JP5881322B2 - 半導体装置 - Google Patents
半導体装置 Download PDFInfo
- Publication number
- JP5881322B2 JP5881322B2 JP2011143179A JP2011143179A JP5881322B2 JP 5881322 B2 JP5881322 B2 JP 5881322B2 JP 2011143179 A JP2011143179 A JP 2011143179A JP 2011143179 A JP2011143179 A JP 2011143179A JP 5881322 B2 JP5881322 B2 JP 5881322B2
- Authority
- JP
- Japan
- Prior art keywords
- trench
- layer
- semiconductor
- electric field
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims description 118
- 239000010410 layer Substances 0.000 claims description 280
- 230000005684 electric field Effects 0.000 claims description 92
- 230000004888 barrier function Effects 0.000 claims description 85
- 239000012535 impurity Substances 0.000 claims description 62
- 239000000758 substrate Substances 0.000 claims description 27
- 230000015556 catabolic process Effects 0.000 claims description 23
- 230000002093 peripheral effect Effects 0.000 claims description 16
- 239000002344 surface layer Substances 0.000 claims description 14
- 230000007423 decrease Effects 0.000 claims description 4
- 229910003460 diamond Inorganic materials 0.000 claims description 3
- 239000010432 diamond Substances 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 38
- 239000010408 film Substances 0.000 description 29
- 238000005530 etching Methods 0.000 description 27
- 238000000034 method Methods 0.000 description 21
- 238000009826 distribution Methods 0.000 description 16
- 230000004048 modification Effects 0.000 description 16
- 238000012986 modification Methods 0.000 description 16
- 238000005468 ion implantation Methods 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 239000013078 crystal Substances 0.000 description 7
- 238000004088 simulation Methods 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 238000000137 annealing Methods 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000002513 implantation Methods 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- 229920005591 polysilicon Polymers 0.000 description 4
- 238000005036 potential barrier Methods 0.000 description 4
- 230000006378 damage Effects 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- INQLNSVYIFCUML-QZTLEVGFSA-N [[(2r,3s,4r,5r)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2r,3s,4r,5r)-5-(4-carbamoyl-1,3-thiazol-2-yl)-3,4-dihydroxyoxolan-2-yl]methyl hydrogen phosphate Chemical compound NC(=O)C1=CSC([C@H]2[C@@H]([C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=N1 INQLNSVYIFCUML-QZTLEVGFSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0611—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
- H01L29/0615—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
- H01L29/0619—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1095—Body region, i.e. base region, of DMOS transistors or IGBTs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/1602—Diamond
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/1608—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/2003—Nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66053—Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
- H01L29/6606—Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/861—Diodes
- H01L29/872—Schottky diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/47—Schottky barrier electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/30—Wind power
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Electrodes Of Semiconductors (AREA)
Description
たとえば、特許文献1の図1は、SiCが採用されたショットキーバリアダイオードを開示している。当該ショットキーバリアダイオードは、n型4H−SiCバルク基板と、バルク基板上に成長したn型のエピタキシャル層と、エピタキシャル層の表面に形成され、エピタキシャル層の表面を部分的に露出させる酸化膜と、酸化膜の開口内に形成され、エピタキシャル層に対してショットキー接合するショットキー電極とを備えている。
0.01L<R<10L・・・(1)
(ただし、式(1)において、Lはトレンチの幅方向に沿って対向するエッジ部間の直線距離を示している。)
ワイドバンドギャップ半導体は、シリコンに比べて非常に高い降伏電圧を有しており、そのようなワイドバンドギャップ半導体を用いた半導体装置は、高い耐圧性能を発揮することができる。これは、ワイドバンドギャップ半導体が、シリコンに比べて絶縁破壊電界強度が非常に高いことに由来する。そのため、ショットキーバリアダイオード構造を用いて比較的高い逆方向電圧のデバイスの設計が可能である。
したがって、このような構造の半導体層の表面にショットキー電極をショットキー接合させ、当該ショットキー電極と半導体層との間のショットキー障壁の高さ(バリアハイト)を低くしたショットキーバリアダイオードでは、降伏電圧に近い逆方向電圧が印加されると、半導体層の表面での電界強度が強いため、当該ショットキー障壁を越えて流れる逆方向リーク電流を低減することは困難である。
そこで、本発明によれば、トレンチの底壁のエッジ部の曲率半径Rを0.01L<R<10Lを満たすようにすることにより、トレンチの底壁のエッジ部に集中する電界を緩和して、耐圧を向上させることができる。むろん、半導体層の表面側にトレンチが形成されているので、半導体層の表面における電界強度を弱めることができる。これにより、半導体層の表面に接するショットキー電極と半導体層との間のバリアハイトを低くし、降伏電圧に近い逆方向電圧が印加されても、逆方向リーク電流を低減することができる。その結果、逆方向リーク電流を低減できながら、バリアハイトを低くして順方向電圧を低減することができる。
すなわち、本発明ではさらに、トレンチの底壁および底壁のエッジ部に第2導電型(たとえば、p型)の電界緩和部が形成されていることが好ましい。これにより、半導体装置全体としての逆方向リーク電流を確実に低減することができる。すなわち、降伏電圧に近い逆方向電圧を印加しても逆方向リーク電流を確実に低減できるので、ワイドバンドギャップ半導体の耐圧性能を十分に活かすことができる。
なお、本発明においてショットキー電極とは、半導体層との間にショットキー障壁を形成する金属電極、半導体層のバンドギャップとは異なるバンドギャップを有する異種半導体からなり、半導体層に対してヘテロ接合(バンドギャップ差を利用して半導体層との間に電位障壁を形成する接合)する半導体電極のいずれをも含む概念である。以下、この項においては、ショットキー接合およびヘテロ接合を総称して「ショットキー接合」とし、ショットキー障壁およびヘテロ接合により形成される電位障壁(ヘテロ障壁)を総称して「ショットキー障壁」とし、金属電極および半導体電極を総称して「ショットキー電極」とする。
テーパトレンチであれば、側壁が底壁に対して90°で直角に立つ場合よりも、半導体装置の耐圧を一層向上させることができる。
さらに、テーパトレンチでは、底壁だけでなく、側壁の全部または一部もトレンチの開放端に対して対向することとなる。そのため、たとえばトレンチを介して第2導電型不純物を半導体層に注入する場合に、トレンチの開放端からトレンチ内に入射した不純物を、トレンチの側壁に確実に当てることができる。その結果、前述の電界緩和部を容易に形成することができる。
また、本発明の半導体装置では、前記ショットキー電極が、前記トレンチに埋め込まれるように形成されており、前記電界緩和部は、前記トレンチの底面を形成する部分に、前記トレンチに埋め込まれた前記ショットキー電極との間にオーミック接合を形成するコンタクト部を有することが好ましい。
そこで上記のように、逆方向電圧印加時における半導体層の電界分布に応じてショットキー電極を適正に選択しておけば、逆方向電圧印加時に相対的に高い第2電界がかかる第2部分では、比較的高い第2ショットキー障壁によりリーク電流を抑制することができる。一方、相対的に低い第1電界がかかる第1部分では、ショットキー障壁の高さを低くしても逆方向リーク電流が当該ショットキー障壁を越えるおそれが少ないので、比較的低い第1ショットキー障壁とすることにより、順方向電圧印加時に低い電圧で優先的に電流を流すことができる。よって、この構成により、逆方向リーク電流および順方向電圧の低減を効率よく行うことができる。
また、本発明の半導体装置では、前記半導体層が、第1不純物濃度を有するベースドリフト層と、前記ベースドリフト層上に形成され、前記第1不純物濃度に対して相対的に高い第2不純物濃度を有する低抵抗ドリフト層とを含む場合、前記トレンチは、その最深部が前記低抵抗ドリフト層に達するように形成され、前記半導体層の一部を単位セルとして区画していることが好ましい。
この構成により、半導体層の表層部の不純物濃度を小さくすることができるので、逆方向電圧印加時に半導体層の表層部にかかる電界強度を低減することができる。その結果、逆方向リーク電流を一層低減することができる。
また、前記トレンチは、ストライプ状に形成されたストライプトレンチを含んでいてもよく、格子状に形成された格子トレンチを含んでいてもよい。
<ショットキーバリアダイオードの全体構成>
図1(a)(b)は、本発明の一実施形態に係るショットキーバリアダイオードの模式的な平面図であって、図1(a)が全体図、図1(b)が要部拡大図である。図2は、図1(a)(b)に示すショットキーバリアダイオードの断面図であって、図1(b)の切断線A−Aでの切断面を示す。図3は、図2のトレンチの拡大図である。
SiC基板2の裏面3には、その全域を覆うようにオーミック電極としてのカソード電極4が形成されている。カソード電極4は、n型のSiCとオーミック接触する金属(たとえば、Ti/Ni/Ag)からなる。
SiCエピタキシャル層6は、バッファ層7と、ベースドリフト層8、低抵抗ドリフト層9および表面ドリフト層10の3層構造のドリフト層とがSiC基板2の表面5からこの順に積層されて形成された構造を有している。バッファ層7は、SiCエピタキシャル層6の裏面11を形成しており、SiC基板2の表面5に接している。一方、表面ドリフト層10は、SiCエピタキシャル層6の表面12を形成している。
0.01L<R<10L・・・(1)
式(1)において、Lはトレンチ17の幅方向に沿って対向するエッジ部24間の直線距離を示している(単位は、μm、nm、m等、長さの単位であれば特に制限されない)。具体的には、SiCエピタキシャル層6の表面12に対して平行な底面19の幅であって、トレンチ17の幅Wからエッジ部24の幅を差し引いた値である。
曲率半径Rは、たとえば、台形トレンチ17の断面をSEM(Scanning Electron Microscope:走査型電子顕微鏡)で撮影し、得られたSEM画像のエッジ部24の曲率を測定することにより求めることができる。
フィールド絶縁膜16上には、ショットキー電極としてのアノード電極27が形成されている。
第1電極28は、各単位セル18頂部における、互いに隣り合う台形トレンチ17の開口端の周縁部30で挟まれた中央部31において、台形トレンチ17の長手方向に沿って直線状に形成されている。
このp型層49は、p型層23と同一の工程で形成されるものであって、p型層23と同じ不純物濃度(たとえば、1×1017〜5×1018cm−3)および厚さを有している。
このショットキーバリアダイオード1では、アノード電極27に正電圧、カソード電極4に負電圧が印加される順方向バイアス状態になることにより、カソード電極4からアノード電極27へと、SiCエピタキシャル層6の活性領域13を介して電子(キャリア)が移動して電流が流れる。
<トレンチ構造の導入効果>
次に、図4〜図9を参照して、SiCエピタキシャル層6に台形トレンチ17およびp型層23を形成することによる逆方向リーク電流および順方向電圧を低減効果について説明する。なお、図5のトレンチは矩形トレンチ17´であり、図6のトレンチはU字トレンチ17´´である。
・n+型SiC基板2:濃度が1×1019cm−3 厚さが1μm
・n−型SiCエピタキシャル層6:濃度が1×1016cm−3 厚さが5μm
・トレンチ17、17´および17´´:深さが1.05μm
・底壁20のエッジ部24の曲率半径R:
・p型層23:濃度が1×1018cm−3
そして、図4〜図9それぞれの構造を有するショットキーバリアダイオード1のアノード−カソード間に逆方向電圧(600V)を印加したときの、SiCエピタキシャル層6内の電界強度分布をシミュレーションした。なお、シミュレータとして、Synopsys社製のTCAD(製品名)を使用した。
<SiC−pnダイオード内蔵の効果>
次に、図10を参照して、p型層23にコンタクト部26を形成して、SiCエピタキシャル層6にpnダイオード25を内蔵させたときの効果について説明する。
図1(a)(b)および図2の構造のショットキーバリアダイオードに対して、順方向電圧を1V〜7Vまで変化させながら印加することにより通電試験を行った。そして、印加電圧を1V〜7Vまで変化させたときのショットキーバリアダイオードのpn接合部に流れる電流の変化量を評価した。
図10に示すように、p型層23にコンタクト部26が形成されていないpn接合部では、印加電圧が4Vを超えるあたりから電流がほとんど増加せずにほぼ一定であった。
これにより、図1(a)(b)および図2において、ショットキーバリアダイオード1に並列に設けられたpnダイオード25にアノード電極27(ショットキー電極)をオーミック接合させておけば、ショットキーバリアダイオードに大きなサージ電流が流れても、内蔵pnダイオード25をオンさせて、当該サージ電流の一部を内蔵pnダイオード25に流すことができることが確認できた。その結果、ショットキーバリアダイオード1に流れるサージ電流を低減できるので、サージ電流によるショットキーバリアダイオード1の熱破壊を防止することができることが確認できた。
<2つのショットキー電極(第1電極および第2電極)>
次に、図11および図12を参照して、2つのショットキー電極(第1電極28および第2電極29)を設けたことによる逆方向リーク電流および順方向電圧の低減の効率化について説明する。
前述したように、本実施形態のショットキーバリアダイオード1では、台形トレンチ17を形成し、さらに台形トレンチ17の底壁20および側壁22にp型層23を形成することにより、単位セル18の表面12における電界強度を弱めることができる。したがって、単位セル18の表面12に分布する電界強度は、絶対値としては逆方向リーク電流の増加を招くものではないが、単位セル18の中央部31と周縁部30との関係のように、相対的に電界強度が高い部分と低い部分とが存在する場合がある。
これにより、逆方向電圧印加時に相対的に高い電界がかかる単位セル18の中央部31では、第1電極28(ポリシリコン)とSiCエピタキシャル層6との間の高いショットキー障壁(第2ショットキー障壁)により逆方向リーク電流を抑制することができる。
<SiCエピタキシャル層の不純物濃度>
次に、図13を参照して、SiC基板2およびSiCエピタキシャル層6の不純物濃度の大きさについて説明する。
図13に示すように、SiC基板2およびSiCエピタキシャル層6は、いずれもn型不純物を含有するn型SiCからなる。それらの不純物濃度の大小関係は、SiC基板2>バッファ層7>ドリフト層8〜10である。
ドリフト層8〜10の濃度は、ベースドリフト層8、低抵抗ドリフト層9および表面ドリフト層10それぞれの界面を境に段階的に変化している。つまり、各界面に対して表面12側の層と裏面11側の層との間に濃度差がある。
低抵抗ドリフト層9の濃度は、ベースドリフト層8の濃度よりも高く、たとえば、その厚さ方向に沿って、5×1015〜5×1017cm−3で一定である。なお、低抵抗ドリフト層9の濃度は、図13の破線で示すように、SiCエピタキシャル層6の裏面11から表面へ向かうにしたがって、約3×1017cm−3から約5×1015cm−3まで連続的に減少していてもよい。
図1(a)(b)および図2に示すように、ストライプ状の台形トレンチ17で区画された単位セル18(ラインセル)では電流を流すことができる領域(電流経路)が台形トレンチ17のピッチPの幅に制約されるので、SiCエピタキシャル層6における単位セル18を形成する部分の不純物濃度が低いと、単位セル18の抵抗値が高くなるおそれがある。
<トレンチおよびp型層の形成方法>
次に、図14A〜図14Dを参照して、図2に示す台形トレンチ17を一例として挙げて、台形トレンチ17およびp型層23の形成方法について説明する。
まず、図14Aに示すように、SiC基板2の上に、バッファ層7、ベースドリフト層8、低抵抗ドリフト層9および表面ドリフト層10をこの順にエピタキシャル成長させる。
また、ハードマスク35の厚さを適切に調整することにより、設計通りの台形トレンチ17を精密に形成できるとともに、イオン注入の際には、台形トレンチ17以外の箇所(たとえば、単位セル18の頂部)に不純物が注入されることを防止することができる。よって、アノード電極27とのショットキー接合のためのn型の領域を確保することができる。
<トレンチとSiC結晶構造との関係>
次に、図15を参照して、トレンチとSiC結晶構造との関係について説明する。
本実施形態のショットキーバリアダイオード1に使用されるSiCには、結晶構造の違いにより、3C−SiC、4H−SiC、6H−SiCなどの種類がある。
これらのうち、4H−SiCの結晶構造は、六方晶系で近似することができ、1つのシリコン原子に対して4つの炭素原子が結合している。4つの炭素原子は、シリコン原子を中央に配置した正四面体の4つの頂点に位置している。これらの4つの炭素原子は、1つのシリコン原子が炭素原子に対して[0001]軸方向に位置し、他の3つの炭素原子がシリコン原子族原子に対して[000−1]軸側に位置している。
[1−100]軸を法線とする六角柱の側面がそれぞれ(1−100)面であり、隣り合わない一対の稜線を通り、[11−20]軸を法線とする面が(11−20)面である。これらは、(0001)面および(000−1)面に対して直角な結晶面である。
<トレンチの断面形状の変形例>
次に、図16(a)〜(f)を参照して、台形トレンチ17の断面形状の変形例について説明する。
台形トレンチ17では、たとえば、図16(a)に示すように、コンタクト部26が、p型層23と同様に、底壁20からエッジ部24を経て台形トレンチ17の開口端に至るまで、台形トレンチ17の内面全体にわたって形成されていてもよい。
たとえば、台形トレンチは、側面21の全部が傾斜している必要はなく、たとえば、図16(b)(c)の選択的台形トレンチ41のように、側面39の一部(側面39の下部42)が選択的に台形(テーパ形状)になっており、側面39の他の部分(側面39の上部43)は、底面19に対して90°の角度を形成していてもよい。この場合、p型層23は、選択的台形トレンチ41の底壁20からエッジ部24を経て側面39の下部42(台形部)のみに形成されている。また、コンタクト部26は、図16(b)に示すように、選択的台形トレンチ41の底壁20のみに形成されていてもよいし、図16(c)に示すように、p型層23と同様に、選択的台形トレンチ41の底壁20からエッジ部24を経て側面39の下部42の上端に至るまで形成されていてもよい。
また、図16(b)の選択的台形トレンチ41は、たとえば、図17A〜図17Dに示す工程により形成することができる。
次に、図17Bに示すように、たとえばCVD法により、SiCエピタキシャル層6の表面12にSiO2からなるハードマスク38を形成する。ハードマスク38の厚さは、好ましくは、1μm〜3μmである。続いて、公知のフォトリソグラフィ技術およびエッチング技術により、ハードマスク38をパターニングする。このとき、ハードマスク38の厚さに対してエッチング量(厚さ)が1.5〜2倍となるようにエッチング条件を設定する。具体的には、ハードマスク38の厚さが1μm〜3μmである場合には、エッチング量が1.5μm〜6μmとなるように、エッチング条件(ガス種、エッチング温度)を設定する。このエッチング条件は、図14Bの工程でハードマスク35をエッチングしたときに設定されたオーバーエッチング量よりも多いオーバーエッチング量を設定する条件である。これにより、エッチング後のハードマスク38の開口40の側壁下部に、SiCエピタキシャル層6の表面12に対して角度θ1(91°〜100°>90°)で傾斜し、エッジ部37(図14B参照)よりも小さいエッジ部44を形成することができる。
まず、図18Aに示すように、SiC基板2の上に、バッファ層7、ベースドリフト層8、低抵抗ドリフト層9および表面ドリフト層10をこの順にエピタキシャル成長させる。
以上、本発明の実施形態を説明したが、本発明は、他の形態で実施することもできる。
たとえば、前述のショットキーバリアダイオード1の各半導体部分の導電型を反転した構成が採用されてもよい。たとえば、ショットキーバリアダイオード1において、p型の部分がn型であり、n型の部分がp型であってもよい。
具体的には、図20の絶縁膜57は、その上面がSiCエピタキシャル層6の表面12と面一になるように、台形トレンチ17の底面19から台形トレンチ17の開口端まで埋め込まれており、底面19および側面21の全面に接している。
図22の絶縁膜59は、台形トレンチ17の内部に空間を残すように、底壁20からエッジ部24を経て台形トレンチ17の開口端に至る薄膜状に形成されている。これにより、台形トレンチ17の底面19および側面21の全面に接している。
図24の絶縁膜61は、台形トレンチ17の内部に空間を残すように、底壁20からエッジ部24を経て、側面21における台形トレンチ17の深さ方向中間部に至る薄膜状に形成されている。これにより、台形トレンチ17の底面19の全面および側面21の一部に接している。
さらに図25の例においては、n型の表面ドリフト層10の一部をp型化したp型表面層10´に置き換え、当該p型表面層10´にアノード電極27を接触させることにより、p型表面層10´およびn型SiCエピタキシャル層6(低抵抗ドリフト層9)によって構成されるpnダイオード62を設けることができる。これにより、図10で示したpnダイオード25と同様の効果を得ることができる。また、図26の例においては、p型層23が台形トレンチ17の深さ方向中間部までしか形成されておらず、当該p型層23は、絶縁膜58によって覆い隠されている。この場合でも図25と同様に、n型の表面ドリフト層10の一部をp型化したp型表面層10´に置き換え、当該p型表面層10´にアノード電極27を接触させることにより、pnダイオード62を設けることができる。
また、p型層23を形成するためのp型不純物としては、たとえば、Al(アルミニウム)などを使用することもできる。
2 SiC基板
6 SiCエピタキシャル層
7 バッファ層
8 ベースドリフト層
9 低抵抗ドリフト層
10 表面ドリフト層
11 (SiCエピタキシャル層の)裏面
12 (SiCエピタキシャル層の)表面
17 台形トレンチ
18 単位セル
19 (トレンチの)底面
20 (トレンチの)底壁
21 (トレンチの)側面
22 (トレンチの)側壁
23 p型層
24 エッジ部
25 pnダイオード
26 コンタクト部
27 アノード電極
28 第1電極
29 第2電極
30 (単位セルの)周縁部
31 (単位セルの)中央部
41 選択的台形トレンチ
42 (選択的台形トレンチの)側面の下部
43 (選択的台形トレンチの)側面の上部
45 U字トレンチ
55 格子トレンチ
56 単位セル
Claims (16)
- 表面および裏面を有し、前記表面側に側壁および底壁を有するトレンチが形成されたワイドバンドギャップ半導体からなる第1導電型の半導体層と、
前記半導体層の前記表面に接するように形成されたショットキー電極と、
前記トレンチの前記底壁、および当該底壁の前記エッジ部に選択的に形成された第2導電型の電界緩和部とを含み、
前記電界緩和部は、前記トレンチの前記底壁の前記エッジ部と前記トレンチ前記側壁との間に跨って形成されており、
前記トレンチの底壁のエッジ部は、下記式(1)を満たす曲率半径Rを有する、半導体装置。
0.01L<R<10L・・・(1)
(ただし、式(1)において、Lはトレンチの幅方向に沿って対向するエッジ部間の直線距離を示している。) - 前記電界緩和部は、前記トレンチの前記側壁に沿って前記トレンチの開口端に至るように形成されている、請求項1に記載の半導体装置。
- 前記トレンチは、平面形状の前記底壁および当該平面形状の底壁に対して90°を超える角度で傾斜した前記側壁を有するテーパトレンチを含む、請求項1または2に記載の半導体装置。
- 前記ショットキー電極は、前記トレンチに埋め込まれるように形成されており、
前記電界緩和部は、前記トレンチの前記底壁に、前記トレンチに埋め込まれた前記ショットキー電極との間にオーミック接合を形成するコンタクト部を有する、請求項1〜3のいずれか一項に記載の半導体装置。 - 前記半導体層は、逆方向電圧印加時に第1電界がかかる第1導電型の第1部分および当該第1電界に対して相対的に高い第2電界がかかる第1導電型の第2部分を、前記電界緩和部とは異なる部分に有しており、
前記ショットキー電極は、前記第1部分との間に第1ショットキー障壁を形成する第1電極と、前記第2部分との間に前記第1ショットキー障壁に対して相対的に高い第2ショットキー障壁を形成する第2電極とを含む、請求項1〜4のいずれか一項に記載の半導体装置。 - 前記半導体層の第1部分は、前記半導体層の表層部における前記トレンチの前記開口端の周縁部に形成され、前記半導体層の第2部分は、前記半導体層の前記表層部において前記周縁部と隣り合う部分に形成されている、請求項2に係る請求項5に記載の半導体装置。
- 前記半導体層は、第1不純物濃度を有するベースドリフト層と、前記ベースドリフト層上に形成され、前記第1不純物濃度に対して相対的に高い第2不純物濃度を有する低抵抗ドリフト層とを含み、
前記トレンチは、その最深部が前記低抵抗ドリフト層に達するように形成され、前記半導体層の一部を単位セルとして区画している、請求項1〜6のいずれか一項に記載の半導体装置。 - 前記ベースドリフト層の前記第1不純物濃度は、前記半導体層の前記裏面から前記表面へ向かうにしたがって減少している、請求項7に記載の半導体装置。
- 前記低抵抗ドリフト層の前記第2不純物濃度は、前記半導体層の前記裏面から前記表面へ向かうにしたがって一定である、請求項7または8に記載の半導体装置。
- 前記低抵抗ドリフト層の前記第2不純物濃度は、前記半導体層の前記裏面から前記表面へ向かうにしたがって減少している、請求項7または8に記載の半導体装置。
- 前記半導体層は、前記低抵抗ドリフト層上に形成され、前記第2不純物濃度に対して相対的に低い第3不純物濃度を有する表面ドリフト層をさらに含む、請求項7〜10のいずれか一項に記載の半導体装置。
- 前記半導体層を支持するワイドバンドギャップ半導体からなる第1導電型の基板をさらに含み、
前記半導体層は、前記基板上に形成され、前記第1不純物濃度に対して相対的に高い第4不純物濃度を有するバッファ層をさらに含む、請求項7〜11のいずれか一項に記載の半導体装置。 - 前記トレンチは、ストライプ状に形成されたストライプトレンチを含む、請求項1〜12のいずれか一項に記載の半導体装置。
- 前記トレンチは、格子状に形成された格子トレンチを含む、請求項1〜13のいずれか一項に記載の半導体装置。
- 前記ワイドバンドギャップ半導体の絶縁破壊電界が1MV/cmよりも大きい、請求項1〜14のいずれか一項に記載の半導体装置。
- 前記ワイドバンドギャップ半導体が、SiC、GaN、AlNまたはダイヤモンドである、請求項1〜15のいずれか一項に記載の半導体装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011143179A JP5881322B2 (ja) | 2011-04-06 | 2011-06-28 | 半導体装置 |
CN201210099889.4A CN102738213B (zh) | 2011-04-06 | 2012-04-06 | 半导体装置 |
US13/441,202 US8633560B2 (en) | 2011-04-06 | 2012-04-06 | Semiconductor device |
US14/158,381 US9252210B2 (en) | 2011-04-06 | 2014-01-17 | Semiconductor device |
US14/988,636 US9685503B2 (en) | 2011-04-06 | 2016-01-05 | Semiconductor device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011084715 | 2011-04-06 | ||
JP2011084715 | 2011-04-06 | ||
JP2011143179A JP5881322B2 (ja) | 2011-04-06 | 2011-06-28 | 半導体装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012227501A JP2012227501A (ja) | 2012-11-15 |
JP5881322B2 true JP5881322B2 (ja) | 2016-03-09 |
Family
ID=46965395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011143179A Active JP5881322B2 (ja) | 2011-04-06 | 2011-06-28 | 半導体装置 |
Country Status (3)
Country | Link |
---|---|
US (3) | US8633560B2 (ja) |
JP (1) | JP5881322B2 (ja) |
CN (1) | CN102738213B (ja) |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013030618A (ja) | 2011-07-28 | 2013-02-07 | Rohm Co Ltd | 半導体装置 |
JP2014053392A (ja) * | 2012-09-06 | 2014-03-20 | Sumitomo Electric Ind Ltd | ワイドギャップ半導体装置およびその製造方法 |
JP2015032665A (ja) * | 2013-08-01 | 2015-02-16 | 住友電気工業株式会社 | ワイドバンドギャップ半導体装置 |
US9331197B2 (en) | 2013-08-08 | 2016-05-03 | Cree, Inc. | Vertical power transistor device |
US9029974B2 (en) | 2013-09-11 | 2015-05-12 | Infineon Technologies Ag | Semiconductor device, junction field effect transistor and vertical field effect transistor |
KR101490937B1 (ko) * | 2013-09-13 | 2015-02-06 | 현대자동차 주식회사 | 쇼트키 배리어 다이오드 및 그 제조 방법 |
US9318597B2 (en) | 2013-09-20 | 2016-04-19 | Cree, Inc. | Layout configurations for integrating schottky contacts into a power transistor device |
US10600903B2 (en) | 2013-09-20 | 2020-03-24 | Cree, Inc. | Semiconductor device including a power transistor device and bypass diode |
US10868169B2 (en) | 2013-09-20 | 2020-12-15 | Cree, Inc. | Monolithically integrated vertical power transistor and bypass diode |
US20150084063A1 (en) * | 2013-09-20 | 2015-03-26 | Cree, Inc. | Semiconductor device with a current spreading layer |
KR102145909B1 (ko) * | 2013-12-19 | 2020-08-19 | 엘지이노텍 주식회사 | 전력 반도체 소자 및 이를 포함하는 전력 반도체 회로 |
JP6757728B2 (ja) * | 2014-12-08 | 2020-09-23 | アーベーベー・シュバイツ・アーゲーABB Schweiz AG | ワイドバンドギャップジャンクションバリアショットキーダイオードの製造方法。 |
EP3067935A1 (en) * | 2015-03-10 | 2016-09-14 | ABB Technology AG | Power semiconductor rectifier with controllable on-state voltage |
US9741873B2 (en) | 2015-03-27 | 2017-08-22 | Fairchild Semiconductor Corporation | Avalanche-rugged silicon carbide (SiC) power Schottky rectifier |
US10026805B2 (en) | 2015-03-27 | 2018-07-17 | Farichild Semiconductor Corporation | Avalanche-rugged silicon carbide (SiC) power device |
CN106816372A (zh) * | 2015-11-30 | 2017-06-09 | 北京北方微电子基地设备工艺研究中心有限责任公司 | 一种碳化硅衬底的刻蚀方法 |
JP6505625B2 (ja) * | 2016-03-16 | 2019-04-24 | 株式会社東芝 | 半導体装置 |
CN106784023B (zh) * | 2016-12-27 | 2019-09-20 | 杭州易正科技有限公司 | 一种结势垒肖特基二极管 |
CN107195693A (zh) * | 2017-05-12 | 2017-09-22 | 广微集成技术(深圳)有限公司 | 半导体器件及制造方法 |
SE541290C2 (en) | 2017-09-15 | 2019-06-11 | Ascatron Ab | A method for manufacturing a grid |
SE541466C2 (en) | 2017-09-15 | 2019-10-08 | Ascatron Ab | A concept for silicon carbide power devices |
SE541291C2 (en) | 2017-09-15 | 2019-06-11 | Ascatron Ab | Feeder design with high current capability |
SE541402C2 (en) | 2017-09-15 | 2019-09-17 | Ascatron Ab | Integration of a schottky diode with a mosfet |
SE541571C2 (en) | 2017-09-15 | 2019-11-05 | Ascatron Ab | A double grid structure |
CN108198866A (zh) * | 2017-12-14 | 2018-06-22 | 北京世纪金光半导体有限公司 | 一种沟槽型低势垒肖特基二极管及其制备方法 |
US20220181504A1 (en) | 2019-03-29 | 2022-06-09 | Kyocera Corporation | Semiconductor device and production method for semiconductor device |
US20220149174A1 (en) * | 2019-03-29 | 2022-05-12 | Kyocera Corporation | Semiconductor device and method for manufacturing semiconductor device |
IT201900007217A1 (it) * | 2019-05-24 | 2020-11-24 | Consiglio Nazionale Ricerche | Dispositivo elettronico basato su sic di tipo migliorato e metodo di fabbricazione dello stesso |
CN111081778A (zh) * | 2019-11-28 | 2020-04-28 | 深圳第三代半导体研究院 | 一种碳化硅沟槽型mosfet器件及其制造方法 |
CN113990955A (zh) * | 2020-07-27 | 2022-01-28 | 意法半导体股份有限公司 | 具有减小的电压降的碳化硅二极管以及其制造方法 |
US11677023B2 (en) * | 2021-05-04 | 2023-06-13 | Infineon Technologies Austria Ag | Semiconductor device |
JPWO2023026803A1 (ja) * | 2021-08-25 | 2023-03-02 | ||
CN115117149B (zh) * | 2022-08-23 | 2022-11-29 | 深圳芯能半导体技术有限公司 | 一种基于湿法刻蚀工艺的快恢复二极管及其制备方法 |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61154067A (ja) * | 1984-12-26 | 1986-07-12 | Nec Corp | シヨツトキバリアダイオ−ド |
JPH03257870A (ja) * | 1990-03-07 | 1991-11-18 | Shindengen Electric Mfg Co Ltd | ショットキバリアダイオード |
US6252258B1 (en) * | 1999-08-10 | 2001-06-26 | Rockwell Science Center Llc | High power rectifier |
US7186609B2 (en) * | 1999-12-30 | 2007-03-06 | Siliconix Incorporated | Method of fabricating trench junction barrier rectifier |
JP2002009082A (ja) * | 2000-06-21 | 2002-01-11 | Fuji Electric Co Ltd | 半導体装置および半導体装置の製造方法 |
JP3691736B2 (ja) * | 2000-07-31 | 2005-09-07 | 新電元工業株式会社 | 半導体装置 |
SE0101848D0 (sv) * | 2001-05-25 | 2001-05-25 | Abb Research Ltd | A method concerning a junction barrier Schottky diode, such a diode and use thereof |
US6855970B2 (en) * | 2002-03-25 | 2005-02-15 | Kabushiki Kaisha Toshiba | High-breakdown-voltage semiconductor device |
JP2005079339A (ja) | 2003-08-29 | 2005-03-24 | National Institute Of Advanced Industrial & Technology | 半導体装置、およびその半導体装置を用いた電力変換器、駆動用インバータ、汎用インバータ、大電力高周波通信機器 |
JP4610207B2 (ja) * | 2004-02-24 | 2011-01-12 | 三洋電機株式会社 | 半導体装置およびその製造方法 |
US7352036B2 (en) * | 2004-08-03 | 2008-04-01 | Fairchild Semiconductor Corporation | Semiconductor power device having a top-side drain using a sinker trench |
US20060076639A1 (en) * | 2004-10-13 | 2006-04-13 | Lypen William J | Schottky diodes and methods of making the same |
JP2006310508A (ja) * | 2005-04-28 | 2006-11-09 | Sanyo Electric Co Ltd | 半導体装置およびその製造方法 |
JP2006339508A (ja) * | 2005-06-03 | 2006-12-14 | Sumitomo Electric Ind Ltd | 半導体装置およびその製造方法 |
JP2006352028A (ja) * | 2005-06-20 | 2006-12-28 | Sumitomo Electric Ind Ltd | 整流素子およびその製造方法 |
JP2007036052A (ja) * | 2005-07-28 | 2007-02-08 | Toshiba Corp | 半導体整流素子 |
KR100761825B1 (ko) * | 2005-10-25 | 2007-09-28 | 삼성전자주식회사 | 횡형 디모스 (ldmos) 트랜지스터 및 그 제조 방법 |
WO2007075996A2 (en) * | 2005-12-27 | 2007-07-05 | Qspeed Semiconductor Inc. | Apparatus and method for a fast recovery rectifier structure |
US8222649B2 (en) * | 2006-02-07 | 2012-07-17 | Mitsubishi Electric Corporation | Semiconductor device and method of manufacturing the same |
US8154073B2 (en) * | 2006-07-14 | 2012-04-10 | Denso Corporation | Semiconductor device |
JP5101985B2 (ja) * | 2007-10-23 | 2012-12-19 | 株式会社日立製作所 | ジャンクションバリアショットキーダイオード |
JP2009177028A (ja) * | 2008-01-25 | 2009-08-06 | Toshiba Corp | 半導体装置 |
US8878292B2 (en) * | 2008-03-02 | 2014-11-04 | Alpha And Omega Semiconductor Incorporated | Self-aligned slotted accumulation-mode field effect transistor (AccuFET) structure and method |
US8232558B2 (en) * | 2008-05-21 | 2012-07-31 | Cree, Inc. | Junction barrier Schottky diodes with current surge capability |
CN101609801B (zh) * | 2009-07-03 | 2011-05-25 | 英属维京群岛商节能元件股份有限公司 | 沟槽式肖特基二极管及其制作方法 |
CN102754213B (zh) * | 2010-02-23 | 2015-08-05 | 菅原良孝 | 半导体装置 |
JP2011009797A (ja) | 2010-10-15 | 2011-01-13 | Sumitomo Electric Ind Ltd | ショットキーダイオードを有する半導体装置 |
JP5472462B2 (ja) * | 2010-11-10 | 2014-04-16 | トヨタ自動車株式会社 | 半導体装置の製造方法 |
-
2011
- 2011-06-28 JP JP2011143179A patent/JP5881322B2/ja active Active
-
2012
- 2012-04-06 CN CN201210099889.4A patent/CN102738213B/zh active Active
- 2012-04-06 US US13/441,202 patent/US8633560B2/en active Active
-
2014
- 2014-01-17 US US14/158,381 patent/US9252210B2/en active Active
-
2016
- 2016-01-05 US US14/988,636 patent/US9685503B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US9252210B2 (en) | 2016-02-02 |
CN102738213A (zh) | 2012-10-17 |
CN102738213B (zh) | 2017-04-12 |
US9685503B2 (en) | 2017-06-20 |
US8633560B2 (en) | 2014-01-21 |
US20140131738A1 (en) | 2014-05-15 |
US20160181356A1 (en) | 2016-06-23 |
JP2012227501A (ja) | 2012-11-15 |
US20120256195A1 (en) | 2012-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5881322B2 (ja) | 半導体装置 | |
US10964825B2 (en) | Semiconductor device | |
JP6529567B2 (ja) | 半導体装置 | |
JP6090763B2 (ja) | 半導体装置 | |
JP6844163B2 (ja) | 炭化珪素半導体装置 | |
WO2015060441A1 (ja) | 半導体装置および半導体パッケージ | |
JP5999678B2 (ja) | 半導体装置および半導体装置の製造方法 | |
JP2024069415A (ja) | ショットキーバリアダイオード | |
JP2017063237A (ja) | 半導体装置 | |
JP6667584B2 (ja) | ショットキーバリアダイオード |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140625 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150325 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150326 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150525 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160114 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160202 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5881322 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |