JP3636345B2 - 半導体素子および半導体素子の製造方法 - Google Patents

半導体素子および半導体素子の製造方法 Download PDF

Info

Publication number
JP3636345B2
JP3636345B2 JP2000076691A JP2000076691A JP3636345B2 JP 3636345 B2 JP3636345 B2 JP 3636345B2 JP 2000076691 A JP2000076691 A JP 2000076691A JP 2000076691 A JP2000076691 A JP 2000076691A JP 3636345 B2 JP3636345 B2 JP 3636345B2
Authority
JP
Japan
Prior art keywords
layer
conductivity type
region
semiconductor device
resist mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000076691A
Other languages
English (en)
Other versions
JP2001267568A (ja
Inventor
進 岩本
龍彦 藤平
勝典 上野
泰彦 大西
高広 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2000076691A priority Critical patent/JP3636345B2/ja
Priority to DE10112463A priority patent/DE10112463B4/de
Priority to US09/811,727 priority patent/US6677643B2/en
Publication of JP2001267568A publication Critical patent/JP2001267568A/ja
Application granted granted Critical
Publication of JP3636345B2 publication Critical patent/JP3636345B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/266Bombardment with radiation with high-energy radiation producing ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Thyristors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、第一と第二の主面間に、低抵抗層と、第一導電型領域と第二導電型領域とを交互に配置したpn層とを備える半導体素子およびその製造方法に関し、特に、MOSFET(絶縁ゲート型電界効果トランジスタ)、IGBT(絶縁ゲート型バイポーラトランジスタ)、バイポーラトランジスタ、ダイオード等に適用可能な高耐圧化と大電流容量化を両立させるための縦型半導体素子およびその製造方法に関するものである。
【0002】
【従来の技術】
一般に半導体素子は片面に電極部を持つ横型半導体素子と両面に電極部を持つ縦型半導体素子に大別できる。縦型半導体素子は、オン時にドリフト電流が流れる方向と、オフ時の逆バイアス電圧による空乏層の延びる方向とが同じである。例えば、図11は通常のプレーナー型のnチャネル縦型MOSFETの断面図である。この縦型MOSFETはドレイン電極18が導電接触した低抵抗のn+ドレイン層11の上に形成された高抵抗のn-ドリフト層12と、n-ドリフト層12の表面層に選択的に形成されたpベース領域13と、そのpベース領域13内に選択的に形成された高不純物濃度のn+ソース領域14と、n+ソース領域14とn-ドリフト層12とに挟まれたpベース領域13の表面上にゲート絶縁膜15を介して設けられたゲート電極層16と、n+ソース領域14とpベース領域13との表面に共通に接触して設けられたソース電極17と、n+ドレイン層11の裏面側に設けられたドレイン電極18とを有する。
【0003】
このような縦型半導体素子において、高抵抗のn-ドリフト層12の部分はMOSFETがオン状態のときは縦方向にドリフト電流を流す領域として働き、オフ状態のときには空乏化して耐圧を高める。この高抵抗のn-ドリフト層12の電流経路を短くすることは、ドリフト抵抗が低くなるのでMOSFETの実質的なオン抵抗(ドレイン−ソース抵抗)を下げる効果に繋がるものの、逆にpベース領域13とn-ドリフト層12との間のpn接合から進行するドレイン−ベース間の空乏層が広がる幅を狭くすることとなり、シリコンの最大(臨界)電界強度に速く達する構造とすることとなって、耐圧(ドレイン−ソース電圧)を低下させることとなる。逆に耐圧の高い半導体装置では、n-ドリフト層12が厚くなるため必然的にオン抵抗が大きくなり、損失が増すことになる。すなわちオン抵抗(電流容量)と耐圧間にはトレードオフ関係がある。
【0004】
このトレードオフ関係はIGBT、バイポーラトランジスタ、ダイオード等の半導体素子においても同様に成立することが知られている。また、この問題は、オン時にドリフト電流が流れる方向と、オフ時の逆バイアスによる空乏層の延びる方向とが異なる横型半導体についても共通である。
【0005】
この問題に対する解決策として、ドリフト層を、不純物濃度を高めたn型の領域とp型の領域とを交互に積層した並列pn層で構成し、オフ状態のときは、空乏化して耐圧を負担するようにした構造の半導体装置がEP0053854、USP5216275、USP5438215および特開平9−266811号公報に開示されている。
【0006】
図12はUSP5216275に開示された半導体装置の一例である縦型MOSFETの部分断面図である。図11との違いはドリフト層22が単一層ではなく、nドリフト領域22aとpドリフト領域22bとからなる並列pn層とされている点である。なお、23はpベース領域、24はn+ソース領域、26はゲート電極、27はソース電極、28はドレン電極である。
【0007】
このドリフト層22はn+ドレイン層21を基板としてエピタキシャル法により高抵抗のn型層を成長させた後、選択的にn+ドレイン層21に達するトレンチをエッチングし、nドリフト領域22aを形成した後、さらにトレンチ内にエピタキシャル法によりp型層を成長させて、pドリフト領域22bを形成してなるものである。なお、本発明者らは、オン状態では電流を流すとともに、オフ状態では空乏化する並列pn層からなるドリフト層を備える半導体素子を超接合半導体素子と称することとしているので、以下、このような半導体素子を本明細書において超接合半導体素子ということとする。
【0008】
【発明が解決しようとする課題】
USP5216275におけるディメンジョンの具体的な記述としては、降伏電圧をVBとするとき、ドリフト層22の厚さとして0.024VB 1.2[μm]、nドリフト領域22aとpドリフト領域22bとが同じ幅bをもち、同じ不純物濃度であると仮定すると、不純物濃度が7.2×1016B -0.2/b[cm-3]としている。仮にVB=800V、b=5μmと仮定すると、ドリフト層22の厚さは73μm、不純物濃度は1.9×1016cm-3となる。単一層の場合では、不純物濃度は2×1014[cm-3]程度であるから、確かにオン抵抗は低減されるが、このような幅が狭く、深さの深い(すなわちアスペクト比の大きい)トレンチ内に良質の半導体層を埋め込むエピタキシャル技術は現在のところ極めて困難である。
【0009】
オン抵抗と耐圧とのトレードオフの問題は、横型半導体素子についても共通である。上に挙げたほかの公報、EP00535854、USP5438215および特開平9−266311号公報においては、横型の超接合半導体素子も記載されており、横型、縦型共通の製造方法として、選択的なエッチングおよびエピタキシャル法による埋め込みによる方法が開示されている。横型の超接合半導体素子の場合には、薄いエピタキシャル層を積層していくので、選択的なエッチングおよびエピタキシャル法による埋め込みはそれほど困難ではない。
【0010】
しかし、縦型の超接合半導体素子に関して、選択的なエッチングおよびエピタキシャル法による埋め込みはUSP5216275と同じ困難を抱えている。特開平9−266311号公報においてはまた、中性子線等による核変換法が記載されているが、装置が大がかりになり手軽に適用するわけにはいかない。
【0011】
また、従来の超接合半導体素子では超接合半導体基体の微細化に伴って、表面構造も微細化しなければならない。しかしながら、超接合半導体基体の微細化に伴う表面構造の微細化を行った場合、表面構造が非常に微細になり量産性が低下する。また、表面構造の変更にはコストがかかる。
【0012】
本発明は、以上のような状況に鑑みてなされたものであり、本発明の目的は、オン抵抗と耐圧とのトレードオフ関係を大幅に緩和させて、高耐圧でありながらオン抵抗の低減による電流容量の増大が可能な半導体素子であって、簡易で量産性良く製造することができる半導体素子およびその製造方法を提供することにある。
【0013】
【課題を解決するための手段】
上述した課題を解決するため、本発明は、第一と第二の主面間に、低抵抗層と、第一導電型領域と第二導電型領域とを平面的に見て交互に配置したpn層とを備える半導体素子において、前記pn層の第一導電型領域と第二導電型領域の配置間隔が部分的に異なっていることを特徴とするものである。
【0014】
また、本発明に係る半導体素子において、前記pn層の前記配置間隔が異なる部分の境界面は第一の主面に対して平行な面を有することを特徴とするものである。
【0015】
さらに、本発明に係る半導体素子において、前記pn層は配置間隔が広い第一の部分と、配置間隔が第一の部分より狭い第二の部分を有し、第一の部分を第一の主面側に配置したことを特徴とするものである。
【0016】
また、本発明に係る半導体素子において、前記pn層の前記配置間隔が異なる部分の境界面は第一の主面に対して垂直な面を有することを特徴とするものである。
【0017】
さらに、本発明に係る半導体素子において、前記pn層の前記配置間隔が異なる部分の境界においては、互いに同一の導電型領域が接続されていることを特徴とするものである。
【0018】
また、本発明に係る半導体素子において、前記配置間隔が異なるそれぞれの部分においては、各導電型領域の配置形状が平面的に見て異なることを特徴とするものである。
【0019】
以上のような構成によれば、pn層の第一主面側の第一導電型領域と第二導電型領域の配置間隔を、pn層の第二主面側における第一導電型領域と第二導電型領域の配置間隔と変えることによって、表面構造は微細化を伴うことなく低オン抵抗化が図れる。なお、配置間隔が異なる境界は第一主面に対して垂直でも表面構造は微細化を伴うことなく低オン抵抗化が図れる。従って、上述したような超接合半導体素子におけるpn層を有する半導体基体の微細化のみで低オン抵抗化が実現できるため、量産時のコスト削減が実現できる。
【0020】
また、本発明に係る半導体素子の製造方法は、第一と第二の主面間に、低抵抗層と、第一導電型領域と第二導電型領域とを平面的に見て交互に配置したpn層とを備える半導体素子の製造方法において、エピタキシャル層を形成する第1工程と、該エピタキシャル層に選択的に、且つ交互に第一導電型不純物イオン、および第二導電型不純物イオンを注入する第2工程とを所定回数繰り返す工程を含むことにより、第一導電型領域と第二導電型領域とを平面的に見て交互に配置すると共に第一導電型領域と第二導電型領域の配置間隔が部分的に異なる前記pn層を形成するようにしたことを特徴とするものである。なお、実施の形態においてはエピタキシャル層の形成を3回以上行う製造方法を示している。
【0021】
このような構成によれば、pn層の第一主面側の第一導電型領域と第二導電型領域の配置間隔を、pn層の第二主面側における第一導電型領域と第二導電型領域の配置間隔と変えることが容易にでき、表面構造は微細化を伴うことなく低オン抵抗化が図れる。従って、上述したような超接合半導体素子のpn層を有する半導体基体の微細化のみで低オン抵抗化が実現できるため、量産時のコスト削減が実現できる。
【0022】
【発明の実施形態】
以下、本発明の実施の形態を、第一と第二の主面に設けられた電極と、第一と第二の主面間に低抵抗層とオン状態では電流が流れ、オフ状態では空乏化する第一導電型領域と第二導電型領域とを交互に配置したpn層からなる半導体基体とを備える超接合半導体素子について説明する。
【0023】
実施の形態1.
図1、図2に第一導電型領域と第二導電型領域の配置間隔が、第一主面側で広くなるストライプ状超接合半導体基体をもつ超接合半導体素子について、イオン注入により作製する場合の作製工程を示す。
【0024】
まず、n型の低抵抗基体1上にn-高抵抗エピタキシャル層2Aを積層する(図1(a))。本実施の形態ではn-高抵抗エピタキシャル層2Aの厚さを4μmとしている。続いて、フォトリソグラフィによりレジストマスク5Aを形成した後、ボロンイオン6を注入し、p型不純物であるボロン原子7を2×1013cm-2のドーズ量で所定の領域に導入する(図1(b))。なお、レジストマスク幅は6μm、イオン注入用レジスト窓の幅は2μmとしている。
【0025】
続いて、レジストマスク5Aの除去後、(図1(b))で示されたレジストマスク5Aを位置的にずらしてなるレジストマスク5Bを形成し、レジストマスク5Aの各幅方向中央部にレジストマスク5Bのイオン注入用レジスト窓の幅方向中央部が位置するように設ける。この場合も、レジストマスク幅は6μm、イオン注入用レジスト窓の幅は2μmとする。そして、リンイオン3を注入し、n型不純物であるリン原子4を2×1013cm-2のドーズ量でイオン注入用レジスト窓から導入する(図1(c))。そして、上記の図1(a)に示したエピタキシャル成長から図1(c)の工程を所定の回数繰り返す(図1(d))。
【0026】
続いて、レジストマスク5Bを除去し、n-高抵抗エピタキシャル層2Bを6μm積層した後、フォトリソグラフィによりレジストマスク5Cを形成して、ボロンイオン6を注入し、p型不純物であるボロン原子7を1×1013cm-2のドーズ量で所定の領域に導入する(図1(e))。このときレジストマスク5Cを形成する幅およびイオン注入用レジスト窓の幅は、共に図1(b)で示した間隔よりも広くなっており、レジストマスク幅は12μm、イオン注入用レジスト窓の幅は4μmである。なお、レジストマスク5Cのイオン注入窓の幅方向中央部は、レジストマスク5Aの1個おきに形成されているイオン注入窓の幅方向中央部に一致している。
【0027】
続いて、レジストマスク5Cの除去後、フォトリソグラフィによりレジストマスク5Dを形成して、リンイオン3を注入し、n型不純物であるリン原子4を1×1013cm-2のドーズ量で所定の領域に導入する(図1(f))。この時レジストマスク5Dを形成する幅およびイオン注入用レジスト窓の幅は、共に図1(e)で示した間隔と同じであり、レジストマスク幅が12μm、イオン注入用レジスト窓の幅が4μmである。なお、レジストマスク5Dはレジストマスク5Cを位置的にずらしてなるパターンに形成され、レジストマスク5Cの各幅方向中央部にレジストマスク5Dのイオン注入用レジスト窓の幅方向中央部が位置するように設けられる。
【0028】
続いて、レジストマスク5Dを除去し、n-高抵抗エピタキシャル層2Cを8μm積層した後(図2(g))、1150℃、20時間の熱処理によってそれぞれの不純物を同時に拡散させて、n型ドリフト領域8aとp型仕切り領域8bを有するpn層を形成する(図2(h))。
【0029】
最後に、このn型ドリフト領域8aとp型仕切り領域8bの表面にnドレイン領域29を形成後、通常のMOSFET作製工程で表面のMOSFETを形成する(図2(i))。即ち、不純物イオンの選択的な注入および熱処理により、表面層にnドレイン領域29を形成し、その後、熱酸化によりゲート絶縁膜25を形成し、減圧CVD法などにより多結晶シリコン膜を堆積し、フォトリソグラフィによりゲート電極層26とする。続けて、選択的なイオン注入および熱処理によって、pベース領域23、n+ ソース領域24、p+ コンタクト領域30を形成する。更に絶縁膜31を堆積し、フォトリソグラフィにより窓開けを行い、アルミニウム合金の堆積、パターン形成によりソース電極27、ドレイン電極28および図示されないゲート電極の形成を経てMOSFETを形成する。
【0030】
実施の形態2.
図3、図4に第一導電型領域と第二導電型領域の配置間隔が、第一主面側で広くなるストライプ状超接合半導体基体をもつ超接合半導体素子について、配置間隔が広くなった第一導電型領域と第二導電型領域を第一主面側に1層もち、かつ第二主面側に配置された超接合基体と直交した超接合半導体素子の作製工程図を示す。
【0031】
実施の形態1と同様に、n型の低抵抗基体上にn-高抵抗エピタキシャル層21A(図3(c)参照)を積層する。本実施の形態ではn-高抵抗エピタキシャル層の厚さを4μmとしている。まず、フォトリソグラフィによりレジストマスク51Aを形成した後、ボロンイオンを注入し、p型不純物であるボロン原子7を2×1013cm-2ドーズ量で所定の領域に導入する(図3(a))。なお、レジストマスク幅は6μm、イオン注入用レジスト窓の幅は2μmとしている。
【0032】
続いて、レジストマスク51Aの除去後、レジストマスク51Aを位置的にずらしてなるレジストマスク51Bを形成し、レジストマスク51Aの各幅方向中央部にレジストマスク51Bのイオン注入用レジスト窓の幅方向中央部が位置するように設ける。そして、リンイオンを注入し、n型不純物であるリン原子4を2×1013cm-2のドーズ量で所定の領域に導入する(図3(b))。この場合も、レジストマスク幅は6μm、イオン注入用レジスト窓の幅は2μmとしている。そして、上記の様に、エピタキシャル成長、ボロンイオン注入(図3(a))、リンイオン注入(図3(b))の工程を所定の回数繰り返す(図3(c))。
【0033】
続いて、レジストマスク51Bを除去し、n-高抵抗エピタキシャル層21B(図4(f)参照)を6μm積層した後、フォトリソグラフィによりレジストマスク51Cを形成して、ボロンイオンを注入し、p型不純物であるボロン原子7を1×1013cm-2のドーズ量で所定の領域に導入する(図3(d))。このとき、レジストマスク51Cは下層のイオン注入領域に対して直交している。また、レジストマスク51Cを形成する幅およびイオン注入用レジスト窓の幅は、共に図3(a)および(b)で示した間隔よりも広くなっており、レジストマスク幅は12μm、イオン注入用レジスト窓の幅は4μmとしている。
【0034】
続いて、レジストマスク51Cの除去後、フォトリソグラフィによりレジストマスク51Dを形成して、リンイオンを注入し、n型不純物であるリン原子4を1×1013cm-2のドーズ量で所定の領域に導入する(図3(e))。このレジストマスク51Dについても、下層のイオン注入領域に対して直交している。また、この時レジストマスク51Dを形成する幅およびイオン注入用レジスト窓の幅は、共に図3(a)および(b)で示した間隔よりも広くなっており、レジストマスクを形成する幅は12μmであり、イオン注入用レジスト窓の幅は4μmとなっている。なお、レジストマスク51Dはレジストマスク51Cを位置的にずらしてなるパターンに形成され、レジストマスク51Cの各幅方向中央部にレジストマスク51Dのイオン注入用レジスト窓の幅方向中央部が位置するように設けられる。
【0035】
続いて、レジストマスク51Dを除去し、n-高抵抗エピタキシャル層21Bを8μm積層した後(図4(f))、1150℃、20時間の熱処理によってそれぞれの不純物を同時に拡散させて、n型ドリフト領域8aとp型仕切り領域8bを有するpn層を形成する(図4(g))。その後、n型ドリフト領域8aとp型仕切り領域8bが広くなった領域に実施の形態1で説明したと同様に、通常のMOSFET作製工程で表面のMOSFETを形成する。
【0036】
実施の形態3.
図5、図6にセル型配置となる超接合半導体基体において、第一導電型領域と第二導電型領域のセル配置間隔が、第一主面側で異なる超接合半導体素子について、配置間隔の広くなった領域を第一主面側に1層もつ超接合半導体素子の作製工程図を示す。
【0037】
まず、実施の形態1と同様に、n型の低抵抗基体上にn-高抵抗エピタキシャル層を積層する。本実施の形態ではn-高抵抗エピタキシャル層を4μmとしている。そして、フォトリソグラフィによりレジストマスク52Aを所定の位置に所定の大きさで形成した後、ボロンイオンを注入し、p型不純物であるボロン原子7を1.2×1014cm-2のドーズ量で所定の領域に導入する(図5(a))。なお、イオン注入用レジスト窓の大きさは2μm角とし、また、イオン注入用レジスト窓の配置間隔は4μmとしている。
【0038】
続いて、レジストマスク52Aを除去し、再度フォトリソグラフィにより図5(a)の工程でボロンを導入した領域にレジストマスク52Bを形成した後、リンイオンを注入し、n型不純物であるリン原子4を4×1013cm-2のドーズ量で導入する(図5(b))。そして、上記に述べたエピタキシャル成長、ボロンイオン注入、リンイオン注入の工程(図5(a)、図5(b))を所定の回数繰り返す(図5(c))。
【0039】
続いて、レジストマスク52Bを除去し、n-高抵抗エピタキシャル層を6μm積層した後、フォトリソグラフィによりレジストマスク52Cを形成して、ボロンイオンを注入し、p型不純物であるボロン原子7を3×1013cm-2のドーズ量で所定の領域に導入する(図5(d))。このとき、イオン注入用レジスト窓の大きさは4μm角とし、また、イオン注入用レジスト窓の配置間隔は8μmとしている。また、イオン注入用レジスト窓は後に述べる拡散時において下層のp領域と接続するように配置される。
【0040】
続いて、レジストマスク52Cの除去後、フォトリソグラフィによりレジストマスク52Dを形成して、リンイオンを注入し、n型不純物であるリン原子4を1×1013cm-2のドーズ量で所定の領域に導入する(図5(e))。このとき、レジストマスク52Dは、先の工程(図5(d))でボロン原子7を導入した領域に形成される。
【0041】
続いて、レジストマスク52Dを除去し、n-高抵抗エピタキシャル層を8μm積層した後、1150℃、20時間の熱処理によってそれぞれの不純物を同時に拡散させて、n型ドリフト領域8aとp型仕切り領域8bを有するpn層を形成する(図6(f))。なお、直線A−A’の断面を図6(g)に示す。その後、配置間隔の広くなった表面領域に実施の形態1で説明したと同様に、通常のMOSFET作製工程で表面のMOSFETを形成する。
【0042】
実施の形態4.
図7、図8に実施の形態3において、第一主面側で配置間隔を広くした領域の形状を格子状からストライプ状にした場合の超接合半導体素子の作製工程図を示す。
まず、実施の形態1と同様に、n型の低抵抗基体上にn-高抵抗エピタキシャル層を積層する。本実施の形態ではn-高抵抗エピタキシャル層を4μmとしている。続いて、フォトリソグラフィによりレジストマスク53Aを所定の位置に所定の大きさで形成した後、ボロンイオンを注入し、p型不純物であるボロン原子7を1.2×1014cm-2のドーズ量で所定の領域に導入する(図7(a))。なお、イオン注入用レジスト窓の大きさは4μm角とし、また、イオン注入用レジスト窓の配置間隔は8μmとしている。
【0043】
続いて、レジストマスク53Aを除去し、再度フォトリソグラフィにより、先の工程(図7(a))においてボロン原子7を導入した領域にレジストマスク53Bを形成した後、リンイオンを注入し、n型不純物であるリン原子4を4×1013cm-2のドーズ量で導入する(図7(b))。そして、上記に述べたエピタキシャル成長、ボロンイオン注入、リンイオン注入の工程を所定の回数繰り返す(図7(c))。
【0044】
続いて、レジストマスク53Bを除去し、n-高抵抗エピタキシャル層を6μm積層した後、フォトリソグラフィによりレジストマスク53Cを形成して、ボロンイオンを注入し、p型不純物であるボロン原子7を2×1013cm-2のドーズ量で所定の領域に導入する(図7(d))。このとき、レジストマスク53Cの形状は実施の形態3のものと異なり、ストライプ状である。また、イオン注入用レジスト窓の幅は8μmとし、イオン注入用レジスト窓の配置間隔は16μmとしている。さらに、イオン注入用レジスト窓は後に述べる拡散時において下層のp領域と接続するように配置される。
【0045】
続いて、レジストマスク53Cを除去し、再度フォトリソグラフィによりレジストマスク53Dを形成した後、リンイオンを注入し、n型不純物であるリン原子4を2×1013cm-2のドーズ量で所定の領域に導入する(図7(e))。このレジストマスク53Dについても、形状は実施の形態3と異なり、ストライプ状である。そして、イオン注入用レジスト窓の幅は8μmとし、イオン注入用レジスト窓の配置間隔は16μmとしている。この場合、レジストマスク53Dは、レジストマスク53Cのマスク幅部分の位置がレジストマスク53Dのイオン注入用レジスト窓の位置に一致するよう設けられる。また、このレジストマスク53Dは、そのイオン注入用レジスト窓が後に述べる拡散時において下層のn領域と接続するように配置される。
【0046】
続いて、レジストマスク53Dを除去し、n-高抵抗エピタキシャル層を8μm積層した後、1150℃、20時間の熱処理によってそれぞれの不純物を同時に拡散させて、n型ドリフト領域8aとp型仕切り領域8bを形成する(図8(f))。なお、直線B−B’の断面を図8(g)に示す。その後、配置間隔の広くなった表面領域に通常のMOSFET作製工程で表面のMOSFETを形成する。
【0047】
実施の形態5.
図9、図10に本発明の実施の形態5を示す。本実施の形態は図10にその部分断面が示されるように、配置間隔が異なるpn層の境界面が第一の主面に対して概ね垂直である場合の超接合半導体素子について説明する。もちろん配置間隔が異なるpn層の境界面が第一の主面に対して垂直と平行の両方を合わせ持つことも可能である。
【0048】
図9に実施の形態5における超接合半導体基体の作製工程図を示す。
まず、n型の低抵抗基体上にn-エピタキシャル層を積層する。本実施の形態ではn-高抵抗エピタキシャル層を4μmとしている。続いて、フォトリソグラフィによりレジストマスク54Aを所定の位置に所定の大きさで形成した後、ボロンイオン6を注入し、p型不純物であるボロン原子7を2×1013cm-2のドーズ量で所定の領域に導入する(図9(a))。なお、イオン注入用レジスト窓の大きさは2μmとし、また、イオン注入用レジスト窓の配置間隔は8μmとしている。
【0049】
続いて、レジストマスク54Aを除去し、フォトリソグラフィによりレジストマスク54Bを所定の位置に所定の大きさで形成した後、ボロンイオン6を注入し、p型不純物であるボロン原子7を1×1013cm-2のドーズ量で導入する(図9(b))。なお、本実施の形態では、イオン注入用レジスト窓の大きさは4μmとし、また、イオン注入用レジスト窓の配置間隔は16μmとしている。また、複数のイオン注入用レジスト窓が設けられる領域はレジストマスク54Aに設けられた複数のイオン注入用レジスト窓が設けられた領域とは異なる領域に設けられる。
【0050】
続いて、レジストマスク54Bを除去し、フォトリソグラフィによりレジストマスク54Cを所定の位置に所定の大きさで形成した後、リンイオン3を注入し、n型不純物であるリン原子4を2×1013cm-2のドーズ量で導入する(図9(c))。なお、イオン注入用レジスト窓の大きさは2μmとし、また、イオン注入用レジスト窓の配置間隔は8μmとしている。また、このレジストマスク54Cにより設けられる複数のイオン注入用レジスト窓の領域はレジストマスク54Aに設けられた複数のイオン注入用レジスト窓の領域と重なるが、各レジスト窓の位置はレジストマスク54Aのレジスト窓の位置と異なった位置に設けられる。
【0051】
続いて、レジストマスク54Cを除去し、フォトリソグラフィによりレジストマスク54Dを所定の位置に所定の大きさで形成した後、リンイオンを注入し、n型不純物であるリン原子4を1×1013cm-2のドーズ量で導入する(図9(d))。なお、イオン注入用レジスタ窓の大きさは4μmとし、また、イオン注入用レジスト窓の配置間隔は16μmとしている。また、レジストマスク54Dにより設けられる複数のイオン注入用レジスト窓の領域はレジストマスク54Bに設けられた複数のイオン注入用レジスト窓の領域と重なるが、各レジスト窓の位置はレジストマスク54Bのレジスト窓の位置と異なった位置に設けられる。そして、上記に述べたエピタキシャル成長、ボロンイオン注入、リンイオン注入の工程を所定の回数繰り返す(図9(e))。
【0052】
続いて、レジストマスク54Dを除去し、n-高抵抗エピタキシャル層2Aを4μm積層した後、1150℃、20時間の熱処理によってそれぞれの不純物を同時に拡散させて、n型ドリフト領域8aとp型仕切り領域8bを有するpn層を形成する(図9(f))。その後、表面領域に通常のMOSFET作製工程で表面のMOSFETを形成する。
【0053】
以上、本発明の実施の形態において説明した半導体素子の作製工程では、nチャネル超接合MOSFETの作製工程について述べたが、pチャネル超接合MOSFETについても導電型を適切に変えることによって、同様の工程で作製可能であることは明白である。また、配置間隔を広げた領域を1層のみとしたが、もちろん多層になってもよい。なお、ボロンおよびリンの導入量は、n型ドリフト領域8aとp型仕切り領域8bが空乏化できる条件であればよい。
【0054】
【発明の効果】
以上に詳述したように、本発明によれば、超接合半導体基体の微細化を行っても、表面側のpn層の接合配置間隔を広く保った状態とすることができるので、コスト高となる表面構造の微細化を行う必要が無く、従って、高耐圧でありながら、オン抵抗を低減できる半導体素子を低コストに量産することができるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の実施の形態1の作製工程図である。
【図2】本発明の実施の形態1の作製工程図である。
【図3】本発明の実施の形態2の作製工程図である。
【図4】本発明の実施の形態2の作製工程図である。
【図5】本発明の実施の形態3の作製工程図である。
【図6】本発明の実施の形態3の作製工程図である。
【図7】本発明の実施の形態4の作製工程図である。
【図8】本発明の実施の形態4の作製工程図である。
【図9】本発明の実施の形態5の作製工程図である。
【図10】本発明の実施の形態5に係るnチャネル縦型MOSFETを示す断面図である。
【図11】従来のnチャネル縦型MOSFETを示す断面図である。
【図12】USP5216275号公報に開示された縦型MOSFETの部分断面図である。
【符号の説明】
1 低抵抗基体
2A,2B,2C,21A,21B n-高抵抗エピタキシャル層
3 リンイオン
4 リン原子
5A,5B,5C,5D,51A,51B,51C,51D,52A,52B,52C,52D,53A,53B,53C,53D レジストマスク
6 ボロンイオン
7 ボロン原子
8a n型ドリフト層
8b p型仕切り領域

Claims (7)

  1. 第一と第二の主面間に、低抵抗層と、第一導電型領域と第二導電型領域とを平面的に見て交互に配置したpn層とを備える半導体素子において、前記pn層の第一導電型領域と第二導電型領域の配置間隔が部分的に異なっていることを特徴とする半導体素子。
  2. 請求項1に記載の半導体素子において、前記pn層の前記配置間隔が異なる部分の境界面は、第一の主面に対して平行な面を有することを特徴とする半導体素子。
  3. 請求項1または請求項2に記載の半導体素子において、前記pn層は配置間隔が広い第一の部分と、配置間隔が第一の部分より狭い第二の部分を有し、第一の部分を第一の主面側に配置したことを特徴とする半導体素子。
  4. 請求項1に記載の半導体素子において、前記pn層の前記配置間隔が異なる部分の境界面は、第一の主面に対して垂直な面を有することを特徴とする半導体素子。
  5. 請求項1乃至請求項のいずれかに記載の半導体素子において、前記pn層の前記配置間隔が異なる部分の境界においては、互いに同一の導電型領域が接続されていることを特徴とする半導体素子。
  6. 請求項1乃至請求項5のいずれかに記載の半導体素子において、前記配置間隔が異なるそれぞれの部分においては、各導電型領域の配置形状が平面的に見て異なることを特徴とする半導体素子。
  7. 第一と第二の主面間に、低抵抗層と、第一導電型領域と第二導電型領域とを平面的に見て交互に配置したpn層とを備える半導体素子の製造方法において、エピタキシャル層を形成する第1工程と、該エピタキシャル層に選択的に、且つ交互に第一導電型不純物イオン、および第二導電型不純物イオンを注入する第2工程とを所定回数繰り返す工程を含むことにより、第一導電型領域と第二導電型領域とを平面的に見て交互に配置すると共に第一導電型領域と第二導電型領域の配置間隔が部分的に異なる前記pn層を形成するようにしたことを特徴とする半導体素子の製造方法。
JP2000076691A 2000-03-17 2000-03-17 半導体素子および半導体素子の製造方法 Expired - Lifetime JP3636345B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000076691A JP3636345B2 (ja) 2000-03-17 2000-03-17 半導体素子および半導体素子の製造方法
DE10112463A DE10112463B4 (de) 2000-03-17 2001-03-15 SJ-Halbleiterbauelement
US09/811,727 US6677643B2 (en) 2000-03-17 2001-03-19 Super-junction semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000076691A JP3636345B2 (ja) 2000-03-17 2000-03-17 半導体素子および半導体素子の製造方法

Publications (2)

Publication Number Publication Date
JP2001267568A JP2001267568A (ja) 2001-09-28
JP3636345B2 true JP3636345B2 (ja) 2005-04-06

Family

ID=18594392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000076691A Expired - Lifetime JP3636345B2 (ja) 2000-03-17 2000-03-17 半導体素子および半導体素子の製造方法

Country Status (3)

Country Link
US (1) US6677643B2 (ja)
JP (1) JP3636345B2 (ja)
DE (1) DE10112463B4 (ja)

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7745289B2 (en) * 2000-08-16 2010-06-29 Fairchild Semiconductor Corporation Method of forming a FET having ultra-low on-resistance and low gate charge
US7132712B2 (en) * 2002-11-05 2006-11-07 Fairchild Semiconductor Corporation Trench structure having one or more diodes embedded therein adjacent a PN junction
US6818513B2 (en) 2001-01-30 2004-11-16 Fairchild Semiconductor Corporation Method of forming a field effect transistor having a lateral depletion structure
US6710403B2 (en) 2002-07-30 2004-03-23 Fairchild Semiconductor Corporation Dual trench power MOSFET
US6916745B2 (en) 2003-05-20 2005-07-12 Fairchild Semiconductor Corporation Structure and method for forming a trench MOSFET having self-aligned features
US6713813B2 (en) 2001-01-30 2004-03-30 Fairchild Semiconductor Corporation Field effect transistor having a lateral depletion structure
US6803626B2 (en) 2002-07-18 2004-10-12 Fairchild Semiconductor Corporation Vertical charge control semiconductor device
KR100393201B1 (ko) * 2001-04-16 2003-07-31 페어차일드코리아반도체 주식회사 낮은 온 저항과 높은 브레이크다운 전압을 갖는 고전압수평형 디모스 트랜지스터
EP1261036A3 (en) 2001-05-25 2004-07-28 Kabushiki Kaisha Toshiba Power MOSFET semiconductor device and method of manufacturing the same
JP3908572B2 (ja) * 2002-03-18 2007-04-25 株式会社東芝 半導体素子
US7941675B2 (en) 2002-12-31 2011-05-10 Burr James B Adaptive power control
US7180322B1 (en) 2002-04-16 2007-02-20 Transmeta Corporation Closed loop feedback control of integrated circuits
US6825513B2 (en) * 2002-09-27 2004-11-30 Xerox Corporation High power mosfet semiconductor device
US7576388B1 (en) 2002-10-03 2009-08-18 Fairchild Semiconductor Corporation Trench-gate LDMOS structures
US6710418B1 (en) 2002-10-11 2004-03-23 Fairchild Semiconductor Corporation Schottky rectifier with insulation-filled trenches and method of forming the same
US7228242B2 (en) 2002-12-31 2007-06-05 Transmeta Corporation Adaptive power control based on pre package characterization of integrated circuits
US7323367B1 (en) * 2002-12-31 2008-01-29 Transmeta Corporation Diagonal deep well region for routing body-bias voltage for MOSFETS in surface well regions
US6936898B2 (en) * 2002-12-31 2005-08-30 Transmeta Corporation Diagonal deep well region for routing body-bias voltage for MOSFETS in surface well regions
US7953990B2 (en) 2002-12-31 2011-05-31 Stewart Thomas E Adaptive power control based on post package characterization of integrated circuits
JP3634848B2 (ja) * 2003-01-07 2005-03-30 株式会社東芝 電力用半導体素子
DE602004018614D1 (de) * 2003-02-18 2009-02-05 Nxp Bv Halbleiterbauelement und verfahren zur herstellung eines solchen bauelements
US7638841B2 (en) 2003-05-20 2009-12-29 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
JP4166627B2 (ja) * 2003-05-30 2008-10-15 株式会社デンソー 半導体装置
JP4882212B2 (ja) * 2003-08-20 2012-02-22 株式会社デンソー 縦型半導体装置
US7174528B1 (en) 2003-10-10 2007-02-06 Transmeta Corporation Method and apparatus for optimizing body bias connections in CMOS circuits using a deep n-well grid structure
KR100994719B1 (ko) 2003-11-28 2010-11-16 페어차일드코리아반도체 주식회사 슈퍼정션 반도체장치
JP4536366B2 (ja) * 2003-12-22 2010-09-01 株式会社豊田中央研究所 半導体装置とその設計支援用プログラム
US7012461B1 (en) 2003-12-23 2006-03-14 Transmeta Corporation Stabilization component for a substrate potential regulation circuit
US7649402B1 (en) 2003-12-23 2010-01-19 Tien-Min Chen Feedback-controlled body-bias voltage source
US7129771B1 (en) 2003-12-23 2006-10-31 Transmeta Corporation Servo loop for well bias voltage source
US7692477B1 (en) 2003-12-23 2010-04-06 Tien-Min Chen Precise control component for a substrate potential regulation circuit
US7368777B2 (en) 2003-12-30 2008-05-06 Fairchild Semiconductor Corporation Accumulation device with charge balance structure and method of forming the same
JP3681741B2 (ja) * 2004-01-07 2005-08-10 新電元工業株式会社 半導体装置
US7645673B1 (en) 2004-02-03 2010-01-12 Michael Pelham Method for generating a deep N-well pattern for an integrated circuit design
US7388260B1 (en) 2004-03-31 2008-06-17 Transmeta Corporation Structure for spanning gap in body-bias voltage routing structure
US7774625B1 (en) 2004-06-22 2010-08-10 Eric Chien-Li Sheng Adaptive voltage control by accessing information stored within and specific to a microprocessor
US7562233B1 (en) 2004-06-22 2009-07-14 Transmeta Corporation Adaptive control of operating and body bias voltages
US7352036B2 (en) 2004-08-03 2008-04-01 Fairchild Semiconductor Corporation Semiconductor power device having a top-side drain using a sinker trench
JP2006073740A (ja) * 2004-09-01 2006-03-16 Toshiba Corp 半導体装置及びその製造方法
JP2006269720A (ja) * 2005-03-24 2006-10-05 Toshiba Corp 半導体素子及びその製造方法
CN101882583A (zh) * 2005-04-06 2010-11-10 飞兆半导体公司 沟栅场效应晶体管及其形成方法
JP2007036213A (ja) * 2005-06-20 2007-02-08 Toshiba Corp 半導体素子
US7462909B2 (en) * 2005-06-20 2008-12-09 Kabushiki Kaisha Toshiba Semiconductor device and method of fabricating the same
JP2007012858A (ja) 2005-06-30 2007-01-18 Toshiba Corp 半導体素子及びその製造方法
US7305647B1 (en) 2005-07-28 2007-12-04 Transmeta Corporation Using standard pattern tiles and custom pattern tiles to generate a semiconductor design layout having a deep well structure for routing body-bias voltage
US7928470B2 (en) * 2005-11-25 2011-04-19 Denso Corporation Semiconductor device having super junction MOS transistor and method for manufacturing the same
JP4996848B2 (ja) * 2005-11-30 2012-08-08 株式会社東芝 半導体装置
DE102006002065B4 (de) * 2006-01-16 2007-11-29 Infineon Technologies Austria Ag Kompensationsbauelement mit reduziertem und einstellbarem Einschaltwiderstand
US7446374B2 (en) 2006-03-24 2008-11-04 Fairchild Semiconductor Corporation High density trench FET with integrated Schottky diode and method of manufacture
US7737469B2 (en) * 2006-05-16 2010-06-15 Kabushiki Kaisha Toshiba Semiconductor device having superjunction structure formed of p-type and n-type pillar regions
US7319256B1 (en) 2006-06-19 2008-01-15 Fairchild Semiconductor Corporation Shielded gate trench FET with the shield and gate electrodes being connected together
DE102007034802B8 (de) * 2007-03-26 2012-11-29 X-Fab Semiconductor Foundries Ag Lateraler Hochvolt-MOS-Transistor mit RESURF-Struktur
US8928077B2 (en) 2007-09-21 2015-01-06 Fairchild Semiconductor Corporation Superjunction structures for power devices
US7772668B2 (en) 2007-12-26 2010-08-10 Fairchild Semiconductor Corporation Shielded gate trench FET with multiple channels
US8101997B2 (en) * 2008-04-29 2012-01-24 Infineon Technologies Austria Ag Semiconductor device with a charge carrier compensation structure in a semiconductor body and method for its production
US20120273916A1 (en) 2011-04-27 2012-11-01 Yedinak Joseph A Superjunction Structures for Power Devices and Methods of Manufacture
KR101121574B1 (ko) 2010-01-12 2012-03-06 (주) 트리노테크놀로지 전하 균형 전력 디바이스 및 그 제조 방법
JP5533067B2 (ja) * 2010-03-15 2014-06-25 富士電機株式会社 超接合半導体装置の製造方法
JP5985789B2 (ja) * 2010-03-15 2016-09-06 富士電機株式会社 超接合半導体装置の製造方法
CN101840933B (zh) * 2010-04-13 2011-11-23 苏州博创集成电路设计有限公司 带表面缓冲环终端结构的超结金属氧化物场效应晶体管
US8319290B2 (en) 2010-06-18 2012-11-27 Fairchild Semiconductor Corporation Trench MOS barrier schottky rectifier with a planar surface using CMP techniques
US8673700B2 (en) 2011-04-27 2014-03-18 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8836028B2 (en) 2011-04-27 2014-09-16 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8772868B2 (en) 2011-04-27 2014-07-08 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8786010B2 (en) 2011-04-27 2014-07-22 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
JP2014060299A (ja) * 2012-09-18 2014-04-03 Toshiba Corp 半導体装置
US9184277B2 (en) 2012-10-31 2015-11-10 Infineon Technologies Austria Ag Super junction semiconductor device comprising a cell area and an edge area
TW201430957A (zh) * 2013-01-25 2014-08-01 Anpec Electronics Corp 半導體功率元件的製作方法
CN103545220A (zh) * 2013-10-30 2014-01-29 电子科技大学 一种横向功率器件漂移区的制造方法
US9306034B2 (en) * 2014-02-24 2016-04-05 Vanguard International Semiconductor Corporation Method and apparatus for power device with multiple doped regions
CN106887451B (zh) * 2015-12-15 2020-04-07 深圳尚阳通科技有限公司 超结器件及其制造方法
US9773777B2 (en) * 2016-01-08 2017-09-26 Texas Instruments Incorporated Low dynamic resistance low capacitance diodes
US9899508B1 (en) 2016-10-10 2018-02-20 Stmicroelectronics S.R.L. Super junction semiconductor device for RF applications, linear region operation and related manufacturing process
CN106847919A (zh) * 2016-12-26 2017-06-13 中国科学院微电子研究所 一种高压超结vdmos
US10580884B2 (en) * 2017-03-08 2020-03-03 D3 Semiconductor LLC Super junction MOS bipolar transistor having drain gaps
CN109713038A (zh) * 2017-10-26 2019-05-03 深圳尚阳通科技有限公司 一种超级结器件及制造方法
IT201800006323A1 (it) 2018-06-14 2019-12-14 Dispositivo a semiconduttore del tipo a bilanciamento di carica, in particolare per applicazioni rf ad elevata efficienza, e relativo procedimento di fabbricazione
CN109166925B (zh) * 2018-08-29 2021-04-20 电子科技大学 一种垂直型功率半导体器件及其制造方法
CN114784132B (zh) * 2022-04-18 2023-06-27 杭州电子科技大学 一种碳化硅微沟槽中子探测器结构

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4286279A (en) * 1976-09-20 1981-08-25 Hutson Jearld L Multilayer semiconductor switching devices
JPS54145486A (en) * 1978-05-08 1979-11-13 Handotai Kenkyu Shinkokai Gaas semiconductor device
GB2089119A (en) * 1980-12-10 1982-06-16 Philips Electronic Associated High voltage semiconductor devices
CN1019720B (zh) * 1991-03-19 1992-12-30 电子科技大学 半导体功率器件
DE4309764C2 (de) * 1993-03-25 1997-01-30 Siemens Ag Leistungs-MOSFET
JPH09266311A (ja) * 1996-01-22 1997-10-07 Fuji Electric Co Ltd 半導体装置及びその製造方法
US6081009A (en) * 1997-11-10 2000-06-27 Intersil Corporation High voltage mosfet structure
JP3988262B2 (ja) 1998-07-24 2007-10-10 富士電機デバイステクノロジー株式会社 縦型超接合半導体素子およびその製造方法
JP4765012B2 (ja) * 2000-02-09 2011-09-07 富士電機株式会社 半導体装置及びその製造方法

Also Published As

Publication number Publication date
DE10112463B4 (de) 2008-04-10
US6677643B2 (en) 2004-01-13
JP2001267568A (ja) 2001-09-28
US20010032998A1 (en) 2001-10-25
DE10112463A1 (de) 2001-09-20

Similar Documents

Publication Publication Date Title
JP3636345B2 (ja) 半導体素子および半導体素子の製造方法
US7462909B2 (en) Semiconductor device and method of fabricating the same
EP0975024B1 (en) Semiconductor device with alternating conductivity type layer and method of manufacturing the same
JP6919159B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
US6693323B2 (en) Super-junction semiconductor device
US6673679B1 (en) Semiconductor device with alternating conductivity type layer and method of manufacturing the same
US7253476B2 (en) Semiconductor device with alternating conductivity type layer and method of manufacturing the same
US20090085111A1 (en) Semiconductor device and method of manufacturing the same
US9530838B2 (en) Semiconductor device and manufacturing method for the same
JP6345378B1 (ja) 半導体装置
WO2013027463A1 (ja) 半導体装置および半導体装置の製造方法
JP4844371B2 (ja) 縦型超接合半導体素子
TWI741185B (zh) 半導體裝置及半導體裝置之製造方法
US7666744B2 (en) Method of manufacturing a semiconductor device having a trench surrounding plural unit cells
US7538388B2 (en) Semiconductor device with a super-junction
JP6005903B2 (ja) 半導体装置の製造方法
JP5023423B2 (ja) 縦型絶縁ゲート型電界効果トランジスタおよびその製造方法
JP2023124694A (ja) 炭化珪素半導体装置
CN116364752A (zh) 超结器件及其制造方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040126

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041229

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3636345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term