KR100848968B1 - 싱커 트렌치를 사용하는 상부 드레인을 구비한 전력 반도체장치 - Google Patents
싱커 트렌치를 사용하는 상부 드레인을 구비한 전력 반도체장치 Download PDFInfo
- Publication number
- KR100848968B1 KR100848968B1 KR1020077005115A KR20077005115A KR100848968B1 KR 100848968 B1 KR100848968 B1 KR 100848968B1 KR 1020077005115 A KR1020077005115 A KR 1020077005115A KR 20077005115 A KR20077005115 A KR 20077005115A KR 100848968 B1 KR100848968 B1 KR 100848968B1
- Authority
- KR
- South Korea
- Prior art keywords
- trench
- sinker
- gate
- substrate
- layer
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 31
- 239000000758 substrate Substances 0.000 claims abstract description 73
- 239000004020 conductor Substances 0.000 claims abstract description 34
- 239000012212 insulator Substances 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims description 66
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 37
- 229910052710 silicon Inorganic materials 0.000 claims description 37
- 239000010703 silicon Substances 0.000 claims description 37
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 28
- 229920005591 polysilicon Polymers 0.000 claims description 28
- 238000005530 etching Methods 0.000 claims description 18
- 239000002184 metal Substances 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 230000000694 effects Effects 0.000 claims description 9
- 239000011810 insulating material Substances 0.000 claims description 9
- 150000004767 nitrides Chemical class 0.000 claims description 7
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 6
- 238000011065 in-situ storage Methods 0.000 claims description 5
- 229910000765 intermetallic Inorganic materials 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 238000001020 plasma etching Methods 0.000 claims description 2
- 230000005669 field effect Effects 0.000 claims 3
- 150000001875 compounds Chemical class 0.000 claims 1
- 238000009413 insulation Methods 0.000 claims 1
- 150000002739 metals Chemical class 0.000 claims 1
- 238000009792 diffusion process Methods 0.000 description 8
- 238000000206 photolithography Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000000873 masking effect Effects 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7802—Vertical DMOS transistors, i.e. VDMOS transistors
- H01L29/7811—Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0642—Isolation within the component, i.e. internal isolation
- H01L29/0649—Dielectric regions, e.g. SiO2 regions, air gaps
- H01L29/0653—Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/34—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
- H01L21/46—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
- H01L21/461—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/4763—Deposition of non-insulating, e.g. conductive -, resistive -, layers on insulating layers; After-treatment of these layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/417—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
- H01L29/41725—Source or drain electrodes for field effect devices
- H01L29/41741—Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/417—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
- H01L29/41725—Source or drain electrodes for field effect devices
- H01L29/41766—Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7802—Vertical DMOS transistors, i.e. VDMOS transistors
- H01L29/7809—Vertical DMOS transistors, i.e. VDMOS transistors having both source and drain contacts on the same surface, i.e. Up-Drain VDMOS transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7802—Vertical DMOS transistors, i.e. VDMOS transistors
- H01L29/7813—Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0684—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
- H01L29/0692—Surface layout
- H01L29/0696—Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42364—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
- H01L29/42368—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Electrodes Of Semiconductors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
전력 반도체 디바이스 제1 전도성 타입의 기판과, 상기 기판 위에 놓이고 상기 기판과 접촉하는, 상기 제1 전도성 타입의 에피택셜 레이어를 포함한다. 제1 트렌치는 상기 에피택셜 레이어 내로 연장되고 상기 에피택셜 레이어의 내부에서 종단된다. 싱커 트렌치는 상기 에피택셜 레이어의 상면으로부터 상기 에피택셜 레이어를 통해 연장되고 상기 기판 내에서 종단된다. 상기 싱커 트렌치는 상기 제1 트렌치로부터 측방향으로 이격되고, 상기 제1 트렌치보다 더 넓은 폭을 갖고 상기 제1 트렌치보다 더 깊게 연장된다. 상기 싱커 트렌치는, 상기 싱커 트렌치를 충진하는 전도성 물질이 트렌치의 바닥을 따라서 상기 기판과 전기적 콘택트를 형성하고 상기 트렌치의 상부를 따라서 상호접속 레이어(interconnect layer)와 전기적 콘택트를 형성하도록 싱커 트렌치 측벽을 따라서만 절연체로 라이닝(lining)된다.
전력 반도체, 에피택셜 레이어, 싱커 트렌치, 게이트 트렌치, 절연체
Description
본 출원은, 참조에 의해 본 명세서에 편입된 2004년 8월 3일자 미합중국 임시 출원 제60/598,678호를 우선권 주장의 기초로 한다. 또한, 본 출원은 참조에 의해 본 명세서에 편입된 2004년 12월 29일자 미합중국 특허출원 제11/026,276호 "전력 반도체 장치 및 그 제조 방법(Power Semiconductor Devices and Methods of Manufacture)"과 관련된다.
본 발명은 일반적으로 전력 반도체 장치에 관한 것이고, 더 구체적으로는 싱커 트렌치(sinker trench)를 사용하는 상부 드레인 콘택트(top-side drain contact)를 구비한 전력 장치에 관한 것이다.
상측 다이(upper die) 표면에서 이용가능한 상호접속부(interconnect)를 모두 구비한 측방(lateral) 구조를 갖는 집적 회로(Integrated Circuits: ICs)와 달리, 많은 전력 반도체 장치는 후방이 활성(active) 전기적 접속인 다이를 구비한 수직식(vertical) 구조를 갖는다. 예를 들어, 수직식 전력 MOSFET 구조에서, 소스와 게이트 접속은 다이의 상면에서 이루어지고, 드레인 접속은 다이의 배면에서 이루어진다. 몇몇 응용 분야에서는, 드레인 접속이 상부에서 접속가능하도록 하는 것이 바람직하다. 싱커 트렌치 구조는 이러한 목적을 위해 사용된다.
첫 번째 기술에서, 다이의 상부로부터 아래로 (상기 장치의 드레인 콘택트 영역을 형성하는) 기판까지 연장되는 확산 싱커는, 드레인 콘택트를 다이의 상면에서 이용가능하게 하는데 사용된다. 이 기술의 단점은 확산 싱커가 형성되는 동안 측방 확산이 결과적으로 상당한 양의 실리콘 영역을 소모한다는 것이다.
두 번째 기술에서, 다이의 상부로부터 다이의 배면까지 완전히 관통하여 연장되는 금속-충진 비아(metal-filled vias)가 배면 콘택트를 다이의 상부로 가져오기 위해 사용된다. 이 기술은 상기 확산 싱커 기술과 같은 활성 영역의 손실을 겪지는 않지만, 제조 과정에 복잡성을 부가하는 매우 깊은 비아의 형성을 요구한다. 또한, 전도 중에, 전류가 드레인 콘택트에 도달하기 전에 기판의 긴 스트레치를 통해 이동할 것이 요구되고, 이렇게 해서 디바이스 온(on) 저항 Ron이 더 높아지게 된다.
따라서, 배면 콘택트가 상부에서 이용가능하도록 하는 향상된 트렌치 구조가 바림직하다.
본 발명의 일 실시예에서, 전력 반도체 장치는, 제1 전도성 타입의 기판 및 상기 기판 위에 놓이고 상기 기판과 접촉하는 상기 제1 전도성 타입의 에피택셜 레이어를 포함한다. 제1 트렌치는 상기 에피택셜 레이어 내로 연장되고 상기 에피택셜 레이어의 내부에서 종단된다. 싱커 트렌치는 상기 에피택셜 레이어의 상면으로부터 상기 에피택셜 레이어를 통해 연장되고 상기 기판 내에서 종단된다. 상기 싱커 트렌치는 상기 제1 트렌치로부터 측방향으로 이격되고, 상기 제1 트렌치보다 폭이 넓고 더 깊게 연장된다. 상기 싱커 트렌치를 충진하는 전도성 물질이 상기 트렌치의 바닥을 따라 상기 기판과의 전기적 콘택트를 형성하고 상기 트렌치의 상부를 따라 상호접속 레이어와의 전기적 콘택트를 형성할 수 있도록, 상기 싱커 트렌치는 상기 싱커 트렌치의 측벽을 따라서만 절연체로 라이닝(lining)된다.
본 발명의 다른 실시예에 의하면, 전력 반도체 디바이스는 다음과 같이 형성된다. 에피택셜 레이어는 기판과 접촉하여 상기 기판 위에 형성된다. 상기 에피택셜 레이어와 기판은 제1의 전도성 타입이다. 제1 트렌치를 형성하기 위한 제1 개구 및 싱커 트렌치를 형성하기 위한 제2 개구는, 상기 제2 개구가 상기 제1 개구보다 넓은 폭을 갖도록 한정된다. 실리콘 에칭이 상기 제1 및 제2 개구를 통하여 동시에 에칭하도록 수행되어, 상기 제1 트렌치가 상기 에피택셜 레이어 내에서 종단되고 상기 싱커 트렌치가 상기 기판 내에서 종단되도록 상기 제1 트렌치 및 싱커 트렌치를 형성한다. 상기 싱커 트렌치의 측벽과 바닥은 절연체로 라이닝된다. 상기 싱커 트렌치는 전도성 물질로 충진되고, 상기 전도성 물질은 상기 싱커 트렌치의 바닥을 따라 기판과의 전기적 콘택트를 형성한다. 상호접속 레이어는 상기 에피택셜 레이어 위로 형성되어, 상기 싱커 트렌치의 상면을 따라 상기 전도성 물질과의 전기적 콘택트를 형성한다.
본 발명의 또 다른 실시예에 의하면, 전력 반도체 디바이스는 기판 위의 실리콘 영역으로 연장되는 줄 모양(stripe-shaped) 트렌치들의 복수의 그룹을 포함한다. 연속하는 싱커 트렌치는, 상기 줄 모양 트렌치들의 복수의 그룹을 서로 분리시키기 위해, 상기 줄 모양 트렌치들의 복수의 그룹의 각각을 완전히 둘러싼다. 상기 연속하는 싱커 트렌치는 상기 실리콘 영역의 상면으로부터 상기 실리콘 영역을 통하여 연장되고 상기 기판 내에서 종단된다. 상기 연속하는 싱커 트렌치는, 상기 싱커 트렌치의 측벽을 따라서만 절연체로 라이닝되어, 상기 연속하는 싱커 트렌치를 충진하는 전도성 물질은 상기 연속하는 싱커 트렌치의 바닥을 따라 상기 기판과의 전기적 콘택트를 형성하고 상기 연속하는 싱커 트렌치의 상부를 따라 상호접속 레이어와의 전기적 콘택트를 형성할 수 있다.
본 발명의 또 다른 실시예에 의하면, 전력 반도체 디바이스는 기판 위의 실리콘 영역으로 연장되는 복수 그룹의 줄 모양 게이트 트렌치를 포함한다. 복수의 줄 모양 싱커 트렌치의 각각은 상기 복수 그룹의 줄 모양 게이트 트렌치의 인접하는 두 개의 그룹 사이에서 연장된다. 상기 복수의 줄 모양 싱커 트렌치는 상기 실리콘 영역의 상면으로부터 상기 실리콘 영역을 통해 연장되고 상기 기판 내에서 종단된다. 상기 복수의 줄 모양 싱커 트렌치는 상기 싱커 트렌치의 측벽을 따라서만 절연체로 라이닝되어, 각각의 싱커 트렌치를 충진하는 전도성 물질은 상기 싱커 트렌치의 바닥을 따라 상기 기판과의 전기적 콘택트를 형성하고 상기 싱커 트렌치의 상부를 따라 상호접속 레이어와의 전기적 콘택트를 형성할 수 있다.
본 발명의 또 다른 실시예에 의하면, 반도체 패키지 디바이스는 전력 디바이스를 포함하는 다이(die)를 수용한다. 상기 다이는 기판 위에 실리콘 영역을 포함한다. 복수의 제1 트렌치의 각각은 상기 실리콘 영역으로 연장된다. 연속하는 싱커 트렌치는 상기 복수의 제1 트렌치를 완전히 둘러싸도록 상기 다이의 주연(周緣)을 따라 연장된다. 상기 연속하는 싱커 트렌치는 상기 다이의 상면으로부터 상기 실리콘 영역을 통해 연장되고 상기 기판 내에서 종단된다. 상기 연속하는 싱커 트렌치는 상기 싱커 트렌치의 측벽을 따라서만 절연체로 라이닝되어, 상기 연속하는 싱커 트렌치를 충진하는 전도성 물질은 상기 연속하는 싱커 트렌치의 바닥을 따라 상기 기판과의 전기적 콘택트를 형성하고 상기 연속하는 싱커 트렌치의 상부를 따라 상호접속 레이어와의 전기적 콘택트를 형성할 수 있다. 그리드 어레이 내에 정렬된 복수의 상호접속 볼은, 상기 그리드 어레이의 외주연에 위치되고 상기 연속하는 싱커 트렌치 내의 전도성 물질에 전기적으로 접속하는 일 그룹의 상호접속 볼들을 포함한다.
도 1은, 본 발명의 일 실시예에 따른 예시적인 수직식(vertical) 전력 디바이스의 단순화된 횡단면도를 도시한다.
도 2 내지 4는, 본 발명의 실시예에 따른 하나 또는 그 이상의 싱커 트렌치를 갖는 수직식 전력 디바이스를 위에서 본 다양한 레이아웃을 도시한다.
도 5는, 본 발명의 일 실시예에 따른, 볼-그리드 어레이(ball-grid array) 패키지 내에 수용된 다이의 주연을 따라 연장되는 싱커 트렌치에 대한 볼-그리드 어레이 내에서의 상호접속 볼의 위치를 도시하는 배치도이다.
본 발명의 일 실시예에 따라, 실리콘 기판 내에서 종단되는 싱커 트렌치는 도핑된 폴리실리콘(doped polysilicon) 또는 금속성 물질과 같은 전도성이 높은 물질로 충진된다. 상기 싱커 트렌치는, 게이트 트렌치가 형성되는 활성 영역으로부터 측방향으로 미리 정해진 거리만큼 이격된다. 상기 싱커 트렌치는 상기 게이트 트렌치보다 더 넓은 폭을 갖고 상기 게이트 트렌치보다 더 깊게 연장되고, 상기 싱커 트렌치의 측벽을 따라서만 절연체로 라이닝된다. 이러한 기술은 확산 싱커 방법의 측방향 확산에 기인하는 영역 손실을 제거하고, 결과적으로 확산보다 더 많은 전도성 물질이 사용되기 때문에 온-저항(on-resistance)이 향상된다. 또한, 이러한 기술은, 금속 충진(metal-filled) 트렌치가 다이의 상부로부터 바닥으로 연장되는 기술에서 요구되는 것보다, 훨씬 더 얇은 트렌치를 요구한다. 전류가 드레인 콘택트에 도달하기 위해 기판의 전체 깊이를 관통하여 이동할 필요가 없기 때문에, 온-저항이 향상된다.
도 1은, 본 발명의 일 실시예에 따른 수직식 트렌치형 게이트(vertical trenched-gate) 전력 MOSFET 구조 100의 단순화된 횡단면도를 도시한다. n-타입 에피택셜 레이어 104는, 배면 드레인을 형성하는 n-타입 기판 102 위로 연장된다. 싱커 트렌치 106은 에피택셜 레이어 104의 상면으로부터 에피택셜 레이어 104를 통해 연장되고 기판 102 내에서 종단된다. 유전체 레이어 110은, 상기 싱커 트렌치 측벽을 라이닝한다. 유전체 레이어 110은 산화물(oxide), 실리콘 질화물(silicon nitride), 실리콘 질산화물(silicon oxynitride), 산화물 및 질화물의 멀티레이어, 임의의 공지된 로우(low)-k 절연 물질, 및 임의의 공지된 하이(high)-k 절연 물질 중 하나가 될 수 있다. 본 명세서에서 사용되는 "산화물"은 화학적 증착 산화물(SixOy) 또는 열적으로 성장된 실리콘 이산화물(SiO2)을 의미한다. 싱커 트렌치 106은 도핑된 폴리실리콘, 선택적 에피택셜 실리콘(selective epitaxial silicon; SEG), 금속, 또는 금속성 화합물과 같은 전도성 물질 108로 충진된다. 전도성 물질 108은 싱커 트렌치 106의 바닥을 따라 기판 102와 전기적으로 접촉한다. 이렇게 해서 전도성 물질 108은 배면 드레인이 상부를 따라 상호접속(interconnect)에 이용될 수 있도록 한다. 드레인 콘택트가 상면으로 이동된 상태에서, 기판 102에 접촉하는 배면 금속은 더 이상 필요하지는 않지만, 상부 콘택트와 함께 사용될 수 있다. 배면 금속 레이어는 다이가 갈라지는 것을 막고 디바이스의 열 전도 특성을 향상시키는 것과 같은 다른 목적을 위해 포함될 수 있다.
p-타입 전도성의 웰 영역 114는 에피택셜 레이어 104의 윗부분을 따라 연장된다. 게이트 트렌치 112는 싱커 트렌치 106으로부터 측방향으로 미리 정해진 거리 S1 만큼 이격되고, 상면으로부터 p-타입 웰 영역 114를 통해 수직 방향으로 연장되고 에피택셜 레이어 104 내의 미리 정해진 깊이에서 종단된다. 싱커 트렌치 106은 게이트 트렌치 112보다 더 넓고 더 깊다. 게이트 트렌치 112는 유전체 레이어 116으로 라이닝된다. 게이트 트렌치 112의 바닥을 따라 놓여진 유전체는 게이트 트렌치 측벽을 따라 놓여진 유전체보다 더 두껍게 만들어 질 수도 있다. 각각 의 게이트 트렌치 112는, 게이트-드레인 용량을 줄이기 위해, 게이트 전극 118 및 게이트 전극 118 꼭대기의 유전체 레이어 120을 포함한다. p-타입 전도성의 소스 영역 122은 웰 영역 114의 윗부분을 따라 연장된다. 소스 영역 122는 수직 방향으로 게이트 전극 118과 겹친다. 도시된 바와 같이, 웰 영역 114는 싱커 트렌치 106으로부터 일정 거리 떨어져서 종단된다. 일 실시예에서, 상기 일정 거리는 디바이스 블로킹 전압율(device blocking voltage rating)로 지시된다. 다른 실시예에서, 웰 영역 114는 싱커 트렌치 106에서 종단되어 싱커 트렌치 106과 인접하다. 이 실시예에서, 더 높은 블로킹 전압율에 대해, 싱커 유전체가 더 높은 전압을 견뎌낼 것이 요구되기 때문에, 싱커 트렌치 측벽을 따라 놓인 유전체 레이어의 두께가 더 크게 만들어질 필요가 있다. 만약 전도성 물질 108이 전류를 조절할 목적으로 최소의 폭을 가질 것이 요구된다면, 이는 더 넓은 싱커 트렌치를 요구할 수 있다.
온(on) 상태에서, 소스 영역 122로부터 에피택셜 레이어 104까지의 전도성 채널은 게이트 트렌치 측벽을 따라 웰 영역 114 내에 형성된다. 이렇게 해서 전류는 드레인 터미널 124로부터 수직 방향으로 싱커 트렌치 106의 전도성 물질 108을 통해서 흐르고, 다음으로 측방향으로 기판 102를 통해, 마지막으로 수직 방향으로 에피택셜 레이어 104, 웰 영역 114 내의 전도성 채널, 및 소스 영역 122를 통해서, 소스 터미널 126까지 흐른다.
게이트 트렌치의 폭은 일반적으로 제조 기술이 패키징 밀도를 최대화할 수 있을 정도로 작게 유지되지만, 일반적으로는 더 넓은 싱커 트렌치가 더욱 바람직하 다. 더 넓은 싱커 트렌치는 충진하기 더 쉽고, 더 낮은 저항을 가지며, 만약 필요하다면 용이하게 더 깊게 연장될 수 있다. 일 실시예에서, 싱커 트렌치 106 및 게이트 트렌치 114는 동시에 형성된다. 이것은 상기 싱커 트렌치가 상기 활성 영역에 자기 정렬(self-aligned)된다는 점에서 유리하다. 이 실시예에서, 상기 싱커 트렌치, 상기 게이트 트렌치, 그리고 싱커 트렌치 106과 상기 활성 영역 사이의 간격 S1의 폭은 다수의 인자를 고려하여 주의깊게 선택되어야 한다. 첫째, 게이트 트렌치 112의 폭 Wg에 대한 싱커 트렌치 106의 폭 Ws의 비율은, 트렌치 에칭 단계의 종료 시에 싱커 트렌치 106과 게이트 트렌치 112가 원하는 깊이에서 종단되도록, 선택될 필요가 있다. 둘째, 간격 S1 뿐만 아니라 폭의 비율도, 서로 다른 특성을 갖는 트렌치가 동시에 에칭될 때 발생하는 마이크로-로딩(micro-loading) 효과를 최소화하기 위해 주의깊게 선택될 필요가 있다. 마이크로 로딩 효과는, 만약 적절히 다루어지지 않으면, 트렌치가 상부보다 바닥의 폭이 더 큰 넓은 개구를 갖도록 할 수 있다. 이는 싱커 트렌치 내의 전도성 물질에 핀-홀(pin-holes)을 형성하는 것과 같은 문제를 야기할 수 있다. 상기 마이크로-로딩 효과는 또한 적절한 에칭 물질을 선택함으로써 최소화될 수 있다. 셋째, 상기 트렌치의 폭과 간격 S1은 디바이스 온-저항 Ron에 큰 영향을 미친다. "양극 선형(Bipolar Linear), CMOS 논리, 및 DMOS 전력부를 결합하는 새로운 집적 실리콘 게이트 기술(A New Integrated Silicon Gate Technology Combining Bipolar Linear, CMOS Logic, and DMOS Power Parts)"이라는 제목의 에이 안드레이니(A. Andreini)의 논문(1986년 12월, 전자 디바이스에 관한 IEEE 보고서, Vol.ED-33, No.12, 2025 내지 2030 페이 지)에서, 2028 페이지의 섹션 IV-B에, 요구되는 Ron을 위한 적절한 트렌치 폭과 간격 S1을 결정하는데 사용될 수 있는 공식이 설명되어 있다. 이 논문에 설명된 전력 디바이스는 확산 싱커를 사용하지만, Ron의 최적화에 관한 동일한 원리가 본 발명에 적용될 수 있다. 이 논문은 참조에 의해 본 명세서에 편입된다.
게이트 트렌치의 폭에 대한 싱커 트렌치의 폭의 비율은 또한 싱커 트렌치 내에 사용된 전도성 물질의 타입에 의존한다. 일반적으로, 게이트 트렌치의 폭에 대한 싱커 트렌치의 폭의 비율은 10:1 보다 작은 것이 바람직하다. 전도성 물질로서 도핑된 폴리실리콘이 사용되는 일 실시예에서, 게이트 트렌치의 폭에 대한 싱커 트렌치의 폭의 비율은 5:1 보다 작은 것이 바람직하다. 예를 들어, 0.5μm 폭의 게이트 트렌치에 대해서, 폭이 약 0.7μm 내지 2.5μm 범위인 싱커 트렌치가 선택될 것이다. 금속 또는 전도성이 높은 다른 물질이 싱커 트렌치 내에 사용된다면, 더 높은 비율(예를 들어, 3:1)이 더 바람직하다. 트렌치들의 상대적인 폭 이외에, 싱커 트렌치와 활성 영역 사이의 간격 S1도 마이크로-로딩 효과에 큰 영향을 미친다. 더 작은 간격은 일반적으로 마이크로-로딩 효과를 감소시킨다.
일 실시예에서, 에피택셜 레이어 내의 게이트 트렌치의 깊이는 기판 102와 에피택셜 레이어 104 사이의 인터페이스에 밀접하도록 선택되어, 약간 더 넓은 싱커 트렌치는 관통하여 기판 102에 접촉하게 될 것이다. 다른 실시예에서, 게이트 트렌치와 싱커 트렌치는 모두 기판 102 내에서 종단된다.
또 다른 실시예에서, 싱커 트렌치와 게이트 트렌치는 다른 시간에 형성된다. 싱커 트렌치는 활성 영역에 자기 정렬되지 않지만, 간격 S1은 결정적인 치수는 아 니다. 두 개의 트렌치를 다른 시간에 형성하는 이점은 마이크로-로딩 효과의 제거와, 각각의 트렌치를 별개로 최적화하는 능력을 포함한다.
본 발명의 일 실시예에 따른, 상기 싱커 트렌치와 게이트 트렌치가 동시에 형성되는 도 1에 도시된 전력 트랜지스터를 형성하는 방법은 다음과 같다. 에피택셜 레이어 104는 기판 102 위에 형성된다. 다음으로, 게이트 트렌치 및 싱커 트렌치 개구의 패턴을 만들기 위해 마스킹(masking) 레이어가 사용된다. 싱커 트렌치와 게이트 트렌치를 형성하기 위해, 종래의 플라즈마 에칭 기술이 실리콘을 에칭하기 위해 사용된다. 다음으로 절연 레이어, 즉, 산화물이 게이트 트렌치 및 싱커 트렌치의 측벽과 바닥을 따라 형성된다. 절연체의 두께를 증가시키는 것 또는 절연 물질의 유전 상수에 있어서의 증가는 공핍 영역(depletion region) 및 싱커 트렌치 사이의 영역인 거리 S1을 최소화하는데 유리한데, 왜냐하면 공핍 레이어(depletion layer)로부터의 전압의 일부가 절연 레이어에 의해 지지될 것이고 이는 싱커 트렌치의 사용에 의한 실리콘 영역의 소비를 감소시키기 때문이다.
모든 트렌치에서 질화물 레이어는 산화물 레이어 위에 형성된다. 다음으로 상기 산화물 및 질화물 레이어는 종래의 포토리소그래피 및 이방성 에칭 기술을 사용하여 싱커 트렌치의 바닥으로부터 제거되고, 이에 따라 싱커 트렌치의 측벽을 따라 산화물-질화물 이중 레이어가 남는다. 또는, 이방성 및 등방성 에칭의 조합 또는 등방성 에칭만이 사용될 수 있다. 이방성 및 등방성 에칭의 조합은 트렌치 싱커의 아래쪽 측벽 부분(즉, 기판 또는 심지어 에피택셜 레이어까지 연장되는 아래쪽 측벽 부분 - 이는 온-저항을 유리하게 감소시킨다)으로부터 질화물 및 산화물 레이어를 각각 제거하기 위해 유리하게 사용될 수 있다. 그 결과인, 싱커 트렌치 측벽을 따라 놓인 유전체의 더 두꺼운 이중 레이어는 더 높은 드레인 전압을 더 잘 견뎌낼 수 있다. 다음으로 상기 싱커 트렌치와 게이트 트렌치는 인-시튜(in-situ) 도핑된 폴리실리콘으로 충진된다. 다음으로, 상기 도핑된 폴리실리콘은 트렌치들 내부의 폴리실리콘의 상부를 에피택셜 레이어 104의 상면과 평탄화하기 위해 에치백(etched back)된다. 다음으로, 상기 싱커 트렌치를 도포하기 위해 마스킹 레이어를 사용하여, 상기 폴리실리콘 및 산화물-질화물 이중 레이어는 게이트 트렌치로부터 제거된다. 다음으로 게이트 트렌치는 게이트 산화물 레이어로 라이닝되고 게이트 폴리실리콘 물질로 충진된다. 싱커 트렌치 위로 게이트 폴리실리콘이 과잉되면 종래의 포토리소그래피 및 에칭 처리를 사용하여 제거하여, 게이트 전극의 패턴을 형성한다. 디바이스를 완성하기 위한 다른 단계들 뿐만 아니라, 상기 게이트 전극 위에 절연 레이어를 형성하고, 웰 영역과, 소스 영역과, 소스 및 드레인 금속 콘택트 레이어를 형성하는 나머지 처리 단계들은 종래의 방법에 따라 실행된다.
다른 방법에서는, 트렌치가 형성된 후에, (이미 언급한 바와 같이, 웰 영역에 대한 싱커 트렌치의 간격을 줄이기 위한) 두꺼운 산화물 레이어가 상기 게이트 및 싱커 트렌치의 측벽과 바닥을 따라 형성된다. 다음으로 상기 두꺼운 산화물 레이어는 종래의 포토리소그래피 및 이방성 에칭 기술을 사용하여 싱커 트렌치의 바닥으로부터 제거되고, 이렇게 해서 게이트 트렌치가 보호되면서 상기 싱커 트렌치의 측벽은 두꺼운 산화물로 라이닝된 상태가 된다. 또는, 이방성 및 등방성 에칭의 조합도 상기 트렌치 싱커 측벽의 아래쪽 부분으로부터 상기 두꺼운 산화물을 제 거하는데 사용될 수 있다. 상기 산화물 레이어는 게이트 산화물의 보전을 향상시키는, 게이트 트렌치를 위한 희생적인 절연 레이어로서 작용할 수 있다. 다음으로 상기 싱커 트렌치 및 게이트 트렌치는 인-시튜(in-situ) 도핑된 폴리실리콘으로 충진된다. 다음으로, 상기 도핑된 폴리실리콘은 트렌치들 내부의 폴리실리콘의 상부를 에피택셜 레이어 104의 상면과 평탄화하기 위해 에치백(etched back)된다. 다음으로, 상기 싱커 트렌치를 도포하기 위해 마스킹 레이어를 사용하여, 상기 폴리실리콘 및 절연 레이어가 게이트 트렌치로부터 제거된다. 다음으로 게이트 트렌치는 게이트 절연 레이어로 라이닝되고 게이트 폴리실리콘 물질로 충진된다. 싱커 트렌치 위로 게이트 폴리실리콘이 과잉되면 종래의 포토리소그래피 및 에칭 처리를 사용하여 제거하여, 게이트 전극의 패턴을 형성한다. 디바이스를 완성하기 위한 다른 단계들 뿐만 아니라, 상기 게이트 전극 위에 절연 레이어를 형성하고, 웰 영역과, 소스 영역과, 소스 및 드레인 금속 콘택트 레이어를 형성하는 나머지 처리 단계들은 종래의 방법에 따라 실행된다.
다른 방법에서, 트렌치가 형성되고 나면, 절연 레이어, 예를 들어, 상기 게이트 및 싱커 트렌치의 측벽과 바닥을 따라 게이트 산화물이 형성된다(성장한다 또는 침착된다). 다음으로 상기 게이트 산화물 레이어는 종래의 포토리소그래피 및 이방성 에칭 기술을 사용하여 싱커 트렌치의 바닥으로부터 제거되고, 이렇게 해서 게이트 트렌치가 보호되면서 산화물 레이어가 상기 싱커 트렌치의 측벽을 라이닝하게 된다. 또는, 이방성 및 등방성 에칭의 조합 또는 등방성 에칭만이 사용될 수 있다. 이방성 및 등방성 에칭의 조합은 트렌치 싱커의 아래쪽 측벽 부분(즉, 기판 또는 심지어 에피택셜 레이어까지 연장되는 아래쪽 측벽 부분 - 이는 온-저항을 유리하게 감소시킨다)으로부터 게이트 산화물 레이어를 제거하기 위해 유리하게 사용될 수 있다. 다음으로 상기 싱커 트렌치와 게이트 트렌치는 인-시튜(in-situ) 도핑된 폴리실리콘으로 충진된다. 다음으로, 상기 도핑된 폴리실리콘은 종래의 포토리소그래피 기술을 사용하여 패턴이 형성되고, 싱커(드레인) 및 게이트 전극 모두를 형성하기 위해 에칭된다. 디바이스를 완성하기 위한 다른 단계들 뿐만 아니라, 상기 게이트 전극 위에 절연 레이어를 형성하고, 웰 영역과, 소스 영역과, 소스 및 드레인 금속 콘택트 레이어를 형성하는 나머지 처리 단계들은 종래의 방법에 따라 실행된다.
다른 방법에서, 상기 싱커 트렌치 및 게이트 트렌치는 분리된 마스킹 단계를 사용하여 독립적으로 형성된다. 예를 들어, 상기 게이트 트렌치는 제1 셋트의 마스크와 처리 단계에 의해 한정되고 에칭되며, 게이트 산화물로 라이닝되고, 폴리실리콘으로 충진된다. 상기 싱커 트렌치는 제2 셋트의 마스크와 처리 단계에 의해 한정되고 에칭되며, 상기 싱커 트렌치의 측벽을 따라 유전체 레이어로 라이닝되고, 전도성 물질로 충진된다. 싱커 트렌치와 게이트 트렌치가 형성되는 순서는 바뀔 수 있다.
도 2는, 본 발명의 실시예에 따른 싱커 트렌치를 갖는 전력 디바이스를 위에서 본 단순화된 레이아웃을 도시한다. 도 2의 레이아웃은 줄 모양의 셀 형상을 도시한다. 줄 모양의 게이트 트렌치 212a는 수직 방향으로 연장되고 수평 방향으로 연장되는 게이트 트렌치 212b에서 종단된다. 도시된 바와 같이, 세 그룹의 줄 모양 게이트 트렌치는 연속하는 싱커 트렌치 206에 의해 둘러싸여진다. 도 3에 도시 된 다른 실시예에서 싱커 트렌치 306은 게이트 트렌치의 그룹들(그들중 두 개만이 도시되어 있음) 사이에 배치되고, 요구되는 Ron에 의해 지시되는 빈도 및 간격으로 반복된다. 이 실시예의 변형예에서, 배면 드레인 콘택트 방법과 같은 Ron을 얻기 위해, 인접하는 싱커 트렌치들 사이의 간격은 웨이퍼 두께의 두 배가 될 것이 요구된다. 예를 들어, 4밀(mils) 두께의 웨이퍼에 대해, 싱커 트렌치는 서로에 대해 약 8밀(mils)만큼 이격될 수 있다. 더 낮은 Ron을 위해, 싱커 트렌치는 서로 더 가깝게 배치될 수 있다. 도 4에 도시된 다른 실시예에서, 줄 모양 게이트 트렌치 412는 수평 방향으로 연장되고, 수직 방향으로 연장되는 싱커 트렌치 406은 서로 다른 게이트 트렌치의 그룹을 분리한다. 싱커 트렌치 406은 금속 상호접속부 432에 의해 상호 접속된다. 금속 상호접속부는 본드-와이어(bond-wire) 접속을 위해 드레인 패드(pad)를 형성하는 구조의 우측을 따라 확대되어 도시된다. 또한 게이트 패드 430은 게이트 트렌치의 그룹들 중 하나의 절단된 모서리에 도시된다.
도 5는, 본 발명의 일 실시예에 따른, 싱커 트렌치를 갖는 전력 디바이스를 수용하는 다이를 위에서 본 도면이다. 작은 원은 볼 그리드 어레이 패키지의 볼들을 묘사한다. 외주연 영역 506은 싱커 트렌치를 포함하고, 이렇게 해서 외주연 영역 506의 볼들은 드레인 접속을 제공한다. 중앙 영역 507은 활성 영역을 도시하고 이 영역 내부의 볼들은 소스 접속을 제공한다. 중앙 영역 508의 아래쪽 좌측 모서리의 작은 정사각형 영역 530은 게이트 패드를 도시하고, 영역 530 내부의 볼은 게이트 접속을 제공한다.
즉시 알 수 있는 바와 같이, 임의의 전력 디바이스의 배면 접속을 상면으로 가져가기 위해 도 1의 싱커 트렌치 구조 106이 사용될 수 있고, 이러한 것은 수직식 트렌치형-게이트 전력 MOSFETs의 사용으로 한정되지 않는다. 동일 또는 유사한 트렌치 구조가, 평면 게이트 MOSFETs(planar gate MOSFETs; 즉, 게이트와, 그 아래에 놓인, 실리콘 표면 위로 연장되고 그 표면과 평행한 채널 영역을 갖는 MOSFETs)과 같은 다른 수직식 전도성 전력 디바이스들 및, 어노드(anode) 또는 캐소드(cathode) 콘택트 영역이 상부를 따라 상호접속에 이용가능하도록 만드는 전력 다이오드와, 유사하게 통합될 수 있다. 그 전체가 참조로서 본 명세서에 편입된, 2004년 12월 29일자로 출원되고 공동으로 양수된 미합중국 출원 제11/026,276호 "전력 반도체 디바이스 및 그 제조 방법(Power Semiconductor Devices and Methods of Manufacture)"에 그 상당수가 상세히 설명되어 있는 다양한 전하 평형 기술(charge balancing techniques)과의 서로 다른 조합에서, 차폐된 게이트 및 이중 게이트 구조를 사용하는 것을 포함하는, 다른 많은 변형 및 변경이 가능하다. 또한, 도 2 내지 5는 개방 셀(open cell) 형태에 기초한 레이아웃을 도시하지만, 본 발명은 그러한 것으로 제한되지 않는다. 도 1에 도시된 구조는 또한 공지된 다수의 폐쇄 셀(closed cell) 형태 중 하나에서 구현될 수도 있다. 마지막으로, 도 1의 단면의 치수와 도 2 내지 5의 위에서 본 레이아웃의 치수는 비례를 나타내기 위한 것이 아니며 예시에 불과하다.
Claims (40)
- 제1 전도성 타입의 기판;상기 기판 위에 놓이고 상기 기판과 접촉하는, 상기 제1 전도성 타입의 에피택셜 레이어;상기 에피택셜 레이어 내로 연장되고 상기 에피택셜 레이어 내부에서 종단되는 제1 트렌치; 및상기 에피택셜 레이어의 상면으로부터 상기 에피택셜 레이어를 통해 연장되고 상기 기판 내에서 종단되며, 상기 제1 트렌치로부터 측방향으로 이격되고, 상기 제1 트렌치보다 더 넓은 폭을 갖고 상기 제1 트렌치보다 더 깊게 연장되는 싱커 트렌치 - 상기 싱커 트렌치는, 상기 싱커 트렌치를 충진하는 전도성 물질이 상기 싱커 트렌치의 바닥을 따라서 상기 기판과 전기적 콘택트를 형성하고 상기 싱커 트렌치의 상부를 따라서 상호접속 레이어(interconnect layer)와 전기적 콘택트를 형성하도록, 상기 싱커 트렌치의 측벽을 따라서만 절연체로 라이닝(lining)됨 - 를 포함하는 전력 반도체 디바이스.
- 제1항에 있어서,상기 에피택셜 레이어 내의 제2 전도성 타입의 웰 영역;상기 제1 트렌치의 측부에 위치하는, 상기 웰 영역 내의 상기 제1 전도성 타입의 소스 영역;적어도 상기 제1 트렌치의 측벽을 라이닝하는 게이트 유전체 레이어; 및상기 제1 트렌치를 적어도 부분적으로 충진하는 게이트 전극을 더 포함하고,상기 게이트 전극과 전기적으로 접촉하는 게이트 전극 콘택트 레이어, 상기 소스 영역과 전기적으로 접촉하는 소스 콘택트 레이어, 및 상기 기판과 전기적으로 접촉하는 드레인 콘택트 레이어는 모두 상기 전력 반도체 디바이스의 한 표면을 따라 놓이는 전력 반도체 디바이스.
- 제1항에 있어서,상기 전도성 물질은 도핑된 폴리실리콘(doped polysilicon), 선택적 에피택셜 실리콘(selective epitaxial silicon; SEG), 금속, 및 금속성 화합물 중 하나 또는 그 이상을 포함하는 전력 반도체 디바이스.
- 제1항에 있어서,상기 절연체는 산화물(oxide), 실리콘 질화물(silicon nitride), 실리콘 질산화물(silicon oxynitride), 산화물 및 질화물의 멀티레이어, 로우(low)-k 절연 물질, 및 하이(high)-k 절연 물질 중 하나를 포함하는 전력 반도체 디바이스.
- 제1 전도성 타입의 기판;상기 기판 위에 놓이고 상기 기판과 접촉하는, 상기 제1 전도성 타입의 에피택셜 레이어;상기 에피택셜 레이어 내의 제2 전도성 타입의 웰 영역;상기 에피택셜 레이어와 상기 웰 영역을 통해 연장되고 상기 기판 내에서 종단되는 게이트 트렌치 - 상기 게이트 트렌치는 적어도 상기 게이트 트렌치의 측벽을 라이닝하는 게이트 유전체 레이어를 포함하고, 게이트 전극이 상기 게이트 트렌치를 적어도 부분적으로 충진함 -;상기 게이트 트렌치의 측부에 위치하는, 상기 웰 영역 내의 상기 제1 전도성 타입의 소스 영역; 및상기 에피택셜 레이어의 상면으로부터 상기 에피택셜 레이어를 통해 연장되고 상기 기판 내에서 종단되며, 상기 게이트 트렌치로부터 측방향으로 이격되고, 상기 게이트 트렌치보다 더 넓은 폭을 갖는 싱커 트렌치 - 상기 싱커 트렌치는, 상기 싱커 트렌치를 충진하는 전도성 물질이 상기 싱커 트렌치의 바닥을 따라서 상기 기판과 전기적 콘택트를 형성하고 상기 싱커 트렌치의 상부를 따라서 상호접속 레이어와 전기적 콘택트를 형성하도록, 상기 싱커 트렌치의 측벽을 따라서만 절연체로 라이닝됨 - 를 포함하는 전력 반도체 디바이스.
- 제5항에 있어서,상기 전도성 물질은 도핑된 폴리실리콘, 선택적 에피택셜 실리콘(SEG), 금속, 및 금속성 화합물 중 하나 또는 그 이상을 포함하는 전력 반도체 디바이스.
- 제5항에 있어서,상기 절연체는 산화물, 실리콘 질화물, 산화물 및 질화물의 멀티레이어, 실리콘 질산화물, 로우(low)-k 절연 물질, 및 하이(high)-k 절연 물질 중 하나를 포함하는 전력 반도체 디바이스.
- 전력 반도체 디바이스를 형성하는 방법에 있어서,기판 위로 상기 기판과 접촉하는 에피택셜 레이어를 형성 - 상기 에피택셜 레이어 및 상기 기판은 제1 전도성 타입임 - 하는 단계;제1 트렌치를 형성하기 위한 제1 개구 및 싱커 트렌치를 형성하기 위한 제2 개구 - 상기 제2 개구는 상기 제1 개구보다 더 넓은 폭을 가짐 - 를 한정하는 단계;상기 제1 트렌치가 상기 에피택셜 레이어 내에서 종단되고 상기 싱커 트렌치가 상기 기판 내에서 종단되도록 상기 제1 트렌치 및 상기 싱커 트렌치를 형성하기 위해, 상기 제1 및 제2 개구를 통해 동시에 에칭하도록 실리콘 에칭을 수행하는 단계;상기 싱커 트렌치의 측벽을 절연체로 라이닝하는 단계;상기 싱커 트렌치를 전도성 물질로 충진 - 상기 전도성 물질은 상기 싱커 트렌치의 바닥을 따라서 상기 기판과의 전기적 콘택트를 형성함 - 하는 단계; 및상기 에피택셜 레이어 위에, 상기 싱커 트렌치의 상면을 따라서 상기 전도성 물질과의 전기적 콘택트를 형성하는 상호접속 레이어를 형성하는 단계를 포함하는 전력 반도체 디바이스 형성 방법.
- 제8항에 있어서,상기 제1 트렌치의 폭에 대한 상기 싱커 트렌치의 폭의 비율은, 상기 제1 트렌치 및 상기 싱커 트렌치의 목표 깊이를 기초로 미리 선택되는 전력 반도체 디바이스 형성 방법.
- 제8항에 있어서,상기 싱커 트렌치의 폭에 대한 상기 제1 트렌치의 폭의 비율과, 상기 제1 트렌치와 상기 싱커 트렌치 사이의 간격은 마이크로-로딩(micro-loading) 효과를 최소화하도록 미리 선택되는 전력 반도체 디바이스 형성 방법.
- 제9항에 있어서,상기 비율은 10 대 1보다 작은 전력 반도체 디바이스 형성 방법.
- 제9항에 있어서,상기 전도성 물질은 폴리실리콘을 포함하고, 상기 비율은 5 대 1보다 작은 전력 반도체 디바이스 형성 방법.
- 제8항에 있어서,상기 라이닝하는 단계에 있어서, 절연체는 산화물-질화물의 이중 레이어인 전력 반도체 디바이스 형성 방법.
- 제8항에 있어서,상기 절연체는 산화물, 실리콘 질화물, 산화물 및 질화물의 멀티레이어, 실리콘 질산화물, 로우(low)-k 절연 물질, 및 하이(high)-k 절연 물질 중 하나를 포함하는 전력 반도체 디바이스 형성 방법.
- 제8항에 있어서,상기 에피택셜 레이어 내에 제2 전도성 타입의 웰 영역을 형성하는 단계;소스 영역이 상기 제1 트렌치의 측부에 위치하도록, 상기 웰 영역 내에 상기 제1 전도성 타입의 상기 소스 영역을 형성하는 단계;적어도 상기 제1 트렌치의 측벽을 라이닝하는 게이트 유전체 레이어를 형성하는 단계; 및상기 제1 트렌치를 적어도 부분적으로 충진하는 게이트 전극을 형성하는 단계를 더 포함하되,상기 게이트 전극과 전기적으로 접촉하는 게이트 전극 콘택트 레이어, 상기 소스 영역과 전기적으로 접촉하는 소스 콘택트 레이어, 및 상기 기판과 전기적으로 접촉하는 드레인 콘택트 레이어는 모두 상기 전력 반도체 디바이스의 한 표면을 따라 놓이는 전력 반도체 디바이스 형성 방법.
- 제8항에 있어서,상기 실리콘 에칭을 수행하는데 있어서 플라즈마 에칭이 사용되는 전력 반도체 디바이스 형성 방법.
- 제8항에 있어서,상기 라이닝하는 단계에 있어서, 상기 제1 트렌치의 측벽도 상기 절연체로 라이닝되며,상기 전력 반도체 디바이스 형성 방법은,상기 싱커 트렌치의 바닥을 따라 상기 기판이 노출되도록, 상기 싱커 트렌치의 바닥으로부터만 상기 절연체를 제거하는 단계를 더 포함하는 전력 반도체 디바이스 형성 방법.
- 제8항에 있어서,상기 충진하는 단계에 앞서, 이방성 에칭을 사용하여 상기 싱커 트렌치의 아래쪽 부분으로부터 상기 절연체를 제거하는 단계를 더 포함하는 전력 반도체 디바이스 형성 방법.
- 제8항에 있어서,상기 라이닝하는 단계는, 상기 싱커 트렌치와 상기 제1 트렌치 모두의 측벽과 바닥을 상기 절연체로 동시에 라이닝하는 단계를 포함하고,상기 충진하는 단계는, 상기 싱커 트렌치와 상기 제1 트렌치 모두를 인-시튜(in-situ) 도핑된 폴리실리콘으로 동시에 충진하는 단계를 포함하며,상기 전력 반도체 디바이스 형성 방법은,상기 충진하는 단계에 앞서, 상기 싱커 트렌치의 바닥으로부터만 상기 절연체를 제거하는 단계;적어도 상기 제1 트렌치의 내부로부터 상기 폴리실리콘과 상기 절연체를 제거하는 단계;상기 제1 트렌치의 측벽과 바닥을 라이닝하는 게이트 유전체를 형성하는 단계; 및상기 제1 트렌치 내에 게이트 전극을 형성하는 단계를 더 포함하는 전력 반도체 디바이스 형성 방법.
- 제8항에 있어서,상기 라이닝하는 단계는, 상기 싱커 트렌치와 상기 제1 트렌치 모두의 측벽과 바닥을 게이트 유전체로 동시에 라이닝하는 단계를 포함하고,상기 충진하는 단계는, 상기 싱커 트렌치와 상기 제1 트렌치 모두를 인-시튜 도핑된 폴리실리콘으로 동시에 충진하는 단계를 포함하며,상기 전력 반도체 디바이스 형성 방법은,상기 충진하는 단계에 앞서, 상기 싱커 트렌치의 바닥으로부터만 상기 게이트 유전체를 제거하는 단계를 더 포함하는 전력 반도체 디바이스 형성 방법.
- 전계 효과(field effect) 트랜지스터를 형성하는 방법에 있어서,기판 위로 상기 기판과 접촉하는 에피택셜 레이어를 형성 - 상기 에피택셜 레이어 및 상기 기판은 제1 전도성 타입임 - 하는 단계;게이트 트렌치를 형성하기 위한 제1 개구 및 싱커 트렌치를 형성하기 위한 제2 개구 - 상기 제2 개구는 상기 제1 개구보다 더 넓은 폭을 가짐 - 를 한정하는 단계;상기 게이트 트렌치가 상기 에피택셜 레이어 내에서 종단되고 상기 싱커 트렌치가 상기 기판 내에서 종단되도록 상기 게이트 트렌치 및 상기 싱커 트렌치를 형성하기 위해, 상기 제1 및 제2 개구를 통해 동시에 에칭하도록 실리콘 에칭을 수행하는 단계;상기 싱커 트렌치 및 상기 게이트 트렌치 모두의 측벽과 바닥을 절연체로 라이닝하는 단계;상기 싱커 트렌치의 아래쪽 부분으로부터 상기 절연체를 제거하는 단계; 및상기 싱커 트렌치 및 상기 게이트 트렌치를 도핑된 폴리실리콘으로 충진 - 상기 도핑된 폴리실리콘은 상기 싱커 트렌치의 아래쪽 부분을 따라서 상기 기판과의 전기적 콘택트를 형성함 - 하는 단계를 포함하는 전계 효과 트랜지스터 형성 방법.
- 제21항에 있어서,상기 게이트 트렌치 내에 게이트 전극을 형성하는 단계;상기 에피택셜 레이어 내에 제2 전도성 타입의 웰 영역을 형성하는 단계; 및소스 영역이 상기 게이트 트렌치의 측부에 위치하도록, 상기 웰 영역 내에 상기 제1 전도성 타입의 상기 소스 영역을 형성하는 단계를 더 포함하되,상기 게이트 전극과 전기적으로 접촉하는 게이트 전극 콘택트 레이어, 상기 소스 및 웰 영역과 전기적으로 접촉하는 소스 콘택트 레이어, 및 상기 싱커 트렌치를 통해 상기 기판과 전기적으로 접촉하는 드레인 콘택트 레이어는 모두 상기 전계 효과 트랜지스터의 한 표면을 따라 놓이는 전계 효과 트랜지스터 형성 방법.
- 제21항에 있어서,상기 게이트 트렌치의 폭에 대한 상기 싱커 트렌치의 폭의 비율은, 상기 게이트 트렌치 및 상기 싱커 트렌치의 목표 깊이를 기초로 미리 선택되는 전계 효과 트랜지스터 형성 방법.
- 제21항에 있어서,상기 싱커 트렌치의 폭에 대한 상기 게이트 트렌치의 폭의 비율과, 상기 게이트 트렌치와 상기 싱커 트렌치 사이의 간격은 마이크로-로딩 효과를 최소화하도록 미리 선택되는 전계 효과 트랜지스터 형성 방법.
- 제23항에 있어서,상기 비율은 10 대 1보다 작은 전계 효과 트랜지스터 형성 방법.
- 제21항에 있어서,상기 라이닝하는 단계에 있어서, 상기 절연체는 산화물-질화물의 이중 레이어인 전계 효과 트랜지스터 형성 방법.
- 제21항에 있어서,상기 싱커 트렌치의 아래쪽 부분은, 상기 기판 내에서 연장되는 상기 싱커 트렌치의 아래쪽 측벽 부분 및 상기 싱커 트렌치의 바닥을 포함하는 전계 효과 트랜지스터 형성 방법.
- 기판 위의 실리콘 영역으로 연장되는 줄 모양 트렌치들의 복수의 그룹; 및상기 줄 모양 트렌치들의 복수의 그룹을 서로 분리시키기 위해 상기 줄 모양 트렌치들의 복수의 그룹의 각각을 완전히 둘러싸고, 상기 실리콘 영역의 상면으로부터 상기 실리콘 영역을 통해 연장되고 상기 기판 내에서 종단되는 연속하는 싱커 트렌치 - 상기 연속하는 싱커 트렌치는, 상기 연속하는 싱커 트렌치를 충진하는 전도성 물질이 상기 연속하는 싱커 트렌치의 바닥을 따라서 상기 기판과의 전기적 콘택트를 형성하고 상기 연속하는 싱커 트렌치의 상부를 따라서 상호접속 레이어와의 전기적 콘택트를 형성하도록 상기 연속하는 싱커 트렌치의 측벽을 따라서만 절연체로 라이닝됨 - 를 포함하는 전력 반도체 디바이스.
- 제28항에 있어서,상기 실리콘 영역은 에피택셜 레이어이고, 상기 줄 모양 트렌치들은 게이트 트렌치이며,상기 전력 반도체 디바이스는,상기 에피택셜 레이어 내의 제2 전도성 타입의 웰 영역;상기 게이트 트렌치의 측부에 위치하는, 상기 웰 영역 내의 제1 전도성 타입의 소스 영역;적어도 각각의 게이트 트렌치의 측벽을 라이닝하는 게이트 유전체 레이어; 및각각의 게이트 트렌치를 적어도 부분적으로 충진하는 게이트 전극을 더 포함하되,상기 게이트 전극과 전기적으로 접촉하는 게이트 전극 콘택트 레이어, 상기 소스 영역과 전기적으로 접촉하는 소스 콘택트 레이어, 및 상기 기판과 전기적으로 접촉하는 드레인 콘택트 레이어는 모두 상기 전력 반도체 디바이스의 한 표면을 따라 놓이는 전력 반도체 디바이스.
- 제28항에 있어서,상기 전도성 물질은 도핑된 폴리실리콘, 선택적 에피택셜 실리콘(SEG), 금속, 및 금속성 화합물 중 하나 또는 그 이상을 포함하는 전력 반도체 디바이스.
- 제28항에 있어서,상기 연속하는 싱커 트렌치는 상기 줄 모양 트렌치들보다 더 넓은 폭을 갖고 상기 줄 모양 트렌치들보다 더 깊게 연장되는 전력 반도체 디바이스.
- 기판 위의 실리콘 영역으로 연장되는 복수 그룹의 줄 모양 게이트 트렌치; 및각각이 상기 복수 그룹의 줄 모양 게이트 트렌치의 인접하는 두 개의 그룹 사이에서 연장되고, 상기 실리콘 영역의 상면으로부터 상기 실리콘 영역을 통해 연장되고 상기 기판 내에서 종단되는 복수의 줄 모양 싱커 트렌치 - 상기 복수의 줄 모양 싱커 트렌치는, 각각의 상기 줄 모양 싱커 트렌치를 충진하는 전도성 물질이 상기 줄 모양 싱커 트렌치의 바닥을 따라서 상기 기판과의 전기적 콘택트를 형성하고 상기 줄 모양 싱커 트렌치의 상부를 따라서 상호접속 레이어와의 전기적 콘택트를 형성하도록, 상기 줄 모양 싱커 트렌치의 측벽을 따라서만 절연체로 라이닝됨 - 를 포함하는 전력 반도체 디바이스.
- 제32항에 있어서,상기 실리콘 영역은 에피택셜 레이어이고,상기 전력 반도체 디바이스는,상기 에피택셜 레이어 내의 제2 전도성 타입의 웰 영역;상기 복수 그룹의 줄 모양 게이트 트렌치의 측부에 위치하는, 상기 웰 영역 내의 제1 전도성 타입의 소스 영역;적어도 각각의 게이트 트렌치의 측벽을 라이닝하는 게이트 유전체 레이어; 및각각의 게이트 트렌치를 적어도 부분적으로 충진하는 게이트 전극을 더 포함하되,상기 게이트 전극과 전기적으로 접촉하는 게이트 전극 콘택트 레이어, 상기 소스 영역과 전기적으로 접촉하는 소스 콘택트 레이어, 및 상기 기판과 전기적으로 접촉하는 드레인 콘택트 레이어는 모두 상기 전력 반도체 디바이스의 한 표면을 따라 놓이는 전력 반도체 디바이스.
- 제32항에 있어서,상기 전도성 물질은 도핑된 폴리실리콘, 선택적 에피택셜 실리콘(SEG), 금속, 및 금속성 화합물 중 하나 또는 그 이상을 포함하는 전력 반도체 디바이스.
- 제32항에 있어서,상기 복수의 줄 모양 싱커 트렌치는 상기 복수 그룹의 줄 모양 게이트 트렌치보다 더 넓은 폭을 갖고 더 깊게 연장되는 전력 반도체 디바이스.
- 제32항에 있어서,상기 상호접속 레이어는, 상기 복수의 줄 모양 싱커 트렌치를 드레인 본드-와이어(bond-wire)를 수용하도록 형성된 드레인 패드에 전기적으로 접속시키는 전력 반도체 디바이스.
- 전력 디바이스를 포함하는 다이 - 상기 다이는 기판 위에 실리콘 영역을 포함함 - 를 수용하는 반도체 패키지 디바이스에 있어서,실리콘 영역으로 연장되는 복수의 제1 트렌치;상기 복수의 제1 트렌치를 완전히 둘러싸기 위해 상기 다이의 주연부를 따라서 연장되고, 상기 다이의 상면으로부터 상기 실리콘 영역을 통해 연장되고 상기 기판 내에서 종단되는 연속하는 싱커 트렌치 - 상기 연속하는 싱커 트렌치는, 상기 연속하는 싱커 트렌치를 충진하는 전도성 물질이 상기 연속하는 싱커 트렌치의 바닥을 따라서 상기 기판과의 전기적 콘택트를 형성하고 상기 연속하는 싱커 트렌치의 상부를 따라서 상호접속 레이어와의 전기적 콘택트를 형성하도록, 상기 연속하는 싱커 트렌치의 측벽을 따라서만 절연체로 라이닝됨 - ; 및그리드 어레이 내에 정렬된 복수의 상호접속 볼 - 상기 복수의 상호접속 볼 중 상기 그리드 어레이의 외주연에 위치된 일 그룹의 상호접속 볼들은, 상기 연속하는 싱커 트렌치 내의 상기 전도성 물질과 전기적으로 접속함 - 을 포함하는 반도체 패키지 디바이스.
- 제37항에 있어서,상기 실리콘 영역은 에피택셜 레이어이고, 상기 복수의 제1 트렌치는 게이트 트렌치이며,상기 반도체 패키지 디바이스는,상기 에피택셜 레이어 내의 제2 전도성 타입의 웰 영역;상기 게이트 트렌치의 측부에 위치하는, 상기 웰 영역 내의 제1 전도성 타입의 소스 영역;적어도 각각의 게이트 트렌치의 제1 트렌치의 측벽을 라이닝하는 게이트 유전체 레이어; 및각각의 게이트 트렌치를 적어도 부분적으로 충진하는 게이트 전극을 더 포함하되,상기 게이트 전극과 전기적으로 접촉하는 게이트 전극 콘택트 레이어, 상기 소스 영역과 전기적으로 접촉하는 소스 콘택트 레이어, 및 상기 기판과 전기적으로 접촉하는 드레인 콘택트 레이어는 모두 상기 전력 디바이스의 한 표면을 따라 놓이는 반도체 패키지 디바이스.
- 제37항에 있어서,상기 그리드 어레이의 외주연에 위치된 상기 일 그룹의 상호접속 볼들에 의해 둘러싸여진, 상기 복수의 상호접속 볼 중 내측 그룹은 소스 콘택트 레이어와 전기적으로 접촉하는 반도체 패키지 디바이스.
- 제37항에 있어서,상기 연속하는 싱커 트렌치는 상기 복수의 제1 트렌치보다 더 넓은 폭을 갖고 상기 복수의 제1 트렌치보다 더 깊게 연장되는 반도체 패키지 디바이스.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US59867804P | 2004-08-03 | 2004-08-03 | |
US60/598,678 | 2004-08-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20070044481A KR20070044481A (ko) | 2007-04-27 |
KR100848968B1 true KR100848968B1 (ko) | 2008-07-30 |
Family
ID=35839819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020077005115A KR100848968B1 (ko) | 2004-08-03 | 2005-07-29 | 싱커 트렌치를 사용하는 상부 드레인을 구비한 전력 반도체장치 |
Country Status (9)
Country | Link |
---|---|
US (5) | US7352036B2 (ko) |
JP (1) | JP2008509557A (ko) |
KR (1) | KR100848968B1 (ko) |
CN (1) | CN100576466C (ko) |
AT (1) | AT502860A2 (ko) |
DE (1) | DE112005001675B4 (ko) |
HK (1) | HK1112112A1 (ko) |
TW (1) | TWI389309B (ko) |
WO (1) | WO2006017376A2 (ko) |
Families Citing this family (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6004835A (en) * | 1997-04-25 | 1999-12-21 | Micron Technology, Inc. | Method of forming integrated circuitry, conductive lines, a conductive grid, a conductive network, an electrical interconnection to anode location and an electrical interconnection with a transistor source/drain region |
US7352036B2 (en) | 2004-08-03 | 2008-04-01 | Fairchild Semiconductor Corporation | Semiconductor power device having a top-side drain using a sinker trench |
US7535057B2 (en) * | 2005-05-24 | 2009-05-19 | Robert Kuo-Chang Yang | DMOS transistor with a poly-filled deep trench for improved performance |
WO2006135746A2 (en) | 2005-06-10 | 2006-12-21 | Fairchild Semiconductor Corporation | Charge balance field effect transistor |
US7868394B2 (en) * | 2005-08-09 | 2011-01-11 | United Microelectronics Corp. | Metal-oxide-semiconductor transistor and method of manufacturing the same |
JP2007142272A (ja) * | 2005-11-21 | 2007-06-07 | Sanyo Electric Co Ltd | 半導体装置 |
JP2008060537A (ja) * | 2006-07-31 | 2008-03-13 | Sanyo Electric Co Ltd | 半導体装置及びその製造方法 |
US7579650B2 (en) * | 2006-08-09 | 2009-08-25 | International Rectifier Corporation | Termination design for deep source electrode MOSFET |
US7468536B2 (en) * | 2007-02-16 | 2008-12-23 | Power Integrations, Inc. | Gate metal routing for transistor with checkerboarded layout |
JP2008251923A (ja) * | 2007-03-30 | 2008-10-16 | Sanyo Electric Co Ltd | 半導体装置 |
KR100861213B1 (ko) * | 2007-04-17 | 2008-09-30 | 동부일렉트로닉스 주식회사 | 반도체 소자 및 그 제조방법 |
US7884390B2 (en) * | 2007-10-02 | 2011-02-08 | Fairchild Semiconductor Corporation | Structure and method of forming a topside contact to a backside terminal of a semiconductor device |
US7550803B1 (en) * | 2008-04-15 | 2009-06-23 | United Microelectronics Corp. | Vertical double-diffusion metal-oxide-semiconductor transistor device |
TWI384623B (zh) * | 2008-04-16 | 2013-02-01 | United Microelectronics Corp | 垂直雙擴散金氧半導體電晶體元件 |
US7781832B2 (en) * | 2008-05-28 | 2010-08-24 | Ptek Technology Co., Ltd. | Trench-type power MOS transistor and integrated circuit utilizing the same |
US7807576B2 (en) * | 2008-06-20 | 2010-10-05 | Fairchild Semiconductor Corporation | Structure and method for forming a thick bottom dielectric (TBD) for trench-gate devices |
US7943449B2 (en) * | 2008-09-30 | 2011-05-17 | Infineon Technologies Austria Ag | Semiconductor component structure with vertical dielectric layers |
KR101009399B1 (ko) * | 2008-10-01 | 2011-01-19 | 주식회사 동부하이텍 | Ldmos 트랜지스터 및 그 제조방법 |
US8304829B2 (en) | 2008-12-08 | 2012-11-06 | Fairchild Semiconductor Corporation | Trench-based power semiconductor devices with increased breakdown voltage characteristics |
US8174067B2 (en) * | 2008-12-08 | 2012-05-08 | Fairchild Semiconductor Corporation | Trench-based power semiconductor devices with increased breakdown voltage characteristics |
US8298889B2 (en) * | 2008-12-10 | 2012-10-30 | Semiconductor Components Industries, Llc | Process of forming an electronic device including a trench and a conductive structure therein |
US8227855B2 (en) * | 2009-02-09 | 2012-07-24 | Fairchild Semiconductor Corporation | Semiconductor devices with stable and controlled avalanche characteristics and methods of fabricating the same |
US8148749B2 (en) * | 2009-02-19 | 2012-04-03 | Fairchild Semiconductor Corporation | Trench-shielded semiconductor device |
US8049276B2 (en) | 2009-06-12 | 2011-11-01 | Fairchild Semiconductor Corporation | Reduced process sensitivity of electrode-semiconductor rectifiers |
JP5823294B2 (ja) | 2009-09-07 | 2015-11-25 | ローム株式会社 | 半導体装置およびその製造方法 |
JP5638218B2 (ja) * | 2009-10-15 | 2014-12-10 | 三菱電機株式会社 | 半導体装置およびその製造方法 |
DE102009049671B4 (de) * | 2009-10-16 | 2020-02-27 | Infineon Technologies Ag | Integrierte Schaltung mit ESD Struktur |
EP2317553B1 (en) * | 2009-10-28 | 2012-12-26 | STMicroelectronics Srl | Double-sided semiconductor structure and method for manufacturing the same |
US9306056B2 (en) * | 2009-10-30 | 2016-04-05 | Vishay-Siliconix | Semiconductor device with trench-like feed-throughs |
US8604525B2 (en) | 2009-11-02 | 2013-12-10 | Vishay-Siliconix | Transistor structure with feed-through source-to-substrate contact |
US8159025B2 (en) * | 2010-01-06 | 2012-04-17 | Ptek Technology Co., Ltd. | Gate electrode in a trench for power MOS transistors |
US20110198689A1 (en) * | 2010-02-17 | 2011-08-18 | Suku Kim | Semiconductor devices containing trench mosfets with superjunctions |
US8519473B2 (en) * | 2010-07-14 | 2013-08-27 | Infineon Technologies Ag | Vertical transistor component |
US8304825B2 (en) * | 2010-09-22 | 2012-11-06 | Monolithic Power Systems, Inc. | Vertical discrete devices with trench contacts and associated methods of manufacturing |
US8598654B2 (en) | 2011-03-16 | 2013-12-03 | Fairchild Semiconductor Corporation | MOSFET device with thick trench bottom oxide |
JP5641995B2 (ja) * | 2011-03-23 | 2014-12-17 | 株式会社東芝 | 半導体素子 |
US8487371B2 (en) * | 2011-03-29 | 2013-07-16 | Fairchild Semiconductor Corporation | Vertical MOSFET transistor having source/drain contacts disposed on the same side and method for manufacturing the same |
JP5881322B2 (ja) * | 2011-04-06 | 2016-03-09 | ローム株式会社 | 半導体装置 |
US9159828B2 (en) * | 2011-04-27 | 2015-10-13 | Alpha And Omega Semiconductor Incorporated | Top drain LDMOS |
CN102832244B (zh) * | 2011-06-13 | 2015-08-26 | 万国半导体股份有限公司 | 带有衬底端裸露的器件端电极的半导体器件及其制备方法 |
JP2013030618A (ja) | 2011-07-28 | 2013-02-07 | Rohm Co Ltd | 半導体装置 |
US9059329B2 (en) * | 2011-08-22 | 2015-06-16 | Monolithic Power Systems, Inc. | Power device with integrated Schottky diode and method for making the same |
US8604542B2 (en) * | 2011-08-23 | 2013-12-10 | Nan Ya Technology Corporation | Circuit structure with conductive and depletion regions to form tunable capacitors and resistors |
US8836029B2 (en) * | 2012-02-29 | 2014-09-16 | Smsc Holdings S.A.R.L. | Transistor with minimized resistance |
KR20130119193A (ko) * | 2012-04-23 | 2013-10-31 | 주식회사 동부하이텍 | 후면 수광 이미지 센서와 그 제조방법 |
US8823096B2 (en) | 2012-06-01 | 2014-09-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Vertical power MOSFET and methods for forming the same |
US9130060B2 (en) | 2012-07-11 | 2015-09-08 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated circuit having a vertical power MOS transistor |
US8669611B2 (en) | 2012-07-11 | 2014-03-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Apparatus and method for power MOS transistor |
CN103928513B (zh) * | 2013-01-15 | 2017-03-29 | 无锡华润上华半导体有限公司 | 一种沟槽dmos器件及其制作方法 |
US8999783B2 (en) * | 2013-02-06 | 2015-04-07 | Infineon Technologies Austria Ag | Method for producing a semiconductor device with a vertical dielectric layer |
US9159652B2 (en) | 2013-02-25 | 2015-10-13 | Stmicroelectronics S.R.L. | Electronic device comprising at least a chip enclosed in a package and a corresponding assembly process |
CN104218078B (zh) * | 2013-06-05 | 2017-11-07 | 帅群微电子股份有限公司 | 具有漏极在顶部的功率晶体管及其形成方法 |
WO2015028838A1 (en) * | 2013-08-27 | 2015-03-05 | Freescale Semiconductor, Inc. | Semiconductor device and method of manufacture therefor |
WO2015140806A1 (en) * | 2014-03-20 | 2015-09-24 | Skokie Swift Corporation | Vertical field effect transistor having a disc shaped gate |
US9425304B2 (en) | 2014-08-21 | 2016-08-23 | Vishay-Siliconix | Transistor structure with improved unclamped inductive switching immunity |
JP2016062967A (ja) * | 2014-09-16 | 2016-04-25 | 株式会社東芝 | 半導体装置およびその製造方法 |
US9837526B2 (en) | 2014-12-08 | 2017-12-05 | Nxp Usa, Inc. | Semiconductor device wtih an interconnecting semiconductor electrode between first and second semiconductor electrodes and method of manufacture therefor |
US9691751B2 (en) * | 2014-12-15 | 2017-06-27 | Texas Instruments Incorporated | In-situ doped polysilicon filler for trenches |
US9559158B2 (en) | 2015-01-12 | 2017-01-31 | The Hong Kong University Of Science And Technology | Method and apparatus for an integrated capacitor |
US20160247879A1 (en) * | 2015-02-23 | 2016-08-25 | Polar Semiconductor, Llc | Trench semiconductor device layout configurations |
DE102015108091A1 (de) * | 2015-05-21 | 2016-11-24 | Infineon Technologies Dresden Gmbh | Transistoranordnung mit Leistungstransistoren und spannungslimitierenden Bauteilen |
US10348295B2 (en) | 2015-11-19 | 2019-07-09 | Nxp Usa, Inc. | Packaged unidirectional power transistor and control circuit therefore |
CN105938848A (zh) * | 2016-02-03 | 2016-09-14 | 杭州立昂微电子股份有限公司 | 一种用于芯片级封装的肖特基芯片 |
CN105938849A (zh) * | 2016-02-03 | 2016-09-14 | 杭州立昂微电子股份有限公司 | 一种用于芯片级封装的肖特基芯片的制造方法 |
CN105826288B (zh) * | 2016-03-22 | 2019-08-13 | 上海朕芯微电子科技有限公司 | 功率器件的csp封装结构及其制造方法 |
DE102016107203B4 (de) * | 2016-04-19 | 2021-12-23 | Infineon Technologies Austria Ag | Leistungshalbleiterbauelementgraben mit Feldplatte und Gateelektrode und Verfahren zur Herstellung |
CN105845735A (zh) * | 2016-04-28 | 2016-08-10 | 上海格瑞宝电子有限公司 | 一种mosfet及其制备方法 |
CN105762193A (zh) * | 2016-04-28 | 2016-07-13 | 上海格瑞宝电子有限公司 | 一种mosfet及其制备方法 |
JP6923303B2 (ja) * | 2016-10-20 | 2021-08-18 | ローム株式会社 | ダイオード素子 |
JP2019046991A (ja) * | 2017-09-04 | 2019-03-22 | ルネサスエレクトロニクス株式会社 | 半導体装置およびその製造方法 |
EP3474318A1 (en) | 2017-10-23 | 2019-04-24 | Nexperia B.V. | Semiconductor device and method of manufacture |
CN107978632B (zh) * | 2017-11-30 | 2020-06-16 | 电子科技大学 | 多沟道的横向高压器件 |
CN110620143A (zh) * | 2018-06-20 | 2019-12-27 | 夏令 | 一种混合沟道化合物半导体器件 |
US11031281B2 (en) * | 2019-06-04 | 2021-06-08 | Globalfoundries Singapore Pte. Ltd. | Semiconductor devices and methods of fabricating a deep trench isolation structure |
JP7495257B2 (ja) * | 2020-03-24 | 2024-06-04 | 株式会社東海理化電機製作所 | 半導体集積回路、および半導体集積回路の製造方法 |
KR102374125B1 (ko) | 2020-08-20 | 2022-03-11 | 주식회사 키파운드리 | 수직 dmos 반도체 소자 및 그 제조방법 |
US11670693B2 (en) | 2021-01-28 | 2023-06-06 | Semiconductor Components Industries, Llc | Trench gate field-effect transistors with drain runner |
CN116978954A (zh) * | 2023-09-25 | 2023-10-31 | 深圳天狼芯半导体有限公司 | 一种沟槽型mosfet器件及制作方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6649459B2 (en) | 1998-09-24 | 2003-11-18 | Infineon Technologies Ag | Method for manufacturing a semiconductor component |
US6818482B1 (en) | 2002-10-01 | 2004-11-16 | T-Ram, Inc. | Method for trench isolation for thyristor-based device |
Family Cites Families (373)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3404295A (en) | 1964-11-30 | 1968-10-01 | Motorola Inc | High frequency and voltage transistor with added region for punch-through protection |
US3412297A (en) | 1965-12-16 | 1968-11-19 | United Aircraft Corp | Mos field-effect transistor with a onemicron vertical channel |
US3497777A (en) | 1967-06-13 | 1970-02-24 | Stanislas Teszner | Multichannel field-effect semi-conductor device |
US3564356A (en) | 1968-10-24 | 1971-02-16 | Tektronix Inc | High voltage integrated circuit transistor |
US3660697A (en) | 1970-02-16 | 1972-05-02 | Bell Telephone Labor Inc | Monolithic semiconductor apparatus adapted for sequential charge transfer |
US4003072A (en) | 1972-04-20 | 1977-01-11 | Sony Corporation | Semiconductor device with high voltage breakdown resistance |
US4011105A (en) | 1975-09-15 | 1977-03-08 | Mos Technology, Inc. | Field inversion control for n-channel device integrated circuits |
US4337474A (en) | 1978-08-31 | 1982-06-29 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device |
US4698653A (en) | 1979-10-09 | 1987-10-06 | Cardwell Jr Walter T | Semiconductor devices controlled by depletion regions |
US4638344A (en) | 1979-10-09 | 1987-01-20 | Cardwell Jr Walter T | Junction field-effect transistor controlled by merged depletion regions |
US4338616A (en) | 1980-02-19 | 1982-07-06 | Xerox Corporation | Self-aligned Schottky metal semi-conductor field effect transistor with buried source and drain |
US4345265A (en) | 1980-04-14 | 1982-08-17 | Supertex, Inc. | MOS Power transistor with improved high-voltage capability |
US4868624A (en) | 1980-05-09 | 1989-09-19 | Regents Of The University Of Minnesota | Channel collector transistor |
US4300150A (en) | 1980-06-16 | 1981-11-10 | North American Philips Corporation | Lateral double-diffused MOS transistor device |
US4326332A (en) | 1980-07-28 | 1982-04-27 | International Business Machines Corp. | Method of making a high density V-MOS memory array |
DE3070786D1 (en) | 1980-11-12 | 1985-07-25 | Ibm Deutschland | Electrically switchable read-only memory |
US4324038A (en) | 1980-11-24 | 1982-04-13 | Bell Telephone Laboratories, Incorporated | Method of fabricating MOS field effect transistors |
US4969028A (en) | 1980-12-02 | 1990-11-06 | General Electric Company | Gate enhanced rectifier |
GB2089119A (en) | 1980-12-10 | 1982-06-16 | Philips Electronic Associated | High voltage semiconductor devices |
US4974059A (en) | 1982-12-21 | 1990-11-27 | International Rectifier Corporation | Semiconductor high-power mosfet device |
JPS6016420A (ja) | 1983-07-08 | 1985-01-28 | Mitsubishi Electric Corp | 選択的エピタキシヤル成長方法 |
US4639761A (en) | 1983-12-16 | 1987-01-27 | North American Philips Corporation | Combined bipolar-field effect transistor resurf devices |
US4568958A (en) | 1984-01-03 | 1986-02-04 | General Electric Company | Inversion-mode insulated-gate gallium arsenide field-effect transistors |
FR2566179B1 (fr) | 1984-06-14 | 1986-08-22 | Commissariat Energie Atomique | Procede d'autopositionnement d'un oxyde de champ localise par rapport a une tranchee d'isolement |
US5208657A (en) | 1984-08-31 | 1993-05-04 | Texas Instruments Incorporated | DRAM Cell with trench capacitor and vertical channel in substrate |
US4824793A (en) | 1984-09-27 | 1989-04-25 | Texas Instruments Incorporated | Method of making DRAM cell with trench capacitor |
US4694313A (en) | 1985-02-19 | 1987-09-15 | Harris Corporation | Conductivity modulated semiconductor structure |
US4673962A (en) | 1985-03-21 | 1987-06-16 | Texas Instruments Incorporated | Vertical DRAM cell and method |
US4774556A (en) | 1985-07-25 | 1988-09-27 | Nippondenso Co., Ltd. | Non-volatile semiconductor memory device |
US5262336A (en) | 1986-03-21 | 1993-11-16 | Advanced Power Technology, Inc. | IGBT process to produce platinum lifetime control |
US4767722A (en) | 1986-03-24 | 1988-08-30 | Siliconix Incorporated | Method for making planar vertical channel DMOS structures |
US5034785A (en) | 1986-03-24 | 1991-07-23 | Siliconix Incorporated | Planar vertical channel DMOS structure |
US4716126A (en) | 1986-06-05 | 1987-12-29 | Siliconix Incorporated | Fabrication of double diffused metal oxide semiconductor transistor |
US5607511A (en) | 1992-02-21 | 1997-03-04 | International Business Machines Corporation | Method and apparatus for low temperature, low pressure chemical vapor deposition of epitaxial silicon layers |
US4746630A (en) | 1986-09-17 | 1988-05-24 | Hewlett-Packard Company | Method for producing recessed field oxide with improved sidewall characteristics |
US4941026A (en) | 1986-12-05 | 1990-07-10 | General Electric Company | Semiconductor devices exhibiting minimum on-resistance |
JP2577330B2 (ja) | 1986-12-11 | 1997-01-29 | 新技術事業団 | 両面ゲ−ト静電誘導サイリスタの製造方法 |
US5105243A (en) | 1987-02-26 | 1992-04-14 | Kabushiki Kaisha Toshiba | Conductivity-modulation metal oxide field effect transistor with single gate structure |
US4821095A (en) | 1987-03-12 | 1989-04-11 | General Electric Company | Insulated gate semiconductor device with extra short grid and method of fabrication |
WO1988007636A1 (en) | 1987-03-25 | 1988-10-06 | Kabushiki Kaisha Komatsu Seisakusho | Hydraulic clutch pressure control apparatus |
US4745079A (en) | 1987-03-30 | 1988-05-17 | Motorola, Inc. | Method for fabricating MOS transistors having gates with different work functions |
US4801986A (en) | 1987-04-03 | 1989-01-31 | General Electric Company | Vertical double diffused metal oxide semiconductor VDMOS device with increased safe operating area and method |
US4823176A (en) | 1987-04-03 | 1989-04-18 | General Electric Company | Vertical double diffused metal oxide semiconductor (VDMOS) device including high voltage junction exhibiting increased safe operating area |
US5164325A (en) | 1987-10-08 | 1992-11-17 | Siliconix Incorporated | Method of making a vertical current flow field effect transistor |
US4893160A (en) | 1987-11-13 | 1990-01-09 | Siliconix Incorporated | Method for increasing the performance of trenched devices and the resulting structure |
US4914058A (en) | 1987-12-29 | 1990-04-03 | Siliconix Incorporated | Grooved DMOS process with varying gate dielectric thickness |
EP0332822A1 (de) | 1988-02-22 | 1989-09-20 | Asea Brown Boveri Ag | Feldeffektgesteuertes, bipolares Leistungshalbleiter-Bauelement sowie Verfahren zu seiner Herstellung |
US4967245A (en) | 1988-03-14 | 1990-10-30 | Siliconix Incorporated | Trench power MOSFET device |
US5283201A (en) | 1988-05-17 | 1994-02-01 | Advanced Power Technology, Inc. | High density power device fabrication process |
KR0173111B1 (ko) | 1988-06-02 | 1999-02-01 | 야마무라 가쯔미 | 트렌치 게이트 mos fet |
US4961100A (en) | 1988-06-20 | 1990-10-02 | General Electric Company | Bidirectional field effect semiconductor device and circuit |
JPH0216763A (ja) | 1988-07-05 | 1990-01-19 | Toshiba Corp | 半導体装置の製造方法 |
US4853345A (en) | 1988-08-22 | 1989-08-01 | Delco Electronics Corporation | Process for manufacture of a vertical DMOS transistor |
US5268311A (en) | 1988-09-01 | 1993-12-07 | International Business Machines Corporation | Method for forming a thin dielectric layer on a substrate |
US5156989A (en) | 1988-11-08 | 1992-10-20 | Siliconix, Incorporated | Complementary, isolated DMOS IC technology |
US5346834A (en) | 1988-11-21 | 1994-09-13 | Hitachi, Ltd. | Method for manufacturing a semiconductor device and a semiconductor memory device |
US5072266A (en) | 1988-12-27 | 1991-12-10 | Siliconix Incorporated | Trench DMOS power transistor with field-shaping body profile and three-dimensional geometry |
US5111253A (en) | 1989-05-09 | 1992-05-05 | General Electric Company | Multicellular FET having a Schottky diode merged therewith |
US4992390A (en) | 1989-07-06 | 1991-02-12 | General Electric Company | Trench gate structure with thick bottom oxide |
WO1991003842A1 (en) | 1989-08-31 | 1991-03-21 | Nippondenso Co., Ltd. | Insulated gate bipolar transistor |
US5248894A (en) | 1989-10-03 | 1993-09-28 | Harris Corporation | Self-aligned channel stop for trench-isolated island |
US5023196A (en) | 1990-01-29 | 1991-06-11 | Motorola Inc. | Method for forming a MOSFET with substrate source contact |
US5134448A (en) | 1990-01-29 | 1992-07-28 | Motorola, Inc. | MOSFET with substrate source contact |
US5242845A (en) | 1990-06-13 | 1993-09-07 | Kabushiki Kaisha Toshiba | Method of production of vertical MOS transistor |
US5071782A (en) | 1990-06-28 | 1991-12-10 | Texas Instruments Incorporated | Vertical memory cell array and method of fabrication |
US5079608A (en) | 1990-11-06 | 1992-01-07 | Harris Corporation | Power MOSFET transistor circuit with active clamp |
DE69125794T2 (de) | 1990-11-23 | 1997-11-27 | Texas Instruments Inc | Verfahren zum gleichzeitigen Herstellen eines Feldeffekttransistors mit isoliertem Gate und eines Bipolartransistors |
US5065273A (en) | 1990-12-04 | 1991-11-12 | International Business Machines Corporation | High capacity DRAM trench capacitor and methods of fabricating same |
US5684320A (en) | 1991-01-09 | 1997-11-04 | Fujitsu Limited | Semiconductor device having transistor pair |
US5168331A (en) | 1991-01-31 | 1992-12-01 | Siliconix Incorporated | Power metal-oxide-semiconductor field effect transistor |
JP2825004B2 (ja) * | 1991-02-08 | 1998-11-18 | インターナショナル・ビジネス・マシーンズ・コーポレーション | 側壁電荷結合撮像素子及びその製造方法 |
CN1019720B (zh) | 1991-03-19 | 1992-12-30 | 电子科技大学 | 半导体功率器件 |
US5164802A (en) | 1991-03-20 | 1992-11-17 | Harris Corporation | Power vdmosfet with schottky on lightly doped drain of lateral driver fet |
US5250450A (en) | 1991-04-08 | 1993-10-05 | Micron Technology, Inc. | Insulated-gate vertical field-effect transistor with high current drive and minimum overlap capacitance |
JP2603886B2 (ja) | 1991-05-09 | 1997-04-23 | 日本電信電話株式会社 | 薄層soi型絶縁ゲート型電界効果トランジスタの製造方法 |
KR940002400B1 (ko) | 1991-05-15 | 1994-03-24 | 금성일렉트론 주식회사 | 리세스 게이트를 갖는 반도체장치의 제조방법 |
US5219793A (en) | 1991-06-03 | 1993-06-15 | Motorola Inc. | Method for forming pitch independent contacts and a semiconductor device having the same |
KR940006702B1 (ko) | 1991-06-14 | 1994-07-25 | 금성일렉트론 주식회사 | 모스패트의 제조방법 |
US5298761A (en) | 1991-06-17 | 1994-03-29 | Nikon Corporation | Method and apparatus for exposure process |
JP2570022B2 (ja) | 1991-09-20 | 1997-01-08 | 株式会社日立製作所 | 定電圧ダイオード及びそれを用いた電力変換装置並びに定電圧ダイオードの製造方法 |
JPH0613627A (ja) | 1991-10-08 | 1994-01-21 | Semiconductor Energy Lab Co Ltd | 半導体装置およびその作製方法 |
US5300452A (en) | 1991-12-18 | 1994-04-05 | U.S. Philips Corporation | Method of manufacturing an optoelectronic semiconductor device |
JPH05304297A (ja) | 1992-01-29 | 1993-11-16 | Nec Corp | 電力用半導体装置およびその製造方法 |
US5283452A (en) | 1992-02-14 | 1994-02-01 | Hughes Aircraft Company | Distributed cell monolithic mircowave integrated circuit (MMIC) field-effect transistor (FET) amplifier |
IT1254799B (it) | 1992-02-18 | 1995-10-11 | St Microelectronics Srl | Transistore vdmos con migliorate caratteristiche di tenuta di tensione. |
US5315142A (en) | 1992-03-23 | 1994-05-24 | International Business Machines Corporation | High performance trench EEPROM cell |
JP2904635B2 (ja) | 1992-03-30 | 1999-06-14 | 株式会社東芝 | 半導体装置およびその製造方法 |
US5554862A (en) | 1992-03-31 | 1996-09-10 | Kabushiki Kaisha Toshiba | Power semiconductor device |
JPH06196723A (ja) | 1992-04-28 | 1994-07-15 | Mitsubishi Electric Corp | 半導体装置及びその製造方法 |
US5640034A (en) | 1992-05-18 | 1997-06-17 | Texas Instruments Incorporated | Top-drain trench based resurf DMOS transistor structure |
US5233215A (en) | 1992-06-08 | 1993-08-03 | North Carolina State University At Raleigh | Silicon carbide power MOSFET with floating field ring and floating field plate |
US5430324A (en) | 1992-07-23 | 1995-07-04 | Siliconix, Incorporated | High voltage transistor having edge termination utilizing trench technology |
US5910669A (en) | 1992-07-24 | 1999-06-08 | Siliconix Incorporated | Field effect Trench transistor having lightly doped epitaxial region on the surface portion thereof |
US5558313A (en) | 1992-07-24 | 1996-09-24 | Siliconix Inorporated | Trench field effect transistor with reduced punch-through susceptibility and low RDSon |
US5281548A (en) | 1992-07-28 | 1994-01-25 | Micron Technology, Inc. | Plug-based floating gate memory |
US5294824A (en) | 1992-07-31 | 1994-03-15 | Motorola, Inc. | High voltage transistor having reduced on-resistance |
GB9216599D0 (en) | 1992-08-05 | 1992-09-16 | Philips Electronics Uk Ltd | A semiconductor device comprising a vertical insulated gate field effect device and a method of manufacturing such a device |
US5300447A (en) | 1992-09-29 | 1994-04-05 | Texas Instruments Incorporated | Method of manufacturing a minimum scaled transistor |
JPH06163907A (ja) | 1992-11-20 | 1994-06-10 | Hitachi Ltd | 電圧駆動型半導体装置 |
US5275965A (en) | 1992-11-25 | 1994-01-04 | Micron Semiconductor, Inc. | Trench isolation using gated sidewalls |
US5326711A (en) | 1993-01-04 | 1994-07-05 | Texas Instruments Incorporated | High performance high voltage vertical transistor and method of fabrication |
DE4300806C1 (de) | 1993-01-14 | 1993-12-23 | Siemens Ag | Verfahren zur Herstellung von vertikalen MOS-Transistoren |
US5418376A (en) | 1993-03-02 | 1995-05-23 | Toyo Denki Seizo Kabushiki Kaisha | Static induction semiconductor device with a distributed main electrode structure and static induction semiconductor device with a static induction main electrode shorted structure |
US5341011A (en) | 1993-03-15 | 1994-08-23 | Siliconix Incorporated | Short channel trenched DMOS transistor |
DE4309764C2 (de) | 1993-03-25 | 1997-01-30 | Siemens Ag | Leistungs-MOSFET |
GB9306895D0 (en) | 1993-04-01 | 1993-05-26 | Philips Electronics Uk Ltd | A method of manufacturing a semiconductor device comprising an insulated gate field effect device |
KR960012585B1 (en) * | 1993-06-25 | 1996-09-23 | Samsung Electronics Co Ltd | Transistor structure and the method for manufacturing the same |
US5349224A (en) | 1993-06-30 | 1994-09-20 | Purdue Research Foundation | Integrable MOS and IGBT devices having trench gate structure |
US5371396A (en) | 1993-07-02 | 1994-12-06 | Thunderbird Technologies, Inc. | Field effect transistor having polycrystalline silicon gate junction |
US5365102A (en) | 1993-07-06 | 1994-11-15 | North Carolina State University | Schottky barrier rectifier with MOS trench |
BE1007283A3 (nl) | 1993-07-12 | 1995-05-09 | Philips Electronics Nv | Halfgeleiderinrichting met een most voorzien van een extended draingebied voor hoge spanningen. |
JPH07122749A (ja) | 1993-09-01 | 1995-05-12 | Toshiba Corp | 半導体装置及びその製造方法 |
JP3400846B2 (ja) | 1994-01-20 | 2003-04-28 | 三菱電機株式会社 | トレンチ構造を有する半導体装置およびその製造方法 |
US5429977A (en) | 1994-03-11 | 1995-07-04 | Industrial Technology Research Institute | Method for forming a vertical transistor with a stacked capacitor DRAM cell |
US5434435A (en) | 1994-05-04 | 1995-07-18 | North Carolina State University | Trench gate lateral MOSFET |
DE4417150C2 (de) * | 1994-05-17 | 1996-03-14 | Siemens Ag | Verfahren zur Herstellung einer Anordnung mit selbstverstärkenden dynamischen MOS-Transistorspeicherzellen |
US5454435A (en) | 1994-05-25 | 1995-10-03 | Reinhardt; Lisa | Device for facilitating insertion of a beach umbrella in sand |
US5405794A (en) | 1994-06-14 | 1995-04-11 | Philips Electronics North America Corporation | Method of producing VDMOS device of increased power density |
US5424231A (en) | 1994-08-09 | 1995-06-13 | United Microelectronics Corp. | Method for manufacturing a VDMOS transistor |
US5583368A (en) * | 1994-08-11 | 1996-12-10 | International Business Machines Corporation | Stacked devices |
EP0698919B1 (en) | 1994-08-15 | 2002-01-16 | Siliconix Incorporated | Trenched DMOS transistor fabrication using seven masks |
US5581100A (en) | 1994-08-30 | 1996-12-03 | International Rectifier Corporation | Trench depletion MOSFET |
JP3708998B2 (ja) | 1994-11-04 | 2005-10-19 | シーメンス アクチエンゲゼルシヤフト | 電界効果により制御可能の半導体デバイスの製造方法 |
US5583065A (en) | 1994-11-23 | 1996-12-10 | Sony Corporation | Method of making a MOS semiconductor device |
US5674766A (en) * | 1994-12-30 | 1997-10-07 | Siliconix Incorporated | Method of making a trench MOSFET with multi-resistivity drain to provide low on-resistance by varying dopant concentration in epitaxial layer |
US6008520A (en) | 1994-12-30 | 1999-12-28 | Siliconix Incorporated | Trench MOSFET with heavily doped delta layer to provide low on- resistance |
US5597765A (en) * | 1995-01-10 | 1997-01-28 | Siliconix Incorporated | Method for making termination structure for power MOSFET |
JPH08204179A (ja) * | 1995-01-26 | 1996-08-09 | Fuji Electric Co Ltd | 炭化ケイ素トレンチmosfet |
US5670803A (en) | 1995-02-08 | 1997-09-23 | International Business Machines Corporation | Three-dimensional SRAM trench structure and fabrication method therefor |
JP3325736B2 (ja) | 1995-02-09 | 2002-09-17 | 三菱電機株式会社 | 絶縁ゲート型半導体装置 |
DE69602114T2 (de) | 1995-02-10 | 1999-08-19 | Siliconix Inc. | Graben-Feldeffekttransistor mit PN-Verarmungsschicht-Barriere |
JP3291957B2 (ja) * | 1995-02-17 | 2002-06-17 | 富士電機株式会社 | 縦型トレンチmisfetおよびその製造方法 |
US5595927A (en) * | 1995-03-17 | 1997-01-21 | Taiwan Semiconductor Manufacturing Company Ltd. | Method for making self-aligned source/drain mask ROM memory cell using trench etched channel |
US5592005A (en) | 1995-03-31 | 1997-01-07 | Siliconix Incorporated | Punch-through field effect transistor |
US5554552A (en) * | 1995-04-03 | 1996-09-10 | Taiwan Semiconductor Manufacturing Company | PN junction floating gate EEPROM, flash EPROM device and method of manufacture thereof |
US5744372A (en) | 1995-04-12 | 1998-04-28 | National Semiconductor Corporation | Fabrication of complementary field-effect transistors each having multi-part channel |
JPH08306914A (ja) * | 1995-04-27 | 1996-11-22 | Nippondenso Co Ltd | 半導体装置およびその製造方法 |
US5567634A (en) | 1995-05-01 | 1996-10-22 | National Semiconductor Corporation | Method of fabricating self-aligned contact trench DMOS transistors |
JP3303601B2 (ja) * | 1995-05-19 | 2002-07-22 | 日産自動車株式会社 | 溝型半導体装置 |
KR0143459B1 (ko) | 1995-05-22 | 1998-07-01 | 한민구 | 모오스 게이트형 전력 트랜지스터 |
US6049108A (en) | 1995-06-02 | 2000-04-11 | Siliconix Incorporated | Trench-gated MOSFET with bidirectional voltage clamping |
US6140678A (en) | 1995-06-02 | 2000-10-31 | Siliconix Incorporated | Trench-gated power MOSFET with protective diode |
US5648670A (en) | 1995-06-07 | 1997-07-15 | Sgs-Thomson Microelectronics, Inc. | Trench MOS-gated device with a minimum number of masks |
GB9512089D0 (en) | 1995-06-14 | 1995-08-09 | Evans Jonathan L | Semiconductor device fabrication |
US5689128A (en) | 1995-08-21 | 1997-11-18 | Siliconix Incorporated | High density trenched DMOS transistor |
US5629543A (en) | 1995-08-21 | 1997-05-13 | Siliconix Incorporated | Trenched DMOS transistor with buried layer for reduced on-resistance and ruggedness |
DE19636302C2 (de) | 1995-09-06 | 1998-08-20 | Denso Corp | Siliziumkarbidhalbleitervorrichtung und Verfahren zur Herstellung |
US5847464A (en) | 1995-09-27 | 1998-12-08 | Sgs-Thomson Microelectronics, Inc. | Method for forming controlled voids in interlevel dielectric |
US5705409A (en) * | 1995-09-28 | 1998-01-06 | Motorola Inc. | Method for forming trench transistor structure |
US5879971A (en) * | 1995-09-28 | 1999-03-09 | Motorola Inc. | Trench random access memory cell and method of formation |
US5973367A (en) | 1995-10-13 | 1999-10-26 | Siliconix Incorporated | Multiple gated MOSFET for use in DC-DC converter |
US5616945A (en) | 1995-10-13 | 1997-04-01 | Siliconix Incorporated | Multiple gated MOSFET for use in DC-DC converter |
US5949124A (en) | 1995-10-31 | 1999-09-07 | Motorola, Inc. | Edge termination structure |
US6037632A (en) * | 1995-11-06 | 2000-03-14 | Kabushiki Kaisha Toshiba | Semiconductor device |
KR0159075B1 (ko) | 1995-11-11 | 1998-12-01 | 김광호 | 트렌치 dmos장치 및 그의 제조방법 |
US5721148A (en) * | 1995-12-07 | 1998-02-24 | Fuji Electric Co. | Method for manufacturing MOS type semiconductor device |
US5780343A (en) | 1995-12-20 | 1998-07-14 | National Semiconductor Corporation | Method of producing high quality silicon surface for selective epitaxial growth of silicon |
US5637898A (en) | 1995-12-22 | 1997-06-10 | North Carolina State University | Vertical field effect transistors having improved breakdown voltage capability and low on-state resistance |
US6097063A (en) | 1996-01-22 | 2000-08-01 | Fuji Electric Co., Ltd. | Semiconductor device having a plurality of parallel drift regions |
EP0879481B1 (de) * | 1996-02-05 | 2002-05-02 | Infineon Technologies AG | Durch feldeffekt steuerbares halbleiterbauelement |
US6084268A (en) | 1996-03-05 | 2000-07-04 | Semiconductor Components Industries, Llc | Power MOSFET device having low on-resistance and method |
US5821583A (en) | 1996-03-06 | 1998-10-13 | Siliconix Incorporated | Trenched DMOS transistor with lightly doped tub |
US5814858A (en) | 1996-03-15 | 1998-09-29 | Siliconix Incorporated | Vertical power MOSFET having reduced sensitivity to variations in thickness of epitaxial layer |
DE19611045C1 (de) | 1996-03-20 | 1997-05-22 | Siemens Ag | Durch Feldeffekt steuerbares Halbleiterbauelement |
DE69630944D1 (de) | 1996-03-29 | 2004-01-15 | St Microelectronics Srl | Hochspannungsfester MOS-Transistor und Verfahren zur Herstellung |
US5895951A (en) | 1996-04-05 | 1999-04-20 | Megamos Corporation | MOSFET structure and fabrication process implemented by forming deep and narrow doping regions through doping trenches |
US5770878A (en) | 1996-04-10 | 1998-06-23 | Harris Corporation | Trench MOS gate device |
US5767004A (en) | 1996-04-22 | 1998-06-16 | Chartered Semiconductor Manufacturing, Ltd. | Method for forming a low impurity diffusion polysilicon layer |
US5719409A (en) * | 1996-06-06 | 1998-02-17 | Cree Research, Inc. | Silicon carbide metal-insulator semiconductor field effect transistor |
DE69739206D1 (de) | 1996-07-19 | 2009-02-26 | Siliconix Inc | Hochdichte-graben-dmos-transistor mit grabenbodemimplantierung |
US5808340A (en) | 1996-09-18 | 1998-09-15 | Advanced Micro Devices, Inc. | Short channel self aligned VMOS field effect transistor |
DE19638439C2 (de) | 1996-09-19 | 2000-06-15 | Siemens Ag | Durch Feldeffekt steuerbares, vertikales Halbleiterbauelement und Herstellungsverfahren |
DE19638438A1 (de) | 1996-09-19 | 1998-04-02 | Siemens Ag | Durch Feldeffekt steuerbares, vertikales Halbleiterbauelement |
JP2891205B2 (ja) | 1996-10-21 | 1999-05-17 | 日本電気株式会社 | 半導体集積回路の製造方法 |
US5972741A (en) | 1996-10-31 | 1999-10-26 | Sanyo Electric Co., Ltd. | Method of manufacturing semiconductor device |
JP3397057B2 (ja) * | 1996-11-01 | 2003-04-14 | 日産自動車株式会社 | 半導体装置 |
US6207994B1 (en) * | 1996-11-05 | 2001-03-27 | Power Integrations, Inc. | High-voltage transistor with multi-layer conduction region |
US6168983B1 (en) * | 1996-11-05 | 2001-01-02 | Power Integrations, Inc. | Method of making a high-voltage transistor with multiple lateral conduction layers |
KR100233832B1 (ko) | 1996-12-14 | 1999-12-01 | 정선종 | 반도체 소자의 트랜지스터 및 그 제조방법 |
US6011298A (en) * | 1996-12-31 | 2000-01-04 | Stmicroelectronics, Inc. | High voltage termination with buried field-shaping region |
JPH10256550A (ja) | 1997-01-09 | 1998-09-25 | Toshiba Corp | 半導体装置 |
KR100218260B1 (ko) | 1997-01-14 | 1999-09-01 | 김덕중 | 트랜치 게이트형 모스트랜지스터의 제조방법 |
JP3938964B2 (ja) | 1997-02-10 | 2007-06-27 | 三菱電機株式会社 | 高耐圧半導体装置およびその製造方法 |
US5877528A (en) * | 1997-03-03 | 1999-03-02 | Megamos Corporation | Structure to provide effective channel-stop in termination areas for trenched power transistors |
US6057558A (en) | 1997-03-05 | 2000-05-02 | Denson Corporation | Silicon carbide semiconductor device and manufacturing method thereof |
US5981354A (en) | 1997-03-12 | 1999-11-09 | Advanced Micro Devices, Inc. | Semiconductor fabrication employing a flowable oxide to enhance planarization in a shallow trench isolation process |
KR100225409B1 (ko) * | 1997-03-27 | 1999-10-15 | 김덕중 | 트렌치 디-모오스 및 그의 제조 방법 |
US6163052A (en) | 1997-04-04 | 2000-12-19 | Advanced Micro Devices, Inc. | Trench-gated vertical combination JFET and MOSFET devices |
US5879994A (en) * | 1997-04-15 | 1999-03-09 | National Semiconductor Corporation | Self-aligned method of fabricating terrace gate DMOS transistor |
US5972332A (en) | 1997-04-16 | 1999-10-26 | The Regents Of The University Of Michigan | Wound treatment with keratinocytes on a solid support enclosed in a porous material |
US6281547B1 (en) | 1997-05-08 | 2001-08-28 | Megamos Corporation | Power transistor cells provided with reliable trenched source contacts connected to narrower source manufactured without a source mask |
JPH113936A (ja) | 1997-06-13 | 1999-01-06 | Nec Corp | 半導体装置の製造方法 |
JP3618517B2 (ja) | 1997-06-18 | 2005-02-09 | 三菱電機株式会社 | 半導体装置およびその製造方法 |
US6096608A (en) | 1997-06-30 | 2000-08-01 | Siliconix Incorporated | Bidirectional trench gated power mosfet with submerged body bus extending underneath gate trench |
US6110799A (en) | 1997-06-30 | 2000-08-29 | Intersil Corporation | Trench contact process |
US6037628A (en) | 1997-06-30 | 2000-03-14 | Intersil Corporation | Semiconductor structures with trench contacts |
US5907776A (en) | 1997-07-11 | 1999-05-25 | Magepower Semiconductor Corp. | Method of forming a semiconductor structure having reduced threshold voltage and high punch-through tolerance |
DE19731495C2 (de) | 1997-07-22 | 1999-05-20 | Siemens Ag | Durch Feldeffekt steuerbarer Bipolartransistor und Verfahren zu seiner Herstellung |
US5801082A (en) | 1997-08-18 | 1998-09-01 | Vanguard International Semiconductor Corporation | Method for making improved shallow trench isolation with dielectric studs for semiconductor integrated circuits |
JP3502531B2 (ja) * | 1997-08-28 | 2004-03-02 | 株式会社ルネサステクノロジ | 半導体装置の製造方法 |
US6239463B1 (en) | 1997-08-28 | 2001-05-29 | Siliconix Incorporated | Low resistance power MOSFET or other device containing silicon-germanium layer |
DE19740195C2 (de) * | 1997-09-12 | 1999-12-02 | Siemens Ag | Halbleiterbauelement mit Metall-Halbleiterübergang mit niedrigem Sperrstrom |
DE19743342C2 (de) | 1997-09-30 | 2002-02-28 | Infineon Technologies Ag | Feldeffekttransistor hoher Packungsdichte und Verfahren zu seiner Herstellung |
US5776813A (en) | 1997-10-06 | 1998-07-07 | Industrial Technology Research Institute | Process to manufacture a vertical gate-enhanced bipolar transistor |
US6121089A (en) | 1997-10-17 | 2000-09-19 | Intersil Corporation | Methods of forming power semiconductor devices having merged split-well body regions therein |
KR100249505B1 (ko) | 1997-10-28 | 2000-03-15 | 정선종 | 수평형 이중 확산 전력 소자의 제조 방법 |
US6337499B1 (en) * | 1997-11-03 | 2002-01-08 | Infineon Technologies Ag | Semiconductor component |
US6005271A (en) | 1997-11-05 | 1999-12-21 | Magepower Semiconductor Corp. | Semiconductor cell array with high packing density |
US5943581A (en) | 1997-11-05 | 1999-08-24 | Vanguard International Semiconductor Corporation | Method of fabricating a buried reservoir capacitor structure for high-density dynamic random access memory (DRAM) circuits |
GB9723468D0 (en) | 1997-11-07 | 1998-01-07 | Zetex Plc | Method of semiconductor device fabrication |
US6081009A (en) | 1997-11-10 | 2000-06-27 | Intersil Corporation | High voltage mosfet structure |
US6429481B1 (en) * | 1997-11-14 | 2002-08-06 | Fairchild Semiconductor Corporation | Field effect transistor and method of its manufacture |
US6426260B1 (en) | 1997-12-02 | 2002-07-30 | Magepower Semiconductor Corp. | Switching speed improvement in DMO by implanting lightly doped region under gate |
JPH11204782A (ja) | 1998-01-08 | 1999-07-30 | Toshiba Corp | 半導体装置およびその製造方法 |
WO1999038214A1 (fr) | 1998-01-22 | 1999-07-29 | Mitsubishi Denki Kabushiki Kaisha | Dispositif semi-conducteur bipolaire de type a porte isolante |
US6396102B1 (en) | 1998-01-27 | 2002-05-28 | Fairchild Semiconductor Corporation | Field coupled power MOSFET bus architecture using trench technology |
US5900663A (en) | 1998-02-07 | 1999-05-04 | Xemod, Inc. | Quasi-mesh gate structure for lateral RF MOS devices |
US5949104A (en) | 1998-02-07 | 1999-09-07 | Xemod, Inc. | Source connection structure for lateral RF MOS devices |
GB9826291D0 (en) | 1998-12-02 | 1999-01-20 | Koninkl Philips Electronics Nv | Field-effect semi-conductor devices |
DE19808348C1 (de) | 1998-02-27 | 1999-06-24 | Siemens Ag | Durch Feldeffekt steuerbares Halbleiterbauelement |
US6373100B1 (en) | 1998-03-04 | 2002-04-16 | Semiconductor Components Industries Llc | Semiconductor device and method for fabricating the same |
JP3641547B2 (ja) | 1998-03-25 | 2005-04-20 | 株式会社豊田中央研究所 | 横型mos素子を含む半導体装置 |
US5897343A (en) | 1998-03-30 | 1999-04-27 | Motorola, Inc. | Method of making a power switching trench MOSFET having aligned source regions |
JP2002503401A (ja) | 1998-04-08 | 2002-01-29 | シーメンス アクチエンゲゼルシヤフト | プレーナ構造用の高耐圧コーナー部シール体 |
US5945724A (en) * | 1998-04-09 | 1999-08-31 | Micron Technology, Inc. | Trench isolation region for semiconductor device |
US6137152A (en) | 1998-04-22 | 2000-10-24 | Texas Instruments - Acer Incorporated | Planarized deep-shallow trench isolation for CMOS/bipolar devices |
US6262453B1 (en) | 1998-04-24 | 2001-07-17 | Magepower Semiconductor Corp. | Double gate-oxide for reducing gate-drain capacitance in trenched DMOS with high-dopant concentration buried-region under trenched gate |
US6150697A (en) | 1998-04-30 | 2000-11-21 | Denso Corporation | Semiconductor apparatus having high withstand voltage |
US6303969B1 (en) | 1998-05-01 | 2001-10-16 | Allen Tan | Schottky diode with dielectric trench |
US6063678A (en) | 1998-05-04 | 2000-05-16 | Xemod, Inc. | Fabrication of lateral RF MOS devices with enhanced RF properties |
US6048772A (en) | 1998-05-04 | 2000-04-11 | Xemod, Inc. | Method for fabricating a lateral RF MOS device with an non-diffusion source-backside connection |
DE19820223C1 (de) * | 1998-05-06 | 1999-11-04 | Siemens Ag | Verfahren zum Herstellen einer Epitaxieschicht mit lateral veränderlicher Dotierung |
US6104054A (en) | 1998-05-13 | 2000-08-15 | Texas Instruments Incorporated | Space-efficient layout method to reduce the effect of substrate capacitance in dielectrically isolated process technologies |
US6015727A (en) * | 1998-06-08 | 2000-01-18 | Wanlass; Frank M. | Damascene formation of borderless contact MOS transistors |
US6064088A (en) | 1998-06-15 | 2000-05-16 | Xemod, Inc. | RF power MOSFET device with extended linear region of transconductance characteristic at low drain current |
DE19828191C1 (de) | 1998-06-24 | 1999-07-29 | Siemens Ag | Lateral-Hochspannungstransistor |
KR100372103B1 (ko) | 1998-06-30 | 2003-03-31 | 주식회사 하이닉스반도체 | 반도체소자의소자분리방법 |
US6054365A (en) | 1998-07-13 | 2000-04-25 | International Rectifier Corp. | Process for filling deep trenches with polysilicon and oxide |
US6156611A (en) | 1998-07-20 | 2000-12-05 | Motorola, Inc. | Method of fabricating vertical FET with sidewall gate electrode |
CN1223004C (zh) | 1998-07-23 | 2005-10-12 | 三菱电机株式会社 | 半导体装置及其制造方法 |
JP3988262B2 (ja) | 1998-07-24 | 2007-10-10 | 富士電機デバイステクノロジー株式会社 | 縦型超接合半導体素子およびその製造方法 |
JP4253374B2 (ja) | 1998-07-24 | 2009-04-08 | 千住金属工業株式会社 | プリント基板のはんだ付け方法および噴流はんだ槽 |
US6133634A (en) | 1998-08-05 | 2000-10-17 | Fairchild Semiconductor Corporation | High performance flip chip package |
DE19839970C2 (de) | 1998-09-02 | 2000-11-02 | Siemens Ag | Randstruktur und Driftbereich für ein Halbleiterbauelement sowie Verfahren zu ihrer Herstellung |
DE19841754A1 (de) | 1998-09-11 | 2000-03-30 | Siemens Ag | Schalttransistor mit reduzierten Schaltverlusten |
JP3382163B2 (ja) | 1998-10-07 | 2003-03-04 | 株式会社東芝 | 電力用半導体装置 |
US7462910B1 (en) | 1998-10-14 | 2008-12-09 | International Rectifier Corporation | P-channel trench MOSFET structure |
DE19848828C2 (de) * | 1998-10-22 | 2001-09-13 | Infineon Technologies Ag | Halbleiterbauelement mit kleiner Durchlaßspannung und hoher Sperrfähigkeit |
US5998833A (en) | 1998-10-26 | 1999-12-07 | North Carolina State University | Power semiconductor devices having improved high frequency switching and breakdown characteristics |
US6545316B1 (en) | 2000-06-23 | 2003-04-08 | Silicon Wireless Corporation | MOSFET devices having linear transfer characteristics when operating in velocity saturation mode and methods of forming and operating same |
US6194741B1 (en) * | 1998-11-03 | 2001-02-27 | International Rectifier Corp. | MOSgated trench type power semiconductor with silicon carbide substrate and increased gate breakdown voltage and reduced on-resistance |
JP3951522B2 (ja) | 1998-11-11 | 2007-08-01 | 富士電機デバイステクノロジー株式会社 | 超接合半導体素子 |
US6291856B1 (en) | 1998-11-12 | 2001-09-18 | Fuji Electric Co., Ltd. | Semiconductor device with alternating conductivity type layer and method of manufacturing the same |
JP3799888B2 (ja) | 1998-11-12 | 2006-07-19 | 富士電機デバイステクノロジー株式会社 | 超接合半導体素子およびその製造方法 |
US6156606A (en) | 1998-11-17 | 2000-12-05 | Siemens Aktiengesellschaft | Method of forming a trench capacitor using a rutile dielectric material |
JP2000156978A (ja) | 1998-11-17 | 2000-06-06 | Fuji Electric Co Ltd | ソフトスイッチング回路 |
US6084264A (en) | 1998-11-25 | 2000-07-04 | Siliconix Incorporated | Trench MOSFET having improved breakdown and on-resistance characteristics |
DE19854915C2 (de) * | 1998-11-27 | 2002-09-05 | Infineon Technologies Ag | MOS-Feldeffekttransistor mit Hilfselektrode |
GB9826041D0 (en) | 1998-11-28 | 1999-01-20 | Koninkl Philips Electronics Nv | Trench-gate semiconductor devices and their manufacture |
US6452230B1 (en) | 1998-12-23 | 2002-09-17 | International Rectifier Corporation | High voltage mosgated device with trenches to reduce on-resistance |
US6222229B1 (en) | 1999-02-18 | 2001-04-24 | Cree, Inc. | Self-aligned shield structure for realizing high frequency power MOSFET devices with improved reliability |
EP1166347A2 (en) * | 1999-02-24 | 2002-01-02 | AUGUSTO, Carlos Jorge Ramiro Proenca | Misfet with narrow bandgap source |
US6351018B1 (en) * | 1999-02-26 | 2002-02-26 | Fairchild Semiconductor Corporation | Monolithically integrated trench MOSFET and Schottky diode |
US6204097B1 (en) * | 1999-03-01 | 2001-03-20 | Semiconductor Components Industries, Llc | Semiconductor device and method of manufacture |
JP3751463B2 (ja) | 1999-03-23 | 2006-03-01 | 株式会社東芝 | 高耐圧半導体素子 |
DE19913375B4 (de) | 1999-03-24 | 2009-03-26 | Infineon Technologies Ag | Verfahren zur Herstellung einer MOS-Transistorstruktur |
JP3417336B2 (ja) | 1999-03-25 | 2003-06-16 | 関西日本電気株式会社 | 絶縁ゲート型半導体装置およびその製造方法 |
US6316806B1 (en) | 1999-03-31 | 2001-11-13 | Fairfield Semiconductor Corporation | Trench transistor with a self-aligned source |
US6188105B1 (en) * | 1999-04-01 | 2001-02-13 | Intersil Corporation | High density MOS-gated power device and process for forming same |
US6413822B2 (en) | 1999-04-22 | 2002-07-02 | Advanced Analogic Technologies, Inc. | Super-self-aligned fabrication process of trench-gate DMOS with overlying device layer |
TW425701B (en) * | 1999-04-27 | 2001-03-11 | Taiwan Semiconductor Mfg | Manufacturing method of stack-type capacitor |
WO2000068998A1 (en) | 1999-05-06 | 2000-11-16 | C.P. Clare Corporation | High voltage mosfet structures |
AU4820100A (en) | 1999-05-06 | 2000-11-21 | Cp Clare Corporation | Mosfet with field reducing trenches in body region |
US6313482B1 (en) | 1999-05-17 | 2001-11-06 | North Carolina State University | Silicon carbide power devices having trench-based silicon carbide charge coupling regions therein |
US6198127B1 (en) | 1999-05-19 | 2001-03-06 | Intersil Corporation | MOS-gated power device having extended trench and doping zone and process for forming same |
US6433385B1 (en) | 1999-05-19 | 2002-08-13 | Fairchild Semiconductor Corporation | MOS-gated power device having segmented trench and extended doping zone and process for forming same |
US6373098B1 (en) | 1999-05-25 | 2002-04-16 | Fairchild Semiconductor Corporation | Trench-gated device having trench walls formed by selective epitaxial growth and process for forming device |
US6291298B1 (en) | 1999-05-25 | 2001-09-18 | Advanced Analogic Technologies, Inc. | Process of manufacturing Trench gate semiconductor device having gate oxide layer with multiple thicknesses |
US6191447B1 (en) * | 1999-05-28 | 2001-02-20 | Micro-Ohm Corporation | Power semiconductor devices that utilize tapered trench-based insulating regions to improve electric field profiles in highly doped drift region mesas and methods of forming same |
CN1171318C (zh) * | 1999-06-03 | 2004-10-13 | 通用半导体公司 | 具有低导通电阻的高压功率金属氧化物半导体场效应晶体管 |
DE69938541D1 (de) | 1999-06-03 | 2008-05-29 | St Microelectronics Srl | Leistungshalbleiteranordnung mit einer Randabschlussstruktur mit einem Spannungsteiler |
DE50015742D1 (de) | 1999-06-25 | 2009-10-29 | Infineon Technologies Ag | Trench-mos-transistor |
JP3851744B2 (ja) | 1999-06-28 | 2006-11-29 | 株式会社東芝 | 半導体装置の製造方法 |
US6274905B1 (en) | 1999-06-30 | 2001-08-14 | Fairchild Semiconductor Corporation | Trench structure substantially filled with high-conductivity material |
GB9916370D0 (en) | 1999-07-14 | 1999-09-15 | Koninkl Philips Electronics Nv | Manufacture of semiconductor devices and material |
GB9916520D0 (en) | 1999-07-15 | 1999-09-15 | Koninkl Philips Electronics Nv | Manufacture of semiconductor devices and material |
GB9917099D0 (en) * | 1999-07-22 | 1999-09-22 | Koninkl Philips Electronics Nv | Cellular trench-gate field-effect transistors |
JP3971062B2 (ja) * | 1999-07-29 | 2007-09-05 | 株式会社東芝 | 高耐圧半導体装置 |
TW411553B (en) | 1999-08-04 | 2000-11-11 | Mosel Vitelic Inc | Method for forming curved oxide on bottom of trench |
JP4774580B2 (ja) | 1999-08-23 | 2011-09-14 | 富士電機株式会社 | 超接合半導体素子 |
US6077733A (en) | 1999-09-03 | 2000-06-20 | Taiwan Semiconductor Manufacturing Company | Method of manufacturing self-aligned T-shaped gate through dual damascene |
US6566804B1 (en) | 1999-09-07 | 2003-05-20 | Motorola, Inc. | Field emission device and method of operation |
US20030060013A1 (en) * | 1999-09-24 | 2003-03-27 | Bruce D. Marchant | Method of manufacturing trench field effect transistors with trenched heavy body |
US6228727B1 (en) | 1999-09-27 | 2001-05-08 | Chartered Semiconductor Manufacturing, Ltd. | Method to form shallow trench isolations with rounded corners and reduced trench oxide recess |
GB9922764D0 (en) | 1999-09-28 | 1999-11-24 | Koninkl Philips Electronics Nv | Manufacture of trench-gate semiconductor devices |
JP3507732B2 (ja) | 1999-09-30 | 2004-03-15 | 株式会社東芝 | 半導体装置 |
US6222233B1 (en) | 1999-10-04 | 2001-04-24 | Xemod, Inc. | Lateral RF MOS device with improved drain structure |
US6271552B1 (en) | 1999-10-04 | 2001-08-07 | Xemod, Inc | Lateral RF MOS device with improved breakdown voltage |
US6103619A (en) | 1999-10-08 | 2000-08-15 | United Microelectronics Corp. | Method of forming a dual damascene structure on a semiconductor wafer |
JP4450122B2 (ja) | 1999-11-17 | 2010-04-14 | 株式会社デンソー | 炭化珪素半導体装置 |
US6184092B1 (en) * | 1999-11-23 | 2001-02-06 | Mosel Vitelic Inc. | Self-aligned contact for trench DMOS transistors |
GB9929613D0 (en) | 1999-12-15 | 2000-02-09 | Koninkl Philips Electronics Nv | Manufacture of semiconductor material and devices using that material |
US20030235936A1 (en) | 1999-12-16 | 2003-12-25 | Snyder John P. | Schottky barrier CMOS device and method |
US6461918B1 (en) | 1999-12-20 | 2002-10-08 | Fairchild Semiconductor Corporation | Power MOS device with improved gate charge performance |
US6285060B1 (en) | 1999-12-30 | 2001-09-04 | Siliconix Incorporated | Barrier accumulation-mode MOSFET |
US6346469B1 (en) * | 2000-01-03 | 2002-02-12 | Motorola, Inc. | Semiconductor device and a process for forming the semiconductor device |
GB0002235D0 (en) | 2000-02-02 | 2000-03-22 | Koninkl Philips Electronics Nv | Trenched schottky rectifiers |
KR100320683B1 (ko) | 2000-02-03 | 2002-01-17 | 윤종용 | 스탠바이 전류불량 구제기능을 가지는 반도체 메모리 장치 |
JP4765012B2 (ja) | 2000-02-09 | 2011-09-07 | 富士電機株式会社 | 半導体装置及びその製造方法 |
EP1258040A4 (en) * | 2000-02-10 | 2009-07-01 | Int Rectifier Corp | VERTICAL-CONDUCTING PROTUBERANCE CHIP WITH CONTACT PLOTS ON ONE SURFACE |
US6376878B1 (en) | 2000-02-11 | 2002-04-23 | Fairchild Semiconductor Corporation | MOS-gated devices with alternating zones of conductivity |
GB0003184D0 (en) | 2000-02-12 | 2000-04-05 | Koninkl Philips Electronics Nv | A semiconductor device and a method of fabricating material for a semiconductor device |
GB0003185D0 (en) | 2000-02-12 | 2000-04-05 | Koninkl Philips Electronics Nv | An insulated gate field effect device |
US6271100B1 (en) | 2000-02-24 | 2001-08-07 | International Business Machines Corporation | Chemically enhanced anneal for removing trench stress resulting in improved bipolar yield |
JP2001244461A (ja) | 2000-02-28 | 2001-09-07 | Toyota Central Res & Dev Lab Inc | 縦型半導体装置 |
GB0005650D0 (en) * | 2000-03-10 | 2000-05-03 | Koninkl Philips Electronics Nv | Field-effect semiconductor devices |
US6246090B1 (en) | 2000-03-14 | 2001-06-12 | Intersil Corporation | Power trench transistor device source region formation using silicon spacer |
TW439176B (en) | 2000-03-17 | 2001-06-07 | United Microelectronics Corp | Manufacturing method of capacitors |
CN101800243B (zh) * | 2000-03-17 | 2012-11-07 | 通用半导体公司 | 双栅极结构沟槽型dmos晶体管制造方法 |
JP3636345B2 (ja) * | 2000-03-17 | 2005-04-06 | 富士電機デバイステクノロジー株式会社 | 半導体素子および半導体素子の製造方法 |
GB0006957D0 (en) | 2000-03-23 | 2000-05-10 | Koninkl Philips Electronics Nv | A semiconductor device |
US6376315B1 (en) | 2000-03-31 | 2002-04-23 | General Semiconductor, Inc. | Method of forming a trench DMOS having reduced threshold voltage |
US6580123B2 (en) | 2000-04-04 | 2003-06-17 | International Rectifier Corporation | Low voltage power MOSFET device and process for its manufacture |
US6392290B1 (en) | 2000-04-07 | 2002-05-21 | Siliconix Incorporated | Vertical structure for semiconductor wafer-level chip scale packages |
JP4534303B2 (ja) | 2000-04-27 | 2010-09-01 | 富士電機システムズ株式会社 | 横型超接合半導体素子 |
JP4240752B2 (ja) | 2000-05-01 | 2009-03-18 | 富士電機デバイステクノロジー株式会社 | 半導体装置 |
US6509240B2 (en) * | 2000-05-15 | 2003-01-21 | International Rectifier Corporation | Angle implant process for cellular deep trench sidewall doping |
DE10026924A1 (de) | 2000-05-30 | 2001-12-20 | Infineon Technologies Ag | Kompensationsbauelement |
US6627949B2 (en) | 2000-06-02 | 2003-09-30 | General Semiconductor, Inc. | High voltage power MOSFET having low on-resistance |
JP3773755B2 (ja) * | 2000-06-02 | 2006-05-10 | セイコーインスツル株式会社 | 縦形mosトランジスタ及びその製造方法 |
US6479352B2 (en) | 2000-06-02 | 2002-11-12 | General Semiconductor, Inc. | Method of fabricating high voltage power MOSFET having low on-resistance |
US6635534B2 (en) | 2000-06-05 | 2003-10-21 | Fairchild Semiconductor Corporation | Method of manufacturing a trench MOSFET using selective growth epitaxy |
US6472678B1 (en) | 2000-06-16 | 2002-10-29 | General Semiconductor, Inc. | Trench MOSFET with double-diffused body profile |
JP4984345B2 (ja) | 2000-06-21 | 2012-07-25 | 富士電機株式会社 | 半導体装置 |
JP4528460B2 (ja) | 2000-06-30 | 2010-08-18 | 株式会社東芝 | 半導体素子 |
US6555895B1 (en) | 2000-07-17 | 2003-04-29 | General Semiconductor, Inc. | Devices and methods for addressing optical edge effects in connection with etched trenches |
US6921939B2 (en) | 2000-07-20 | 2005-07-26 | Fairchild Semiconductor Corporation | Power MOSFET and method for forming same using a self-aligned body implant |
JP2002043571A (ja) | 2000-07-28 | 2002-02-08 | Nec Kansai Ltd | 半導体装置 |
US6472708B1 (en) | 2000-08-31 | 2002-10-29 | General Semiconductor, Inc. | Trench MOSFET with structure having low gate charge |
EP1205980A1 (en) | 2000-11-07 | 2002-05-15 | Infineon Technologies AG | A method for forming a field effect transistor in a semiconductor substrate |
US6362112B1 (en) * | 2000-11-08 | 2002-03-26 | Fabtech, Inc. | Single step etched moat |
US6608350B2 (en) | 2000-12-07 | 2003-08-19 | International Rectifier Corporation | High voltage vertical conduction superjunction semiconductor device |
US6781195B2 (en) | 2001-01-23 | 2004-08-24 | Semiconductor Components Industries, L.L.C. | Semiconductor bidirectional switching device and method |
US6818513B2 (en) | 2001-01-30 | 2004-11-16 | Fairchild Semiconductor Corporation | Method of forming a field effect transistor having a lateral depletion structure |
US7345342B2 (en) | 2001-01-30 | 2008-03-18 | Fairchild Semiconductor Corporation | Power semiconductor devices and methods of manufacture |
US6713813B2 (en) * | 2001-01-30 | 2004-03-30 | Fairchild Semiconductor Corporation | Field effect transistor having a lateral depletion structure |
US6677641B2 (en) * | 2001-10-17 | 2004-01-13 | Fairchild Semiconductor Corporation | Semiconductor structure with improved smaller forward voltage loss and higher blocking capability |
EP1363332B1 (en) | 2001-02-21 | 2016-10-12 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device and method of manufacturing the same |
US6683346B2 (en) * | 2001-03-09 | 2004-01-27 | Fairchild Semiconductor Corporation | Ultra dense trench-gated power-device with the reduced drain-source feedback capacitance and Miller charge |
KR100393201B1 (ko) | 2001-04-16 | 2003-07-31 | 페어차일드코리아반도체 주식회사 | 낮은 온 저항과 높은 브레이크다운 전압을 갖는 고전압수평형 디모스 트랜지스터 |
US6892098B2 (en) | 2001-04-26 | 2005-05-10 | Biocontrol Medical Ltd. | Nerve stimulation for treating spasticity, tremor, muscle weakness, and other motor disorders |
DE10214160B4 (de) * | 2002-03-28 | 2014-10-09 | Infineon Technologies Ag | Halbleiteranordnung mit Schottky-Kontakt |
JP2002353452A (ja) * | 2001-05-25 | 2002-12-06 | Toshiba Corp | 電力用半導体素子 |
JP2002368218A (ja) * | 2001-06-08 | 2002-12-20 | Sanyo Electric Co Ltd | 絶縁ゲート型半導体装置 |
DE10127885B4 (de) | 2001-06-08 | 2009-09-24 | Infineon Technologies Ag | Trench-Leistungshalbleiterbauelement |
US7033876B2 (en) | 2001-07-03 | 2006-04-25 | Siliconix Incorporated | Trench MIS device having implanted drain-drift region and thick bottom oxide and process for manufacturing the same |
US6762127B2 (en) | 2001-08-23 | 2004-07-13 | Yves Pierre Boiteux | Etch process for dielectric materials comprising oxidized organo silane materials |
US6621107B2 (en) | 2001-08-23 | 2003-09-16 | General Semiconductor, Inc. | Trench DMOS transistor with embedded trench schottky rectifier |
US6444574B1 (en) | 2001-09-06 | 2002-09-03 | Powerchip Semiconductor Corp. | Method for forming stepped contact hole for semiconductor devices |
US6894397B2 (en) | 2001-10-03 | 2005-05-17 | International Rectifier Corporation | Plural semiconductor devices in monolithic flip chip |
US6465304B1 (en) | 2001-10-04 | 2002-10-15 | General Semiconductor, Inc. | Method for fabricating a power semiconductor device having a floating island voltage sustaining layer |
US6657255B2 (en) | 2001-10-30 | 2003-12-02 | General Semiconductor, Inc. | Trench DMOS device with improved drain contact |
US6657254B2 (en) | 2001-11-21 | 2003-12-02 | General Semiconductor, Inc. | Trench MOSFET device with improved on-resistance |
US7091573B2 (en) | 2002-03-19 | 2006-08-15 | Infineon Technologies Ag | Power transistor |
TWI248136B (en) * | 2002-03-19 | 2006-01-21 | Infineon Technologies Ag | Method for fabricating a transistor arrangement having trench transistor cells having a field electrode |
DE10214151B4 (de) | 2002-03-28 | 2007-04-05 | Infineon Technologies Ag | Halbleiterbauelement mit erhöhter Durchbruchspannung im Randbereich |
JP2003303960A (ja) * | 2002-04-09 | 2003-10-24 | Sanyo Electric Co Ltd | 縦型mos半導体装置およびその製造方法 |
TW573344B (en) | 2002-05-24 | 2004-01-21 | Nanya Technology Corp | Separated gate flash memory and its manufacturing method |
US6878994B2 (en) | 2002-08-22 | 2005-04-12 | International Rectifier Corporation | MOSgated device with accumulated channel region and Schottky contact |
DE10324754B4 (de) * | 2003-05-30 | 2018-11-08 | Infineon Technologies Ag | Halbleiterbauelement |
US7352036B2 (en) | 2004-08-03 | 2008-04-01 | Fairchild Semiconductor Corporation | Semiconductor power device having a top-side drain using a sinker trench |
DE102004057235B4 (de) | 2004-11-26 | 2007-12-27 | Infineon Technologies Ag | Vertikaler Trenchtransistor und Verfahren zu dessen Herstellung |
US7566931B2 (en) * | 2005-04-18 | 2009-07-28 | Fairchild Semiconductor Corporation | Monolithically-integrated buck converter |
-
2005
- 2005-07-28 US US11/194,060 patent/US7352036B2/en active Active
- 2005-07-29 CN CN200580024408A patent/CN100576466C/zh not_active Expired - Fee Related
- 2005-07-29 JP JP2007524859A patent/JP2008509557A/ja active Pending
- 2005-07-29 KR KR1020077005115A patent/KR100848968B1/ko active IP Right Grant
- 2005-07-29 AT AT0930405A patent/AT502860A2/de not_active Application Discontinuation
- 2005-07-29 DE DE112005001675.7T patent/DE112005001675B4/de not_active Expired - Fee Related
- 2005-07-29 WO PCT/US2005/026928 patent/WO2006017376A2/en active Application Filing
- 2005-08-02 TW TW094126183A patent/TWI389309B/zh active
-
2008
- 2008-02-27 US US12/038,184 patent/US7732876B2/en active Active
- 2008-06-19 HK HK08106846.5A patent/HK1112112A1/xx not_active IP Right Cessation
-
2010
- 2010-06-07 US US12/794,936 patent/US8026558B2/en active Active
-
2011
- 2011-07-07 US US13/178,391 patent/US8148233B2/en active Active
-
2012
- 2012-01-10 US US13/347,496 patent/US20120153384A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6649459B2 (en) | 1998-09-24 | 2003-11-18 | Infineon Technologies Ag | Method for manufacturing a semiconductor component |
US6818482B1 (en) | 2002-10-01 | 2004-11-16 | T-Ram, Inc. | Method for trench isolation for thyristor-based device |
Also Published As
Publication number | Publication date |
---|---|
TW200614502A (en) | 2006-05-01 |
DE112005001675B4 (de) | 2015-11-26 |
US8026558B2 (en) | 2011-09-27 |
WO2006017376A2 (en) | 2006-02-16 |
DE112005001675T5 (de) | 2007-06-14 |
US20100237415A1 (en) | 2010-09-23 |
KR20070044481A (ko) | 2007-04-27 |
US20080142883A1 (en) | 2008-06-19 |
JP2008509557A (ja) | 2008-03-27 |
US7352036B2 (en) | 2008-04-01 |
AT502860A2 (de) | 2007-06-15 |
US20120153384A1 (en) | 2012-06-21 |
HK1112112A1 (en) | 2008-08-22 |
US7732876B2 (en) | 2010-06-08 |
US20110260241A1 (en) | 2011-10-27 |
CN101095218A (zh) | 2007-12-26 |
TWI389309B (zh) | 2013-03-11 |
WO2006017376A3 (en) | 2007-08-09 |
US8148233B2 (en) | 2012-04-03 |
US20060030142A1 (en) | 2006-02-09 |
CN100576466C (zh) | 2009-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100848968B1 (ko) | 싱커 트렌치를 사용하는 상부 드레인을 구비한 전력 반도체장치 | |
US10665551B2 (en) | Trench MOSFET device and the preparation method thereof | |
US9219003B2 (en) | Oxide terminated trench MOSFET with three or four masks | |
US8878286B2 (en) | Semiconductor device with enhanced mobility and method | |
US8952430B2 (en) | Semiconductor device and method for manufacturing semiconductor device | |
KR101028131B1 (ko) | 절연게이트형 반도체장치 및 그 제조방법 | |
US7494876B1 (en) | Trench-gated MIS device having thick polysilicon insulation layer at trench bottom and method of fabricating the same | |
US20150270383A1 (en) | Assymetric poly gate for optimum termination design in trench power mosfets | |
JP2004513518A (ja) | セグメントトレンチと延長ドーピングゾーンとを有するmosゲートパワーデバイス、及びその製造方法 | |
CN101740612A (zh) | 用于具有槽屏蔽电极的半导体器件的接触结构和方法 | |
US8564054B2 (en) | Trench semiconductor power device having active cells under gate metal pad | |
US20110101452A1 (en) | Trench gate semiconductor device and method of manufacturing thereof | |
KR20220074921A (ko) | Ldmos 소자 및 이의 제조방법 | |
CN107393951A (zh) | 半导体装置及半导体装置的制造方法 | |
JP7095604B2 (ja) | 半導体装置 | |
EP1162665A2 (en) | Trench gate MIS device and method of fabricating the same | |
KR101659853B1 (ko) | 반도체 디바이스 | |
US10326013B2 (en) | Method of forming a field-effect transistor (FET) or other semiconductor device with front-side source and drain contacts | |
CN112864248A (zh) | Sgtmosfet器件及制造方法 | |
US11949009B2 (en) | Semiconductor die and method of manufacturing the same | |
CN114026700B (zh) | 具有回流金属间电介质层的功率半导体器件 | |
CN115910795B (zh) | 一种屏蔽栅功率器件及其制备方法 | |
WO2023127253A1 (ja) | 半導体装置 | |
CN117497539A (zh) | 半导体器件及其制作方法 | |
CN118263298A (zh) | Sgt半导体器件及其制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130701 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20140701 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20160630 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20170710 Year of fee payment: 10 |