 Lg Electronics Inc. Parking assistance apparatus and vehicle having the same
KR102168104B1 (ko) * 2019-05-24 2020-10-21 장진만 농업용기계의 자율 주행 방법
WO2020235814A1 (ko) * 2019-05-21 2020-11-26 엘지전자 주식회사 경로 제공 장치 및 그것의 경로 제공 방법
KR20210014065A (ko) * 2019-07-29 2021-02-08 군산대학교산학협력단 인공 지능 심층 학습 타겟 탐지 및 속도 퍼텐셜 필드 알고리즘 기반 장애물 회피 및 자율 주행 방법 및 장치
WO2021025250A1 (ko) * 2019-08-05 2021-02-11 엘지전자 주식회사 주변 차량 상태 정보 공유 방법 및 장치
US20220075387A1 (en) * 2018-12-26 2022-03-10 Samsong Electronics Co., Ltd. Electronic device and control method thereof
WO2022114410A1 (ko) * 2020-11-27 2022-06-02 주식회사 넥스트칩 초음파 센서를 이용하여 다채널 영상들을 효율적으로 저장하는 전자 장치 및 그 동작방법
KR20220134029A (ko) * 2020-02-21 2022-10-05 블루스페이스 에이아이, 아이엔씨. 자율 주행 내비게이션 동안의 객체 회피 방법

Families Citing this family (1041)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8944070B2 (en) 1999-04-07 2015-02-03 Intuitive Surgical Operations, Inc. Non-force reflecting method for providing tool force information to a user of a telesurgical system
US11835343B1 (en) * 2004-08-06 2023-12-05 AI Incorporated Method for constructing a map while performing work
US9789608B2 (en) 2006-06-29 2017-10-17 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
US8050863B2 (en) 2006-03-16 2011-11-01 Gray & Company, Inc. Navigation and control system for autonomous vehicles
US8062211B2 (en) 2006-06-13 2011-11-22 Intuitive Surgical Operations, Inc. Retrograde instrument
US20090192523A1 (en) 2006-06-29 2009-07-30 Intuitive Surgical, Inc. Synthetic representation of a surgical instrument
US10008017B2 (en) 2006-06-29 2018-06-26 Intuitive Surgical Operations, Inc. Rendering tool information as graphic overlays on displayed images of tools
US10258425B2 (en) * 2008-06-27 2019-04-16 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide
US9718190B2 (en) 2006-06-29 2017-08-01 Intuitive Surgical Operations, Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen
JP4980076B2 (ja) * 2007-01-11 2012-07-18 富士重工業株式会社 車両の運転支援装置
US9138129B2 (en) 2007-06-13 2015-09-22 Intuitive Surgical Operations, Inc. Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide
US9469034B2 (en) 2007-06-13 2016-10-18 Intuitive Surgical Operations, Inc. Method and system for switching modes of a robotic system
US9084623B2 (en) * 2009-08-15 2015-07-21 Intuitive Surgical Operations, Inc. Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide
US8903546B2 (en) 2009-08-15 2014-12-02 Intuitive Surgical Operations, Inc. Smooth control of an articulated instrument across areas with different work space conditions
US9089256B2 (en) * 2008-06-27 2015-07-28 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide
US8620473B2 (en) 2007-06-13 2013-12-31 Intuitive Surgical Operations, Inc. Medical robotic system with coupled control modes
JP4744537B2 (ja) * 2008-02-05 2011-08-10 日立オートモティブシステムズ株式会社 走行レーン検出装置
CA2629445A1 (en) * 2008-04-08 2009-10-08 Jacob K. The Third party speed control device
US8060280B2 (en) * 2008-04-15 2011-11-15 Autoliv Asp, Inc. Vision system for deploying safety systems
US8917904B2 (en) * 2008-04-24 2014-12-23 GM Global Technology Operations LLC Vehicle clear path detection
US8890951B2 (en) * 2008-04-24 2014-11-18 GM Global Technology Operations LLC Clear path detection with patch smoothing approach
US8864652B2 (en) * 2008-06-27 2014-10-21 Intuitive Surgical Operations, Inc. Medical robotic system providing computer generated auxiliary views of a camera instrument for controlling the positioning and orienting of its tip
US8755997B2 (en) * 2008-07-30 2014-06-17 Honeywell International Inc. Laser ranging process for road and obstacle detection in navigating an autonomous vehicle
US8364334B2 (en) * 2008-10-30 2013-01-29 Honeywell International Inc. System and method for navigating an autonomous vehicle using laser detection and ranging
US20110128372A1 (en) 2008-12-19 2011-06-02 Malecki Robert S System and Method for Determining an Orientation and Position of an Object
US9091755B2 (en) 2009-01-19 2015-07-28 Microsoft Technology Licensing, Llc Three dimensional image capture system for imaging building facades using a digital camera, near-infrared camera, and laser range finder
JP4614005B2 (ja) 2009-02-27 2011-01-19 トヨタ自動車株式会社 移動軌跡生成装置
WO2010124339A1 (en) * 2009-05-01 2010-11-04 The University Of Sydney Integrated automation system with picture compilation system
WO2010124335A1 (en) 2009-05-01 2010-11-04 The University Of Sydney Integrated automation system
BRPI1009934A2 (pt) 2009-05-01 2016-03-15 Univ Sydney sistema de controle para operação autônoma
US8565977B2 (en) * 2009-06-17 2013-10-22 GM Global Technology Operations LLC Vehicle configuration for improving low speed maneuverability
US8706297B2 (en) 2009-06-18 2014-04-22 Michael Todd Letsky Method for establishing a desired area of confinement for an autonomous robot and autonomous robot implementing a control system for executing the same
US8428776B2 (en) * 2009-06-18 2013-04-23 Michael Todd Letsky Method for establishing a desired area of confinement for an autonomous robot and autonomous robot implementing a control system for executing the same
US8918211B2 (en) 2010-02-12 2014-12-23 Intuitive Surgical Operations, Inc. Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument
US9492927B2 (en) 2009-08-15 2016-11-15 Intuitive Surgical Operations, Inc. Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose
US8310523B2 (en) * 2009-08-27 2012-11-13 Sony Corporation Plug-in to enable CAD software not having greater than 180 degree capability to present image from camera of more than 180 degrees
US8532989B2 (en) * 2009-09-03 2013-09-10 Honda Motor Co., Ltd. Command recognition device, command recognition method, and command recognition robot
US9457810B2 (en) * 2009-10-21 2016-10-04 Berthold K. P. Horn Method and apparatus for reducing motor vehicle traffic flow instabilities and increasing vehicle throughput
US8744661B2 (en) * 2009-10-21 2014-06-03 Berthold K. P. Horn Method and apparatus for reducing motor vehicle traffic flow instabilities and increasing vehicle throughput
DE112009005485T5 (de) * 2009-12-28 2012-10-18 Toyota Jidosha Kabushiki Kaisha Fahrunterstützungsvorrichtung
JP5312367B2 (ja) * 2010-02-12 2013-10-09 村田機械株式会社 走行台車システム
US8508590B2 (en) * 2010-03-02 2013-08-13 Crown Equipment Limited Method and apparatus for simulating a physical environment to facilitate vehicle operation and task completion
US8538577B2 (en) * 2010-03-05 2013-09-17 Crown Equipment Limited Method and apparatus for sensing object load engagement, transportation and disengagement by automated vehicles
DE102010010875A1 (de) * 2010-03-10 2011-09-15 Siemens Aktiengesellschaft Verfahren zum Überwachen der räumlichen Umgebung eines bewegbaren Geräts, insbesondere eines medizinischen Geräts
US9352307B2 (en) 2010-04-08 2016-05-31 Basf Corporation Cu-CHA/Fe-MFI mixed zeolite catalyst and process for the treatment of NOx in gas streams
US8730818B2 (en) * 2010-04-16 2014-05-20 The Morey Corporation Converter/multiplexer for serial bus
US8260482B1 (en) 2010-04-28 2012-09-04 Google Inc. User interface for displaying internal state of autonomous driving system
US8346426B1 (en) * 2010-04-28 2013-01-01 Google Inc. User interface for displaying internal state of autonomous driving system
FI122157B (fi) 2010-05-10 2011-09-15 Sandvik Mining & Constr Oy Menetelmä ja laitteisto kaivosajoneuvon turvajärjestelyitä varten
DE112010005666B4 (de) 2010-06-16 2022-06-30 Toyota Jidosha Kabushiki Kaisha Fahrunterstützungsvorrichtung
JP5381923B2 (ja) * 2010-07-23 2014-01-08 日産自動車株式会社 車両用制動支援装置及び車両用制動支援方法
JP5062310B2 (ja) * 2010-08-26 2012-10-31 村田機械株式会社 走行車
US9797730B2 (en) * 2010-08-27 2017-10-24 Cellco Partnership Detected arrival at navigated destination automatically triggers delivery of relevant local information to user
CN103109313B (zh) * 2010-09-08 2016-06-01 丰田自动车株式会社 危险度计算装置
US8566011B2 (en) * 2010-09-30 2013-10-22 Siemens Corporation Data collection and traffic control using multiple wireless receivers
US8509982B2 (en) 2010-10-05 2013-08-13 Google Inc. Zone driving
KR101207903B1 (ko) 2010-10-11 2012-12-04 국방과학연구소 자율 이동 차량용 장애물 정보 제공장치 및 그 방법
DE102010051203B4 (de) * 2010-11-12 2022-07-28 Zf Active Safety Gmbh Verfahren zur Erkennung von kritischen Fahrsituationen von Lastkraft- oder Personenkraftwagen, insbesondere zur Vermeidung von Kollisionen
CN102529962B (zh) * 2010-12-08 2014-11-05 安尼株式会社 移动体防碰撞装置和移动体
EP2484567B1 (en) 2011-02-08 2017-12-27 Volvo Car Corporation An onboard perception system
CN102859470B (zh) * 2011-03-15 2015-12-02 松下电器(美国)知识产权公司 对象控制装置、对象控制方法以及集成电路
KR102041093B1 (ko) 2011-04-11 2019-11-06 크라운 이큅먼트 코포레이션 조정된 경로 계획기를 사용하는 다수의 자동화 비-홀로노믹 차량들을 효율적으로 스케줄링하는 방법 및 장치
US20120271500A1 (en) * 2011-04-20 2012-10-25 GM Global Technology Operations LLC System and method for enabling a driver to input a vehicle control instruction into an autonomous vehicle controller
CN103562745B (zh) * 2011-04-21 2017-06-30 科尼全球公司 用于定位车辆的技术
US11132650B2 (en) 2011-04-22 2021-09-28 Emerging Automotive, Llc Communication APIs for remote monitoring and control of vehicle systems
US9215274B2 (en) 2011-04-22 2015-12-15 Angel A. Penilla Methods and systems for generating recommendations to make settings at vehicles via cloud systems
US9139091B1 (en) 2011-04-22 2015-09-22 Angel A. Penilla Methods and systems for setting and/or assigning advisor accounts to entities for specific vehicle aspects and cloud management of advisor accounts
US9365188B1 (en) 2011-04-22 2016-06-14 Angel A. Penilla Methods and systems for using cloud services to assign e-keys to access vehicles
US9123035B2 (en) 2011-04-22 2015-09-01 Angel A. Penilla Electric vehicle (EV) range extending charge systems, distributed networks of charge kiosks, and charge locating mobile apps
US9697503B1 (en) 2011-04-22 2017-07-04 Angel A. Penilla Methods and systems for providing recommendations to vehicle users to handle alerts associated with the vehicle and a bidding market place for handling alerts/service of the vehicle
US9963145B2 (en) 2012-04-22 2018-05-08 Emerging Automotive, Llc Connected vehicle communication with processing alerts related to traffic lights and cloud systems
US9536197B1 (en) 2011-04-22 2017-01-03 Angel A. Penilla Methods and systems for processing data streams from data producing objects of vehicle and home entities and generating recommendations and settings
US9285944B1 (en) 2011-04-22 2016-03-15 Angel A. Penilla Methods and systems for defining custom vehicle user interface configurations and cloud services for managing applications for the user interface and learned setting functions
US9104537B1 (en) 2011-04-22 2015-08-11 Angel A. Penilla Methods and systems for generating setting recommendation to user accounts for registered vehicles via cloud systems and remotely applying settings
US9648107B1 (en) 2011-04-22 2017-05-09 Angel A. Penilla Methods and cloud systems for using connected object state data for informing and alerting connected vehicle drivers of state changes
US9229905B1 (en) 2011-04-22 2016-01-05 Angel A. Penilla Methods and systems for defining vehicle user profiles and managing user profiles via cloud systems and applying learned settings to user profiles
US10289288B2 (en) 2011-04-22 2019-05-14 Emerging Automotive, Llc Vehicle systems for providing access to vehicle controls, functions, environment and applications to guests/passengers via mobile devices
US9180783B1 (en) 2011-04-22 2015-11-10 Penilla Angel A Methods and systems for electric vehicle (EV) charge location color-coded charge state indicators, cloud applications and user notifications
US9346365B1 (en) 2011-04-22 2016-05-24 Angel A. Penilla Methods and systems for electric vehicle (EV) charging, charging unit (CU) interfaces, auxiliary batteries, and remote access and user notifications
US10824330B2 (en) 2011-04-22 2020-11-03 Emerging Automotive, Llc Methods and systems for vehicle display data integration with mobile device data
US9171268B1 (en) 2011-04-22 2015-10-27 Angel A. Penilla Methods and systems for setting and transferring user profiles to vehicles and temporary sharing of user profiles to shared-use vehicles
US9809196B1 (en) 2011-04-22 2017-11-07 Emerging Automotive, Llc Methods and systems for vehicle security and remote access and safety control interfaces and notifications
US10572123B2 (en) 2011-04-22 2020-02-25 Emerging Automotive, Llc Vehicle passenger controls via mobile devices
US11370313B2 (en) 2011-04-25 2022-06-28 Emerging Automotive, Llc Methods and systems for electric vehicle (EV) charge units and systems for processing connections to charge units
US9818088B2 (en) 2011-04-22 2017-11-14 Emerging Automotive, Llc Vehicles and cloud systems for providing recommendations to vehicle users to handle alerts associated with the vehicle
US11203355B2 (en) 2011-04-22 2021-12-21 Emerging Automotive, Llc Vehicle mode for restricted operation and cloud data monitoring
US10217160B2 (en) * 2012-04-22 2019-02-26 Emerging Automotive, Llc Methods and systems for processing charge availability and route paths for obtaining charge for electric vehicles
US11294551B2 (en) 2011-04-22 2022-04-05 Emerging Automotive, Llc Vehicle passenger controls via mobile devices
US9493130B2 (en) 2011-04-22 2016-11-15 Angel A. Penilla Methods and systems for communicating content to connected vehicle users based detected tone/mood in voice input
US9288270B1 (en) 2011-04-22 2016-03-15 Angel A. Penilla Systems for learning user preferences and generating recommendations to make settings at connected vehicles and interfacing with cloud systems
US10286919B2 (en) 2011-04-22 2019-05-14 Emerging Automotive, Llc Valet mode for restricted operation of a vehicle and cloud access of a history of use made during valet mode use
US11270699B2 (en) 2011-04-22 2022-03-08 Emerging Automotive, Llc Methods and vehicles for capturing emotion of a human driver and customizing vehicle response
US9581997B1 (en) 2011-04-22 2017-02-28 Angel A. Penilla Method and system for cloud-based communication for automatic driverless movement
US9348492B1 (en) 2011-04-22 2016-05-24 Angel A. Penilla Methods and systems for providing access to specific vehicle controls, functions, environment and applications to guests/passengers via personal mobile devices
US9189900B1 (en) 2011-04-22 2015-11-17 Angel A. Penilla Methods and systems for assigning e-keys to users to access and drive vehicles
US9371007B1 (en) 2011-04-22 2016-06-21 Angel A. Penilla Methods and systems for automatic electric vehicle identification and charging via wireless charging pads
US9230440B1 (en) 2011-04-22 2016-01-05 Angel A. Penilla Methods and systems for locating public parking and receiving security ratings for parking locations and generating notifications to vehicle user accounts regarding alerts and cloud access to security information
US8078349B1 (en) 2011-05-11 2011-12-13 Google Inc. Transitioning a mixed-mode vehicle to autonomous mode
WO2012160373A2 (en) 2011-05-24 2012-11-29 Bae Systems Plc Vehicle navigation
EP2527943A1 (en) * 2011-05-24 2012-11-28 BAE Systems Plc. Vehicle navigation
US8655588B2 (en) 2011-05-26 2014-02-18 Crown Equipment Limited Method and apparatus for providing accurate localization for an industrial vehicle
US8589014B2 (en) * 2011-06-01 2013-11-19 Google Inc. Sensor field selection
US8548671B2 (en) 2011-06-06 2013-10-01 Crown Equipment Limited Method and apparatus for automatically calibrating vehicle parameters
US8589012B2 (en) 2011-06-14 2013-11-19 Crown Equipment Limited Method and apparatus for facilitating map data processing for industrial vehicle navigation
US8594923B2 (en) 2011-06-14 2013-11-26 Crown Equipment Limited Method and apparatus for sharing map data associated with automated industrial vehicles
FR2976700B1 (fr) * 2011-06-17 2013-07-12 Inst Nat Rech Inf Automat Procede de generation d'ordres de commande de coordination d'organes de deplacement d'une plateforme animee et generateur correspondant.
CN102350990A (zh) * 2011-06-29 2012-02-15 北京理工大学 有人驾驶与无人驾驶车辆避障行为的对照模型
US10520581B2 (en) 2011-07-06 2019-12-31 Peloton Technology, Inc. Sensor fusion for autonomous or partially autonomous vehicle control
WO2018039134A1 (en) 2016-08-22 2018-03-01 Peloton Technology, Inc. Automated connected vehicle control system architecture
US8744666B2 (en) 2011-07-06 2014-06-03 Peloton Technology, Inc. Systems and methods for semi-autonomous vehicular convoys
US20170242443A1 (en) 2015-11-02 2017-08-24 Peloton Technology, Inc. Gap measurement for vehicle convoying
US8825391B1 (en) 2011-08-04 2014-09-02 Google Inc. Building elevation maps from laser data
US9151613B2 (en) * 2011-08-12 2015-10-06 Qualcomm Incorporated Methods and apparatus for detecting, measuring, and mitigating effects of moving an inertial navigation device's cradle
US9823082B2 (en) * 2011-08-24 2017-11-21 Modular Mining Systems, Inc. Driver guidance for guided maneuvering
US20140058634A1 (en) 2012-08-24 2014-02-27 Crown Equipment Limited Method and apparatus for using unique landmarks to locate industrial vehicles at start-up
US8190345B1 (en) * 2011-08-29 2012-05-29 Panzarella Richard Vehicle safety system
KR102080812B1 (ko) 2011-09-02 2020-02-24 브룩스 오토메이션 인코퍼레이티드 로봇 이송 장비들을 위한 시간 최적화 궤적들
US9056754B2 (en) 2011-09-07 2015-06-16 Crown Equipment Limited Method and apparatus for using pre-positioned objects to localize an industrial vehicle
US9772191B2 (en) * 2011-09-12 2017-09-26 Continental Teves Ag & Co. Ohg Method for determining position data of a vehicle
EP2756331B1 (de) * 2011-09-12 2023-04-05 Continental Automotive Technologies GmbH Zeitkorrigiertes sensorsystem
US9139174B2 (en) 2011-09-26 2015-09-22 Toyota Jidosha Kabushiki Kaisha Vehicular driving support system
GB201116958D0 (en) 2011-09-30 2011-11-16 Bae Systems Plc Use of synthetic overhead images for vehicle localisation
GB201116959D0 (en) * 2011-09-30 2011-11-16 Bae Systems Plc Vehicle localisation with 2d laser scanner and 3d prior scans
GB201116960D0 (en) 2011-09-30 2011-11-16 Bae Systems Plc Monocular camera localisation using prior point clouds
GB201116961D0 (en) 2011-09-30 2011-11-16 Bae Systems Plc Fast calibration for lidars
US8510029B2 (en) 2011-10-07 2013-08-13 Southwest Research Institute Waypoint splining for autonomous vehicle following
US9495773B2 (en) * 2011-10-24 2016-11-15 Nokia Technologies Oy Location map submission framework
DE102011117116B4 (de) * 2011-10-27 2014-02-13 Diehl Bgt Defence Gmbh & Co. Kg Steuereinrichtung zum wenigstens teilweise autonomen Betrieb eines Fahrzeugs und Fahrzeug mit solch einer Steuereinrichtung
US9453737B2 (en) * 2011-10-28 2016-09-27 GM Global Technology Operations LLC Vehicle localization
WO2013060323A1 (de) * 2011-10-28 2013-05-02 Conti Temic Microelectronic Gmbh Gitterbasiertes umfeldmodell für ein fahrzeug
SE537371C2 (sv) * 2011-11-18 2015-04-14 Atlas Copco Rock Drills Ab Förfarande och anordning vid framförande av en gruv- och/eller anläggningsmaskin
US8868265B2 (en) 2011-11-30 2014-10-21 Honeywell International Inc. System and method for aligning aircraft and runway headings during takeoff roll
US10169822B2 (en) * 2011-12-02 2019-01-01 Spireon, Inc. Insurance rate optimization through driver behavior monitoring
US20130143181A1 (en) * 2011-12-05 2013-06-06 Ford Global Technologies, Llc In-vehicle training system for teaching fuel economy
KR101294087B1 (ko) * 2011-12-09 2013-08-08 기아자동차주식회사 전기 자동차용 친환경 드라이빙 운전자 지원 시스템 및 지원 방법
US9187118B2 (en) * 2011-12-30 2015-11-17 C & P Technologies, Inc. Method and apparatus for automobile accident reduction using localized dynamic swarming
US9165366B2 (en) 2012-01-19 2015-10-20 Honeywell International Inc. System and method for detecting and displaying airport approach lights
US9381916B1 (en) 2012-02-06 2016-07-05 Google Inc. System and method for predicting behaviors of detected objects through environment representation
DE102012202934A1 (de) * 2012-02-27 2013-08-29 Bayerische Motoren Werke Aktiengesellschaft Funkfernbedienung zur Steuerung von Fahrzeugfunktionen eines Kraftfahrzeugs
US8788121B2 (en) 2012-03-09 2014-07-22 Proxy Technologies, Inc. Autonomous vehicle and method for coordinating the paths of multiple autonomous vehicles
US8874360B2 (en) * 2012-03-09 2014-10-28 Proxy Technologies Inc. Autonomous vehicle and method for coordinating the paths of multiple autonomous vehicles
US8457827B1 (en) 2012-03-15 2013-06-04 Google Inc. Modifying behavior of autonomous vehicle based on predicted behavior of other vehicles
US8948954B1 (en) * 2012-03-15 2015-02-03 Google Inc. Modifying vehicle behavior based on confidence in lane estimation
US9760092B2 (en) * 2012-03-16 2017-09-12 Waymo Llc Actively modifying a field of view of an autonomous vehicle in view of constraints
US8755966B2 (en) * 2012-04-03 2014-06-17 Caterpillar Inc. System and method for controlling autonomous machine within lane boundaries during position uncertainty
US8712624B1 (en) * 2012-04-06 2014-04-29 Google Inc. Positioning vehicles to improve quality of observations at intersections
US8761991B1 (en) * 2012-04-09 2014-06-24 Google Inc. Use of uncertainty regarding observations of traffic intersections to modify behavior of a vehicle
US8718861B1 (en) 2012-04-11 2014-05-06 Google Inc. Determining when to drive autonomously
US9315178B1 (en) 2012-04-13 2016-04-19 Google Inc. Model checking for autonomous vehicles
US8700251B1 (en) 2012-04-13 2014-04-15 Google Inc. System and method for automatically detecting key behaviors by vehicles
WO2013161033A1 (ja) * 2012-04-26 2013-10-31 株式会社日立製作所 自律移動装置、自律移動システムおよび自律移動方法
DE102012207269A1 (de) * 2012-05-02 2013-11-07 Kuka Laboratories Gmbh Fahrerloses Transportfahrzeug und Verfahren zum Betreiben eines fahrerlosen Transportfahrzeugs
US8595037B1 (en) * 2012-05-08 2013-11-26 Elwha Llc Systems and methods for insurance based on monitored characteristics of an autonomous drive mode selection system
US9037411B2 (en) 2012-05-11 2015-05-19 Honeywell International Inc. Systems and methods for landmark selection for navigation
US8781669B1 (en) 2012-05-14 2014-07-15 Google Inc. Consideration of risks in active sensing for an autonomous vehicle
US9176500B1 (en) 2012-05-14 2015-11-03 Google Inc. Consideration of risks in active sensing for an autonomous vehicle
US8527199B1 (en) * 2012-05-17 2013-09-03 Google Inc. Automatic collection of quality control statistics for maps used in autonomous driving
US9014903B1 (en) * 2012-05-22 2015-04-21 Google Inc. Determination of object heading based on point cloud
US8793046B2 (en) 2012-06-01 2014-07-29 Google Inc. Inferring state of traffic signal and other aspects of a vehicle's environment based on surrogate data
CA2873816C (en) 2012-06-18 2022-01-11 The University Of Sydney Systems and methods for processing geophysical data
US9558667B2 (en) 2012-07-09 2017-01-31 Elwha Llc Systems and methods for cooperative collision detection
US9000903B2 (en) 2012-07-09 2015-04-07 Elwha Llc Systems and methods for vehicle monitoring
US9165469B2 (en) 2012-07-09 2015-10-20 Elwha Llc Systems and methods for coordinating sensor operation for collision detection
GB201212621D0 (en) 2012-07-16 2012-08-29 Aledain Fze Method of marking a line
US9098086B2 (en) * 2012-08-07 2015-08-04 Caterpillar Inc. Method and system for planning a turn path for a machine
DE102012215057A1 (de) * 2012-08-24 2014-02-27 Robert Bosch Gmbh Fahrerassistenzsystem
US9195236B1 (en) 2012-09-05 2015-11-24 Google Inc. Road flare detection
US20140082307A1 (en) * 2012-09-17 2014-03-20 Mobileye Technologies Limited System and method to arbitrate access to memory
US9383753B1 (en) 2012-09-26 2016-07-05 Google Inc. Wide-view LIDAR with areas of special attention
US9234618B1 (en) 2012-09-27 2016-01-12 Google Inc. Characterizing optically reflective features via hyper-spectral sensor
US9633564B2 (en) 2012-09-27 2017-04-25 Google Inc. Determining changes in a driving environment based on vehicle behavior
US8886383B2 (en) 2012-09-28 2014-11-11 Elwha Llc Automated systems, devices, and methods for transporting and supporting patients
US8949016B1 (en) * 2012-09-28 2015-02-03 Google Inc. Systems and methods for determining whether a driving environment has changed
JPWO2014049987A1 (ja) * 2012-09-28 2016-08-22 パナソニックIpマネジメント株式会社 通知装置およびそれを利用した車両
US9665101B1 (en) * 2012-09-28 2017-05-30 Waymo Llc Methods and systems for transportation to destinations by a self-driving vehicle
US8965691B1 (en) * 2012-10-05 2015-02-24 Google Inc. Position and direction determination using multiple single-channel encoders
US9097800B1 (en) 2012-10-11 2015-08-04 Google Inc. Solid object detection system using laser and radar sensor fusion
KR101401399B1 (ko) * 2012-10-12 2014-05-30 현대모비스 주식회사 주차 지원 장치 및 방법과 이를 이용한 주차 지원 시스템
JP6017260B2 (ja) * 2012-10-17 2016-10-26 ルネサスエレクトロニクス株式会社 マルチスレッドプロセッサ
KR20140051615A (ko) * 2012-10-23 2014-05-02 현대자동차주식회사 비주차구역의 주차 지원 장치 및 방법
US9043069B1 (en) * 2012-11-07 2015-05-26 Google Inc. Methods and systems for scan matching approaches for vehicle heading estimation
CN102929151B (zh) * 2012-11-14 2016-01-20 北京理工大学 一种基于指数时变二阶滑模的再入飞行姿态控制方法
CA2833985C (en) * 2012-11-19 2020-07-07 Rosemount Aerospace, Inc. Collision avoidance system for aircraft ground operations
CN102944881A (zh) * 2012-11-29 2013-02-27 阮于华 汽车防撞激光雷达系统和汽车安全制动方法
USD735214S1 (en) 2012-11-30 2015-07-28 Google Inc. Display screen or portion thereof with graphical user interface
US8825258B2 (en) 2012-11-30 2014-09-02 Google Inc. Engaging and disengaging for autonomous driving
CN103901451B (zh) * 2012-12-03 2016-04-27 杨益 一种定位系统中的轨迹监控方法
US9415983B2 (en) * 2012-12-17 2016-08-16 Shamrock Foods Company Crash prevention system for a storage and retrieval machine
EP2746833A1 (en) 2012-12-18 2014-06-25 Volvo Car Corporation Vehicle adaptation to automatic driver independent control mode
US9063548B1 (en) 2012-12-19 2015-06-23 Google Inc. Use of previous detections for lane marker detection
US9081385B1 (en) 2012-12-21 2015-07-14 Google Inc. Lane boundary detection using images
US11190738B2 (en) 2012-12-28 2021-11-30 Robert Bosch Gmbh Vehicle standstill recognition
EP2939163A4 (en) * 2012-12-31 2015-12-02 Shuster Gary Stephen DECISION MAKING USING PROGRAMMATIC OR ALGORITHMIC ANALYSIS
US8788146B1 (en) * 2013-01-08 2014-07-22 Ford Global Technologies, Llc Adaptive active suspension system with road preview
US9367065B2 (en) * 2013-01-25 2016-06-14 Google Inc. Modifying behavior of autonomous vehicles based on sensor blind spots and limitations
US9446766B2 (en) * 2013-02-01 2016-09-20 Hitachi Automotive Systems, Ltd. Travel control device and travel control system
US10507066B2 (en) 2013-02-15 2019-12-17 Intuitive Surgical Operations, Inc. Providing information of tools by filtering image areas adjacent to or on displayed images of the tools
US10347127B2 (en) * 2013-02-21 2019-07-09 Waymo Llc Driving mode adjustment
DE102013203707B4 (de) * 2013-03-05 2024-03-07 Robert Bosch Gmbh Fahrzeugvorrichtung
US9251627B2 (en) * 2013-03-05 2016-02-02 Sears Brands, L.L.C. Removable dashboard instrument system
US9561803B2 (en) * 2013-03-06 2017-02-07 Volvo Truck Corporation Method for calculating a desired yaw rate for a vehicle
USD750663S1 (en) 2013-03-12 2016-03-01 Google Inc. Display screen or a portion thereof with graphical user interface
US8676431B1 (en) 2013-03-12 2014-03-18 Google Inc. User interface for displaying object-based indications in an autonomous driving system
USD754190S1 (en) 2013-03-13 2016-04-19 Google Inc. Display screen or portion thereof with graphical user interface
USD754189S1 (en) 2013-03-13 2016-04-19 Google Inc. Display screen or portion thereof with graphical user interface
US11294396B2 (en) 2013-03-15 2022-04-05 Peloton Technology, Inc. System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles
US9008890B1 (en) 2013-03-15 2015-04-14 Google Inc. Augmented trajectories for autonomous vehicles
US8849494B1 (en) 2013-03-15 2014-09-30 Google Inc. Data selection by an autonomous vehicle for trajectory modification
US9333983B2 (en) * 2013-03-15 2016-05-10 Volkswagen Ag Dual-state steering wheel/input device
US8996224B1 (en) 2013-03-15 2015-03-31 Google Inc. Detecting that an autonomous vehicle is in a stuck condition
US9081382B2 (en) 2013-03-15 2015-07-14 Fresenius Medical Care Holdings, Inc. Autonomous vehicle comprising extracorporeal blood treatment machine
US20180210463A1 (en) 2013-03-15 2018-07-26 Peloton Technology, Inc. System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles
JP6233706B2 (ja) * 2013-04-02 2017-11-22 パナソニックIpマネジメント株式会社 自律移動装置及び自律移動装置の自己位置推定方法
US9733638B2 (en) 2013-04-05 2017-08-15 Symbotic, LLC Automated storage and retrieval system and control system thereof
US9239959B1 (en) * 2013-04-08 2016-01-19 Lockheed Martin Corporation Multi-resolution, wide field-of-view, unmanned ground vehicle navigation sensor
US9327693B2 (en) * 2013-04-10 2016-05-03 Magna Electronics Inc. Rear collision avoidance system for vehicle
DE102013206746B4 (de) 2013-04-16 2016-08-11 Ford Global Technologies, Llc Verfahren und Vorrichtung zum Modifizieren der Konfiguration eines Fahrassistenzsystems eines Kraftfahrzeuges
US9600768B1 (en) * 2013-04-16 2017-03-21 Google Inc. Using behavior of objects to infer changes in a driving environment
DE102013207899A1 (de) * 2013-04-30 2014-10-30 Kuka Laboratories Gmbh Fahrerloses Transportfahrzeug, System mit einem Rechner und einem fahrerlosen Transportfahrzeug, Verfahren zum Planen einer virtuellen Spur und Verfahren zum Betreiben eines fahrerlosen Transportfahrzeugs
US9139223B2 (en) * 2013-05-23 2015-09-22 Caterpillar Inc. Managing steering with short from battery to ground
US8954205B2 (en) * 2013-06-01 2015-02-10 Savari, Inc. System and method for road side equipment of interest selection for active safety applications
US9103694B2 (en) * 2013-06-24 2015-08-11 Here Global B.V. Method and apparatus for conditional driving guidance
EP2827211A1 (en) * 2013-07-15 2015-01-21 BAE Systems PLC Route planning
US8930060B1 (en) * 2013-07-15 2015-01-06 Ford Global Technologies Post-impact path assist for vehicles
WO2015008032A1 (en) * 2013-07-15 2015-01-22 Bae Systems Plc Route planning
US9286520B1 (en) 2013-07-16 2016-03-15 Google Inc. Real-time road flare detection using templates and appropriate color spaces
US9719801B1 (en) 2013-07-23 2017-08-01 Waymo Llc Methods and systems for calibrating sensors using road map data
US9230442B2 (en) 2013-07-31 2016-01-05 Elwha Llc Systems and methods for adaptive vehicle sensing systems
US9776632B2 (en) 2013-07-31 2017-10-03 Elwha Llc Systems and methods for adaptive vehicle sensing systems
US9269268B2 (en) 2013-07-31 2016-02-23 Elwha Llc Systems and methods for adaptive vehicle sensing systems
US9261881B1 (en) 2013-08-01 2016-02-16 Google Inc. Filtering noisy/high-intensity regions in laser-based lane marker detection
US8930124B1 (en) 2013-08-30 2015-01-06 International Business Machines Corporation Dynamic speed limit generation
US20150066282A1 (en) * 2013-09-05 2015-03-05 Ford Global Technologeis, Llc Autonomous driving in areas for non-drivers
JP2015072650A (ja) * 2013-10-04 2015-04-16 株式会社デンソーアイティーラボラトリ 経路算出装置、車両制御装置、車両運転支援装置、車両、経路算出プログラム、及び経路算出方法
KR101892763B1 (ko) * 2013-10-08 2018-08-28 주식회사 만도 장애물 위치를 판단하는 방법과 장애물 위치 판단장치 및 주차 보조 방법과 주차 보조 시스템
US9174672B2 (en) * 2013-10-28 2015-11-03 GM Global Technology Operations LLC Path planning for evasive steering maneuver in presence of target vehicle and surrounding objects
US10022114B2 (en) 2013-10-30 2018-07-17 4Tech Inc. Percutaneous tether locking
US9354070B2 (en) 2013-10-31 2016-05-31 Crown Equipment Corporation Systems, methods, and industrial vehicles for determining the visibility of features
US10203399B2 (en) 2013-11-12 2019-02-12 Big Sky Financial Corporation Methods and apparatus for array based LiDAR systems with reduced interference
US9998332B2 (en) 2013-11-15 2018-06-12 Massachusetts Institute Of Technology Signal-flow architecture for cooperative control and resource allocation
KR101480647B1 (ko) * 2013-11-15 2015-01-09 현대자동차주식회사 협로 주행을 위한 조향 위험도 판단 시스템 및 그 판단 방법
TWI549104B (zh) * 2013-11-21 2016-09-11 yu-zhi Min The instinct of the car reflects the way in which the throttle and the brake are controlled
US9212926B2 (en) 2013-11-22 2015-12-15 Ford Global Technologies, Llc In-vehicle path verification
KR102113769B1 (ko) * 2013-11-26 2020-05-21 현대모비스 주식회사 V2x 기반 안전운전지원서비스를 위한 운전자 맞춤형 다운 경고 중재 장치 및 방법
US9364178B2 (en) 2013-11-26 2016-06-14 Elwha Llc Robotic vehicle control
GB2520694A (en) * 2013-11-27 2015-06-03 Airbus Operations Ltd Aircraft electric braking system
JP5939238B2 (ja) * 2013-11-29 2016-06-22 トヨタ自動車株式会社 車両用操舵制御装置
EP3808634A1 (en) * 2013-12-04 2021-04-21 Mobileye Vision Technologies Ltd. Navigating a vehicle to pass another vehicle
US9499139B2 (en) * 2013-12-05 2016-11-22 Magna Electronics Inc. Vehicle monitoring system
KR101534958B1 (ko) * 2013-12-09 2015-07-07 현대자동차주식회사 차량의 자동 조향 제어 장치 및 방법
US20150168953A1 (en) * 2013-12-13 2015-06-18 Itrack Llc Autonomous self-leveling vehicle
CN103679851B (zh) * 2013-12-27 2016-08-24 李德毅 一种多传感器数据处理免同步方法及系统
US9886036B2 (en) * 2014-02-10 2018-02-06 John Bean Technologies Corporation Routing of automated guided vehicles
KR101491622B1 (ko) 2014-02-17 2015-02-11 연세대학교 산학협력단 자율 주행형 차량의 주행 제어 장치 및 방법
JP6340812B2 (ja) * 2014-02-18 2018-06-13 村田機械株式会社 自律走行台車
US10422649B2 (en) * 2014-02-24 2019-09-24 Ford Global Technologies, Llc Autonomous driving sensing system and method
US9720410B2 (en) 2014-03-03 2017-08-01 Waymo Llc Remote assistance for autonomous vehicles in predetermined situations
US9465388B1 (en) 2014-03-03 2016-10-11 Google Inc. Remote assistance for an autonomous vehicle in low confidence situations
EP2915718B1 (en) * 2014-03-04 2018-07-11 Volvo Car Corporation Apparatus and method for continuously establishing a boundary for autonomous driving availability and an automotive vehicle comprising such an apparatus
US9547989B2 (en) 2014-03-04 2017-01-17 Google Inc. Reporting road event data and sharing with other vehicles
EP2916190B1 (en) 2014-03-04 2019-05-08 Volvo Car Corporation Apparatus and method for prediction of time available for autonomous driving, in a vehicle having autonomous driving cap
DE102014206086A1 (de) * 2014-03-31 2015-10-01 Robert Bosch Gmbh Verfahren zum Betreiben einer selbstbeweglichen mobilen Plattform
US10482658B2 (en) * 2014-03-31 2019-11-19 Gary Stephen Shuster Visualization and control of remote objects
CN103853155B (zh) * 2014-03-31 2015-04-22 李德毅 智能车路口通行方法及系统
CN103940434B (zh) * 2014-04-01 2017-12-15 西安交通大学 基于单目视觉和惯性导航单元的实时车道线检测系统
US9360554B2 (en) 2014-04-11 2016-06-07 Facet Technology Corp. Methods and apparatus for object detection and identification in a multiple detector lidar array
US10179588B2 (en) * 2014-04-11 2019-01-15 Nissan North America, Inc. Autonomous vehicle control system
US9681272B2 (en) 2014-04-23 2017-06-13 At&T Intellectual Property I, L.P. Facilitating mesh networks of connected movable objects
US9304515B2 (en) * 2014-04-24 2016-04-05 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Regional operation modes for autonomous vehicles
US9604642B2 (en) * 2014-04-29 2017-03-28 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Positioning autonomous vehicles based on field of view
US9460624B2 (en) 2014-05-06 2016-10-04 Toyota Motor Engineering & Manufacturing North America, Inc. Method and apparatus for determining lane identification in a roadway
US10373259B1 (en) 2014-05-20 2019-08-06 State Farm Mutual Automobile Insurance Company Fully autonomous vehicle insurance pricing
US10185999B1 (en) 2014-05-20 2019-01-22 State Farm Mutual Automobile Insurance Company Autonomous feature use monitoring and telematics
US9972054B1 (en) 2014-05-20 2018-05-15 State Farm Mutual Automobile Insurance Company Accident fault determination for autonomous vehicles
US10319039B1 (en) 2014-05-20 2019-06-11 State Farm Mutual Automobile Insurance Company Accident fault determination for autonomous vehicles
US11669090B2 (en) 2014-05-20 2023-06-06 State Farm Mutual Automobile Insurance Company Autonomous vehicle operation feature monitoring and evaluation of effectiveness
US9754325B1 (en) * 2014-05-20 2017-09-05 State Farm Mutual Automobile Insurance Company Autonomous vehicle operation feature monitoring and evaluation of effectiveness
US10599155B1 (en) 2014-05-20 2020-03-24 State Farm Mutual Automobile Insurance Company Autonomous vehicle operation feature monitoring and evaluation of effectiveness
WO2015180090A1 (en) * 2014-05-29 2015-12-03 Empire Technology Development Llc Remote driving assistance
US9404761B2 (en) 2014-05-30 2016-08-02 Nissan North America, Inc. Autonomous vehicle lane routing and navigation
US9457807B2 (en) * 2014-06-05 2016-10-04 GM Global Technology Operations LLC Unified motion planning algorithm for autonomous driving vehicle in obstacle avoidance maneuver
US9409644B2 (en) * 2014-07-16 2016-08-09 Ford Global Technologies, Llc Automotive drone deployment system
US10102587B1 (en) 2014-07-21 2018-10-16 State Farm Mutual Automobile Insurance Company Methods of pre-generating insurance claims
CN104132873B (zh) * 2014-07-28 2016-08-24 泰州市宏祥动力机械有限公司 一种船舶气体控制方法
CN104670456A (zh) * 2014-07-28 2015-06-03 白薇 一种船舶气体控制方法
US9707960B2 (en) 2014-07-31 2017-07-18 Waymo Llc Traffic signal response for autonomous vehicles
US9428183B2 (en) 2014-07-31 2016-08-30 Toyota Motor Engineering & Manufacturing North America, Inc. Self-explaining autonomous vehicle
US9791560B2 (en) * 2014-08-13 2017-10-17 Infineon Technologies Ag Radar signal processor, radar system and method for monitoring a functional safety of a radar system
US9720072B2 (en) 2014-08-28 2017-08-01 Waymo Llc Methods and systems for vehicle radar coordination and interference reduction
US9321461B1 (en) 2014-08-29 2016-04-26 Google Inc. Change detection using curve alignment
AU2014312738B2 (en) * 2014-09-01 2016-02-11 Komatsu Ltd. Transport vehicle, dump truck, and method for controlling transport vehicle
KR101610502B1 (ko) * 2014-09-02 2016-04-07 현대자동차주식회사 자율주행차량의 주행환경 인식장치 및 방법
DE102014217848A1 (de) * 2014-09-08 2016-03-10 Continental Automotive Gmbh Fahrerassistenzsystem
US9440647B1 (en) 2014-09-22 2016-09-13 Google Inc. Safely navigating crosswalks
CN104260725B (zh) * 2014-09-23 2016-09-14 北京理工大学 一种含有驾驶员模型的智能驾驶系统
JP5883489B1 (ja) * 2014-09-30 2016-03-15 富士重工業株式会社 車両の制御装置及び車両の制御方法
US9248834B1 (en) 2014-10-02 2016-02-02 Google Inc. Predicting trajectories of objects based on contextual information
KR101683984B1 (ko) * 2014-10-14 2016-12-07 현대자동차주식회사 라이더 데이터 필터링 시스템 및 그 방법
DE102014220758A1 (de) * 2014-10-14 2016-04-14 Robert Bosch Gmbh Autonomes Fahrsystem für ein Fahrzeug bzw. Verfahren zur Durchführung des Betriebs
DE102014115292A1 (de) * 2014-10-21 2016-04-21 Connaught Electronics Ltd. Verfahren zum Bereitstellen von Bilddateien von einem Kamerasystem, Kamerasystem und Kraftfahrzeug
WO2016063490A1 (ja) * 2014-10-22 2016-04-28 株式会社デンソー 車両用データ記録装置及び車両用事故通報装置
DE102014221751A1 (de) * 2014-10-27 2016-04-28 Robert Bosch Gmbh Verfahren und Vorrichtung zum Führen eines Fahrzeugs auf einem Parkplatz
CN104460667A (zh) * 2014-10-31 2015-03-25 成都众易通科技有限公司 一种汽车自动驾驶系统
KR20160054825A (ko) 2014-11-07 2016-05-17 현대모비스 주식회사 주행 가능 공간 판단 장치 및 방법
JP6626248B2 (ja) * 2014-11-12 2019-12-25 村田機械株式会社 移動量推定装置、自律移動体、及び移動量の推定方法
KR101664582B1 (ko) * 2014-11-12 2016-10-10 현대자동차주식회사 자율주행차량의 주행경로 생성장치 및 방법
US10007263B1 (en) 2014-11-13 2018-06-26 State Farm Mutual Automobile Insurance Company Autonomous vehicle accident and emergency response
KR101877553B1 (ko) * 2014-11-14 2018-07-11 한국전자통신연구원 차량 자율주행 시스템 및 이를 이용한 차량 주행 방법
JP6537251B2 (ja) * 2014-11-14 2019-07-03 シャープ株式会社 自律走行装置
US10364042B2 (en) 2014-11-24 2019-07-30 Sikorsky Aircraft Corporation Multispectral sensor fusion system for platform state estimation
US9387844B2 (en) 2014-11-24 2016-07-12 Toyota Motor Engineering & Manufacturing North America, Inc. Environment-based anti-lock braking system
KR102219268B1 (ko) * 2014-11-26 2021-02-24 한국전자통신연구원 탐험 경로 협력형 내비게이션 시스템 및 그 제어 방법
WO2016090282A1 (en) * 2014-12-05 2016-06-09 Cowbyt Technologies Llc Autonomous navigation system
WO2016092591A1 (ja) * 2014-12-09 2016-06-16 三菱電機株式会社 衝突リスク算出装置、衝突リスク表示装置、車体制御装置
US9598843B2 (en) * 2014-12-16 2017-03-21 Caterpillar Inc. Real-time route terrain validity checker
WO2016100088A1 (en) * 2014-12-18 2016-06-23 Agco Corporation Method of path planning for autoguidance
CN104477113A (zh) * 2014-12-22 2015-04-01 联想(北京)有限公司 控制方法、系统及汽车
US9562779B2 (en) * 2014-12-23 2017-02-07 Here Global B.V. Method and apparatus for providing a steering reliability map based on driven curvatures and geometry curvature
CN104590259B (zh) * 2015-01-07 2015-08-26 福州华鹰重工机械有限公司 一种轨迹搜寻方法和系统
US9448559B2 (en) * 2015-01-15 2016-09-20 Nissan North America, Inc. Autonomous vehicle routing and navigation using passenger docking locations
WO2016118499A1 (en) 2015-01-19 2016-07-28 The Regents Of The University Of Michigan Visual localization within lidar maps
JP6176263B2 (ja) * 2015-01-19 2017-08-09 トヨタ自動車株式会社 自動運転装置
US20160210775A1 (en) * 2015-01-21 2016-07-21 Ford Global Technologies, Llc Virtual sensor testbed
WO2016122969A1 (en) * 2015-01-26 2016-08-04 Trw Automotive U.S. Llc Vehicle driver assist system
DE102015101183A1 (de) * 2015-01-28 2016-07-28 Valeo Schalter Und Sensoren Gmbh Verfahren zum Betreiben eines Fahrerassistenzsystems eines Kraftfahrzeugs mit Anzeige von Umgebungsdaten in einem autonomen Fahrmodus, Fahrerassistenzsystem sowie Kraftfahrzeug
US9493157B2 (en) 2015-01-29 2016-11-15 Toyota Motor Engineering & Manufacturing North America, Inc. Autonomous vehicle operation in obstructed occupant view and sensor detection environments
US9649979B2 (en) 2015-01-29 2017-05-16 Toyota Motor Engineering & Manufacturing North America, Inc. Autonomous vehicle operation in view-obstructed environments
US9568335B2 (en) 2015-01-30 2017-02-14 Nissan North America, Inc. Associating parking areas with destinations based on automatically identified associations between vehicle operating information and non-vehicle operating information
US10168699B1 (en) * 2015-01-30 2019-01-01 Vecna Technologies, Inc. Interactions between a vehicle and a being encountered by the vehicle
US10216196B2 (en) * 2015-02-01 2019-02-26 Prosper Technology, Llc Methods to operate autonomous vehicles to pilot vehicles in groups or convoys
US20180004221A1 (en) * 2015-02-06 2018-01-04 Delphi Technologies, Inc. Autonomous guidance system
WO2016126317A1 (en) 2015-02-06 2016-08-11 Delphi Technologies, Inc. Method of automatically controlling an autonomous vehicle based on electronic messages from roadside infrastructure of other vehicles
US10678261B2 (en) 2015-02-06 2020-06-09 Aptiv Technologies Limited Method and apparatus for controlling an autonomous vehicle
KR102623680B1 (ko) 2015-02-10 2024-01-12 모빌아이 비젼 테크놀로지스 엘티디. 자율 주행을 위한 약도
WO2016134770A1 (en) * 2015-02-26 2016-09-01 Volvo Truck Corporation Method of controlling inter-vehicle gap(s) in a platoon
JP6082415B2 (ja) * 2015-03-03 2017-02-15 富士重工業株式会社 車両の走行制御装置
DE102015203864B4 (de) * 2015-03-04 2018-05-03 Ford Global Technologies, Llc Lenksystem, Kraftfahrzeug mit einem solchen und Verfahren zum Betreiben eines Lenksystems
US10036801B2 (en) 2015-03-05 2018-07-31 Big Sky Financial Corporation Methods and apparatus for increased precision and improved range in a multiple detector LiDAR array
US10175040B2 (en) * 2015-03-20 2019-01-08 Process Metrix Characterization of refractory lining of metallurgical vessels using autonomous scanners
JP6087969B2 (ja) * 2015-03-23 2017-03-01 富士重工業株式会社 車両の走行制御装置
WO2016151750A1 (ja) 2015-03-24 2016-09-29 パイオニア株式会社 地図情報記憶装置、自動運転制御装置、制御方法、プログラム及び記憶媒体
US9625582B2 (en) * 2015-03-25 2017-04-18 Google Inc. Vehicle with multiple light detection and ranging devices (LIDARs)
WO2016164435A1 (en) 2015-04-07 2016-10-13 Oewaves, Inc. Compact lidar system
KR101714145B1 (ko) * 2015-04-09 2017-03-08 현대자동차주식회사 주변차량 식별 장치 및 그 방법
WO2016169065A1 (en) * 2015-04-24 2016-10-27 SZ DJI Technology Co., Ltd. Method, device and system for presenting operation information of a mobile platform
JP6193912B2 (ja) * 2015-04-24 2017-09-06 株式会社パイ・アール ドライブレコーダ
DE102015208058B4 (de) * 2015-04-30 2017-06-29 Robert Bosch Gmbh Automatisiertes Parksystem
US9616773B2 (en) 2015-05-11 2017-04-11 Uber Technologies, Inc. Detecting objects within a vehicle in connection with a service
US20180157255A1 (en) * 2015-05-12 2018-06-07 Precision Autonomy Pty Ltd Systems and methods of unmanned vehicle control and monitoring
US20160341555A1 (en) * 2015-05-20 2016-11-24 Delphi Technologies, Inc. System for auto-updating route-data used by a plurality of automated vehicles
DE102016208217B4 (de) 2015-05-22 2022-04-21 Ford Global Technologies, Llc Verfahren und Vorrichtung zum Betrieb eines zu autonomen Fahren fähigen Fahrzeugs
US10031522B2 (en) 2015-05-27 2018-07-24 Dov Moran Alerting predicted accidents between driverless cars
US9598078B2 (en) 2015-05-27 2017-03-21 Dov Moran Alerting predicted accidents between driverless cars
US20160349754A1 (en) 2015-05-29 2016-12-01 Clearpath Robotics, Inc. Method, system and apparatus for controlling self-driving vehicles
US9914358B2 (en) * 2015-06-10 2018-03-13 International Business Machines Corporation Vehicle control system
CN104850134B (zh) * 2015-06-12 2019-01-11 北京中飞艾维航空科技有限公司 一种无人机高精度自主避障飞行方法
JP6657618B2 (ja) * 2015-06-30 2020-03-04 株式会社デンソー 逸脱回避装置
US9511767B1 (en) 2015-07-01 2016-12-06 Toyota Motor Engineering & Manufacturing North America, Inc. Autonomous vehicle action planning using behavior prediction
US9285805B1 (en) * 2015-07-02 2016-03-15 Geodigital International Inc. Attributed roadway trajectories for self-driving vehicles
EP3115942B1 (en) * 2015-07-10 2019-10-16 Volvo Car Corporation Method and system for smart use of in-car time with advanced pilot assist and autonomous drive
DE102015214968B4 (de) * 2015-08-05 2022-10-06 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Anpassung mindestens eines Parameters eines Kommunikationssystems
US10269257B1 (en) * 2015-08-11 2019-04-23 Gopro, Inc. Systems and methods for vehicle guidance
US10102757B2 (en) 2015-08-22 2018-10-16 Just Innovation, Inc. Secure unmanned vehicle operation and monitoring
US10284560B2 (en) 2015-08-22 2019-05-07 Just Innovation, Inc. Secure unmanned vehicle operation and communication
US9870649B1 (en) 2015-08-28 2018-01-16 State Farm Mutual Automobile Insurance Company Shared vehicle usage, monitoring and feedback
US9843853B2 (en) 2015-08-29 2017-12-12 Bragi GmbH Power control for battery powered personal area network device system and method
EP3136291A1 (de) * 2015-08-31 2017-03-01 Continental Automotive GmbH Verfahren und vorrichtung zur erkennung von objekten bei dunkelheit mittels einer fahrzeugkamera und einer fahrzeugbeleuchtung
US9587952B1 (en) 2015-09-09 2017-03-07 Allstate Insurance Company Altering autonomous or semi-autonomous vehicle operation based on route traversal values
JP6697702B2 (ja) * 2015-09-10 2020-05-27 パナソニックIpマネジメント株式会社 自動停止装置および自動停止方法
US9952049B2 (en) * 2015-09-10 2018-04-24 GM Global Technology Operations LLC Methods and apparatus for performance assessment of a vehicle onboard navigation system using adaptive stochastic filtering
US10061020B2 (en) * 2015-09-20 2018-08-28 Qualcomm Incorporated Light detection and ranging (LIDAR) system with dual beam steering
US10462689B2 (en) * 2015-09-22 2019-10-29 Veniam, Inc. Systems and methods for monitoring a network of moving things
US11262762B2 (en) 2015-09-25 2022-03-01 Apple Inc. Non-solid object monitoring
DE102015218809A1 (de) * 2015-09-29 2017-03-30 Continental Teves Ag & Co. Ohg Verfahren zum Aktualisieren einer elektronischen Karte eines Fahrzeugs
EP3150465B1 (en) * 2015-10-01 2018-12-12 Volvo Car Corporation Method and system for indicating a potential lane shift of a vehicle
US9881219B2 (en) 2015-10-07 2018-01-30 Ford Global Technologies, Llc Self-recognition of autonomous vehicles in mirrored or reflective surfaces
CN105204510B (zh) * 2015-10-09 2016-06-22 福州华鹰重工机械有限公司 一种用于精确定位的概率地图的生成方法及装置
US9786192B2 (en) * 2015-10-14 2017-10-10 Toyota Motor Engineering & Manufacturing North America, Inc. Assessing driver readiness for transition between operational modes of an autonomous vehicle
WO2017065182A1 (ja) * 2015-10-16 2017-04-20 日立オートモティブシステムズ株式会社 車両制御システム、車両制御装置
US10557939B2 (en) 2015-10-19 2020-02-11 Luminar Technologies, Inc. Lidar system with improved signal-to-noise ratio in the presence of solar background noise
US10104458B2 (en) 2015-10-20 2018-10-16 Bragi GmbH Enhanced biometric control systems for detection of emergency events system and method
US10267908B2 (en) * 2015-10-21 2019-04-23 Waymo Llc Methods and systems for clearing sensor occlusions
US9610810B1 (en) * 2015-10-21 2017-04-04 The Goodyear Tire & Rubber Company Method of tire state estimation through wheel speed signal feature extraction
DE102015118080B4 (de) * 2015-10-23 2017-11-23 Deutsches Zentrum für Luft- und Raumfahrt e.V. Erfassung einer Bewegung eines Landfahrzeugs und Landfahrzeug mit Bewegungserfassungsvorrichtung
GB201519082D0 (en) 2015-10-28 2015-12-09 Vlyte Innovations Ltd An autonomous vehicle that minimizes human reactions
US10217363B2 (en) * 2015-10-29 2019-02-26 Faraday&Future Inc. Methods and systems for electronically assisted lane entrance
DE102015221481A1 (de) * 2015-11-03 2017-05-04 Continental Teves Ag & Co. Ohg Vorrichtung zur Umfeldmodellierung für ein Fahrerassistenzsystem für ein Kraftfahrzeug
US9878664B2 (en) 2015-11-04 2018-01-30 Zoox, Inc. Method for robotic vehicle communication with an external environment via acoustic beam forming
US10248119B2 (en) 2015-11-04 2019-04-02 Zoox, Inc. Interactive autonomous vehicle command controller
US9754490B2 (en) 2015-11-04 2017-09-05 Zoox, Inc. Software application to request and control an autonomous vehicle service
US9916703B2 (en) 2015-11-04 2018-03-13 Zoox, Inc. Calibration for autonomous vehicle operation
US9612123B1 (en) 2015-11-04 2017-04-04 Zoox, Inc. Adaptive mapping to navigate autonomous vehicles responsive to physical environment changes
US10334050B2 (en) 2015-11-04 2019-06-25 Zoox, Inc. Software application and logic to modify configuration of an autonomous vehicle
US9632502B1 (en) 2015-11-04 2017-04-25 Zoox, Inc. Machine-learning systems and techniques to optimize teleoperation and/or planner decisions
US11283877B2 (en) 2015-11-04 2022-03-22 Zoox, Inc. Software application and logic to modify configuration of an autonomous vehicle
US10496766B2 (en) 2015-11-05 2019-12-03 Zoox, Inc. Simulation system and methods for autonomous vehicles
US9734455B2 (en) 2015-11-04 2017-08-15 Zoox, Inc. Automated extraction of semantic information to enhance incremental mapping modifications for robotic vehicles
US9958864B2 (en) 2015-11-04 2018-05-01 Zoox, Inc. Coordination of dispatching and maintaining fleet of autonomous vehicles
US9720415B2 (en) 2015-11-04 2017-08-01 Zoox, Inc. Sensor-based object-detection optimization for autonomous vehicles
US9606539B1 (en) 2015-11-04 2017-03-28 Zoox, Inc. Autonomous vehicle fleet service and system
WO2017079229A1 (en) 2015-11-04 2017-05-11 Zoox, Inc. Simulation system and methods for autonomous vehicles
US9802661B1 (en) 2015-11-04 2017-10-31 Zoox, Inc. Quadrant configuration of robotic vehicles
US9804599B2 (en) 2015-11-04 2017-10-31 Zoox, Inc. Active lighting control for communicating a state of an autonomous vehicle to entities in a surrounding environment
US9701239B2 (en) 2015-11-04 2017-07-11 Zoox, Inc. System of configuring active lighting to indicate directionality of an autonomous vehicle
US10000124B2 (en) 2015-11-04 2018-06-19 Zoox, Inc. Independent steering, power, torque control and transfer in vehicles
WO2017079341A2 (en) 2015-11-04 2017-05-11 Zoox, Inc. Automated extraction of semantic information to enhance incremental mapping modifications for robotic vehicles
US9517767B1 (en) 2015-11-04 2016-12-13 Zoox, Inc. Internal safety systems for robotic vehicles
US9910441B2 (en) * 2015-11-04 2018-03-06 Zoox, Inc. Adaptive autonomous vehicle planner logic
US10401852B2 (en) 2015-11-04 2019-09-03 Zoox, Inc. Teleoperation system and method for trajectory modification of autonomous vehicles
US10745003B2 (en) 2015-11-04 2020-08-18 Zoox, Inc. Resilient safety system for a robotic vehicle
US9507346B1 (en) 2015-11-04 2016-11-29 Zoox, Inc. Teleoperation system and method for trajectory modification of autonomous vehicles
CN108369274B (zh) 2015-11-05 2022-09-13 路明亮有限责任公司 用于高分辨率深度映射的具有经改进扫描速度的激光雷达系统
FR3043777B1 (fr) * 2015-11-12 2017-12-01 Peugeot Citroen Automobiles Sa Procede et dispositif de determination d’une cartographie de la qualite de l’air, par agregation de mesures d’origines differentes
DE102015222605A1 (de) 2015-11-17 2017-05-18 MAN Trucks & Bus AG Verfahren und Vorrichtung zum assistierten, teilautomatisierten, hochautomatisierten, vollautomatisierten oder fahrerlosen Fahren eines Kraftfahrzeuges
US10331431B2 (en) * 2015-11-17 2019-06-25 Nlight, Inc. Multiple laser module programming over internal communications bus of fiber laser
EP3171133B1 (en) * 2015-11-19 2020-03-11 Sikorsky Aircraft Corporation Kinematic motion planning with regional planning constraints
CN107209520B (zh) * 2015-11-20 2019-04-19 深圳市大疆创新科技有限公司 无人机的控制方法及相关装置
JP6350492B2 (ja) * 2015-11-26 2018-07-04 トヨタ自動車株式会社 画像表示装置
CN108603758A (zh) 2015-11-30 2018-09-28 卢米诺技术公司 具有分布式激光器和多个传感器头的激光雷达系统和激光雷达系统的脉冲激光器
US10712160B2 (en) 2015-12-10 2020-07-14 Uatc, Llc Vehicle traction map for autonomous vehicles
KR101714273B1 (ko) * 2015-12-11 2017-03-08 현대자동차주식회사 자율 주행 시스템의 경로 제어 방법 및 그 장치
US10338225B2 (en) 2015-12-15 2019-07-02 Uber Technologies, Inc. Dynamic LIDAR sensor controller
US9840256B1 (en) 2015-12-16 2017-12-12 Uber Technologies, Inc. Predictive sensor array configuration system for an autonomous vehicle
US9841763B1 (en) 2015-12-16 2017-12-12 Uber Technologies, Inc. Predictive sensor array configuration system for an autonomous vehicle
TWI570674B (zh) * 2015-12-17 2017-02-11 合盈光電科技股份有限公司 交通運輸工具之影像偵測系統
US10048696B2 (en) * 2015-12-22 2018-08-14 Uber Technologies, Inc. Intelligent lens masking system for an autonomous vehicle
CN105630501A (zh) * 2015-12-25 2016-06-01 深圳市航盛电子股份有限公司 一种基于QML+OpenGL的车载图形界面系统
US9915951B2 (en) * 2015-12-27 2018-03-13 Toyota Motor Engineering & Manufacturing North America, Inc. Detection of overhanging objects
CN108496178B (zh) * 2016-01-05 2023-08-08 御眼视觉技术有限公司 用于估计未来路径的系统和方法
US9776323B2 (en) * 2016-01-06 2017-10-03 Disney Enterprises, Inc. Trained human-intention classifier for safe and efficient robot navigation
US9551992B1 (en) * 2016-01-08 2017-01-24 Google Inc. Fall back trajectory systems for autonomous vehicles
US9740202B2 (en) * 2016-01-08 2017-08-22 Waymo Llc Fall back trajectory systems for autonomous vehicles
US10134278B1 (en) 2016-01-22 2018-11-20 State Farm Mutual Automobile Insurance Company Autonomous vehicle application
WO2017127596A1 (en) * 2016-01-22 2017-07-27 Russell David Wayne System and method for safe positive control electronic processing for autonomous vehicles
US9940834B1 (en) 2016-01-22 2018-04-10 State Farm Mutual Automobile Insurance Company Autonomous vehicle application
US10395332B1 (en) 2016-01-22 2019-08-27 State Farm Mutual Automobile Insurance Company Coordinated autonomous vehicle automatic area scanning
US11441916B1 (en) 2016-01-22 2022-09-13 State Farm Mutual Automobile Insurance Company Autonomous vehicle trip routing
US10324463B1 (en) 2016-01-22 2019-06-18 State Farm Mutual Automobile Insurance Company Autonomous vehicle operation adjustment based upon route
US20210295439A1 (en) 2016-01-22 2021-09-23 State Farm Mutual Automobile Insurance Company Component malfunction impact assessment
US11719545B2 (en) 2016-01-22 2023-08-08 Hyundai Motor Company Autonomous vehicle component damage and salvage assessment
US11242051B1 (en) 2016-01-22 2022-02-08 State Farm Mutual Automobile Insurance Company Autonomous vehicle action communications
US9707961B1 (en) * 2016-01-29 2017-07-18 Ford Global Technologies, Llc Tracking objects within a dynamic environment for improved localization
KR102373926B1 (ko) 2016-02-05 2022-03-14 삼성전자주식회사 이동체 및 이동체의 위치 인식 방법
US9576490B1 (en) * 2016-02-08 2017-02-21 GM Global Technology Operations LLC Personalized navigation route for transportation device
US10662045B2 (en) 2016-02-11 2020-05-26 Clearpath Robotics Inc. Control augmentation apparatus and method for automated guided vehicles
US10787176B2 (en) * 2016-02-19 2020-09-29 A Truly Electric Car Company Plug-compatible interface between cars and their human and/or computer drivers
US10752257B2 (en) * 2016-02-19 2020-08-25 A Truly Electric Car Company Car operating system that controls the car's direction and speed
JP6975945B2 (ja) * 2016-02-24 2021-12-01 パナソニックIpマネジメント株式会社 判定装置、判定方法、プログラムおよびプログラムを記録した記録媒体
CN105741635A (zh) * 2016-03-01 2016-07-06 武汉理工大学 一种多功能道路实验车平台
US10281923B2 (en) 2016-03-03 2019-05-07 Uber Technologies, Inc. Planar-beam, light detection and ranging system
US9866816B2 (en) 2016-03-03 2018-01-09 4D Intellectual Properties, Llc Methods and apparatus for an active pulsed 4D camera for image acquisition and analysis
US9990548B2 (en) 2016-03-09 2018-06-05 Uber Technologies, Inc. Traffic signal analysis system
US10085082B2 (en) 2016-03-11 2018-09-25 Bragi GmbH Earpiece with GPS receiver
US9846050B2 (en) * 2016-03-21 2017-12-19 Ford Global Technologies, Llc Systems, methods, and devices for communicating drive history path attributes
US9898008B2 (en) 2016-03-22 2018-02-20 Delphi Technologies, Inc. Scenario aware perception system for an automated vehicle
US10052065B2 (en) 2016-03-23 2018-08-21 Bragi GmbH Earpiece life monitor with capability of automatic notification system and method
CN107238827B (zh) * 2016-03-29 2021-04-27 莱卡地球系统公开股份有限公司 激光扫描器装置
US10145951B2 (en) * 2016-03-30 2018-12-04 Aptiv Technologies Limited Object detection using radar and vision defined image detection zone
US11300663B2 (en) * 2016-03-31 2022-04-12 Nec Corporation Method for predicting a motion of an object
US9817403B2 (en) 2016-03-31 2017-11-14 Intel Corporation Enabling dynamic sensor discovery in autonomous devices
CN105912749B (zh) * 2016-03-31 2019-06-04 北京润科通用技术有限公司 仿真方法和装置
US9796421B1 (en) * 2016-04-07 2017-10-24 GM Global Technology Operations LLC Autonomous vehicle lateral control for path tracking and stability
US9720416B1 (en) * 2016-04-18 2017-08-01 Ford Global Technologies, Llc Vehicle security system
US9964948B2 (en) * 2016-04-20 2018-05-08 The Florida International University Board Of Trustees Remote control and concierge service for an autonomous transit vehicle fleet
EP3236446B1 (en) * 2016-04-22 2022-04-13 Volvo Car Corporation Arrangement and method for providing adaptation to queue length for traffic light assist-applications
US9776631B1 (en) * 2016-04-27 2017-10-03 Toyota Motor Engineering & Manufacturig North America, Inc. Front vehicle stopping indicator
US10152891B2 (en) * 2016-05-02 2018-12-11 Cnh Industrial America Llc System for avoiding collisions between autonomous vehicles conducting agricultural operations
US10188024B2 (en) * 2016-05-02 2019-01-29 Cnh Industrial America Llc System for conducting an agricultural operation using an autonomous vehicle
CA3023107A1 (en) 2016-05-06 2017-11-09 Mtd Products Inc Autonomous mower navigation system and method
US10296003B2 (en) 2016-05-12 2019-05-21 Georgia Tech Research Corporation Autonomous vehicle research system
US9910440B2 (en) * 2016-05-13 2018-03-06 Delphi Technologies, Inc. Escape-path-planning system for an automated vehicle
US10114373B2 (en) * 2016-05-17 2018-10-30 Telenav, Inc. Navigation system with trajectory calculation mechanism and method of operation thereof
DE102016208675A1 (de) * 2016-05-19 2017-11-23 Lucas Automotive Gmbh Verfahren zur Bestimmung einer sicheren Geschwindigkeit an einem zukünftigen Wegpunkt
JP6783174B2 (ja) * 2016-05-27 2020-11-11 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America ネットワークハブ、転送方法及び車載ネットワークシステム
JP6786264B2 (ja) * 2016-05-27 2020-11-18 株式会社東芝 情報処理装置、情報処理方法、および車両
JP7005526B2 (ja) 2016-05-31 2022-01-21 ぺロトン テクノロジー インコーポレイテッド 隊列走行コントローラの状態マシン
WO2017208045A1 (en) * 2016-05-31 2017-12-07 Abb Schweiz Ag Loop powered distance transmitter
US10835769B2 (en) * 2016-06-01 2020-11-17 Michael Neal Fire fighting system
US9731761B1 (en) * 2016-06-07 2017-08-15 Ford Global Technologies, Llc Steering-wheel control
US10309792B2 (en) 2016-06-14 2019-06-04 nuTonomy Inc. Route planning for an autonomous vehicle
CN109641589B (zh) * 2016-06-14 2023-10-13 动态Ad有限责任公司 用于自主车辆的路线规划
US10126136B2 (en) 2016-06-14 2018-11-13 nuTonomy Inc. Route planning for an autonomous vehicle
US11092446B2 (en) * 2016-06-14 2021-08-17 Motional Ad Llc Route planning for an autonomous vehicle
US10019009B2 (en) 2016-06-15 2018-07-10 Allstate Insurance Company Vehicle control systems
US10037033B2 (en) * 2016-06-15 2018-07-31 Ford Global Technologies, Llc Vehicle exterior surface object detection
US9898005B2 (en) * 2016-06-24 2018-02-20 Toyota Motor Engineering & Manufacturing North America, Inc. Driving path determination for autonomous vehicles
US9953535B1 (en) 2016-06-27 2018-04-24 Amazon Technologies, Inc. Annotated virtual track to inform autonomous vehicle control
US10078335B2 (en) 2016-06-28 2018-09-18 Toyota Motor Engineering & Manufacturing North America, Inc. Ray tracing for hidden obstacle detection
US10137890B2 (en) 2016-06-28 2018-11-27 Toyota Motor Engineering & Manufacturing North America, Inc. Occluded obstacle classification for vehicles
US9910442B2 (en) 2016-06-28 2018-03-06 Toyota Motor Engineering & Manufacturing North America, Inc. Occluded area detection with static obstacle maps
JP6778872B2 (ja) * 2016-06-28 2020-11-04 パナソニックIpマネジメント株式会社 運転支援装置及び運転支援方法
KR101887436B1 (ko) * 2016-06-29 2018-09-06 현대오트론 주식회사 물체 탐지 장치 및 방법
US10165231B2 (en) 2016-06-29 2018-12-25 International Business Machines Corporation Visualization of navigation information for connected autonomous vehicles
US10474162B2 (en) * 2016-07-01 2019-11-12 Uatc, Llc Autonomous vehicle localization using passive image data
US10829116B2 (en) 2016-07-01 2020-11-10 nuTonomy Inc. Affecting functions of a vehicle based on function-related information about its environment
EP3482268B1 (en) * 2016-07-06 2022-07-06 Lawrence Livermore National Security, LLC Object sense and avoid system for autonomous vehicles
US10832331B1 (en) * 2016-07-11 2020-11-10 State Farm Mutual Automobile Insurance Company Systems and methods for allocating fault to autonomous vehicles
US10162354B2 (en) * 2016-07-21 2018-12-25 Baidu Usa Llc Controlling error corrected planning methods for operating autonomous vehicles
RU2721635C1 (ru) * 2016-07-25 2020-05-21 Ниссан Мотор Ко., Лтд. Способ помощи при смене полосы движения и устройство помощи при смене полосы движения
CN106257044B (zh) * 2016-08-02 2018-08-07 武汉理工大学 一种基于交互思维的发动机自启停智能触发系统
DE102016009763A1 (de) * 2016-08-11 2018-02-15 Trw Automotive Gmbh Steuerungssystem und Steuerungsverfahren zum Bestimmen einer Trajektorie und zum Erzeugen von zugehörigen Signalen oder Steuerbefehlen
JP6831190B2 (ja) 2016-08-15 2021-02-17 トヨタ自動車株式会社 自動運転車両の制御システム及び制御方法
US10369998B2 (en) 2016-08-22 2019-08-06 Peloton Technology, Inc. Dynamic gap control for automated driving
JP6776058B2 (ja) * 2016-08-26 2020-10-28 シャープ株式会社 自律走行車両制御装置、自律走行車両制御システム及び自律走行車両制御方法
CA3034441C (en) * 2016-08-29 2023-10-03 Allstate Insurance Company Electrical data processing system for determining a navigation route based on the location of a vehicle and generating a recommendation for a vehicle maneuver
US10515543B2 (en) 2016-08-29 2019-12-24 Allstate Insurance Company Electrical data processing system for determining status of traffic device and vehicle movement
US10127812B2 (en) 2016-08-29 2018-11-13 Allstate Insurance Company Electrical data processing system for monitoring or affecting movement of a vehicle using a traffic device
US10417904B2 (en) 2016-08-29 2019-09-17 Allstate Insurance Company Electrical data processing system for determining a navigation route based on the location of a vehicle and generating a recommendation for a vehicle maneuver
US10640111B1 (en) * 2016-09-07 2020-05-05 Waymo Llc Speed planning for autonomous vehicles
DE102016116858A1 (de) * 2016-09-08 2018-03-08 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH System und Verfahren zur Übergabe eines Nutzfahrzeuges
WO2018047117A1 (en) 2016-09-09 2018-03-15 Dematic Corp. Free ranging automated guided vehicle and operational system
US10650621B1 (en) 2016-09-13 2020-05-12 Iocurrents, Inc. Interfacing with a vehicular controller area network
US10131053B1 (en) 2016-09-14 2018-11-20 X Development Llc Real time robot collision avoidance
US10346152B2 (en) 2016-09-20 2019-07-09 At&T Intellectual Property I, L.P. Facilitating use of a universal integrated circuit card (UICC) for secure device updates
US10502574B2 (en) * 2016-09-20 2019-12-10 Waymo Llc Devices and methods for a sensor platform of a vehicle
US10783430B2 (en) 2016-09-26 2020-09-22 The Boeing Company Signal removal to examine a spectrum of another signal
US10191493B2 (en) * 2016-09-27 2019-01-29 Baidu Usa Llc Vehicle position point forwarding method for autonomous vehicles
US10343685B2 (en) 2016-09-28 2019-07-09 Baidu Usa Llc Physical model and machine learning combined method to simulate autonomous vehicle movement
US10019008B2 (en) * 2016-09-28 2018-07-10 Baidu Usa Llc Sideslip compensated control method for autonomous vehicles
US9905133B1 (en) 2016-09-30 2018-02-27 Allstate Insurance Company Controlling autonomous vehicles to provide automated emergency response functions
WO2018070330A1 (ja) * 2016-10-11 2018-04-19 三菱電機株式会社 乗り物酔い推定装置、乗り物酔い防止装置および乗り物酔い推定方法
US10202118B2 (en) 2016-10-14 2019-02-12 Waymo Llc Planning stopping locations for autonomous vehicles
US11142197B2 (en) * 2016-10-18 2021-10-12 Honda Motor Co., Ltd. Vehicle control device
US10277084B1 (en) 2016-10-19 2019-04-30 Waymo Llc Planar rotary transformer
US10473470B2 (en) 2016-10-20 2019-11-12 nuTonomy Inc. Identifying a stopping place for an autonomous vehicle
US10857994B2 (en) 2016-10-20 2020-12-08 Motional Ad Llc Identifying a stopping place for an autonomous vehicle
US10681513B2 (en) 2016-10-20 2020-06-09 nuTonomy Inc. Identifying a stopping place for an autonomous vehicle
US10331129B2 (en) 2016-10-20 2019-06-25 nuTonomy Inc. Identifying a stopping place for an autonomous vehicle
US10399564B2 (en) * 2016-10-25 2019-09-03 Ford Global Technologies, Llc Vehicle roundabout management
KR101979269B1 (ko) * 2016-10-28 2019-05-16 엘지전자 주식회사 자율 주행 차량 및 자율 주행 차량의 동작 방법
IT201600109633A1 (it) * 2016-10-31 2018-05-01 Magneti Marelli Spa Procedimento e sistema di controllo adattivo in un veicolo terrestre per l'inseguimento di un percorso, particolarmente in uno scenario di guida autonoma.
US10062373B2 (en) 2016-11-03 2018-08-28 Bragi GmbH Selective audio isolation from body generated sound system and method
US10058282B2 (en) 2016-11-04 2018-08-28 Bragi GmbH Manual operation assistance with earpiece with 3D sound cues
US10063957B2 (en) 2016-11-04 2018-08-28 Bragi GmbH Earpiece with source selection within ambient environment
US10496096B2 (en) 2016-11-08 2019-12-03 Digital Aerolus, Inc. Real time effective mass and moment of inertia measurement
WO2018089522A1 (en) * 2016-11-08 2018-05-17 Digital Aerolus, Inc. Method for describing and executing behaviors in autonomous vehicles
US10289121B2 (en) * 2016-11-14 2019-05-14 Qualcomm Incorporated Vehicle collision avoidance
US11042161B2 (en) * 2016-11-16 2021-06-22 Symbol Technologies, Llc Navigation control method and apparatus in a mobile automation system
KR102441054B1 (ko) * 2016-11-23 2022-09-06 현대자동차주식회사 차량의 경로 제어 장치 및 방법
US20180150083A1 (en) * 2016-11-29 2018-05-31 Waymo Llc Pod connection for Autonomous Vehicle Sensors
WO2018106575A1 (en) * 2016-12-05 2018-06-14 Cummins Inc. Multi-vehicle load delivery management systems and methods
US10423156B2 (en) * 2016-12-11 2019-09-24 Aatonomy, Inc. Remotely-controlled device control system, device and method
US10442435B2 (en) * 2016-12-14 2019-10-15 Baidu Usa Llc Speed control parameter estimation method for autonomous driving vehicles
US10308430B1 (en) 2016-12-23 2019-06-04 Amazon Technologies, Inc. Distribution and retrieval of inventory and materials using autonomous vehicles
US10310500B1 (en) * 2016-12-23 2019-06-04 Amazon Technologies, Inc. Automated access to secure facilities using autonomous vehicles
US10310499B1 (en) 2016-12-23 2019-06-04 Amazon Technologies, Inc. Distributed production of items from locally sourced materials using autonomous vehicles
US11584372B2 (en) * 2016-12-28 2023-02-21 Baidu Usa Llc Method to dynamically adjusting speed control rates of autonomous vehicles
US11157014B2 (en) 2016-12-29 2021-10-26 Tesla, Inc. Multi-channel sensor simulation for autonomous control systems
WO2018125848A1 (en) 2016-12-30 2018-07-05 DeepMap Inc. Route generation using high definition maps for autonomous vehicles
US10942257B2 (en) 2016-12-31 2021-03-09 Innovusion Ireland Limited 2D scanning high precision LiDAR using combination of rotating concave mirror and beam steering devices
RU2721677C1 (ru) * 2017-01-05 2020-05-21 Фраунхофер-Гезелльшафт Цур Фердерунг Дер Ангевандтен Форшунг Е.Ф. Формирование и использование карт высокого разрешения
US10529147B2 (en) 2017-01-05 2020-01-07 International Business Machines Corporation Self-driving vehicle road safety flare deploying system
US10246101B2 (en) * 2017-01-12 2019-04-02 Ford Global Technologies, Llc Driver training system
US10139834B2 (en) * 2017-01-12 2018-11-27 GM Global Technology Operations LLC Methods and systems for processing local and cloud data in a vehicle and a cloud server for transmitting cloud data to vehicles
CN106912141B (zh) * 2017-01-17 2018-04-13 江苏德瑞博新能源汽车制造有限公司 安装太阳能光伏组件的电动汽车
CN106686119B (zh) * 2017-01-21 2017-12-26 江苏开放大学 安装基于云计算信息的云端加密优盘装置的无人汽车
US11318952B2 (en) * 2017-01-24 2022-05-03 Ford Global Technologies, Llc Feedback for an autonomous vehicle
WO2018140748A1 (en) 2017-01-26 2018-08-02 The Regents Of The University Of Michigan Localization using 2d maps which capture vertical structures in 3d point data
WO2018137774A1 (en) * 2017-01-27 2018-08-02 Cpac Systems Ab A method for forming a local navigation path for an autonomous vehicle
US11004000B1 (en) 2017-01-30 2021-05-11 Waymo Llc Predicting trajectory intersection by another road user
US20180217603A1 (en) * 2017-01-31 2018-08-02 GM Global Technology Operations LLC Efficient situational awareness from perception streams in autonomous driving systems
US10409279B2 (en) * 2017-01-31 2019-09-10 GM Global Technology Operations LLC Efficient situational awareness by event generation and episodic memory recall for autonomous driving systems
DE102017201517A1 (de) * 2017-01-31 2018-08-02 Robert Bosch Gmbh Verfahren und Vorrichtung zum Plausibilisieren einer Fahrzeugtrajektorie zum Steuern eines Fahrzeugs
CN106843212B (zh) * 2017-02-08 2020-01-10 重庆长安汽车股份有限公司 自动驾驶基于偏航角修正的车辆应急辅助定向系统及方法
RU2725920C1 (ru) 2017-02-10 2020-07-07 Ниссан Норт Америка, Инк. Управление оперативным управлением автономным транспортным средством
MX2019009395A (es) 2017-02-10 2019-12-05 Nissan North America Inc Monitoreo del bloqueo de la administracion operacional de vehiculos autonomos.
WO2018147874A1 (en) 2017-02-10 2018-08-16 Nissan North America, Inc. Autonomous vehicle operational management including operating a partially observable markov decision process model instance
US9947221B1 (en) 2017-02-12 2018-04-17 Robert Mazzola Systems and methods of vehicular communication
KR20180094725A (ko) 2017-02-16 2018-08-24 삼성전자주식회사 자율 주행을 위한 차량 제어 방법, 차량 제어 장치 및 자율 주행을 위한 학습 방법
KR102406506B1 (ko) * 2017-02-17 2022-06-10 현대자동차주식회사 자율주행 차량 경쟁 제어 장치, 그를 포함한 시스템 및 그 방법
IL250762B (en) * 2017-02-23 2020-09-30 Appelman Dina Method and system for unmanned vehicle navigation
CN108153297A (zh) * 2017-03-01 2018-06-12 中国北方车辆研究所 一种地面无人平台车载的运动控制方法及车载系统
US10146225B2 (en) * 2017-03-02 2018-12-04 GM Global Technology Operations LLC Systems and methods for vehicle dimension prediction
US10109198B2 (en) * 2017-03-08 2018-10-23 GM Global Technology Operations LLC Method and apparatus of networked scene rendering and augmentation in vehicular environments in autonomous driving systems
CN107161141B (zh) * 2017-03-08 2023-05-23 深圳市速腾聚创科技有限公司 无人驾驶汽车系统及汽车
DE102017203838B4 (de) 2017-03-08 2022-03-17 Audi Ag Verfahren und System zur Umfelderfassung
US10147193B2 (en) 2017-03-10 2018-12-04 TuSimple System and method for semantic segmentation using hybrid dilated convolution (HDC)
US10311312B2 (en) 2017-08-31 2019-06-04 TuSimple System and method for vehicle occlusion detection
US10671873B2 (en) 2017-03-10 2020-06-02 Tusimple, Inc. System and method for vehicle wheel detection
JP7089847B2 (ja) * 2017-03-10 2022-06-23 オムロン株式会社 応答器、質問機、応答器の制御方法、質問機の制御方法、情報処理プログラム、および記録媒体
US11587304B2 (en) 2017-03-10 2023-02-21 Tusimple, Inc. System and method for occluding contour detection
US9953236B1 (en) 2017-03-10 2018-04-24 TuSimple System and method for semantic segmentation using dense upsampling convolution (DUC)
US10338594B2 (en) 2017-03-13 2019-07-02 Nio Usa, Inc. Navigation of autonomous vehicles to enhance safety under one or more fault conditions
WO2018170074A1 (en) * 2017-03-14 2018-09-20 Starsky Robotics, Inc. Vehicle sensor system and method of use
US9810775B1 (en) 2017-03-16 2017-11-07 Luminar Technologies, Inc. Q-switched laser for LIDAR system
US9810786B1 (en) 2017-03-16 2017-11-07 Luminar Technologies, Inc. Optical parametric oscillator for lidar system
US9905992B1 (en) 2017-03-16 2018-02-27 Luminar Technologies, Inc. Self-Raman laser for lidar system
EP3566106B1 (en) * 2017-03-20 2024-03-06 Mobileye Vision Technologies Ltd. Trajectory selection for an autonomous vehicle
US10573106B1 (en) 2017-03-22 2020-02-25 Amazon Technologies, Inc. Personal intermediary access device
US10147249B1 (en) 2017-03-22 2018-12-04 Amazon Technologies, Inc. Personal intermediary communication device
US9869754B1 (en) 2017-03-22 2018-01-16 Luminar Technologies, Inc. Scan patterns for lidar systems
US10678244B2 (en) 2017-03-23 2020-06-09 Tesla, Inc. Data synthesis for autonomous control systems
US10366294B2 (en) * 2017-03-23 2019-07-30 Aptiv Technologies Limited Transparency-characteristic based object classification for automated vehicle
US10061019B1 (en) 2017-03-28 2018-08-28 Luminar Technologies, Inc. Diffractive optical element in a lidar system to correct for backscan
US10267899B2 (en) 2017-03-28 2019-04-23 Luminar Technologies, Inc. Pulse timing based on angle of view
US10209359B2 (en) 2017-03-28 2019-02-19 Luminar Technologies, Inc. Adaptive pulse rate in a lidar system
US10114111B2 (en) 2017-03-28 2018-10-30 Luminar Technologies, Inc. Method for dynamically controlling laser power
US10121813B2 (en) 2017-03-28 2018-11-06 Luminar Technologies, Inc. Optical detector having a bandpass filter in a lidar system
US10254388B2 (en) 2017-03-28 2019-04-09 Luminar Technologies, Inc. Dynamically varying laser output in a vehicle in view of weather conditions
US10732281B2 (en) 2017-03-28 2020-08-04 Luminar Technologies, Inc. Lidar detector system having range walk compensation
US11119198B2 (en) 2017-03-28 2021-09-14 Luminar, Llc Increasing operational safety of a lidar system
US10139478B2 (en) 2017-03-28 2018-11-27 Luminar Technologies, Inc. Time varying gain in an optical detector operating in a lidar system
US10545240B2 (en) 2017-03-28 2020-01-28 Luminar Technologies, Inc. LIDAR transmitter and detector system using pulse encoding to reduce range ambiguity
US10661764B1 (en) 2017-03-28 2020-05-26 Apple Inc. Braking system control state transitions
US10007001B1 (en) 2017-03-28 2018-06-26 Luminar Technologies, Inc. Active short-wave infrared four-dimensional camera
US10191155B2 (en) 2017-03-29 2019-01-29 Luminar Technologies, Inc. Optical resolution in front of a vehicle
US10976417B2 (en) 2017-03-29 2021-04-13 Luminar Holdco, Llc Using detectors with different gains in a lidar system
US10254762B2 (en) 2017-03-29 2019-04-09 Luminar Technologies, Inc. Compensating for the vibration of the vehicle
US10969488B2 (en) 2017-03-29 2021-04-06 Luminar Holdco, Llc Dynamically scanning a field of regard using a limited number of output beams
US10983213B2 (en) 2017-03-29 2021-04-20 Luminar Holdco, Llc Non-uniform separation of detector array elements in a lidar system
US10663595B2 (en) 2017-03-29 2020-05-26 Luminar Technologies, Inc. Synchronized multiple sensor head system for a vehicle
US11002853B2 (en) 2017-03-29 2021-05-11 Luminar, Llc Ultrasonic vibrations on a window in a lidar system
US10088559B1 (en) 2017-03-29 2018-10-02 Luminar Technologies, Inc. Controlling pulse timing to compensate for motor dynamics
US10641874B2 (en) 2017-03-29 2020-05-05 Luminar Technologies, Inc. Sizing the field of view of a detector to improve operation of a lidar system
WO2018183715A1 (en) 2017-03-29 2018-10-04 Luminar Technologies, Inc. Method for controlling peak and average power through laser receiver
US10295668B2 (en) 2017-03-30 2019-05-21 Luminar Technologies, Inc. Reducing the number of false detections in a lidar system
US10684360B2 (en) 2017-03-30 2020-06-16 Luminar Technologies, Inc. Protecting detector in a lidar system using off-axis illumination
US10401481B2 (en) 2017-03-30 2019-09-03 Luminar Technologies, Inc. Non-uniform beam power distribution for a laser operating in a vehicle
US10241198B2 (en) 2017-03-30 2019-03-26 Luminar Technologies, Inc. Lidar receiver calibration
US9989629B1 (en) 2017-03-30 2018-06-05 Luminar Technologies, Inc. Cross-talk mitigation using wavelength switching
US10915112B2 (en) * 2017-03-31 2021-02-09 Uatc, Llc Autonomous vehicle system for blending sensor data
US11022688B2 (en) 2017-03-31 2021-06-01 Luminar, Llc Multi-eye lidar system
JP2018173729A (ja) * 2017-03-31 2018-11-08 パナソニックIpマネジメント株式会社 自動運転制御方法およびそれを利用した自動運転制御装置、プログラム
US20180284246A1 (en) 2017-03-31 2018-10-04 Luminar Technologies, Inc. Using Acoustic Signals to Modify Operation of a Lidar System
JP6863011B2 (ja) * 2017-03-31 2021-04-21 トヨタ自動車株式会社 操舵制御装置
CN107168305B (zh) * 2017-04-01 2020-03-17 西安交通大学 路口场景下基于Bezier和VFH的无人车轨迹规划方法
US10471963B2 (en) 2017-04-07 2019-11-12 TuSimple System and method for transitioning between an autonomous and manual driving mode based on detection of a drivers capacity to control a vehicle
US10710592B2 (en) 2017-04-07 2020-07-14 Tusimple, Inc. System and method for path planning of autonomous vehicles based on gradient
US9952594B1 (en) 2017-04-07 2018-04-24 TuSimple System and method for traffic data collection using unmanned aerial vehicles (UAVs)
JP2018176935A (ja) * 2017-04-10 2018-11-15 トヨタ自動車株式会社 自動運転装置
WO2018190834A1 (en) 2017-04-12 2018-10-18 Paglieroni David W Attract-repel path planner system for collision avoidance
US10677897B2 (en) 2017-04-14 2020-06-09 Luminar Technologies, Inc. Combining lidar and camera data
WO2018191818A1 (en) * 2017-04-18 2018-10-25 Clearpath Robotics Inc. Stand-alone self-driving material-transport vehicle
US10234858B2 (en) * 2017-04-18 2019-03-19 Aptiv Technologies Limited Automated vehicle control system
US10942520B1 (en) 2017-04-20 2021-03-09 Wells Fargo Bank, N.A. Creating trip routes for autonomous vehicles
US10552691B2 (en) 2017-04-25 2020-02-04 TuSimple System and method for vehicle position and velocity estimation based on camera and lidar data
CN107063713B (zh) * 2017-04-27 2020-03-10 百度在线网络技术(北京)有限公司 应用于无人驾驶汽车的测试方法和装置
US10317907B2 (en) * 2017-04-28 2019-06-11 GM Global Technology Operations LLC Systems and methods for obstacle avoidance and path planning in autonomous vehicles
US10649457B2 (en) * 2017-05-02 2020-05-12 Cnh Industrial America Llc System and method for autonomous vehicle system planning
US10423162B2 (en) 2017-05-08 2019-09-24 Nio Usa, Inc. Autonomous vehicle logic to identify permissioned parking relative to multiple classes of restricted parking
US20180328745A1 (en) * 2017-05-09 2018-11-15 Uber Technologies, Inc. Coverage plan generation and implementation
US10942525B2 (en) 2017-05-09 2021-03-09 Uatc, Llc Navigational constraints for autonomous vehicles
US20180326900A1 (en) * 2017-05-10 2018-11-15 Ford Global Technologies, Llc Multifunction vehicle interior light with switchable beam pattern and changeable color
US10558864B2 (en) 2017-05-18 2020-02-11 TuSimple System and method for image localization based on semantic segmentation
US10481044B2 (en) 2017-05-18 2019-11-19 TuSimple Perception simulation for improved autonomous vehicle control
WO2018213931A1 (en) 2017-05-25 2018-11-29 Clearpath Robotics Inc. Systems and methods for process tending with a robot arm
US11113547B2 (en) * 2017-05-31 2021-09-07 Baidu Usa Llc Planning control in response to a driving obstruction during operation of an autonomous driving vehicle (ADV)
JP6666304B2 (ja) * 2017-06-02 2020-03-13 本田技研工業株式会社 走行制御装置、走行制御方法、およびプログラム
US10474790B2 (en) 2017-06-02 2019-11-12 TuSimple Large scale distributed simulation for realistic multiple-agent interactive environments
US10762635B2 (en) 2017-06-14 2020-09-01 Tusimple, Inc. System and method for actively selecting and labeling images for semantic segmentation
US10390474B2 (en) 2017-06-19 2019-08-27 Cnh Industrial America Llc. Path planning system for a work vehicle
US10595455B2 (en) * 2017-06-19 2020-03-24 Cnh Industrial America Llc Planning system for an autonomous work vehicle system
US10492355B2 (en) 2017-06-19 2019-12-03 Cnh Industrial America Llc Path planning system for a work vehicle
US10007269B1 (en) * 2017-06-23 2018-06-26 Uber Technologies, Inc. Collision-avoidance system for autonomous-capable vehicle
US10343698B2 (en) * 2017-06-27 2019-07-09 Uber Technologies, Inc. Disabling onboard input devices in an autonomous vehicle
US10562524B2 (en) * 2017-06-29 2020-02-18 Nio Usa, Inc. Rollover control algorithm
US10386856B2 (en) 2017-06-29 2019-08-20 Uber Technologies, Inc. Autonomous vehicle collision mitigation systems and methods
US10737695B2 (en) 2017-07-01 2020-08-11 Tusimple, Inc. System and method for adaptive cruise control for low speed following
US10493988B2 (en) 2017-07-01 2019-12-03 TuSimple System and method for adaptive cruise control for defensive driving
US10308242B2 (en) 2017-07-01 2019-06-04 TuSimple System and method for using human driving patterns to detect and correct abnormal driving behaviors of autonomous vehicles
US10752246B2 (en) 2017-07-01 2020-08-25 Tusimple, Inc. System and method for adaptive cruise control with proximate vehicle detection
US10303522B2 (en) 2017-07-01 2019-05-28 TuSimple System and method for distributed graphics processing unit (GPU) computation
US10732634B2 (en) 2017-07-03 2020-08-04 Baidu Us Llc Centralized scheduling system using event loop for operating autonomous driving vehicles
US10747228B2 (en) * 2017-07-03 2020-08-18 Baidu Usa Llc Centralized scheduling system for operating autonomous driving vehicles
US10635108B2 (en) * 2017-07-03 2020-04-28 Baidu Usa Llc Centralized scheduling system using global store for operating autonomous driving vehicles
US10576984B2 (en) 2017-07-06 2020-03-03 Toyota Research Institute, Inc. Second stop position for intersection turn
US10369974B2 (en) 2017-07-14 2019-08-06 Nio Usa, Inc. Control and coordination of driverless fuel replenishment for autonomous vehicles
US10710633B2 (en) 2017-07-14 2020-07-14 Nio Usa, Inc. Control of complex parking maneuvers and autonomous fuel replenishment of driverless vehicles
CN116540739A (zh) 2017-07-21 2023-08-04 北京图森智途科技有限公司 实现车辆自动装卸货的方法及系统、相关设备
CN107381488B (zh) 2017-07-21 2018-12-18 北京图森未来科技有限公司 一种车辆的自动加油方法、装置和系统
CN107369218B (zh) 2017-07-21 2019-02-22 北京图森未来科技有限公司 实现车辆自动缴费的方法及系统、相关设备
CN107393074B (zh) 2017-07-21 2019-01-18 北京图森未来科技有限公司 实现车辆自动过卡的方法和系统、相关设备
CN107352497B (zh) 2017-07-21 2018-10-12 北京图森未来科技有限公司 一种车辆的自动加油方法、装置和系统
CN107421615A (zh) 2017-07-21 2017-12-01 北京图森未来科技有限公司 实现车辆自动称重的方法及系统、相关设备
CN107272657B (zh) 2017-07-21 2020-03-10 北京图森未来科技有限公司 实现车辆自动检修的方法及系统、相关设备
CN107416754B (zh) 2017-07-21 2018-11-02 北京图森未来科技有限公司 一种长途运输车辆的自动加油方法、装置和系统
CA3070624A1 (en) * 2017-07-28 2019-01-31 Nuro, Inc. Flexible compartment design on autonomous and semi-autonomous vehicle
US10437259B2 (en) 2017-07-28 2019-10-08 Loon Llc Systems and methods for controlling aerial vehicles
US10437260B2 (en) 2017-07-28 2019-10-08 Loon Llc Systems and methods for controlling aerial vehicles
US10809718B2 (en) 2017-07-28 2020-10-20 Loon Llc Systems and methods for controlling aerial vehicles
CA3068329A1 (en) * 2017-07-28 2019-01-31 Loon Llc Systems and methods for controlling aerial vehicles
US10065638B1 (en) 2017-08-03 2018-09-04 Uber Technologies, Inc. Multi-model switching on a collision mitigation system
CN107462243B (zh) * 2017-08-04 2019-09-20 浙江大学 一种基于高精度地图的云控自动驾驶任务生成方法
US11029693B2 (en) 2017-08-08 2021-06-08 Tusimple, Inc. Neural network based vehicle dynamics model
US10360257B2 (en) 2017-08-08 2019-07-23 TuSimple System and method for image annotation
US10437247B2 (en) 2017-08-10 2019-10-08 Udelv Inc. Multi-stage operation of autonomous vehicles
US10803740B2 (en) 2017-08-11 2020-10-13 Cubic Corporation System and method of navigating vehicles
US10636299B2 (en) 2017-08-11 2020-04-28 Cubic Corporation System and method for controlling vehicular traffic
US10373489B2 (en) 2017-08-11 2019-08-06 Cubic Corporation System and method of adaptive controlling of traffic using camera data
US10636298B2 (en) 2017-08-11 2020-04-28 Cubic Corporation Adaptive traffic control using object tracking and identity details
US11250699B2 (en) 2017-08-14 2022-02-15 Cubic Corporation System and method of adaptive traffic management at an intersection
US11100336B2 (en) 2017-08-14 2021-08-24 Cubic Corporation System and method of adaptive traffic management at an intersection
US10935388B2 (en) 2017-08-14 2021-03-02 Cubic Corporation Adaptive optimization of navigational routes using traffic data
US10395522B2 (en) 2017-08-14 2019-08-27 Cubic Corporation Adaptive traffic optimization using unmanned aerial vehicles
US10345110B2 (en) * 2017-08-14 2019-07-09 Toyota Motor Engineering & Manufacturing North America, Inc. Autonomous vehicle routing based on chaos assessment
US10852438B2 (en) 2017-08-21 2020-12-01 Caterpillar Inc. LIDAR waveform classification
US10816354B2 (en) 2017-08-22 2020-10-27 Tusimple, Inc. Verification module system and method for motion-based lane detection with multiple sensors
US10565457B2 (en) 2017-08-23 2020-02-18 Tusimple, Inc. Feature matching and correspondence refinement and 3D submap position refinement system and method for centimeter precision localization using camera-based submap and LiDAR-based global map
US10762673B2 (en) 2017-08-23 2020-09-01 Tusimple, Inc. 3D submap reconstruction system and method for centimeter precision localization using camera-based submap and LiDAR-based global map
US10303956B2 (en) 2017-08-23 2019-05-28 TuSimple System and method for using triplet loss for proposal free instance-wise semantic segmentation for lane detection
US10216189B1 (en) 2017-08-23 2019-02-26 Uber Technologies, Inc. Systems and methods for prioritizing object prediction for autonomous vehicles
US10678234B2 (en) 2017-08-24 2020-06-09 Tusimple, Inc. System and method for autonomous vehicle control to minimize energy cost
JP6574224B2 (ja) * 2017-08-30 2019-09-11 本田技研工業株式会社 車両制御装置、車両、車両制御方法およびプログラム
WO2019041044A1 (en) 2017-08-31 2019-03-07 Clearpath Robotics Inc. APPARATUS, SYSTEMS AND METHODS FOR SEIZING AND DEPOSITING A PAYLOAD USING A SELF-PROPELLED MATERIAL TRANSPORT VEHICLE
US10783381B2 (en) 2017-08-31 2020-09-22 Tusimple, Inc. System and method for vehicle occlusion detection
US11422569B2 (en) 2017-08-31 2022-08-23 Clearpath Robotics Inc. Systems and methods for generating a mission for a self-driving material-transport vehicle
JP6766783B2 (ja) * 2017-08-31 2020-10-14 トヨタ自動車株式会社 車両制御装置
US10782694B2 (en) 2017-09-07 2020-09-22 Tusimple, Inc. Prediction-based system and method for trajectory planning of autonomous vehicles
US10656644B2 (en) 2017-09-07 2020-05-19 Tusimple, Inc. System and method for using human driving patterns to manage speed control for autonomous vehicles
US10953880B2 (en) 2017-09-07 2021-03-23 Tusimple, Inc. System and method for automated lane change control for autonomous vehicles
US10953881B2 (en) 2017-09-07 2021-03-23 Tusimple, Inc. System and method for automated lane change control for autonomous vehicles
US10649458B2 (en) 2017-09-07 2020-05-12 Tusimple, Inc. Data-driven prediction-based system and method for trajectory planning of autonomous vehicles
US10782693B2 (en) 2017-09-07 2020-09-22 Tusimple, Inc. Prediction-based system and method for trajectory planning of autonomous vehicles
US20190079526A1 (en) * 2017-09-08 2019-03-14 Uber Technologies, Inc. Orientation Determination in Object Detection and Tracking for Autonomous Vehicles
JP6723207B2 (ja) * 2017-09-11 2020-07-15 Kddi株式会社 飛行管理装置、飛行装置、及び飛行管理方法
US10948919B2 (en) * 2017-09-11 2021-03-16 Baidu Usa Llc Dynamic programming and gradient descent based decision and planning for autonomous driving vehicles
US10754339B2 (en) * 2017-09-11 2020-08-25 Baidu Usa Llc Dynamic programming and quadratic programming based decision and planning for autonomous driving vehicles
KR102355424B1 (ko) * 2017-09-13 2022-01-26 현대자동차주식회사 차량용 중앙 처리 장치를 제어하는 워치독 회로의 신뢰성을 향상시키는 장치 및 방법
US10671083B2 (en) 2017-09-13 2020-06-02 Tusimple, Inc. Neural network architecture system for deep odometry assisted by static scene optical flow
US10552979B2 (en) 2017-09-13 2020-02-04 TuSimple Output of a neural network method for deep odometry assisted by static scene optical flow
US10344960B2 (en) 2017-09-19 2019-07-09 Bragi GmbH Wireless earpiece controlled medical headlight
US10387736B2 (en) 2017-09-20 2019-08-20 TuSimple System and method for detecting taillight signals of a vehicle
US11272367B2 (en) 2017-09-20 2022-03-08 Bragi GmbH Wireless earpieces for hub communications
US10733465B2 (en) 2017-09-20 2020-08-04 Tusimple, Inc. System and method for vehicle taillight state recognition
JP6583697B2 (ja) * 2017-09-26 2019-10-02 本田技研工業株式会社 周辺監視装置、制御装置、周辺監視方法、およびプログラム
CN107544514B (zh) * 2017-09-29 2022-01-07 广州唯品会研究院有限公司 机器人障碍物避让方法、装置、存储介质及机器人
CN108733045B (zh) * 2017-09-29 2022-01-04 北京猎户星空科技有限公司 机器人及其避障方法以及计算机可读存储介质
US10970564B2 (en) 2017-09-30 2021-04-06 Tusimple, Inc. System and method for instance-level lane detection for autonomous vehicle control
US10768626B2 (en) 2017-09-30 2020-09-08 Tusimple, Inc. System and method for providing multiple agents for decision making, trajectory planning, and control for autonomous vehicles
US10962979B2 (en) 2017-09-30 2021-03-30 Tusimple, Inc. System and method for multitask processing for autonomous vehicle computation and control
WO2019068175A1 (en) * 2017-10-03 2019-04-11 Xco Tech Inc. SYSTEM AND METHOD FOR DETERMINING POSITION
US10410055B2 (en) 2017-10-05 2019-09-10 TuSimple System and method for aerial video traffic analysis
US10739774B2 (en) * 2017-10-06 2020-08-11 Honda Motor Co., Ltd. Keyframe based autonomous vehicle operation
EP3695284A4 (en) * 2017-10-10 2021-04-14 The Government of the United States of America, as represented by the Secretary of the Navy PROCESS FOR IDENTIFYING OPTIMAL VEHICLE ROUTES WHEN ENERGY IS A KEY METRIC OR CONSTRAINT
CN107792052B (zh) * 2017-10-11 2019-11-08 武汉理工大学 有人或无人双模驾驶电动工程车
US10003168B1 (en) 2017-10-18 2018-06-19 Luminar Technologies, Inc. Fiber laser with free-space components
JP2019078732A (ja) * 2017-10-19 2019-05-23 株式会社トリマティス 水中地形測量複合lidar
US10921422B2 (en) * 2017-10-25 2021-02-16 The Boeing Company Below-noise after transmit (BAT) Chirp Radar
US10812589B2 (en) 2017-10-28 2020-10-20 Tusimple, Inc. Storage architecture for heterogeneous multimedia data
US10666730B2 (en) 2017-10-28 2020-05-26 Tusimple, Inc. Storage architecture for heterogeneous multimedia data
US10739775B2 (en) * 2017-10-28 2020-08-11 Tusimple, Inc. System and method for real world autonomous vehicle trajectory simulation
WO2019088977A1 (en) 2017-10-30 2019-05-09 Nissan North America, Inc. Continual planning and metareasoning for controlling an autonomous vehicle
US10948911B2 (en) * 2017-10-31 2021-03-16 Denso International America, Inc. Co-pilot
US11702070B2 (en) 2017-10-31 2023-07-18 Nissan North America, Inc. Autonomous vehicle operation with explicit occlusion reasoning
US10401862B2 (en) 2017-10-31 2019-09-03 Waymo Llc Semantic object clustering for autonomous vehicle decision making
AU2018358932B2 (en) * 2017-10-31 2020-12-03 Waymo Llc Semantic object clustering for autonomous vehicle decision making
US11392121B2 (en) 2017-10-31 2022-07-19 Clearpath Robotics Inc. Systems and methods for operating robotic equipment in controlled zones
WO2019088989A1 (en) * 2017-10-31 2019-05-09 Nissan North America, Inc. Reinforcement and model learning for vehicle operation
US10713940B2 (en) 2017-10-31 2020-07-14 Waymo Llc Detecting and responding to traffic redirection for autonomous vehicles
CN107719356A (zh) * 2017-11-03 2018-02-23 李青松 纯电动专用车用无人驾驶系统及方法
JP6870584B2 (ja) * 2017-11-13 2021-05-12 トヨタ自動車株式会社 救援システムおよび救援方法、ならびにそれに使用されるサーバおよびプログラム
CN107745697A (zh) 2017-11-16 2018-03-02 北京图森未来科技有限公司 一种自动清洁系统及方法
CN111417871A (zh) * 2017-11-17 2020-07-14 迪普迈普有限公司 基于激光雷达利用高清晰度地图的集成运动估计的迭代最近点处理
US10627825B2 (en) 2017-11-22 2020-04-21 Waymo Llc Using discomfort for speed planning in autonomous vehicles
US10451716B2 (en) 2017-11-22 2019-10-22 Luminar Technologies, Inc. Monitoring rotation of a mirror in a lidar system
US10310058B1 (en) 2017-11-22 2019-06-04 Luminar Technologies, Inc. Concurrent scan of multiple pixels in a lidar system equipped with a polygon mirror
CN109816135B (zh) * 2017-11-22 2023-09-26 博泰车联网科技(上海)股份有限公司 集群避险方法、系统、计算机可读存储介质及服务终端
US10967861B2 (en) 2018-11-13 2021-04-06 Waymo Llc Using discomfort for speed planning in responding to tailgating vehicles for autonomous vehicles
US10528823B2 (en) 2017-11-27 2020-01-07 TuSimple System and method for large-scale lane marking detection using multimodal sensor data
US10528851B2 (en) 2017-11-27 2020-01-07 TuSimple System and method for drivable road surface representation generation using multimodal sensor data
US10657390B2 (en) 2017-11-27 2020-05-19 Tusimple, Inc. System and method for large-scale lane marking detection using multimodal sensor data
US11084504B2 (en) 2017-11-30 2021-08-10 Nissan North America, Inc. Autonomous vehicle operational management scenarios
US10860018B2 (en) * 2017-11-30 2020-12-08 Tusimple, Inc. System and method for generating simulated vehicles with configured behaviors for analyzing autonomous vehicle motion planners
US10877476B2 (en) 2017-11-30 2020-12-29 Tusimple, Inc. Autonomous vehicle simulation system for analyzing motion planners
EP3495218B1 (en) * 2017-12-07 2020-06-24 TTTech Auto AG Fault-tolerant computer system for assisted and autonomous driving
US10156850B1 (en) 2017-12-08 2018-12-18 Uber Technologies, Inc. Object motion prediction and vehicle control systems and methods for autonomous vehicles
US10688662B2 (en) * 2017-12-13 2020-06-23 Disney Enterprises, Inc. Robot navigation in context of obstacle traffic including movement of groups
US10921142B2 (en) 2017-12-14 2021-02-16 Waymo Llc Methods and systems for sun-aware vehicle routing
US10303178B1 (en) 2017-12-15 2019-05-28 Waymo Llc Collision mitigation static occupancy grid
US20190188635A1 (en) * 2017-12-15 2019-06-20 Walmart Apollo, Llc Automated vehicle and method for servicing disabled vehicles
US10850684B2 (en) * 2017-12-19 2020-12-01 Micron Technology, Inc. Vehicle secure messages based on a vehicle private key
US10594666B2 (en) 2017-12-19 2020-03-17 Micron Technology, Inc. Secure message including a vehicle private key
US10908614B2 (en) * 2017-12-19 2021-02-02 Here Global B.V. Method and apparatus for providing unknown moving object detection
US10836400B2 (en) 2017-12-19 2020-11-17 Micron Technology, Inc. Implementing safety measures in applications
US11178133B2 (en) 2017-12-19 2021-11-16 Micron Technology, Inc. Secure vehicle control unit update
WO2019125489A1 (en) * 2017-12-22 2019-06-27 Nissan North America, Inc. Solution path overlay interfaces for autonomous vehicles
SE542531C2 (en) 2017-12-22 2020-06-02 Epiroc Rock Drills Ab Controlling communication of a mining and / or construction machine
US11493601B2 (en) 2017-12-22 2022-11-08 Innovusion, Inc. High density LIDAR scanning
US11874120B2 (en) 2017-12-22 2024-01-16 Nissan North America, Inc. Shared autonomous vehicle operational management
US11415683B2 (en) * 2017-12-28 2022-08-16 Lyft, Inc. Mobile sensor calibration
US11435456B2 (en) 2017-12-28 2022-09-06 Lyft, Inc. Sensor calibration facility
US10967875B2 (en) 2018-01-05 2021-04-06 Honda Motor Co., Ltd. Control system for autonomous all-terrain vehicle (ATV)
US10831636B2 (en) * 2018-01-08 2020-11-10 Waymo Llc Software validation for autonomous vehicles
WO2019140005A1 (en) 2018-01-09 2019-07-18 TuSimple Real-time remote control of vehicles with high redundancy
WO2019140277A2 (en) 2018-01-11 2019-07-18 TuSimple Monitoring system for autonomous vehicle operation
US11022971B2 (en) 2018-01-16 2021-06-01 Nio Usa, Inc. Event data recordation to identify and resolve anomalies associated with control of driverless vehicles
US10467581B2 (en) 2018-01-19 2019-11-05 Udelv Inc. Delivery management system
CN108270970B (zh) 2018-01-24 2020-08-25 北京图森智途科技有限公司 一种图像采集控制方法及装置、图像采集系统
US10816977B2 (en) * 2018-01-26 2020-10-27 Baidu Usa Llc Path and speed optimization fallback mechanism for autonomous vehicles
US10914820B2 (en) 2018-01-31 2021-02-09 Uatc, Llc Sensor assembly for vehicles
WO2019151104A1 (ja) * 2018-01-31 2019-08-08 パイオニア株式会社 周辺情報処理方法
JP6947853B2 (ja) * 2018-01-31 2021-10-13 パイオニア株式会社 周辺情報処理方法
US11009365B2 (en) 2018-02-14 2021-05-18 Tusimple, Inc. Lane marking localization
US11009356B2 (en) 2018-02-14 2021-05-18 Tusimple, Inc. Lane marking localization and fusion
US10678248B2 (en) * 2018-02-15 2020-06-09 GM Global Technology Operations LLC Fast trajectory planning via maneuver pattern selection
WO2020013890A2 (en) 2018-02-23 2020-01-16 Innovusion Ireland Limited Multi-wavelength pulse steering in lidar systems
JP6963158B2 (ja) 2018-02-26 2021-11-05 ニッサン ノース アメリカ,インク 集中型共有自律走行車動作管理
US10685244B2 (en) 2018-02-27 2020-06-16 Tusimple, Inc. System and method for online real-time multi-object tracking
JP7248008B2 (ja) 2018-02-28 2023-03-29 日本電気株式会社 領域評価システム、方法およびプログラム
US10685239B2 (en) 2018-03-18 2020-06-16 Tusimple, Inc. System and method for lateral vehicle detection
CN110316187B (zh) * 2018-03-30 2022-01-07 比亚迪股份有限公司 汽车及其避障控制方法
CN108382334A (zh) * 2018-04-03 2018-08-10 湖北汽车工业学院 一种智能驾驶汽车控制器结构
US10921455B2 (en) 2018-04-05 2021-02-16 Apex.AI, Inc. Efficient and scalable three-dimensional point cloud segmentation for navigation in autonomous vehicles
US10578720B2 (en) 2018-04-05 2020-03-03 Luminar Technologies, Inc. Lidar system with a polygon mirror and a noise-reducing feature
US11157003B1 (en) 2018-04-05 2021-10-26 Northrop Grumman Systems Corporation Software framework for autonomous system
US11029406B2 (en) 2018-04-06 2021-06-08 Luminar, Llc Lidar system with AlInAsSb avalanche photodiode
US11467590B2 (en) 2018-04-09 2022-10-11 SafeAI, Inc. Techniques for considering uncertainty in use of artificial intelligence models
US11625036B2 (en) 2018-04-09 2023-04-11 SafeAl, Inc. User interface for presenting decisions
US10809735B2 (en) 2018-04-09 2020-10-20 SafeAI, Inc. System and method for a framework of robust and safe reinforcement learning application in real world autonomous vehicle application
US11169536B2 (en) * 2018-04-09 2021-11-09 SafeAI, Inc. Analysis of scenarios for controlling vehicle operations
US11561541B2 (en) * 2018-04-09 2023-01-24 SafeAI, Inc. Dynamically controlling sensor behavior
CN110378185A (zh) 2018-04-12 2019-10-25 北京图森未来科技有限公司 一种应用于自动驾驶车辆的图像处理方法、装置
CN108388253A (zh) * 2018-04-17 2018-08-10 伊金霍洛旗瑞隆机械工程有限公司 一种连采机快速准直控制系统
US10990101B2 (en) * 2018-04-18 2021-04-27 Baidu Usa Llc Method for drifting correction for planning a path for autonomous driving vehicles
CN111971723B (zh) * 2018-04-20 2022-04-19 三菱电机株式会社 驾驶监视装置和计算机能读取的记录介质
US11002819B2 (en) 2018-04-24 2021-05-11 The Boeing Company Angular resolution of targets using separate radar receivers
US10868612B2 (en) 2018-04-25 2020-12-15 Honeywell International Inc. Sending environmental data on an uplink
CN108873885B (zh) * 2018-04-25 2021-12-10 珠海市杰理科技股份有限公司 车辆控制方法、装置和系统
JP7190261B2 (ja) * 2018-04-27 2022-12-15 日立Astemo株式会社 位置推定装置
US11334753B2 (en) 2018-04-30 2022-05-17 Uatc, Llc Traffic signal state classification for autonomous vehicles
CN116129376A (zh) 2018-05-02 2023-05-16 北京图森未来科技有限公司 一种道路边缘检测方法和装置
CN108407696A (zh) * 2018-05-08 2018-08-17 陕西同力重工股份有限公司 工程运输专用领域的无人驾驶矿车
KR101943422B1 (ko) 2018-05-11 2019-01-29 윤여표 자율주행차량 안전성 검사시스템 및 안전성 검사방법
US10800403B2 (en) * 2018-05-14 2020-10-13 GM Global Technology Operations LLC Autonomous ride dynamics comfort controller
US10676103B2 (en) * 2018-05-17 2020-06-09 Aptiv Technologies Limited Object position history playback for automated vehicle transition from autonomous-mode to manual-mode
US10348051B1 (en) 2018-05-18 2019-07-09 Luminar Technologies, Inc. Fiber-optic amplifier
US10921812B2 (en) 2018-05-22 2021-02-16 International Business Machines Corporation System and method for rendezvous coordination of an autonomous automotive vehicle with an ambulance
US10688867B2 (en) 2018-05-22 2020-06-23 International Business Machines Corporation Vehicular medical assistant
US10953888B2 (en) 2018-05-22 2021-03-23 International Business Machines Corporation Autonomous vehicle monitoring
CN108710368B (zh) * 2018-05-23 2021-07-23 北京新能源汽车股份有限公司 一种无人驾驶系统及电动汽车
US11104334B2 (en) 2018-05-31 2021-08-31 Tusimple, Inc. System and method for proximate vehicle intention prediction for autonomous vehicles
US10565728B2 (en) 2018-06-01 2020-02-18 Tusimple, Inc. Smoothness constraint for camera pose estimation
US11287816B2 (en) 2018-06-11 2022-03-29 Uatc, Llc Navigational constraints for autonomous vehicles
DE102018209607A1 (de) * 2018-06-14 2019-12-19 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zum Bestimmen einer Position eines Kraftfahrzeugs
CN109032129B (zh) * 2018-06-21 2021-07-27 昆山华恒工程技术中心有限公司 路径纠偏方法及装置、路径导引方法、可读介质
US11120688B2 (en) 2018-06-29 2021-09-14 Nissan North America, Inc. Orientation-adjust actions for autonomous vehicle operational management
JP6880080B2 (ja) * 2018-07-02 2021-06-02 ベイジン ディディ インフィニティ テクノロジー アンド ディベロップメント カンパニー リミティッド ポイントクラウドに基づく姿勢推定を用いた車両ナビゲーションシステム
CN109101689B (zh) * 2018-07-06 2023-01-31 同济大学 一种基于车辆行为调整模型的用于最佳跟驰车距计算的曲线拟合建模方法
US10591601B2 (en) 2018-07-10 2020-03-17 Luminar Technologies, Inc. Camera-gated lidar system
WO2020014683A1 (en) * 2018-07-13 2020-01-16 Kache.AI Systems and methods for autonomous object detection and vehicle following
WO2020018527A1 (en) * 2018-07-16 2020-01-23 Brain Corporation Systems and methods for optimizing route planning for tight turns for robotic apparatuses
US10627516B2 (en) * 2018-07-19 2020-04-21 Luminar Technologies, Inc. Adjustable pulse characteristics for ground detection in lidar systems
KR102077201B1 (ko) * 2018-07-20 2020-02-13 현대모비스 주식회사 차량의 통합 제어 장치 및 방법
CN109062201B (zh) * 2018-07-23 2021-09-03 南京理工大学 基于ros的智能导航微系统及其控制方法
CN108983777B (zh) * 2018-07-23 2021-04-06 浙江工业大学 一种基于自适应前沿探索目标点选取的自主探索与避障方法
DE102018117940A1 (de) * 2018-07-25 2020-01-30 Valeo Schalter Und Sensoren Gmbh Sendeeinheit für eine optische Objekterfassungseinrichtung und entsprechende optische Objekterfassungseinrichtung
US11326888B2 (en) * 2018-07-25 2022-05-10 Uatc, Llc Generation of polar occlusion maps for autonomous vehicles
US11186276B2 (en) * 2018-07-27 2021-11-30 Baidu Usa Llc Adjusting speeds along a path for autonomous driving vehicles
WO2020028244A1 (en) * 2018-07-30 2020-02-06 Fedex Corporate Services, Inc. Enhanced systems, apparatus, and methods for improved automated and autonomous operation of logistics ground support equipment
US11603100B2 (en) * 2018-08-03 2023-03-14 Continental Autonomous Mobility US, LLC Automated reversing by following user-selected trajectories and estimating vehicle motion
US11112795B1 (en) 2018-08-07 2021-09-07 GM Global Technology Operations LLC Maneuver-based interaction system for an autonomous vehicle
US10559198B1 (en) 2018-08-08 2020-02-11 Cubic Corporation System and method of adaptive controlling of traffic using zone based occupancy
US10551501B1 (en) 2018-08-09 2020-02-04 Luminar Technologies, Inc. Dual-mode lidar system
US10974720B2 (en) * 2018-08-13 2021-04-13 Kingman Ag, Llc Vehicle sliding bumper and system for object contact detection and responsive control
US10340651B1 (en) 2018-08-21 2019-07-02 Luminar Technologies, Inc. Lidar system with optical trigger
CN109164785B (zh) * 2018-08-24 2019-08-30 百度在线网络技术(北京)有限公司 自动驾驶车辆的仿真测试方法、装置、设备及存储介质
KR102211298B1 (ko) * 2018-08-24 2021-02-04 바이두닷컴 타임즈 테크놀로지(베이징) 컴퍼니 리미티드 센서 간의 데이터 전송을 위한 데이터 전송 로직과 자율 주행 차량의 계획 및 제어
JP2020035112A (ja) * 2018-08-28 2020-03-05 ヤンマー株式会社 障害物検知システム
US10921819B2 (en) 2018-08-28 2021-02-16 Asi Technologies, Inc. Automated guided vehicle system and automated guided vehicle for use therein
WO2020047297A1 (en) * 2018-08-29 2020-03-05 Buffalo Automation Group Inc. Optical encoder systems and methods
EP3799618B1 (en) 2018-08-30 2022-10-26 Elta Systems Ltd. Method of navigating a vehicle and system thereof
JP7014106B2 (ja) * 2018-09-04 2022-02-01 トヨタ自動車株式会社 車両制御システム
CN109146898B (zh) * 2018-09-07 2020-07-24 百度在线网络技术(北京)有限公司 一种仿真数据量增强方法、装置以及终端
CN109215136B (zh) 2018-09-07 2020-03-20 百度在线网络技术(北京)有限公司 一种真实数据增强方法、装置以及终端
CN109143242B (zh) 2018-09-07 2020-04-14 百度在线网络技术(北京)有限公司 障碍物绝对速度估计方法、系统、计算机设备和存储介质
US11023742B2 (en) 2018-09-07 2021-06-01 Tusimple, Inc. Rear-facing perception system for vehicles
US11019274B2 (en) 2018-09-10 2021-05-25 Tusimple, Inc. Adaptive illumination for a time-of-flight camera on a vehicle
US10839234B2 (en) 2018-09-12 2020-11-17 Tusimple, Inc. System and method for three-dimensional (3D) object detection
US11292480B2 (en) 2018-09-13 2022-04-05 Tusimple, Inc. Remote safe driving methods and systems
DE102018215695A1 (de) * 2018-09-14 2020-03-19 Denso Corporation Fahrzeugsteuersystem mit vorausschauender Sicherheit und Verfahren zur Fahrzeugsteuerung mit vorausschauender Sicherheit
US10394243B1 (en) * 2018-09-21 2019-08-27 Luminar Technologies, Inc. Autonomous vehicle technology for facilitating operation according to motion primitives
US10481605B1 (en) 2018-09-21 2019-11-19 Luminar Technologies, Inc. Autonomous vehicle technology for facilitating safe stopping according to separate paths
CA3113400A1 (en) * 2018-09-21 2020-03-26 Honda Motor Co., Ltd. Vehicle inspection system
US11079492B1 (en) * 2018-09-28 2021-08-03 Zoox, Inc. Condition dependent parameters for large-scale localization and/or mapping
CN110968087B (zh) * 2018-09-30 2023-05-23 百度(美国)有限责任公司 车辆控制参数的标定方法、装置、车载控制器和无人车
JP7177387B2 (ja) * 2018-10-11 2022-11-24 トヨタ自動車株式会社 情報処理装置、プログラム及び小型車両
US10796402B2 (en) 2018-10-19 2020-10-06 Tusimple, Inc. System and method for fisheye image processing
US10942271B2 (en) 2018-10-30 2021-03-09 Tusimple, Inc. Determining an angle between a tow vehicle and a trailer
US11092458B2 (en) * 2018-10-30 2021-08-17 Telenav, Inc. Navigation system with operation obstacle alert mechanism and method of operation thereof
JP2020071182A (ja) * 2018-11-01 2020-05-07 パナソニックIpマネジメント株式会社 運転支援装置、車両および運転支援方法
US11200430B2 (en) * 2018-11-05 2021-12-14 Tusimple, Inc. Systems and methods for detecting trailer angle
CN109218449B (zh) * 2018-11-07 2021-12-10 航天信息股份有限公司 一种基于物联网的机场车辆辅助管理系统及管理方法
EP3650298B1 (en) 2018-11-12 2024-03-27 Infosys Limited System for integrated auto-steering and auto-braking mechanism in autonomous vehicles as a retro fit
TWI674984B (zh) * 2018-11-15 2019-10-21 財團法人車輛研究測試中心 自動駕駛車輛之行駛軌跡規劃系統及方法
US11590815B2 (en) 2018-11-20 2023-02-28 Ford Global Technologies, Llc Hitch assistance system with interface presenting simplified path image
US11131992B2 (en) 2018-11-30 2021-09-28 Denso International America, Inc. Multi-level collaborative control system with dual neural network planning for autonomous vehicle control in a noisy environment
US11537811B2 (en) * 2018-12-04 2022-12-27 Tesla, Inc. Enhanced object detection for autonomous vehicles based on field view
US11192545B1 (en) 2018-12-05 2021-12-07 Waymo Llc Risk mitigation in speed planning
US11460848B1 (en) * 2018-12-06 2022-10-04 Waymo Llc Biased trajectory progress metric
US11940559B2 (en) * 2018-12-11 2024-03-26 Baidu Usa Llc Light detection and range (LIDAR) device with component stacking for coaxial readout without splitter mirror for autonomous driving vehicles
US10940851B2 (en) 2018-12-12 2021-03-09 Waymo Llc Determining wheel slippage on self driving vehicle
US10942516B2 (en) * 2018-12-12 2021-03-09 Valeo Schalter Und Sensoren Gmbh Vehicle path updates via remote vehicle control
US11392130B1 (en) 2018-12-12 2022-07-19 Amazon Technologies, Inc. Selecting delivery modes and delivery areas using autonomous ground vehicles
US11221399B2 (en) * 2018-12-12 2022-01-11 Waymo Llc Detecting spurious objects for autonomous vehicles
US10852746B2 (en) 2018-12-12 2020-12-01 Waymo Llc Detecting general road weather conditions
US11536844B2 (en) * 2018-12-14 2022-12-27 Beijing Voyager Technology Co., Ltd. Dynamic sensor range detection for vehicle navigation
CN109766793B (zh) * 2018-12-25 2021-05-28 百度在线网络技术(北京)有限公司 数据处理方法和装置
JP7001708B2 (ja) * 2018-12-26 2022-01-20 バイドゥ ドットコム タイムス テクノロジー (ベイジン) カンパニー リミテッド 自動運転車の高速計画のための多項式フィッティングベースの基準線平滑化方法
JP6987150B2 (ja) * 2018-12-26 2021-12-22 バイドゥドットコム タイムズ テクノロジー (ベイジン) カンパニー リミテッドBaidu.com Times Technology (Beijing) Co., Ltd. 自動運転車両の3ポイントターンの最適プランナー切り替え方法
WO2020139714A1 (en) * 2018-12-28 2020-07-02 Didi Research America, Llc System and method for updating vehicle operation based on remote intervention
CN109709961B (zh) * 2018-12-28 2021-12-07 百度在线网络技术(北京)有限公司 道路障碍物检测方法、装置及自动驾驶汽车
WO2020139713A1 (en) 2018-12-28 2020-07-02 Didi Research America, Llc System and method for remote intervention of vehicles
CN109633337B (zh) * 2019-01-04 2024-01-12 中汽研汽车检验中心(天津)有限公司 一种智能驾驶汽车电磁兼容试验移动障碍物的拖动装置
US10928827B2 (en) 2019-01-07 2021-02-23 Toyota Research Institute, Inc. Systems and methods for generating a path for a vehicle
US10823562B1 (en) 2019-01-10 2020-11-03 State Farm Mutual Automobile Insurance Company Systems and methods for enhanced base map generation
US11524695B2 (en) * 2019-01-23 2022-12-13 Motional Ad Llc Interface for harmonizing performance of different autonomous vehicles in a fleet
US11635241B2 (en) 2019-01-28 2023-04-25 Emerson Climate Technologies, Inc. Container refrigeration monitoring systems and methods
US11774561B2 (en) 2019-02-08 2023-10-03 Luminar Technologies, Inc. Amplifier input protection circuits
EP3696786B1 (en) 2019-02-13 2023-12-13 Volkswagen Aktiengesellschaft System, vehicle, network component, apparatuses, methods, and computer programs for a vehicle and a network component
US11285988B1 (en) 2019-02-18 2022-03-29 Apple Inc. Passenger vehicle and retractable driver input devices thereof
CN109703568B (zh) 2019-02-19 2020-08-18 百度在线网络技术(北京)有限公司 自动驾驶车辆行驶策略实时学习的方法、装置和服务器
CN109712421B (zh) 2019-02-22 2021-06-04 百度在线网络技术(北京)有限公司 自动驾驶车辆的速度规划方法、装置和存储介质
US11333739B2 (en) * 2019-02-26 2022-05-17 Magna Electronics Inc. Vehicular radar system with automatic sensor alignment
EP3705970A1 (en) * 2019-03-06 2020-09-09 Cargotec Patenter AB A vehicle comprising a vehicle accessory arrangement
US11560153B2 (en) 2019-03-07 2023-01-24 6 River Systems, Llc Systems and methods for collision avoidance by autonomous vehicles
US11137766B2 (en) * 2019-03-07 2021-10-05 Zoox, Inc. State machine for traversing junctions
US11420623B2 (en) * 2019-03-20 2022-08-23 Honda Motor Co., Ltd. Systems for determining object importance in on-road driving scenarios and methods thereof
US11122062B2 (en) 2019-03-26 2021-09-14 International Business Machines Corporation Remote interference assessment and response for autonomous vehicles
US11776143B2 (en) * 2019-03-28 2023-10-03 Nec Corporation Foreign matter detection device, foreign matter detection method, and program
DE102019108142A1 (de) * 2019-03-29 2020-10-01 Bayerische Motoren Werke Aktiengesellschaft Auswählen einer Handlungsoption für ein automatisiertes Kraftfahrzeug
CN109949545A (zh) * 2019-04-01 2019-06-28 广东科学技术职业学院 一种基于避免驾驶员疲劳驾驶的智能驾驶系统和方法
CN110040017A (zh) * 2019-04-02 2019-07-23 远景能源(江苏)有限公司 一种用于控制移动充电装置的方法及系统
CN111275661B (zh) * 2019-04-09 2020-11-17 杨丽 数据自动化修正方法
US11086996B2 (en) 2019-04-12 2021-08-10 International Business Machines Corporation Automatic idle-state scanning for malicious code
EP3953236B1 (en) 2019-04-12 2023-06-07 Volvo Truck Corporation A method of determining an allowable vehicle state space for an articulated vehicle
US11105642B2 (en) 2019-04-17 2021-08-31 Waymo Llc Stranding and scoping analysis for autonomous vehicle services
CN114026458A (zh) * 2019-04-17 2022-02-08 密歇根大学董事会 多维材料感测系统和方法
US11603110B2 (en) 2019-04-18 2023-03-14 Kyndryl, Inc. Addressing vehicle sensor abnormalities
CN109917794B (zh) * 2019-04-18 2022-02-18 北京智行者科技有限公司 全局路径规划方法及装置
US11853068B1 (en) * 2019-04-19 2023-12-26 Zoox, Inc. Vehicle trajectory controller safety margin
CN110007599B (zh) * 2019-04-23 2023-08-29 中国科学技术大学 一种激光雷达扫描机构的自适应积分滑模控制方法及系统
US11391587B1 (en) 2019-04-24 2022-07-19 Waymo Llc Assessing the impact of blockages on autonomous vehicle services
CN110027018B (zh) * 2019-04-28 2020-12-01 森思泰克河北科技有限公司 全向探测系统及方法
CN110210305B (zh) * 2019-04-30 2023-06-23 驭势(上海)汽车科技有限公司 行驶路径偏差确定方法及装置、存储介质及电子装置
WO2020227486A1 (en) * 2019-05-07 2020-11-12 Optimus Ride, Inc. Cost calculation system and method
CN113795417A (zh) * 2019-05-08 2021-12-14 沃尔沃卡车集团 用于确定车辆控制命令是否妨碍未来车辆安全操纵的方法
KR20200135886A (ko) 2019-05-10 2020-12-04 현대자동차주식회사 자율주행차량을 지원하는 시스템 및 방법
US11247695B2 (en) 2019-05-14 2022-02-15 Kyndryl, Inc. Autonomous vehicle detection
US11643115B2 (en) 2019-05-31 2023-05-09 Waymo Llc Tracking vanished objects for autonomous vehicles
US11823460B2 (en) 2019-06-14 2023-11-21 Tusimple, Inc. Image fusion for autonomous vehicle operation
NL2023390B1 (en) * 2019-06-26 2021-02-01 Lely Patent Nv Method of feeding a group of animals at a feeding location and system for performing the method
US11480962B1 (en) 2019-06-28 2022-10-25 Zoox, Inc. Dynamic lane expansion
US10915766B2 (en) * 2019-06-28 2021-02-09 Baidu Usa Llc Method for detecting closest in-path object (CIPO) for autonomous driving
US11299158B2 (en) 2019-07-02 2022-04-12 Ford Global Technologies, Llc Unintended standstill response in an assisted hitching operation
US20210405646A1 (en) * 2019-07-03 2021-12-30 Lg Electronics Inc. Marker, method of moving in marker following mode, and cart-robot implementing method
US11378962B2 (en) 2019-07-22 2022-07-05 Zoox, Inc. System and method for effecting a safety stop release in an autonomous vehicle
WO2021021163A1 (en) * 2019-07-31 2021-02-04 Hewlett-Packard Development Company, L.P. Positioning autonomous vehicles
CN110333728B (zh) * 2019-08-02 2022-03-04 大连海事大学 一种基于变时间间距策略的异构车队容错控制方法
WO2021025213A1 (ko) * 2019-08-08 2021-02-11 엘지전자 주식회사 경로 제공 장치 및 그것의 경로 제공 방법
US11383704B2 (en) 2019-08-16 2022-07-12 Ford Global Technologies, Llc Enhanced vehicle operation
US11420652B2 (en) * 2019-08-30 2022-08-23 Deere & Company System and method of control for autonomous or remote-controlled vehicle platform
EP3990862A4 (en) * 2019-08-31 2023-07-05 Cavh Llc DISTRIBUTED DRIVING SYSTEMS AND METHODS FOR AUTOMATED VEHICLES
US11958183B2 (en) 2019-09-19 2024-04-16 The Research Foundation For The State University Of New York Negotiation-based human-robot collaboration via augmented reality
CN110865394A (zh) * 2019-09-24 2020-03-06 中国船舶重工集团公司第七0七研究所 一种基于激光雷达数据的目标分类系统及其数据处理方法
US10796562B1 (en) 2019-09-26 2020-10-06 Amazon Technologies, Inc. Autonomous home security devices
WO2021061810A1 (en) 2019-09-26 2021-04-01 Amazon Technologies, Inc. Autonomous home security devices
EP3797939B1 (en) 2019-09-27 2023-03-01 Tata Consultancy Services Limited Control command based adaptive system and method for estimating motion parameters of differential drive vehicles
CN112581790B (zh) * 2019-09-30 2023-02-17 北京百度网讯科技有限公司 车辆避障的方法、装置、计算设备和存储介质
CN110654381B (zh) * 2019-10-09 2021-08-31 北京百度网讯科技有限公司 用于控制车辆的方法和装置
JP2023509267A (ja) * 2019-10-18 2023-03-08 ブルーボティックス・ソシエテ・アノニム 全方向移動ラインを追従する自律走行車両
US11532167B2 (en) 2019-10-31 2022-12-20 Zoox, Inc. State machine for obstacle avoidance
US11427191B2 (en) 2019-10-31 2022-08-30 Zoox, Inc. Obstacle avoidance action
CN110794839B (zh) * 2019-11-07 2022-04-29 中国第一汽车股份有限公司 一种异形路口的自动驾驶控制方法及车辆
US11899454B2 (en) 2019-11-26 2024-02-13 Nissan North America, Inc. Objective-based reasoning in autonomous vehicle decision-making
US11880293B1 (en) * 2019-11-26 2024-01-23 Zoox, Inc. Continuous tracing and metric collection system
US11635758B2 (en) 2019-11-26 2023-04-25 Nissan North America, Inc. Risk aware executor with action set recommendations
US11613269B2 (en) 2019-12-23 2023-03-28 Nissan North America, Inc. Learning safety and human-centered constraints in autonomous vehicles
US11300957B2 (en) 2019-12-26 2022-04-12 Nissan North America, Inc. Multiple objective explanation and control interface design
CN114489044A (zh) * 2019-12-31 2022-05-13 华为技术有限公司 一种轨迹规划方法及装置
CN111176285B (zh) * 2020-01-02 2024-04-16 北京汽车集团有限公司 一种行进路径规划的方法及装置、车辆、可读存储介质
US11525697B2 (en) * 2020-01-13 2022-12-13 Near Earth Autonomy, Inc. Limited-sensor 3D localization system for mobile vehicle
CN111257895B (zh) * 2020-01-17 2022-03-25 华南农业大学 非接触式农机具偏移误差自适应补偿方法、系统及拖拉机
US11577746B2 (en) 2020-01-31 2023-02-14 Nissan North America, Inc. Explainability of autonomous vehicle decision making
US11714971B2 (en) 2020-01-31 2023-08-01 Nissan North America, Inc. Explainability of autonomous vehicle decision making
EP3862835B1 (en) * 2020-02-10 2023-10-25 Volocopter GmbH Method and system for monitoring a condition of a vtol-aircraft
US11447132B2 (en) 2020-02-20 2022-09-20 Ford Global Technologies, Llc Trailer hitching assistance system with dynamic vehicle control processing
US11522836B2 (en) * 2020-02-25 2022-12-06 Uatc, Llc Deterministic container-based network configurations for autonomous vehicles
US11623624B2 (en) 2020-02-28 2023-04-11 Bendix Commercial Vehicle Systems Llc System and method for brake signal detection
US11782438B2 (en) 2020-03-17 2023-10-10 Nissan North America, Inc. Apparatus and method for post-processing a decision-making model of an autonomous vehicle using multivariate data
US11753070B2 (en) 2020-03-18 2023-09-12 Volvo Car Corporation Predictive and real-time vehicle disturbance compensation methods and systems
US11538343B2 (en) 2020-03-23 2022-12-27 Toyota Motor North America, Inc. Automatic warning of atypical audio indicating a transport event
US11443624B2 (en) 2020-03-23 2022-09-13 Toyota Motor North America, Inc. Automatic warning of navigating towards a dangerous area or event
US11708071B2 (en) 2020-03-30 2023-07-25 Denso Corporation Target-orientated navigation system for a vehicle using a generic navigation system and related method
US11720398B2 (en) 2020-03-31 2023-08-08 Ford Global Technologies, Llc Harvesting vehicle hardware accelerators and GPU computing capabilities when idle
CN111442777A (zh) * 2020-04-02 2020-07-24 东软睿驰汽车技术(沈阳)有限公司 路径规划方法、装置、电子设备及存储介质
EP3893150A1 (en) 2020-04-09 2021-10-13 Tusimple, Inc. Camera pose estimation techniques
CN111580522A (zh) * 2020-05-15 2020-08-25 东风柳州汽车有限公司 无人驾驶汽车的控制方法、汽车和存储介质
US11847919B2 (en) 2020-05-19 2023-12-19 Toyota Motor North America, Inc. Control of transport en route
CN111578894B (zh) * 2020-06-02 2021-10-15 北京经纬恒润科技股份有限公司 一种确定障碍物航向角的方法及装置
AU2021203567A1 (en) 2020-06-18 2022-01-20 Tusimple, Inc. Angle and orientation measurements for vehicles with multiple drivable sections
US11932238B2 (en) 2020-06-29 2024-03-19 Tusimple, Inc. Automated parking technology
US11628856B2 (en) * 2020-06-29 2023-04-18 Argo AI, LLC Systems and methods for estimating cuboids from LiDAR, map and image data
US11879745B2 (en) * 2020-07-20 2024-01-23 Ford Global Technologies, Llc Systems and methods for facilitating a final leg of a journey
CN111897343B (zh) * 2020-08-06 2021-05-28 上海联适导航技术股份有限公司 一种无人驾驶农机自动作业控制方法及装置
US11367458B2 (en) 2020-08-21 2022-06-21 Waymo Llc Accelerometer inside of a microphone unit
CN114312822A (zh) * 2020-09-30 2022-04-12 奥迪股份公司 自动驾驶控制方法、自动驾驶控制系统、介质及车辆
CN112257325A (zh) * 2020-11-20 2021-01-22 中国民用航空飞行学院 单推出滑行道飞机推出轨迹仿真方法及系统
US11927972B2 (en) 2020-11-24 2024-03-12 Lawrence Livermore National Security, Llc Collision avoidance based on traffic management data
CN112596547B (zh) * 2020-12-22 2022-02-11 燕山大学 一种海上作业直升机快速回收的力觉引导遥操纵控制方法
US11776163B1 (en) 2020-12-30 2023-10-03 Waymo Llc Systems, methods, and apparatus for correcting desaturation of images with transformed color values by appling a matrix
CN112965478B (zh) * 2021-01-25 2021-12-17 湖南大学 考虑不匹配速度扰动的车辆队列稳定性控制方法和系统
DE102021101718A1 (de) 2021-01-27 2022-07-28 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Vorhersagen eines Versagens einer automatisierten Fahrzeugführung, Assistenzsystem und Kraftfahrzeug
RU2765535C1 (ru) * 2021-01-27 2022-01-31 Федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)" ФГАОУ ВО "ЮУрГУ (НИУ)" Способ нормирования лётной нагрузки лётчика вертолёта при выполнении упражнения "разгон скорости"
RU2765534C1 (ru) * 2021-01-27 2022-01-31 Федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)" ФГАОУ ВО "ЮУрГУ (НИУ)" Способ нормирования лётной нагрузки лётчика вертолёта при выполнении упражнения "горка"
RU2765537C1 (ru) * 2021-01-27 2022-01-31 Федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)" ФГАОУ ВО "ЮУрГУ (НИУ)" Способ нормирования лётной нагрузки лётчика вертолёта при выполнении упражнения "посадка с использованием радиокомплекса"
RU2765530C1 (ru) * 2021-01-27 2022-01-31 Федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)" ФГАОУ ВО "ЮУрГУ (НИУ)" Способ нормирования лётной нагрузки лётчика вертолёта при выполнении упражнения "горизонтальный полет"
RU2765674C1 (ru) * 2021-01-27 2022-02-01 Федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)" ФГАОУ ВО "ЮУрГУ (НИУ)" Способ нормирования лётной нагрузки лётчика вертолёта при выполнении упражнения "комплекс фигур пилотажа"
RU2764053C1 (ru) * 2021-01-27 2022-01-13 Федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)" ФГАОУ ВО "ЮУрГУ (НИУ)" Способ нормирования лётной нагрузки лётчика вертолёта при выполнении упражнения "вираж"
RU2765536C1 (ru) * 2021-01-27 2022-01-31 Федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)" ФГАОУ ВО "ЮУрГУ (НИУ)" Способ нормирования лётной нагрузки лётчика вертолёта при выполнении упражнения "посадка с использованием курсо-глиссадных систем"
RU2765532C1 (ru) * 2021-01-27 2022-01-31 Федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)" ФГАОУ ВО "ЮУрГУ (НИУ)" Способ нормирования лётной нагрузки лётчика вертолёта при выполнении упражнения "форсированный вираж"
RU2765533C1 (ru) * 2021-01-27 2022-01-31 Федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)" ФГАОУ ВО "ЮУрГУ (НИУ)" Способ нормирования лётной нагрузки лётчика вертолёта при выполнении упражнения "пикирование"
RU2765531C1 (ru) * 2021-01-27 2022-01-31 Федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)" ФГАОУ ВО "ЮУрГУ (НИУ)" Способ нормирования лётной нагрузки лётчика вертолёта при выполнении упражнения "гашение скорости"
RU2764054C1 (ru) * 2021-01-27 2022-01-13 Федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)" ФГАОУ ВО "ЮУрГУ (НИУ)" Способ нормирования лётной нагрузки лётчика вертолёта при выполнении упражнения "спираль правая нисходящая"
RU2764052C1 (ru) * 2021-01-27 2022-01-13 Федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)" ФГАОУ ВО "ЮУрГУ (НИУ)" Способ нормирования лётной нагрузки лётчика вертолёта при выполнении упражнения "спираль левая восходящая"
US11733369B2 (en) 2021-02-11 2023-08-22 Waymo Llc Methods and systems for three dimensional object detection and localization
DE102021201410A1 (de) * 2021-02-15 2022-08-18 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zu einer Ermittlung einer Fortbewegungsrichtung eines zumindest teil-autonomen oder autonomen bewegbaren Geräts und Vorrichtung oder System
CN112937486B (zh) * 2021-03-16 2022-09-02 吉林大学 一种道路积水车载在线监测与驾驶辅助系统及方法
US11783595B2 (en) * 2021-05-17 2023-10-10 Micron Technology, Inc. Autonomous vehicle object detection
US11776278B2 (en) 2021-05-17 2023-10-03 Micron Technology, Inc. Autonomous vehicle object detection
CN113341997B (zh) * 2021-06-28 2022-04-05 湖南大学无锡智能控制研究院 一种基于多状态参数协同估计的横向控制方法及系统
CN113433949A (zh) * 2021-07-19 2021-09-24 北京云迹科技有限公司 一种可自动跟随的送物机器人及其送物方法
US11875548B2 (en) * 2021-07-22 2024-01-16 GM Global Technology Operations LLC System and method for region of interest window generation for attention based perception
CN113671961B (zh) * 2021-08-20 2023-03-28 清华大学 多车协同制动有限时间容错控制方法、系统、介质及设备
USD985607S1 (en) 2021-08-23 2023-05-09 Waymo Llc Display screen or portion thereof with graphical user interface
US11548473B1 (en) 2021-08-23 2023-01-10 Micron Technology, Inc. Vehicle operator authentication operations
US20230071338A1 (en) * 2021-09-08 2023-03-09 Sea Machines Robotics, Inc. Navigation by mimic autonomy
CN113859250B (zh) * 2021-10-14 2023-10-10 泰安北航科技园信息科技有限公司 一种基于驾驶行为异常识别的智能网联汽车信息安全威胁检测系统
EP4170389A1 (en) * 2021-10-22 2023-04-26 Aptiv Services Poland S.A. Methods and apparatuses for supporting vehicle-to-infrastructure, v2i, communication
CN114001732A (zh) * 2021-10-28 2022-02-01 山东大学 一种移动机器人仿形内壁行走导航方法及系统
CN113766460B (zh) * 2021-11-09 2022-01-25 北京安录国际技术有限公司 无人驾驶车辆的通信控制方法和系统
CN114228701B (zh) * 2021-11-30 2023-10-20 岚图汽车科技有限公司 一种基于传感器数据融合的泊车控制方法和装置
WO2023114330A1 (en) * 2021-12-16 2023-06-22 Gatik Ai Inc. Method and system for expanding the operational design domain of an autonomous agent
CN114363812A (zh) * 2022-01-20 2022-04-15 广东隧辰地下空间科技有限公司 一种用于隧道作业的智能救援及应急运输系统
CN114506212B (zh) * 2022-02-15 2023-09-22 国能神东煤炭集团有限责任公司 梭车的空间定位辅助驾驶系统和方法
US11827147B2 (en) * 2022-03-03 2023-11-28 Continental Autonomous Mobility US, LLC Obstacle detection for trailer operation
TWI807771B (zh) * 2022-04-11 2023-07-01 勤崴國際科技股份有限公司 適應性導航方法及利用其之雲端導航路徑暨地圖發布平台
US20230419271A1 (en) * 2022-06-24 2023-12-28 Gm Cruise Holdings Llc Routing field support to vehicles for maintenance
US20240025395A1 (en) * 2022-07-22 2024-01-25 Motional Ad Llc Path generation based on predicted actions
CN116029040B (zh) * 2023-03-10 2023-10-27 中国建筑设计研究院有限公司 一种用于分析雪车雪橇运动状态的方法和可读存储介质
CN116839570B (zh) * 2023-07-13 2023-12-01 安徽农业大学 一种基于传感器融合目标检测的作物行间作业导航方法
CN117636270B (zh) * 2024-01-23 2024-04-09 南京理工大学 基于单目摄像头的车辆抢道事件识别方法及设备

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5610815A (en) * 1989-12-11 1997-03-11 Caterpillar Inc. Integrated vehicle positioning and navigation system, apparatus and method
US5200606A (en) 1991-07-02 1993-04-06 Ltv Missiles And Electronics Group Laser radar scanning system
JPH073350B2 (ja) 1991-09-25 1995-01-18 株式会社エヌケーエス 流体速度測定方法およびその装置
JP3198562B2 (ja) * 1991-10-31 2001-08-13 いすゞ自動車株式会社 運転警報装置
JPH0587608U (ja) * 1992-04-17 1993-11-26 株式会社明電舎 無人搬送車
JPH08122060A (ja) * 1994-10-21 1996-05-17 Mitsubishi Electric Corp 車両周辺監視システム
JP2816312B2 (ja) * 1994-11-09 1998-10-27 富士重工業株式会社 故障診断装置
US5644386A (en) 1995-01-11 1997-07-01 Loral Vought Systems Corp. Visual recognition system for LADAR sensors
JP3147742B2 (ja) * 1995-10-24 2001-03-19 三菱自動車工業株式会社 車両用シートのサスペンション装置
JP3220005B2 (ja) * 1996-04-30 2001-10-22 富士重工業株式会社 故障診断装置
JP3748334B2 (ja) * 1997-10-15 2006-02-22 日野自動車株式会社 車両の姿勢制御装置
US7979173B2 (en) 1997-10-22 2011-07-12 Intelligent Technologies International, Inc. Autonomous vehicle travel control systems and methods
US5870181A (en) 1997-10-28 1999-02-09 Alliant Defense Electronics Systems, Inc. Acoustic optical scanning of linear detector array for laser radar
CN1218355A (zh) * 1998-11-24 1999-06-02 杨更新 汽车自动驾驶系统
JP2000180190A (ja) * 1998-12-10 2000-06-30 Toyota Motor Corp 車両用走行制御装置
JP3900778B2 (ja) * 2000-02-22 2007-04-04 アイシン・エィ・ダブリュ株式会社 ナビゲーション装置
JP2002140798A (ja) * 2000-11-06 2002-05-17 Masato Abe 運転支援制御システム
JP3603018B2 (ja) * 2000-12-12 2004-12-15 独立行政法人科学技術振興機構 電気自動車の制御装置
JP4573287B2 (ja) * 2001-02-14 2010-11-04 本田技研工業株式会社 ナビゲーションシステム
JP2002274305A (ja) * 2001-03-22 2002-09-25 Toshiba Corp 車両のトラブル処理支援システムおよびその支援方法ならびに車両の運転支援システムおよびその支援方法
JP3903734B2 (ja) * 2001-05-09 2007-04-11 株式会社日立製作所 車両データアクセス方法および車載端末
JP4575620B2 (ja) * 2001-05-17 2010-11-04 東北電力株式会社 車両自動搬送システム
US6844924B2 (en) 2001-06-29 2005-01-18 The United States Of America As Represented By The Secretary Of The Army Ladar system for detecting objects
JP2003157500A (ja) * 2001-11-22 2003-05-30 Fujitsu Ltd 安全走行支援装置,安全走行支援プログラム,及び安全走行支援方法
JP4059033B2 (ja) * 2002-08-12 2008-03-12 日産自動車株式会社 走行経路生成装置
JP2004171269A (ja) * 2002-11-20 2004-06-17 Enii Kk 移動体衝突予測装置および移動体衝突予測方法
EP1475941A1 (en) * 2003-05-08 2004-11-10 Harman/Becker Automotive Systems GmbH Scalable service provision to a vehicle entertainment and information processing device
JP2004338640A (ja) * 2003-05-16 2004-12-02 Sumitomo Electric Ind Ltd 車両用自動走行システム
EP1560385B1 (en) * 2004-02-02 2010-04-14 Sony Deutschland GmbH Method for data transfer in a multi-standard network
JP4622453B2 (ja) * 2004-10-27 2011-02-02 日産自動車株式会社 自動操舵車両
JP4760715B2 (ja) * 2004-12-28 2011-08-31 株式会社豊田中央研究所 車両運動制御装置
DE602005001841T2 (de) * 2005-01-14 2008-04-17 Alcatel Lucent Navigationsdienst
JP4333639B2 (ja) * 2005-06-13 2009-09-16 株式会社豊田中央研究所 障害物回避制御装置及び障害物回避制御プログラム
JP4762610B2 (ja) * 2005-06-14 2011-08-31 本田技研工業株式会社 車両の走行安全装置
US7561846B2 (en) * 2005-09-07 2009-07-14 Gm Gobal Technology Operations, Inc. Vehicle-to-vehicle communication
WO2007048029A2 (en) * 2005-10-21 2007-04-26 Deere & Company Systems and methods for obstacle avoidance
JP4792289B2 (ja) * 2005-12-27 2011-10-12 トヨタ自動車株式会社 車輌の走行制御装置
US7539557B2 (en) * 2005-12-30 2009-05-26 Irobot Corporation Autonomous mobile robot
US7640104B2 (en) * 2006-02-27 2009-12-29 Xanavi Informatics Corporation Vehicle navigation system and method for displaying waypoint information
US8050863B2 (en) 2006-03-16 2011-11-01 Gray & Company, Inc. Navigation and control system for autonomous vehicles
JP2007257519A (ja) * 2006-03-24 2007-10-04 Mazda Motor Corp 車両用走行支援装置
JP4893118B2 (ja) * 2006-06-13 2012-03-07 日産自動車株式会社 回避制御装置、この回避制御装置を備える車両および回避制御方法
US8139109B2 (en) 2006-06-19 2012-03-20 Oshkosh Corporation Vision system for an autonomous vehicle
US7801644B2 (en) * 2006-07-05 2010-09-21 Battelle Energy Alliance, Llc Generic robot architecture
JP2008065380A (ja) * 2006-09-04 2008-03-21 Toyota Motor Corp 運転支援装置
JP4858767B2 (ja) * 2006-09-08 2012-01-18 スズキ株式会社 車両用操舵装置
US20080065328A1 (en) * 2006-09-08 2008-03-13 Andreas Eidehall Method and system for collision avoidance
US20080262669A1 (en) * 2006-09-22 2008-10-23 Jadi, Inc. Autonomous vehicle controller
JP4905829B2 (ja) * 2006-11-02 2012-03-28 アイシン・エィ・ダブリュ株式会社 運転支援装置および運転支援方法
JP4600391B2 (ja) * 2006-12-19 2010-12-15 住友電気工業株式会社 表示装置、表示システム及び表示方法
JP5064016B2 (ja) * 2006-12-26 2012-10-31 ローム株式会社 位置表示装置
JP4576445B2 (ja) * 2007-04-12 2010-11-10 パナソニック株式会社 自律移動型装置および自律移動型装置用プログラム

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10317906B2 (en) 2013-04-10 2019-06-11 Waymo Llc Mapping active and inactive construction zones for autonomous driving
US11287823B2 (en) 2013-04-10 2022-03-29 Waymo Llc Mapping active and inactive construction zones for autonomous driving
WO2014168944A1 (en) * 2013-04-10 2014-10-16 Google Inc. Mapping active and inactive construction zones for autonomous driving
US9141107B2 (en) 2013-04-10 2015-09-22 Google Inc. Mapping active and inactive construction zones for autonomous driving
US9575490B2 (en) 2013-04-10 2017-02-21 Google Inc. Mapping active and inactive construction zones for autonomous driving
US9529361B2 (en) 2013-07-09 2016-12-27 Hyundai Motor Company Apparatus and method for managing failure in autonomous navigation system
KR101470190B1 (ko) * 2013-07-09 2014-12-05 현대자동차주식회사 자율주행 시스템의 고장 처리 장치 및 그 방법
KR101491849B1 (ko) * 2013-07-23 2015-02-06 현대오트론 주식회사 차간 거리용 센서 고장 보상 시스템 및 방법
KR20160051861A (ko) * 2013-09-05 2016-05-11 크라운 이큅먼트 코포레이션 동적 오퍼레이터 거동 분석기
KR20190028365A (ko) * 2016-03-23 2019-03-18 누토노미 인크. 차량 주행 및 무인 운전을 용이하게 하는 것
KR20200011582A (ko) * 2016-03-23 2020-02-03 누토노미 인크. 차량 주행 및 무인 운전을 용이하게 하는 것
US10737689B2 (en) 2016-10-04 2020-08-11 Lg Electronics Inc. Parking assistance apparatus and vehicle having the same
US10073458B2 (en) 2016-11-11 2018-09-11 Hyundai Motor Company Path determining apparatus for autonomous driving vehicle and path determining method
KR101897992B1 (ko) * 2017-03-28 2018-09-13 재단법인대구경북과학기술원 자율주행 자동차 설계를 위한 자율 주행 제어 개발 키트
WO2018182210A1 (ko) * 2017-03-28 2018-10-04 재단법인대구경북과학기술원 자율주행 자동차 설계를 위한 자율 주행 제어 개발 키트
KR20180073540A (ko) * 2018-06-25 2018-07-02 엘지전자 주식회사 자동주차 보조장치 및 이를 포함하는 차량
US20220075387A1 (en) * 2018-12-26 2022-03-10 Samsong Electronics Co., Ltd. Electronic device and control method thereof
KR102097715B1 (ko) * 2019-04-29 2020-04-06 주식회사 트위니 실시간 웨이포인트 경로 개선 방법, 이를 구현하기 위한 프로그램이 저장된 기록매체 및 이를 구현하기 위해 매체에 저장된 컴퓨터프로그램
WO2020235814A1 (ko) * 2019-05-21 2020-11-26 엘지전자 주식회사 경로 제공 장치 및 그것의 경로 제공 방법
KR102168104B1 (ko) * 2019-05-24 2020-10-21 장진만 농업용기계의 자율 주행 방법
KR20210014065A (ko) * 2019-07-29 2021-02-08 군산대학교산학협력단 인공 지능 심층 학습 타겟 탐지 및 속도 퍼텐셜 필드 알고리즘 기반 장애물 회피 및 자율 주행 방법 및 장치
WO2021025250A1 (ko) * 2019-08-05 2021-02-11 엘지전자 주식회사 주변 차량 상태 정보 공유 방법 및 장치
KR20220134029A (ko) * 2020-02-21 2022-10-05 블루스페이스 에이아이, 아이엔씨. 자율 주행 내비게이션 동안의 객체 회피 방법
WO2022114410A1 (ko) * 2020-11-27 2022-06-02 주식회사 넥스트칩 초음파 센서를 이용하여 다채널 영상들을 효율적으로 저장하는 전자 장치 및 그 동작방법

Also Published As

Publication number Publication date
WO2010048611A1 (en) 2010-04-29
CA2739989C (en) 2016-12-13
CN104133473A (zh) 2014-11-05
JP2012507088A (ja) 2012-03-22
CA2739989A1 (en) 2010-04-29
CN102227612A (zh) 2011-10-26
US8412449B2 (en) 2013-04-02
EP2338029A4 (en) 2012-07-04
US8706394B2 (en) 2014-04-22
EP2338029A1 (en) 2011-06-29
CN104133473B (zh) 2019-01-25
US20120316725A1 (en) 2012-12-13
US20100106356A1 (en) 2010-04-29
JP2018095254A (ja) 2018-06-21
CN102227612B (zh) 2014-06-25
US20130274986A1 (en) 2013-10-17
US20140214259A1 (en) 2014-07-31
US8280623B2 (en) 2012-10-02
WO2010048611A8 (en) 2010-07-15
AU2009308192B2 (en) 2014-10-09
EP2338029B1 (en) 2017-05-24
JP2015205691A (ja) 2015-11-19
JP2020040659A (ja) 2020-03-19
AU2009308192A1 (en) 2010-04-29
KR101736977B1 (ko) 2017-05-17
US8126642B2 (en) 2012-02-28
US20150081156A1 (en) 2015-03-19
US20120101680A1 (en) 2012-04-26

Similar Documents

Publication Publication Date Title
KR101736977B1 (ko) 자율 운전 차량의 제어 및 시스템
EP3665061B1 (en) Fault-tolerant control of an autonomous vehicle with multiple control lanes
US8346480B2 (en) Navigation and control system for autonomous vehicles
Urmson et al. High speed navigation of unrehearsed terrain: Red team technology for grand challenge 2004
US20080059015A1 (en) Software architecture for high-speed traversal of prescribed routes
US11618444B2 (en) Methods and systems for autonomous vehicle inference of routes for actors exhibiting unrecognized behavior
US11279372B2 (en) System and method for controlling a vehicle having an autonomous mode and a semi-autonomous mode
WO2022081399A1 (en) System for anticipating future state of an autonomous vehicle
WO2022150234A1 (en) Methods and systems for generating a longitudinal plan for an autonomous vehicle based on behavior of uncertain road users
Urmson et al. A robust approach to high-speed navigation for unrehearsed desert terrain
US20230391350A1 (en) Systems and methods for hybrid open-loop and closed-loop path planning
US11358598B2 (en) Methods and systems for performing outlet inference by an autonomous vehicle to determine feasible paths through an intersection

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant