JP5533067B2 - 超接合半導体装置の製造方法 - Google Patents

超接合半導体装置の製造方法 Download PDF

Info

Publication number
JP5533067B2
JP5533067B2 JP2010058066A JP2010058066A JP5533067B2 JP 5533067 B2 JP5533067 B2 JP 5533067B2 JP 2010058066 A JP2010058066 A JP 2010058066A JP 2010058066 A JP2010058066 A JP 2010058066A JP 5533067 B2 JP5533067 B2 JP 5533067B2
Authority
JP
Japan
Prior art keywords
conductivity type
epitaxial growth
semiconductor device
manufacturing
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010058066A
Other languages
English (en)
Other versions
JP2011192823A (ja
Inventor
理子 矢嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2010058066A priority Critical patent/JP5533067B2/ja
Priority to CN201110054890.0A priority patent/CN102194700B/zh
Publication of JP2011192823A publication Critical patent/JP2011192823A/ja
Application granted granted Critical
Publication of JP5533067B2 publication Critical patent/JP5533067B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Chemical Vapour Deposition (AREA)
  • Recrystallisation Techniques (AREA)

Description

本発明は、ドリフト層として半導体基板の主面に垂直方向に、複数配置されるn型カラムおよびp型カラムを主面に平行方向に交互に隣接させる超接合(スーパージャンクション)構造部を有する超接合半導体装置の製造方法に関する。
一般に半導体装置(以降、半導体素子または単に素子と言うこともある)は、半導体基板の片面に電極をもつ横型素子と、半導体基板の両面に電極をもつ縦型素子とに大別される。縦型半導体装置は、オン時にドリフト電流が流れる方向と、オフ時の逆バイアス電圧による空乏層が延びる方向とが同じである。たとえば、通常のプレーナ型のnチャネル縦型MOSFETの場合、高抵抗のnドリフト層の部分は、MOSFETがオン状態の時は縦方向にドリフト電流を流す領域として働き、オフ状態の時は空乏化して耐圧を高める。この高抵抗のnドリフト層の電流経路を短くすることは、ドリフト抵抗が低くなるのでMOSFETの実質的なオン抵抗を下げる効果に繋がるものの、逆にpベース領域とnドリフト領域との間のpn接合から進行するドレイン−ベース間空乏層の広がる幅が狭く、シリコンの臨界電界強度に速く達するため、耐圧が低下する。逆に耐圧の高い半導体装置では、nドリフト層が厚くなるため必然的にオン抵抗が大きくなり、損失が増すことになる。このようなオン抵抗と耐圧との間の関係をトレードオフ関係と言う。このトレードオフ関係は、IGBT、バイポーラトランジスタ、ダイオード等の半導体装置においても同様に成立することが知られている。また、この関係は、オン時にドリフト電流が流れる方向と、オフ時の逆バイアスによる空乏層の延びる方向が異なる横型半導体装置についても共通である。
この問題に対する解決法として、図2に示すように、ドリフト層を、半導体基板の主面に垂直方向では、長い層状またはカラム状の形状で不純物濃度を高めた複数のn型のドリフト領域(n型カラム)4とp型の仕切領域(p型カラム)5とし、主面に平行方向では交互に繰り返し隣接するように配置した並列pn領域からなる超接合構造部10とする超接合半導体装置(超接合MOSFET)が知られている。この超接合半導体装置は、前記超接合構造部10がオフ状態の時は空乏化して耐圧を負担するドリフト層の同様の機能を有する。
前記超接合MOSFETと通常のプレーナ型のnチャネル縦型MOSFETとの構造上の大きな違いは、ドリフト層が、単一の導電型で一様の不純物濃度の層ではなく、前述のような並列pn領域からなる超接合構造部10にされていることである。この超接合構造部10では、それぞれのp型の仕切り領域(p型カラム)5とn型のドリフト領域(n型カラム)4の不純物濃度(以降、単に濃度と表記することがある)が同耐圧クラスの通常の素子よりも高くても、オフ状態では超接合構造部10内の並列pn接合から空乏層が両側に広がってドリフト層全体を低電界強度で空乏化するため、高耐圧化を図ることができる。
一方、超接合半導体装置を含めた半導体装置、特にプレーナ接合型半導体装置では、一般に高耐圧素子とするためには、主電流が流れる素子活性部100を取り巻く周囲に周縁耐圧構造部200を必要とする。この周縁耐圧構造部200がなければ、ドリフト層外周端で電界の集中箇所が生じて耐圧が低下し、高耐圧を実現することが困難となる。さらに、pn接合面を半導体デバイス領域毎に一方の主面側に湾曲させて、そのpn接合終端を前記一方の主面と交差させ、この交差する面を絶縁膜8で被覆して保護することにより、pn接合に逆バイアスとなる向きの耐圧を保持するプレーナ接合型半導体装置では、前記絶縁膜8を含む周縁耐圧構造部200に耐電荷性(誘起電荷遮断機能)が必要である。すなわち、設計された初期耐圧が確保されたとしても、絶縁膜8に耐電荷性が無いかまたは小さい素子では、時間の経過に伴い前記絶縁膜8に誘起される外部電荷の影響により基板表面での電界分布が変化して電界集中箇所が生じるようになり、耐圧が次第に低下し、耐圧信頼性の低下が起きる。
前述の並列pn領域からなる超接合構造部10を備える超接合MOSFETの周縁耐圧構造部200の場合には、前記耐電荷性を高めるために周縁耐圧構造部200内の超接合構造部10の基板表面側(上層)に一様な不純物濃度を有するn低濃度エピタキシャル層3を配置することが必要となる。従って、超接合半導体装置の周縁耐圧構造部200のp型ガードリング領域7は、設計耐圧に応じて、超接合構造部10の上層に設けられるn低濃度エピタキシャル層3の表層に基板表面に沿って所要の間隔で離間するように複数設けられる。さらに、この周縁耐圧構造部200は、このp型ガードリング領域7表面と、最外周のp型ガードリング領域7a表面とに相互に電気的に接続される導電性プレート9を備え、さらに、前記p型チャネルストッパー領域11(もしくはn型チャネルストッパー領域でもよい)にも電気的に接続される導電性プレート12を備える構造を有する。
一方、超接合半導体装置の素子活性部100内では並列pn領域からなる超接合構造部10の上層に、通常の半導体装置と同様に、pベース領域13とこのpベース領域13内の表層にnエミッタ領域14を備え、nエミッタ領域14とnドリフト領域(n型カラム)4に挟まれる前記pベース領域13表面にゲート絶縁膜15を介してゲート電極16を備え、前記nエミッタ領域14表面とpベース領域13の高濃度表面とに接触するエミッタ電極17が設けられる。
そのような前記超接合構造部10を作製する方法として、エピタキシャル成長とイオン注入を多数回繰り返すことにより、一回のエピタキシャル成長とイオン注入毎に形成される薄い前記並列pn領域を順次積み重ねて垂直方向に長い形状にする方法(多段エピタキシャル法)はよく知られている。このような超接合構造部10を備える超接合半導体装置では、n型カラム4とp型カラム5とのチャージバランスが重要であり、同じであることが望ましい。また、前述の耐電荷性を備える周縁耐圧構造部200を形成するためには、多段エピタキシャル法で複数回エピタキシャル層形成後の上層に配置されるn低濃度エピタキシャル層3の作製段階で、素子活性部にはイオン注入し、周縁耐圧構造部200にはイオン注入をせずにn低濃度エピタキシャル層3のままとする必要がある。n低濃度エピタキシャル層3の厚さは15μm前後必要であるので、1回のエピタキシャル成長の厚さを10μm以下とすると、必要な段数(エピタキシャル成長の回数)は2段以上となる。
また、深さ方向に長い不純物添加領域を形成するための気相エピタキシャル成長方法に関する文献が公開されている。この文献には「気相成長工程は、硼素注入層71及び燐注入層72からの横方向オートドーピングを抑制するために、まず、封止用の薄いエピタキシャル層を気相成長してから第二エピタキシャル層22の本成長を行う、複数段階処理とすることが望ましい。」というシリコン層のソースガスを先に処理する方法の記載がある(特許文献1)。
特許第4016371号公報(0096段落)
前述の耐電荷性を備える周縁耐圧構造部に設けられるn低濃度エピタキシャル層3の狙いとする不純物濃度は1×1014cm−3前後の低不純物濃度である。このとき、不純物濃度のばらつきとして±20%が許されるとすると、その不純物濃度範囲は0.8×1014cm−3〜1.2×1014cm−3となる。しかしながら、1段毎のn低濃度エピタキシャル層3の成長の際、特にエピタキシャル成長開始直後は狙い濃度に対して前述の許容範囲を超える濃度変動が生じ易い。これは、以下のメカニズムによると考えられる。すなわち、エピタキシャル装置に流れるドープガスのガス配管において、ガス配管内壁では、ドープ元素の脱離と吸着が常に起きており、脱離と吸着の平衡状態が崩れると濃度変動の原因となり易い。一般に、ドープガスはppmオーダーの濃度であり、シリコンソースガスと比較すると非常に低濃度であるので、ガス配管内壁状態の影響を受けやすいからである。この対策としてエピタキシャル成長前に予めドープガスを排気ラインへ流しておくことは前記濃度変動の抑制に効果がある。しかし、排気ラインからエピタキシャル成長ラインへ切り替わってから先のエピタキシャル成長装置までの配管内壁まで、予め平衡状態にしておくことは不可能のため、前述の1×1014cm−3の20%前後またはこれ以上の濃度変動を避けることはできない。その結果、前述の周縁耐圧構造部におけるn低濃度エピタキシャル層3を形成するには、少なくとも2層以上積み上げて厚さを確保する必要があるので、図13に示すように、その積層界面では、狙いとする1×1014cm−3の不純物濃度に対して2×1013cm−3前後の濃度変動ピークを有する濃度変動分布ができる。このような濃度変動分布を有するn低濃度エピタキシャル層3は±2×1013cm−3以内とする濃度ばらつきが保証されないので、周縁耐圧構造部において耐電荷性の低下を招き耐圧低下となる惧れがある。
さらに、前述の多段エピタキシャル法により前記超接合MOSFETを作製する場合に、前記周縁耐圧構造部のn低濃度エピタキシャル層3を形成する際に、素子活性部100にはn型のドリフト領域(n型カラム)4を形成するために不純物がドーズ量2×1013cm−2前後でイオン注入される。ところが、エピタキシャル成長させるときの昇温過程やエピタキシャル成長前の半導体基板の清浄化のための水素アニール処理時の温度によって、前記イオン注入した不純物が再蒸発すると、蒸発した不純物は拡散して、前記イオン注入をしていない周縁耐圧構造部200でのエピタキシャル成長中にオートドープする。周縁耐圧構造部200において前記オートドープが発生すると、n低濃度エピタキシャル層3のn濃度が設計濃度からずれるだけでなく、ウエハ面内、ウエハ間での不純物濃度ばらつきを引き起こし、耐電荷性の低下、耐圧低下を招く。
また、素子活性部100においても、不純物が再蒸発すると不純物量低下となるため、狙いの不純物量が得られず、チャージバランスが崩れてしまい、所望の特性が得られなくなる。再蒸発を見込んで注入する不純物量を多くしてチャージバランスを確保しても、再蒸発自体を抑制しないと、ウエハ面内やウエハ間で不純物量のばらつきの発生を抑えることはできない。その結果、歩留まり低下を招く。
本発明は、以上説明した点に鑑み、周縁耐圧構造部における第1導電型低濃度エピタキシャル層の形成の際の不純物濃度変動またはオートドープによる不純物濃度ばらつきを防ぎ、耐圧良品率の低下を防ぐことのできる超接合半導体装置の製造方法を提供することを目的とする。
前記本発明の目的を達成するため、高濃度第1導電型半導体基板上に、前記半導体基板の主面に垂直方向に長い形状であって、主面に平行方向では交互に隣接配置される第1導電型領域と第2導電型領域からなる超接合構造部を、ドリフト層として備える主電流が流れる素子活性部と、前記超接合構造部とその上に第1導電型低濃度エピタキシャル層を備える前記素子活性部を取り巻く周縁耐圧構造部と、を備える超接合半導体装置の製造方法において、ノンドープエピタキシャル成長と第1導電型不純物および第2導電型不純物の選択的イオン注入とを複数回繰り返して積み重ねる第1積層層形成工程と、前記第1積層層上に、第1導電型不純物をドープしながらの第1導電型低ドープエピタキシャル成長と第1導電型不純物および第2導電型不純物の選択的イオン注入とを複数回繰り返して積み重ねる第2積層層形成工程と、を備え、前記第1導電型低ドープエピタキシャル成長する際に、第1導電型ドープガスを半導体ソースガスよりも早くエピタキシャル成長ラインへ導入する超接合半導体装置の製造方法とする。
前記本発明の目的を達成するため、高濃度第1導電型半導体基板上に、前記半導体基板の主面に垂直方向に長い形状であって、主面に平行方向では交互に隣接配置される第1導電型領域と第2導電型領域からなる超接合構造部を、ドリフト層として備える主電流が流れる素子活性部と、前記超接合構造部とその上に第1導電型低濃度エピタキシャル層を備える前記素子活性部を取り巻く周縁耐圧構造部と、を備える超接合半導体装置の製造方法において、ノンドープエピタキシャル成長と第1導電型不純物および第2導電型不純物の選択的イオン注入とを複数回繰り返して積み重ねる第1積層層形成工程と、前記第1積層層上に、第1導電型不純物をドープしながらの第1導電型低ドープエピタキシャル成長と第1導電型不純物および第2導電型不純物の選択的イオン注入とを複数回繰り返して積み重ねる第2積層層形成工程と、を備え、前記第1導電型低ドープエピタキシャル成長前の水素アニール温度とエピタキシャル成長の開始温度とを1100℃未満にする超接合半導体装置の製造方法とする。
前記本発明の目的を達成するため、前記半導体基板の主面に垂直方向に長い形状であって、主面に平行方向では交互に隣接配置される第1導電型領域と第2導電型領域からなる超接合構造部を、ドリフト層として備える主電流が流れる素子活性部と、前記超接合構造部とその上に第1導電型低濃度エピタキシャル層を備える前記素子活性部を取り巻く周縁耐圧構造部と、を備える超接合半導体装置の製造方法において、ノンドープエピタキシャル成長と第1導電型不純物および第2導電型不純物の選択的イオン注入とを複数回繰り返して積み重ねる第1積層層形成工程と、前記第1積層層上に、第1導電型不純物をドープしながらの第1導電型低ドープエピタキシャル成長と第1導電型不純物および第2導電型不純物の選択的イオン注入とを複数回繰り返して積み重ねる第2積層層形成工程と、を備え、前記第1導電型低ドープエピタキシャル成長する際に、前記第1導電型ドープガスを半導体ソースガスよりも早くエピタキシャル成長ラインへ導入するとともに、前記第1導電型低ドープエピタキシャル成長前の水素アニール温度とエピタキシャル成長の開始温度を1100℃未満にする超接合半導体装置の製造方法とする。また、前記第1導電型低ドープエピタキシャル成長前の水素アニール温度とエピタキシャル成長を1000℃未満で開始した後、1100℃以上でエピタキシャル成長することが好ましい。
本発明によれば、周縁耐圧構造部における第1導電型低濃度エピタキシャル層の形成の際の不純物濃度変動またはオートドープによる不純物濃度ばらつきを防ぎ、耐圧良品率の低下を防ぐことのできる超接合半導体装置の製造方法を提供することができる。
本発明にかかる超接合半導体装置の素子活性部の断面斜視図である。 本発明にかかる超接合半導体装置の耐圧構造部の断面模式図である。 本発明の超接合半導体装置の製造方法を示す要部製造工程断面図である(その1)。 本発明の超接合半導体装置の製造方法を示す要部製造工程断面図である(その2)。 本発明の超接合半導体装置の製造方法を示す要部製造工程断面図である(その3)。 本発明の超接合半導体装置の製造方法を示す要部製造工程断面図である(その4)。 本発明の超接合半導体装置の製造方法を示す要部製造工程断面図である(その5)。 本発明の超接合半導体装置の製造方法を示す要部製造工程断面図である(その6)。 本発明の超接合半導体装置の製造方法を示す要部製造工程断面図である(その7)。 本発明の超接合半導体装置の製造方法を示す要部製造工程断面図である(その8)。 本発明の超接合半導体装置の製造方法を示す要部製造工程断面図である(その9)。 本発明の超接合半導体装置の製造方法を示す要部製造工程断面図である(その10)。 本発明の超接合半導体装置の製造方法にかかるn低濃度エピタキシャル層の積層界面における濃度変動幅を示す不純物濃度分布図である。 本発明の超接合半導体装置の製造方法にかかる水素アニール温度と不純物蒸発量と不純物濃度ばらつきの間の関係図である。
次に本発明の実施の形態を図面を参照して説明する。図1は本発明の実施の形態にかかる超接合半導体装置の素子活性部の断面斜視図であり、図2は同じく、素子活性部を取り巻く周縁耐圧構造部を含む断面模式図である。以下説明する実施例では、nSi基板1およびn層2上に、主面に垂直方向に長いn型カラム4およびp型カラム5が主面に平行方向に交互に隣接配置された超接合構造部10を備える構造について、特にその周縁耐圧構造部200には、前記超接合構造部の上に基板表面から所定の深さのn低濃度エピタキシャル層3を有する超接合半導体装置の製造方法について説明する。また、以下の説明では、第1導電型をn型、第2導電型をp型として説明する。
実施例1では、超接合MOSFETの製造方法について説明する。図3から図12は、図1、2に示す超接合半導体装置(超接合MOSFET)の製造工程を順に示す要部製造工程断面図である。図3に示すように、高濃度nSi基板1上に3×1014cm−3の低濃度n層2を低ドープエピタキシャル成長により、たとえば、12μm程度の厚みで形成し、その上にノンドープn層3aをエピタキシャル成長により、たとえば、3μmの厚みで形成する。このノンドープn層3aの表面に、後工程の多段エピタキシャル層の各段毎の正確な重ね合わせの際に必要となるアライメントマーク(図示しない)を形成する。
図4に示すように、前記ノンドープn層3aにn型不純物、たとえば、リンを全面に破線に示す深さにイオン注入4aし、続いて形成した所要のレジストパターンをマスクにしてp型不純物、たとえば、ボロンを選択的にレジストマスク6a開口部からイオン注入5aする。この時、後の拡散を考慮してレジストマスク6aの開口部幅は残し幅(マスク幅)の1/4程度とする。それに応じて各pn領域のチャージバランスを等しくするために、ボロンの注入量はn型不純物の4倍程度とする。
その後、図5に示すように、ノンドープn層3bをエピタキシャル成長によりたとえば、7μmの厚みで形成し、再度同様にn型およびp型のイオン注入4b、5bをフォトリソグラフィ技術を用いて前回と同じ場所に正確に重ねるように行う。その後、図6に示すように、たとえば、総エピタキシャル層厚が36μmになるように、さらにノンドープエピタキシャル成長とイオン注入4c、5c、4d、5dを2回繰り返し行う。
その後、図7に示すように、1×1014cm−3の不純物濃度のn低ドープエピタキシャル成長により、n低濃度エピタキシャル層3eをたとえば、7μmの厚みで形成する。このn低ドープエピタキシャル成長は具体的には順に、昇温過程、水素アニール、低ドープエピタキシャル成長、降温過程工程を含む。その後、図8に示すように、レジストマスク6eにより周縁耐圧構造部200を覆い、n型不純物、たとえば、リンをイオン注入4eし、図9に示すように、レジストマスク6fによりp型不純物、たとえば、ボロンをレジスト開口部からイオン注入5eする。この時、周縁耐圧構造部200をレジストマスク6eで覆い、さらに後の拡散を考慮してレジストマスク6fの開口幅は残し幅の1/4程度とし、それに応じて注入量はn型不純物の4倍程度とする。
レジストマスク6e、6fの除去後、図10に示すように、再度1×1014cm−3の不純物濃度のn低ドープエピタキシャル成長により、たとえば、n低濃度エピタキシャル層3fを7μmの厚みで形成し、再度前述と同様に、フォトリソグラフィ技術を用いてn型およびp型のイオン注入4f、5fを行う。最後に、図11に示すように、たとえば、5μm程度の厚さのn低濃度エピタキシャル層3gで前記n低濃度エピタキシャル層3fの表面をキャップした後、図12に示すように、熱拡散処理によりイオン注入した不純物の活性化と熱拡散を行って並列pn領域4、5と周縁耐圧構造部200のn低濃度エピタキシャル層3とを含む超接合構造部10を形成する。
ここで、前述の各段階のn低濃度エピタキシャル層3e、3f、3gの成長の際に、本発明の実施例1にかかる製造方法の特徴として、n型ドープガス、たとえば、PH(フォスフィン)をシリコンソースガス、たとえば、DCS(ジクロロシラン)よりも早くエピタキシャル成長ラインへ導入することが重要である。前記n型ドープガス導入のタイミングは、たとえば、シリコンソースガスよりも20秒程度以上早くエピタキシャル成長ラインへ導入することが好ましい。
その結果、周縁耐圧構造部200のn低濃度エピタキシャル層3の厚さ19μmを3回のn低ドープエピタキシャル成長(7μm、7μm、5μm)により形成する際に、図13に示す、従来のn低濃度エピタキシャル層の積層界面において不純物濃度変動ピーク幅を有する不純物濃度分布図に示すような、2×1013cm−3前後の濃度変動が前述の実施例1の周縁耐圧構造部のn低濃度エピタキシャル層3では無くなることが分かった。従って、n低濃度エピタキシャル層3を、深さ方向に一様な不純物濃度であって、狙いとする不純物濃度で作製ことができ、耐圧ばらつきを小さくすることができるので、超接合半導体装置の耐圧良品率の低下を防ぐことができる。
実施例2では、nSi基板1および低濃度n層2上にn型およびp型カラムが交互に配置された超接合構造部10を備え、周縁耐圧構造部の素子表面から所定の深さのn低濃度エピタキシャル層3を備える超接合半導体装置について、実施例1とは異なる製造方法を説明する。
図3から図12は、図1、2に示す超接合半導体装置(超接合MOSFET)の製造工程を順に示す断面模式図である。実施例1と同様にして超接合MOSFETが製造される。実施例1の超接合MOSFETの製造方法と異なる点は、実施例2では、n低濃度エピタキシャル層3e、3f、3gの成長の際に、水素アニール温度と低ドープエピタキシャル成長開始温度を1100℃未満にすることである。ただし、エピタキシャル成長が一旦開始されれば、成長層が蒸発元の表面に蓋をすることになり、再蒸発およびオートドーピングは抑制されるので、エピタキシャル成長温度は成長途中から開始温度以上(1100℃以上)に上昇させることが好ましい。その結果、実施例2にかかる製造方法では、素子活性部において、イオン注入された不純物の再蒸発を抑制でき、また、周縁耐圧構造部においてオートドープが実質的に起らないことが分かった。
以下、実施例2の場合の発明の効果について、図面を参照して説明する、図14に水素アニール温度と不純物の蒸発量およびばらつきとの間の関係図を示す。図14は、イオン注入された不純物の蒸発とイオン注入された不純物の面内ばらつきは1100℃以上で非常に大きくなるが、1000℃未満では蒸発および面内ばらつきが共にほとんど無いことを示している。従って、低ドープエピタキシャル成長の開始時には、エピタキシャル成長温度を1100℃未満、好ましくは1000℃未満、たとえば、950℃にすることが好ましい。その結果、n型カラムとp型カラムにおいて狙いとする不純物濃度を得ることができ、n型カラムとp型カラムのチャージバランスばらつきを低減することができる。また、素子周縁部においてオートドープが起ることなく、設計濃度どおりのn低濃度エピタキシャル層を形成することができる。従って、耐電荷性の高い周縁耐圧構造部とすることができ、耐圧バラツキが小さくなるので、耐圧良品率の良い超接合構造部半導体素子を作製することができる。
さらに、前述の実施例1にかかるn低濃度エピタキシャル層の成長の際に、n型ドープガス導入をシリコンソースガスよりも20秒程度以上早くエピタキシャル成長ラインへ導入する方法と、実施例2にかかるn低濃度エピタキシャル層の成長の際に、水素アニール温度と低ドープエピタキシャル成長開始温度を1100℃未満にする方法とを共に実施する超接合半導体装置の製造方法とすることが本発明の効果を達成するために、より望ましい。
1 nSi基板
2 低濃度n
3 n低濃度エピタキシャル層
3a、3b、3c、3d ノンドープエピタキシャル層
3e、3f、3g n低濃度エピタキシャル層
4 nドリフト領域(n型カラム)
5 p型の仕切領域(p型カラム)
6 レジストマスク
7 ガードリング
8 絶縁膜
9 導電性プレート
10 超接合構造部
11 p型チャネルストッパー
12 導電性プレート
13 pベース領域
14 nエミッタ領域
15 ゲート絶縁膜
16 ゲート電極
17 エミッタ電極
100 素子活性部
200 周縁耐圧構造部

Claims (7)

  1. 高濃度第1導電型半導体基板上に、前記半導体基板の主面に垂直方向に長い形状であって、主面に平行方向では交互に隣接配置される第1導電型領域と第2導電型領域からなる超接合構造部を、ドリフト層として備える主電流が流れる素子活性部と、前記超接合構造部とその上に第1導電型低濃度エピタキシャル層を備える前記素子活性部を取り巻く周縁耐圧構造部と、を備える超接合半導体装置の製造方法において、
    ノンドープエピタキシャル成長と第1導電型不純物および第2導電型不純物の選択的イオン注入とを複数回繰り返して積み重ねる第1積層層形成工程と、前記第1積層層上に、第1導電型不純物をドープしながらの第1導電型低ドープエピタキシャル成長と第1導電型不純物および第2導電型不純物の選択的イオン注入とを複数回繰り返して積み重ねる第2積層層形成工程と、を備え、
    前記第1導電型低ドープエピタキシャル成長する際に、第1導電型不純物のドープガスを半導体ソースガスよりも早くエピタキシャル成長ラインへ導入することを特徴とする超接合半導体装置の製造方法。
  2. 高濃度第1導電型半導体基板上に、前記半導体基板の主面に垂直方向に長い形状であって、主面に平行方向では交互に隣接配置される第1導電型領域と第2導電型領域からなる超接合構造部を、ドリフト層として備える主電流が流れる素子活性部と、前記超接合構造部とその上に第1導電型低濃度エピタキシャル層を備える前記素子活性部を取り巻く周縁耐圧構造部と、を備える超接合半導体装置の製造方法において、
    ノンドープエピタキシャル成長と第1導電型不純物および第2導電型不純物の選択的イオン注入とを複数回繰り返して積み重ねる第1積層層形成工程と、前記第1積層層上に、第1導電型不純物をドープしながらの第1導電型低ドープエピタキシャル成長と第1導電型不純物および第2導電型不純物の選択的イオン注入とを複数回繰り返して積み重ねる第2積層層形成工程と、を備え、
    前記第1導電型低ドープエピタキシャル成長前の水素アニール温度とエピタキシャル成長の開始温度とを1100℃未満にすることを特徴とする超接合半導体装置の製造方法。
  3. 高濃度第1導電型半導体基板上に、前記半導体基板の主面に垂直方向に長い形状であって、主面に平行方向では交互に隣接配置される第1導電型領域と第2導電型領域からなる超接合構造部を、ドリフト層として備える主電流が流れる素子活性部と、前記超接合構造部とその上に第1導電型低濃度エピタキシャル層を備える前記素子活性部を取り巻く周縁耐圧構造部と、を備える超接合半導体装置の製造方法において、
    ノンドープエピタキシャル成長と第1導電型不純物および第2導電型不純物の選択的イオン注入とを複数回繰り返して積み重ねる第1積層層形成工程と、前記第1積層層上に、第1導電型不純物をドープしながらの第1導電型低ドープエピタキシャル成長と第1導電型不純物および第2導電型不純物の選択的イオン注入とを複数回繰り返して積み重ねる第2積層層形成工程と、を備え、
    前記第1導電型低ドープエピタキシャル成長する際に、前記第1導電型ドープガスを半導体ソースガスよりも早くエピタキシャル成長ラインへ導入するとともに、前記第1導電型低ドープエピタキシャル成長前の水素アニール温度とエピタキシャル成長の開始温度を1100℃未満にすることを特徴とする超接合半導体装置の製造方法。
  4. 前記第1導電型低ドープエピタキシャル成長前の水素アニール温度とエピタキシャル成長を1000℃未満で開始した後、1100℃以上でエピタキシャル成長することを特徴とする請求項2または3に記載の超接合半導体装置の製造方法。
  5. 第1導電型ドープガスを半導体ソースガスよりも20秒以上早くエピタキシャル成長ラインへ導入することを特徴とする請求項1または3に記載の超接合半導体装置の製造方法。
  6. 前記第1導電型低濃度エピタキシャル層の不純物濃度が0.8×10 14 cm −3 〜1.2×10 14 cm −3 であることを特徴とする請求項1ないし5のいずれか一項に記載の超接合半導体装置の製造方法。
  7. 前記水素アニールを950℃〜1000℃未満で行うことを特徴とする請求項2〜6のいずれか一項に記載の超接合半導体装置の製造方法。
JP2010058066A 2010-03-15 2010-03-15 超接合半導体装置の製造方法 Expired - Fee Related JP5533067B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010058066A JP5533067B2 (ja) 2010-03-15 2010-03-15 超接合半導体装置の製造方法
CN201110054890.0A CN102194700B (zh) 2010-03-15 2011-03-07 超级结半导体器件的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010058066A JP5533067B2 (ja) 2010-03-15 2010-03-15 超接合半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2011192823A JP2011192823A (ja) 2011-09-29
JP5533067B2 true JP5533067B2 (ja) 2014-06-25

Family

ID=44602543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010058066A Expired - Fee Related JP5533067B2 (ja) 2010-03-15 2010-03-15 超接合半導体装置の製造方法

Country Status (2)

Country Link
JP (1) JP5533067B2 (ja)
CN (1) CN102194700B (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102881595B (zh) * 2012-08-17 2015-10-28 西安龙腾新能源科技发展有限公司 一种超结高压功率器件的制造方法
CN104517853A (zh) * 2014-05-15 2015-04-15 上海华虹宏力半导体制造有限公司 超级结半导体器件制造方法
CN105679660B (zh) * 2016-01-29 2018-04-17 上海华虹宏力半导体制造有限公司 沟槽型超级结的制造方法
CN105977161A (zh) * 2016-06-21 2016-09-28 中航(重庆)微电子有限公司 超结结构及其制备方法
CN107611167A (zh) * 2017-08-21 2018-01-19 无锡新洁能股份有限公司 一种具有多个浓度中心的超结半导体器件及其制造方法
CN107845570B (zh) * 2017-11-09 2019-02-12 四川广瑞半导体有限公司 绝缘栅双极型晶体管的硅外延片生产工艺
CN112382560A (zh) * 2020-11-12 2021-02-19 重庆万国半导体科技有限公司 一种多层外延减压生长方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3086836B2 (ja) * 1991-04-27 2000-09-11 ローム株式会社 半導体装置の製造方法
JP3851744B2 (ja) * 1999-06-28 2006-11-29 株式会社東芝 半導体装置の製造方法
JP4765012B2 (ja) * 2000-02-09 2011-09-07 富士電機株式会社 半導体装置及びその製造方法
JP3636345B2 (ja) * 2000-03-17 2005-04-06 富士電機デバイステクノロジー株式会社 半導体素子および半導体素子の製造方法
JP3731520B2 (ja) * 2001-10-03 2006-01-05 富士電機デバイステクノロジー株式会社 半導体装置及びその製造方法
JP3743395B2 (ja) * 2002-06-03 2006-02-08 株式会社デンソー 半導体装置の製造方法及び半導体装置
JP4289123B2 (ja) * 2003-10-29 2009-07-01 富士電機デバイステクノロジー株式会社 半導体装置
JP4773716B2 (ja) * 2004-03-31 2011-09-14 株式会社デンソー 半導体基板の製造方法
JP2006005275A (ja) * 2004-06-21 2006-01-05 Toshiba Corp 電力用半導体素子
JP4940546B2 (ja) * 2004-12-13 2012-05-30 株式会社デンソー 半導体装置
JP5015440B2 (ja) * 2005-09-29 2012-08-29 株式会社デンソー 半導体基板の製造方法
WO2007048393A2 (de) * 2005-10-24 2007-05-03 Infineon Technologies Austria Ag Halbleiterbauelement mit ladungskompensationsstruktur und verfahren zur herstellung desselben
JP5052025B2 (ja) * 2006-03-29 2012-10-17 株式会社東芝 電力用半導体素子
US7737469B2 (en) * 2006-05-16 2010-06-15 Kabushiki Kaisha Toshiba Semiconductor device having superjunction structure formed of p-type and n-type pillar regions
JP4564510B2 (ja) * 2007-04-05 2010-10-20 株式会社東芝 電力用半導体素子
JP4621708B2 (ja) * 2007-05-24 2011-01-26 株式会社東芝 半導体装置及びその製造方法
JP5476689B2 (ja) * 2008-08-01 2014-04-23 富士電機株式会社 半導体装置の製造方法
US8530300B2 (en) * 2010-07-23 2013-09-10 Infineon Technologies Austria Ag Semiconductor device with drift regions and compensation regions

Also Published As

Publication number Publication date
JP2011192823A (ja) 2011-09-29
CN102194700B (zh) 2014-02-26
CN102194700A (zh) 2011-09-21

Similar Documents

Publication Publication Date Title
JP5985789B2 (ja) 超接合半導体装置の製造方法
JP5560931B2 (ja) 超接合半導体装置の製造方法
JP5533067B2 (ja) 超接合半導体装置の製造方法
JP4980663B2 (ja) 半導体装置および製造方法
JP2019208074A (ja) 半導体装置
JP6855793B2 (ja) 半導体装置
JP7029710B2 (ja) 半導体装置
JP2009094203A (ja) 炭化珪素半導体装置
JP2016127245A (ja) 半導体装置および半導体装置の製造方法
JP2011204796A (ja) 半導体装置およびその製造方法
JP2009088005A (ja) 半導体装置およびその製造方法
JP6375743B2 (ja) 半導体装置の製造方法
JP6345378B1 (ja) 半導体装置
US10424637B2 (en) Method of manufacturing semiconductor device
TWI802811B (zh) 半導體裝置
JP2011146426A (ja) 炭化珪素半導体装置およびその製造方法
JP5757355B2 (ja) 超接合半導体装置の製造方法
JP2007005657A (ja) 半導体装置及び半導体装置の製造方法
JP5556293B2 (ja) 超接合半導体装置の製造方法
JP2019021788A (ja) 半導体装置および半導体装置の製造方法
JP5719899B2 (ja) 半導体装置
TW201709507A (zh) 半導體裝置及半導體裝置之製造方法
JP5386120B2 (ja) 半導体装置および半導体装置の製造方法
JP7288827B2 (ja) 半導体装置の製造方法
WO2022118976A1 (ja) 超接合半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5533067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees