CN112382560A - 一种多层外延减压生长方法 - Google Patents

一种多层外延减压生长方法 Download PDF

Info

Publication number
CN112382560A
CN112382560A CN202011264301.7A CN202011264301A CN112382560A CN 112382560 A CN112382560 A CN 112382560A CN 202011264301 A CN202011264301 A CN 202011264301A CN 112382560 A CN112382560 A CN 112382560A
Authority
CN
China
Prior art keywords
reduced
epitaxial
pressure
reaction cavity
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011264301.7A
Other languages
English (en)
Inventor
侯龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Wanguo Semiconductor Technology Co ltd
Original Assignee
Chongqing Wanguo Semiconductor Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Wanguo Semiconductor Technology Co ltd filed Critical Chongqing Wanguo Semiconductor Technology Co ltd
Priority to CN202011264301.7A priority Critical patent/CN112382560A/zh
Publication of CN112382560A publication Critical patent/CN112382560A/zh
Priority to PCT/CN2021/125608 priority patent/WO2022100408A1/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67288Monitoring of warpage, curvature, damage, defects or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明公开了多层外延减压生长方法,涉及超级结型功率器件外延生长技术领域,包括如下步骤:A、减压外延生长设备的反应腔前处理;B、外延减压生长步骤;C、每重复步骤A、B 3~5次后进行一次图形刻蚀步骤;D、图形刻蚀的后处理。减压外延工艺比普通外延工艺时间减少10%以上,设备产能提升可达30%以上,本申请所指减压外延工艺对图形的保形更好,可以减少超级结型功率器件两道光刻工艺,本申请所指减压外延低温工艺使wafer的翘曲改善,更利于后续工艺。

Description

一种多层外延减压生长方法
技术领域
本发明涉及超级结型功率器件外延生长技术领域,尤其涉及一种多层外延减压生长方法。
背景技术
超级结型功率器件外延生长与普通功率器件外延生长不同,需要生长多层外延(一般都要求在八层以上)。多层外延对外延的图形畸变、图形漂移、滑移线(Slip line) 以及晶圆曲率半径都有更高的要求,尤其是12寸硅片由于其尺寸的变大,导致其比小尺寸硅片更易变形,这就对设备和工艺都提出了更高更严苛的要求。
产品开发初期因为常压工艺高成长速率的特性,一般采用的是常压外延,但由于现有常压(AP)外延设备在多层外延超级结产品应用中多层外延需要图形对准,容易产生图形畸变、图形漂移性能差;而如果为解决优化图形畸变和漂移的问题,根据常压外延工艺的特性,只能提高外延工艺的温度,又会导致整个12寸硅片的变形、滑移线的问题变得很突出,并且,为了改善硅片变形、滑移线的问题,需要更平缓的温度变化过程,这又会导致每片wafer的工艺时间变长;无论是单杂质注入还是双杂质注入的多次外延超结工艺,外延导致的图形畸变、图形漂移会对后续光刻对准工艺提出极大挑战,如果对准差别台大会导致掺杂不平衡而影响产品良率。
发明内容
为解决现有技术中的缺陷,本发明的目的在于提供一种多层外延减压生长方法。
本发明的目的是通过以下技术方案实现的:一种多层外延减压生长方法,包括如下步骤:
A、减压外延生长设备的反应腔前处理;
B、外延减压生长步骤;
C、每重复步骤A、B 3~5次后进行一次图形刻蚀步骤;
D、图形刻蚀的后处理。
优选地,所述步骤A具体包括如下步骤:
步骤S1、将减压外延生长设备的反应腔升温至1150~1190℃,向反应腔体内通入高纯HCL气体清洁腔体以及载片基座上残余的沉积层,去除反应腔体内部的杂质,基座转速为25转/分钟;
步骤S2、向反应腔体内通入高纯H2同时将反应腔体内的温度降温至700~900℃,基座转速降为0。
优选地,所述高纯H2的流量为50~90L/min。
优选地,所述步骤B具体包括如下步骤:
步骤S3、将单晶硅片装载到载片基座上,将基座转速升至35转/分钟;
所述单晶硅片的尺寸为12寸;
步骤S4、将反应腔体内的压力从大气压降低至30~130Torr,同时将反应腔升温至1000~1150℃,载气高纯H2的流量为40~80L/min;
步骤S5、预流DCS气体,然后将DCS气体通入反应腔生长外延得到晶圆;
所述DCS气体预流时间大于或等于至少20s,外延的生长速率为0.5~2.0um/min;
步骤S6、停止对反应腔体抽真空,使反应腔体内的压强回到大气压,同时将反应腔降温至900℃以下,取出外延片。
优选地,步骤步骤S4反应腔升温的速度为2~8℃/秒。
优选地,所述步骤S4中反应腔体内的压力从大气压降低至50~100Torr,同时反应腔升温至1050~1130℃。
优选地,所述步骤S4中反应腔体内的压力从大气压降低至75Torr,同时反应腔升温至1110℃。
优选地,所述步骤C具体包括如下步骤:
步骤S7、每次步骤A、B后需要在外延图形片在设计区域注入需要掺杂的N型及P型;并去除并清洗光刻和离子注入所引入的光刻胶,氧化层及其他杂质;
步骤S8、重复步骤A、B 3~5次后将生长完外延的晶圆通过光刻和刻蚀做图形;并去除并清洗光刻、刻蚀或离子注入所引入的光刻胶,氧化层及其他杂质。
优选地,所述图形的深度为0.8~1.5um。
综上所述,与现有技术相比,本发明具有如下的有益效果:
(1)减压外延工艺比现有普通外延工艺时间减少,设备产能提升约31.1%;
(2)减压外延工艺对图形的保形更好,可以减少超级结型功率器件两道光刻工艺;
(3)减压外延低温工艺使wafer的翘曲改善,更利于后续工艺。
附图说明
通过参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明实施例1一种沟槽功率器件与源极电容集成的结构示意图;图2为本发明实施例1一种沟槽功率器件与源极电容集成与普通工艺得到的沟槽功率器件与源极电容集成的曲率半径对比图。
具体实施方式
以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进,这些都属于本发明的保护范围。在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开,下面结合具体实施例对本发明进行详细说明:
实施例1
一种沟槽功率器件与源极电容集成及其制造方法,包括如下步骤:
步骤S1、将减压外延生长设备的反应腔升温至1150℃,向反应腔体内通入高纯HCL气体清洁腔体以及载片基座上残余的沉积层,去除反应腔体内部的杂质,此时基座转速为25转/分钟。
步骤S2、向反应腔体内通入高纯H2吹扫反应腔体内残留的HCl气体及反应产物,同时将反应腔体内的温度降温至700℃,基座转速降为0;高纯H2的流量为50L/min。
步骤S3、将12寸单晶硅片装载到载片基座上,将基座转速升至35转/分钟。
步骤S4、将反应腔体内的压力从大气压降低至30Torr,同时将反应腔升温至1150℃,升温速度为8℃/秒,载气高纯H2的流量为40L/min。
步骤S5、预流DCS气体至少20秒钟,然后将DCS气体通入反应腔生长第一层本征外延,生长速率为0.5~2.0um/min。
步骤S6、外延层生长完成后,停止对反应腔体抽真空,使反应腔体内的压强回到大气压,同时将反应腔降温至900℃以下,取出外延片。
步骤S7、重复步骤S1~S63次后,每次步骤A、B后在外延图形片在设计区域注入需要掺杂的N型及P型;并去除并清洗光刻和离子注入所引入的光刻胶,氧化层及其他杂质。
步骤S8、将生长完外延的晶圆通过光刻和刻蚀图形,图形深度为0.8um;去除并清洗光刻,刻蚀或离子注入所引入的光刻胶,氧化层及其他杂质。
重复步骤S1~S6做第二层外延即可。
技术效果:减压外延工艺比常压外延工艺时间减少10.6%,设备产能提升约30.2%,如图1所示,减压外延工艺对图形的保形更好,可以减少超级结型功率器件两道光刻工艺,如图2所示,减压外延低温工艺使wafer的翘曲改善,更利于后续工艺。
实施例2
一种沟槽功率器件与源极电容集成及其制造方法,包括如下步骤:
步骤S1、将减压外延生长设备的反应腔升温至1175℃,向反应腔体内通入高纯HCL气体清洁腔体以及载片基座上残余的沉积层,去除反应腔体内部的杂质,此时基座转速为25转/分钟。
步骤S2、向反应腔体内通入高纯H2吹扫反应腔体内残留的HCl气体及反应产物,同时将反应腔体内的温度降温至800℃,基座转速降为0;高纯H2的流量为75L/min。
步骤S3、将12寸单晶硅片装载到载片基座上,将基座转速升至35转/分钟。
步骤S4、将反应腔体内的压力从大气压降低至80Torr,同时将反应腔升温至1100℃,升温速度为5℃/秒,载气高纯H2的流量为60L/min。
步骤S5、预流DCS气体至少20秒钟,然后将DCS气体通入反应腔生长第一层本征外延,生长速率为0.5~2.0um/min。
步骤S6、外延层生长完成后,停止对反应腔体抽真空,使反应腔体内的压强回到大气压,同时将反应腔降温至900℃以下,取出外延片。
步骤S7、重复步骤S1~S64次后,每次步骤A、B后在外延图形片在设计区域注入需要掺杂的N型及P型;并去除并清洗光刻和离子注入所引入的光刻胶,氧化层及其他杂质。
步骤S8、将生长完外延的晶圆通过光刻和刻蚀图形,图形深度为1.1um;去除并清洗光刻,刻蚀或离子注入所引入的光刻胶,氧化层及其他杂质。
重复步骤S1~S6做第二层外延。
技术效果:减压外延工艺比普通外延工艺时间减少12.8%,设备产能提升约31.1%,减压外延工艺对图形的保形更好,可以减少超级结型功率器件两道光刻工艺,减压外延低温工艺使wafer的翘曲改善,更利于后续工艺。
实施例3
一种沟槽功率器件与源极电容集成及其制造方法,包括如下步骤:
步骤S1、将减压外延生长设备的反应腔升温至1190℃,向反应腔体内通入高纯HCL气体清洁腔体以及载片基座上残余的沉积层,去除反应腔体内部的杂质,此时基座转速为25转/分钟。
步骤S2、向反应腔体内通入高纯H2吹扫反应腔体内残留的HCl气体及反应产物,同时将反应腔体内的温度降温至900℃,基座转速降为0;高纯H2的流量为90L/min。
步骤S3、将12寸单晶硅片装载到载片基座上,将基座转速升至35转/分钟。
步骤S4、将反应腔体内的压力从大气压降低至130Torr,同时将反应腔升温至1000℃,升温速度为2℃/秒,载气高纯H2的流量为80L/min。
步骤S5、预流DCS气体至少20秒钟,然后将DCS气体通入反应腔生长第一层本征外延,生长速率为0.5~2.0um/min。
步骤S6、外延层生长完成后,停止对反应腔体抽真空,使反应腔体内的压强回到大气压,同时将反应腔降温至900℃以下,取出外延片。
步骤S7、重复步骤S1~S65次后,每次步骤A、B后在外延图形片在设计区域注入需要掺杂的N型及P型;并去除并清洗光刻和离子注入所引入的光刻胶,氧化层及其他杂质。
步骤S8、将生长完外延的晶圆通过光刻和刻蚀图形,图形深度为1.5um;去除并清洗光刻,刻蚀或离子注入所引入的光刻胶,氧化层及其他杂质。
重复步骤S1~S6做第二层外延。
技术效果:减压外延工艺比普通外延工艺时间减少11.0%,设备产能提升约30.5%,减压外延工艺对图形的保形更好,可以减少超级结型功率器件两道光刻工艺,减压外延低温工艺使wafer的翘曲改善,更利于后续工艺。
实施例4
一种沟槽功率器件与源极电容集成及其制造方法,与实施例2的区别之处在于,所述步骤S4中反应腔体内的压力从大气压降低至50Torr,同时反应腔升温至1130℃。
其他操作步骤基本相同,技术效果:最终减压外延工艺比普通外延工艺时间减少11.5%,设备产能提升约30.1%,减压外延工艺对图形的保形更好,可以减少超级结型功率器件两道光刻工艺,减压外延低温工艺使wafer的翘曲改善,更利于后续工艺。
使wafer的翘曲改善,更利于后续工艺。
实施例5
一种沟槽功率器件与源极电容集成及其制造方法,与实施例2的区别之处在于,所述步骤S4中反应腔体内的压力从大气压降低至100Torr,同时反应腔升温至1050℃。
其他操作步骤基本相同,技术效果:最终减压外延工艺比普通外延工艺时间减少12.1%,设备产能提升约31.0%,减压外延工艺对图形的保形更好,可以减少超级结型功率器件两道光刻工艺,减压外延低温工艺使wafer的翘曲改善,更利于后续工艺。
使wafer的翘曲改善,更利于后续工艺。
实施例6
一种沟槽功率器件与源极电容集成及其制造方法,与实施例2的区别之处在于,所述步骤S4中反应腔体内的压力从大气压降低至75Torr,同时反应腔升温至1110℃。
其他操作步骤基本相同,技术效果:最终减压外延工艺比普通外延工艺时间减少13.7%,设备产能提升约32.9%,减压外延工艺对图形的保形更好,可以减少超级结型功率器件两道光刻工艺,减压外延低温工艺使wafer的翘曲改善,更利于后续工艺。
对比例1
一种沟槽功率器件与源极电容集成及其制造方法,与实施例1的区别之处在于,所述步骤S4中反应腔体内的压力从大气压降低至25Torr,同时反应腔升温至1150℃。
其他操作步骤基本相同,技术效果:减压外延工艺比普通外延工艺时间减少5.2%,设备产能提升约18.2%。
对比例2
一种沟槽功率器件与源极电容集成及其制造方法,与实施例1的区别之处在于,所述步骤S4中反应腔体内的压力从大气压降低至30Torr,同时反应腔升温至1200℃。
其他操作步骤基本相同,技术效果:减压外延工艺比普通外延工艺时间减少4.6%,设备产能提升约17.2%。
对比例3
一种沟槽功率器件与源极电容集成及其制造方法,与实施例3的区别之处在于,所述步骤S4中反应腔体内的压力从大气压降低至140Torr,同时反应腔升温至1000℃。
其他操作步骤基本相同,技术效果:减压外延工艺比普通外延工艺时间减少4.7%,设备产能提升约21.9%
对比例4
一种沟槽功率器件与源极电容集成及其制造方法,与实施例3的区别之处在于,所述步骤S4中反应腔体内的压力从大气压降低至130Torr,同时反应腔升温至950℃。
其他操作步骤基本相同,技术效果:减压外延工艺比普通外延工艺时间减少6.1%,设备产能提升约20.9%
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (9)

1.一种多层外延减压生长方法,其特征在于,包括如下步骤:
A、减压外延生长设备的反应腔前处理;
B、外延减压生长步骤;
C、每重复步骤A、B 3~5次后进行一次图形刻蚀步骤;
D、图形刻蚀的后处理。
2.根据权利要求1所述的沟槽功率器件与源极电容集成的制造方法,其特征在于,所述步骤A具体包括如下步骤:
步骤S1、将减压外延生长设备的反应腔升温至1150~1190℃,向反应腔体内通入高纯HCL气体,基座转速为25转/分钟;
步骤S2、向反应腔体内通入高纯H2同时将反应腔体内的温度降温至700~900℃,基座转速降为0。
3.根据权利要求2所述的沟槽功率器件与源极电容集成的制造方法,其特征在于,所述高纯H2的流量为50~90L/min。
4.根据权利要求1所述的沟槽功率器件与源极电容集成的制造方法,其特征在于,所述步骤B具体包括如下步骤:
步骤S3、将单晶硅片装载到载片基座上,将基座转速升至35转/分钟;
所述单晶硅片的尺寸为12寸;
步骤S4、将反应腔体内的压力从大气压降低至30~130Torr,同时将反应腔升温至1000~1150℃,载气高纯H2的流量为40~80L/min;
步骤S5、预流硅源气体,然后将硅源气体通入反应腔生长外延得到晶圆;
所述硅源气体为DCS气体,所述硅源气体的预流时间大于或等于至少20s,外延的生长速率为0.5~2.0um/min;
步骤S6、停止对反应腔体抽真空,使反应腔体内的压强回到大气压,同时将反应腔降温至900℃以下,取出外延片。
5.根据权利要求4所述的沟槽功率器件与源极电容集成的制造方法,其特征在于,所述步骤S4中反应腔升温的速度为2~8℃/秒。
6.根据权利要求4所述的沟槽功率器件与源极电容集成的制造方法,其特征在于,所述步骤S4中反应腔体内的压力从大气压降低至50~100Torr,同时反应腔升温至1050~1130℃。
7.根据权利要求6所述的沟槽功率器件与源极电容集成的制造方法,其特征在于,所述步骤S4中反应腔体内的压力从大气压降低至75Torr,同时反应腔升温至1110℃。
8.根据权利要求1所述的沟槽功率器件与源极电容集成的制造方法,其特征在于,所述步骤C具体包括如下步骤:
步骤S7、每次步骤A、B后需要在外延图形片在设计区域注入需要掺杂的N型及P型;并去除并清洗光刻和离子注入所引入的光刻胶,氧化层及其他杂质;
步骤S8、重复步骤A、B 3~5次后将生长完外延的晶圆通过光刻和刻蚀做图形;并去除并清洗光刻、刻蚀或离子注入所引入的光刻胶,氧化层及其他杂质。
9.根据权利要求8所述的沟槽功率器件与源极电容集成的制造方法,其特征在于,所述图形的深度为0.8~1.5um。
CN202011264301.7A 2020-11-12 2020-11-12 一种多层外延减压生长方法 Pending CN112382560A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011264301.7A CN112382560A (zh) 2020-11-12 2020-11-12 一种多层外延减压生长方法
PCT/CN2021/125608 WO2022100408A1 (zh) 2020-11-12 2021-10-22 一种多层外延减压生长方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011264301.7A CN112382560A (zh) 2020-11-12 2020-11-12 一种多层外延减压生长方法

Publications (1)

Publication Number Publication Date
CN112382560A true CN112382560A (zh) 2021-02-19

Family

ID=74583581

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011264301.7A Pending CN112382560A (zh) 2020-11-12 2020-11-12 一种多层外延减压生长方法

Country Status (2)

Country Link
CN (1) CN112382560A (zh)
WO (1) WO2022100408A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022100408A1 (zh) * 2020-11-12 2022-05-19 重庆万国半导体科技有限公司 一种多层外延减压生长方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192823A (ja) * 2010-03-15 2011-09-29 Fuji Electric Co Ltd 超接合半導体装置の製造方法
CN102479805A (zh) * 2010-11-30 2012-05-30 比亚迪股份有限公司 一种超级结半导体元件及其制造方法
CN103820849A (zh) * 2012-11-16 2014-05-28 有研半导体材料股份有限公司 一种减压生产12寸单晶硅外延片的工艺
CN109065612A (zh) * 2018-09-12 2018-12-21 深圳尚阳通科技有限公司 一种超级结mosfet结构及其制造方法
CN110379704A (zh) * 2019-07-19 2019-10-25 中国电子科技集团公司第四十六研究所 一种高压功率器件用硅外延片的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068420A (ja) * 1999-08-30 2001-03-16 Komatsu Electronic Metals Co Ltd エピタキシャルシリコンウエハの製造方法
CN103811328B (zh) * 2014-03-05 2016-06-22 上海先进半导体制造股份有限公司 防止多层外延生长时背面形成多晶颗粒的方法及背封结构
CN108447772B (zh) * 2018-03-23 2020-08-04 南京国盛电子有限公司 一种coolmos用硅外延片的制造方法
CN112382560A (zh) * 2020-11-12 2021-02-19 重庆万国半导体科技有限公司 一种多层外延减压生长方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192823A (ja) * 2010-03-15 2011-09-29 Fuji Electric Co Ltd 超接合半導体装置の製造方法
CN102479805A (zh) * 2010-11-30 2012-05-30 比亚迪股份有限公司 一种超级结半导体元件及其制造方法
CN103820849A (zh) * 2012-11-16 2014-05-28 有研半导体材料股份有限公司 一种减压生产12寸单晶硅外延片的工艺
CN109065612A (zh) * 2018-09-12 2018-12-21 深圳尚阳通科技有限公司 一种超级结mosfet结构及其制造方法
CN110379704A (zh) * 2019-07-19 2019-10-25 中国电子科技集团公司第四十六研究所 一种高压功率器件用硅外延片的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022100408A1 (zh) * 2020-11-12 2022-05-19 重庆万国半导体科技有限公司 一种多层外延减压生长方法

Also Published As

Publication number Publication date
WO2022100408A1 (zh) 2022-05-19

Similar Documents

Publication Publication Date Title
US7319251B2 (en) Bipolar transistor
US8119494B1 (en) Defect-free hetero-epitaxy of lattice mismatched semiconductors
WO2018120731A1 (zh) 硅外延片的制造方法
US20070148919A1 (en) Multi-step epitaxial process for depositing Si/SiGe
US20060289959A1 (en) Yield improvement in silicon-germanium epitaxial growth
US10529857B2 (en) SiGe source/drain structure
KR101559977B1 (ko) 실리콘 에피텍셜 웨이퍼 및 그 제조방법
CN112382560A (zh) 一种多层外延减压生长方法
US10068997B1 (en) SiGe heterojunction bipolar transistor with crystalline raised base on germanium etch stop layer
KR100430404B1 (ko) 구조 선택적 에피택시얼 성장 기술 및 선택적 실리콘 식각기술을 사용한 단결정 실리콘 패턴 형성 방법
US5895248A (en) Manufacture of a semiconductor device with selectively deposited semiconductor zone
JP7231120B2 (ja) エピタキシャルウェーハの製造方法
JP2001035794A (ja) 半導体装置の製造方法および製造装置
KR100364813B1 (ko) 반도체 소자의 에피택셜층 형성 방법
KR20090017074A (ko) 에피층 성장방법
CN109698131A (zh) 超级结器件的晶圆背面工艺方法
KR20020028488A (ko) 에피층 성장 방법 및 이를 이용한 트랜지스터 제조 방법
CN114078705B (zh) 一种半导体结构的形成方法
CN115287752B (zh) 一种改善超重掺b硅外延片翘曲度的外延方法
JPH04177825A (ja) エピタキシャル成長方法及び化学気相成長装置
KR100518561B1 (ko) 단결정 실리콘층에의 저메인 가스 전처리를 포함하는바이폴라 소자 제조 방법 및 이에 의한 바이폴라 소자
US10529836B1 (en) SiGe heterojunction bipolar transistor with crystalline raised base on germanium etch stop layer
US6589850B1 (en) Method and system for fabricating a bipolar transistor and related structure
JP6862781B2 (ja) 炭化珪素半導体素子および炭化珪素半導体素子の製造方法
JP2013168562A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210219