WO2016158825A1 - ポリイミドフィルム、ポリイミドワニス、ポリイミドフィルムを用いた製品、及び、積層体 - Google Patents

ポリイミドフィルム、ポリイミドワニス、ポリイミドフィルムを用いた製品、及び、積層体 Download PDF

Info

Publication number
WO2016158825A1
WO2016158825A1 PCT/JP2016/059835 JP2016059835W WO2016158825A1 WO 2016158825 A1 WO2016158825 A1 WO 2016158825A1 JP 2016059835 W JP2016059835 W JP 2016059835W WO 2016158825 A1 WO2016158825 A1 WO 2016158825A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
general formula
film
minutes
polyimide film
Prior art date
Application number
PCT/JP2016/059835
Other languages
English (en)
French (fr)
Inventor
加藤 聡
俊明 長澤
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to KR1020197033494A priority Critical patent/KR102181466B1/ko
Priority to JP2017509954A priority patent/JP6622287B2/ja
Priority to US15/563,480 priority patent/US11078378B2/en
Priority to KR1020177022600A priority patent/KR102052150B1/ko
Priority to EP16772706.4A priority patent/EP3279237A4/en
Priority to CN201680016702.6A priority patent/CN107428934B/zh
Publication of WO2016158825A1 publication Critical patent/WO2016158825A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/1053Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2479/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper

Definitions

  • the present invention relates to a polyimide film, a polyimide varnish, a product using the polyimide film, and a laminate.
  • PET film polyethylene terephthalate film
  • COP film cycloolefin film
  • the PET film described above has the disadvantage that the optical properties are inferior and the visibility is poor, and the COP film is inferior in toughness.
  • polyimide resin has excellent properties such as heat oxidation resistance, heat resistance, heat radiation resistance, low temperature resistance, and chemical resistance. Yes.
  • JP 2006-137881 A Japanese translation of PCT publication 2010-510378 JP 2007-246820 A International Publication No. 2012/11820 Pamphlet Japanese Patent No. 4778659 EP 2032632 Specification US Pat. No. 3,666,709
  • YI yellow degree
  • Patent Document 1 a polyimide film is obtained by adding pyridine as an imidization catalyst and acetic anhydride as a dehydrating agent to a polyimide precursor and drying it, but the polyimide obtained by the residual imidization catalyst There was a problem that coloration and turbidity were likely to remain on the film.
  • polyimide resins having an aromatic ring such as polyimide composed of pyromellitic dianhydride and diaminodiphenyl ether, are colored brown or yellow, have low transmittance in the visible light region, and are transparent.
  • the retardation of the polyimide film (hereinafter referred to as Rth) is as low as possible.
  • Rth the retardation of the polyimide film
  • the polyimide film can be used as, for example, a touch panel material or a film substrate for a flexible device, and is desired to be a material having excellent toughness.
  • the composition of polyimide for reducing YI and Rth and improving toughness is not disclosed in each patent document or non-patent document.
  • polyimide has poor solubility in a solvent due to high aromatic ring density, and it has been difficult to obtain a polyimide film directly from a polyimide solution. Accordingly, a polyimide having a high solubility in a solvent and excellent workability has been desired as the polyimide constituting the polyimide film.
  • the present invention has been made in view of the above-mentioned problems, and is a colorless and transparent polyimide film having low YI and Rth and excellent toughness, a polyimide varnish for producing a polyimide film, a product using the polyimide film, And it aims at providing a laminated body.
  • Another object of the present invention is to provide a polyimide film that has higher alignment accuracy of elements and the like during device manufacture.
  • the polyimide film in the present invention contains a polyimide represented by the following general formula (1), and as A in the general formula (1), a structure represented by the following general formula (A-1) and the following general formula Any one or more of the structures represented by (A-2), the following general formula (A-3), and the following general formula (A-4).
  • A is a divalent organic group
  • B is a tetravalent organic group
  • n is 2 or more.
  • X is a divalent organic group selected from the following general formula (X-1) to the following general formula (X-3).
  • a is 0 or 1.
  • the polyimide film in the present invention contains a polyimide represented by the following general formula (1), and includes a structure represented by the following general formula (A-1) as A in the general formula (1).
  • (Rth) is 50 nm or less in terms of a film thickness of 15 ⁇ m, the elongation at break of the film is 10% or more, and the thermal expansion coefficients ⁇ 1 and ⁇ 2 satisfy the following formula (I): And 0.95 ⁇ ⁇ 2 / ⁇ 1 ⁇ 1.05 (I) ⁇ 1 : coefficient of thermal expansion below the glass transition point of the first measurement film ⁇ 2 : coefficient of thermal expansion below the glass transition point of the second measurement film
  • A is a divalent organic group
  • B is a tetravalent organic group
  • n is 2 or more.
  • the polyimide varnish in the present invention is a polyimide varnish in which a polyimide represented by the following general formula (1) is dispersed or dissolved in a solvent, and A in the general formula (1) is represented by the following general formula (A-1) And a structure represented by the following general formula (A-5), and a ratio thereof (a structure represented by the general formula (A-1) / a general formula (A-5)) In the range of 2/8 to 6/4 on a molar basis, and B represented by the general formula (1) includes a structure represented by the following general formula (B-5) It is characterized by that.
  • A is a divalent organic group
  • B is a tetravalent organic group
  • n is 2 or more.
  • the product according to the present invention is characterized by using the polyimide film described above.
  • the laminate in the present invention is characterized by having the polyimide film described above and a transparent electrode layer.
  • the polyimide film of the present invention is colorless and transparent, has low YI and Rth, and is excellent in toughness. Moreover, in this invention, it is possible to manufacture the product and laminated body which used the polyimide film provided with the desired characteristic.
  • the alignment accuracy of the elements installed on the film can be improved.
  • the polyimide film according to the present embodiment contains a polyimide represented by the following general formula (1).
  • A is a divalent organic group
  • B is a tetravalent organic group
  • n is 2 or more.
  • the polyimide contained in the polyimide film can be produced from acid dianhydride and diamine as raw materials.
  • a in the general formula (1) can be obtained from a diamine.
  • a in the general formula (1) a structure represented by the following general formula (A-1) (hereinafter, also referred to as “structure A1”), and a general formula (A-2) Any one of the structures represented by the following general formula (A-3) and the following general formula (A-4) (hereinafter also referred to as “structure A2”) or more (hereinafter, Also called “first polyimide film”).
  • X is a divalent organic group selected from the following general formula (X-1) to the following general formula (X-3).
  • a is 0 or 1.
  • the structure represented by the general formula (A-1) is derived from 3,3′-diaminodiphenylsulfone (hereinafter, also referred to as 3,3′-DDS), and is derived from the general formula (A-2).
  • And (X-1) in combination (corresponding to the general formula (A-5)) is 4,4′-diaminodiphenylsulfone (4,4′-DiaminoDiphenyl Sulfone: hereinafter 4
  • the structure represented by the combination of the general formula (A-2) and (X-2) derived from 4′-DDS is ⁇ , ⁇ ′-bis (4-aminophenyl) -1,4-diisopropyl
  • the structure derived from benzene (hereinafter also referred to as BAPDB) and represented by a combination of the general formula (A-2) and (X-3) is 4,4′-bis (4-aminophenoxybiphenyl)
  • the polyimide in the present embodiment includes, as A in the general formula (1), a structure represented by the general formula (A-1) (derived from 3,3′-diaminodiphenylsulfone) as an essential repeating unit, As a repeating unit to be combined with the structure of the general formula (A-1), any one of the structures represented by the general formula (A-2), the general formula (A-3), and the general formula (A-4) Including more than seeds.
  • a in the general formula (1) a structure represented by the general formula (A-1) (derived from 3,3′-diaminodiphenylsulfone) as an essential repeating unit, As a repeating unit to be combined with the structure of the general formula (A-1), any one of the structures represented by the general formula (A-2), the general formula (A-3), and the general formula (A-4) Including more than seeds.
  • the coloring of polyimide is derived from the formation of a charge transfer complex (CT complex) between polyimide molecules.
  • CT complex charge transfer complex
  • the structures represented by the general formulas (A-1) to (A-4) are considered to inhibit the formation of a CT complex between polyimide molecules due to bending of the main chain.
  • the structures represented by the general formulas (A-1) and (A-5) can weaken the electron donating property of the N atom of the imide group due to the electron withdrawing property of the SO 2 group, and a CT complex is formed. This is particularly preferable.
  • absorption of visible light of aromatic polyimide also causes polyimide coloring. It is considered that the alicyclic structures of the general formulas (A-3) and (A-4) can reduce the absorption of visible light as compared with the aromatic polyimide.
  • the solubility of a polyimide improves by disordering the orientation of a polyimide.
  • the structures represented by the general formulas (A-1) to (A-4) are considered to exhibit solubility because the orientation of the polyimide molecules is disturbed due to the bending of the main chain.
  • the structure represented by the general formula (A-1) is excellent in dissolution because the orientation of the polyimide molecules is significantly disturbed by the bent structure of the SO 2 group and the bent structure resulting from the bond at the 3rd and 3 ′ positions. It is thought to express sex.
  • the polyimide contained in the polyimide film in the present embodiment includes a structure represented by the general formula (A-1) as A in the general formula (1), a general formula (A-2), and a general formula. (A-3) and any one or more of the structures represented by formula (A-4).
  • the inventors have increased the molecular weight of polyimide by copolymerizing the structure represented by the general formula (A-1) and the structure represented by the general formula (A-5).
  • the toughness of the resulting film was successfully improved specifically.
  • at least one selected from the structures represented by the general formulas (A-2), (A-3) and (A-4) has at least the structure represented by the general formula (A-1).
  • the same effect is exhibited with polyimide having a structure of more than one species.
  • the structural unit represented by the general formula (A-1) can be obtained from the 3,3′-DDS component.
  • the structure represented by the general formula (A-1) is a site for expressing solubility in a solvent.
  • the structural unit represented by the general formula (A-5) can be obtained from 4,4'-DDS.
  • the structure represented by the general formula (A-5) has a glass transition temperature (Tg) in a polyimide film obtained by heating and drying a varnish (resin composition) obtained by dissolving the polyimide of this embodiment in a solvent. Is a site for expressing the temperature in the range of 250 to 350 ° C.
  • the structural unit represented by the general formula (A-1) is preferably introduced from the viewpoint of the solubility of the polyimide.
  • the structural unit represented by the general formula (A-5) is prepared from the viewpoint of a high glass transition temperature (Tg).
  • Tg glass transition temperature
  • the structure represented by the general formula (A-1) and the general formula (A-5) have a structure in which the SO 2 group is bent, and the bent structure is fixed because of the sp2 orbit. Therefore, it is considered that the structure represented by the general formula (A-1) and the aromatic group contained in the general formula (A-5) do not line up in one direction and exist randomly.
  • the composition ratio (structure A1 / structure A2) between the structure A1 and the structure A2 is 2/8 to 8/2 in terms of molar ratio from the viewpoint of further improving the toughness of the polyimide film. preferable.
  • the structure A2 has the structure represented by the general formula (A-5)
  • the structure A1 and the structure represented by the general formula (A-5) (hereinafter also referred to as “structure A21”)
  • the composition ratio (Structure A1 / Structure A21) is preferably in the range of 2/8 to 6/4, more preferably in the range of 3/7 to 4/6. That is, the structure A1 is preferably 20% by mole or more and 60% or less when the total amount of A in the general formula (1) is 100% by mole.
  • the structure A21 is preferably 40 mol% or more and 80% mol% or less when the total amount of A in the general formula (1) is 100 mol%.
  • the composition ratio of structure A1 to structure A22 is preferably 5/5 to 8/2 in terms of molar ratio.
  • the general formula (A-1) and the general formula (A) are within the range in which the desired elongation at break can be expressed, and more preferably within the range in which the target glass transition temperature (Tg) can be expressed.
  • Tg target glass transition temperature
  • a small amount of structural units other than the structural unit represented by -5) can be contained. That is, the polyimide according to the present embodiment may include a structural unit derived from a diamine component other than 4,4′-DDS and 3,3′-DDS as long as the performance is not impaired. For example, an aromatic diamine having 6 to 30 carbon atoms can be mentioned as a preferred embodiment.
  • TFMB 2,2′-bis (trifluoromethyl) benzidine
  • 1,4-diaminobenzene 1,4-diaminobenzene
  • 4-aminobenzenesulfonic acid-4-aminophenyl ester 4-aminobenzenesulfonic acid-3- Aminophenyl ester, 3-aminobenzenesulfonic acid-3-aminophenyl ester
  • 2-aminobenzenesulfonic acid-2-aminophenyl ester 2,2'-dimethyl 4,4'-diaminobiphenyl
  • 1,3-diaminobenzene 4-aminophenyl 4′-aminobenzoate, 4,4′-diaminobenzoate, 4,4 ′-(or 3,4′-, 3,3′-, 2,4 ′-) diaminodiphenyl ether, 4,4 '-(Or 3,3'-) diaminodiphenyl sul
  • 9,9-bis (4-aminophenyl) fluorene and 9,9-bis (4-aminophenoxyphenyl) fluorene can be introduced when adjusting Rth because the fluorene skeleton has a negative intrinsic birefringence. it can.
  • the introduction of can suppress the formation of a CT complex between polyimide molecules, and can be introduced to reduce the YI of the film.
  • TFMB 2,2'-bis (trifluoromethyl) benzidine
  • B in the general formula (1) will be described.
  • the structural unit can be obtained from an acid dianhydride.
  • the structural unit derived from the acid dianhydride component contained in the polyimide may be the same molecule or a molecule having a different structure.
  • the structural unit represented by B is preferably a structural unit represented by general formula (B-1) to general formula (B-4).
  • B in the general formula (1) includes at least one of the structures represented by the following general formula (B-1) to the following general formula (B-4).
  • Y is any one of structures selected from the following general formula (Y-1) to the following general formula (Y-3).
  • a structure represented by a combination of general formulas (B-1) and (Y-1) (corresponding to the structure of general formula (B-5)) is 4,4′-oxydiphthalic dianhydride (hereinafter, The structure represented by the combination of the general formula (B-1) and the general formula (Y-2) derived from ODPA is 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (hereinafter, referred to as “ODPA”).
  • ODPA 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride
  • the structure represented by the combination of the general formula (B-1) and the general formula (Y-3) is derived from 9,9-diphenylfluorenic dianhydride (hereinafter also referred to as DPFLDA),
  • the structure represented by the general formula (B-2) is derived from hydroxypyromellitic dianhydride (hereinafter also referred to as HPMDA), and the structure represented by the general formula (B-3) is bicyclo [2,2, 2] Oct-7-ene-2,3,5,6-tetracarboxylic
  • the structure represented by the general formula (B-4) derived from dianhydride (hereinafter also referred to as BODA) is 1,3,3a, 4,5,9b-hexahydro-5- (tetrahydro-2,5-dioxo -3-furanyl) naphtho [1,2-c] furan-1,3-dione (hereinafter also referred to as TDA).
  • DPFLDA can be introduced when adjusting Rth because the fluorene skeleton has a negative intrinsic birefringence.
  • the polyimide according to the present embodiment has a configuration derived from an acid dianhydride component other than the structural unit represented by the general formula (B-1) to the general formula (B-4) as long as the performance is not impaired. Units may be included.
  • aromatic tetracarboxylic dianhydride having 8 to 36 carbon atoms aliphatic tetracarboxylic dianhydride having 6 to 50 carbon atoms, and alicyclic tetracarboxylic dianhydride having 6 to 36 carbon atoms It is preferable that it is a compound selected from these.
  • the number of carbons herein includes the number of carbons contained in the carboxyl group.
  • Examples of the aliphatic tetracarboxylic dianhydride having 6 to 50 carbon atoms include ethylene tetracarboxylic dianhydride and 1,2,3,4-butanetetracarboxylic dianhydride.
  • Examples of alicyclic tetracarboxylic dianhydrides having 6 to 36 carbon atoms include 1,2,3,4-cyclobutanetetracarboxylic dianhydride (hereinafter also referred to as CBDA), cyclopentanetetracarboxylic dianhydride, Cyclohexane-1,2,3,4-tetracarboxylic dianhydride, 3,3 ′, 4,4′-bicyclohexyltetracarboxylic dianhydride, carbonyl-4,4′-bis (cyclohexane-1,2 -Dicarboxylic acid) dianhydride, methylene-4,4'-bis (cyclohexane-1,2-dicarboxylic acid) dianhydride, 1,2-ethylene-4,4'-bis (cyclohexane-1,2-dicarboxylic acid) Acid) dianhydride, 1,1′-ethylidene-4,4′-bis (cyclohexane-1,2-dicar
  • the general formula (Y-1) and the general formula (Y-2) are the solubility of the polyimide in the solvent, and the yellowness and retardation (Rth) of the polyimide film. It is preferable from the viewpoint of reduction.
  • the general formula (Y-3) has negative intrinsic birefringence, a reduction in yellowness and retardation (Rth) when a polyimide film is formed, a reduction in coefficient of thermal expansion (CTE), And it is preferable from a viewpoint of an improvement of a glass transition temperature (Tg).
  • the general formulas (B-2) to (B-4) are preferable from the viewpoints of solubility of polyimide in a solvent and reduction in yellowness when a polyimide film is formed.
  • the component including a structure represented by the following general formula (B-5) is particularly preferable to use as a component.
  • the general formula (B-5) is preferably 50 mol% or more, more preferably 80 mol% or more, and may be 100 mol% with respect to the entire acid dianhydride.
  • the polyimide according to the present embodiment mainly includes a unit 1 represented by the following general formula (5) and a unit 2 represented by the following general formula (6).
  • the content of units other than unit 1 and unit 2 is preferably less than the content of unit 1 and unit 2.
  • These units may be bonded alternately or in a permutation in the polymer chain, and these units may be bonded at random.
  • the weight average molecular weight (Mw) of the polyimide is preferably 10,000 or more, more preferably 25,000 or more, and 30,000 from the viewpoint of obtaining a high elongation at break and low Rth in the polyimide film.
  • the above is particularly preferable.
  • the weight average molecular weight (Mw) of a polyimide is 1,000,000 or less, It is more preferable that it is 500,000 or less, It is especially preferable that it is 250,000 or less.
  • the weight average molecular weight is 1,000,000 or less, the solubility in a solvent is good, and the film can be applied without bleeding at a desired film thickness during processing such as coating to obtain a low Rth film. Can do.
  • the weight average molecular weight is preferably 30,000 or more.
  • the weight average molecular weight refers to a molecular weight measured by gel permeation chromatography using polystyrene having a known number average molecular weight as a standard.
  • the polyimide varnish in the present embodiment is used as a varnish (resin composition) obtained by dissolving it in a solvent, for example, as a raw material for producing a film or a film. Therefore, the polyimide varnish in the present embodiment is a polyimide varnish obtained by dispersing or dissolving the polyimide represented by the general formula (1) in a solvent.
  • a in the general formula (1) includes a structure represented by the general formula (A-1) and a structure represented by the general formula (A-5), and these composition ratios (the above general formula ( The structural unit represented by A-1) / the structural unit represented by the general formula (A-5)) is in the range of 2/8 to 6/4 in molar ratio.
  • B represented by the general formula (1) includes a structure represented by the following general formula (B-5).
  • A is a divalent organic group
  • B is a tetravalent organic group
  • n is 2 or more.
  • the polyimide in the present embodiment is excellent in solubility in a solvent. Therefore, by using the polyimide of this embodiment, a varnish having desired characteristics can be obtained by a simple process. According to the polyimide varnish of the present embodiment, since the polyimide is appropriately dissolved, when the varnish is applied on the application surface, a film having excellent smoothness can be formed without becoming a lump. For this reason, while being able to form the resin layer of uniform thickness, high toughness can be obtained.
  • the polyimide varnish is prepared by dissolving the acid dianhydride component and the diamine component in a solvent, for example, an organic solvent, adding an azeotropic solvent such as toluene, and removing water generated during imidization out of the system. By removing it, it can be produced as a polyimide solution containing polyimide and a solvent (also called polyimide varnish).
  • a solvent for example, an organic solvent
  • an azeotropic solvent such as toluene
  • the reaction conditions are not particularly limited.
  • the reaction temperature is 0 ° C. to 180 ° C.
  • the reaction time is 3 to 72 hours.
  • an inert atmosphere such as argon or nitrogen is preferable during the reaction.
  • the solvent is not particularly limited as long as it is a solvent that dissolves polyimide.
  • Known reaction solvents include phenol solvents such as m-cresol, amide solvents such as N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide (DMF), N, N-dimethylacetamide ( DMAc), for example, ⁇ -butyrolactone (GBL), ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -crotonolactone, ⁇ -hexanolactone, ⁇ -methyl- ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -acetyl- ⁇ -butyrolactone, ⁇ -hexanolactone, sulfoxide solvents such as N, N-dimethyl sulfoxide (DMSO), ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone
  • An additive may be appropriately added to the polyimide varnish in the present embodiment.
  • a substance exhibiting a negative birefringence may be added in order to adjust the Rth of the film.
  • examples thereof include inorganic particles such as strontium carbonate and organic compounds such as polystyrene, polyvinyl naphthalene, polymethyl methacrylate, cellulose triacetate, and fluorene derivatives.
  • additives include leveling agents for improving film coatability, dispersants and surfactants, surfactants for adjusting release properties and adhesion from film supports, and adhesion aids.
  • Agents flame retardants for imparting flame retardancy to films, and the like.
  • antioxidants for example, antioxidants, UV inhibitors, light stabilizers, plasticizers, waxes, fillers, pigments, dyes, foaming agents, antifoaming agents, dehydrating agents, antistatic agents, antibacterial agents, antifungal agents, etc. Is mentioned.
  • the additive added to the polyimide varnish may be contained in the film as it is.
  • FIG. 1 is a schematic cross-sectional view showing a polyimide film according to the present embodiment.
  • the polyimide film 10 according to the present embodiment has, for example, a structure in which a resin composition layer 12 is formed on the surface of a support 11.
  • the support 11 may not be provided.
  • a support film self-supporting film
  • the supporting film means a film having a breaking elongation of 5% or more.
  • the peeled film has a breaking elongation of 5% or more, it corresponds to a supportable film.
  • the measuring method of breaking elongation can use the method as described later (Evaluation of breaking elongation and breaking strength).
  • the resin composition layer 12 constituting the polyimide film 10 is formed by forming a polyimide varnish (resin composition) containing polyimide and a solvent on the surface of the support 11 by coating or the like, and then heating the polyimide varnish. It can be obtained by evaporating the solvent. More specifically, as described above, a polyimide solution obtained by dissolving and reacting an acid dianhydride component and a diamine component in an organic solvent can be formed on the support 11.
  • a polyimide varnish (resin composition) is formed on the surface of the support 11 by coating or the like, temporarily dried until the film is not sticky, and then peeled off from the support 11 and further heated. It can also be obtained by evaporating the solvent. In this case, even if there is no support 11, it becomes a supportable film (self-supporting film).
  • the support 11 may be, for example, an alkali glass substrate, an alkali-free glass substrate (Eagle XG (registered trademark), manufactured by Corning), a metal substrate such as a copper substrate, an aluminum substrate, or a SUS substrate, or Upilex (registered).
  • (Trademark) film manufactured by Ube Industries
  • Kapton registered trademark
  • polycarbonate film metal film such as copper foil, aluminum foil, SUS foil, etc.
  • heating and drying of the polyimide varnish can be performed without the support 11, and the type of the support 11 is not particularly limited.
  • the substrate is basically a structure that is highly rigid and unsuitable for bending, and the film or the film substrate is flexible and can be bent.
  • the solubility of the polyimide in the solvent is good, and even if the polyimide varnish is applied on the support, temporarily dried, and the support is removed, the polyimide film can maintain its self-supporting property. . Therefore, the polyimide film after temporary drying is heated in a free state not supported by the support, and a polyimide film having a solvent content of 3% by mass or less can be obtained in a state where the orientation of the polymer is small.
  • the solvent By applying a temperature of 150 to 350 ° C. to the polyimide varnish in an inert gas atmosphere, the solvent can be removed to form the polyimide film 10, but drying can also be performed in an air atmosphere. Yes, it is not particularly limited.
  • the solvent is, for example, m-cresol, NMP, DMF, DMAc, GBL, DMSO, acetone, diethyl acetate, etc.
  • GBL a solvent
  • the solvent is almost removed by heating and drying on the polyimide varnish as described above
  • the content of GBL in the polyimide film from the viewpoint of not damaging the desired physical properties, such as being able to obtain the desired YI, Rth, and toughness Is preferably smaller than 3% by mass, more preferably smaller than 1% by mass, and still more preferably 0.5% by mass or less.
  • at least about 0.01% by mass of GBL is left as the remaining amount.
  • examples of the method for forming the polyimide varnish include known coating methods such as spin coating, slit coating, slot die coating, and blade coating.
  • the polyimide film in the present embodiment has excellent toughness.
  • breaking elongation and breaking strength are measured as indices of toughness.
  • the structure is represented by the general formula (A-1) and the general formula (A-5).
  • the molecular weight of the polyimide is lowered and the toughness of the film is lowered only from the 4,4′-DDS component (structure represented by the general formula (A-5)) derived from the diamine component.
  • the present embodiment is an isomer derived from the 4,4′-DDS component, and derived from the 3,3′-DDS component having a structure in which the monomer skeleton is bent as viewed from the 4,4′-DDS component (
  • the amount derived from the 3,3′-DDS component is less than the amount derived from the 4,4′-DDS component.
  • the toughness can be improved while increasing the molecular weight.
  • the yellowness (YI) of the polyimide film according to the present embodiment can be set to 5.0 or less.
  • the film thickness of the polyimide film is preferably in the range of 0.1 ⁇ m to 30 ⁇ m, and more preferably in the range of 1 ⁇ m to 20 ⁇ m.
  • a film substrate for a flexible device When used for a film substrate for a flexible device, it is preferably in the range of 1 ⁇ m to 10 ⁇ m, more preferably in the range of 1 ⁇ m to 5 ⁇ m, from the viewpoint of improving bending resistance by thinning the device.
  • a film having a thickness of less than 10 ⁇ m can be prepared by, for example, stretching a polyimide film having a thickness of 10 ⁇ m or more.
  • a polyimide varnish is applied on the support, and even if the support is removed, temporary drying is performed until the polyimide film can have a self-supporting property.
  • the above-described PET film polyimide film such as Kapton (registered trademark of Toray DuPont), Upilex (registered trademark of Ube Industries), metal foil, or the like can be used.
  • the amount of the solvent remaining in the film is preferably 10 to 20% by mass from the viewpoints of the film self-supporting property and stretchability.
  • the temporarily dried polyimide film can be prepared by stretching 1.5 to 5 times by biaxial stretching while heating at 150 ° C. to 250 ° C. with the support attached or peeled from the support. it can.
  • the stretching may be simultaneous biaxial stretching or sequential biaxial stretching, but simultaneous biaxial stretching is preferred from the viewpoint of low Rth of the film.
  • the temporarily dried polyimide film after stretching is then subjected to main drying and dried until the residual solvent becomes 3% by mass or less.
  • the yellowness (YI) can be adjusted to 2.0 or less.
  • it can suppress to low yellowness, ie, a colorless and transparent polyimide film can be obtained.
  • colorless and transparent in the present embodiment refers to a state in which the total light transmittance of the film is 80% or more, the haze is 2 or less, and the yellowness (YI) is 5.0 or less. Therefore, the polyimide film of this Embodiment can be used suitably for the use of a touch panel or a display.
  • a touch panel element is produced on at least one of the upper and lower surfaces of the substrate film, and the surface of the substrate film or the substrate film Even when the side facing the surface is a viewing surface, it does not adversely affect the color and brightness of the screen.
  • the retardation (Rth) of the polyimide film according to the embodiment of the present invention can be set to 100 nm or less, preferably 50 nm or less, and more preferably 20 nm or less in terms of a converted value with a film thickness of 15 ⁇ m.
  • Rth may be negative but is preferably greater than ⁇ 5 nm.
  • the acid dianhydride and diamine skeleton used in general high heat-resistant polyimide resins have high flatness and aromatic ring density, and are coated on a glass substrate and dried. It is generally known that the orientation of the polyimide chain with respect to the two-dimensional plane direction occurs, the anisotropy is observed in the in-plane direction and the out-of-plane refractive index, and the retardation (Rth) increases.
  • a method for reducing the anisotropy of the refractive index a method of suppressing the molecular orientation during drying by introducing a bent structure, or a method of diluting the concentration of an aromatic ring having a high electron density is known. .
  • Patent Document 4 there is a method of obtaining a colorless and transparent film having a small anisotropy by using a polyimide into which a bending group such as 4,4′-diaminodiphenylsulfone is introduced as a diamine.
  • a polyimide into which a bending group such as 4,4′-diaminodiphenylsulfone is introduced as a diamine.
  • a method of forming a polyimide film via a polyamic acid film prepared from a polyamic acid solution which is a precursor soluble in a solvent It was general. At this time, the polyamic acid film was inferior in strength, and it was difficult to make a self-supporting film, so that there was a problem that handling properties deteriorated.
  • the polyimide film in the present embodiment can be a self-supporting film having low yellowness and retardation (Rth) and excellent toughness.
  • the polyimide film of this Embodiment can be used with sufficient handling property, for example as a use of a touch panel or a display.
  • the retardation (Rth) can be lowered, for example, when the polyimide resin according to the present embodiment is used as a substrate film of a transparent electrode film, a touch panel element is produced on at least one of the upper and lower surfaces of the substrate film and visually recognized. Even if it is a surface, it does not adversely affect the rainbow unevenness of the screen.
  • the structure represented by the general formula (A-1) and the general formula (A-5) have a structure in which the SO 2 group is bent, and the bent structure is fixed because of the sp2 orbit. . Therefore, it is considered that the structure represented by the general formula (A-1) and the aromatic group contained in the general formula (A-5) do not line up in one direction and exist randomly. That is, if the structure represented by the general formula (A-1) and the general formula (A-5) are present in the polyimide skeleton, the difference in refractive index between the in-plane direction and the out-of-plane direction is small, and Rth can be reduced. .
  • the polyimide film of this embodiment can be used as a substitute for glass in the same way as PET film and COP film. Furthermore, since the polyimide film of this embodiment is excellent in toughness, it can be used as a foldable display or curved surface. It can be used for a display body following the above.
  • FIG. 2 is a schematic cross-sectional view showing the laminate according to the present embodiment.
  • the laminate 20 according to the present embodiment is provided with a transparent electrode layer 21 on the surface of the polyimide film 10.
  • the laminate 20 according to the present embodiment can be obtained by forming the transparent electrode layer 21 on the surface of the polyimide film 10 with a sputtering apparatus.
  • the polyimide film 10 has a laminated structure of the support 11 and the resin composition layer 12, but may be a single layer of the resin composition layer 12.
  • the laminate according to the present embodiment may have transparent electrode layers on both sides of the polyimide film. At this time, it is preferable to have at least one or more transparent electrode layers 21 on both surfaces.
  • an undercoat layer for imparting smoothness, a hard coat layer for imparting surface hardness, an index matching layer for improving visibility, and a gas barrier property Other layers such as a gas barrier layer may be included.
  • the hard coat layer for imparting surface hardness and the index matching layer for improving visibility may be laminated on the transparent electrode layer and the polyimide film.
  • the polyimide film 10 manufactured using the polyimide according to this embodiment is colorless and transparent, has a low yellowness (YI), and is excellent in toughness. Furthermore, preferably, since the retardation (Rth) is small and the glass transition temperature (Tg) is suitable for the transparent electrode manufacturing process, the laminate 20 of the present embodiment is applied to a touch panel material such as a transparent electrode film. Suitable for use.
  • the film forming step of the transparent electrode layer 21 on the surface of the polyimide film 10 is performed in a low temperature range of, for example, 80 to 100 ° C. It is preferable to perform sputtering at a higher temperature to form the transparent electrode layer 21 having a low specific resistance.
  • the transparent electrode layer 21 can be formed on both surfaces of the polyimide film 10. Thereby, for example, touch panel elements can be arranged on both sides.
  • the temperature at which the transparent electrode layer 21 is formed is high in the glass transition temperature (Tg) of the polyimide film 10 constituting the film formation surface, problems such as shrinkage and breakage of the polyimide film occur in a high temperature region.
  • Tg glass transition temperature
  • the polyimide film 10 according to the present embodiment has a high glass transition temperature (Tg) of about 250 ° C. or higher (based on a film thickness of 15 ⁇ m) and is excellent in heat resistance.
  • the transparent electrode layer 21 having a low specific resistance can be formed by sputtering the surface of the polyimide film 10 of the present embodiment, for example, at about 150 to 250 ° C.
  • the polyimide according to the present embodiment preferably has a breaking strength of 100 MPa or more on the basis of the thickness of 15 ⁇ m of the polyimide film from the viewpoint of improving the yield when forming the transparent electrode layer 21.
  • the polyimide film according to the present embodiment has a glass transition temperature (Tg) of 250 ° C. or more based on the film thickness of 15 ⁇ m as described above. Is preferred.
  • the polyimide film of the present embodiment contains a polyimide represented by the following general formula (1), and includes a structure represented by the following general formula (A-1) as A in the general formula (1) ( Hereinafter, also referred to as “second polyimide film”).
  • a film including the structure represented by the general formula (A-1) is preferable because the polymer tends to exist isotropically in the in-plane direction and the out-of-plane direction.
  • a in the general formula (1) is a structure represented by the following general formula (A-1)
  • the total amount of A in the general formula (1) is 100 mol%. It is preferable that it is more than mol% and 80% or less.
  • A is a divalent organic group
  • B is a tetravalent organic group
  • n is 2 or more.
  • the polyimide film of the present embodiment may have a structure other than the structure represented by the general formula (A-1).
  • the structural unit described in the above-mentioned ⁇ Polyimide> section can be mentioned.
  • the diamine component in the chapter ⁇ A> in the general formula (1) and the acid dianhydride component in the ⁇ B> in the general formula (1) described above are used. Those listed can be used.
  • the polyimide film of this embodiment has a retardation (Rth) of 50 nm or less in terms of a converted value with a film thickness of 15 ⁇ m.
  • the polyimide film of the present embodiment has a breaking elongation of 10% or more and thermal expansion coefficients ⁇ 1 and ⁇ 2 satisfy the following formula (I). 0.95 ⁇ ⁇ 2 / ⁇ 1 ⁇ 1.05 (I) ⁇ 1 : coefficient of thermal expansion below the glass transition point of the first measurement film ⁇ 2 : coefficient of thermal expansion below the glass transition point of the second measurement film
  • ⁇ 1 and ⁇ 2 can be defined by carrying out a thermal cycle test using TMA (Thermo Mechanical Analysis) as follows.
  • the glass transition point of the film is determined by the following measurement.
  • TMA is measured in the range of 50 ° C. to 350 ° C. with a film width of 3 mm, a film length of 20 mm, a heating rate of 10 ° C./min, a tensile load of 49 mN.
  • the inflection point of the thermal expansion coefficient in the range of 50 ° C. to 350 ° C. of the measured TMA chart is defined as the glass transition point.
  • the measurement range of the thermal cycle is 50 ° C. to 200 ° C.
  • the thermal expansion coefficient is a value of 100 ° C. to 150 ° C. in the temperature raising step.
  • the thermal expansion coefficient of the heating step of the first cycle in the measurement and alpha 1 the thermal expansion coefficient of the second cycle of the heating process and alpha 2.
  • the measurement range of the thermal cycle is 50 ° C. to 250 ° C.
  • the thermal expansion coefficient is a value of 100 ° C. to 200 ° C. in the temperature raising step.
  • the thermal expansion coefficient of the heating step of the first cycle in the measurement and alpha 1 the thermal expansion coefficient of the second cycle of the heating process and alpha 2.
  • the measurement range of the thermal cycle is 50 ° C. to 300 ° C.
  • the thermal expansion coefficient is a value of 100 ° C. to 250 ° C. in the temperature raising step.
  • the thermal expansion coefficient of the heating step of the first cycle in the measurement and alpha 1 the thermal expansion coefficient of the second cycle of the heating process and alpha 2.
  • the measurement range of the thermal cycle is 50 ° C. to 350 ° C.
  • the thermal expansion coefficient is 100 ° C. to 300 ° C. Value.
  • the film width is 3 mm
  • the film length is 20 mm
  • the temperature rising rate of TMA is 10 ° C./min
  • the temperature falling rate is 10 ° C./min
  • the tensile load is 49 mN.
  • Nx and Ny indicate the planar direction
  • Nz indicates the refractive index in the thickness direction
  • d indicates the thickness (nm) of the sample.
  • the retardation (Rth) of the polyimide film according to the present embodiment is a converted value with a film thickness of 15 ⁇ m, and is 50 nm or less, more preferably 20 nm or less. Rth may be negative but is preferably greater than ⁇ 5 nm.
  • Low Rth means that the refractive index has little anisotropy.
  • the polyimide film according to the present embodiment is used as a substrate film of a display element, it is preferable because of excellent screen visibility. . Specifically, for example, reduction of rainbow unevenness when viewed through polarized sunglasses.
  • the low Rth is due to the low anisotropy of the electron density in the film, suggesting that the polymer isotropically exists in the in-plane direction and out-of-plane direction of the film. Since the orientation of the polymer is low, the film has no directionality and is considered to exhibit isotropic properties not only in optical properties but also in mechanical properties (such as elastic modulus and thermal expansion coefficient). If the elastic modulus of the film and the expansion and contraction due to heat are isotropic, the deformation of the film upon application of force or heat in the device manufacturing process is isotropic, so that the positioning accuracy is considered to be improved.
  • the elongation at break of the film is 10% or more from the viewpoint of improvement in workability when it is a self-supporting film and bending resistance when it is used as a film substrate of a flexible device.
  • strain remaining in the film can be estimated from the thermal expansion coefficient alpha 1, alpha 2 was measured by the following method for example, this time, the thermal expansion coefficient alpha 1 was measured, alpha 2 satisfy the above formula (I) Is preferred.
  • the thermal expansion coefficients ⁇ 1 and ⁇ 2 satisfy the formula (I) indicates that there is little distortion remaining in the film. It is preferable that the thermal expansion coefficients ⁇ 1 and ⁇ 2 satisfy the formula (I) from the viewpoint that the generation of wrinkles on the film is small even during the heating process. In addition, if the film has a small residual strain, even if the film is temporarily deformed when heat is applied in the device manufacturing process, the film returns to its original shape with high accuracy after cooling, so that the positioning accuracy is considered to be improved.
  • the polyimide film of this embodiment can improve the positioning accuracy of elements and the like mounted on the film. That is, for example, when the element is mounted on the film while feeding out the polyimide film of the present embodiment with a roll-to-roll, the film is not torn even in a heating environment, so that the film is not broken. Since the isotropic and recoverability of deformation is excellent, the element can be mounted on the film with high positioning accuracy.
  • production method 1 As a first production method, there is a production method in which a polyimide precursor solution is cast on a support and then heated, dried and imidized to form a polyimide film (referred to as production method 1).
  • production method 2-1 there is a production method in which a polyimide solution (polyimide varnish) is cast on a support and dried to form a polyimide film (referred to as production method 2-1).
  • the second manufacturing method forms a film from a polyimide solution that has been imidized in advance, after the temporary drying, it can be peeled off from the support and dried to form a polyimide film. 2-2).
  • the production method of the first polyimide film is not particularly limited, and a conventionally known production method of polyimide film can be applied.
  • the first production method (Production method 1) or the second production method (Production method 2-1 and Production method 2-2) can be applied, but the second production method without an imidization step after casting is preferred.
  • the second production method (Production method 2-1 and Production method 2-2) is preferable in order to obtain a low Rth.
  • the film is peeled off from the support and dried.
  • Production method 2-2 is preferred. The production method 2-2 will be described below.
  • a polyimide varnish can be apply
  • a support body since it forms into a film from the polyimide solution imidized previously, after performing temporary drying, a support body can be removed and a self-supporting film of polyimide can be obtained. Therefore, by heating the temporarily dried polyimide film in a free state not supported by the support, a polyimide film can be obtained in a state where the orientation of the polymer is small, and the converted value with a film thickness of 15 ⁇ m is 50 nm or less. The low Rth can be realized. Moreover, the elongation at break of the film can be 10% or more. In addition, the residual strain of the polyimide film can be reduced, and the above-mentioned ratio of thermal expansion coefficient ( ⁇ 2 / ⁇ 1 ) can be kept in the range of 0.95 to 1.05.
  • the residual strain of the polyimide film tends to increase due to strain due to a difference in expansion from the support.
  • the polyamic acid film is inferior in strength to the polyimide film imidized from the polyamic acid film which is a polyimide precursor, a support is necessary and it is difficult to obtain a self-supporting film after temporary drying.
  • the residual distortion of the polyimide film tends to increase.
  • the polyimide film of the present embodiment can be used as a substitute for glass in the same manner as PET film and COP film. As described above, the polyimide film of this embodiment can achieve a low Rth. In addition, since the film has high elongation, even if the polyimide film of the present embodiment is used for a foldable display body or a display body that follows a curved surface, the film is not damaged and is easy to use.
  • the polyimide film and the laminate in the present embodiment can be used as a substrate film such as a surface protective film, a color filter, and a TFT, and an insulating protective film.
  • These polyimide films and laminates include, for example, displays with touch panel functions, organic EL lighting, flexible displays, smartphones, tablet terminals, foldable smartphones and tablet terminals, other flexible devices, organic EL lighting with curved surfaces, It can be suitably used for products such as organic EL displays.
  • a flexible device means a flexible display, a flexible solar cell, a flexible touch panel, flexible lighting, a flexible battery etc., for example.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) were measured by gel permeation chromatography (GPC) under the following conditions.
  • GPC gel permeation chromatography
  • N N-dimethylformamide
  • 24.8 mol / L lithium bromide monohydrate manufactured by Wako Pure Chemical Industries, Ltd.
  • the dried sample length was 3 ⁇ 50 mm, and the polyimide film was pulled at a speed of 100 mm / min using a tensile tester (manufactured by A & D Co., Ltd .: RTG-1210), and the breaking elongation and breaking strength were measured.
  • the yellowness (YI), total light transmittance evaluation The yellowness (YI value) and total light transmittance of the polyimide film were measured using a D65 light source manufactured by Nippon Denshoku Industries Co., Ltd. (Spectrophotometer: SE600). Unless otherwise specified, measurement was performed on a film having a thickness of 15 ⁇ 1 ⁇ m as a sample.
  • the glass transition temperature (Tg) and linear expansion coefficient (CTE) in the temperature range of 50 to 350 ° C. were measured by thermomechanical analysis using a polyimide film cut to a size of 3 mm ⁇ 20 mm as a test piece. .
  • a test piece in a temperature range of 50 to 350 ° C. using Seiko Instruments Inc. (EXSTAR 6000) as a measuring device under conditions of a tensile load of 49 mN, a heating rate of 10 ° C./min, and a nitrogen stream (flow rate of 100 ml / min). The elongation was measured.
  • the inflection point of the obtained chart was determined as the glass transition temperature, and the linear expansion coefficient (CTE) of the polyimide film at 100 to 200 ° C. was determined.
  • the measurement range of the thermal cycle was 50 ° C. to 200 ° C.
  • the thermal expansion coefficient was a value of 100 ° C. to 150 ° C. in the temperature raising step.
  • the thermal expansion coefficient in the temperature raising step in the first cycle was ⁇ 1
  • the thermal expansion coefficient in the temperature raising step in the second cycle was ⁇ 2 .
  • the measurement range of the thermal cycle was 50 ° C. to 250 ° C.
  • the thermal expansion coefficient was a value of 100 ° C. to 200 ° C. in the temperature raising step.
  • the thermal expansion coefficient in the temperature raising step in the first cycle was ⁇ 1
  • the thermal expansion coefficient in the temperature raising step in the second cycle was ⁇ 2 .
  • the measurement range of the thermal cycle was 50 ° C. to 300 ° C.
  • the thermal expansion coefficient was a value of 100 ° C. to 250 ° C. in the temperature raising step.
  • the thermal expansion coefficient in the temperature raising step in the first cycle was ⁇ 1
  • the thermal expansion coefficient in the temperature raising step in the second cycle was ⁇ 2 .
  • the measurement range of the thermal cycle is 50 ° C. to 350 ° C.
  • the thermal expansion coefficient is 100 ° C. to 300 ° C. Value.
  • Evaluation criteria were as ⁇ when alpha 1 / alpha 2 ratio is ⁇ a range of 0.95 to 1.05, greater than 0.95 or less than 1.05.
  • L 1 and L 2 were measured in a clean room at 25 ° C. and 50% RH.
  • the heat treatment was carried out in a hot air drying oven at 200 ° C. for 10 minutes with the four sides of the film held at a force of 1 kg / m and cooled to room temperature.
  • the evaluation criteria were ⁇ when ⁇ was 20 ⁇ m or less, ⁇ when within 20 to 40 ⁇ m, and ⁇ when 40 ⁇ m or more. Next, the manufacturing conditions will be specifically described.
  • Example 1-1 While introducing nitrogen gas into a 500 mL separable flask equipped with a stirring bar and having a Dean-Stark tube and a reflux tube at the top, 13.4 g (55.44 mmol) of 4,4′-DDS and 3.44 g of 3,3′-DDS ( 13.86 mmol) and 50.00 g of NMP were added. Then, 21.71 g (70.00 mmol) of 4,4′-oxydiphthalic anhydride (ODPA), 22.28 g of NMP and 26.02 g of toluene were added at room temperature, and the temperature was raised to 160 ° C. The mixture was heated to reflux for 1 hour to perform imidization.
  • ODPA 4,4′-oxydiphthalic anhydride
  • polyimide varnish a polyimide NMP solution (hereinafter also referred to as polyimide varnish).
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Upilex film as a support body for 10 minutes at 150 degreeC
  • Table 2 below shows the test results of the polyimide film which was peeled off from the Upilex film as a support and dried at 270 ° C. for 20 minutes while being fixed to a SUS metal frame with Kapton tape.
  • Example 1-2-1 To a 500 mL separable flask equipped with a stirring bar equipped with a Dean-Stark tube and a reflux tube at the top, while introducing nitrogen gas, 12.4 g (48.51 mmol) of 4,4′-DDS and 3,3′-DDS 5.16 g (20.79 mmol) and GBL 50.00 g were added. Then, 21.71 g (70.00 mmol) of 4,4′-oxydiphthalic anhydride (ODPA), 22.28 g of GBL and 26.02 g of toluene were added at room temperature, and the temperature was raised to an internal temperature of 160 ° C. The mixture was heated to reflux for 1 hour to perform imidization.
  • ODPA 4,4′-oxydiphthalic anhydride
  • polyimide varnish a polyimide GBL solution
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Upilex film as a support body for 10 minutes at 150 degreeC
  • Example 1-2-2 A polyimide varnish was obtained in the same manner as in Example 1-2-1.
  • the composition here is shown in Table 1 below.
  • Table 2 shows the test results of the polyimide film which was peeled from the Upilex film as the support and dried for 20 minutes at 250 ° C. in a state of being fixed to the SUS metal frame with Kapton tape.
  • Example 1-2-3 A polyimide varnish was obtained in the same manner as in Example 1-2-1.
  • the composition here is shown in Table 1 below.
  • Table 2 shows the test results of polyimide films obtained by peeling the resin composition layer from the Upilex film as a support and drying it in an IR drying furnace at an IR temperature of 270 ° C. for 10 minutes.
  • Example 1-2-4 A polyimide varnish was obtained in the same manner as in Example 1-2-1.
  • the composition here is shown in Table 1 below.
  • the resin composition layer is peeled off from the Upilex film as a support, and the film surface is 270 ° C. at an IR temperature in an IR drying furnace while applying a tension of 4 kg / m uniaxially to the film.
  • Table 2 The test results of the polyimide film dried for 10 minutes are shown in Table 2 below.
  • Example 1-3-1 Except for changing 4,4′-DDS to 10.32 g (41.58 mmol) and 3,3′-DDS to 6.90 g (27.72 mmol) and setting the reaction time at 180 ° C. to 7 hours, A polyimide varnish was obtained in the same manner as in Example 1-2-1.
  • the composition here is shown in Table 1 below.
  • Table 2 shows the test results of the polyimide film which was peeled off from the Upilex film as a support and dried at 270 ° C. for 20 minutes while being fixed to a SUS metal frame with Kapton tape.
  • Example 1-3-2 A polyimide varnish was obtained in the same manner as in Example 1-3-1, except that the reaction time at 180 ° C. was changed to 5 hours.
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Table 2 shows the test results of the polyimide film which was peeled off from the Upilex film as a support and dried at 270 ° C. for 20 minutes while being fixed to a SUS metal frame with Kapton tape.
  • Example 1-3-3 A polyimide varnish was obtained in the same manner as in Example 1-3-2.
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • the resin composition layer was peeled off from the Upilex film as a support, and the test results of the polyimide film dried for 10 minutes at an IR temperature at which the film surface becomes 270 ° C. in an IR drying furnace are shown in Table 2 below. Shown in
  • Example 1-3-4 A polyimide varnish was obtained in the same manner as in Example 1-3-2.
  • the composition here is shown in Table 1 below. Further, the weight average molecular weight (Mw), the number average molecular weight (Mn) of the polyimide in the obtained polyimide varnish, and 10 minutes at 150 ° C. at 50 ° C. on a PET film (Cosmo Shine 100A4100) as a support. After partial drying, the resin composition layer is peeled off from the PET film as a support, and the film surface is 270 ° C. at an IR temperature of 270 ° C. while applying a tension of 4 kg / m uniaxially to the film. The test results of the polyimide film dried for a minute are shown in Table 2 below.
  • Example 1-3-5 A polyimide varnish was obtained in the same manner as in Example 1-3-2.
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • the resin composition layer was peeled off from the PET film as a support, and the thickness was about 10 wt.
  • a polyimide film containing% solvent was obtained. The film was simultaneously biaxially stretched at 200 ° C. with a tension of 4 kg / m and then dried at 270 ° C. for 20 minutes to obtain a polyimide film having a thickness of 4.4 ⁇ m.
  • Table 2 The test results are shown in Table 2 below.
  • Example 1-4 Polyimide varnish as in Example 1-2-1 except that 4,4′-DDS was changed to 8.61 g (34.65 mmol) and 3,3′-DDS was changed to 8.61 g (34.65 mmol).
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Upilex film as a support body for 10 minutes at 150 degreeC
  • Table 2 below shows the test results of the polyimide film which was peeled off from the Upilex film as a support and dried at 270 ° C. for 20 minutes while being fixed to a SUS metal frame with Kapton tape.
  • Example 1-5 Polyimide varnish similar to Example 1-2-1, except that 4,4′-DDS was changed to 6.89 g (27.72 mmol) and 3,3′-DDS was changed to 10.34 g (41.58 mmol) Got.
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Upilex film as a support body for 10 minutes at 150 degreeC
  • Table 2 shows the test results of the polyimide film which was peeled off from the Upilex film as a support and dried at 270 ° C. for 20 minutes while being fixed to a SUS metal frame with Kapton tape.
  • Example 1-6 A polyimide varnish was obtained in the same manner as in Example 1-4, except that 4,4′-ODPA was changed to 15.27 g (70.00 mmol) of pyromellitic dianhydride (PMDA).
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Upilex film as a support body for 10 minutes at 150 degreeC
  • Table 2 shows the test results of the polyimide film which was peeled off from the Upilex film as a support and dried at 270 ° C. for 20 minutes while being fixed to a SUS metal frame with Kapton tape.
  • Example 1-7 Polyimide as in Example 1-4, except that 4,4′-ODPA was changed to 20.59 g (70.00 mmol) of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA) A varnish was obtained.
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Upilex film as a support body for 10 minutes at 150 degreeC
  • Table 2 shows the test results of the polyimide film which was peeled off from the Upilex film as a support and dried at 270 ° C. for 20 minutes while being fixed to a SUS metal frame with Kapton tape.
  • Example 1-8 Polyimide varnish as in Example 1-4, except that 4,4′-ODPA was changed to 31.09 g (70.00 mmol) of 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA) Got.
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Upilex film as a support body for 10 minutes at 150 degreeC
  • Table 2 shows the test results of the polyimide film which was peeled off from the Upilex film as a support and dried at 270 ° C. for 20 minutes while being fixed to a SUS metal frame with Kapton tape.
  • Example 1-9 A polyimide varnish was obtained in the same manner as in Example 1-8, except that 4,4′-DDS was changed to 13.77 g (55.44 mmol) and 3,3′-DDS 3.44 g (13.86 mmol).
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Upilex film as a support body for 10 minutes at 150 degreeC
  • Table 2 below shows the test results of the polyimide film which was peeled off from the Upilex film as a support and dried at 270 ° C. for 20 minutes while being fixed to a SUS metal frame with Kapton tape.
  • Example 1-10 A polyimide varnish was obtained in the same manner as in Example 1-8 except that 6.4 g (27.72 mmol) of 4,4′-DDS was changed to 10.34 g (41.58 mmol) of 3,3′-DDS. It was.
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Upilex film as a support body for 10 minutes at 150 degreeC
  • Table 2 shows the test results of the polyimide film which was peeled off from the Upilex film as a support and dried at 270 ° C. for 20 minutes while being fixed to a SUS metal frame with Kapton tape.
  • Example 1-11 Into a 500 mL separable flask equipped with a stirring bar equipped with a Dean-Stark tube and a reflux tube at the top, 1.81 (15.84 mmol) of trans-1,4-cyclohexyldiamine (CHDA) was introduced while introducing nitrogen gas. 15.73 g (63.36 mmol) of 3-DDS and 50.00 g of NMP were added. Subsequently, 24.82 g (80.00 mmol) of 4,4′-oxydiphthalic anhydride (ODPA), 28.67 g of NMP and 27.14 g of toluene were added at room temperature, and the temperature was raised to 160 ° C.
  • CHDA trans-1,4-cyclohexyldiamine
  • ODPA 4,4′-oxydiphthalic anhydride
  • polyimide varnish The composition here is shown in Table 1 below.
  • Table 2 shows the test results of the polyimide film which was peeled off from the Upilex film as a support and dried at 270 ° C. for 20 minutes while being fixed to a SUS metal frame with Kapton tape.
  • Example 1-12 Into a 500 mL separable flask equipped with a stirring bar equipped with a Dean-Stark tube and a reflux tube at the top, while introducing nitrogen gas, 4.93 g (34.65 mmol) of 1,4-bis (aminomethyl) cyclohexane (14BAC) was introduced. Then, 8.61 g (34.65 mmol) of 3,3′-DDS and 50.00 g of GBL were added. Subsequently, 21.71 g (70.00 mmol) of 4,4′-oxydiphthalic anhydride (ODPA), 15.46 g of GBL and 26.02 g of toluene were added at room temperature, and the temperature was raised to 160 ° C.
  • ODPA 4,4′-oxydiphthalic anhydride
  • Table 2 shows the test results of the polyimide film which was peeled off from the Upilex film as a support and dried at 270 ° C. for 20 minutes while being fixed to a SUS metal frame with Kapton tape.
  • Example 1-13 Into a 500 mL separable flask equipped with a stirring bar equipped with a Dean-Stark tube and a reflux tube at the top, 5.13 g (33.25 mmol) of bis (aminomethyl) norbornane (BANBDA) was added while introducing nitrogen gas. -8.26 g (33.25 mmol) of DDS and 50.00 g of GBL were added. Then, 21.71 g (70.00 mmol) of 4,4′-oxydiphthalic anhydride (ODPA), 15.19 g of GBL and 24.90 g of toluene were added at room temperature, and then the temperature was raised to 160 ° C.
  • ODPA 4,4′-oxydiphthalic anhydride
  • Table 2 shows the test results of the polyimide film which was peeled off from the Upilex film as a support and dried at 270 ° C. for 20 minutes while being fixed to a SUS metal frame with Kapton tape.
  • Example 1-14 While introducing nitrogen gas into a 500 mL separable flask equipped with a stirring bar equipped with a Dean-Stark tube and a reflux tube at the top, 5.11 g (13.86 mmol) of 4,4′-bis (4-aminophenoxybiphenyl) (BAPB) ), 13.77 g (55.44 mmol) of 3,3-DDS and 50.00 g of GBL were added. Then, 21.71 g (70.00 mmol) of 4,4′-oxydiphthalic anhydride (ODPA), 22.28 g of GBL and 25.63 g of toluene were added at room temperature, and the temperature was increased to 160 ° C.
  • BAPB 4,4′-bis (4-aminophenoxybiphenyl)
  • polyimide varnish The composition here is shown in Table 1 below.
  • Table 2 shows the test results of the polyimide film which was peeled off from the Upilex film as a support and dried at 270 ° C. for 20 minutes while being fixed to a SUS metal frame with Kapton tape.
  • Example 1-15 ⁇ , ⁇ '-bis (4-aminophenyl) -1,4-diisopropylbenzene (BAPDB) was introduced into a 500 mL separable flask equipped with a stirring bar equipped with a Dean-Stark tube and a reflux tube at the top while introducing nitrogen gas. To 11.94 g (34.65 mmol), 8.61 g (34.65 mmol) of 3,3′-DDS and 50.00 g of GBL were added.
  • Table 2 shows the test results of the polyimide film which was peeled off from the Upilex film as a support and dried at 270 ° C. for 20 minutes while being fixed to a SUS metal frame with Kapton tape.
  • Example 1-16 While introducing nitrogen gas into a 500 mL separable flask equipped with a stirring bar equipped with a Dean-Stark tube and a reflux tube at the top, 8.4 g (34.65 mmol) of 4,4′-DDS and 8.61 g of 3,3′-DDS (34.65 mmol) and 50.00 g of GBL were added.
  • polyimide varnish a polyimide GBL solution (hereinafter also referred to as polyimide varnish).
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Table 2 shows the test results of the polyimide film which was peeled off from the Upilex film as a support and dried at 270 ° C. for 20 minutes while being fixed to a SUS metal frame with Kapton tape.
  • Example 1-17 While introducing nitrogen gas into a 500 mL separable flask equipped with a stirring bar equipped with a Dean-Stark tube and a reflux tube at the top, 8.4 g (34.65 mmol) of 4,4′-DDS and 8.61 g of 3,3′-DDS (34.65 mmol) and 50.00 g of GBL were added.
  • polyimide varnish a polyimide GBL solution
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Upilex film as a support body for 10 minutes at 150 degreeC
  • Example 1-18 While introducing nitrogen gas into a 500 mL separable flask equipped with a stirring bar equipped with a Dean-Stark tube and a reflux tube at the top, 8.4 g (34.65 mmol) of 4,4′-DDS and 8.61 g of 3,3′-DDS (34.65 mmol) and 50.00 g of GBL were added.
  • polyimide varnish a polyimide GBL solution (hereinafter also referred to as polyimide varnish).
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Table 2 shows the test results of the polyimide film which was peeled off from the Upilex film as a support and dried at 270 ° C. for 20 minutes while being fixed to a SUS metal frame with Kapton tape.
  • Example 2-1 A polyimide varnish was obtained in the same manner as in Example 1-1.
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Table 2 shows the test results of the polyimide film with the support peeled off after drying for 20 minutes.
  • Example 2-2-1 A polyimide varnish was obtained in the same manner as in Example 1-2-1.
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Table 2 shows the test results of the polyimide film with the support peeled off after drying for 20 minutes.
  • Example 2-2-2 A polyimide varnish was obtained in the same manner as in Example 1-2-1.
  • the composition here is shown in Table 1 below. Further, the weight average molecular weight (Mw), number average molecular weight (Mn) of the polyimide in the obtained polyimide varnish, and Upilex film as a support are 10 minutes at 50 ° C., 10 minutes at 150 ° C., 250 ° C.
  • Table 2 below shows the test results of the polyimide film with the support peeled off after drying for 20 minutes.
  • Example 2-2-3 A polyimide varnish was obtained in the same manner as in Example 1-2-1.
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Table 2 shows the test results of the polyimide film in a state where the support was peeled off after drying at 270 ° C. for 20 minutes.
  • Example 2-3-1 A polyimide varnish was obtained in the same manner as in Example 1-3-1.
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Table 2 shows the test results of the polyimide film with the support peeled after drying for 1 hour.
  • Example 2-3-2 A polyimide varnish was obtained in the same manner as in Example 1-3-2.
  • the composition here is shown in Table 1 below.
  • Table 2 shows the test results of the polyimide film after drying for 10 minutes at an IR temperature at which the film surface becomes 270 ° C. in an IR drying furnace.
  • Example 2-3-3 A polyimide varnish was obtained in the same manner as in Example 1-3-2.
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Table 2 shows the test results of the polyimide film in a state where the support was peeled off after drying at 270 ° C. for 20 minutes.
  • Example 2-4 A polyimide varnish was obtained in the same manner as in Example 1-4.
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Table 2 shows the test results of the polyimide film in a state where the support was peeled off after drying at 270 ° C. for 20 minutes.
  • Example 2-5 A polyimide varnish was obtained in the same manner as in Example 1-5.
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Table 2 shows the test results of the polyimide film in a state where the support was peeled off after drying at 270 ° C. for 20 minutes.
  • Example 2-6 A polyimide varnish was obtained in the same manner as in Example 1-6.
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Table 2 shows the test results of the polyimide film in a state where the support was peeled off after drying at 270 ° C. for 20 minutes.
  • Example 2-7 A polyimide varnish was obtained in the same manner as in Example 1-7.
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Table 2 shows the test results of the polyimide film in a state where the support was peeled off after drying at 270 ° C. for 20 minutes.
  • Example 2-8 A polyimide varnish was obtained in the same manner as in Example 1-8.
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Table 2 shows the test results of the polyimide film in a state where the support was peeled off after drying at 270 ° C. for 20 minutes.
  • Example 2-9 A polyimide varnish was obtained in the same manner as in Example 1-9.
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Table 2 shows the test results of the polyimide film in a state where the support was peeled off after drying at 270 ° C. for 20 minutes.
  • Example 2-10 A polyimide varnish was obtained in the same manner as in Example 1-10.
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Table 2 shows the test results of the polyimide film in a state where the support was peeled off after drying at 270 ° C. for 20 minutes.
  • Example 2-11 A polyimide varnish was obtained in the same manner as in Example 1-11.
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Table 2 shows the test results of the polyimide film in a state where the support was peeled off after drying at 270 ° C. for 20 minutes.
  • Example 2-12 A polyimide varnish was obtained in the same manner as in Example 1-12.
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Table 2 shows the test results of the polyimide film in a state where the support was peeled off after drying at 270 ° C. for 20 minutes.
  • Example 2-13 A polyimide varnish was obtained in the same manner as in Example 1-13.
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Table 2 shows the test results of the polyimide film in a state where the support was peeled off after drying at 270 ° C. for 20 minutes.
  • Example 2-14 A polyimide varnish was obtained in the same manner as in Example 1-14.
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Table 2 shows the test results of the polyimide film in a state where the support was peeled off after drying at 270 ° C. for 20 minutes.
  • Example 2-15 A polyimide varnish was obtained in the same manner as in Example 1-15.
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Table 2 shows the test results of the polyimide film in a state where the support was peeled off after drying at 270 ° C. for 20 minutes.
  • Example 2-16 A polyimide varnish was obtained in the same manner as in Example 1-16.
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Table 2 shows the test results of the polyimide film in a state where the support was peeled off after drying at 270 ° C. for 20 minutes.
  • Example 2-17 A polyimide varnish was obtained in the same manner as in Example 1-17.
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Table 2 shows the test results of the polyimide film in a state where the support was peeled off after drying at 270 ° C. for 20 minutes.
  • Example 2-18 A polyimide varnish was obtained in the same manner as in Example 1-18.
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Table 2 shows the test results of the polyimide film in a state where the support was peeled off after drying at 270 ° C. for 20 minutes.
  • polyimide varnish a polyimide GBL solution (hereinafter also referred to as polyimide varnish).
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Table 2 shows the test results of the polyimide film which was peeled off from the Upilex film as a support and dried at 270 ° C. for 20 minutes while being fixed to a SUS metal frame with Kapton tape.
  • the weight average molecular weight (Mw) of the polyamic acid in the obtained polyamic acid varnish, a number average molecular weight (Mn), and 10 minutes at 150 degreeC for 10 minutes at 50 degreeC on the Upilex film as a support body 270 Table 2 below shows the test results of the polyimide film with the support peeled off after drying for 1 hour at ° C.
  • polyamic acid varnish a polyamic acid GBL solution (hereinafter also referred to as polyamic acid varnish).
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Table 2 below shows the test results of the polyimide film in a state where the support was peeled off after drying at 270 ° C. for 1 hour.
  • Comparative Example 1-2 A polyamic acid varnish was obtained in the same manner as in Comparative Example 1-1.
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • the resin composition layer was peeled off from the glass substrate (Corning Eagle) as a support, and dried at 270 ° C. for 1 hour in a state of being fixed to a SUS metal frame with Kapton tape. The film was broken and no film was obtained.
  • polyimide GBL solution After the reaction for 12 hours, the oil bath was removed and the temperature was returned to room temperature to obtain a polyimide GBL solution.
  • the composition here is shown in Table 1 below.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Table 2 shows the test results of the polyimide film in a state where the support was peeled off after drying at 270 ° C. for 20 minutes.
  • the polyimide according to the present invention has high solubility in a solvent, and the polyimide film obtained from the polyimide is colorless and transparent, and is excellent in toughness and thermophysical properties.
  • 3,3'-DDS in the polyimide production is preferably 20 mol% or more and 80 mol% or less of the total diamine component (Example 1 and Example 2).
  • the molar ratio of 3,3′-DDS to 4,4′-DDS in the preparation of polyimide is preferably 2/8 to 6/4 (Examples 1-1 to 1-10, Examples 2-1 to Example 2-10) and 2/8 to 5/5 were found to be more preferable (Example 1-1 to Example 1-4, Example 1-6 to Example 1).
  • Example 1-1 to Example 1-2-4, Example 1-9, Example 2-1 to Example 2- 2-4, Example 2-9 Each component of the above 3,3′-DDS and 4,4′-DDS has the structure represented by the general formula (A-1) contained in the polyimide and the general formula (A-5). Equal relationship with the molar ratio of the structure represented. That is, the molar ratio of the structure represented by the general formula (A-1) to the structure represented by the general formula (A-5) is preferably 2/8 to 6/4. More preferably, it is ⁇ 5 / 5.
  • Examples 1-1 to 1-5 and Examples 2-1 to 2-5 using ODPA as an acid dianhydride are PMDA or BPDA as an acid dianhydride. Yellowness (YI) and retardation (Rth) could be made smaller than those of Examples 1-6 and 2-6 and Examples 1-7 and 2-7 used.
  • Examples 1-1 to 1-5 and 2-1 to 2-5 using ODPA as the acid dianhydride are examples 1-8 using 6FDA as the acid dianhydride. As compared with Examples 1-10 and 2-8 to 2-10, it was found that the tensile elongation and fracture strength were higher and the toughness was excellent.
  • the polyimide contains a structure represented by the general formula (B-5) selected as B in the general formula (1).
  • the structure A represented by the general formula (1) includes a structure represented by the general formula (A-1) and the general formula (A-5), and a structure represented by the general formula (1).
  • B includes the general formula (B-5), and the molar ratio of the structure represented by the general formula (A-1) to the structure represented by the general formula (A-5) is 2/8 to 4 It is preferable to adjust to the range of / 6. This corresponds to Example 1-1 to Example 1-3-4 and Example 2-1 to Example 2-3-4. Thereby, while being able to obtain a colorless and transparent polyimide film, it is excellent in toughness and high glass transition temperature (Tg) can be obtained.
  • Tg high glass transition temperature
  • Example 1-2-2 in which ODPA is used and the molar ratio between the structure represented by the general formula (A-1) and the structure represented by the general formula (A-5) is 3: 7 is the same.
  • Example 2-2-2 was compared with Example 1-2-1, Example 1-2-3, Example 1-2-4, Example 2-2-1, and Example 2-2-3.
  • the remaining amount of GBL is small.
  • the remaining amount of GBL is preferably less than 1% by mass and more preferably 0.5% by mass or less.
  • Example 1-1 to Example 1-18 in which the ratio of ⁇ 1 / ⁇ 2 is in the range of 0.95 to 1.05 the positional deviation ⁇ can be set to 20 ⁇ m or less, and the positional deviation can be reduced. I found that it can be made smaller.
  • the polyimide film prepared in Example 4 was attached to a Kapton film (film thickness: 155 ⁇ m) substrate with tape so as not to bend.
  • the polyimide film on the Kapton film substrate was heated to 200 ° C. by a sputtering apparatus to form an ITO layer having a thickness of 15 nm. After the ITO film is formed, the polyimide film is taken out for each Kapton film substrate, then the polyimide film is turned over, the surface side with the ITO layer is opposed to the Kapton film substrate, and the Kapton film substrate is again formed. Pasted.
  • an ITO layer having a film thickness of 15 nm was formed again by a sputtering apparatus under the condition of 200 ° C., and a film (laminated body) in which transparent electrode layers were laminated on both surfaces was obtained.
  • the film laminated with the obtained transparent electrode layer had no warp and could be handled well.
  • FIG. 3 is a 1 H-NMR spectrum of the ODPA-DDS copolymer.
  • FIG. 4 is a 13 C-NMR spectrum of the ODPA-DDS copolymer.
  • the polyimide GBL solution was dissolved in a deuterated DMSO solution so that the polyimide solid content concentration was 15 wt%, and the proton nuclear magnetic resonance spectrum of the resulting solution was made by JEOL Ltd., JNM- Using a GSX400 FT-NMR apparatus, the 1 H-NMR spectrum was measured by integrating 16 times, and the 13 C-NMR spectrum was measured by integrating 1000 times.
  • the polyimide film containing the polyimide of the present invention and a laminate using the polyimide film are suitable as a substrate for a semiconductor substrate, a TFT-LCD insulating film, an electrode protective film, etc., and a flexible and biased substrate in addition to application to a touch panel material. Can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Moulding By Coating Moulds (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

 溶媒への溶解性が良好で、加工性に優れるポリイミドを含有し、無色透明であり、靱性に優れるポリイミドフィルム、ポリイミドワニス、ポリイミドフィルムを用いた製品、及び、積層体を提供すること。ポリイミドフィルムは、下記一般式(1)で表されるポリイミドを含有し、前記一般式(1)におけるAとして、下記一般式(A-1)で表される構造と、例えば、下記一般式(A-5)で表される構造を含むことを特徴とする。ここで前記一般、式(1)中、Aは2価の有機基、Bは4価の有機基、nは2以上、である。

Description

ポリイミドフィルム、ポリイミドワニス、ポリイミドフィルムを用いた製品、及び、積層体
 本発明は、ポリイミドフィルム、ポリイミドワニス、ポリイミドフィルムを用いた製品、及び、積層体に関する。
 近年、透明電極フィルムのようなタッチパネル材料の分野でガラスに替わり、軽量化、薄膜化の観点でプラスチックフィルムを基板として用いることが検討されている。
 さらに、フレキシブルディスプレイなどの折り曲げが可能なフレキシブルデバイスや有機EL照明や有機ELディスプレイなどの曲面を有するデバイスが検討されている。上記デバイスにおいては、硬質基板ではなく折り曲げ可能なフィルムを、表面保護層、カラーフィルター、TFT、などを形成する基板として用いることが検討されている。
 当該フィルムとして、例えば、ポリエチレンテレフタレートフィルム(PETフィルム)や光学特性に優れるシクロオレフィンフィルム(COPフィルム)の採用が検討されている。
 このようなフレキシブルデバイス用のフィルム基板としては、光学特性に優れさらには屈曲耐性に優れるフィルムが求められている。しかし、前述したPETフィルムは光学特性に劣り視認性が悪く、またCOPフィルムは靱性が劣るという欠点を有している。
 一方、ポリイミド樹脂は、耐熱酸化性、耐熱特性、耐熱放射性、耐低温性、及び、耐薬品性などに優れた特性を有しているため、ポリイミドフィルムを上記基板として採用することも検討されている。
特開2006-137881号公報 特表2010-510378号公報 特開2007-246820号公報 国際公開第2012/118020号パンフレット 特許第4786859号公報 欧州特許第2032632号明細書 米国特許第3666709号明細書
最新ポリイミド(基礎と応用)日本ポリイミド研究会編 p113
 しかしながら、ポリイミドフィルムを用いてデバイスを製造するにあたって、いわゆるロールtoロールで、ポリイミドフィルムを送り出しながら、素子をフィルム上に搭載してデバイスを製造する際に、素子の位置決め精度に改善の余地があった。
 また、ポリイミドフィルムの黄色度(Yellow Index;以下、YIという)は出来るだけ低いことが望ましい。例えば、特許文献1では、ポリイミド前駆体にイミド化触媒としてピリジン、及び脱水剤として無水酢酸を加えて乾燥させることにより、ポリイミドフィルムを得ているが、イミド化触媒の残留により、得られたポリイミドフィルムに色づきや濁りが残りやすいという問題があった。また高い耐熱性がある、例えば、ピロメリト酸二無水物とジアミノジフェニルエーテルからなるポリイミドなどの、芳香環を有するポリイミド樹脂は、茶色又は黄色に着色し、可視光線領域での透過率が低く、透明性が要求される分野に用いることは困難であった。このように、ポリイミドフィルムに色づきや曇り、濁りがあると、タッチパネルや有機EL照明、フレキシブルディスプレイ等の表示デバイスの視認性を著しく低下させる。よって、YIをできる限り低くし、可視光における全光線透過率を上げる必要があった。
 ポリイミドフィルムのレタデーション(以下、Rthという)も出来るだけ低いことが望ましい。Rthが高いPETフィルムをタッチパネルに用いた際は、例えば、偏光サングラス越しに見る際に、虹ムラが発生し、非常に視認性が悪化する。ポリイミドフィルムが高いRthを有していると同様に視認性が悪化してしまう。
 ポリイミドフィルムとしては上記したように例えばタッチパネル材料やフレキシブルデバイス用のフィルム基板として用いることができ、靱性に優れた材質であることが望まれた。しかしながらYI及びRthが低く且つ、靱性を向上させるためのポリイミドの構成は、各特許文献や非特許文献に開示がなされていない。
 ところで、一般的なポリイミドは、高い芳香環密度により、溶媒への溶解性に乏しく、直接、ポリイミド溶液からポリイミドフィルムを得ることは困難であった。したがって、ポリイミドフィルムを構成するポリイミドとしては、溶媒への溶解性が高く加工性に優れたものが望まれた。
 本発明は、上記説明した問題点に鑑みてなされたものであり、無色透明でYI及びRthが低く、靱性に優れるポリイミドフィルム、ポリイミドフィルムを作成する為のポリイミドワニス、ポリイミドフィルムを用いた製品、及び、積層体を提供することを目的とする。また従来に比べて、デバイス製造時における素子等の位置合わせ精度が高いポリイミドフィルムを提供することを目的とする。
 本発明におけるポリイミドフィルムは、下記一般式(1)で表されるポリイミドを含有し、前記一般式(1)におけるAとして、下記一般式(A-1)で表される構造と、下記一般式(A-2)、下記一般式(A-3)、及び、下記一般式(A-4)で表される構造のうちいずれか1種以上と、を含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000024
 ここで前記一般、式(1)中、Aは2価の有機基、Bは4価の有機基、nは2以上、である。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 前記一般式式(A-2)中、Xは、下記一般式(X-1)ないし下記一般式(X-3)から選ばれる2価の有機基である。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
 前記一般式(A-3)中、aは0または1である。
Figure JPOXMLDOC01-appb-C000031
 また本発明におけるポリイミドフィルムは、下記一般式(1)で表されるポリイミドを含有し、前記一般式(1)におけるAとして、下記一般式(A-1)で表される構造を含み、レタデーション(Rth)がフィルム厚を15μmとした換算値で50nm以下であり、フィルムの破断伸度が10%以上であり、かつ熱膨張係数α、αが下記数式(I)を満たすことを特徴とする。
  0.95 ≦ α/α ≦ 1.05  (I)
  α:測定1回目のフィルムのガラス転移点以下の熱膨張係数
  α:測定2回目のフィルムのガラス転移点以下の熱膨張係数
Figure JPOXMLDOC01-appb-C000032
 ここで前記一般、式(1)中、Aは2価の有機基、Bは4価の有機基、nは2以上、である。
Figure JPOXMLDOC01-appb-C000033
 また本発明におけるポリイミドワニスは、下記一般式(1)で表されるポリイミドを溶媒に分散又は溶解したポリイミドワニスであり、前記一般式(1)中のAが、下記一般式(A-1)で表される構造、及び、下記一般式(A-5)で表される構造を含み、これらの比(一般式(A-1)で表される構造/一般式(A-5)で表される構造)が、モル基準で2/8~6/4の範囲内であり、前記一般式(1)で表されるBが、下記一般式(B-5)で表される構造を含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000034
 ここで前記一般、式(1)中、Aは2価の有機基、Bは4価の有機基、nは2以上、である。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
 また本発明における製品は、上記に記載のポリイミドフィルムを用いたことを特徴とする。
 また本発明における積層体は、上記に記載のポリイミドフィルムと、透明電極層とを有することを特徴とする。
 本発明のポリイミドフィルムによれば、無色透明でYI及びRthが低く靱性に優れる。また本発明では、所望の特性を備えた、ポリイミドフィルムを用いた製品及び積層体を製造することが可能である。
 また本発明では、フィルム上に設置される素子の位置合わせ精度を向上させることができる。
本実施の形態に係るポリイミドフィルムを示す断面概略図である。 本実施の形態に係る積層体を示す断面概略図である。 ODPA-DDS共重合体のH-NMRスペクトルである。 ODPA-DDS共重合体の13C-NMRスペクトルである。
 以下、本発明の一実施の形態(以下、「実施の形態」と略記する。)について、詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することが出来る。
<ポリイミド>
 本実施の形態に係るポリイミドフィルムは、下記一般式(1)で表されるポリイミドを含有する。
Figure JPOXMLDOC01-appb-C000038
 ここで前記一般、式(1)中、Aは2価の有機基、Bは4価の有機基、nは2以上、である。
<一般式(1)におけるA>
 ポリイミドフィルムに含有されるポリイミドは、酸二無水物とジアミンとを原料に生成することができる。一般式(1)のAは、ジアミンから得ることができる。また本実施の形態では、一般式(1)におけるAとして、下記一般式(A-1)で表される構造(以下、「構造A1」ともいう。)と、下記一般式(A-2)、下記一般式(A-3)、及び、下記一般式(A-4)で表される構造のうちいずれか1種(以下、「構造A2」ともいう。)以上と、を含む(以下、「第一のポリイミドフィルム」ともいう)。
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
 前記一般式式(A-2)中、Xは、下記一般式(X-1)ないし下記一般式(X-3)から選ばれる2価の有機基である。
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
 前記一般式(A-3)中、aは0または1である。
Figure JPOXMLDOC01-appb-C000045
 一般式(A-1)で表される構造は、3,3’-ジアミノジフェニルスルホン(3,3’-DiaminoDiphenyl Sulfone:以下、3,3’-DDSとも言う)由来、一般式(A-2)、と(X-1)とを組み合わせて表される構造(一般式(A-5)に該当)は、4,4’-ジアミノジフェニルスルホン(4,4’-DiaminoDiphenyl Sulfone:以下、4,4’-DDSとも言う)由来、一般式(A-2)と(X-2)とを組み合わせて表される構造は、α,α’-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン(以下、BAPDBとも言う)由来、一般式(A-2)と(X-3)とを組み合わせて表される構造は、4,4‘-ビス(4-アミノフェノキシビフェニル)(以下、BAPBとも言う)由来、一般式(A-3)で表される構造は、aが0の場合はシクロヘキシルジアミン(以下、CHDAとも言う)由来、aが1の場合は1,4-ビス(アミノメチル)シクロヘキサン(以下、14BACとも言う)由来、一般式(A-4)で表される構造は、ビス(アミノメチル)ノルボルナン由来(以下、BANBDAとも言う)である。ただし、これらの化合物に限定されるものではない。
 一般式(A―2)と(X-1)の組み合わせの一般式(A-5)を以下に示す。
Figure JPOXMLDOC01-appb-C000046
 一般式(A-2)と(X-2)の組み合わせの一般式(2)を以下に示す。
Figure JPOXMLDOC01-appb-C000047
 以下、一般式(A-2)と(X-3)の組み合わせの一般式(3)を以下に示す。
Figure JPOXMLDOC01-appb-C000048
 本実施の形態におけるポリイミドは、一般式(1)のAとして、一般式(A-1)で表される構造(3,3’-ジアミノジフェニルスルホン由来)を必須の繰り返し単位として含み、更に、一般式(A-1)の構造と組み合わせる繰り返し単位として、一般式(A-2)、一般式(A-3)、及び、一般式(A-4)で表される構造のうちいずれか1種以上と、を含む。
 本実施の形態におけるポリイミドは、上記繰り返し単位を含むことで、YIが低く、Rthが小さく、靱性に優れるフィルムを得ることができる。ポリイミドの着色は、ポリイミド分子間の電荷移動錯体(CT錯体)の形成に由来すると言われている。一般式(A-1)から一般式(A-4)で表される構造は、いずれも主鎖の折れ曲がりによりポリイミド分子間のCT錯体の形成を阻害すると考えられる。なかでも一般式(A-1)及び(A-5)で表される構造は、SO基の持つ電子吸引性によりイミド基のN原子の電子供与性を弱めることができ、CT錯体が形成し難くなると考えられ、特に好ましい。
 また芳香族ポリイミドが有する可視光の吸収もポリイミドの着色の原因となる。一般式(A-3)および一般式(A-4)の脂環式の構造は、芳香族ポリイミドに比べ可視光の吸収を低減することができると考えられる。
 またポリイミドの溶解性は、ポリイミドの配向が乱れることにより向上すると考えられる。一般式(A-1)から一般式(A-4)で表される構造は、いずれも主鎖の折れ曲がりによりポリイミド分子の配向が乱れる為、溶解性を発現すると考えられる。なかでも一般式(A-1)で表される構造は、SO基の屈曲構造と、3位および3’位から生じる結合による屈曲構造により、著しくポリイミド分子の配向が乱れる為、優れた溶解性を発現すると考えられる。
 このように本実施の形態におけるポリイミドフィルムに含有されるポリイミドは、一般式(1)のAとして、一般式(A-1)で表される構造と、一般式(A-2)、一般式(A-3)、及び、一般式(A-4)で表される構造のうちいずれか1種以上と、を含むことに特徴がある。
 本発明者らは、一般式(A-1)で表される構造と、一般式(A-5)で表される構造とを共重合させることでポリイミドの分子量が増加し、このポリイミドを用いて生成されたフィルムの靱性を特異的に改善することに成功したのである。なお、少なくとも、一般式(A-1)で表される構造を有し、かつ一般式(A-2)、(A-3)および(A-4)で表される構造から選ばれる少なくとも1種以上の構造を有するポリイミドについても同様の効果が発揮される。
 本実施の形態において、少なくとも、一般式(A-1)で表される構造と一般式(A-5)で表される構造とを用いることが好適である。以下では、3,3’-DDSと4,4’-DDSの両方をジアミンとして用いた構成について説明する。
 一般式(A-1)で表される構成単位は、上記したように、3,3’-DDS成分から得ることができる。一般式(A-1)で表される構造は、溶媒への可溶性を発現させるための部位である。
 一般式(A-5)で表される構成単位は、4,4’-DDSから得ることができる。一般式(A-5)で表される構造は、本実施の形態のポリイミドを溶媒に溶解して得られるワニス(樹脂組成物)を加熱乾燥させてなるポリイミドフィルムにおいて、ガラス転移温度(Tg)を250~350℃の範囲に発現させるための部位である。
 本実施の形態では一般式(A-1)で表される構造と一般式(A-5)で表される構造の双方を含有することが好ましい。一般式(A-1)で表される構造単位は、ポリイミドの溶解性の観点から導入することが好ましい。また一般式(A-5)で表される構造単位は、高いガラス転移温度(Tg)の観点から調整されたものである。一般式(A-1)で表される構造と一般式(A-5)で表される構造の双方を含有することで各々単独では成しえなかったポリイミドの溶解性とフィルムの破断伸度、及び、高いガラス転移温度(Tg)とを、無色透明であるとともに、低いレタデーション(Rth)や、高い全光線透過率を損なうことなく得ることができる。
 Rthの低減には、フィルムの面内方向および面外方向の屈折率差が少ないことが必要である。一般式(A-1)で表される構造と一般式(A-5)はSO基が屈曲し構造であり、尚且つ、sp2軌道であるが故に屈曲構造が固定化されている。その為に一般式(A-1)で表される構造と一般式(A-5)に含まれる芳香族基が一方向に並ぶことなく、ランダムに存在すると考えられる。即ち、ポリイミド骨格中に一般式(A-1)で表される構造と一般式(A-5)が存在すると面内方向および面外方向の屈折率差が少なく、Rthが低減できると考えられる。
 本実施の形態では、構造A1と構造A2との組成比(構造A1/構造A2)が、ポリイミドフィルムの靱性を更に向上できる観点から、モル比で、2/8~8/2であることが好ましい。特に、構造A2として一般式(A-5)で表される構造を有する場合には、構造A1と一般式(A-5)で表される構造(以下、「構造A21」ともいう。)との組成比(構造A1/構造A21)は、モル比で、2/8~6/4の範囲内であることが好ましく、3/7~4/6の範囲であることが更に好ましい。すなわち構造A1は、一般式(1)におけるAの全量を100モル%としたときに、20モル%以上60%以下であることが好ましい。また構造A21は、一般式(1)におけるAの全量を100モル%としたときに、の40モル%以上80%モル%以下であることが好ましい。
 また構造A1と、構造A2として一般式(A-2)から一般式(A-4)で表される構造単位の少なくとも1種(ただし上述した一般式(A-5)で表される構造単位を除く)(以下、「構造A22」ともいう。)を有する場合、構造A1と構造A22との組成比(構造A1/構造A22)は、モル比で、5/5~8/2が好ましい。
 なお、目的とする破断伸度を発現させることが出来る範囲において、更に好ましくは目的とするガラス転移温度(Tg)を発現させることが出来る範囲において、一般式(A-1)及び一般式(A-5)で表される構造単位以外の構造単位を少量含むことができる。すなわち、本実施の形態に係るポリイミドは、その性能を損なわない範囲で、4,4’-DDS及び3,3’-DDS以外のジアミン成分由来の構成単位を含んでも良い。例えば、炭素数が6~30の芳香族ジアミンが好ましい態様としてあげられる。
 具体的には、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)、1,4-ジアミノベンゼン、4-アミノベンゼンスルホン酸-4-アミノフェニルエステル、4-アミノベンゼンスルホン酸-3-アミノフェニルエステル、3-アミノベンゼンスルホン酸-3-アミノフェニルエステル、2-アミノベンゼンスルホン酸-2-アミノフェニルエステル、2,2’-ジメチル4,4’-ジアミノビフェニル、1,3-ジアミノベンゼン、4-アミノフェニル4’-アミノベンゾエート、4,4’-ジアミノベンゾエート、4,4’-(又は3,4’-、3,3’-、2,4’-)ジアミノジフェニルエーテル、4,4’-(又は3,3’-)ジアミノジフェニルスルフィド、4,4’-ベンゾフェノンジアミン、3,3’-ベンゾフェノンジアミン、4,4’-ジ(4-アミノフェノキシ)フェニルスルフォン、4,4’-ジ(3-アミノフェノキシ)フェニルスルフォン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、2,2’-ビス{4-(4-アミノフェノキシ)フェニル}プロパン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジフェニルメタン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’,6,6’-テトラメチル-4,4’-ジアミノビフェニル、2,2’,6,6’-テトラトリフルオロメチル-4,4’-ジアミノビフェニル、ビス{(4-アミノフェニル)-2-プロピル}1,4-ベンゼン、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノフェノキシフェニル)フルオレン、3,3’-ジメチルベンチジン、3,3’-ジメトキシベンチジン及び3,5-ジアミノ安息香酸、2,6-ジアミノピリジン、2,4-ジアミノピリジン、ビス(4-アミノフェニル-2-プロピル)-1,4-ベンゼン、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル(3,3’-TFDB)、2,2’-ビス[3(3-アミノフェノキシ)フェニル]ヘキサフルオロプロパン(3-BDAF)、2,2’-ビス[4(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン(4-BDAF)、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン(3,3’-6F)、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン(4,4’-6F)等の芳香族ジアミン成分由来の構成単位を挙げることが出来る。
 9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノフェノキシフェニル)フルオレン、はフルオレン骨格が負の固有複屈折を有する為、Rthを調整する際に導入することができる。
 また2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル(3,3’-TFDB)、2,2’-ビス[3(3-アミノフェノキシ)フェニル]ヘキサフルオロプロパン(3-BDAF)、2,2’-ビス[4(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン(4-BDAF)、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン(3,3’-6F)、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン(4,4’-6F)はフッ素原子の傘高い立体障害の導入によりポリイミドの分子間のCT錯体の形成を抑制でき、フィルムのYIを低下する為に導入することができる。
 なお、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)由来の構造単位は、以下の一般式(4)で表される。
Figure JPOXMLDOC01-appb-C000049
<一般式(1)におけるB>
 次に、一般式(1)のBについて説明する。一般式(1)のBは、当該構造単位は、酸二無水物から得ることができる。
 本実施の形態では、ポリイミドに含まれる酸二無水物成分由来の構造単位は、同一分子でもよく、違う構造の分子でも良い。
 Bで表される構造単位は、一般式(B-1)から一般式(B-4)で表される構造単位であることが好ましい。
 本実施の形態では、一般式(1)中のBとして下記一般式(B-1)から下記一般式(B-4)で表される構造のうち少なくとも一つ以上を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000050
 前記一般式(B-1)中、Yは、下記一般式(Y-1)ないし下記一般式(Y-3)から選ばれる構造のうちいずれかである。
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
 一般式(B-1)、と(Y-1)とを組み合わせて表される構造(一般式(B-5)の構造に該当)は、4,4’-オキシジフタル酸二無水物(以下、ODPAとも言う)由来、一般式(B-1)と一般式(Y-2)とを組み合わせて表される構造は、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(以下、6FDAとも言う)由来、一般式(B-1)と一般式(Y-3)とを組み合わせて表される構造は、9,9-ジフェニルフルオレン酸二無水物(以下、DPFLDAとも言う)由来、一般式(B-2)で表される構造は、ヒドロキシピロメリット酸二無水物(以下、HPMDAとも言う)由来、一般式(B-3)で表される構造は、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物(以下、BODAとも言う)由来、一般式(B-4)で表される構造は、1,3,3a,4,5,9b-ヘキサヒドロ-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)ナフト[1,2-c]フラン-1,3-ジオン(以下、TDAとも言う)由来である。
 DPFLDAは、フルオレン骨格が負の固有複屈折を有する為、Rthを調整する際に導入することができる。
 本実施の形態に係るポリイミドは、その性能を損なわない範囲で、上記一般式(B-1)から上記一般式(B-4)で表される構造単位以外の酸二無水物成分由来の構成単位を含んでも良い。
 例えば、炭素数8~36の芳香族テトラカルボン酸二無水物、炭素数が6~50の脂肪族テトラカルボン酸二無水物、及び炭素数が6~36の脂環式テトラカルボン酸二無水物から選択される化合物であることが好ましい。ここでいう炭素数には、カルボキシル基に含まれる炭素の数も含む。
 さらに具体的には、炭素数が8~36の芳香族テトラカルボン酸二無水物として、4,ピロメリット酸二無水物(以下、PMDAとも記す)1,2,3,4-ベンゼンテトラカルボン酸二無水物、3,3’,4,4’-ベゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(以下、BPDAととも記す)、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、メチレン-4,4’-ジフタル酸二無水物、1,1’-エチリデン-4,4’-ジフタル酸二無水物、2,2’-プロピリデン-4,4’-ジフタル酸二無水物、1,2-エチレン-4,4’-ジフタル酸二無水物、1,3-トリメチレン-4,4’-ジフタル酸二無水物、1,4-テトラメチレン-4,4’-ジフタル酸二無水物、1,5-ペンタメチレン-4,4’-ジフタル酸二無水物、、チオ-4,4’-ジフタル酸二無水物、スルホニル-4,4’-ジフタル酸二無水物、1,3-ビス(3,4-ジカルボキシフェニル)ベンゼン二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,3-ビス[2-(3,4-ジカルボキシフェニル)-2-プロピル]ベンゼン二無水物、1,4-ビス[2-(3,4-ジカルボキシフェニル)-2-プロピル]ベンゼン二無水物、ビス[3-(3,4-ジカルボキシフェノキシ)フェニル]メタン二無水物、ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]メタン二無水物、2,2’-ビス[3-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、2,2’-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物(以下、BPADAとも記す)、ビス(3,4-ジカルボキシフェノキシ)ジメチルシラン二無水物、1,3-ビス(3,4-ジカルボキシフェニル)-1,1’,3,3’-テトラメチルジシロキサン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物等を挙げることができる。
 炭素数が6~50の脂肪族テトラカルボン酸二無水物として、エチレンテトラカルボン酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物等を挙げることが出来る。
 炭素数が6~36の脂環式テトラカルボン酸二無水物として、1,2,3,4-シクロブタンテトラカルボン酸二無水物(以下、CBDAとも記す)、シクロペンタンテトラカルボン酸二無水物、シクロヘキサン-1,2,3,4-テトラカルボン酸二無水物、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸二無水物、カルボニル-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、メチレン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、1,2-エチレン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、1,1’-エチリデン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、2,2’-プロピリデン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、オキシ-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、チオ-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、スルホニル-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、rel-[1S,5R,6R]-3-オキサビシクロ[3,2,1]オクタン-2,4-ジオン-6-スピロ-3’-(テトラヒドロフラン-2’,5’-ジオン)、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸二無水物、エチレングリコール-ビス-(3,4-ジカルボン酸二無水物フェニル)エーテル、4,4’-ビフェニルビス(トリメリット酸モノエステル酸二無水物)等を挙げることが出来る。
 前記一般式(B-1)中、一般式(Y-1)および一般式(Y-2)は、ポリイミドの溶媒に対する溶解性、及び、ポリイミドフィルムにした際の黄色度およびレタデーション(Rth)の低減の観点から好ましい。また、一般式(Y-3)は、負の固有複屈折を有する為、ポリイミドフィルムにした際の黄色度およびレタデーション(Rth)の低減、線膨張係数(Coefficient of Thermal Expansion;CTE)の低減、及び、ガラス転移温度(Tg)の向上の観点から好ましい。
 前記一般式(B-2)から一般式(B-4)は、ポリイミドの溶媒に対する溶解性、及び、ポリイミドフィルムにした際の黄色度低減、の観点から好ましい。
 中でも一般式(1)中のBとしてポリイミドの溶媒に対する溶解性、ポリイミドフィルムにした際の高い全光線透過率、低い黄色度、高い弾性率、及び、高い破断伸度の観点から、ODPA由来の成分である下記一般式(B-5)で表される構造を含んで使用することが特に好ましく、一般式(1)で表されるポリイミド中、酸二無水物由来の構成単位Bのうち、一般式(B-5)は酸二無水物全体に対し50モル%以上であることが好ましく、80モル%以上であることがさらに好ましく、100モル%であっても良い。
Figure JPOXMLDOC01-appb-C000057
 本実施の形態に係るポリイミドは、下記一般式(5)で表されるユニット1、及び、下記一般式(6)で表されるユニット2を主として含む。
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
 本実施の形態において、ユニット1及びユニット2以外のユニットを更に含む場合、ユニット1、及びユニット2以外のユニットの含有量は、ユニット1、及びユニット2の含有量より少ないことが好ましい。これらのユニットは高分子鎖の中で交互に結合していても順列に結合していても良く、これらのユニットがランダムに結合していても良い。
 ポリイミドの重量平均分子量(Mw)は、ポリイミドフィルムにおいて高い破断伸度をと低Rthを得る観点から、10,000以上であることが好ましく、25,000以上であることがより好ましく、30,000以上であることが特に好ましい。また、ポリイミドの重量平均分子量(Mw)は、1,000,000以下であることが好ましく、500,000以下であることがより好ましく、250,000以下であることが特に好ましい。重量平均分子量が1,000,000以下であると、溶媒への溶解性も良好で、塗工などの加工の際に所望する膜厚にて滲みなく塗工出来、低Rthのフィルムを得ることができる。特に、ポリイミドフィルムにおいて高い破断伸度と低Rthを得る観点から、重量平均分子量は30,000以上であることが好ましい。ここで、重量平均分子量とは、既知の数平均分子量のポリスチレンを標準として、ゲルパーミエーションクロマトグラフィーによって測定される分子量をいう。
<ポリイミドワニス>
 上述のような本実施の形態に係るポリイミドは、これを溶媒に溶解したワニス(樹脂組成物)として、例えばフィルムや膜の製造原料として用いられる。よって本実施の形態におけるポリイミドワニスは、一般式(1)で表されるポリイミドを溶媒に分散又は溶解したポリイミドワニスである。また、一般式(1)中のAが、一般式(A-1)で表される構造及び、一般式(A-5)で表される構造を含み、これらの組成比(前記一般式(A-1)で表される構造単位/前記一般式(A-5)で表される構造単位)が、モル比で、2/8~6/4の範囲内である。更に、一般式(1)で表されるBが、下記一般式(B-5)で表される構造を含む。
Figure JPOXMLDOC01-appb-C000060
 ここで前記一般、式(1)中、Aは2価の有機基、Bは4価の有機基、nは2以上、である。
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
 本実施の形態におけるポリイミドは溶媒に対する溶解性に優れることが後述の実験でも証明されている。したがって本実施の形態のポリイミドを用いることで、簡単なプロセスにより所望の特性を備えたワニスを得ることができる。本実施の形態のポリイミドワニスによれば、ポリイミドが適切に溶解しているため、ワニスを塗布面上に塗布した際、塊にならず平滑性に優れたフィルムを形成することができる。このため、均一な厚みの樹脂層を形成することができるとともに高い靱性を得ることが出来る。
 より好ましい様態としては、ポリイミドワニスは、酸二無水物成分及びジアミン成分を、溶媒、例えば有機溶媒に溶解し、トルエンなどの共沸溶媒を加え、イミド化の際に発生する水を系外に除去することでポリイミド及び溶媒を含有するポリイミド溶液(ポリイミドワニスとも言う)として製造することが出来る。ここで、反応時の条件は特に限定されないが、例えば、反応温度は0℃~180℃、反応時間は3~72時間である。スルホン基含有ジアミン類との反応を充分に進めるために、180℃で12時間程度加熱反応させることが好ましい。また、反応時、アルゴンや窒素などの不活性雰囲気であることが好ましい。
 また、溶媒は、ポリイミドを溶解する溶媒であれば、特に限定されない。公知の反応溶媒として、フェノール系溶媒として例えば、m-クレゾール、アミド系溶媒として例えば、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、ラクトン系溶媒として例えば、γ-ブチロラクトン(GBL)、δ-バレロラクトン、ε-カプロラクトン、γ-クロトノラクトン、γ-ヘキサノラクトン、α-メチル-γ-ブチロラクトン、γ-バレロラクトン、α-アセチル-γ-ブチロラクトン、δ-ヘキサノラクトン、スルホキシド系溶媒として例えば、N,N-ジメチルスルホキシド(DMSO)、ケトン系溶媒として例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、エステル系溶媒として例えば、酢酸メチル、酢酸エチル、酢酸ブチル、炭酸ジメチル、等から選ばれる1種以上の極性溶媒が有用である。このうち、好ましくは、溶解性の観点からNMP及びGBLである。更にフィルムのYIを低減させる観点からGBLが好ましい。
 本実施の形態におけるポリイミドワニスには適宜添加剤を添加してもよい。添加剤として、フィルムのRthを調整する為に負の複屈折率を示す物質を添加してもよい。例えば、炭酸ストロンチウム等の無機粒子やポリスチレン、ポリビニルナフタレン、ポリメチルメタクリレート、セルローストリアセテート、フルオレン誘導体等の有機化合物、が挙げられる。
 添加剤としては例えば、フィルムの塗工性を改善する為のレべリング剤、分散剤や界面活性剤、フィルムの支持体からの剥離性や接着性を調整する為の界面活性剤や密着助剤、フィルムに難燃性を付与する為の難燃剤、などである。そのほか例えば、酸化防止剤、紫外線防止剤、光安定剤、可塑剤、ワックス類、充填剤、顔料、染料、発泡剤、消泡剤、脱水剤、帯電防止剤、抗菌剤、防カビ剤、などが挙げられる。
 ポリイミドワニスに添加された添加剤は、そのままフィルムに含有されていてもよい。
<ポリイミドフィルム>
 図1は、本実施の形態に係るポリイミドフィルムを示す断面概略図である。本実施の形態に係るポリイミドフィルム10は、例えば、支持体11の表面上に樹脂組成物層12が形成された構造である。なお支持体11はなくてもよい。本実施の形態においては支持体11がなくても支持性のあるフィルム(自立フィルム)となることが、フィルム基板としての強度を保持する観点から好ましい。尚、支持性のあるフィルムとは5%以上の破断伸度を有するフィルムのことを示している。積層体になっているフィルムについては、剥がしたフィルムが5%以上の破断伸度を有している場合、支持性のあるフィルムに該当する。
 尚、破断伸度の測定法は後述する(破断伸度、破断強度の評価)に記載の方法を用いることができる。
 ポリイミドフィルム10を構成する樹脂組成物層12は、ポリイミド及び溶媒を含有するポリイミドワニス(樹脂組成物)を支持体11の表面上に塗工等により成膜し、次いで、ポリイミドワニスを加熱して溶媒を蒸発させることにより得ることができる。より具体的には、上述のように、酸二無水物成分及びジアミン成分を有機溶媒中に溶解して反応させて得られるポリイミド溶液を支持体11に成膜することが出来る。
 またポリイミドワニス(樹脂組成物)を支持体11の表面上に塗工等により成膜し、フィルムにべとつきがなくなるまで仮乾燥をし、次いでフィルムを支持体11から剥離した後、更にフィルムを加熱して溶媒を蒸発させることによっても得ることができる。この場合は支持体11がなくても支持性のあるフィルム(自立フィルム)となる。
 ここで、支持体11は、例えば、アルカリガラス基板、無アルカリガラス基板(Eagle XG(登録商標)、コーニング社製)、及び、銅基板、アルミ基板、SUS基板等の金属基板や、Upilex(登録商標)フィルム(宇部興産製)、Kapton(登録商標)フィルム(東レ・デュポン製)、ポリカーボネートフィルム、PETフィルム等のようなプラスチックフィルムや銅箔、アルミ箔、SUS箔等のような金属箔であるが、ポリイミドワニスに対する加熱・乾燥は支持体11が無くとも実施することができ、支持体11の種類は特に限定されるものではない。なお基本的に基板とは高剛性で折り曲げ等に適さない構成であり、フィルム、或いはフィルム基板は可撓性であり、折り曲げ加工が可能な構成である。
 本実施の形態では、ポリイミドの溶媒への溶解性が良好であり、支持体上にポリイミドワニスを塗布し、仮乾燥を行い、支持体を取り外しても、ポリイミドフィルムは自立性を保つことができる。したがって支持体に支持されない自由状態で、仮乾燥後のポリイミドフィルムに加熱を実施して、ポリマーの配向が少ない状態で溶媒含有量が3質量%以下のポリイミドフィルムを得ることができる。
 ポリイミドワニスに対して、不活性ガス雰囲気下で150~350℃の温度を施すことで、溶媒を除去して、ポリイミドフィルム10を形成することが出来るが、乾燥は大気雰囲気下でも実施することが出来、特に限定されるものではない。
 また、溶媒は、上記したように、例えば、m-クレゾール、NMP、DMF、DMAc、GBL、DMSO、アセトン、ジエチルアセテート等であり、このうちGBLを溶媒に用いることで、ポリイミドフィルムの低YIを担保することができる。上記のようにポリイミドワニスに対する加熱・乾燥により溶媒はほぼ除去されるものの、所望のYIやRth、靱性を得ることができる等、所望の物性を損なわない観点からポリイミドフィルム中に、GBLの含有量は、3質量%よりも小さいことが好ましく、1質量%よりも小さいことがより好ましく、0.5質量%以下であることが更に好適である。なお、GBLは少なくとも0.01質量%程度が残量として残される。
 ここで、ポリイミドワニスの成膜方法としては、例えば、スピンコート、スリットコート、スロットダイコート及びブレードコートなどの公知の塗工方法が挙げられる。
 本実施の形態におけるポリイミドフィルムは、優れた靱性を有している。後述する実験では、靱性の指標として破断伸度と破断強度とを測定している。例えば、一般式(A-1)及び一般式(A-5)で表される構造の双方を含む本実施の形態では、一般式(A-1)及び一般式(A-5)で表される構造の一方しか含まない比較例に比べて、いずれも高い破断伸度と破断強度とを得ることができる。上記したように、ジアミン成分由来として、4,4’-DDS成分由来(一般式(A-5)で表される構造)のみでは、ポリイミドの分子量が低下し、膜の靱性が低くなる。このため本実施の形態では、4,4’-DDS成分由来の異性体であり、4,4’-DDS成分由来から見てモノマー骨格が屈曲した構造となる3,3’-DDS成分由来(一般式(A-1)で表される構造)を含有させ、このとき、好ましくは、3,3’-DDS成分由来を4,4’-DDS成分由来よりも少ない添加量とすることで、分子量を高めつつ、靱性を向上させることができる。
 また、本実施の形態に係るポリイミドフィルムの黄色度(YI)を、5.0以下とすることができる。このとき、ポリイミドフィルムの膜厚は、0.1μmから30μmの範囲内であることが好ましく、1μmから20μmの範囲内であることがより好ましい。
 フレキシブルデバイス用のフィルム基板に用いる際は、デバイスの薄膜化による屈曲耐性向上の観点から1μmから10μmの範囲内であることが好ましく、更に好ましくは1μmから5μmの範囲内である。
 10μm未満のフィルムは例えば、膜厚が10μm以上のポリイミドフィルムを延伸処理することにより作成することができる。支持体上にポリイミドワニスを塗布し、支持体を取り外してもポリイミドフィルムが自立性を有することができる状態まで仮乾燥を行う。支持体としては前述したPETフィルムやKapton(東レ・デュポンの登録商標)、Upilex(宇部興産の登録商標)などのポリイミドフィルム、金属箔などを用いることができる。この時フィルム中に残存する溶媒量はフィルムの自立性と延伸性加工性の観点から10~20質量%が好ましい。
 仮乾燥ポリイミドフィルムは支持体がついたまま、或いは支持体上から剥離した状態で、150℃~250℃に加熱しながら二軸延伸にて1.5倍から5倍に延伸し作成することができる。延伸は同時二軸延伸でも逐次二軸延伸でも良いが、フィルムの低Rthの観点から同時二軸延伸が好ましい。延伸後の仮乾燥ポリイミドフィルムは、次いで本乾燥を実施し、残溶媒を3質量%以下となるまで乾燥される。
 更に本実施の形態では、黄色度(YI)を2.0以下に調整することができる。このように本実施の形態では、低い黄色度に抑えることができ、すなわち無色透明なポリイミドフィルムを得ることができる。なお本実施の形態でいう「無色透明」とは、フィルムの全光線透過率が80%以上であり、ヘイズが2以下であり、黄色度(YI)が、5.0以下の状態を指す。従って、本実施の形態のポリイミドフィルムをタッチパネルやディスプレイの用途に好適に用いることができる。例えば、本実施の形態に係るポリイミド樹脂を透明電極フィルムの基板フィルムとして用いる際には、基板フィルムの上下面の少なくとも一方の面にタッチパネル素子を作製し、基板フィルムの表面、あるいは、基板フィルムの表面と対向する側を視認面とした場合でも画面の色づき、明度に悪影響を与えない。
 また、本発明の実施の形態に係るポリイミドフィルムのレタデーション(Rth)を、フィルム厚を15μmとした換算値で、100nm以下、好ましくは50nm以下、更に好ましくは20nm以下にすることができる。Rthは負でもよいが好ましくは-5nmより大きい値である。
 例えば、非特許文献1に記載されているように、一般的な高耐熱のポリイミド樹脂に用いられる酸二無水物及びジアミン骨格は平面性、芳香環密度が高く、ガラス基板上に塗工、乾燥した際に二次元平面方向に対するポリイミド鎖の配向が起こり、面内方向と面外方向の屈折率に異方性が見られ、レタデーション(Rth)が増大することが一般的に知られている。一般的に、屈折率の異方性を小さくする方法として、屈曲構造を導入して乾燥時の分子配向を抑制する方法や、電子密度の大きい芳香環の濃度を希釈する方法が知られている。また、特許文献4に記載されているように、ジアミンとして4,4’-ジアミノジフェニルスルホンのような屈曲基を導入したポリイミドを用いることで異方性の小さな無色透明フィルムを得る方法がある。しかしながら、屈折率の異方性が小さく、かつ無色透明なフィルムを得るためには、溶媒に可溶な前駆体であるポリアミド酸の溶液から作成したポリアミド酸フィルムを経由しポリイミドフィルムとする方法が一般的であった。このとき、ポリアミド酸フィルムは強度に劣り、自立フィルムとするのが困難な為ハンドリング性が悪化する問題があった。これに対して本実施の形態におけるポリイミドフィルムは、黄色度及びレタデーション(Rth)が低いとともに、靱性に優れた自立フィルムをすることができる。このため、本実施の形態のポリイミドフィルムを例えばタッチパネルやディスプレイの用途としてハンドリング性よく用いることができる。また、レタデーション(Rth)を低くできるため、例えば、本実施の形態に係るポリイミド樹脂を透明電極フィルムの基板フィルムとして用いる際、基板フィルムの上下面の少なくとも一方の面にタッチパネル素子を作製して視認面とした場合でも、画面の虹ムラに悪影響を与えない。なお、一般式(A-1)で表される構造と一般式(A-5)はSO基が屈曲し構造であり、尚且つ、sp2軌道であるが故に屈曲構造が固定化されている。その為に一般式(A-1)で表される構造と一般式(A-5)に含まれる芳香族基が一方向に並ぶことなく、ランダムに存在すると考えられる。即ち、ポリイミド骨格中に一般式(A-1)で表される構造と一般式(A-5)が存在すると面内方向および面外方向の屈折率差が少なく、Rthが低減できると考えられる。
 例えば、本実施の形態のポリイミドフィルムはPETフィルムやCOPフィルムと同様にガラスの代替品として用いることができ、更には本実施の形態のポリイミドフィルムは靱性に優れる為、折り畳み式の表示体や曲面に追従した表示体に用いることができる。
<積層体>
 図2は、本実施の形態に係る積層体を示す断面概略図である。本実施の形態に係る積層体20は、ポリイミドフィルム10の表面上に透明電極層21を設けている。
 本実施の形態に係る積層体20は、ポリイミドフィルム10の表面上に透明電極層21をスパッタリング装置で成膜等することにより得ることが出来る。図2では、ポリイミドフィルム10が、支持体11と樹脂組成物層12との積層構造となっているが、樹脂組成物層12の単層であってもよい。本実施の形態に係る積層体は透明電極層をポリイミドフィルムの両面に有しても良い。このとき、両面には、少なくとも夫々1層以上の透明電極層21を有することが好ましい。また透明電極層とポリイミドフィルムの間に、平滑性を付与する為のアンダーコート層、表面硬度を付与する為のハードコート層、視認性を向上する為のインデックスマッチング層、ガスバリア性を付与する為のガスバリア層、など他の層を有していても良い。表面硬度を付与する為のハードコート層、視認性を向上する為のインデックスマッチング層、は透明電極層とポリイミドフィルムの上に積層されていてもよい。
 以上説明したように、本実施の形態に係るポリイミドを用いて製造したポリイミドフィルム10は、無色透明で黄色度(YI)が低く靱性に優れている。更に、好ましくは、レタデーション(Rth)が小さく、透明電極作製工程に好適なガラス転移温度(Tg)を有するために、本実施の形態の積層体20は、透明電極フィルムのようなタッチパネル材料への使用に適している。
 透明電極フィルムを形成する場合、透明電極層21のポリイミドフィルム10表面への成膜工程は、例えば、80~100℃の低い温度範囲で実施されるが、実際に所望する性能発現のためには、より高温でのスパッタリングを行い、比抵抗の低い透明電極層21を形成することが好ましい。透明電極層21は、ポリイミドフィルム10の両面に形成される構成にできる。これにより、例えば、両面にタッチパネル素子を配置することができる。
 この際、透明電極層21を成膜する温度が、成膜面を構成するポリイミドフィルム10のガラス転移温度(Tg)が高い場合においては、高温領域でポリイミドフィルムの収縮や破断などの問題が生じる。一般的に、PETフィルム上に透明電極層を形成する場合、PETフィルムのガラス転移温度(Tg)である約100℃よりも低い80℃程度でのスパッタリングが行われる。これに対して本実施の形態に係るポリイミドフィルム10は、ガラス転移温度(Tg)が約250℃以上(フィルムの厚さ15μmを基準)と高く、耐熱性に優れる。すなわち200℃以上の高温に曝されても高い靱性を保ち得る。したがって、本実施の形態のポリイミドフィルム10の表面に対して、例えば、150~250℃程度でのスパッタリングを行って、比抵抗の低い透明電極層21を成膜することができる。
 また、本実施の形態に係るポリイミドは、透明電極層21を成膜する際の歩留まりを向上させる観点から、ポリイミドフィルムの厚さ15μmを基準として、破断強度が100MPa以上であることが好ましい。
 また、本実施の形態に係るポリイミドフィルムは、透明電極フィルムの性能を向上させる観点から、上記したように、フィルムの厚さ15μmを基準として、ガラス転移温度(Tg)が250℃以上であることが好ましい。
<所定の特性を有するポリイミドフィルム>
 本実施の形態のポリイミドフィルムは、下記一般式(1)で表されるポリイミドを含有し、前記一般式(1)におけるAとして、下記一般式(A-1)で表される構造を含む(以下、「第二のポリイミドフィルム」ともいう)。
 一般式(A-1)で表される構造を含むフィルムは、フィルムの面内方向、および面外方向においてポリマーが等方的に存在しやすくなる為、好ましい。第二のポリイミドフィルムにおいて、前記一般式(1)におけるAとして、下記一般式(A-1)で表される構造を一般式(1)におけるAの全量を100モル%としたときに、20モル%以上80%以下であることが好ましい。
Figure JPOXMLDOC01-appb-C000064
 ここで前記一般、式(1)中、Aは2価の有機基、Bは4価の有機基、nは2以上、である。
Figure JPOXMLDOC01-appb-C000065
 なお、本実施の形態のポリイミドフィルムは一般式(A-1)で表される構造以外の構造を有していてもよい。このような構造としては、先述の<ポリイミド>の章で述べた構造単位を挙げることができる。また原料のジアミンと酸二無水物としては、先述した、<一般式(1)におけるA>の章でのジアミン成分、<一般式(1)におけるB>の章での酸二無水物成分に挙げたものを用いることができる。
 上記に加えて、本実施の形態のポリイミドフィルムは、レタデーション(Rth)がフィルム厚を15μmとした換算値で50nm以下である。
 更に、本実施の形態のポリイミドフィルムは、フィルムの破断伸度が10%以上であり、かつ熱膨張係数α、αが下記数式(I)を満たす。
  0.95 ≦ α/α ≦ 1.05  (I)
  α:測定1回目のフィルムのガラス転移点以下の熱膨張係数
  α:測定2回目のフィルムのガラス転移点以下の熱膨張係数
 測定方法は後述の実施例に記載するが、α、αは以下のようにTMA(Thermo Mechanical Analysis)を用いた熱サイクル試験を実施し定義することができる。
 まずフィルムのガラス転移点を以下の測定により決定する。フィルム幅を3mm、フィルム長さを20mmとし、昇温速度を10℃/minとし、引っ張り荷重を49mNとし、50℃から350℃の範囲にてTMAを測定する。測定したTMAチャートの50℃から350℃の範囲にておける熱膨張係数の変曲点をガラス転移点とする。
 次に、前述したフィルムのガラス転移点により、以下の分類を行い、熱サイクルの測定範囲および熱膨張係数を定義しα、αを算出する。
 ガラス転移点が200℃以上250℃未満のフィルムの場合、熱サイクルの測定範囲を50℃から200℃とし、熱膨張係数は昇温工程の100℃から150℃の値とする。この測定における1サイクル目の昇温工程の熱膨張係数をαとし、2サイクル目の昇温工程の熱膨張係数をαとする。
 ガラス転移点が250℃以上300℃未満のフィルムの場合、熱サイクルの測定範囲を50℃から250℃とし、熱膨張係数は昇温工程の100℃から200℃の値とする。この測定における1サイクル目の昇温工程の熱膨張係数をαとし、2サイクル目の昇温工程の熱膨張係数をαとする。
 ガラス転移点が300℃以上350℃未満のフィルムの場合、熱サイクルの測定範囲を50℃から300℃とし、熱膨張係数は昇温工程の100℃から250℃の値とする。この測定における1サイクル目の昇温工程の熱膨張係数をαとし、2サイクル目の昇温工程の熱膨張係数をαとする。
 ガラス転移点が350℃以上もしくは50℃から350℃の範囲には観測されないフィルムの場合、熱サイクルの測定範囲を50℃から350℃とし、熱膨張係数は昇温工程の100℃から300℃の値とする。この測定における1サイクル目の昇温工程の熱膨張係数をαとし、2サイクル目の昇温工程の熱膨張係数をαとする。
 尚、いずれの場合も、フィルム幅を3mm、フィルム長さを20mmとし、TMAの昇温速度を10℃/min、降温速度を10℃/min、引っ張り荷重を49mNとする。測定方法は後述の実施例に記載するが、屈折率とRthの間には以下の関係が成り立つ。
Rth=Δn×d
Δn={(Nx+Ny)/2-Nz}
 ここで、Nx、Nyは平面方向、Nzは厚み方向の屈折率を指し、dはサンプルの厚み(nm)を指す。
 本実施の形態に係るポリイミドフィルムのレタデーション(Rth)は、フィルム厚を15μmとした換算値で、50nm以下、更に好ましくは20nm以下である。Rthは負でもよいが好ましくは-5nmより大きい値である。
 Rthが低いことは、屈折率に異方性が少ないことを意味しており、例えば、本実施の形態に係るポリイミドフィルムを表示素子の基板フィルムとして用いる際、画面の視認性に優れる為、好ましい。具体的には例えば、偏光サングラス越しに見た際の虹ムラ減少の低減などである。
 Rthが低いのはフィルム内の電子密度に異方性が少ない為であり、フィルムの面内方向、および面外方向においてポリマーが等方的に存在していることを示唆している。ポリマーの配向性が低い為、フィルムは方向性がなく、光学特性のみならず、機械特性(弾性率や熱膨張係数等)において等方的な性質を示すと考えられる。フィルムの弾性率や熱による膨張、収縮が等方的になると、デバイス作製工程において力や熱がかかった際のフィルムの変形が等方的になる為、位置決め精度が向上すると考えられる。
 フィルムの破断伸度が10%以上あることは、自立フィルムとした際の作業性の向上やフレキシブルデバイスのフィルム基板とした際の屈曲耐性の観点から好ましい。
 フィルムに残留する歪みは例えば以下の方法で測定した熱膨張係数α、αから推定することができ、その際、測定した熱膨張係数α、αが上記数式(I)を満たすことが好ましい。
 熱膨張係数α、αが数式(I)を満たすことは、フィルムに残留する歪みが少ないことを示している。熱膨張係数α、αが数式(I)を満たすことは加熱プロセス中においてもフィルムのシワの発生が少ない点から好ましい。またフィルムの残留歪みが少ないとデバイス作製工程において熱がかかった際にフィルムが一時的に変形しても、冷却後は精度よく元の形状に戻るため、位置決め精度が向上すると考えられる。
 本実施の形態のポリイミドフィルムは、フィルム上に搭載される素子等の位置決め精度を向上させることが出来る。すなわち例えば、ロールtoロールで、本実施の形態のポリイミドフィルムを送り出しながら、素子をフィルム上に搭載する際、加熱環境下にあっても、靱性に優れる為、フィルムが破断することなく、更には変形の等方性、回復性が優れる為、素子を位置決め精度よくフィルム上に搭載していくことができる。
<ポリイミドフィルムの製造方法>
 以下に本実施の形態におけるポリイミドフィルムと製法について説明する。
 第一の製法として、ポリイミド前駆体の溶液を支持体上にキャストした後加熱し、乾燥とイミド化を施して、ポリイミドフィルムとする製法が挙げられる(製法1とする)。
 第二の製法として、ポリイミドの溶液(ポリイミドワニス)を支持体上にキャストし乾燥を施しポリイミドフィルムとする製法が挙げられる(製法2-1とする)。
 また、第二の製法はあらかじめイミド化されたポリイミド溶液から成膜している為、仮乾燥を行った後、支持体から剥離して、乾燥を施しポリイミドフィルムとする製法も可能である(製法2-2とする)。
 第一のポリイミドフィルムについては、製法は特に限定されず、従来公知のポリイミドフィルムの製法が適用できる。例えば第一の製法(製法1)または第二の製法(製法2-1、及び製法2-2)が適用できるが、好ましくは、キャスト後にイミド化の工程がない第二の製法が好ましい。
 第二のポリイミドフィルムについては、低いRthを得る為に第二の製法(製法2-1、及び製法2-2)が好ましく、特に、第二の製法において、支持体から剥離して乾燥を施す製法2-2が好ましい。
 以下に製法2-2について説明する。
 本実施の形態では、支持体上にポリイミドワニスを塗布し、フィルムを得ることができる。本実施の形態では、あらかじめイミド化されたポリイミド溶液から成膜している為、仮乾燥を行った後、支持体を取り外しポリイミドの自立フィルムを得ることができる。したがって支持体に支持されない自由状態で、仮乾燥後のポリイミドフィルムに加熱を実施することで、ポリマーの配向が少ない状態でポリイミドフィルムを得ることができ、フィルム厚を15μmとした換算値で50nm以下の低Rthを実現できる。しかもフィルムの破断伸度が10%以上にできる。加えて、ポリイミドフィルムの残留歪みを小さくでき、上記した熱膨張係数の比(α/α)を、0.95~1.05の範囲に収めることが出来る。
 例えば、支持体上にワニスを塗布した状態で加熱してイミド化する方法では、支持体との膨張差による歪みにより、ポリイミドフィルムの残留歪みが大きくなりやすい。またポリイミド前駆体であるポリアミド酸フィルムからイミド化したポリイミドフィルムはポリアミド酸フィルムが強度に劣る為、支持体が必要であり、仮乾燥後に自立フィルムを得るのが困難である。更に脱水収縮による歪みが発生する為、ポリイミドフィルムの残留歪みが大きくなりやすい。
 例えば、本実施の形態のポリイミドフィルムは、PETフィルムやCOPフィルムと同様にガラスの代替品として用いることが出来る。上記したように本実施の形態のポリイミドフィルムは低Rthを実現できる。加えて高伸度であるため、例えば折り畳み式の表示体や曲面に追従した表示体に本実施の形態のポリイミドフィルムを用いてもフィルム破損は生じず、使い勝手が良い。
<ポリイミドフィルムを用いた製品>
 本実施の形態におけるポリイミドフィム及び積層体は、前述したように、表面保護フィルム、カラーフィルター、TFT、などの基板フィルム、絶縁保護膜として用いることができる。これらのポリイミドフィム及び積層体は、例えば、タッチパネル機能を備えたディスプレイ、有機EL照明、フレキシブルディスプレイ、スマートフォン、タブレット端末、折り曲げが可能なスマートフォンやタブレット端末、その他フレキシブルデバイス、曲面を有する有機EL照明や有機ELディスプレイなど、の製品に好適に利用することができる。ここで、フレキシブルデバイスとは、例えば、フレキシブルディスプレイ、フレキシブル太陽電池、フレキシブルタッチパネル、フレキシブル照明、フレキシブルバッテリーなどをいう。
 以下、本発明について、例に基づきさらに詳述するが、これらは説明のために記述されるものであって、本発明の範囲が下記例に限定されるものではない。例における各種評価は次の通り行った。
(重量平均分子量(Mw)及び、数平均分子量(Mn)の測定)
 重量平均分子量(Mw)及び、数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)にて、下記の条件により測定した。溶媒としては、N,N-ジメチルホルムアミド(和光純薬工業社製、高速液体クロマトグラフ用)を用い、測定前に24.8mol/Lの臭化リチウム一水和物(和光純薬工業社製、純度99.5%)及び63.2mol/Lのリン酸(和光純薬工業社製、高速液体クロマトグラフ用)を加えたものを使用した。また、重量平均分子量を算出するための検量線は、スタンダードポリスチレン(東ソー社製)を用いて作成した。
 カラム:TSK-GEL SUPER HM-H
 流速:0.5mL/分
 カラム温度:40℃
 ポンプ:PU-2080(JASCO社製)
 検出器:RI-2031Plus(RI:示差屈折計、JASCO社製)
     UV-2075Plus(UV-Vis:紫外可視吸光計、JASCO社製)
(破断伸度、破断強度の評価)
 乾燥したサンプル長3×50mm、ポリイミドフィルムを引っ張り試験機(株式会社A&D社製:RTG-1210)を用いて、速度100mm/minで引張り、破断伸度及び破断強度を測定した。
(黄色度(YI)、全光線透過率の評価)
 ポリイミドフィルムを、日本電色工業株式会社製(Spectrophotometer:SE600)にてD65光源を用い、黄色度(YI値)及び全光線透過率を測定した。なお、特に記載のない限り、サンプルとして15±1μmの膜厚のフィルムについて測定を行った。
 (レタデーション(Rth)の評価)
ポリイミドフィルムを、王子計測機器株式会社製の位相差測定装置(KOBRA-WR)を用いて、波長589nmにおけるΔnを測定し、下記式によって厚み15μm換算のRthを算出した。
 Rth=Δn×d
Δn={(Nx+Ny)/2-Nz}
 ここで、Nx、Nyは平面方向、Nzは厚み方向の屈折率を指す。
 ここで、dは、サンプルの厚みを指す。本測定においてはd=15μmとしてRthを算出した。
(ガラス転移温度(Tg)及び線膨張係数(CTE)の評価)
 温度50~350℃の範囲におけるガラス転移温度(Tg)、及び線膨張係数(CTE)の測定は、ポリイミドフィルムを3mm×20mmの大きさにカットしたものを試験片として、熱機械分析により行った。測定装置としてセイコーインスツル株式会社製(EXSTAR6000)を用い、引張荷重49mN、昇温速度10℃/分及び窒素気流下(流量100ml/分)の条件で、温度50~350℃の範囲における試験片伸びの測定を行った。得られたチャートの変曲点をガラス転移温度として求め、100~200℃におけるポリイミドフィルムの線膨張係数(CTE)を求めた。
(線膨張係数α、αの評価)
 ポリイミドフィルムを3mm×20mmの大きさにカットしたものを試験片として、熱機械分析により行った。測定装置としてセイコーインスツル株式会社製(EXSTAR6000)を用い、引張荷重49mN、昇温速度10℃/分及び窒素気流下(流量100ml/分)とするとともに、以下に示す条件で測定を行った。
 ガラス転移点が200℃以上250℃未満のフィルムの場合、熱サイクルの測定範囲を50℃から200℃とし、熱膨張係数は昇温工程の100℃から150℃の値とした。この測定における1サイクル目の昇温工程の熱膨張係数をα、とし2サイクル目の昇温工程の熱膨張係数をαとした。
 ガラス転移点が250℃以上300℃未満のフィルムの場合、熱サイクルの測定範囲を50℃から250℃とし、熱膨張係数は昇温工程の100℃から200℃の値とした。この測定における1サイクル目の昇温工程の熱膨張係数をα、とし2サイクル目の昇温工程の熱膨張係数をαとした。
 ガラス転移点が300℃以上350℃未満のフィルムの場合、熱サイクルの測定範囲を50℃から300℃とし、熱膨張係数は昇温工程の100℃から250℃の値とした。この測定における1サイクル目の昇温工程の熱膨張係数をα、とし2サイクル目の昇温工程の熱膨張係数をαとした。
 ガラス転移点が350℃以上もしくは50℃から350℃の範囲には観測されないフィルムの場合、熱サイクルの測定範囲を50℃から350℃とし、熱膨張係数は昇温工程の100℃から300℃の値とした。
 評価基準はα/αの比が0.95以上1.05以下の範囲内を〇、0.95未満または1.05より大きい場合を×とした。
(フィルムの位置ずれ性δの評価)
 フィルムの位置ずれ性δは以下の方法により測定した。
 まず、ポリイミドフィルムの中心に100mm×100mmの正方形を描き、加熱処理前のその正方形の4辺の長さの平均値をLとした。4辺の長さは0.001mm単位まで測定した。同様に加熱処理後の正方形の4辺の長さの平均値をLとしその差の絶対値を位置ずれ性δ(=|L-L|)と定義した。
 LおよびLの測定は25℃、50%RHのクリーンルーム内で行った。加熱処理は、フィルムの4辺を1kg/mの力で保持した状態で、200℃10分間熱風乾燥炉で加熱処理を行い、室温まで冷却した。
 評価基準は、δが20μm以下を◎、20~40μm以内を〇、40μm以上を×とした。
 続いて、製造条件ついて具体的に説明する。
[実施例1-1]
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付き500mLセパラブルフラスコに、窒素ガスを導入しながら4,4’-DDS13.77g(55.44mmol)、3,3’-DDS3.44g(13.86mmol)、NMP50.00gを加えた。続いて4,4’-オキシジフタル酸無水物(ODPA)21.71g(70.00mmol)、NMP22.28g、トルエン26.02gを室温で加えた後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻し、ポリイミドNMP溶液(以下、ポリイミドワニスともいう)を得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのUpilexフィルム上で50℃にて10分、150℃で10分乾燥した後、樹脂組成物層を支持体としてのUpilexフィルム上から剥離し、SUS金枠にカプトンテープで固定した状態で、270℃で20分間乾燥したポリイミドフィルムの試験結果を以下の表2に示す。
[実施例1-2-1]
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付き500mLセパラブルフラスコに、窒素ガスを導入しながら4,4’-DDSを12.05g(48.51mmol)に、3,3’-DDSを5.16g(20.79mmol)、GBL50.00gを加えた。続いて4,4’-オキシジフタル酸無水物(ODPA)21.71g(70.00mmol)、GBL22.28g、トルエン26.02gを室温で加えた後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻し、ポリイミドGBL溶液(以下、ポリイミドワニスともいう)を得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのUpilexフィルム上で50℃にて10分、150℃で10分乾燥した後、樹脂組成物層を支持体としてのUpilexフィルム上から剥離し、SUS金枠にカプトンテープで固定した状態で、270℃で20分間乾燥したポリイミドフィルムの試験結果を以下の表2に示す。
[実施例1-2-2]
 実施例1-2-1と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのUpilexフィルム上で50℃にて10分、150℃で10分乾燥した後、樹脂組成物層を支持体としてのUpilexフィルム上から剥離し、SUS金枠にカプトンテープで固定した状態で、250℃で20分間乾燥したポリイミドフィルムの試験結果を以下の表2に示す。
[実施例1-2-3]
 実施例1-2-1と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのUpilexフィルム上で50℃にて10分、150℃で10分乾燥した後に、樹脂組成物層を支持体としてのUpilexフィルム上から剥離し、IR乾燥炉でフィルム表面が270℃となるIR温度で10分間乾燥したポリイミドフィルムの試験結果を以下の表2に示す。
[実施例1-2-4]
 実施例1-2-1と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのUpilexフィルム上で50℃にて10分、150℃で10分、270℃で1時間乾燥した後、樹脂組成物層を支持体としてのUpilexフィルム上から剥離し、フィルムに一軸方向に4kg/mの張力をかけながら、IR乾燥炉でフィルム表面が270℃となるIR温度で10分乾燥したポリイミドフィルムの試験結果を以下の表2に示す。
[実施例1-3-1]
 4,4’-DDSを10.32g(41.58mmol)に、3,3’-DDSを6.90g(27.72mmol)に変更し、180℃での反応時間を7時間とした以外は、実施例1-2-1と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのUpilexフィルム上で50℃にて10分、150℃で10分乾燥した後、樹脂組成物層を支持体としてのUpilexフィルム上から剥離し、SUS金枠にカプトンテープで固定した状態で、270℃で20分間乾燥したポリイミドフィルムの試験結果を以下の表2に示す。
[実施例1-3-2]
 180℃での反応時間を5時間とした以外は、実施例1-3-1と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのUpilexフィルム上で50℃にて10分、150℃で10分乾燥した後、樹脂組成物層を支持体としてのUpilexフィルム上から剥離し、SUS金枠にカプトンテープで固定した状態で、270℃で20分間乾燥したポリイミドフィルムの試験結果を以下の表2に示す。
[実施例1-3-3]
 実施例1-3-2と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのUpilexフィルム上で50℃にて10分、150℃で10分、270℃で1時間乾燥した後、樹脂組成物層を支持体としてのUpilexフィルム上から剥離し、IR乾燥炉でフィルム表面が270℃となるIR温度で10分間乾燥したポリイミドフィルムの試験結果を以下の表2に示す。
[実施例1-3-4]
 実施例1-3-2と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのPETフィルム(コスモシャイン100A4100)上で50℃にて10分、150℃で10分乾燥した後に、樹脂組成物層を支持体としてのPETフィルム上から剥離し、フィルムに一軸方向に4kg/mの張力をかけながら、IR乾燥炉でフィルム表面が270℃となるIR温度で10分間乾燥したポリイミドフィルムの試験結果を以下の表2に示す。
[実施例1-3-5]
 実施例1-3-2と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのPETフィルム(コスモシャイン100A4100)上で50℃にて10分、100℃で10分乾燥した後に、樹脂組成物層を支持体としてのPETフィルム上から剥離し、厚み11μmの約10wt.%の溶媒を含有するポリイミドフィルムを得た。該フィルムを200℃で4kg/mの張力で同時二軸延伸を行った後、270℃20分間乾燥を行い、厚み4.4μmのポリイミドフィルムを得た。試験結果を以下の表2に示す。
[実施例1-4]
 4,4’-DDSを8.61g(34.65mmol)に、3,3’-DDSを8.61g(34.65mmol)に変更した以外は、実施例1-2-1と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのUpilexフィルム上で50℃にて10分、150℃で10分乾燥した後、樹脂組成物層を支持体としてのUpilexフィルム上から剥離し、SUS金枠にカプトンテープで固定した状態で、270℃で20分間乾燥したポリイミドフィルムの試験結果を以下の表2に示す。
[実施例1-5]
 4,4’-DDSを6.89g(27.72mmol)に、3,3’-DDSを10.34g(41.58mmol)に変更した以外は、実施例1-2-1と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのUpilexフィルム上で50℃にて10分、150℃で10分乾燥した後、樹脂組成物層を支持体としてのUpilexフィルム上から剥離し、SUS金枠にカプトンテープで固定した状態で、270℃で20分間乾燥したポリイミドフィルムの試験結果を以下の表2に示す。
[実施例1-6]
 4,4’-ODPAをピロメリット酸二無水物(PMDA)15.27g(70.00mmol)に変更した以外は、実施例1-4と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのUpilexフィルム上で50℃にて10分、150℃で10分乾燥した後、樹脂組成物層を支持体としてのUpilexフィルム上から剥離し、SUS金枠にカプトンテープで固定した状態で、270℃で20分間乾燥したポリイミドフィルムの試験結果を以下の表2に示す。
[実施例1-7]
 4,4’-ODPAを3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)20.59g(70.00mmol)に変更した以外は、実施例1-4と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのUpilexフィルム上で50℃にて10分、150℃で10分乾燥した後、樹脂組成物層を支持体としてのUpilexフィルム上から剥離し、SUS金枠にカプトンテープで固定した状態で、270℃で20分間乾燥したポリイミドフィルムの試験結果を以下の表2に示す。
[実施例1-8]
 4,4’-ODPAを4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)31.09g(70.00mmol)に変更した以外は、実施例1-4と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのUpilexフィルム上で50℃にて10分、150℃で10分乾燥した後、樹脂組成物層を支持体としてのUpilexフィルム上から剥離し、SUS金枠にカプトンテープで固定した状態で、270℃で20分間乾燥したポリイミドフィルムの試験結果を以下の表2に示す。
[実施例1-9]
 4,4’-DDSを13.77g(55.44mmol)に、3,3’-DDS3.44g(13.86mmol)に変更した以外は、実施例1-8と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのUpilexフィルム上で50℃にて10分、150℃で10分乾燥した後、樹脂組成物層を支持体としてのUpilexフィルム上から剥離し、SUS金枠にカプトンテープで固定した状態で、270℃で20分間乾燥したポリイミドフィルムの試験結果を以下の表2に示す。
[実施例1-10]
 4,4’-DDSを6.89g(27.72mmol)に、3,3’-DDSを10.34g(41.58mmol)に変更した以外は、実施例1-8と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのUpilexフィルム上で50℃にて10分、150℃で10分乾燥した後、樹脂組成物層を支持体としてのUpilexフィルム上から剥離し、SUS金枠にカプトンテープで固定した状態で、270℃で20分間乾燥したポリイミドフィルムの試験結果を以下の表2に示す。
[実施例1-11]
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付き500mLセパラブルフラスコに、窒素ガスを導入しながらtrans-1,4-シクロヘキシルジアミン(CHDA)を1.81(15.84mmol)、3,3-DDSを15.73g(63.36mmol)、NMP50.00gを加えた。続いて4,4’-オキシジフタル酸無水物(ODPA)24.82g(80.00mmol)、NMP28.67g、トルエン27.14gを室温で加えた後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。3時間反応後、オイルバスを外して室温に戻し、ポリイミドNMP溶液(以下、ポリイミドワニスともいう)を得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのUpilexフィルム上で50℃にて10分、150℃で10分乾燥した後、樹脂組成物層を支持体としてのUpilexフィルム上から剥離し、SUS金枠にカプトンテープで固定した状態で、270℃で20分間乾燥したポリイミドフィルムの試験結果を以下の表2に示す。
[実施例1-12]
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付き500mLセパラブルフラスコに、窒素ガスを導入しながら1,4-ビス(アミノメチル)シクロヘキサン(14BAC)を4.93g(34.65mmol)に、3,3’-DDSを8.61g(34.65mmol)、GBL50.00gを加えた。続いて4,4’-オキシジフタル酸無水物(ODPA)21.71g(70.00mmol)、GBL15.46g、トルエン26.02gを室温で加えた後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。4時間反応後、オイルバスを外して室温に戻し、ポリイミドGBL溶液(以下、ポリイミドワニスともいう)を得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのUpilexフィルム上で50℃にて10分、150℃で10分乾燥した後、樹脂組成物層を支持体としてのUpilexフィルム上から剥離し、SUS金枠にカプトンテープで固定した状態で、270℃で20分間乾燥したポリイミドフィルムの試験結果を以下の表2に示す。
[実施例1-13]
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付き500mLセパラブルフラスコに、窒素ガスを導入しながらビス(アミノメチル)ノルボルナン(BANBDA)5.13g(33.25mmol)に、3,3’-DDSを8.26g(33.25mmol)、GBL50.00gを加えた。続いて4,4’-オキシジフタル酸無水物(ODPA)21.71g(70.00mmol)、GBL15.19g、トルエン24.90gを室温で加えた後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。6時間反応後、オイルバスを外して室温に戻し、ポリイミドGBL溶液(以下、ポリイミドワニスともいう)を得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのUpilexフィルム上で50℃にて10分、150℃で10分乾燥した後、樹脂組成物層を支持体としてのUpilexフィルム上から剥離し、SUS金枠にカプトンテープで固定した状態で、270℃で20分間乾燥したポリイミドフィルムの試験結果を以下の表2に示す。
[実施例1-14]
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付き500mLセパラブルフラスコに、窒素ガスを導入しながら4,4’-ビス(4-アミノフェノキシビフェニル)(BAPB)5.11g(13.86mmol)に、3,3-DDSを13.77g(55.44mmol)、GBL50.00gを加えた。続いて4,4’-オキシジフタル酸無水物(ODPA)21.71g(70.00mmol)、GBL22.28g、トルエン25.63gを室温で加えた後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。6時間反応後、オイルバスを外して室温に戻し、ポリイミドNMP溶液(以下、ポリイミドワニスともいう)を得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのUpilexフィルム上で50℃にて10分、150℃で10分乾燥した後、樹脂組成物層を支持体としてのUpilexフィルム上から剥離し、SUS金枠にカプトンテープで固定した状態で、270℃で20分間乾燥したポリイミドフィルムの試験結果を以下の表2に示す。
[実施例1-15]
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付き500mLセパラブルフラスコに、窒素ガスを導入しながらα,α’-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン(BAPDB)を11.94g(34.65mmol)に、3,3’-DDSを8.61g(34.65mmol)、GBL50.00gを加えた。続いて4,4’-オキシジフタル酸無水物(ODPA)21.71g(70.00mmol)、GBL28.47g、トルエン26.99gを室温で加えた後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。6時間反応後、オイルバスを外して室温に戻し、ポリイミドGBL溶液(以下、ポリイミドワニスともいう)を得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのUpilexフィルム上で50℃にて10分、150℃で10分乾燥した後、樹脂組成物層を支持体としてのUpilexフィルム上から剥離し、SUS金枠にカプトンテープで固定した状態で、270℃で20分間乾燥したポリイミドフィルムの試験結果を以下の表2に示す。
[実施例1-16]
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付き500mLセパラブルフラスコに、窒素ガスを導入しながら4,4’-DDS8.61g(34.65mmol)に、3,3’-DDS8.61g(34.65mmol)、GBL50.00gを加えた。続いて4,4’-オキシジフタル酸無水物(ODPA)10.86g(35.00mmol)、ヒドロキシピロメリット酸二無水物(HPMDA)7.85g(35.00mmol)、GBL16.69g、トルエン24.41gを室温で加えた後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻し、ポリイミドGBL溶液(以下、ポリイミドワニスともいう)を得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのUpilexフィルム上で50℃にて10分、150℃で10分乾燥した後、樹脂組成物層を支持体としてのUpilexフィルム上から剥離し、SUS金枠にカプトンテープで固定した状態で、270℃で20分間乾燥したポリイミドフィルムの試験結果を以下の表2に示す。
[実施例1-17]
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付き500mLセパラブルフラスコに、窒素ガスを導入しながら4,4’-DDS8.61g(34.65mmol)に、3,3’-DDS8.61g(34.65mmol)、GBL50.00gを加えた。続いて4,4’-オキシジフタル酸無水物(ODPA)を17.37g(56.00mmol)、1,3,3a,4,5,9b-ヘキサヒドロ-5-(テトラヒドロ―2,5-ジオキソ-3-フラニル)ナフト[1,2-c]フラン-1,3-ジオン(TDA)4.20g(14.00mmol)、GBL22.02g、トルエン26.07gを室温で加えた後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻し、ポリイミドGBL溶液(以下、ポリイミドワニスともいう)を得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのUpilexフィルム上で50℃にて10分、150℃で10分乾燥した後、樹脂組成物層を支持体としてのUpilexフィルム上から剥離し、SUS金枠にカプトンテープで固定した状態で、270℃で20分間乾燥したポリイミドフィルムの試験結果を以下の表2に示す。
[実施例1-18]
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付き500mLセパラブルフラスコに、窒素ガスを導入しながら4,4’-DDS8.61g(34.65mmol)に、3,3’-DDS8.61g(34.65mmol)、GBL50.00gを加えた。続いて4,4’-オキシジフタル酸無水物(ODPA)17.37g(56.00mmol)、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物(BODA)3.47g(14.00mmol)、GBL20.67g、トルエン25.58gを室温で加えた後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻し、ポリイミドGBL溶液(以下、ポリイミドワニスともいう)を得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのUpilexフィルム上で50℃にて10分、150℃で10分乾燥した後、樹脂組成物層を支持体としてのUpilexフィルム上から剥離し、SUS金枠にカプトンテープで固定した状態で、270℃で20分間乾燥したポリイミドフィルムの試験結果を以下の表2に示す。
[実施例2-1]
 実施例1-1と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのUpilexフィルム上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[実施例2-2-1]
 実施例1-2-1と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのUpilexフィルム上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[実施例2-2-2]
 実施例1-2-1と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのUpilexフィルム上で50℃にて10分、150℃で10分、250℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[実施例2-2-3]
 実施例1-2-1と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[実施例2-3-1]
 実施例1-3-1と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのUpilexフィルム上で50℃にて10分、150℃で10分、270℃で1時間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[実施例2-3-2]
 実施例1-3-2と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのUpilexフィルム上で50℃にて10分、150℃で10分乾燥した後、IR乾燥炉でフィルム表面が270℃となるIR温度で10分間乾燥した後、支持体を剥離したポリイミドフィルムの試験結果を以下の表2に示す。
[実施例2-3-3]
 実施例1-3-2と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[実施例2-4]
 実施例1-4と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[実施例2-5]
 実施例1-5と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてガラス基板(コーニングEagle)上での50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[実施例2-6]
 実施例1-6と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[実施例2-7]
 実施例1-7と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[実施例2-8]
 実施例1-8と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[実施例2-9]
 実施例1-9と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[実施例2-10]
 実施例1-10と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[実施例2-11]
 実施例1-11と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[実施例2-12]
 実施例1-12と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[実施例2-13]
 実施例1-13と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[実施例2-14]
 実施例1-14と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[実施例2-15]
 実施例1-15と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[実施例2-16]
 実施例1-16と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[実施例2-17]
 実施例1-17と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[実施例2-18]
 実施例1-18と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[参考例1]
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付き500mLセパラブルフラスコに、窒素ガスを導入しながら2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)9.51g(29.70mmol)に、3,3’-DDSを7.37g(29.70mmol)、GBL50.00gを加えた。続いて4,4’-オキシジフタル酸無水物(ODPA)9.31g(30.00mmol)、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)13.33g(30.00mmol)、GBL20.69g、トルエン25.87gを室温で加えた後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。6時間反応後、オイルバスを外して室温に戻し、ポリイミドGBL溶液(以下、ポリイミドワニスともいう)を得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのUpilexフィルム上で50℃にて10分、150℃で10分乾燥した後、樹脂組成物層を支持体としてのUpilexフィルム上から剥離し、SUS金枠にカプトンテープで固定した状態で、270℃で20分間乾燥したポリイミドフィルムの試験結果を以下の表2に示す。
[参考例2]
 参考例1と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[参考例3]
 500mLセパラブルフラスコに、窒素ガスを導入しながら4,4’-DDSを12.05g(48.51mmol)に、3,3’-DDSを5.16g(20.79mmol)、GBL50.00gを加えた。続いて4,4’-オキシジフタル酸無水物(ODPA)21.71g(70.00mmol)、GBL22.28gを室温で加えた後、内温50℃まで昇温し、50℃で12時間反応後、オイルバスを外して室温に戻し、ポリアミック酸GBL溶液(以下、ポリアミック酸ワニスともいう)を得た。
 また、得られたポリアミック酸ワニス中のポリアミック酸の重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのUpilexフィルム上で50℃にて10分、150℃で10分、270℃で1時間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[参考例4]
 500mLセパラブルフラスコに、窒素ガスを導入しながら4,4’-DDSを10.32g(41.58mmol)に、3,3’-DDSを6.90g(27.72mmol)、GBL50.00gを加えた。続いて4,4’-オキシジフタル酸無水物(ODPA)21.71g(70.00mmol)、GBL22.28gを室温で加えた後、内温50℃まで昇温し、50℃で12時間反応後、オイルバスを外して室温に戻し、ポリアミック酸GBL溶液(以下、ポリアミック酸ワニスともいう)を得た。ここでの組成を以下の表1に示す。また、得られたポリポリアミック酸ワニス中のポリアミック酸の重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのUpilexフィルム上で50℃にて10分、150℃で10分、270℃で1時間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[比較例1-1]
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付き500mLセパラブルフラスコに、窒素ガスを導入しながら4,4’-DDS17.21g(69.30mmol)、GBL50.00gを加えた。続いて4,4’-ODPA21.71g(70.00mmol)、GBL22.28g、トルエン26.02gを室温で加えた後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。その結果、反応3時間経過後にポリイミドワニスが白濁したため、オイルバスを外して室温に戻し、ポリイミドワニスを得た。なお、3時間経過後も重合を続けたところ、分子量は増加しなかった。ここでの組成を以下の表1に示す。また、得られたワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[比較例1-2]
 比較例1-1と同様にポリアミック酸ワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリアミック酸中のポリアミック酸の重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分した後、樹脂組成物層を支持体としてのガラス基板(コーニングEagle)上から剥離し、SUS金枠にカプトンテープで固定した状態で、270℃で1時間乾燥したところ、イミド化の収縮により破膜しフィルムが得られなかった。
[比較例2]
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付き500mLセパラブルフラスコに、窒素ガスを導入しながら3,3’-DDS17.21g(69.30mmol)、GBL50.00gを加えた。続いて4,4’-ODPA21.71g(70.00mmol)、GBL22.28g、トルエン26.02gを室温で加えた後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻し、ポリイミドGBL溶液を得た。ここでの組成を以下の表1に示す。また、得られたポリイミドGBL溶液中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を表2に示す。
[比較例3]
 4,4’-ODPAをPMDA15.27g(70.00mmol)に変更した以外は、比較例1と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[比較例4]
 4,4’-DDSを3,3’-DDS17.21g(69.30mmol)に変更した以外は、比較例3と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[比較例5]
 4,4’-ODPAを3,3’,4,4’-BPDA20.59g(70.00mmol)に変更した以外は、比較例1と同様にポリイミドワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を表2に示す。
[比較例6]
 4,4’-DDSを3,3’-DDS17.21g(69.30mmol)に変更した以外は、比較例5と同様にワニスを得た。ここでの組成を以下の表1に示す。また、得られたポリイミドワニス中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を表2に示す。
[比較例7]
 4,4’-ODPAを6FDA31.09g(70.00mmol)に、3,3’-DDSを4,4’-DDSに変更した以外は、比較例2と同様にポリイミドGBL溶液を得た。ここでの組成を以下の表1に示す。また、得られたポリイミドGBL溶液中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び、支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[比較例8]
 4,4’-DDSを3,3’-DDSに変更した以外は、比較例7と同様にポリイミドGBL溶液を得た。ここでの組成を以下の表1に示す。また、得られたポリイミドGBL溶液中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び、支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[比較例9]
 4,4’-ODPAをHPMDA15.69g(70.00mmol)に、3,3’-DDSを4,4’-DDSに変更した以外は、比較例2と同様にポリイミドGBL溶液を得た。ここでの組成を以下の表1に示す。また、得られたポリイミドGBL溶液中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び、支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[比較例10]
 4,4’-DDSを3,3’-DDSに変更した以外は、比較例9と同様にポリイミドGBL溶液を得た。ここでの組成を以下の表1に示す。また、得られたポリイミドGBL溶液中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び、支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[比較例11]
 4,4’-ODPAをTDA21.01g(70.00mmol)に、3,3’-DDSを4,4’-DDSに変更した以外は、比較例2と同様にポリイミドGBL溶液を得た。ここでの組成を以下の表1に示す。また、得られたポリイミドGBL溶液中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び、支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[比較例12]
 4,4’-DDSを3,3’-DDSに変更した以外は、比較例11と同様にポリイミドGBL溶液を得た。ここでの組成を以下の表1に示す。また、得られたポリイミドGBL溶液中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び、支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[比較例13]
 4,4’-ODPAをBODA17.37g(70.00mmol)に、3,3’-DDSを4,4’-DDSに変更した以外は、比較例2と同様にポリイミドGBL溶液を得た。ここでの組成を以下の表1に示す。また、得られたポリイミドGBL溶液中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び、支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[比較例14]
 4,4’-DDSを3,3’-DDSに変更した以外は、比較例13と同様にポリイミドGBL溶液を得た。ここでの組成を以下の表1に示す。また、得られたポリイミドGBL溶液中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び、支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[比較例15]
 4,4’-DDSをCHDA7.91g(69.30mmol)に変更した以外は、比較例1と同様にポリイミドGBL溶液を得た。ここでの組成を以下の表1に示す。また、得られたポリイミドGBL溶液中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び、支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[比較例16]
 4,4’-ODPAを4,4’-BPDA20.60g(70.00mmol)に変更した以外は、比較例15と同様にポリイミドGBL溶液を得た。ここでの組成を以下の表1に示す。また、得られたポリイミドGBL溶液中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び、支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[比較例17]
 4,4’-DDSを14-BAC9.86g(69.30mmol)に変更した以外は、比較例1と同様にポリイミドGBL溶液を得た。ここでの組成を以下の表1に示す。また、得られたポリイミドGBL溶液中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び、支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[比較例18]
 4,4’-DDSをBANBDA10.69g(69.30mmol)に変更した以外は、比較例1と同様にポリイミドGBL溶液を得た。ここでの組成を以下の表1に示す。また、得られたポリイミドGBL溶液中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び、支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[比較例19]
 4,4’-DDSをBAPB25.53g(69.30mmol)に変更した以外は、比較例1と同様にポリイミドGBL溶液を得た。ここでの組成を以下の表1に示す。また、得られたポリイミドGBL溶液中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び、支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
[比較例20]
 4,4’-DDSをBAPDB23.87g(69.30mmol)に変更した以外は、比較例1と同様にポリイミドGBL溶液を得た。ここでの組成を以下の表1に示す。また、得られたポリイミドGBL溶液中のポリイミドの重量平均分子量(Mw)、数平均分子量(Mn)、及び、支持体としてのガラス基板(コーニングEagle)上で50℃にて10分、150℃で10分、270℃で20分間乾燥した後、支持体を剥離した状態のポリイミドフィルムの試験結果を以下の表2に示す。
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000067
 表2中、溶解性の欄は合成時に析出がないものを〇、析出があるものを×と記載した。
 以上の結果から、本発明に係るポリイミドは溶媒に対する溶解性が高く、ポリイミドから得られたポリイミドフィルムは無色透明であると共に、靱性及び熱物性に優れることが確認された。
 上記の実験結果により、ポリイミド作製における、3,3’-DDSは全ジアミン成分の20モル%以上80モル%以下であることが好ましいことが分かった(実施例1及び実施例2)。ポリイミド作製における、3,3’-DDSと4,4’-DDSとのモル比は、2/8~6/4であることが好ましく(実施例1-1~実施例1-10、実施例2-1~実施例2-10)、また、2/8~5/5であることがより好ましいことがわかった(実施例1-1~実施例1-4、実施例1-6~実施例1-9、実施例2-1~実施例2-4、実施例2-6~実施例2-9)。また、2/8~3/7であることが更に好ましいことがわかった(実施例1-1~実施例1-2-4、実施例1-9、実施例2-1~実施例2-2-4、実施例2-9)。なお、上記の3,3’-DDSと4,4’-DDSとの各成分は、ポリイミド中に含まれる一般式(A-1)で表される構造と、一般式(A-5)で表される構造とのモル比とイコール関係になる。すなわち、一般式(A-1)で表される構造と、一般式(A-5)で表される構造とのモル比は、2/8~6/4であることが好ましく、2/8~5/5であることがより好ましい。
 表2に示すように、酸二無水物としてODPAを用いた実施例1-1~実施例1-5、実施例2-1~実施例2-5は、酸二無水物としてPMDAあるいはBPDAを用いた実施例1-6、2-6及び実施例1-7、2-7よりも黄色度(YI)及びレタデーション(Rth)を小さくできた。また、酸二無水物としてODPAを用いた実施例1-1~実施例1-5、実施例2-1~実施例2-5は、酸二無水物として6FDAを用いた実施例1-8~実施例1-10、実施例2-8~実施例2-10に比べると、引張伸度及び破壊強度が高くなり、靱性に優れることがわかった。この結果、酸二無水物として、ODPAを用いることが好ましく、すなわちポリイミド中には、一般式(1)中のBとして選択される一般式(B-5)で表される構造を含むことが好適である。また、一般式(1)で表される構造のAとして、一般式(A-1)及び一般式(A-5)で表される構造を含むとともに、一般式(1)で表される構造のBとして一般式(B-5)を含み、一般式(A-1)で表される構造と、一般式(A-5)で表される構造とのモル比とを2/8~4/6の範囲に調整することが好ましい。これは実施例1-1~実施例1-3-4、実施例2-1~実施例2-3-4に該当する。これにより、無色透明のポリイミドフィルムを得ることができるともに靱性に優れ且つ高いガラス転移温度(Tg)を得ることができる。
 またODPAを使用し、一般式(A-1)で表される構造と、一般式(A-5)で表される構造とのモル比が同じ3:7である実施例1-2-2および実施例2-2-2が実施例1-2-1、実施例1-2-3、実施例1-2-4、実施例2-2-1、実施例2-2-3に比べてやや靱性が低下する傾向が見られた。したがって、GBL残量は少ないことが好ましく、本実施例では、GBL残量は1質量%よりも小さく、0.5質量%以下であることがより好ましい。
 また、α/αの比が0.95以上1.05以下の範囲内にある、実施例1-1~実施例1-18では、位置ずれ性δを20μm以下にでき、位置ずれを小さくできることがわかった。
(積層体の作製)
 カプトンフィルム(膜厚155μm)基材上に実施例4で作製したポリイミドフィルムをたわみがないようにテープで張り付けた。スパッタリング装置により、前記カプトンフィルム基材上のポリイミドフィルムを200℃に加熱し、膜厚15nmのITO層を成膜した。ITO成膜後、カプトンフィルム基材ごとにポリイミドフィルムを取り出し、続いて、ポリイミドフィルムを裏に返して、ITO層のある面側を、カプトンフィルム基材に対向させて、再びカプトンフィルム基材に張り付けた。そして再びスパッタリング装置により、200℃の条件で膜厚15nmのITO層を成膜し、両面に透明電極層を積層したフィルム(積層体)を得た。得られた透明電極層を積層したフィルムは反りがなく、良好に取扱い可能であった。
 次に、プロトン核磁気共鳴((Nuclear Magnetic Resonance;)NMR)のスペクトル結果について説明する。図3は、ODPA-DDS共重合体のH-NMRスペクトルである。図4は、ODPA-DDS共重合体の13C-NMRスペクトルである。
 NMRスペクトルの測定は、ポリイミドGBL溶液を重水素化DMSO溶液にポリイミドの固形分濃度が15wt%になるように溶解し、得られた溶液のプロトン核磁気共鳴スペクトルを日本電子株式会社製、JNM-GSX400 FT-NMR装置を用いてH-NMRスペクトルは16回積算することにより測定し、13C-NMRスペクトルは1000回積算することにより測定した。
 図4の13C-NMRスペクトルに示す実験結果から、165.5ppmに見られる4,4’-DDS由来のイミド結合の2個の炭素と、165.36ppmに見られる3,3’-DDS由来のイミド結合の2個の炭素との積分比より算出した、一般式(A-1)で表される構造単位と一般式(A-5)で表される構造単位との組成比(モル比)は、3:7であることがわかった。
 本発明のポリイミドを含有するポリイミドフィルムや、これを用いた積層体は、タッチパネル材料への適用の他、半導体絶縁膜、TFT-LCD絶縁膜、電極保護膜等、及びフレキシブルでバイアスの基板として好適に利用することができる。
 本出願は、2015年3月31日出願の特願2015-073876に基づく。この内容は全てここに含めておく。
 
 

Claims (14)

  1.  下記一般式(1)で表されるポリイミドを含有し、
     前記一般式(1)におけるAとして、下記一般式(A-1)で表される構造と、
     下記一般式(A-2)、下記一般式(A-3)、及び、下記一般式(A-4)で表される構造のうちいずれか1種以上と、を含むことを特徴とするポリイミドフィルム。
    Figure JPOXMLDOC01-appb-C000001
     ここで前記一般、式(1)中、Aは2価の有機基、Bは4価の有機基、nは2以上、である。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
     前記一般式式(A-2)中、Xは、下記一般式(X-1)ないし下記一般式(X-3)から選ばれる2価の有機基である。
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
     前記一般式(A-3)中、aは0または1である。
    Figure JPOXMLDOC01-appb-C000008
  2.  前記一般式(1)におけるAとして、
     前記一般式(A-1)で表される構造、及び、下記一般式(A-5)で表される構造を含むことを特徴とする請求項1に記載のポリイミドフィルム。
    Figure JPOXMLDOC01-appb-C000009
  3.  前記一般式(A-1)で表される構造と、前記一般式(A-5)で表される構造の比(一般式(A-1)で表される構造/一般式(A-5)で表される構造)が、モル基準で2/8~6/4の範囲内であることを特徴とする請求項2に記載のポリイミドフィルム。
  4.  前記一般式(1)におけるBとして下記一般式(B-1)から下記一般式(B-4)で表される構造のうち少なくとも一つを含むことを特徴とする請求項1から請求項3のいずれかに記載のポリイミドフィルム。
    Figure JPOXMLDOC01-appb-C000010
     前記一般式(B-1)中、Yは、下記一般式(Y-1)ないし下記一般式(Y-3)から選ばれる構造のうちいずれかである。
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    Figure JPOXMLDOC01-appb-C000015
    Figure JPOXMLDOC01-appb-C000016
  5.  前記一般式(1)におけるBとして下記一般式(B-5)で表される構造を含むことを特徴とする請求項1から請求項4のいずれかに記載のポリイミドフィルム。
    Figure JPOXMLDOC01-appb-C000017
  6.  下記一般式(1)で表されるポリイミドを含有し、
     前記一般式(1)におけるAとして、下記一般式(A-1)で表される構造を含み、
     レタデーション(Rth)がフィルム厚を15μmとした換算値で50nm以下であり、
     フィルムの破断伸度が10%以上であり、かつ熱膨張係数α、αが下記数式(I)を満たすことを特徴とするポリイミドフィルム。
      0.95 ≦ α/α ≦ 1.05  (I)
      α:測定1回目のフィルムのガラス転移点以下の熱膨張係数
      α:測定2回目のフィルムのガラス転移点以下の熱膨張係数
    Figure JPOXMLDOC01-appb-C000018
     ここで前記一般、式(1)中、Aは2価の有機基、Bは4価の有機基、nは2以上、である。
    Figure JPOXMLDOC01-appb-C000019
  7.  フィルムの膜厚が1μm以上5μm以下であることを特徴とする請求項1から請求項6のいずれかに記載のポリイミドフィルム。
  8.  前記ポリイミドの重量平均分子量(Mw)が、30,000以上であることを特徴とする請求項1から請求項7のいずれかに記載のポリイミドフィルム。
  9.  黄色度(YI)が5.0以下であることを特徴とする請求項1から請求項8のいずれかに記載のポリイミドフィルム。
  10.  γ-ブチロラクトンの含有量が3質量%よりも小さいことを特徴とする請求項1から請求項9のいずれかに記載のポリイミドフィルム。
  11.  下記一般式(1)で表されるポリイミドを溶媒に分散又は溶解したポリイミドワニスであり、前記一般式(1)中のAが、下記一般式(A-1)で表される構造、及び、下記一般式(A-5)で表される構造を含み、これらの比(一般式(A-1)で表される構造/一般式(A-5)で表される構造)が、モル基準で2/8~6/4の範囲内であり、前記一般式(1)で表されるBが、下記一般式(B-5)で表される構造を含むことを特徴とするポリイミドワニス。
    Figure JPOXMLDOC01-appb-C000020
     ここで前記一般、式(1)中、Aは2価の有機基、Bは4価の有機基、nは2以上、である。
    Figure JPOXMLDOC01-appb-C000021
    Figure JPOXMLDOC01-appb-C000022
    Figure JPOXMLDOC01-appb-C000023
  12.  請求項1から請求項10のいずれかに記載のポリイミドフィルムを用いたことを特徴とする製品。
  13.  請求項1から請求項10のいずれかに記載のポリイミドフィルムと、透明電極層とを有することを特徴とする積層体。
  14.  前記透明電極層を、前記ポリイミドフィルムの両面に、少なくともそれぞれ1層以上有することを特徴とする請求項13に記載の積層体。
PCT/JP2016/059835 2015-03-31 2016-03-28 ポリイミドフィルム、ポリイミドワニス、ポリイミドフィルムを用いた製品、及び、積層体 WO2016158825A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020197033494A KR102181466B1 (ko) 2015-03-31 2016-03-28 폴리이미드 필름, 폴리이미드 바니시, 폴리이미드 필름을 이용한 제품 및 적층체
JP2017509954A JP6622287B2 (ja) 2015-03-31 2016-03-28 ポリイミドフィルム、ポリイミドワニス、ポリイミドフィルムを用いた製品、及び、積層体
US15/563,480 US11078378B2 (en) 2015-03-31 2016-03-28 Polyimide film, polyimide varnish, and product and layered product using the polyimide film
KR1020177022600A KR102052150B1 (ko) 2015-03-31 2016-03-28 폴리이미드 필름, 폴리이미드 바니시, 폴리이미드 필름을 이용한 제품 및 적층체
EP16772706.4A EP3279237A4 (en) 2015-03-31 2016-03-28 Polyimide film, polyimide varnish, product using polyimide film, and laminate
CN201680016702.6A CN107428934B (zh) 2015-03-31 2016-03-28 聚酰亚胺膜、聚酰亚胺清漆、使用了聚酰亚胺膜的制品、以及层积体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-073876 2015-03-31
JP2015073876 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016158825A1 true WO2016158825A1 (ja) 2016-10-06

Family

ID=57007126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059835 WO2016158825A1 (ja) 2015-03-31 2016-03-28 ポリイミドフィルム、ポリイミドワニス、ポリイミドフィルムを用いた製品、及び、積層体

Country Status (7)

Country Link
US (1) US11078378B2 (ja)
EP (1) EP3279237A4 (ja)
JP (2) JP6622287B2 (ja)
KR (2) KR102052150B1 (ja)
CN (1) CN107428934B (ja)
TW (1) TWI588182B (ja)
WO (1) WO2016158825A1 (ja)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073782A1 (ja) * 2015-10-30 2017-05-04 株式会社アイ.エス.テイ ポリイミド膜
JP2018086802A (ja) * 2016-11-29 2018-06-07 旭化成株式会社 ポリイミドフィルム積層体
JP2018122583A (ja) * 2017-02-03 2018-08-09 東京応化工業株式会社 積層体、フレキシブルデバイス及び積層体の製造方法
WO2018180926A1 (ja) * 2017-03-29 2018-10-04 東レ株式会社 導電層付きフィルム、タッチパネル、導電層付きフィルムの製造方法およびタッチパネルの製造方法
JP2018203906A (ja) * 2017-06-06 2018-12-27 旭化成株式会社 ポリイミドフィルム、ポリイミドフィルムを用いた製品、及び、積層体
JP2019006933A (ja) * 2017-06-27 2019-01-17 旭化成株式会社 ポリイミドフィルム及びその製造方法
US10246556B2 (en) 2017-06-23 2019-04-02 Taiflex Scientific Co., Ltd. Polyimide polymer and polyimide film
WO2019074047A1 (ja) * 2017-10-12 2019-04-18 三菱瓦斯化学株式会社 ポリイミドワニス組成物、その製造方法、及びポリイミドフィルム
WO2019073628A1 (ja) * 2017-10-11 2019-04-18 株式会社カネカ ポリイミド樹脂およびその製造方法、ポリイミド溶液、ならびにポリイミドフィルムおよびその製造方法
US20190153158A1 (en) * 2016-04-07 2019-05-23 Kaneka Corporation Polyimide resin, polyimide solution, film, and method for producing same
WO2019124368A1 (ja) * 2017-12-20 2019-06-27 住友化学株式会社 タッチセンサーパネル用透明フィルム基材及びそれを用いたタッチセンサーパネル
KR20190132356A (ko) * 2017-04-07 2019-11-27 가부시키가이샤 아이.에스.티 폴리이미드막
JP2019214657A (ja) * 2018-06-12 2019-12-19 旭化成株式会社 透明ポリイミドワニス及びフィルム
JP2019219525A (ja) * 2018-06-20 2019-12-26 日東電工株式会社 偏光フィルム、粘着剤層付き偏光フィルム、及び画像表示装置
KR20200024775A (ko) * 2017-07-03 2020-03-09 닛산 가가쿠 가부시키가이샤 플렉서블 디바이스 기판형성용 조성물
JP2020052138A (ja) * 2018-09-25 2020-04-02 大日本印刷株式会社 位相差フィルムの製造方法、位相差フィルム、該位相差フィルムを用いた表示パネル及び画像表示装置
WO2020110948A1 (ja) * 2018-11-28 2020-06-04 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
WO2020110947A1 (ja) * 2018-11-28 2020-06-04 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
CN111386299A (zh) * 2017-09-19 2020-07-07 E.I.内穆尔杜邦公司 用于电子装置中的低色聚合物
WO2020203264A1 (ja) * 2019-03-29 2020-10-08 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
WO2020230663A1 (ja) * 2019-05-10 2020-11-19 住友化学株式会社 ワニス、光学フィルム及び光学フィルムの製造方法
WO2021006284A1 (ja) * 2019-07-10 2021-01-14 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
WO2021070912A1 (ja) * 2019-10-11 2021-04-15 三菱瓦斯化学株式会社 ポリイミド樹脂組成物、ポリイミドワニス及びポリイミドフィルム
KR20210068394A (ko) 2018-09-29 2021-06-09 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 폴리이미드 전구체와 그것으로부터 생성되는 폴리이미드, 및 플렉시블 디바이스
WO2021167000A1 (ja) * 2020-02-21 2021-08-26 三菱瓦斯化学株式会社 ポリイミドフィルムの製造方法
WO2021177145A1 (ja) * 2020-03-06 2021-09-10 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
KR20220104696A (ko) 2019-11-18 2022-07-26 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드 수지, 폴리이미드 바니시 및 폴리이미드 필름
KR20220123393A (ko) 2019-12-27 2022-09-06 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드 수지, 폴리이미드 바니시 및 폴리이미드 필름
US11702565B2 (en) 2017-08-02 2023-07-18 Asahi Kasei Kabushiki Kaisha Polyimide varnish and method for producing same
TWI837328B (zh) 2019-03-29 2024-04-01 日商三菱瓦斯化學股份有限公司 聚醯亞胺樹脂、聚醯亞胺清漆以及聚醯亞胺薄膜
JP7471888B2 (ja) 2020-03-26 2024-04-22 日鉄ケミカル&マテリアル株式会社 ポリイミドフィルム及びそれを用いた表示装置並びにポリイミド前駆体

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102342636B1 (ko) * 2016-05-09 2021-12-23 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드 수지 및 폴리이미드 수지 조성물
CN111132828A (zh) * 2017-09-27 2020-05-08 日本瑞翁株式会社 光学层叠膜和触控面板
CN107908035A (zh) * 2017-12-28 2018-04-13 深圳市华星光电技术有限公司 柔性液晶显示装置
KR102547854B1 (ko) 2018-05-04 2023-06-26 삼성디스플레이 주식회사 폴더블 표시 장치 및 폴더블 표시 장치의 제조 방법
KR102566319B1 (ko) * 2018-06-19 2023-08-16 주식회사 동진쎄미켐 폴리이미드 바니쉬 조성물 및 이를 이용한 필름 제조방법
US20220372227A1 (en) * 2020-05-14 2022-11-24 Microcosm Technology Co., Ltd. Polyimide Film and Manufacturing Method Thereof
CN115803365A (zh) * 2020-06-23 2023-03-14 株式会社钟化 聚酰胺酸、聚酰胺酸溶液、聚酰亚胺、聚酰亚胺膜、层叠体、层叠体的制造方法及电子器件

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176629A (ja) * 1985-02-01 1986-08-08 Sumitomo Bakelite Co Ltd 耐熱性樹脂の製造方法
JPH03143924A (ja) * 1989-10-30 1991-06-19 Nitto Denko Corp ポリイミド成形体およびその製法
JPH09501865A (ja) * 1993-06-15 1997-02-25 ユーオーピー 複合ガス分離膜およびその作成方法
WO2001040851A1 (fr) * 1999-11-30 2001-06-07 Hitachi, Ltd. Afficheur a cristaux liquides et composition de resine
JP2006152257A (ja) * 2004-11-04 2006-06-15 Ist:Kk 透明ポリイミド管状物及びその製造方法
JP2007293275A (ja) * 2006-02-23 2007-11-08 Ist Corp 透明導電円筒体及びその製造方法
JP2010513591A (ja) * 2006-12-15 2010-04-30 コーロン インダストリーズ,インコーポレイテッド ポリイミド樹脂とこれを用いた液晶配向膜およびポリイミドフィルム
JP2013163304A (ja) * 2012-02-10 2013-08-22 Nippon Steel & Sumikin Chemical Co Ltd 透明可撓性積層体及び積層体ロール
WO2014162734A1 (ja) * 2013-04-03 2014-10-09 三井化学株式会社 ポリアミド酸、及びこれを含むワニス、並びにポリイミドフィルム
WO2015125859A1 (ja) * 2014-02-19 2015-08-27 香 塩之谷 変形爪矯正用治具及び爪矯正方法

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3666709A (en) 1968-12-14 1972-05-30 Shawa Densen Denran Kk A K A S Solvent soluble aromatic polymides and production thereof
JPS5528822A (en) * 1978-08-23 1980-02-29 Ube Ind Ltd Method for manufacturing polyimide film
US4468506A (en) * 1982-04-02 1984-08-28 General Electric Company Polyetherimide blends
FR2572907B1 (fr) 1984-11-13 1987-06-19 Bull Transac Procede d'invalidation de documents de valeur et le dispositif permettant la mise en oeuvre du procede
JPS62214912A (ja) * 1986-03-14 1987-09-21 Hitachi Chem Co Ltd ポリイミドフイルムの製造法
FR2685341A1 (fr) * 1991-12-24 1993-06-25 Rhone Poulenc Fibres Solutions de polyamides-imides dans la gamma-butyrolactone leur procede d'obtention et les fils ainsi obtenus.
US5702503A (en) 1994-06-03 1997-12-30 Uop Composite gas separation membranes and making thereof
CN1388904A (zh) * 2000-08-09 2003-01-01 三井化学株式会社 聚酰亚胺树脂光学元件
JP2002060620A (ja) * 2000-08-18 2002-02-26 Kanegafuchi Chem Ind Co Ltd 保存安定性に優れたポリイミド溶液、ポリイミド系接着剤溶液およびそれを用いて得られるフィルム状積層部材
JP4070510B2 (ja) * 2002-05-24 2008-04-02 日東電工株式会社 複屈折フィルム、光学補償層一体型偏光板、画像表示装置、並びに複屈折フィルムの製造法
JP3701022B2 (ja) * 2002-12-19 2005-09-28 日東電工株式会社 複屈折性光学フィルムの製造方法、前記製造方法により得られたフィルム、それを用いた楕円偏光板およびそれらを用いた液晶表示装置
JP2004331951A (ja) * 2003-04-18 2004-11-25 Nitto Denko Corp 新規ポリイミド
CN1946794A (zh) * 2004-04-28 2007-04-11 东丽株式会社 丙烯酸酯类树脂薄膜及其制备方法
JP2006137881A (ja) 2004-11-12 2006-06-01 Kaneka Corp 可溶性ポリイミド及び光学補償部材
JP2007246820A (ja) 2006-03-17 2007-09-27 Fujifilm Corp インク組成物、インクジェット記録方法、印刷物、平版印刷版の製造方法、及び、平版印刷版
US8568867B2 (en) 2006-06-26 2013-10-29 Sabic Innovative Plastics Ip B.V. Polyimide solvent cast films having a low coefficient of thermal expansion and method of manufacture thereof
JP4930143B2 (ja) * 2006-06-29 2012-05-16 Jnc株式会社 保護膜用組成物、カラーフィルター基板および液晶表示素子
US20080119616A1 (en) 2006-11-22 2008-05-22 General Electric Company Polyimide resin compositions
US20100048861A1 (en) 2006-12-15 2010-02-25 Hak Gee Jung Polyimide resin and liquid crystal alignment layer and polyimide film using the same
KR101167483B1 (ko) 2006-12-15 2012-07-27 코오롱인더스트리 주식회사 무색투명한 폴리이미드 수지와 이를 이용한 액정 배향막 및필름
JP4935406B2 (ja) * 2007-02-19 2012-05-23 新日本理化株式会社 高耐熱性ポリイミド樹脂組成物
KR20100015558A (ko) 2007-04-09 2010-02-12 보오드 오브 리젠츠, 더 유니버시티 오브 텍사스 시스템 핵산을 내화시키는 세포 선별 방법
KR101423361B1 (ko) * 2007-05-24 2014-07-24 미츠비시 가스 가가쿠 가부시키가이샤 무색 투명 수지 필름의 제조 방법 및 제조 장치
KR101225842B1 (ko) * 2007-08-27 2013-01-23 코오롱인더스트리 주식회사 무색투명한 폴리이미드 필름
JP2008171007A (ja) * 2008-01-17 2008-07-24 Nitto Denko Corp 複屈折フィルムの製造方法
US20100028779A1 (en) * 2008-07-31 2010-02-04 Byd Co., Ltd. Porous Polyimide Membrane, Battery Separator, Battery, and Method
KR101293346B1 (ko) * 2008-09-26 2013-08-06 코오롱인더스트리 주식회사 폴리이미드 필름
US20110273394A1 (en) * 2010-05-10 2011-11-10 Symbol Technologies, Inc. Methods and apparatus for a transparent and flexible force-sensitive touch panel
KR20130101511A (ko) * 2010-08-18 2013-09-13 이 아이 듀폰 디 네모아 앤드 캄파니 발광 다이오드 조립체 및 열 제어 블랭킷 및 이에 관련된 방법
CN102557925B (zh) * 2010-12-27 2014-12-10 上海市合成树脂研究所 2,3,3’,4’-二苯醚四羧酸的合成方法
WO2012118020A1 (ja) 2011-02-28 2012-09-07 Jsr株式会社 樹脂組成物およびそれを用いた膜形成方法
JP5804778B2 (ja) * 2011-06-03 2015-11-04 三井化学株式会社 新規ポリイミドワニス
CN102875835B (zh) * 2011-07-12 2014-07-02 中国科学院化学研究所 一种聚酰亚胺多孔膜及其制备方法
KR101550955B1 (ko) 2012-03-29 2015-09-07 코오롱인더스트리 주식회사 폴리이미드 필름
KR101961894B1 (ko) * 2012-05-09 2019-03-25 삼성전자주식회사 공중합체, 이를 포함하는 성형품 및 상기 성형품을 포함하는 디스플레이 장치
JP5888472B2 (ja) * 2014-02-21 2016-03-22 三菱化学株式会社 ポリイミド前駆体及び/又はポリイミドを含む組成物、並びにポリイミドフィルム
CN104325774B (zh) * 2014-08-20 2016-06-22 杭州福斯特光伏材料股份有限公司 一种二层无胶型双面挠性覆铜板的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176629A (ja) * 1985-02-01 1986-08-08 Sumitomo Bakelite Co Ltd 耐熱性樹脂の製造方法
JPH03143924A (ja) * 1989-10-30 1991-06-19 Nitto Denko Corp ポリイミド成形体およびその製法
JPH09501865A (ja) * 1993-06-15 1997-02-25 ユーオーピー 複合ガス分離膜およびその作成方法
WO2001040851A1 (fr) * 1999-11-30 2001-06-07 Hitachi, Ltd. Afficheur a cristaux liquides et composition de resine
JP2006152257A (ja) * 2004-11-04 2006-06-15 Ist:Kk 透明ポリイミド管状物及びその製造方法
JP2007293275A (ja) * 2006-02-23 2007-11-08 Ist Corp 透明導電円筒体及びその製造方法
JP2010513591A (ja) * 2006-12-15 2010-04-30 コーロン インダストリーズ,インコーポレイテッド ポリイミド樹脂とこれを用いた液晶配向膜およびポリイミドフィルム
JP2013163304A (ja) * 2012-02-10 2013-08-22 Nippon Steel & Sumikin Chemical Co Ltd 透明可撓性積層体及び積層体ロール
WO2014162734A1 (ja) * 2013-04-03 2014-10-09 三井化学株式会社 ポリアミド酸、及びこれを含むワニス、並びにポリイミドフィルム
WO2015125859A1 (ja) * 2014-02-19 2015-08-27 香 塩之谷 変形爪矯正用治具及び爪矯正方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3279237A4 *

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073782A1 (ja) * 2015-10-30 2017-05-04 株式会社アイ.エス.テイ ポリイミド膜
US10745519B2 (en) * 2016-04-07 2020-08-18 Kaneka Corporation Polyimide resin, polyimide solution, film, and method for producing same
US20190153158A1 (en) * 2016-04-07 2019-05-23 Kaneka Corporation Polyimide resin, polyimide solution, film, and method for producing same
JP2018086802A (ja) * 2016-11-29 2018-06-07 旭化成株式会社 ポリイミドフィルム積層体
JP2018122583A (ja) * 2017-02-03 2018-08-09 東京応化工業株式会社 積層体、フレキシブルデバイス及び積層体の製造方法
WO2018180926A1 (ja) * 2017-03-29 2018-10-04 東レ株式会社 導電層付きフィルム、タッチパネル、導電層付きフィルムの製造方法およびタッチパネルの製造方法
JP7140108B2 (ja) 2017-03-29 2022-09-21 東レ株式会社 導電層付きフィルムおよびタッチパネル
JPWO2018180926A1 (ja) * 2017-03-29 2020-02-06 東レ株式会社 導電層付きフィルム、タッチパネル、導電層付きフィルムの製造方法およびタッチパネルの製造方法
KR102326559B1 (ko) 2017-04-07 2021-11-16 가부시키가이샤 아이.에스.티 폴리이미드막
KR20190132356A (ko) * 2017-04-07 2019-11-27 가부시키가이샤 아이.에스.티 폴리이미드막
JP2018203906A (ja) * 2017-06-06 2018-12-27 旭化成株式会社 ポリイミドフィルム、ポリイミドフィルムを用いた製品、及び、積層体
US10246556B2 (en) 2017-06-23 2019-04-02 Taiflex Scientific Co., Ltd. Polyimide polymer and polyimide film
JP2019006933A (ja) * 2017-06-27 2019-01-17 旭化成株式会社 ポリイミドフィルム及びその製造方法
KR102592065B1 (ko) 2017-07-03 2023-10-23 닛산 가가쿠 가부시키가이샤 플렉서블 디바이스 기판형성용 조성물
KR20200024775A (ko) * 2017-07-03 2020-03-09 닛산 가가쿠 가부시키가이샤 플렉서블 디바이스 기판형성용 조성물
US11702565B2 (en) 2017-08-02 2023-07-18 Asahi Kasei Kabushiki Kaisha Polyimide varnish and method for producing same
CN111386299A (zh) * 2017-09-19 2020-07-07 E.I.内穆尔杜邦公司 用于电子装置中的低色聚合物
JPWO2019073628A1 (ja) * 2017-10-11 2020-10-01 株式会社カネカ ポリイミド樹脂およびその製造方法、ポリイミド溶液、ならびにポリイミドフィルムおよびその製造方法
JP7094296B2 (ja) 2017-10-11 2022-07-01 株式会社カネカ ポリイミド樹脂およびその製造方法、ポリイミド溶液、ならびにポリイミドフィルムおよびその製造方法
WO2019073628A1 (ja) * 2017-10-11 2019-04-18 株式会社カネカ ポリイミド樹脂およびその製造方法、ポリイミド溶液、ならびにポリイミドフィルムおよびその製造方法
WO2019074047A1 (ja) * 2017-10-12 2019-04-18 三菱瓦斯化学株式会社 ポリイミドワニス組成物、その製造方法、及びポリイミドフィルム
JP7230820B2 (ja) 2017-10-12 2023-03-01 三菱瓦斯化学株式会社 ポリイミドワニス組成物、その製造方法、及びポリイミドフィルム
JPWO2019074047A1 (ja) * 2017-10-12 2020-09-17 三菱瓦斯化学株式会社 ポリイミドワニス組成物、その製造方法、及びポリイミドフィルム
JP2019108509A (ja) * 2017-12-20 2019-07-04 住友化学株式会社 タッチセンサーパネル用透明フィルム基材及びそれを用いたタッチセンサーパネル
WO2019124368A1 (ja) * 2017-12-20 2019-06-27 住友化学株式会社 タッチセンサーパネル用透明フィルム基材及びそれを用いたタッチセンサーパネル
JP2019214657A (ja) * 2018-06-12 2019-12-19 旭化成株式会社 透明ポリイミドワニス及びフィルム
WO2019244915A1 (ja) * 2018-06-20 2019-12-26 日東電工株式会社 偏光フィルム、粘着剤層付き偏光フィルム、及び画像表示装置
JP2019219525A (ja) * 2018-06-20 2019-12-26 日東電工株式会社 偏光フィルム、粘着剤層付き偏光フィルム、及び画像表示装置
JP2020052138A (ja) * 2018-09-25 2020-04-02 大日本印刷株式会社 位相差フィルムの製造方法、位相差フィルム、該位相差フィルムを用いた表示パネル及び画像表示装置
JP7434704B2 (ja) 2018-09-25 2024-02-21 大日本印刷株式会社 位相差フィルムの製造方法、位相差フィルム、該位相差フィルムを用いた表示パネル及び画像表示装置
KR20210068394A (ko) 2018-09-29 2021-06-09 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 폴리이미드 전구체와 그것으로부터 생성되는 폴리이미드, 및 플렉시블 디바이스
WO2020110947A1 (ja) * 2018-11-28 2020-06-04 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JP7384170B2 (ja) 2018-11-28 2023-11-21 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JP7367699B2 (ja) 2018-11-28 2023-10-24 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JPWO2020110947A1 (ja) * 2018-11-28 2021-10-21 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JPWO2020110948A1 (ja) * 2018-11-28 2021-10-21 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
KR20210097095A (ko) 2018-11-28 2021-08-06 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드 수지, 폴리이미드 바니시 및 폴리이미드 필름
KR20210096064A (ko) 2018-11-28 2021-08-04 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드 수지, 폴리이미드 바니시 및 폴리이미드 필름
WO2020110948A1 (ja) * 2018-11-28 2020-06-04 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
KR20210146889A (ko) 2019-03-29 2021-12-06 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드 수지, 폴리이미드 바니시 및 폴리이미드 필름
TWI837328B (zh) 2019-03-29 2024-04-01 日商三菱瓦斯化學股份有限公司 聚醯亞胺樹脂、聚醯亞胺清漆以及聚醯亞胺薄膜
WO2020203264A1 (ja) * 2019-03-29 2020-10-08 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
WO2020230663A1 (ja) * 2019-05-10 2020-11-19 住友化学株式会社 ワニス、光学フィルム及び光学フィルムの製造方法
KR20220034059A (ko) 2019-07-10 2022-03-17 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드 수지, 폴리이미드 바니시 및 폴리이미드 필름
WO2021006284A1 (ja) * 2019-07-10 2021-01-14 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JP7484913B2 (ja) 2019-07-10 2024-05-16 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
WO2021070912A1 (ja) * 2019-10-11 2021-04-15 三菱瓦斯化学株式会社 ポリイミド樹脂組成物、ポリイミドワニス及びポリイミドフィルム
KR20220104696A (ko) 2019-11-18 2022-07-26 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드 수지, 폴리이미드 바니시 및 폴리이미드 필름
KR20220123393A (ko) 2019-12-27 2022-09-06 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드 수지, 폴리이미드 바니시 및 폴리이미드 필름
WO2021167000A1 (ja) * 2020-02-21 2021-08-26 三菱瓦斯化学株式会社 ポリイミドフィルムの製造方法
KR20220147092A (ko) 2020-03-06 2022-11-02 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드 수지, 폴리이미드 바니시 및 폴리이미드 필름
WO2021177145A1 (ja) * 2020-03-06 2021-09-10 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JP7471888B2 (ja) 2020-03-26 2024-04-22 日鉄ケミカル&マテリアル株式会社 ポリイミドフィルム及びそれを用いた表示装置並びにポリイミド前駆体

Also Published As

Publication number Publication date
TWI588182B (zh) 2017-06-21
KR20190130066A (ko) 2019-11-20
EP3279237A4 (en) 2018-04-04
US20180086939A1 (en) 2018-03-29
KR20170103946A (ko) 2017-09-13
KR102052150B1 (ko) 2019-12-05
EP3279237A1 (en) 2018-02-07
JP6622287B2 (ja) 2019-12-18
JP6817389B2 (ja) 2021-01-20
JP2020001393A (ja) 2020-01-09
CN107428934A (zh) 2017-12-01
US11078378B2 (en) 2021-08-03
JPWO2016158825A1 (ja) 2018-01-11
KR102181466B1 (ko) 2020-11-23
TW201700542A (zh) 2017-01-01
CN107428934B (zh) 2020-10-02

Similar Documents

Publication Publication Date Title
JP6817389B2 (ja) ポリイミドフィルムの製造方法
JP6883640B2 (ja) 樹脂前駆体及びそれを含有する樹脂組成物、樹脂フィルム及びその製造方法、並びに、積層体及びその製造方法
JP6956524B2 (ja) ポリイミドフィルム、ポリイミドフィルムを用いた製品、及び、積層体
JP4802934B2 (ja) 脂環系ポリイミド共重合体及びその製造方法
JP6912287B2 (ja) ポリイミドフィルム及びその製造方法
JP2019506478A (ja) 接着力が向上したポリアミック酸組成物及びこれを含むポリイミドフィルム
WO2016084777A1 (ja) ポリイミドフィルム、それを用いた基板、及び、ポリイミドフィルムの製造方法
JP6850352B2 (ja) ポリイミドワニス及びその製造方法
JP2008297360A (ja) 溶剤可溶性ポリイミド樹脂
JP2013082774A (ja) 透明ポリイミドフィルムおよびその製造方法
KR20160037489A (ko) 폴리이미드계 필름 형성용 조성물 및 이를 이용하여 제조된 폴리이미드계 필름
JP2021014564A (ja) ポリイミドワニス及びポリイミドフィルム、並びにこれらの製造方法
TWI670302B (zh) 透明電極用基材薄膜及其製造方法
JP2020111713A (ja) ポリイミドワニス及びポリイミドフィルム、並びにこれらの製造方法
KR20160097682A (ko) 폴리이미드계 용액 및 이를 이용하여 제조된 폴리이미드계 필름
KR101501875B1 (ko) 폴리이미드계 용액 및 이를 이용하여 제조된 폴리이미드계 필름
TWI782901B (zh) 聚醯亞胺共聚物及使用其之成形體
JP2023038407A (ja) ポリアミド酸組成物、ポリイミド、ポリイミド膜、積層体およびフレキシブルデバイス、ならびに積層体の製造方法
JP2021178881A (ja) ポリアミド酸、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体およびフレキシブルデバイス、ならびにポリイミド膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772706

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177022600

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017509954

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016772706

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15563480

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE