WO2014056872A1 - Exendin-4 derivatives as dual glp1/glucagon agonists - Google Patents
Exendin-4 derivatives as dual glp1/glucagon agonists Download PDFInfo
- Publication number
- WO2014056872A1 WO2014056872A1 PCT/EP2013/070882 EP2013070882W WO2014056872A1 WO 2014056872 A1 WO2014056872 A1 WO 2014056872A1 EP 2013070882 W EP2013070882 W EP 2013070882W WO 2014056872 A1 WO2014056872 A1 WO 2014056872A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carboxy
- butyryl
- amino acid
- acid residue
- residue selected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/22—Hormones
- A61K38/26—Glucagons
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/575—Hormones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/22—Hormones
- A61K38/2264—Obesity-gene products, e.g. leptin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/22—Hormones
- A61K38/28—Insulins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/30—Drugs for disorders of the nervous system for treating abuse or dependence
- A61P25/36—Opioid-abuse
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/04—Anorexiants; Antiobesity agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/06—Antihyperlipidemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/12—Antihypertensives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/575—Hormones
- C07K14/605—Glucagons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the present invention relates to exendin-4 peptide analogues which - in contrast to the pure GLP-1 agonist exendin-4 - activate both the GLP1 and the Glucagon receptor and their medical use, for example in the treatment of disorders of the metabolic syndrome, including diabetes and obesity, as well as for reduction of excess food intake.
- Exendin-4 is a 39 amino acid peptide which is produced by the salivary glands of the Gila monster (Heloderma suspectum) (Eng, J. et al., J. Biol. Chem., 267:7402-05,1992). Exendin-4 is an activator of the glucagon-like peptide-1 (GLP-1 ) receptor, whereas it does not activate significantly the glucagon receptor.
- GLP-1 glucagon-like peptide-1
- Exendin-4 shares many of the glucoregulatory actions observed with GLP-1 .
- Clinical and non-clinical studies have shown that exendin-4 has several beneficial antidiabetic properties including a glucose dependent enhancement in insulin synthesis and secretion, glucose dependent suppression of glucagon secretion, slowing down gastric emptying, reduction of food intake and body weight, and an increase in beta-cell mass and markers of beta cell function (Gentilella R et al., Diabetes Obes Metab., 1 1 :544-56, 2009; Norris SL et al., Diabet Med., 26:837-46, 2009; Bunck MC et al., Diabetes Care., 34:2041 -7, 201 1 ).
- These effects are beneficial not only for diabetics but also for patients suffering from obesity. Patients with obesity have a higher risk of getting diabetes, hypertension, hyperlipidemia, cardiovascular and musculoskeletal diseases.
- exendin-4 is resistant to cleavage by dipeptidyl peptidase-4 (DPP4) resulting in a longer half-life and duration of action in vivo (Eng J., Diabetes, 45 (Suppl 2):152A (abstract 554), 1996).
- DPP4 dipeptidyl peptidase-4
- exendin-4 is chemically labile due to methionine oxidation in position 14 (Hargrove DM et al., Regul. Pept., 141 : 1 13-9, 2007) as well as deamidation and isomerization of asparagine in position 28 (WO 2004/035623).
- exendin-4 is shown as SEQ ID NO: 1 HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2
- amino acid sequence of GLP-1 (7-36)-amide is shown as SEQ ID NO: 2
- Liraglutide is a marketed chemically modified GLP-1 analog in which, among other modifications, a fatty acid is linked to a lysine in position 20 leading to a prolonged duration of action (Drucker DJ et al., Nature Drug Disc. Rev. 9, 267-268, 2010; Buse, J.B. et al., Lancet, 374:39-47, 2009).
- the amino acid sequence of Liraglutide is shown as SEQ ID NO: 195.
- Glucagon is a 29-amino acid peptide which is released into the bloodstream when circulating glucose is low. Glucagon's amino acid sequence is shown in SEQ ID NO: 3.
- hypoglycemia when blood glucose levels drop below normal, glucagon signals the liver to break down glycogen and release glucose, causing an increase of blood glucose levels to reach a normal level. Hypoglycemia is a common side effect of insulin treated patients with hyperglycemia (elevated blood glucose levels) due to diabetes. Thus, glucagon's most predominant role in glucose regulation is to counteract insulin action and maintain blood glucose levels.
- GLP-1 receptor agonists such as GLP-1 , liraglutide and exendin-4
- FPG and PPG fasting and postprandial glucose
- triple co-agonist peptides which not only activate the GLP-1 and the glucagon receptor but also the GIP receptor are described in WO 2012/0881 16 and by VA Gault et al. (Biochem Pharmacol, 85, 16655-16662, 2013; Diabetologia, 56, 1417-1424, 2013).
- Bloom et al. disclose that peptides which bind and activate both the glucagon and the GLP-1 receptor can be constructed as hybrid molecules from glucagon and exendin-4, where the N-terminal part (e.g. residues 1 -14 or 1 -24) originates from glucagon and the C-terminal part (e.g. residues 15-39 or 25-39) originates from exendin- DE Otzen et al. (Biochemistry, 45, 14503-14512, 2006) disclose that N- and C-terminal hydrophobic patches are involved in fibrillation of glucagon due to the hydrophobicity and/or high ⁇ -sheet propensity of the underlying residues.
- N-terminal part e.g. residues 1 -14 or 1 -24
- the C-terminal part e.g. residues 15-39 or 25-39
- Krstenansky et al. show the importance of the residues 10-13 of glucagon for its receptor interactions and activation of adenylate cyclase.
- residues Tyr10 and Tyr13 which are known to contribute to the fibrillation of glucagon (DE Otzen, Biochemistry, 45, 14503- 14512, 2006) are replaced by Leu in position 10 and Gin, a non-aromatic polar amino acid, in position 13, leading to exendin-4 derivatives with potentially improved biophysical properties.
- compounds of this invention are exendin-4 derivatives with fatty acid acylated residues in position 14.
- This fatty acid functionalization in position 14 results in exendin-4 derivatives with high activity not only at the GLP-1 receptor but also at the glucagon receptor when compared to the corresponding non-acylated exendin-4 derivatives.
- this modification results in an improved pharmacokinetic profile.
- NEP neutral endopeptidase
- DPP4 dipeptidyl peptidase-4
- Compounds of this invention are preferably soluble not only at neutral pH, but also at pH 4.5. This property potentially allows co-formulation for a combination therapy with an insulin or insulin derivative and preferably with a basal insulin like insulin glargine/Lantus ® .
- exendin-4 derivatives which potently activate the GLP1 and the glucagon receptor.
- exendin-4 derivatives - among other substitutions - methionine at position 14 is replaced by an amino acid carrying an -NH 2 group in the side chain, which is further substituted with an unpolar residue (e.g. a fatty acid optionally combined with a linker).
- the invention provides a peptidic compound having the formula (I):
- X2 represents an amino acid residue selected from Ser, D-Ser and Aib,
- X3 represents an amino acid residue selected from Gin, His and a-amino- functionalized Gin, wherein Gin may be functionalized in that an H of the a-NH 2 group is substituted by (Ci-C 4 )-alkyl,
- X14 represents an amino acid residue having a side chain with an -NH 2 group, wherein the -NH 2 side chain group is functionalized by -C(O)-R 5 , -C(O)O-R 5 , -
- R 5 may be a moiety comprising up to 50 or up to 100 carbon atoms and optionally heteroatoms selected from halogen, N, O, S and/or P,
- X15 represents an amino acid residue selected from Glu and Asp
- X16 represents an amino acid residue selected from Ser, Glu and Lys,
- X17 represents an amino acid residue selected from Arg, Glu, Gin, Leu, Aib and Lys
- X18 represents an amino acid residue selected from Arg, Ala and Lys
- X20 represents an amino acid residue selected from Gin, Arg, Lys, His, Glu and Aib
- X21 represents an amino acid residue selected from Asp, Leu and Glu
- X28 represents an amino acid residue selected from Asn, Arg, Lys, Aib, Ser, Glu, Ala and Asp,
- X29 represents an amino acid residue selected from Gly, Ala, D-Ala and Thr,
- X35 represents an amino acid residue selected from Ala, Glu, Arg and Lys, X39 represents Ser or is absent and
- X40 is absent or represents an amino acid residue having a side chain with an -NH 2 group, wherein the -NH 2 side chain group is optionally functionalized by -C(O)- R 5 , -C(O)O-R 5 , -C(O)NH-R 5 , -S(O) 2 -R 5 or R 5 , preferably by -C(O)-R 5 , wherein R 5 may be a moiety comprising up to 50 or up to 100 carbon atoms and optionally heteroatoms selected from halogen, N, O, S and/or P,
- R 1 represents the N-terminal group of the peptidic compound and is selected from NH 2 and mono- or bisfunctionalized NH 2 ,
- R 2 represents the C-terminal group of the peptidic compound and is selected from
- the compounds of the invention are GLP-1 and glucagon receptor agonists as determined by the observation that they are capable of stimulating intracellular cAMP formation.
- the compounds of the invention exhibit at least a relative activity of 0.1 %, more preferably of 0.2%, more preferably of 0.3% and even more preferably of 0.4% compared to that of GLP-1 (7-36) at the GLP-1 receptor. Furthermore, the compounds exhibit at least a relative activity of 0.1 %, more preferably of 0.2% or of 0.3% or of 0.4% and even more preferably of 0.5% compared to that of natural glucagon at the glucagon receptor.
- the term "activity” as used herein preferably refers to the capability of a compound to activate the human GLP-1 receptor and the human glucagon receptor. More preferably the term “activity” as used herein refers to the capability of a compound to stimulate intracellular cAMP formation.
- the term "relative activity” as used herein is understood to refer to the capability of a compound to activate a receptor in a certain ratio as compared to another receptor agonist or as compared to another receptor. The activation of the receptors by the agonists (e.g. by measuring the cAMP level) is determined as described herein, e.g. as described in the examples.
- the compounds of the invention have an EC 50 for hGLP-1 receptor of 450 pmol or less, preferably of 200 pmol or less; more preferably of 150 pmol or less, more preferably of 100 pmol or less, more preferably of 90 pmol or less, more preferably of 80 pmol or less, more preferably of 70 pmol or less, more preferably of 60 pmol or less, more preferably of 50 pmol or less, more preferably of 40 pmol or less, more preferably of 30 pmol or less, more preferably of 25 pmol or less, more preferably of 20 pmol or less, more preferably of 15 pmol or less, more preferably of 10 pmol or less, more preferably of 9 pmol or less, more preferably of 8 pmol or less, more preferably of 7 pmol or less, more preferably of 6 pmol or less, and more preferably of 5 pmol or less.
- the compounds of the invention have an EC 50 for hGlucagon receptor of 500 pmol or less, preferably of 200 pmol or less; more preferably of 150 pmol or less, more preferably of 100 pmol or less, more preferably of 90 pmol or less, more preferably of 80 pmol or less, more preferably of 70 pmol or less, more preferably of 60 pmol or less, more preferably of 50 pmol or less, more preferably of 40 pmol or less, more preferably of 30 pmol or less, more preferably of 25 pmol or less, more preferably of 20 pmol or less, more preferably of 15 pmol or less, more preferably of 10 pmol or less.
- the compounds of the invention have an EC 50 for hGLP-1 receptor of 450 pmol or less, preferably of 200 pmol or less; more preferably of 150 pmol or less, more preferably of 100 pmol or less, more preferably of 90 pmol or less, more preferably of 80 pmol or less, more preferably of 70 pmol or less, more preferably of 60 pmol or less, more preferably of 50 pmol or less, more preferably of 40 pmol or less, more preferably of 30 pmol or less, more preferably of 25 pmol or less, more preferably of 20 pmol or less, more preferably of 15 pmol or less, more preferably of 10 pmol or less, more preferably of 9 pmol or less, more preferably of 8 pmol or less, more preferably of 7 pmol or less, more preferably of 6 pmol or less, and more preferably of 5 pmol or less, and/or an EC 5 o for hGlucagon
- the EC 50 for both receptors i.e. for the hGLP-1 receptor and the hGlucagon receptor is 100 pmol or less, more preferably 90 pmol or less, more preferably 80 pmol or less, more preferably 70 pmol or less, more preferably 60 pmol or less, more preferably 50 pmol or less, more preferably 40 pmol or less, more preferably 30 pmol or less, more preferably 25 pmol or less, more preferably 20 pmol or less, more preferably 15 pmol or less, more preferably 10 pmol or less.
- the EC 5 o for hGLP-1 receptor and hGlucagon receptor may be determined as described in the Methods herein and as used to generate the results described in Example 9.
- the compounds of the invention have the ability to reduce the intestinal passage, to increase the gastric content and/or to reduce the food intake of a patient. These activities of the compounds of the invention can be assessed in animal models known to the skilled person and also described herein in the Methods. The results of such experiments are described in Examples 1 1 and 12.
- Preferred compounds of the invention may increase the gastric content of mice, preferably of female NMRI-mice, if administered as a single dose, preferably subcutaneous dose, of 0.02 mg/kg body weight by at least 25%, more preferably by at least 30%, more preferably by at least 40%, more preferably by at least 50%, more preferably by at least 60%, more preferably by at least 70%, more preferably by at least 80%.
- this result is measured 1 h after administration of the respective compound and 30 mins after administration of a bolus, and/or reduces intestinal passage of mice, preferably of female NMRI-mice, if administered as a single dose, preferably subcutaneous dose, of 0.02 mg/kg body weight at least by 45%; more preferably by at least 50%, more preferably by at least 55%, more preferably by at least 60%, and more preferably at least 65%; and/or reduces food intake of mice, preferably of female NMRI- mice, over a period of 22 h, if administered as a single dose, preferably subcutaneous dose of 0.01 mg/kg body weight by at least 10%, more preferably 15%, and more preferably 20%.
- the compounds of the invention have the ability to reduce blood glucose level, and/or to reduce HbA1 c levels of a patient. These activities of the compounds of the invention can be assessed in animal models known to the skilled person and also described herein in the Methods. The results of such experiments are described in Examples 14 and 17.
- Preferred compounds of the invention may reduce blood glucose level of mice, preferably in female leptin-receptor deficient diabetic db/db mice over a period of 24 h, if administered as a single dose, preferably subcutaneous dose, of 0.01 mg/kg body weight by at least 4 mmol/L; more preferably by at least 6 mmol/L, more preferably by at least 8 mmol/L.
- the compounds of the invention lead to a reduction by at least 7 mmol/L; more preferably by at least 9 mmol/L, more preferably by at least 1 1 mmol/L.
- the compounds of the invention preferably reduce the increase of HbA1 c levels of mice over a period of 4 weeks, if administered at a daily dose of 0.01 mg/kg to about the ignition value.
- the compounds of the invention also have the ability to reduce body weight of a patient. These activities of the compounds of the invention can be assessed in animal models known to the skilled person and also described herein in the Methods and in Examples 13 and 16.
- the compounds of the invention have a high solubility at acidic and/or physiological pH values, e.g., at pH 4.5 and/or at pH 7.4 at 25°C, in another embodiment at least 0.5 mg/ml and in a particular embodiment at least 1 .0 mg/ml.
- the compounds of the invention preferably have a high stability when stored in solution.
- Preferred assay conditions for determining the stability is storage for 7 days at 25°C in solution at pH 4.5 or pH 7.
- the remaining amount of peptide is determined by chromatographic analyses as described in the Examples.
- the remaining peptide amount is at least 80%, more preferably at least 85%, even more preferably at least 90% and even more preferably at least 95%.
- the compounds of the present invention comprise a peptide moiety Z (II) which is a linear sequence of 39-40 amino carboxylic acids, particularly a-amino carboxylic acids linked by peptide, i.e. carboxamide bonds.
- R 1 is selected from -NH 2 , -NH[(CrC 5 )alkyl], -N[(Ci-C 5 )alkyl] 2> -NH[(C 0 - C 4 )alkylene-(C 3 -C 8 )cycloalkyl], NH-C(O)-H, NH-C(O)-(C C 5 )-alkyl, NH-C(O)-(C 0 - C 3 )alkylene-(C 3 -C 8 )cycloalkyl, in which alkyl or cycloalkyl is unsubstituted or up to 5-fold substituted by -OH or halogen selected from F, CI, Br and I, preferably F.
- R 2 is selected from -OH, -O-(CrC 2 o)alkyl, -O(C 0 -C 8 )alkylene-(C 3 - C 8 )cycloalkyl, -NH 2 , -NH[(C C 30 )alkyl], -N[(CrC 30 )alkyl] 2 , -NH[(C0-C8)alkylene-(C 3 - C 8 )cycloalkyl], -N[(C0-C8)alkylene-(C 3 -C 8 )cycloalkyl] 2 , -NH[(CH 2 -CH 2 -O) 1-4 o-(CrC 4 )alkyl], - NH-(C 3 -C 8 )heterocyclyl or -NH-(C 0 -C 8 )alkylene-aryl, wherein aryl is selected from phenyl and naphthyl, preferably phenyl,
- alkyl or cycloalkyl as described above is unsubstituted or up to 5-fold substituted by -OH or halogen selected from F, CI, Br and I, preferably F.
- the N-terminal group R 1 is NH 2 .
- the C- terminal group R 2 is NH 2 .
- the N-terminal group R 1 and the C- terminal group R 2 are NH 2 .
- position X14 represents an amino acid residue with a functionalized - NH 2 side chain group, such as functionalized Lys, Orn, Dab, or Dap, more preferably functionalized Lys
- X40 represents an amino acid residue with a functionalized -NH 2 side chain group, such as functionalized Lys, Orn, Dab, or Dap, more preferably functionalized Lys.
- An amino acid residue with an -NH 2 side chain group e.g.
- Lys, Orn, Dab or Dap may be functionalized in that at least one H atom of the -NH 2 side chain group is replaced by - C(O)-R 5 , -C(O)O-R 5 , -C(O)NH-R5, -S(0)2-R5 or R 5 , preferably by -C(O)-R 5 , wherein R 5 may be a moiety comprising up to 50 or up to 100 carbon atoms and optionally heteroatoms selected from halogen, N, O, S and/or P.
- R 5 may comprise a lipophilic moiety, e.g. an acyclic linear or branched saturated hydrocarbon group, wherein R 5 particularly comprises an acyclic linear or branched (C 4 -C 3 o) saturated or unsaturated hydrocarbon group, and/or a cyclic saturated, unsaturated or aromatic group, particularly a mono-, bi-, or tricyclic group comprising 4 to 14 carbon atoms and 0, 1 , or 2 heteroatoms selected from N, O, and S, e.g.
- a lipophilic moiety e.g. an acyclic linear or branched saturated hydrocarbon group, wherein R 5 particularly comprises an acyclic linear or branched (C 4 -C 3 o) saturated or unsaturated hydrocarbon group, and/or a cyclic saturated, unsaturated or aromatic group, particularly a mono-, bi-, or tricyclic group comprising 4 to 14 carbon atoms and 0, 1 , or 2 heteroatoms selected from N, O, and S,
- cyclohexyl phenyl, biphenyl, chromanyl, phenanthrenyl or naphthyl, wherein the acyclic or cyclic group may be unsubstituted or substituted e.g. by halogen, -OH and/or CO 2 H.
- R 5 may comprise a lipophilic moiety, e.g. an acyclic linear or branched (Ci 2 -C 22 ) saturated or unsaturated hydrocarbon group.
- the lipophilic moiety may be attached to the -NH 2 side chain group by a linker in all stereoisomeric forms, e.g. a linker comprising one or more, e.g. 2, amino acid linker groups such as ⁇ -aminobutyric acid (GABA), ⁇ -aminohexanoic acid ( ⁇ -Ahx), ⁇ -Glu and/or ⁇ -Ala.
- the lipophilic moiety is attached to the -NH 2 side chain group by a linker.
- the lipophilic moiety directly attached to the -NH 2 side chain group.
- amino acid linker groups are ( -Ala)i -4 , (y-Glu)i- 4 , (£-Ahx) -4 , or (GABA) -4 .
- Preferred amino acid linker groups are ⁇ -Ala, ⁇ -Glu, ⁇ - ⁇ 3- ⁇ - ⁇ 3 and y-Glu-y-Glu.
- -C(O)-R 5 groups are listed in the following Table 1 , which are selected from the group consisting of (S)-4-Carboxy-4-hexadecanoylamino-butyryl-, (S)-4-Carboxy-4-octadecanoylamino-butyryl-, 4-Hexadecanoylamino-butyryl-, 4- ⁇ 3-[(R)- 2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyl-tridecyl)-chroman-6-yloxycarbonyl]- propionylamino ⁇ -butyryl-, 4-octadecanoylamino-butyryl-, 4-((Z)-octadec-9-enoylamino)- butyryl-, 6-[(4,4-Diphenyl-cyclohexyloxy)-hydroxy-phosphoryloxy]-hexanoyl-, Hexa
- stereoisomers particularly enantiomers of these groups, either S- or R-enantiomers.
- R in Table 1 is intended to mean the attachment site of -C(O)- R 5 at the peptide back bone, i.e. particularly the ⁇ -amino group of Lys.
- R 5 is selected from the group consisting of (S)-4-carboxy- 4-hexadecanoylamino-butyryl ( ⁇ - ⁇ 53), (S)-4-carboxy-4-octadecanoylamino-butyryl ( ⁇ - x70), 4-hexadecanoylamino-butyryl (GABA-x53), 4- ⁇ 3-[(R)-2,5,7 I 8-tetramethyl-2-((4R,8R)- 4,8,12-trimethyl-tridecyl)-chroman-6-yloxycarbonyl]-propionylam (GABA-x60), 4-octadecanoylamino-butyryl (GABA-x70), 4-((Z)-octadec-9-enoylamino)-butyryl (GABA- x74), 6-[(4,4-Diphenyl-cyclohexyloxy)-hydroxy-phosphoryloxy]-hexano
- propionylamino ⁇ -butyryl ( ⁇ - ⁇ 60), (S)-4-Carboxy-4-((9Z,12Z)-octadeca-9,12- dienoylamino)-butyryl ( ⁇ - ⁇ 61 ), (S)-4-Carboxy-4-[6-((2S,3R,4S,5R)-5-carboxy-2,3,4,5- 10 tetrahydroxy-pentanoylamino)-hexanoylannino]-butyryl ( ⁇ - ⁇ 64), (S)-4-Carboxy-4- ((2S,3R,4S,5R)-5-carboxy-2,3,4,5-tetrahydroxy-pentanoylamino)-butyryl ( ⁇ - ⁇ 65), (S)-4- carboxy-4-tetradecanoylamino-butyryl ( ⁇ - ⁇ 69), (S)-4-(1 1 -Benzyloxycarbonyl- undecanoylamino)-4-car
- R 5 is selected from the group consisting of (S)-4- carboxy-4-octadecanoylamino-butyryl ( ⁇ - ⁇ 70), (S)-4-carboxy-4-hexadecanoylamino- butyryl ( ⁇ - ⁇ 53), and hexadecanoyl (x53).
- R 5 is (S)-4-carboxy-4-hexadecanoylamino-butyryl ( ⁇ - ⁇ 53).
- position X14 and/or X40 represents Lysine (Lys).
- Lys at position 14 and optionally at position 40 is functionalized, e.g. with a group -C(O)R 5 as described above.
- X40 is absent and X14 is Lys functionalized with -C(O)-R 5 , -C(O)O-R 5 , -C(O)NH-R5, -S(O)2- R5 or R5, preferably by -C(O)-R 5 , wherein R 5 is as defined above.
- X14 is Lys functionalized with C(O)-R 5 , wherein R 5 is selected from the group consisting of (S)-4- carboxy-4-hexadecanoylamino-butyryl ( ⁇ - ⁇ 53), (S)-4-carboxy-4-octadecanoylamino- butyryl ( ⁇ - ⁇ 70), 4-hexadecanoylamino-butyryl (GABA-x53), 4- ⁇ 3-[(R)-2,5,7,8-tetramethyl- 2-((4R,8R)-4,8,12-trimethyl-tridecyl)-chroman-6-yloxycarbonyl]-propionylamino ⁇ -butyryl- (GABA-x60), 4-octadecanoylamino-butyryl (GABA-x70), 4-((Z)-octadec-9-enoylamino)- butyryl (GABA-x74), 6-[(4,4-Dipheny
- a further embodiment relates to a group of compounds, wherein
- R 1 is NH 2 , R is NH 2 or
- R 1 and R 2 are NH 2 .
- a further embodiment relates to a group of compounds, wherein
- X2 represents an amino acid residue selected from Ser, D-Ser and Aib,
- X3 represents an amino acid residue selected from Gin, His and a-amino- functionalized Gin, wherein Gin may be functionalized in that an H of the a-NH 2 group is substituted by (Ci -C 4 )-alkyl,
- X14 represents an amino acid residue selected from Lys, Orn, Dab and Dap, wherein the -NH 2 side chain group is functionalized by -C(O)-R 5 ,
- X15 represents an amino acid residue selected from Glu and Asp
- X16 represents an amino acid residue selected from Ser, Lys and Glu
- X17 represents an amino acid residue selected from Arg, Glu, Gin, Leu and Lys
- X18 represents an amino acid residue selected from Arg and Ala
- X20 represents an amino acid residue selected from Gin, Arg, Lys and Aib,
- X21 represents an amino acid residue selected from Asp, Leu and Glu,
- X28 represents an amino acid residue selected from Asn, Arg, Lys, Aib, Ser, Glu, Asp and Ala,
- X29 represents an amino acid residue selected from Gly, Ala, D-Ala and Thr
- X35 represents an amino acid residue selected from Ala or Glu
- X39 is Ser or is absent
- X40 is either absent or represents Lys, wherein the -NH 2 side chain group can be functionalized by -C(O)-R 5 and
- a further embodiment relates to a group of compounds, wherein
- X2 represents an amino acid residue selected from D-Ser and Aib,
- X3 represents Gin
- X14 represents an amino acid residue selected from Lys and Orn, wherein the -NH 2 side chain group is functionalized by -C(O)-R 5 ,
- X15 represents an amino acid residue selected from Glu and Asp
- X16 represents an amino acid residue selected from Ser and Glu
- X17 represents an amino acid residue selected from Arg, Gin and Lys,
- X18 represents an amino acid residue selected from Arg and Ala
- X20 represents an amino acid residue selected from Gin, Arg, Lys and Aib
- X21 represents an amino acid residue selected from Asp, Leu and Glu,
- X28 represents an amino acid residue selected from Asn, Arg, Lys, Aib, Ser and Ala,
- X29 represents an amino acid residue selected from Gly, Ala or Thr,
- X35 represents Ala
- X39 is Ser or is absent
- X40 is either absent or represents Lys, wherein the -NH 2 side chain group can be functionalized by -C(O)-R 5 and
- a further embodiment relates to a group of compounds, wherein
- X20 represents an amino acid residue selected from Gin, Lys and Aib.
- a further embodiment relates to a group of compounds, wherein
- X2 represents an amino acid residue selected from D-Ser and Aib,
- X3 represents Gin
- X14 represents Lys, wherein the -NH 2 side chain group is functionalized by one of the groups selected from 3-(3-octadecanoylamino-propionyl-amino)-propionyl-, 4-hexadecanoylamino-butyryl-, 4- ⁇ 3-[(R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12- trimethyl-tridecyl)-chroman-6-yloxycarbonyl]-propionylamino ⁇ -butyryl-, 4- octadecanoylamino-butyryl-, 4-((Z)-octadec-9-enoylamino)-butyryl-, hexadecanoyl-, (S)-4-carboxy-4-((Z)-octadec-9-enoylamino)-butyryl-, (S)-4- carboxy-4-(4-dodec
- X15 represents Glu
- X16 represents Ser
- X17 represents an amino acid residue selected from Arg, Gin and Lys,
- X18 represents Ala
- X20 represents Gin
- X21 represents Asp
- X28 represents Ala
- X29 represents Gly
- X35 represents Ala
- X40 is absent.
- a further embodiment relates to a group of compounds of formula (I), wherein
- X2 represents Aib
- X3 represents Gin
- X14 represents Lys, wherein the -NH 2 side chain group is functionalized, particularly by (S)-4-Carboxy-4-hexadecanoylamino-butyryl- and (S)-4-Carboxy-4- octadecanoylamino-butyryl-;
- X15 represents an amino acid residue selected from Asp and Glu
- X16 represents an amino acid residue selected from Ser and Glu
- X17 represents an amino acid residue selected from Gin and Lys,
- X18 represents Ala
- X20 represents an amino acid residue selected from Gin and Lys,
- X21 represents an amino acid residue selected from Asp and Leu,
- X28 represents Ala
- X29 represents an amino acid residue selected from Gly and D-Ala
- X35 represents Ala
- X40 is absent.
- a further embodiment relates to a group of compounds, wherein
- X2 represents an amino acid residue selected from D-Ser and Aib,
- X3 represents Gin
- X14 represents Lys, wherein the -NH 2 side chain group is functionalized, particularly by (S)-4-Carboxy-4-octadecanoylamino-butyryl-; X15 represents Asp,
- X16 represents Ser
- X17 represents Arg
- X18 represents Arg
- X20 represents Gin
- X21 represents Asp
- X28 represents Ala
- X29 represents an amino acid residue selected from Gly and D-Ala
- X35 represents Ala
- X40 is absent.
- a further embodiment relates to a group of compounds, wherein
- X2 represents D-Ser
- X3 represents Gin
- X14 represents Lys, wherein the -NH 2 side chain group can be functionalized, particularly by (S)-4-carboxy-4- ⁇ 3-[(R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12- trimethyl-tridecyl)-chroman-6-yloxycarbonyl]-propionylamino ⁇ -butyryl-, (S)-4- carboxy-4-((9Z,12Z)-octadeca-9,12-dienoylamino)-butyryl-, (S)-4-carboxy-4- tetradecanoylamino-butyryl-, (S)-4-carboxy-4-octadecanoylamino-butyryl-, 2- ((S)-4-carboxy-4- ⁇ 3-[3-((2S,3R,4S,5R)-5-carboxy-2,3,4,5-tetrahydroxy- pentanoylamino)-
- X15 represents Asp
- X16 represents Ser
- X17 represents Arg
- X18 represents Arg
- X20 represents Gin
- X21 represents Asp
- X28 represents Asn
- X29 represents Gly
- X35 represents Ala
- X39 is Ser
- X40 is absent.
- a further embodiment relates to a group of compounds, wherein
- X2 represents D-Ser
- X3 represents Gin
- X14 represents Lys, wherein the -NH 2 side chain group is functionalized, particularly by (S)-4-carboxy-4-hexadecanoylamino-butyryl- or hexadecanoyl-;
- X15 represents an amino acid residue selected from Glu or Asp
- X16 represents Ser
- X17 represents Arg
- X18 represents Arg
- X20 represents Gin
- X21 represents Asp
- X28 represents an amino acid residue selected from Asn, Arg, Lys, Aib, Ser, Glu and Asp,
- X29 represents an amino acid residue selected from Gly, Ala, D-Ala and Thr
- X35 represents an amino acid residue selected from Ala, Glu, Arg and Lys
- X40 is absent.
- a further embodiment relates to a group of compounds, wherein
- X2 represents D-Ser
- X3 represents Gin
- X14 represents Lys, wherein the -NH 2 side chain group is functionalized, particularly by (S)-4-carboxy-4-hexadecanoylamino-butyryl- or hexadecanoyl-;
- X15 represents an amino acid residue selected from Glu and Asp
- X16 represents an amino acid residue selected from Ser and Glu
- X17 represents an amino acid residue selected from Arg, Glu, Lys and Aib,
- X18 represents an amino acid residue selected from Arg, Lys and Ala
- X20 represents an amino acid residue selected from Gin, Lys and Aib,
- X21 represents an amino acid residue selected from Asp and Leu,
- X28 represents an amino acid residue selected from Ala and Asn
- X29 represents Gly
- X35 represents Ala
- X40 is absent.
- a further embodiment relates to a group of compounds, wherein
- X2 represents D-Ser
- X3 represents Gin
- X14 represents Orn or Dab, wherein the -NH 2 side chain group is functionalized, particularly by (S)-4-carboxy-4-hexadecanoylamino-butyryl-;
- X15 represents Glu
- X16 represents Ser
- X17 represents Arg
- X18 represents Arg
- X20 represents Gin
- X21 represents Asp
- X28 represents Ala
- X29 represents Gly
- X35 represents Ala
- X40 is absent.
- a further embodiment relates to a group of compounds, wherein
- X2 represents D-Ser
- X3 represents Gin
- X14 represents Lys, wherein the -NH 2 side chain group is functionalized, particularly by (S)-4-carboxy-4-hexadecanoylamino-butyryl- or hexadecanoyl-;
- X15 represents an amino acid residue selected from Glu and Asp
- X16 represents Ser
- X17 represents an amino acid residue selected from Arg and Lys
- X18 represents an amino acid residue selected from Arg and Ala
- X20 represents Gin
- X21 represents an amino acid residue selected from Asp and Leu,
- X28 represents an amino acid residue selected from Ala and Asn
- X29 represents Gly
- X35 represents Ala
- X39 represents Ser or is absent, X40 is absent or represents Lys, wherein the -NH 2 side chain group is optionally functionalized, particularly by (S)-4-carboxy-4-hexadecanoylamino-butyryl- and R 2 is NH 2 , NH(Ci-Ci 8 ) alkyl, which are unsubstituted or monosubstituted by OH or 3- fold-substituted by F, N[(C C 6 ) alkyl] 2 , NH(CH 2 -CH 2 -O) 1-24 -(C C 4 ) alkyl-COOH, NH-pyrrolidine (N-pyrrolidin-1 -yl-amido), NH-benzyl (N-benzyl-amido) or N- morpholine (1 -morpholin-4-yl), particularly by NH 2 , NH-CH 2 -CH 3 , NH-(CH 2 ) 2 - CH 3 , NH-
- a further embodiment relates to a group of compounds, wherein
- X2 represents an amino acid residue selected from Ser, D-Ser and Aib,
- X3 represents an amino acid residue selected from Gin, His, Asn and N a -methylated Gin [Gin (a-NHCH 3 )],
- X14 represents Lys, wherein the -NH 2 side chain group is functionalized, particularly by (S)-4-carboxy-4-hexadecanoylamino-butyryl- or hexadecanoyl-;
- X15 represents an amino acid residue selected from Glu and Asp
- X16 represents an amino acid residue selected from Ser and Lys
- X17 represents an amino acid residue selected from Arg and Glu
- X18 represents an amino acid residue selected from Arg and Ala
- X20 represents an amino acid residue selected from Gin, Arg and Aib,
- X21 represents an amino acid residue selected from Asp and Leu,
- X28 represents an amino acid residue selected from Ala and Asn
- X29 represents Gly
- X35 represents Ala
- X40 is absent.
- a further embodiment relates to a group of compounds of formula (I), wherein
- X2 represents an amino acid residue selected from Ser, D-Ser and Aib,
- X3 represents an amino acid residue selected from Gin, His and N a -methylated Gin [Gin (a-NHCH 3 )],
- X14 represents Lys, wherein the -NH 2 side chain group is functionalized, particularly by (S)-4-carboxy-4-hexadecanoylamino-butyryl- or hexadecanoyl-;
- X15 represents an amino acid residue selected from Glu and Asp,
- X16 represents an amino acid residue selected from Ser and Lys
- X17 represents Arg
- X18 represents an amino acid residue selected from Arg and Ala
- X20 represents an amino acid residue selected from Gin and Aib,
- X21 represents an amino acid residue selected from Asp and Leu,
- X28 represents an amino acid residue selected from Ala and Asn
- X29 represents Gly
- X35 represents Ala
- X40 is absent.
- a further embodiment relates to a group of compounds of formula (I), wherein
- X2 represents an amino acid residue selected from D-Ser and Aib,
- X3 represents an amino acid residue selected from Gin and His,
- X14 represents Lys, wherein the -NH 2 side chain group is functionalized, particularly by (S)-4-carboxy-4-hexadecanoylamino-butyryl-, (S)-4-carboxy-4-((S)-4- carboxy hexadecanoylamino-butyrylamino)-butyryl-, or (S)-4-carboxy-4- octadecanoylamino-butyryl-;
- X15 represents an amino acid residue selected from Glu and Asp
- X16 represents Glu
- X17 represents Glu
- X18 represents Ala
- X20 represents an amino acid residue selected from Arg and Lys
- X21 represents Leu
- X28 represents Ala
- X29 represents Gly
- X35 represents Ala
- X40 is absent.
- X40 is absent.
- a still further preferred embodiment relates to a group of compounds, wherein
- the functionalized Lys in position 14 is functionalized at its ⁇ -amino group with -C(O)-R 5 , and-C(O)-R 5 is (S)-4-carboxy-4-hexadecanoyl-amino-butyryl, (S)-4-carboxy-4- octadecanoylamino-butyryl, hexadecanoyl or octadecanoyl.
- X2 represents an amino acid residue selected from Aib and D-Ser
- X3 represents an amino acid residue selected from Gin and His;
- X14 represents Lys, wherein the -NH 2 side chain group is functionalized by one of the groups selected from (S)-4-Carboxy-4-hexadecanoylamino-butyryl-, (S)-4-
- X15 represents an amino acid residue selected from Asp and Glu
- X16 represents an amino acid residue selected from Ser and Glu
- X17 represents an amino acid residue selected from Arg, Gin, Lys, Aib and Leu;
- X18 represents an amino acid residue selected from Arg and Ala;
- X20 represents an amino acid residue selected from Gin, Aib and Lys;
- X21 represents an amino acid residue selected from Asp, Glu and Lys;
- X28 represents an amino acid residue selected from Asn, Ser, Aib, Ala and Arg
- X29 represents an amino acid residue selected from Gly, Thr, Ala and D-Ala
- X35 represents Ala
- X40 is absent.
- X2 represents an amino acid residue selected from Aib and D-Ser
- X3 represents Gin
- X14 represents Lys, wherein the -NH 2 side chain group is functionalized by one of the groups selected from (S)-4-carboxy-4-hexadecanoyl-amino-butyryl, (S)-4- carboxy-4-octadecanoylamino-butyryl, hexadecanoyl and octadecanoyl;
- X15 represents Glu;
- X16 represents Ser
- X17 represents an amino acid residue selected from Arg, Gin and Lys;
- X18 represents Ala
- X20 represents Gin
- X21 represents Asp
- X28 represents Ala
- X29 represents Gly
- X35 represents Ala
- X40 is absent.
- a further embodiment relates to a group of compounds, wherein
- X2 represents Aib
- X3 represents Gin
- X14 represents Lys, wherein the -NH 2 side chain group is functionalized, particularly by (S)-4-Carboxy-4-henicosanoylamino-butyryl- and (S)-4-Carboxy-4- octadecanoylamino-butyryl-;
- X15 represents Asp
- X16 represents an amino acid residue selected from Lys and Glu
- X17 represents an amino acid residue selected from Arg and Glu
- X18 represents an amino acid residue selected from Ala and Arg
- X20 represents an amino acid residue selected from Gin and Lys,
- X21 represents an amino acid residue selected from Asp and Leu,
- X28 represents Ala
- X29 represents an amino acid residue selected from Gly and D-Ala
- X35 represents Ala
- X40 is absent.
- the invention provides a peptidic compound having the formula (I): R 1 - Z - R 2 (I),
- the invention provides a peptidic compound having the formula (I):
- the invention provides a peptidic compound having the formula (I):
- Z is a peptide moiety having the formula (lie)
- the invention provides a peptidic compound having the formula (I):
- peptidic compounds of the invention are the compounds of SEQ ID NO: 4-181 , as well as salts and solvates thereof.
- peptidic compounds of the invention are the compounds of SEQ ID NO: 4-181 and 196-223 as well as salts and solvates thereof.
- Further specific examples of peptidic compounds of the invention are the compounds of SEQ ID NO: 7, 1 1 -13, 22, 24-31 , 34-39, 44-48, 86, 97, 123-124, 130-159, 164, 166, 173- 176, as well as salts and solvates thereof.
- peptidic compounds of formula (I) are the compounds of SEQ ID NO: 7, 1 1 -13, 22, 24-31 , 34-39, 44-48, 86, 97, 123-124, 130-159, 164, 166, 173-176, 196-223, 226-229 as well as salts and solvates thereof.
- the compound of the invention is selected from the group consisting of SEQ ID NOs.: 25, 31 , 133, 148, 153, 155 and 158. In other embodiments, the compound of the invention is selected from the group consisting of SEQ ID NOs.: 209, 210, 21 1 , 212 and 213.
- the compound of the invention is represented by SEQ ID NO.: 97 (see Table 10).
- the compound of formula (I) is represented by SEQ ID NO.: 24 (see Table 10).
- the invention further provides a nucleic acid (which may be DNA or RNA) encoding said compound, an expression vector comprising such a nucleic acid, and a host cell containing such a nucleic acid or expression vector.
- a nucleic acid which may be DNA or RNA
- the present invention provides a composition comprising a compound of the invention in admixture with a carrier.
- the composition is a pharmaceutically acceptable composition and the carrier is a pharmaceutically acceptable carrier.
- the compound of the invention may be in the form of a salt, e.g. a pharmaceutically acceptable salt or a solvate, e.g. a hydrate.
- the present invention provides a composition for use in a method of medical treatment, particularly in human medicine.
- the nucleic acid or the expression vector may be used as therapeutic agents, e.g. in gene therapy.
- the compounds of formula (I) are suitable for therapeutic application without an additionally therapeutically effective agent. In other embodiments, however, the compounds are used together with at least one additional therapeutically active agent, as described in "combination therapy”.
- the compounds of formula (I) are particularly suitable for the treatment or prevention of diseases or disorders caused by, associated with and/or accompanied by disturbances in carbohydrate and/or lipid metabolism, e.g. for the treatment or prevention of hyperglycemia, type 2 diabetes, impaired glucose tolerance, type 1 diabetes, obesity and metabolic syndrome. Further, the compounds of the invention are particularly suitable for the treatment or prevention of degenerative diseases, particularly neurodegenerative diseases.
- the compounds described find use, inter alia, in preventing weight gain or promoting weight loss.
- preventing is meant inhibiting or reducing when compared to the absence of treatment, and is not necessarily meant to imply complete cessation of a disorder.
- the compounds of the invention may cause a decrease in food intake and/or increase in energy expenditure, resulting in the observed effect on body weight.
- the compounds of the invention may have a beneficial effect on circulating cholesterol levels, being capable of improving lipid levels, particularly LDL, as well as HDL levels (e.g. increasing HDL/LDL ratio).
- the compounds of the invention can be used for direct or indirect therapy of any condition caused or characterised by excess body weight, such as the treatment and/or prevention of obesity, morbid obesity, obesity linked inflammation, obesity linked gallbladder disease, obesity induced sleep apnea. They may also be used for treatment and prevention of the metabolic syndrome, diabetes, hypertension, atherogenic dyslipidemia, atherosclerosis, arteriosclerosis, coronary heart disease, or stroke. Their effects in these conditions may be as a result of or associated with their effect on body weight, or may be independent thereof.
- Preferred medical uses include delaying or preventing disease progression in type 2 diabetes, treating metabolic syndrome, treating obesity or preventing overweight, for decreasing food intake, increase energy expenditure, reducing body weight, delaying the progression from impaired glucose tolerance (IGT) to type 2 diabetes; delaying the progression from type 2 diabetes to insulin-requiring diabetes; regulating appetite; inducing satiety; preventing weight regain after successful weight loss; treating a disease or state related to overweight or obesity; treating bulimia; treating binge eating; treating atherosclerosis, hypertension, type 2 diabetes, IGT, dyslipidemia, coronary heart disease, hepatic steatosis, treatment of beta-blocker poisoning, use for inhibition of the motility of the gastrointestinal tract, useful in connection with investigations of the gastrointestinal tract using techniques such as X-ray, CT- and NMR-scanning.
- ITT impaired glucose tolerance
- Further preferred medical uses include treatment or prevention of degenerative disorders, particularly neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, ataxia, e.g spinocerebellar ataxia, Kennedy disease, myotonic dystrophy, Lewy body dementia, multi-systemic atrophy, amyotrophic lateral sclerosis, primary lateral sclerosis, spinal muscular atrophy, prion-associated diseases, e.g.
- neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, ataxia, e.g spinocerebellar ataxia, Kennedy disease, myotonic dystrophy, Lewy body dementia, multi-systemic atrophy, amyotrophic lateral sclerosis, primary lateral sclerosis, spinal muscular atrophy, prion-associated diseases, e.g.
- Creutzfeldt-Jacob disease multiple sclerosis, telangiectasia, Batten disease, corticobasal degeneration, subacute combined degeneration of spinal cord, Tabes dorsalis, Tay-Sachs disease, toxic encephalopathy, infantile Refsum disease, Refsum disease, neuroacanthocytosis, Niemann-Pick disease, Lyme disease, Machado-Joseph disease, Sandhoff disease, Shy-Drager syndrome, wobbly hedgehog syndrome, proteopathy, cerebral ⁇ -amyloid angiopathy, retinal ganglion cell degeneration in glaucoma, synucleinopathies, tauopathies, frontotemporal lobar degeneration (FTLD), dementia, cadasil syndrome, hereditary cerebral hemorrhage with amyloidosis, Alexander disease, seipinopathies, familial amyloidotic neuropathy, senile systemic amyloidosis, serpinopathies, AL (light chain) amyloido
- amino acid sequences of the present invention contain the conventional one letter and three letter codes for naturally occurring amino acids, as well as generally accepted three letter codes for other amino acids, such as Aib (a-aminoisobutyric acid), Orn (ornithin), Dab (2,4-diamino butyric acid), Dap (2,3-diamino propionic acid), Nle (norleucine), GABA ( ⁇ -aminobutyric acid) or Ahx ( ⁇ -aminohexanoic acid).
- Aib a-aminoisobutyric acid
- Orn ornithin
- Dab 2,4-diamino butyric acid
- Dap 2,3-diamino propionic acid
- Nle nodeucine
- GABA ⁇ -aminobutyric acid
- Ahx ⁇ -aminohexanoic acid
- native exendin-4" refers to native exendin-4 having the sequence HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2 (SEQ ID NO: 1 ).
- the invention provides peptidic compounds as defined above.
- the peptidic compounds of the present invention comprise a linear backbone of amino carboxylic acids linked by peptide, i.e. carboxamide bonds.
- the amino carboxylic acids are a-amino carboxylic acids and more preferably L-a-amino carboxylic acids, unless indicated otherwise.
- the peptidic compounds preferably comprise a backbone sequence of 39-40 amino carboxylic acids.
- the peptidic compounds may be functionalized (covalently linked) with chemical moieties at their N-terminus, C-terminus and at least one side chain.
- the N-terminus of the peptidic compound may be unmodified, i.e. an NH 2 group or a mono- or bisfunctionalized NH 2 group.
- the peptidic compounds may be unmodified, i.e. have a OH group or be modified, e.g. with functionalized OH group or an NH 2 group or a monofunctionalized or bisfunctionalized NH 2 group as described above (see R)
- alkyl refers to saturated, monovalent hydrocarbon radicals.
- the alkyl groups can be linear, i.e. straight-chain, or branched.
- alkanediyl or "alkylene”, as used herein, refers to saturated, divalent hydrocarbon radicals. As far as applicable, the preceding explanations regarding alkyl groups apply correspondingly to alkanediyl groups, which thus can likewise be linear and branched.
- cycloalkyl refers to a monovalent radical of a saturated or partially saturated hydrocarbon ring system, which can be monocyclic.
- cycloalkyl groups are cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl.
- heterocycloalkyl or “heterocyclyl”, as used herein unless otherwise indicated, refers to a cycloalkyl as defined above, in which 1 , 2 or 3 carbon atoms are replaced by nitrogen, oxygen or sulfur atoms, provided that the heterocycloalkyl system is stable and suitable as a subgroup for the desired purpose of the compound of the formula (I) such as use as a drug substance.
- the number of ring heteroatoms which can be present in a heterocyclic group is 1 , 2, 3 or 4, in another embodiment 1 , 2 or 3, in another embodiment 1 or 2, in another embodiment 2, in another embodiment 1 , wherein the ring heteroatoms can be identical or different.
- the heterocycloalkyl group can be attached by any ring carbon atom or saturated ring nitrogen atom.
- Halogen is fluorine, chlorine, bromine or iodine.
- the peptidic compounds of the present invention may have unmodified side chains or carry at least one modification at one of the side chains.
- sequence of the peptidic moiety (II) differs from native exendin-4 at least at one of those positions which are stated to allow variation.
- Amino acids within the peptide moiety (II) can be considered to be numbered consecutively from 0 to 40 in the conventional N-terminal to C-terminal direction.
- Reference to a "position" within peptidic moiety (II) should be constructed accordingly, as should reference to positions within native exendin-4 and other molecules.
- amino acid residues at position 14 and optionally at position 40, having a side chain with an -NH 2 group, e.g. Lys, Orn, Dab or Dap are conjugated to a functional group, e.g. acyl groups.
- a side chain with an -NH 2 group e.g. Lys, Orn, Dab or Dap
- a functional group e.g. acyl groups.
- one or more selected amino acids of the peptides in the present invention may carry a covalent attachment at their side chains. In some cases those attachments may be lipophilic. These lipophilic side chain attachments have the potential to reduce in vivo clearance of the peptides thus increasing their in vivo half-lives.
- the lipophilic attachment may consist of a lipophilic moiety which can be a branched or unbranched, aliphatic or unsaturated acyclic moiety and/or a cyclic moiety selected from one or several aliphatic or unsaturated homocycles or heterocycles, aromatic condensed or non-condensed homocycles or heterocycles, ether linkages, unsaturated bonds and substituents, e.g. hydroxy and/or carboxy groups.
- the lipophilic moiety may be attached to the peptide either by alkylation, reductive amination or by an amide bond or a sulfonamide bond in case of amino acids carrying an amino group at their side chain, an ester bond in case of amino acids carrying a hydroxy group at their side chain or thioether or thioester linkages in case of amino acids carrying a thiol group at their side chain or it may be attached to a modified side chain of an amino acid thus allowing the introduction of a lipophilic moiety by click-chemistry or Michael-addition.
- Nonlimiting examples of lipophilic moieties that can be attached to amino acid side chains include fatty acids, e.g. C 8 -3o fatty acids such as palmitic acid, myristic acid, stearic acid and oleic acid, and/or cyclic groups as described above or derivatives thereof. There might be one or several linkers between the amino acid of the peptide and the lipophilic attachment.
- Nonlimiting examples of those linkers are ⁇ -alanine, ⁇ -glutamic acid, ⁇ -aminobutyric acid and/or ⁇ -aminohexanoic acid or dipeptides, such as -Ala- -Ala and/or y-Glu-y-Glu in all their stereo-isomer forms (S and R enantiomers).
- a side chain attachment is palmitic acid which is covalently linked to the a-amino group of glutamic acid forming an amide bond.
- the ⁇ - carboxy group of this substituted glutamic acid can form an amide bond with the side chain amino group of a lysine within the peptide.
- the present invention provides a composition comprising a compound of the invention as described herein, or a salt or solvate thereof, in admixture with a carrier.
- the invention also provides the use of a compound of the present invention for use as a medicament, particularly for the treatment of a condition as described below.
- the invention also provides a composition wherein the composition is a pharmaceutically acceptable composition, and the carrier is a pharmaceutically acceptable carrier.
- Peptide synthesis The skilled person is aware of a variety of different methods to prepare peptides that are described in this invention. These methods include but are not limited to synthetic approaches and recombinant gene expression. Thus, one way of preparing these peptides is the synthesis in solution or on a solid support and subsequent isolation and purification. A different way of preparing the peptides is gene expression in a host cell in which a DNA sequence encoding the peptide has been introduced. Alternatively, the gene expression can be achieved without utilizing a cell system. The methods described above may also be combined in any way.
- a preferred way to prepare the peptides of the present invention is solid phase synthesis on a suitable resin.
- Solid phase peptide synthesis is a well established methodology (see for example: Stewart and Young, Solid Phase Peptide Synthesis, Pierce Chemical Co., Rockford, III., 1984; E. Atherton and R. C. Sheppard, Solid Phase Peptide Synthesis. A Practical Approach, Oxford-IRL Press, New York, 1989).
- Solid phase synthesis is initiated by attaching an N-terminally protected amino acid with its carboxy terminus to an inert solid support carrying a cleavable linker.
- This solid support can be any polymer that allows coupling of the initial amino acid , e.g.
- the polymer support must be stable under the conditions used to deprotect the a-amino group during the peptide synthesis.
- the a-amino protecting group of this amino acid is removed.
- the remaining protected amino acids are then coupled one after the other in the order represented by the peptide sequence using appropriate amide coupling reagents, for example BOP (benzotriazol-1 -yl-oxy-tris- (dimethylamino)-phosphonium), HBTU (2-(1 H-benzotriazol-1 -yl)-1 ,1 ,3,3-tetramethyl- uronium), HATU (O-(7-azabenztriazol-1 -yl-oxy-tris-(dimethylamino)-phosphonium) or DIC ( ⁇ , ⁇ '-diisopropylcarbodiimide) / HOBt (1 -hydroxybenzotriazol), wherein BOP, HBTU and HATU are used with tertiary amine bases.
- the liberated N-terminus can be functionalized with groups other than amino acids,
- peptide is cleaved from the resin. This can be achieved by using King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 36, 1990, 255- 266).
- the raw material can then be purified by chromatography, e.g. preparative RP- HPLC, if necessary.
- Potency As used herein, the term “potency” or “in vitro potency” is a measure for the ability of a compound to activate the receptors for GLP-1 or glucagon in a cell-based assay. Numerically, it is expressed as the "EC50 value", which is the effective concentration of a compound that induces a half maximal increase of response (e.g. formation of intracellular cAMP) in a dose-response experiment.
- the compounds of the invention are for use in medicine, particularly human medicine.
- the compounds of the invention are agonists for the receptors for GLP-1 and for glucagon (e.g. "dual agonists") and may provide an attractive option for targeting the metabolic syndrome by allowing simultaneous treatment of obesity and diabetes.
- Metabolic syndrome is a combination of medical disorders that, when occurring together, increase the risk of developing type 2 diabetes, as well as atherosclerotic vascular disease, e.g. heart disease and stroke.
- Defining medical parameters for the metabolic syndrome include diabetes mellitus, impaired glucose tolerance, raised fasting glucose, insulin resistance, urinary albumin secretion, central obesity, hypertension, elevated triglycerides, elevated LDL cholesterol and reduced HDL cholesterol.
- Obesity is a medical condition in which excess body fat has accumulated to the extent that it may have an adverse effect on health and life expectancy and due to its increasing prevalence in adults and children it has become one of the leading preventable causes of death in modern world. It increases the likelihood of various other diseases, including heart disease, type 2 diabetes, obstructive sleep apnoe, certain types of cancer, as well as osteoarthritis, and it is most commonly caused by a combination of excess food intake, reduced energy expenditure, as well as genetic susceptibility.
- Diabetes mellitus often simply called diabetes, is a group of metabolic diseases in which a person has high blood sugar levels, either because the body does not produce enough insulin, or because cells do not respond to the insulin that is produced.
- the most common types of diabetes are: (1 ) type 1 diabetes, where the body fails to produce insulin; (2) type 2 diabetes, where the body fails to use insulin properly, combined with an increase in insulin deficiency over time, and (3) gestational diabetes, where women develop diabetes due to their pregnancy. All forms of diabetes increase the risk of long- term complications, which typically develop after many years.
- macrovascular disease arising from atherosclerosis of larger blood vessels
- microvascular disease arising from damage of small blood vessels.
- macrovascular disease conditions are ischemic heart disease, myocardial infarction, stroke and peripheral vascular disease.
- microvascular diseases are diabetic retinopathy, diabetic nephropathy, as well as diabetic neuropathy.
- the receptors for GLP-1 and glucagon are both members of the family B of G-protein coupled receptors. They are highly related to each other and share not only a significant level of sequence identity, but have also similar mechanisms of ligand recognition and intracellular signaling pathways.
- the peptides GLP-1 and glucagon are homologous to each other, with similar length and regions of high sequence identity. Both are produced from a common precursor, preproglucagon, which is differentially processed in a tissue-specific manner to yield e.g. GLP-1 in intestinal endocrine cells and glucagon in alpha cells of pancreatic islets.
- the incretin hormone GLP-1 is secreted by intestinal endocrine cells in response to food and enhances meal-stimulated insulin secretion.
- targeting of the GLP-1 receptor with suitable agonists offers an attractive approach for treatment of metabolic disorders, including diabetes.
- the receptor for GLP-1 is distributed widely, being found mainly in pancreatic islets, brain, heart, kidney and the gastrointestinal tract. In the pancreas, GLP-1 acts in a strictly glucose-dependent manner by increasing secretion of insulin from beta cells. This glucose-dependency shows that activation of GLP-1 receptors is unlikely to cause hypoglycemia.
- GLP-1 has been shown to promote glucose sensitivity, neogenesis, proliferation, transcription of proinsulin and hypertrophy, as well as antiapoptosis.
- Other relevant effects of GLP-1 beyond the pancreas include delayed gastric emptying, increased satiety, decreased food intake, reduction of body weight, as well as neuroprotective and cardioprotective effects. In patients with type 2 diabetes, such extrapancreatic effects could be particularly important considering the high rates of comorbidities like obesity and cardiovascular disease.
- Glucagon is a 29-amino acid peptide hormone that is produced by pancreatic alpha cells and released into the bloodstream when circulating glucose is low.
- An important physiological role of glucagon is to stimulate glucose output in the liver, which is a process providing the major counterregulatory mechanism for insulin in maintaining glucose homeostasis in vivo.
- Glucagon receptors are however also expressed in extrahepatic tissues such as kidney, heart, adipocytes, lymphoblasts, brain, retina, adrenal gland and gastrointestinal tract, suggesting a broader physiological role beyond glucose homeostasis. Accordingly, recent studies have reported that glucagon has therapeutically positive effects on energy management, including stimulation of energy expenditure and thermogenesis, accompanied by reduction of food intake and body weight loss. Altogether, stimulation of glucagon receptors might be useful in the treatment of obesity and the metabolic syndrome.
- Oxyntomodulin is a 37-amino acid peptide hormone consisting of glucagon with an eight amino acids encompassing C-terminal extension. Like GLP-1 and glucagon, it is preformed in preproglucagon and cleaved and secreted in a tissue-specific manner by endocrinal cells of the small bowel. Oxyntomodulin is known to stimulate both, the receptors for GLP-1 and glucagon and is therefore the prototype of a dual agonist.
- the compounds of the invention may be used for treatment of glucose intolerance, insulin resistance, pre-diabetes, increased fasting glucose, type 2 diabetes, hypertension, dyslipidemia, arteriosclerosis, coronary heart disease, peripheral artery disease, stroke or any combination of these individual disease components.
- the compounds of the invention may be used for control of appetite, feeding and calory intake, increase of energy expenditure, prevention of weight gain, promotion of weight loss, reduction of excess body weight and altogether treatment of obesity, including morbid obesity.
- Further disease states and health conditions which could be treated with the compounds of the invention are obesity-linked inflammation, obesity-linked gallbladder disease and obesity-induced sleep apnea.
- the effects of the compounds of the invention may be mediated in whole or in part via an effect on body weight, or independent thereof.
- diseases to be treated are neurodegenerative diseases such as Alzheimer's disease or Parkinson's disease, or other degenerative diseases as described above.
- composition indicates a mixture containing ingredients that are compatible when mixed and which may be administered.
- a pharmaceutical composition may include one or more medicinal drugs. Additionally, the pharmaceutical composition may include carriers, buffers, acidifying agents, alkalizing agents, solvents, adjuvants, tonicity adjusters, emollients, expanders, preservatives, physical and chemical stabilizers e.g. surfactants, antioxidants and other components, whether these are considered active or inactive ingredients.
- Guidance for the skilled in preparing pharmaceutical compositions may be found, for example, in Remington: The Science and Practice of Pharmacy, (20th ed.) ed. A. R. Gennaro A. R., 2000, Lippencott Williams & Wilkins and in R.C.Rowe et al (Ed), Handbook of Pharmaceutical Excipients, PhP, May 2013 update.
- exendin-4 peptide derivatives of the present invention, or salts thereof, are administered in conjunction with an acceptable pharmaceutical carrier, diluent, or excipient as part of a pharmaceutical composition.
- a "pharmaceutically acceptable carrier” is a carrier which is physiologically acceptable (e.g. physiologically acceptable pH) while retaining the therapeutic properties of the substance with which it is administered.
- Standard acceptable pharmaceutical carriers and their formulations are known to one skilled in the art and described, for example, in Remington: The Science and Practice of Pharmacy, (20th ed.) ed. A. R. Gennaro A. R., 2000, Lippencott Williams & Wilkins and in R.C.Rowe et al (Ed), Handbook of Pharmaceutical excipients, PhP, May 2013 update.
- One exemplary pharmaceutically acceptable carrier is physiological saline solution.
- carriers are selected from the group of buffers (e.g. citrate/citric acid), acidifying agents (e.g. hydrochloric acid), alkalizing agents (e.g. sodium hydroxide), preservatives (e.g. phenol), co-solvents (e.g. polyethylene glycol 400), tonicity adjusters (e.g. mannitol), stabilizers (e.g. surfactant, antioxidants, amino acids).
- buffers e.g. citrate/citric acid
- acidifying agents e.g. hydrochloric acid
- alkalizing agents e.g. sodium hydroxide
- preservatives e.g. phenol
- co-solvents e.g. polyethylene glycol 400
- tonicity adjusters e.g. mannitol
- stabilizers e.g. surfactant, antioxidants, amino acids
- Concentrations used are in a range that is physiologically acceptable.
- Acceptable pharmaceutical carriers or diluents include those used in formulations suitable for oral, rectal, nasal or parenteral (including subcutaneous, intramuscular, intravenous, intradermal, and transdermal) administration.
- the compounds of the present invention will typically be administered parenterally.
- pharmaceutically acceptable salt means salts of the compounds of the invention which are safe and effective for use in mammals.
- Pharmaceutically acceptable salts may include, but are not limited to, acid addition salts and basic salts.
- acid addition salts include chloride, sulfate, hydrogen sulfate, (hydrogen) phosphate, acetate, citrate, tosylate or mesylate salts.
- basic salts include salts with inorganic cations, e.g. alkaline or alkaline earth metal salts such as sodium, potassium, magnesium or calcium salts and salts with organic cations such as amine salts. Further examples of pharmaceutically acceptable salts are described in Remington: The Science and Practice of Pharmacy, (20th ed.) ed.
- solvate means complexes of the compounds of the invention or salts thereof with solvent molecules, e.g. organic solvent molecules and/or water.
- solvent molecules e.g. organic solvent molecules and/or water.
- the exendin-4 derivative can be in monomeric or oligomeric form.
- terapéuticaally effective amount of a compound refers to a nontoxic but sufficient amount of the compound to provide the desired effect.
- the amount of a compound of the formula I necessary to achieve the desired biological effect depends on a number of factors, for example the specific compound chosen, the intended use, the mode of administration and the clinical condition of the patient.
- An appropriate "effective" amount in any individual case may be determined by one of ordinary skill in the art using routine experimentation
- the "therapeutically effective amount” of a compound of the formula (I) is about 0.01 to 50 mg/dose, preferably 0.1 to 10 mg/dose.
- compositions of the invention are those suitable for parenteral (for example subcutaneous, intramuscular, intradermal or intravenous), oral, rectal, topical and peroral (for example sublingual) administration, although the most suitable mode of administration depends in each individual case on the nature and severity of the condition to be treated and on the nature of the compound of formula I used in each case.
- Suitable pharmaceutical compositions may be in the form of separate units, for example capsules, tablets and powders in vials or ampoules, each of which contains a defined amount of the compound; as powders or granules; as solution or suspension in an aqueous or nonaqueous liquid; or as an oil-in-water or water-in-oil emulsion. It may be provided in single or multiple dose injectable form, for example in the form of a pen.
- the compositions may, as already mentioned, be prepared by any suitable pharmaceutical method which includes a step in which the active ingredient and the carrier (which may consist of one or more additional ingredients) are brought into contact.
- the pharmaceutical composition may be provided together with a device for application, for example together with a syringe, an injection pen or an autoinjector. Such devices may be provided separate from a pharmaceutical composition or prefilled with the pharmaceutical composition.
- a device for application for example together with a syringe, an injection pen or an autoinjector.
- Such devices may be provided separate from a pharmaceutical composition or prefilled with the pharmaceutical composition.
- Combination therapy The compounds of the present invention, dual agonists for the GLP-1 and glucagon receptors, can be widely combined with other pharmacologically active compounds, such as all drugs mentioned in the Rote Liste 2012 and/or the Rote Liste 2013, e.g.
- the active ingredient combinations can be used especially for a synergistic improvement in action. They can be applied either by separate administration of the active ingredients to the patient or in the form of combination products in which a plurality of active ingredients are present in one pharmaceutical preparation. When the active ingredients are administered by separate administration of the active ingredients, this can be done simultaneously or successively.
- active substances which are suitable for such combinations include in particular those which for example potentiate the therapeutic effect of one or more active substances with respect to one of the indications mentioned and/or which allow the dosage of one or more active substances to be reduced.
- Therapeutic agents which are suitable for combinations include, for example, antidiabetic agents such as: Insulin and Insulin derivatives, for example: Glargine / Lantus ® , 270 - 330U/ml_ of insulin glargine (EP 2387989 A ), 300U/ml_ of insulin glargine (EP 2387989 A), Glulisin / Apidra ® , Detemir / Levemir ® , Lispro / Humalog ® / Liprolog ® , Degludec / DegludecPlus, Aspart, basal insulin and analogues (e.g.LY-2605541 , LY2963016, NN1436), PEGylated insulin Lispro, Humulin ® , Linjeta, SuliXen ® , NN1045, Insulin plus Symlin, PE0139, fast-acting and short- acting insulins (e.g.
- Linjeta PH20, NN1218, HinsBet
- API-002 hydrogel
- oral, inhalable, transdermal and sublingual insulins e.g. Exubera ® , Nasulin ® , Afrezza, Tregopil, TPM 02, Capsulin, Oral-lyn ® , Cobalamin ® oral insulin, ORMD-0801 , NN1953, NN1954, NN1956, VIAtab, Oshadi oral insulin.
- insulin derivatives which are bonded to albumin or another protein by a bifunctional linker.
- GLP-1 , GLP-1 analogues and GLP-1 receptor agonists for example: Lixisenatide / AVE0010 / ZP10 / Lyxumia, Exenatide / Exendin-4 / Byetta / Bydureon / ITCA 650 / AC- 2993, Liraglutide / Victoza, Semaglutide, Taspoglutide, Syncria / Albiglutide, Dulaglutide, rExendin-4, CJC-1 134-PC, PB-1023, TTP-054, Langlenatide / HM-1 1260C, CM-3, GLP-1 Eligen, ORMD-0901 , NN-9924, NN-9926, NN-9927, Nodexen, Viador-GLP-1 , CVX-096, ZYOG-1 , ZYD-1 , GSK-2374697, DA-3091 , MAR-701 , MAR709, ZP-2929, ZP-3022
- DPP-4 inhibitors for example: Alogliptin / Nesina, Trajenta / Linagliptin / BI-1356 / Ondero / Trajenta / Tradjenta / Trayenta / Tradzenta, Saxagliptin / Onglyza, Sitagliptin / Januvia / Xelevia / Tesave / Janumet / Velmetia, Galvus / Vildagliptin, Anagliptin, Gemigliptin, Teneligliptin, Melogliptin, Trelagliptin, DA-1229, Omarigliptin / MK-3102, KM- 223, Evogliptin, ARI-2243, PBL-1427, Pinoxacin.
- SGLT2 inhibitors for example: Invokana / Canaglifozin, Forxiga / Dapagliflozin, Remoglifozin, Sergliflozin, Empagliflozin, Ipragliflozin, Tofogliflozin, Luseogliflozin, LX- 421 1 , Ertuglifozin / PF-04971729, RO-4998452, EGT-0001442, KGA-3235 / DSP-3235, LIK066, SBM-TFC-039,
- Biguanides e.g. Metformin, Buformin, Phenformin
- Thiazolidinediones e.g. Pioglitazone, Rivoglitazone, Rosiglitazone, Troglitazone
- dual PPAR agonists e.g. Aleglitazar, Muraglitazar, Tesaglitazar
- Sulfonylureas e.g. Tolbutamide, Glibenclamide, Glimepiride/Annaryl, Glipizide
- Meglitinides e.g. Nateglinide, Repaglinide, Mitiglinide
- Alpha-glucosidase inhibitors e.g.
- GPR1 19 agonists e.g. GSK-263A, PSN-821 , MBX-2982, APD-597, ZYG-19, DS-8500
- GPR40 agonists e.g. Fasiglifam / TAK-875, TUG-424, P-1736, JTT-851 , GW9508.
- Suitable combination partners are: Cycloset, inhibitors of 1 1 -beta-HSD (e.g. LY2523199, BMS770767, RG-4929, BMS816336, AZD-8329, HSD-016, BI-135585), activators of glucokinase (e.g. TTP-399, AMG-151 , TAK-329, GKM-001 ), inhibitors of DGAT (e.g. LCQ-908), inhibitors of protein tyrosinephosphatase 1 (e.g.
- Trodusquemine inhibitors of glucose-6-phosphatase, inhibitors of fructose-1 ,6-bisphosphatase, inhibitors of glycogen phosphorylase, inhibitors of phosphoenol pyruvate carboxykinase, inhibitors of glycogen synthase kinase, inhibitors of pyruvate dehydrokinase, alpha2-antagonists, CCR-2 antagonists, SGLT-1 inhibitors (e.g. LX-2761 ).
- One or more lipid lowering agents are also suitable as combination partners, such as for example: HMG-CoA-reductase inhibitors (e.g. Simvastatin, Atorvastatin), fibrates (e.g. Bezafibrate, Fenofibrate), nicotinic acid and the derivatives thereof (e.g. Niacin), PPAR- (alpha, gamma or alpha/gamma) agonists or modulators (e.g. Aleglitazar), PPAR-delta agonists, ACAT inhibitors (e.g. Avasimibe), cholesterol absorption inhibitors (e.g. Ezetimibe), Bile acid-binding substances (e.g.
- HMG-CoA-reductase inhibitors e.g. Simvastatin, Atorvastatin
- fibrates e.g. Bezafibrate, Fenofibrate
- nicotinic acid and the derivatives thereof e.g. Niacin
- HDL-raising compounds such as: CETP inhibitors (e.g. Torcetrapib, Anacetrapid, Dalcetrapid, Evacetrapid, JTT-302, DRL-17822, TA-8995) or ABC1 regulators.
- suitable combination partners are one or more active substances for the treatment of obesity, such as for example: Sibutramine, Tesofensine, Orlistat, antagonists of the cannabinoid-1 receptor, MCH-1 receptor antagonists, MC4 receptor agonists, NPY5 or NPY2 antagonists (e.g. Velneperit), beta-3-agonists, leptin or leptin mimetics, agonists of the 5HT2c receptor (e.g. Lorcaserin), or the combinations of bupropione/naltrexone, bupropione/zonisamide, bupropione/phentermine or pramlintide/metreleptin.
- Other suitable combination partners are:
- gastrointestinal peptides such as Peptide YY 3-36 (PYY3-36) or analogues thereof, pancreatic polypeptide (PP) or analogues thereof.
- Glucagon receptor agonists or antagonists GIP receptor agonists or antagonists, ghrelin antagonists or inverse agonists, Xenin and analogues thereof.
- angiotensin II receptor antagonists e.g. telmisartan, candesartan, valsartan, losartan, eprosartan, irbesartan, olmesartan, tasosartan, azilsartan
- ACE inhibitors e.g. telmisartan, candesartan, valsartan, losartan, eprosartan, irbesartan, olmesartan, tasosartan, azilsartan
- ACE inhibitors e.g. telmisartan, candesartan, valsartan, losartan, eprosartan, irbesartan, olmesartan, tasosartan, azilsartan
- ACE inhibitors e.g. telmisartan, candesartan, valsartan, losartan, eprosartan, irbe
- this invention relates to the use of a compound according to the invention or a physiologically acceptable salt thereof combined with at least one of the active substances described above as a combination partner, for preparing a medicament which is suitable for the treatment or prevention of diseases or conditions which can be affected by binding to the receptors for GLP-1 and glucagon and by modulating their activity.
- This is preferably a disease in the context of the metabolic syndrome, particularly one of the diseases or conditions listed above, most particularly diabetes or obesity or complications thereof.
- the use of the compounds according to the invention, or a physiologically acceptable salt thereof, in combination with one or more active substances may take place simultaneously, separately or sequentially.
- the use of the compound according to the invention, or a physiologically acceptable salt thereof, in combination with another active substance may take place simultaneously or at staggered times, but particularly within a short space of time. If they are administered simultaneously, the two active substances are given to the patient together; if they are used at staggered times, the two active substances are given to the patient within a period of less than or equal to 12 hours, but particularly less than or equal to 6 hours.
- this invention relates to a medicament which comprises a compound according to the invention or a physiologically acceptable salt of such a compound and at least one of the active substances described above as combination partners, optionally together with one or more inert carriers and/or diluents.
- the compound according to the invention, or physiologically acceptable salt or solvate thereof, and the additional active substance to be combined therewith may both be present together in one formulation, for example a tablet or capsule, or separately in two identical or different formulations, for example as so-called kit-of-parts.
- FIGURES Figure 1 Effect of s.c. administration of compound SEQ ID NO: 97 and comparators on gastric emptying and intestinal passage in female NMRI-mice. Data are mean+SEM. " * " indicates statistical significance versus vehicle, "#” versus comparators, respectively.
- Figure 2 Effect of SEQ ID NO: 97, 0.1 and 0.01 mg/kg, s.c, on 22-hours food intake in female NMRI-mice. Data are mean+SEM. * p ⁇ 0.05.
- Figure 3 Acute effect of s.c. administration of compound SEQ ID NO: 97 on blood glucose in female diet-induced obese C57BL/6NCrl mice (9 months on high-fat diet). Data are mean+SEM. * p ⁇ 0.05.
- Figure 4. Acute effect of s.c. administration of compound SEQ ID NO: 97 on blood glucose in female leptin-receptor deficient diabetic db/db mice. Data are mean+SEM. * p ⁇ 0.05.
- FIG. 1 Body weight development during 3 weeks of subcutaneous treatment with SEQ ID NO: 24 in male high-fat fed C57BL/6N Crl mice. Data are mean+SEM.
- Figure 8 Relative body weight change in % during 3 weeks of subcutaneous treatment with SEQ ID NO: 24 in male high-fat fed C57BL/6N Crl mice. Data are mean+SEM.
- Figure 10 Acute effect of s.c. administration of compound SEQ ID NO: 24 on blood glucose in female leptin-receptor deficient diabetic db/db mice. Data are mean+SEM.
- Rink-Amide resins (4-(2',4'-Dimethoxyphenyl-Fmoc-aminomethyl)- phenoxyacetamido-norleucylaminomethyl resin, Merck Biosciences; 4-[(2,4- Dimethoxyphenyl)(Fmoc-amino)methyl]phenoxy acetamido methyl resin, Agilent Technologies) were used for the synthesis of peptide amides with loadings in the range of 0.3-0.4 mmol/g. Suppliers were Merck Biosciences and Agilent Technologies.
- the solid phase peptide syntheses were performed on a Prelude Peptide Synthesizer (Protein Technologies Inc) using standard Fmoc chemistry and HBTU/DIPEA activation. DMF was used as the solvent. Deprotection: 20% piperidine/DMF for 2 x 2.5 min. Washes: 7 x DMF. Coupling 2:5:10 200 mM AA / 500 mM HBTU / 2M DIPEA in DMF 2 x for 20 min. Washes: 5 x DMF.
- the crude peptides were purified either on an Akta Purifier System or on a Jasco semiprep HPLC System. Preparative RP-C18-HPLC columns of different sizes and with different flow rates were used depending on the amount of crude peptide to be purified. Acetonitrile + 0.1 % TFA (B) and water + 0.1 % TFA (A) were employed as eluents. Product-containing fractions were collected and lyophilized to obtain the purified product.
- the target concentration was 1 .0 mg/mL pure compound. Therefore, solutions from solid samples were prepared in different buffer systems with a concentration of 1 .0 mg/mL compound based on the previously determined content. HPLC-UV was performed after 2 h of gentle agitation from the supernatant, which was obtained by 20 min of centrifugation at 4000 rpm.
- solubility was then determined by comparison with the UV peak areas obtained with a stock solution of the peptide at a concentration of 2 mg/mL in pure water or a variable amount of acetonitrile (optical control that all of the compound was dissolved). This analysis also served as starting point (tO) for the stability testing.
- % remaining peptide [(peak area peptide t7) x 100]/peak area peptide to.
- % precipitate 100-([% remaining peptide] + [ % soluble degradation products])
- This precipitate includes non-soluble degradation products, polymers and/or fibrils, which have been removed from analysis by centrifugation.
- Agonism of compounds for the two receptors was determined by functional assays measuring cAMP response of HEK-293 cell lines stably expressing human GLP-1 or glucagon receptor.
- cAMP content of cells was determined using a kit from Cisbio Corp. (cat. no. 62AM4PEC) based on HTRF (Homogeneous Time Resolved Fluorescence). For preparation, cells were split into T175 culture flasks and grown overnight to near confluency in medium (DMEM / 10% FBS). Medium was then removed and cells washed with PBS lacking calcium and magnesium, followed by proteinase treatment with accutase (Sigma-Aldrich cat. no. A6964).
- Detached cells were washed and resuspended in assay buffer (1 x HBSS; 20 mM HEPES, 0.1 % BSA, 2 mM IBMX) and cellular density determined. They were then diluted to 400000 cells/ml and 25 ⁇ -aliquots dispensed into the wells of 96-well plates. For measurement, 25 ⁇ of test compound in assay buffer was added to the wells, followed by incubation for 30 minutes at room temperature. After addition of HTRF reagents diluted in lysis buffer (kit components), the plates were incubated for 1 hr, followed by measurement of the fluorescence ratio at 665 / 620 nm. In vitro potency of agonists was quantified by determining the concentrations that caused 50% activation of maximal response (EC50).
- Bioanalytical screening method for quantification of peptide GLP1 -GCG receptor agonists in mice Mice were dosed 1 mg/kg subcutaneously (s.c). The mice were sacrificed and blood samples were collected after 0.25, 1 , 2, 4, 8, 16 and 24 hours post application. Plasma samples were analysed after protein precipitation via liquid chromatography mass spectrometry (LC/MS). PK parameters and half-life were calculated using WinonLin Version 5.2.1 (non-compartment model).
- mice Female NMRI-mice of a body weight between 20 and 30 g were used. Mice were adapted to housing conditions for at least one week.
- mice were overnight fasted, while water remained available all the time. On the study day, mice were weighed, single-caged and allowed access to 500 mg of feed for 30 min, while water was removed. At the end of the 30 min feeding period, remaining feed was removed and weighed. 60 min later, a coloured, non-caloric bolus was instilled via gavage into the stomach. The test compound / reference compound or its vehicle in the control group was administered subcutaneously, to reach Cmax when coloured bolus was administered. After another 30 min, the animals were sacrificed and the stomach and the small intestine prepared. The filled stomach was weighed, emptied, carefully cleaned and dried and reweighed. The calculated stomach content indicated the degree of gastric emptying.
- the small intestine was straightened without force and measured in length. Then the distance from the gastric beginning of the gut to the tip of the farthest travelled intestinal content bolus was measured. The intestinal passage was given as relation in percent of the latter distance and the total length of the small intestine.
- mice Female NMRI-mice of a body weight between 20 and 30 g were used. Mice were adapted to housing conditions for at least one week and for at least one day single-caged in the assessment equipment, when basal data were recorded simultaneously. On the study day, test product was administered subcutaneously close to the lights-off phase (12 h lights off) and assessment of feed consumption was directly started afterwards. Assessment included continued monitoring (every 30 min) over 22 hours. Repetition of this procedure over several days was possible. Restriction of assessment to 22 hours was for practical reasons to allow for reweighing of animals, refilling of feed and water and drug administration between procedures. Results could be assessed as cumulated data over 22 hours or differentiated to 30 min intervals.
- mice were subcutaneously (s.c.) injected with vehicle solution and weighed for 3 days to acclimate them to the procedures.
- Acute effect on blood glucose in fed DIP mice initial blood samples were taken just before first administration (s.c.) of vehicle (phosphate buffer solution) or the exendin-4 derivatives at doses of 3, 10, and 100 pg/kg (dissolved in phosphate puffer), respectively. The volume of administration was 5 mL/kg. The animals had access to water and their corresponding diet during the experiment, food consumption was determined at all time points of blood sampling.
- vehicle phosphate buffer solution
- exendin-4 derivatives dissolved in phosphate puffer
- Comparable data can also be obtained when using male mice.
- mice Female BKS.Cg-m +/+ Leprdb/J (db/db) and BKS.Cg-m +/+ Leprdb/+ (lean control) mice were obtained from Charles River Laboratories, Germany, at an age of 9 - 10 weeks. The animals were housed in groups in a specific pathogen-free barrier facility on a 12-h light/dark cycle with free access to water and rodent-standard chow.
- HbA1 c is a glycosylated form of haemoglobin whose level reflects the average level of glucose to which the erythrocyte has been exposed during its lifetime. In mice, HbA1 c is a relevant biomarker for the average blood glucose level during the preceding 4 weeks (erythrocyte life span in mouse ⁇ 47 days).
- Comparable data can also be obtained when using male mice.
- the ivDde- group was cleaved from the peptide on resin according to a modified literature procedure (S.R. Chhabra et al., Tetrahedron Lett. 39, (1998), 1603), using 4% hydrazine hydrate in DMF. Hereafter Palm-Glu(YOSu)-OtBu was coupled to the liberated amino-group.
- the peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 36, 1990, 255-266).
- the crude product was purified via preparative HPLC on a Waters column (Sunfire, Prep C18) using an acetonitrile/water gradient (both buffers with 0.1 % TFA).
- the solid phase synthesis was carried out on Novabiochem Rink-Amide resin (4-(2',4'- Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetamido-norleucylaminomethyl resin), 100-200 mesh, loading of 0.34 mmol/g.
- the Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. In position 14 Fmoc-Lys(ivDde)-OH and in position 1 Boc- His(Boc)-OH were used in the solid phase synthesis protocol.
- the ivDde-group was cleaved from the peptide on resin according to a modified literature procedure (S.R.
- the crude product was purified via preparative HPLC on a Waters column (Sunfire, Prep C18) using an acetonitrile/water gradient (both buffers with 0.1 % TFA). Finally, the molecular mass of the purified peptide was confirmed by LC-MS.
- the solid phase synthesis was carried out on Agilent Technologies Rink-Amide resin (4- [(2,4-Dimethoxyphenyl)(Fmoc-amino)methyl]phenoxyacetomido methyl resin) , 75-150 ⁇ , loading of 0.38 mmol/g.
- the Fmoc-synthesis strategy was applied with HBTU/DIPEA- activation.
- Fmoc-Lys(ivDde)-OH and in position 1 Boc-His(Boc)-OH were used in the solid phase synthesis protocol.
- the ivDde-group was cleaved from the peptide on resin according to a modified literature procedure (S.R. Chhabra et al., Tetrahedron Lett.
- the solid phase synthesis was carried out on Agilent Technologies CI-Trt-CI resin (2,a- Dichlorobenzhydryl-polystyrene crosslinked with divinylbenzene) , 75-150 ⁇ , loading of 1 .4 mmol/g.
- Fmoc-Ser-OAIIyl was synthesized according to literature (S. Ficht, R.J.Payne, R.T. Guy, C.-H. Wong, Chem. Eur. J. 14, 2008, 3620-3629) and coupled via the side chain hydroxyl function onto CI-Trt-CI-resin using DIPEA in dichloromethane.
- Fmoc- synthesis strategy was applied with HBTU/DIPEA-activation.
- Fmoc- Lys(ivDde)-OH and in position 1 Boc-His(Boc)-OH were used in the solid phase synthesis protocol.
- the ivDde-group was cleaved from the peptide on resin according to a modified literature procedure (S.R. Chhabra et al., Tetrahedron Lett. 39, (1998), 1603), using 4% hydrazine hydrate in DMF.
- Fmoc-Glu-OtBu was coupled to the liberated amino- group using HBTU/DIPEA for activation followed by the removal of the Fmoc-group with 20% piperidine in DMF.
- Palmitic acid was coupled onto the resulting amino group after activation with HBTU/DIPEA.
- the allyl-ester group was removed employing the procedure described in literature (S. Ficht, R.J.Payne, R.T. Guy, C.-H. Wong, Chem. Eur. J. 14, 2008, 3620-3629) followed by activation of the C-terminus with HOBt/DIC in DMF and addition of n-propylamin.
- the peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 36, 1990, 255-266).
- the crude product was purified via preparative HPLC on a Waters column (Sunfire, Prep C18) using an acetonitrile/water gradient (both buffers with 0.1 % TFA).
- Table 3 List of peptides that can be synthesized in an analogous way.
- Potencies of peptidic compounds at the GLP-1 and glucagon receptors were determined by exposing cells expressing human glucagon receptor (hGlucagon R) or human GLP-1 receptor (hGLP-1 R) to the listed compounds at increasing concentrations and measuring the formed cAMP as described in Methods.
- Example 1 1 Effect of SEQ ID NO: 97 on gastric emptying and intestinal passage in female NMRI-mice
- SEQ ID NO: 97 reduced intestinal passage by 67% (versus 44% and 34%, respectively) and increased gastric content by 90% (versus 19% and 21 %, respectively) (p ⁇ 0.0001 versus vehicle control and versus comparators, 1 -W-ANOVA, followed by Newman-Keul's post-hoc test) (Fig. 1 a, b).
- SEQ ID NO: 97 demonstrated a dose-dependent reduction of feed intake, reaching 23% (p ⁇ 0.0001 ) and 66% (p ⁇ 0.0001 , 2-W-ANOVA-RM, post hoc Dunnett's Test) at the end of the study, respectively (Fig. 2).
- Example 13 Acute and subchronic effects of SEQ ID NO: 97 after subcutaneous treatment on blood glucose and body weight in female diet-induced obese (DIP) C57BL/6NCrl mice (10 months on high fat diet) 1 ) Glucose profile
- mice After blood sampling to determine the blood glucose baseline level, fed diet-induced obese female C57BL/6NCrl mice were administered 3, 10 or 100 pg/kg of SEQ ID NQ: 97 or phosphate buffered solution (vehicle control on standard or high-fat diet) subcutaneously. At predefined time points, more blood samples were taken to measure blood glucose and generate the blood glucose profile over 24 h.
- SEQ ID NO: 97 demonstrated a significant dose-dependent decrease in blood glucose compared to DIO control mice, lasting at least 8 h in the low and medium dose group and > 24 h in the high dose group (p ⁇ 0.0001 , 2-W-ANOVA-RM, post hoc Dunnett's Test; Fig. 3, mean ⁇ SEM).
- Example 14 Acute and subchronic effects of SEQ ID NO: 97 after subcutaneous treatment on blood glucose and HbA1 c in female leptin-receptor deficient diabetic db/db mice
- mice After blood sampling to determine the blood glucose baseline level, fed diabetic female db/db mice were administered 3, 10 or 100 pg/kg of SEQ ID NO: 97 or phosphate buffered solution (vehicle-treated db/db control) subcutaneously. At predefined time points, more blood samples were taken to measure blood glucose and generate the blood glucose profile over 24 h.
- SEQ ID NO: 97 demonstrated a significant decrease in blood glucose compared to db/db control mice, lasting up to 8 h in the low and medium dose group and > 24 h in the high dose group (p ⁇ 0.0001 for lean control mice; p ⁇ 0.01 1 - 8 h after treatment for low and medium dose, p ⁇ 0.0002 4 - 24 h for high dose; 2-W-ANOVA-RM, post hoc Dunnett's Test; Fig. 4, mean ⁇ SEM). 2. Blood glucose & HbA1 c Female diabetic mice were treated for 4 weeks once daily subcutaneously with 3, 10 or 100 pg/kg SEQ ID NO: 97 or vehicle.
- Blood glucose and HbA1 c were determined before start of treatment and at the end of the study after 4 weeks of treatment. Before treatment started, no significant differences in blood glucose levels could be detected between db/db groups, only the lean control animals had significant lower glucose levels. During the 4 weeks of treatment, glucose levels increased in the vehicle- treated db/db control group, indicating a worsening of the diabetic situation. All SEQ ID NO: 97-treated animals displayed a significant lower blood glucose level than the db control mice at the end of the study (p ⁇ 0.0001 for lean control mice; p ⁇ 0.01 in SEQ ID NO: 97 groups; 2-W-ANOVA-RM, post hoc Dunnett's Test; Fig. 5, mean ⁇ SEM).
- HbA1 c Corresponding to blood glucose, at the beginning of the study, no significant differences in HbA1 c levels could be detected between db/db groups, only the lean control animals had significant lower levels.
- HbA1 c increased in the vehicle-treated db/db control group, corresponding to the increasing blood glucose levels.
- Animals treated with high dose SEQ ID NO: 97 displayed a significant lower HbA1 c level than the db control mice at the end of the study (p ⁇ 0.0001 , 2-W-ANOVA-RM, post hoc Dunnett's Test; Fig. 6, mean ⁇ SEM).
- inventive exendin-4 derivatives comprising a functionalized amino acid in position 14 has been tested versus corresponding compounds having in this position 14 a 'non-functionalized' amino acid.
- the reference pair compounds and the corresponding EC50 values at GLP-1 and Glucagon receptors are given in Table 8. As shown, the inventive exendin-4 derivatives show a superior activity in comparison to the compounds with a 'non-functionalized' amino acid in position 14. Table 8. Comparison of exendin-4 derivatives comprising a non-functionalized amino acid in position 14 vs. exendin-4 derivatives comprising a functionalized amino acid in position 14.
- Example 16 Acute and chronic effects of SEQ ID NO: 24 after subcutaneous treatment on body weight in male diet-induced obese (DIP) C57BL/6NCrl mice Body weight
- mice Male obese C57BL/6NCrl mice were treated for 3 weeks twice daily subcutaneously with 0.5, 1 .5, 5 or 15 pg/kg SEQ ID NQ: 24 or vehicle. Body weight was recorded daily, and body fat content was determined before the start and after 3 weeks of treatment. Treatment with SEQ ID NO: 24 reduced body weight significantly at dosages of 1 .5, 5 and 15 pg/kg ( * : p ⁇ 0.05, 1 -W-ANOVA, post hoc Dunnett's Test, Table 9, Fig. 7 and 8). These changes resulted from a decrease in body fat, as shown by the absolute changes in body fat content (Table 9, Fig. 9).
- Example 17 Acute and chronic effects of SEQ ID NO: 24 after subcutaneous treatment on blood glucose and HbA1 c in female leptin-receptor deficient diabetic db/db mice
- Glucose profile After blood sampling to determine the blood glucose baseline level, fed diabetic female db/db mice were administered 50 pg/kg of SEQ ID NO: 24 or phosphate buffered solution (vehicle-treated db/db control) twice daily subcutaneously. At predefined time points, more blood samples were taken to measure blood glucose and generate the blood glucose profile over 24 h.
- SEQ ID NO: 24 demonstrated a significant decrease in blood glucose compared to db/db control mice, lasting > 24 h (p ⁇ 0.001 ; 2-W-ANOVA-RM, post hoc Dunnett's Test; Fig. 10, mean ⁇ SEM). 2. Blood glucose & HbA1 c
- mice Female diabetic mice were treated for 4 weeks subcutaneously with 50 pg/kg SEQ ID NO: 24 or vehicle twice daily. Blood glucose and HbA1 c were determined before start of treatment and at the end of the study after 4 weeks of treatment. Before treatment started, no significant differences in blood glucose levels could be detected between db/db groups, only the lean control animals had significant lower glucose levels. During the 4 weeks of treatment, glucose levels increased in the vehicle- treated db/db control group, indicating a worsening of the diabetic situation.
- the SEQ ID NO: 24-treated animals displayed a significant lower blood glucose level than the db control mice at the end of the study (p ⁇ 0.01 in SEQ ID NO: 24 group; 2-W-ANOVA-RM, post hoc Dunnett's Test; Fig. 1 1 , mean ⁇ SEM).
- HbA1 c Corresponding to blood glucose, at the beginning of the study, no significant differences in HbA1 c levels could be detected between db/db groups, only the lean control animals had significant lower levels.
- HbA1 c increased in the vehicle-treated db/db control group, corresponding to the increasing blood glucose levels.
- Animals treated with SEQ ID NO: 24 displayed a significantly lower HbA1 c level than the db control mice at the end of the study (p ⁇ 0.001 , 2-W-ANOVA-RM, post hoc Dunnett's Test; Fig. 12, mean ⁇ SEM).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Endocrinology (AREA)
- Gastroenterology & Hepatology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Diabetes (AREA)
- Epidemiology (AREA)
- Obesity (AREA)
- Immunology (AREA)
- Genetics & Genomics (AREA)
- Hematology (AREA)
- Biochemistry (AREA)
- Toxicology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Emergency Medicine (AREA)
- Addiction (AREA)
- Vascular Medicine (AREA)
- Neurosurgery (AREA)
- Urology & Nephrology (AREA)
- Neurology (AREA)
- Psychiatry (AREA)
- Biomedical Technology (AREA)
- Child & Adolescent Psychology (AREA)
Priority Applications (28)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| UAA201504488A UA116217C2 (uk) | 2012-10-09 | 2013-08-10 | Пептидна сполука як подвійний агоніст рецепторів glp1-1 та глюкагону |
| HRP20171726TT HRP20171726T1 (hr) | 2012-10-09 | 2013-10-08 | Derivati eksendin-4 kao dvostruki glp1/glukagon agonisti |
| JP2015535054A JP6373270B2 (ja) | 2012-10-09 | 2013-10-08 | 二重glp1/グルカゴンアゴニストとしてのエキセンディン−4誘導体 |
| MA38066A MA38066B1 (fr) | 2012-10-09 | 2013-10-08 | Dérivés d'exendine-4 utilisés en tant qu'agonistes doubles de glp1/glucagon |
| SI201330838T SI2906595T1 (sl) | 2012-10-09 | 2013-10-08 | Derivati eksendina-4 kot dvojni agonisti GLP1/Glukagona |
| NO13773767A NO2906595T3 (enExample) | 2012-10-09 | 2013-10-08 | |
| LTEP13773767.2T LT2906595T (lt) | 2012-10-09 | 2013-10-08 | Eksendino-4 dariniai kaip dvejopo poveikio glp1/gliukagono agonistai |
| KR1020157010088A KR102179751B1 (ko) | 2012-10-09 | 2013-10-08 | 이중 glp1/글루카곤 작용제로서의 엑센딘-4 유도체 |
| EA201590715A EA030023B1 (ru) | 2012-10-09 | 2013-10-08 | Производные эксендина-4 как двойные агонисты glp1/глюкагона |
| CN201380064117.XA CN104837864B (zh) | 2012-10-09 | 2013-10-08 | 作为glp1/胰高血糖素双重激动剂的毒蜥外泌肽-4衍生物 |
| ES13773767.2T ES2647418T3 (es) | 2012-10-09 | 2013-10-08 | Derivados de exendina-4 como agonistas dobles de GLP1/glucagón |
| DK13773767.2T DK2906595T3 (da) | 2012-10-09 | 2013-10-08 | Exendin-4-derivater som glp1/glucagon-dobbeltagonister |
| CA2887272A CA2887272C (en) | 2012-10-09 | 2013-10-08 | Exendin-4 derivatives as dual glp1/glucagon agonists |
| BR112015007685A BR112015007685A2 (pt) | 2012-10-09 | 2013-10-08 | derivados de exendina-4 como agonistas duplos de glp1/glucagon |
| AU2013328802A AU2013328802B2 (en) | 2012-10-09 | 2013-10-08 | Exendin-4 derivatives as dual GLP1/Glucagon agonists |
| NZ706898A NZ706898A (en) | 2012-10-09 | 2013-10-08 | Exendin-4 derivatives as dual glp1/glucagon agonists |
| HK15110559.5A HK1209766B (en) | 2012-10-09 | 2013-10-08 | Exendin-4 derivatives as dual glp1/glucagon agonists |
| RS20171151A RS56515B1 (sr) | 2012-10-09 | 2013-10-08 | Eksendin-4 derivati kao dvojni glp1/glukagon agonisti |
| EP13773767.2A EP2906595B1 (en) | 2012-10-09 | 2013-10-08 | Exendin-4 derivatives as dual glp1/glucagon agonists |
| MX2015004531A MX359533B (es) | 2012-10-09 | 2013-10-08 | Derivados de exendina-4 como agonistas duales de glp1/glucagon. |
| PL13773767T PL2906595T3 (pl) | 2012-10-09 | 2013-10-08 | Pochodne Eksendyny-4 jako podwójni agoniści GLP-1/ glukagonu |
| SG11201501770WA SG11201501770WA (en) | 2012-10-09 | 2013-10-08 | Exendin-4 derivatives as dual glp1/glucagon agonists |
| IL237641A IL237641B (en) | 2012-10-09 | 2015-03-09 | Exendin-4 derivatives as dual glucagon/glp1 agonists |
| ZA2015/01694A ZA201501694B (en) | 2012-10-09 | 2015-03-11 | Exendin-4 derivatives as dual glp1/glucagon agonists |
| TNP2015000101A TN2015000101A1 (en) | 2012-10-09 | 2015-03-17 | Exendin-4 derivatives as dual glp1/glucagon agonists |
| PH12015500688A PH12015500688A1 (en) | 2012-10-09 | 2015-03-26 | Exendin-4 derivatives as dual glp1/glucagon agonists |
| CR20150200A CR20150200A (es) | 2012-10-09 | 2015-04-17 | Derivados de exendina-4 como agonistas duales de glp1/glucacón |
| CY20171101194T CY1119987T1 (el) | 2012-10-09 | 2017-11-14 | Παραγωγα εξενδινης-4 ως διττοι αγωνιστες glp1/γλυκαγονης |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP12306232.5 | 2012-10-09 | ||
| EP12306232 | 2012-10-09 | ||
| EP13305222 | 2013-02-27 | ||
| EP13305222.5 | 2013-02-27 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2014056872A1 true WO2014056872A1 (en) | 2014-04-17 |
Family
ID=49304983
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2013/070882 Ceased WO2014056872A1 (en) | 2012-10-09 | 2013-10-08 | Exendin-4 derivatives as dual glp1/glucagon agonists |
Country Status (38)
Cited By (34)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2015086733A1 (en) * | 2013-12-13 | 2015-06-18 | Sanofi | Dual glp-1/glucagon receptor agonists |
| WO2016193371A1 (en) | 2015-06-05 | 2016-12-08 | Sanofi | Prodrugs comprising an glp-1/glucagon dual agonist linker hyaluronic acid conjugate |
| WO2016198628A1 (en) | 2015-06-12 | 2016-12-15 | Sanofi | Non-acylated exendin-4 derivatives as dual glp-1/glucagon receptor agonists |
| WO2016198624A1 (en) | 2015-06-12 | 2016-12-15 | Sanofi | Exendin-4 derivatives as trigonal glp-1/glucagon/gip receptor agonists |
| US9670261B2 (en) | 2012-12-21 | 2017-06-06 | Sanofi | Functionalized exendin-4 derivatives |
| US9750788B2 (en) | 2013-12-13 | 2017-09-05 | Sanofi | Non-acylated exendin-4 peptide analogues |
| US9751926B2 (en) | 2013-12-13 | 2017-09-05 | Sanofi | Dual GLP-1/GIP receptor agonists |
| US9758561B2 (en) | 2014-04-07 | 2017-09-12 | Sanofi | Dual GLP-1/glucagon receptor agonists derived from exendin-4 |
| US9771406B2 (en) | 2014-04-07 | 2017-09-26 | Sanofi | Peptidic dual GLP-1/glucagon receptor agonists derived from exendin-4 |
| US9775904B2 (en) | 2014-04-07 | 2017-10-03 | Sanofi | Exendin-4 derivatives as peptidic dual GLP-1/glucagon receptor agonists |
| US9789165B2 (en) | 2013-12-13 | 2017-10-17 | Sanofi | Exendin-4 peptide analogues as dual GLP-1/GIP receptor agonists |
| US9932381B2 (en) | 2014-06-18 | 2018-04-03 | Sanofi | Exendin-4 derivatives as selective glucagon receptor agonists |
| WO2018069295A1 (en) | 2016-10-10 | 2018-04-19 | Sanofi | Method of preparing peptides comprising a lipophilically modified lysine side chain |
| US9982029B2 (en) | 2015-07-10 | 2018-05-29 | Sanofi | Exendin-4 derivatives as selective peptidic dual GLP-1/glucagon receptor agonists |
| WO2018100174A1 (en) | 2016-12-02 | 2018-06-07 | Sanofi | Conjugates comprising an glp-1/glucagon dual agonist, a linker and hyaluronic acid |
| WO2018100135A1 (en) | 2016-12-02 | 2018-06-07 | Sanofi | New compounds as peptidic glp1/glucagon/gip receptor agonists |
| WO2018100134A1 (en) | 2016-12-02 | 2018-06-07 | Sanofi | New compounds as peptidic trigonal glp1/glucagon/gip receptor agonists |
| WO2018153849A1 (en) | 2017-02-21 | 2018-08-30 | Sanofi | Azetidine compounds as gpr119 modulators for the treatment of diabetes, obesity, dyslipidemia and related disorders |
| WO2019030268A1 (en) | 2017-08-09 | 2019-02-14 | Sanofi | GLP-1 / GLUCAGON RECEPTOR AGONISTS FOR THE TREATMENT OF HEPATIC STEATOSIS AND STÉATOHÉPATITE |
| WO2019122109A1 (en) | 2017-12-21 | 2019-06-27 | Sanofi | Liquid pharmaceutical composition |
| WO2019229225A1 (en) | 2018-05-30 | 2019-12-05 | Sanofi | Conjugates comprising an glp-1/glucagon/gip triple receptor agonist, a linker and hyaluronic acid |
| US10758592B2 (en) | 2012-10-09 | 2020-09-01 | Sanofi | Exendin-4 derivatives as dual GLP1/glucagon agonists |
| US11028123B2 (en) | 2018-04-10 | 2021-06-08 | Sanofi-Aventis Deutschland Gmbh | Capping of unprotected amino groups during peptide synthesis |
| WO2021175974A1 (en) | 2020-03-06 | 2021-09-10 | Sanofi | Peptides as selective gip receptor agonists |
| WO2021214220A1 (en) | 2020-04-24 | 2021-10-28 | Boehringer Ingelheim International Gmbh | Glucagon analogues as long-acting glp-1/glucagon receptor agonists in the treatment of fatty liver disease and steatohepatitis |
| US11242373B2 (en) | 2018-04-05 | 2022-02-08 | Sun Pharmaceutical Industries Limited | GLP-1 analogues |
| WO2022133148A1 (en) * | 2020-12-17 | 2022-06-23 | Intarcia Therapeutics, Inc. | Long acting glucagon like polypeptide-1 (glp-1) receptor agonists and methods of use |
| US11560402B2 (en) | 2018-04-10 | 2023-01-24 | Sanofi-Aventis Deutschland Gmbh | Method for cleavage of solid phase-bound peptides from the solid phase |
| WO2023006923A1 (en) | 2021-07-30 | 2023-02-02 | Boehringer Ingelheim International Gmbh | Dose regimen for long-acting glp1/glucagon receptor agonists |
| WO2023031455A1 (en) | 2021-09-06 | 2023-03-09 | Sanofi Sa | New peptides as potent and selective gip receptor agonists |
| WO2024165571A2 (en) | 2023-02-06 | 2024-08-15 | E-Therapeutics Plc | Inhibitors of expression and/or function |
| WO2025125576A2 (en) | 2023-12-15 | 2025-06-19 | E-Therapeutics Plc | Inhibitors of expression and/or function |
| WO2025133348A1 (en) | 2023-12-22 | 2025-06-26 | E-Therapeutics Plc | Inhibitors of expression and/or function |
| WO2025196502A1 (en) | 2024-03-20 | 2025-09-25 | North Carolina Agricultural & Technical State University | Choline kinase inhibitors as a therapeutic treatment for obesity |
Families Citing this family (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9255154B2 (en) | 2012-05-08 | 2016-02-09 | Alderbio Holdings, Llc | Anti-PCSK9 antibodies and use thereof |
| AR104932A1 (es) * | 2015-06-22 | 2017-08-23 | Lilly Co Eli | Compuestos co-agonistas del glucagón y péptido-1 similar al glugacón (glp-1) |
| TWI622596B (zh) | 2015-10-26 | 2018-05-01 | 美國禮來大藥廠 | 升糖素受體促效劑 |
| WO2017102613A1 (en) * | 2015-12-14 | 2017-06-22 | Sanofi | Selective glucagon receptor agonists comprising a chelating moiety for imaging purposes |
| TWI829687B (zh) | 2018-05-07 | 2024-01-21 | 丹麥商諾佛 儂迪克股份有限公司 | 包含glp-1促效劑與n-(8-(2-羥基苯甲醯基)胺基)辛酸之鹽的固體組成物 |
| CN110452952B (zh) * | 2018-05-08 | 2024-01-16 | 宜昌东阳光长江药业股份有限公司 | 一种glp-1类似物生物活性的检测方法 |
| KR102282240B1 (ko) | 2018-12-06 | 2021-07-28 | 경상국립대학교산학협력단 | 지속형 엑센딘-4 및 이의 용도 |
| CA3147770A1 (en) | 2019-08-13 | 2021-02-18 | Jae Ha Ryu | Exenatide analog and use thereof |
| JP2024521091A (ja) * | 2021-05-20 | 2024-05-28 | エナジーシス ファーマシューティカルズ, インコーポレイテッド | 褐色脂肪生成を誘導する方法及び組成物 |
| CN116606367A (zh) * | 2022-05-31 | 2023-08-18 | 南京盛德瑞尔医药科技有限公司 | 长效Exendin-9-39及其在低血糖治疗中的应用和作为治疗低血糖的药物 |
| WO2023240031A1 (en) * | 2022-06-07 | 2023-12-14 | 9 Meters Biopharma, Inc. | Compositions and methods for treating postural tachycardia syndrome |
| US12303604B1 (en) | 2024-10-16 | 2025-05-20 | Currax Pharmaceuticals Llc | Pharmaceutical formulations comprising naltrexone and/or bupropion |
Citations (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2004035623A2 (en) | 2002-10-02 | 2004-04-29 | Zealand Pharma A/S | Stabilized exendin-4 compounds |
| WO2006134340A2 (en) | 2005-06-13 | 2006-12-21 | Imperial Innovations Limited | Oxyntomodulin analogues and their effects on feeding behaviour |
| WO2007139941A2 (en) * | 2006-05-26 | 2007-12-06 | Amylin Pharmaceuticals, Inc. | Composition and methods for treatment of congestive heart failure |
| WO2008071972A1 (en) | 2006-12-13 | 2008-06-19 | Imperial Innovations Limited | Novel compounds and their effects on feeding behaviour |
| WO2008081418A1 (en) * | 2007-01-05 | 2008-07-10 | Covx Technologies Ireland Limited | Glucagon-like protein-1 receptor (glp-1r) agonist compounds |
| WO2008101017A2 (en) | 2007-02-15 | 2008-08-21 | Indiana Unversity Research And Technology Corporation | Glucagon/glp-1 receptor co-agonists |
| WO2008152403A1 (en) | 2007-06-15 | 2008-12-18 | Zealand Pharma A/S | Glucagon analogues |
| WO2009155258A2 (en) | 2008-06-17 | 2009-12-23 | Indiana University Research And Technology Corporation | Glucagon/glp-1 receptor co-agonists |
| WO2010070251A1 (en) | 2008-12-15 | 2010-06-24 | Zealand Pharma A/S | Glucagon analogues |
| WO2010070252A1 (en) | 2008-12-15 | 2010-06-24 | Zealand Pharma A/S | Glucagon analogues |
| WO2010070253A1 (en) | 2008-12-15 | 2010-06-24 | Zealand Pharma A/S | Glucagon analogues |
| WO2010070255A1 (en) | 2008-12-15 | 2010-06-24 | Zealand Pharma A/S | Glucagon analogues |
| WO2010096052A1 (en) | 2009-02-19 | 2010-08-26 | Merck Sharp & Dohme Corp. | Oxyntomodulin analogs |
| WO2011006497A1 (en) | 2009-07-13 | 2011-01-20 | Zealand Pharma A/S | Acylated glucagon analogues |
| WO2011024110A2 (en) * | 2009-08-27 | 2011-03-03 | Rinat Neuroscience Corporation | Glucagon-like peptide-1 receptor (glp-1r) agonists for treating autoimmune disorders |
| WO2011075393A2 (en) | 2009-12-18 | 2011-06-23 | Indiana University Research And Technology Corporation | Glucagon/glp-1 receptor co-agonists |
| WO2011117415A1 (en) | 2010-03-26 | 2011-09-29 | Novo Nordisk A/S | Novel glucagon analogues |
| EP2387989A2 (en) | 2010-05-19 | 2011-11-23 | Sanofi | Long - acting formulations of insulins |
| WO2011152181A1 (ja) | 2010-06-01 | 2011-12-08 | 本田技研工業株式会社 | Dc/dcコンバータの制御装置 |
| WO2011152182A1 (ja) | 2010-05-31 | 2011-12-08 | 株式会社ジェイテクト | 被覆部材の製造方法 |
| WO2011160630A2 (en) | 2010-06-23 | 2011-12-29 | Zealand Pharma A/S | Glucagon analogues |
| WO2012088116A2 (en) | 2010-12-22 | 2012-06-28 | Indiana University Research And Technology Corporation | Glucagon analogs exhibiting gip receptor activity |
Family Cites Families (413)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6284727B1 (en) | 1993-04-07 | 2001-09-04 | Scios, Inc. | Prolonged delivery of peptides |
| NZ250844A (en) | 1993-04-07 | 1996-03-26 | Pfizer | Treatment of non-insulin dependant diabetes with peptides; composition |
| US5424286A (en) | 1993-05-24 | 1995-06-13 | Eng; John | Exendin-3 and exendin-4 polypeptides, and pharmaceutical compositions comprising same |
| US5641757A (en) | 1994-12-21 | 1997-06-24 | Ortho Pharmaceutical Corporation | Stable 2-chloro-2'-deoxyadenosine formulations |
| ES2319936T5 (es) | 1996-08-08 | 2013-06-24 | Amylin Pharmaceuticals, Inc. | Regulación de la motilidad gastrointestinal |
| US6458924B2 (en) | 1996-08-30 | 2002-10-01 | Novo Nordisk A/S | Derivatives of GLP-1 analogs |
| CZ300837B6 (cs) | 1996-08-30 | 2009-08-26 | Novo Nordisk A/S | Deriváty GLP-1(7-37) nebo jeho analogy, farmaceutický prostredek je obsahující a jejich použití |
| JP4798814B2 (ja) | 1997-01-07 | 2011-10-19 | アミリン・ファーマシューティカルズ,インコーポレイテッド | 食物摂取低減用のエキセンジンおよびそのアゴニストの使用 |
| US6410511B2 (en) | 1997-01-08 | 2002-06-25 | Amylin Pharmaceuticals, Inc. | Formulations for amylin agonist peptides |
| US7312196B2 (en) | 1997-01-08 | 2007-12-25 | Amylin Pharmaceuticals, Inc. | Formulations for amylin agonist peptides |
| US6723530B1 (en) | 1997-02-05 | 2004-04-20 | Amylin Pharmaceuticals, Inc. | Polynucleotides encoding proexendin, and methods and uses thereof |
| US7157555B1 (en) | 1997-08-08 | 2007-01-02 | Amylin Pharmaceuticals, Inc. | Exendin agonist compounds |
| AU749914B2 (en) | 1997-08-08 | 2002-07-04 | Amylin Pharmaceuticals, Inc. | Novel exendin agonist compounds |
| NZ504258A (en) | 1997-11-14 | 2002-12-20 | Amylin Pharmaceuticals Inc | Exendin 3 and 4 agonist compounds for the treatment of diabetes |
| EP1032587B2 (en) | 1997-11-14 | 2013-03-13 | Amylin Pharmaceuticals, Inc. | Novel exendin agonist compounds |
| US7223725B1 (en) | 1997-11-14 | 2007-05-29 | Amylin Pharmaceuticals, Inc. | Exendin agonist compounds |
| US7220721B1 (en) | 1997-11-14 | 2007-05-22 | Amylin Pharmaceuticals, Inc. | Exendin agonist peptides |
| JP4353544B2 (ja) | 1998-01-09 | 2009-10-28 | アミリン・ファーマシューティカルズ,インコーポレイテッド | アミリン作動薬ペプチド用製剤 |
| US6703359B1 (en) | 1998-02-13 | 2004-03-09 | Amylin Pharmaceuticals, Inc. | Inotropic and diuretic effects of exendin and GLP-1 |
| WO1999043708A1 (en) | 1998-02-27 | 1999-09-02 | Novo Nordisk A/S | Glp-1 derivatives of glp-1 and exendin with protracted profile of action |
| CA2321026A1 (en) | 1998-03-09 | 1999-09-16 | Zealand Pharmaceuticals A/S | Pharmacologically active peptide conjugates having a reduced tendency towards enzymatic hydrolysis |
| AU2612599A (en) | 1998-03-13 | 1999-10-11 | Novo Nordisk A/S | Stabilized aqueous peptide solutions |
| US6998387B1 (en) | 1998-03-19 | 2006-02-14 | Amylin Pharmaceuticals, Inc. | Human appetite control by glucagon-like peptide receptor binding compounds |
| OA11694A (en) | 1998-06-12 | 2005-01-12 | Bionebraska Inc | Glucagon-like peptide-1 improves beta-cell response to glucose in subjects with impaired glucose tolerance. |
| EP1105460B1 (en) | 1998-08-10 | 2009-10-07 | THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES | Differentiation of non-insulin producing cells into insulin producing cells by glp-1 or exendin-4 and uses thereof |
| AU765584B2 (en) | 1998-09-17 | 2003-09-25 | Eli Lilly And Company | Protein formulations |
| US6284725B1 (en) | 1998-10-08 | 2001-09-04 | Bionebraska, Inc. | Metabolic intervention with GLP-1 to improve the function of ischemic and reperfused tissue |
| US6429197B1 (en) | 1998-10-08 | 2002-08-06 | Bionebraska, Inc. | Metabolic intervention with GLP-1 or its biologically active analogues to improve the function of the ischemic and reperfused brain |
| US7259136B2 (en) | 1999-04-30 | 2007-08-21 | Amylin Pharmaceuticals, Inc. | Compositions and methods for treating peripheral vascular disease |
| DK1140148T3 (da) | 1998-12-22 | 2006-01-30 | Lilly Co Eli | Lagerholdbar formulering af glucagon-agtigt peptid-1 |
| DK1140145T4 (da) | 1999-01-14 | 2019-07-22 | Amylin Pharmaceuticals Llc | Hidtil ukendte exendinagonistformuleringer og fremgangsmåder til indgivelse deraf |
| US20030087820A1 (en) | 1999-01-14 | 2003-05-08 | Young Andrew A. | Novel exendin agonist formulations and methods of administration thereof |
| ES2343072T3 (es) | 1999-01-14 | 2010-07-22 | Amylin Pharmaceuticals, Inc. | Exendina para la supresion del glucagon. |
| US7399489B2 (en) | 1999-01-14 | 2008-07-15 | Amylin Pharmaceuticals, Inc. | Exendin analog formulations |
| PL351326A1 (en) | 1999-03-17 | 2003-04-07 | Novo Nordisk As | Method for acylating peptides and novel acylating agents |
| US6451974B1 (en) | 1999-03-17 | 2002-09-17 | Novo Nordisk A/S | Method of acylating peptides and novel acylating agents |
| NZ514916A (en) | 1999-04-30 | 2004-06-25 | Amylin Pharmaceuticals Inc | Exendins and exendin agonists linked to polyethylene glycol polymers |
| US6924264B1 (en) | 1999-04-30 | 2005-08-02 | Amylin Pharmaceuticals, Inc. | Modified exendins and exendin agonists |
| US6849714B1 (en) | 1999-05-17 | 2005-02-01 | Conjuchem, Inc. | Protection of endogenous therapeutic peptides from peptidase activity through conjugation to blood components |
| CN1191273C (zh) | 1999-05-17 | 2005-03-02 | 康久化学公司 | 长效促胰岛肽 |
| US6514500B1 (en) | 1999-10-15 | 2003-02-04 | Conjuchem, Inc. | Long lasting synthetic glucagon like peptide {GLP-!} |
| US6887470B1 (en) | 1999-09-10 | 2005-05-03 | Conjuchem, Inc. | Protection of endogenous therapeutic peptides from peptidase activity through conjugation to blood components |
| US6482799B1 (en) | 1999-05-25 | 2002-11-19 | The Regents Of The University Of California | Self-preserving multipurpose ophthalmic solutions incorporating a polypeptide antimicrobial |
| US6506724B1 (en) | 1999-06-01 | 2003-01-14 | Amylin Pharmaceuticals, Inc. | Use of exendins and agonists thereof for the treatment of gestational diabetes mellitus |
| US6344180B1 (en) | 1999-06-15 | 2002-02-05 | Bionebraska, Inc. | GLP-1 as a diagnostic test to determine β-cell function and the presence of the condition of IGT and type II diabetes |
| US6528486B1 (en) | 1999-07-12 | 2003-03-04 | Zealand Pharma A/S | Peptide agonists of GLP-1 activity |
| US6972319B1 (en) | 1999-09-28 | 2005-12-06 | Bayer Pharmaceuticals Corporation | Pituitary adenylate cyclase activating peptide (PACAP)receptor 3 (R3) agonists and their pharmacological methods of use |
| GB9930882D0 (en) | 1999-12-30 | 2000-02-23 | Nps Allelix Corp | GLP-2 formulations |
| EP1246638B2 (en) | 2000-01-10 | 2014-07-30 | Amylin Pharmaceuticals, Inc. | Use of exendins and agonists thereof for the treatment of hypertriglyceridemia |
| EP1267912A2 (en) | 2000-03-14 | 2003-01-02 | Burkhard Göke | Effects of glucagon-like peptide-1 (7-36) on antro-pyloro-duodenal motility |
| WO2001087322A2 (en) | 2000-05-17 | 2001-11-22 | Bionebraska, Inc. | Peptide pharmaceutical formulations |
| KR100518046B1 (ko) | 2000-05-19 | 2005-10-04 | 아밀린 파마슈티칼스, 인크. | Glp-1을 사용한 급성 관상동맥 증후군의 치료 |
| AU2001284985A1 (en) | 2000-08-18 | 2002-03-04 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
| US7507714B2 (en) | 2000-09-27 | 2009-03-24 | Bayer Corporation | Pituitary adenylate cyclase activating peptide (PACAP) receptor 3 (R3) agonists and their pharmacological methods of use |
| US6894024B2 (en) | 2000-10-20 | 2005-05-17 | Amylin Pharmaceuticals, Inc. | Treatment of hibernating myocardium and diabetic cardiomyopathy with a GLP-1 peptide |
| MXPA03005036A (es) | 2000-12-07 | 2003-09-05 | Lilly Co Eli | Proteinas de fusion glp-1. |
| AU2002239384B2 (en) | 2000-12-13 | 2007-01-11 | Eli Lilly And Company | Chronic treatment regimen using glucagon-like insulinotropic peptides |
| GB2371227A (en) | 2001-01-10 | 2002-07-24 | Grandis Biotech Gmbh | Crystallisation - resistant aqueous growth hormone formulations |
| US6573237B2 (en) | 2001-03-16 | 2003-06-03 | Eli Lilly And Company | Protein formulations |
| CN1162446C (zh) | 2001-05-10 | 2004-08-18 | 上海华谊生物技术有限公司 | 促胰岛素分泌肽衍生物 |
| EP1542712A2 (en) | 2001-06-01 | 2005-06-22 | Eli Lilly And Company | Glp-1 formulations with protracted time action |
| WO2003002136A2 (en) | 2001-06-28 | 2003-01-09 | Novo Nordisk A/S | Stable formulation of modified glp-1 |
| JP3935487B2 (ja) | 2001-07-16 | 2007-06-20 | フーベルト・ケスター | 捕獲化合物、その収集物、ならびにプロテオームおよび複合組成物の分析方法 |
| AU2002317599B2 (en) | 2001-07-31 | 2008-04-03 | The Government Of The United States Of America As Represented By The Secretary, Department Of Health And Human Services | GLP-1 exendin-4 peptide analogs and uses thereof |
| CA2452044A1 (en) | 2001-08-28 | 2003-03-13 | Eli Lilly And Company | Pre-mixes of glp-1 and basal insulin |
| MXPA04003569A (es) | 2001-10-19 | 2004-07-23 | Lilly Co Eli | Mezclas bifasicas de glp-1 e insulina. |
| EP2277910A1 (en) | 2001-12-21 | 2011-01-26 | Human Genome Sciences, Inc. | Albumin fusion proteins |
| EP1463752A4 (en) | 2001-12-21 | 2005-07-13 | Human Genome Sciences Inc | ALBUMIN FUSION PROTEINS |
| US7105489B2 (en) | 2002-01-22 | 2006-09-12 | Amylin Pharmaceuticals, Inc. | Methods and compositions for treating polycystic ovary syndrome |
| MXPA04008068A (es) | 2002-02-20 | 2004-11-26 | Lilly Co Eli | Metodo para administrar moleculas de glp-1. |
| EP1478394B1 (en) | 2002-02-27 | 2008-07-30 | Immunex Corporation | Stabilized TNFR-Fc composition comprising arginine |
| EP1502102B1 (en) | 2002-03-11 | 2009-01-14 | caprotec bioanalytics GmbH | Compounds and methods for analyzing the proteome |
| US7141240B2 (en) | 2002-03-12 | 2006-11-28 | Cedars-Sinai Medical Center | Glucose-dependent insulin-secreting cells transfected with a nucleotide sequence encoding GLP-1 |
| AU2003226913A1 (en) | 2002-04-04 | 2003-10-20 | Novo Nordisk A/S | Glp-1 agonist and cardiovascular complications |
| NZ535684A (en) | 2002-04-10 | 2006-03-31 | Lilly Co Eli | Use of a GLP-1 (glucagon like peptide-1) compound to treat gastroparesis by increasing gastric emptying |
| US6861236B2 (en) | 2002-05-24 | 2005-03-01 | Applied Nanosystems B.V. | Export and modification of (poly)peptides in the lantibiotic way |
| EP1515749B1 (en) | 2002-06-14 | 2012-08-15 | Novo Nordisk A/S | Combined use of a modulator of cd3 and a glp-1 compound |
| US20040037826A1 (en) | 2002-06-14 | 2004-02-26 | Michelsen Birgitte Koch | Combined use of a modulator of CD3 and a GLP-1 compound |
| DE10227232A1 (de) | 2002-06-18 | 2004-01-15 | Aventis Pharma Deutschland Gmbh | Saure Insulinzubereitungen mit verbesserter Stabilität |
| ES2327328T3 (es) | 2002-07-04 | 2009-10-28 | Zealand Pharma A/S | Glp-1 y procedimientos para el tratamiento de la diabetes. |
| US20070065469A1 (en) | 2002-07-09 | 2007-03-22 | Michael Betz | Liquid formulations with high concentration of human growth hormone (high) comprising glycine |
| AR040529A1 (es) | 2002-07-09 | 2005-04-13 | Grandis Biotech Gmbh | Formulaciones de hgh en alta concentracion que contienen 1,2-propilenglicol |
| US20080260838A1 (en) | 2003-08-01 | 2008-10-23 | Mannkind Corporation | Glucagon-like peptide 1 (glp-1) pharmaceutical formulations |
| US20040038865A1 (en) | 2002-08-01 | 2004-02-26 | Mannkind Corporation | Cell transport compositions and uses thereof |
| CA2493478C (en) | 2002-08-01 | 2014-11-18 | Mannkind Corporation | Cell transport compositions and uses thereof |
| US7407955B2 (en) | 2002-08-21 | 2008-08-05 | Boehringer Ingelheim Pharma Gmbh & Co., Kg | 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions |
| EP2308878A3 (de) | 2002-08-21 | 2011-10-26 | Boehringer Ingelheim Pharma GmbH & Co. KG | 8-[3-Amino-Piperidin-1-YL] -Xanthine, deren Herstellung und deren Verwendung als Arzneimittel |
| US20050209142A1 (en) | 2002-11-20 | 2005-09-22 | Goran Bertilsson | Compounds and methods for increasing neurogenesis |
| US20050009847A1 (en) | 2002-11-20 | 2005-01-13 | Goran Bertilsson | Compounds and methods for increasing neurogenesis |
| US6969702B2 (en) | 2002-11-20 | 2005-11-29 | Neuronova Ab | Compounds and methods for increasing neurogenesis |
| EP1610811A4 (en) | 2002-12-17 | 2008-03-26 | Amylin Pharmaceuticals Inc | PREVENTION AND TREATMENT OF CARDIAC ARRHYTHMIAS |
| US7790681B2 (en) | 2002-12-17 | 2010-09-07 | Amylin Pharmaceuticals, Inc. | Treatment of cardiac arrhythmias with GLP-1 receptor ligands |
| US20040209803A1 (en) | 2002-12-19 | 2004-10-21 | Alain Baron | Compositions for the treatment and prevention of nephropathy |
| GB0300571D0 (en) | 2003-01-10 | 2003-02-12 | Imp College Innovations Ltd | Modification of feeding behaviour |
| PL1620118T3 (pl) | 2003-04-08 | 2014-11-28 | Yeda Res & Dev | Leki odwracalnie pegylowane |
| WO2004089985A1 (en) | 2003-04-11 | 2004-10-21 | Novo Nordisk A/S | Stable pharmaceutical compositions |
| EP1633384B1 (en) | 2003-05-15 | 2012-03-14 | Trustees Of Tufts College | Stable analogs of glp-1 |
| US7947261B2 (en) | 2003-05-23 | 2011-05-24 | Nektar Therapeutics | Conjugates formed from polymer derivatives having particular atom arrangements |
| CN1747748B (zh) | 2003-05-23 | 2011-01-19 | 尼克塔治疗公司 | 具有特定原子排列的聚合物衍生物 |
| EP1631308B1 (en) | 2003-05-30 | 2013-07-31 | Amylin Pharmaceuticals, LLC | Novel methods and compositions for enhanced transmucosal delivery of peptides and proteins |
| AU2004243531B2 (en) | 2003-06-03 | 2009-11-05 | Novo Nordisk A/S | Stabilized pharmaceutical peptide compositions |
| ATE529126T1 (de) | 2003-06-03 | 2011-11-15 | Novo Nordisk As | Stabilisierte pharmazeutische peptid zusammensetzungen |
| EP2292254A3 (en) | 2003-06-03 | 2011-12-14 | Novo Nordisk A/S | Stabilized pharmaceutical peptide compositions |
| EP1633391B1 (en) | 2003-06-03 | 2011-10-19 | Novo Nordisk A/S | Stabilized pharmaceutical peptide compositions |
| US8921311B2 (en) | 2003-08-01 | 2014-12-30 | Mannkind Corporation | Method for treating hyperglycemia |
| JP4463814B2 (ja) | 2003-08-05 | 2010-05-19 | ノボ ノルディスク アクティーゼルスカブ | 新規のインスリン誘導体 |
| EP1664108B1 (en) | 2003-08-21 | 2009-10-14 | Novo Nordisk A/S | Separation of polypeptides comprising a racemized amino acid |
| EP1663295A2 (en) | 2003-09-01 | 2006-06-07 | Novo Nordisk A/S | Stable formulations of peptides |
| US20060247167A1 (en) | 2003-09-01 | 2006-11-02 | Novo Nordisk A/S | Stable formulations of peptides |
| JP2007537981A (ja) | 2003-09-19 | 2007-12-27 | ノボ ノルディスク アクティーゼルスカブ | 新規の血漿タンパク質親和性タグ |
| US20060287221A1 (en) | 2003-11-13 | 2006-12-21 | Novo Nordisk A/S | Soluble pharmaceutical compositions for parenteral administration comprising a GLP-1 peptide and an insulin peptide of short time action for treatment of diabetes and bulimia |
| ATE525083T1 (de) | 2003-11-13 | 2011-10-15 | Novo Nordisk As | Pharmazeutische zusammensetzung umfassend eine insulinotrope glp-1(7-37) analoge, asp(b28)- insulin, und eine oberflächenaktive verbindung |
| US20050281879A1 (en) | 2003-11-14 | 2005-12-22 | Guohua Chen | Excipients in drug delivery vehicles |
| US20050106214A1 (en) | 2003-11-14 | 2005-05-19 | Guohua Chen | Excipients in drug delivery vehicles |
| CN1882356B (zh) | 2003-11-20 | 2015-02-25 | 诺沃挪第克公司 | 对于生产和用于注射装置中是最佳的含有丙二醇的肽制剂 |
| WO2005081619A2 (en) | 2003-11-20 | 2005-09-09 | Neuronova Ab | Compounds and methods for increasing neurogenesis |
| JP5697831B2 (ja) | 2003-12-03 | 2015-04-08 | ノヴォ ノルディスク アー/エス | 単鎖インシュリン |
| EP1691841B1 (en) | 2003-12-10 | 2020-09-09 | Nektar Therapeutics | Compositions comprising two different populations of polymer-active agent conjugates |
| US20060210614A1 (en) | 2003-12-26 | 2006-09-21 | Nastech Pharmaceutical Company Inc. | Method of treatment of a metabolic disease using intranasal administration of exendin peptide |
| US20050143303A1 (en) | 2003-12-26 | 2005-06-30 | Nastech Pharmaceutical Company Inc. | Intranasal administration of glucose-regulating peptides |
| CN1938334A (zh) | 2004-01-30 | 2007-03-28 | 瓦拉塔药品公司 | Glp-1激动剂和胃泌素化合物的联合使用 |
| IN2012DN03921A (enExample) | 2004-02-11 | 2015-09-04 | Amylin Pharmaceuticals Inc | |
| EP2233497A3 (en) | 2004-02-11 | 2011-01-12 | Amylin Pharmaceuticals, Inc. | Amylin family peptides and methods for making and using them |
| EP1789440A4 (en) | 2004-02-11 | 2008-03-12 | Amylin Pharmaceuticals Inc | REASONS FOR THE FAMILY OF PANCREATIC POLYPEPTIDES AND POLYPEPTIDES CONTAINING THEM |
| US8076288B2 (en) | 2004-02-11 | 2011-12-13 | Amylin Pharmaceuticals, Inc. | Hybrid polypeptides having glucose lowering activity |
| US7399744B2 (en) | 2004-03-04 | 2008-07-15 | Amylin Pharmaceuticals, Inc. | Methods for affecting body composition |
| US7456254B2 (en) | 2004-04-15 | 2008-11-25 | Alkermes, Inc. | Polymer-based sustained release device |
| US20060110423A1 (en) | 2004-04-15 | 2006-05-25 | Wright Steven G | Polymer-based sustained release device |
| CN1968700A (zh) | 2004-04-15 | 2007-05-23 | 阿尔克姆斯有限公司 | 聚合物基的持续释放装置 |
| WO2005117584A2 (en) | 2004-05-28 | 2005-12-15 | Amylin Pharmaceuticals, Inc | Improved transmucosal delivery of peptides and proteins |
| US20090069226A1 (en) | 2004-05-28 | 2009-03-12 | Amylin Pharmaceuticals, Inc. | Transmucosal delivery of peptides and proteins |
| JP2008501765A (ja) | 2004-06-11 | 2008-01-24 | ノボ ノルディスク アクティーゼルスカブ | Glp−1アゴニストを用いた薬剤誘発性肥満の中和 |
| CN103223160B (zh) | 2004-07-19 | 2015-02-18 | 比奥孔有限公司 | 胰岛素-低聚物共轭物,制剂及其用途 |
| EP1771573A4 (en) | 2004-07-21 | 2009-02-18 | Ambrx Inc | BIOSYNTHETIC POLYPEPTIDES OBTAINED FROM NON-NATURALLY CITED AMINO ACIDS |
| MX2007001424A (es) | 2004-08-03 | 2008-03-13 | Biorexis Pharmaceutical Corp | Terapia de combinacion usando proteinas de fusion a transferrina que comprenden peptido 1 tipo glucagon. |
| ES2442223T3 (es) | 2004-08-31 | 2014-02-10 | Novo Nordisk A/S | Uso de tris(hidroximetil) aminometano para la estabilización de péptidos, polipéptidos y proteínas |
| DE102004043153B4 (de) | 2004-09-03 | 2013-11-21 | Philipps-Universität Marburg | Erfindung betreffend GLP-1 und Exendin |
| WO2006029634A2 (en) | 2004-09-17 | 2006-03-23 | Novo Nordisk A/S | Pharmaceutical compositions containing insulin and insulinotropic peptide |
| EP3173072A1 (en) | 2004-10-01 | 2017-05-31 | Ramscor, Inc. | Conveniently implantable sustained release drug compositions |
| EP1799711B1 (en) | 2004-10-07 | 2012-06-20 | Novo Nordisk A/S | Protracted exendin-4 compounds |
| US7595294B2 (en) | 2004-10-08 | 2009-09-29 | Transition Therapeutics, Inc. | Vasoactive intestinal polypeptide pharmaceuticals |
| WO2006044531A2 (en) | 2004-10-13 | 2006-04-27 | Isis Parmaceuticals, Inc. | Antisense modulation of ptp1b expression |
| US7442682B2 (en) | 2004-10-19 | 2008-10-28 | Nitto Denko Corporation | Transepithelial delivery of peptides with incretin hormone activities |
| CN106137952B (zh) | 2004-11-12 | 2020-11-17 | 诺和诺德公司 | 促胰岛素肽的稳定制剂 |
| US20080125361A1 (en) | 2004-11-12 | 2008-05-29 | Novo Nordisk A/S | Stable Formulations Of Peptides |
| US20090011976A1 (en) | 2004-11-12 | 2009-01-08 | Novo Nordisk A/S | Stable Formulations Of Peptides |
| WO2006059106A2 (en) | 2004-12-02 | 2006-06-08 | Domantis Limited | Bispecific domain antibodies targeting serum albumin and glp-1 or pyy |
| JP5743371B2 (ja) | 2004-12-13 | 2015-07-01 | アミリン・ファーマシューティカルズ, リミテッド・ライアビリティ・カンパニーAmylin Pharmaceuticals, Llc | 膵臓ポリペプチドファミリーモチーフ、ポリペプチドおよびこれらを含む方法 |
| ATE494012T1 (de) | 2004-12-21 | 2011-01-15 | Nektar Therapeutics | Stabilisierte polymer-thiol-reagenzien |
| SI1831252T1 (sl) | 2004-12-22 | 2009-12-31 | Lilly Co Eli | Formulacije analogov glp-1 fuzijskih proteinov |
| CA2599594A1 (en) | 2004-12-24 | 2006-07-13 | Amylin Pharmaceuticals, Inc. | Use of glp-1 and agonists thereof to prevent cardiac myocyte apoptosis |
| US8716221B2 (en) | 2005-01-14 | 2014-05-06 | Wuxi Grandchamp Pharmaceutical Technology Co., Ltd. | Modified exendins and uses thereof |
| CA2603630C (en) | 2005-01-14 | 2015-06-09 | Wuxi Grandchamp Pharmaceutical Technology Co., Ltd. | Modified exendins and uses thereof |
| US20080233053A1 (en) | 2005-02-07 | 2008-09-25 | Pharmalight Inc. | Method and Device for Ophthalmic Administration of Active Pharmaceutical Ingredients |
| US8263545B2 (en) | 2005-02-11 | 2012-09-11 | Amylin Pharmaceuticals, Inc. | GIP analog and hybrid polypeptides with selectable properties |
| WO2006086769A2 (en) | 2005-02-11 | 2006-08-17 | Amylin Pharmaceuticals, Inc. | Gip analog and hybrid polypeptides with selectable properties |
| WO2006097535A2 (en) | 2005-03-18 | 2006-09-21 | Novo Nordisk A/S | Peptide agonists of the glucagon family with secretin like activity |
| DK1888103T3 (da) | 2005-04-11 | 2012-04-23 | Amylin Pharmaceuticals Inc | Anvendelse af glp-1, exendin og agonister deraf til forsinkelse eller forhindring af kardial remodellering |
| US20090043264A1 (en) | 2005-04-24 | 2009-02-12 | Novo Nordisk A/S | Injection Device |
| US8097584B2 (en) | 2005-05-25 | 2012-01-17 | Novo Nordisk A/S | Stabilized formulations of insulin that comprise ethylenediamine |
| WO2006127948A2 (en) | 2005-05-26 | 2006-11-30 | Bristol-Myers Squibb Company | N-terminally modified glp-1 receptor modulators |
| CA2609810C (en) | 2005-06-06 | 2012-05-22 | Camurus Ab | Glp-1 analogue formulations |
| GB0511986D0 (en) | 2005-06-13 | 2005-07-20 | Imp College Innovations Ltd | Novel compounds and their effects on feeding behaviour |
| WO2006138572A2 (en) | 2005-06-16 | 2006-12-28 | Nektar Therapeutics Al, Corporation | Conjugates having a degradable linkage and polymeric reagents useful in preparing such conjugates |
| MX2008001706A (es) | 2005-08-04 | 2008-04-07 | Nektar Therapeutics Al Corp | Conjugados de una porcion g-csf y un polimero. |
| WO2007016764A1 (en) | 2005-08-06 | 2007-02-15 | Qinghua Wang | Composition and method for prevention and treatment of type i diabetes |
| AU2006279680B2 (en) | 2005-08-11 | 2012-12-06 | Amylin Pharmaceuticals, Llc | Hybrid polypeptides with selectable properties |
| JP5693817B2 (ja) | 2005-08-19 | 2015-04-01 | アミリン・ファーマシューティカルズ, リミテッド・ライアビリティ・カンパニーAmylin Pharmaceuticals, Llc | 糖尿病の治療法および体重の減少法 |
| WO2007033372A2 (en) | 2005-09-14 | 2007-03-22 | Mannkind Corporation | Method of drug formulation based on increasing the affinity of crystalline microparticle surfaces for active agents |
| US8143217B2 (en) | 2005-09-20 | 2012-03-27 | Novartis Ag | Use of DPP-IV inhibitor to reduce hypoglycemic events |
| WO2007047834A2 (en) | 2005-10-18 | 2007-04-26 | Biocon Limited | Oral peptide conjugates for metabolic diseases |
| WO2007047997A2 (en) | 2005-10-19 | 2007-04-26 | Smartcells, Inc. | Methods for reducing the mitogenicity of lectin compositions |
| CN101534846B (zh) | 2005-11-07 | 2014-11-05 | 印第安纳大学研究及科技有限公司 | 显示生理学溶解性和稳定性的胰高血糖素类似物 |
| US8039432B2 (en) | 2005-11-09 | 2011-10-18 | Conjuchem, Llc | Method of treatment of diabetes and/or obesity with reduced nausea side effect |
| MX2008007075A (es) | 2005-12-02 | 2008-11-12 | Mdrna Inc | Formulacion farmaceutica para incrementar la permeabilidad epitelial por peptido regulador de glucosa. |
| EP1968607B1 (en) | 2005-12-02 | 2014-01-15 | Nabil Habib Lab | Treatment of cancer and other diseases |
| EP1959987A2 (en) | 2005-12-08 | 2008-08-27 | Nastech Pharmaceutical Company Inc. | Mucosal delivery of stabilized formulations of exendin |
| WO2007075534A2 (en) | 2005-12-16 | 2007-07-05 | Nektar Therapeutics Al, Corporation | Polymer conjugates of glp-1 |
| ES2779992T3 (es) | 2005-12-20 | 2020-08-21 | Univ Duke | Métodos y composiciones para suministrar agentes activos con propiedades farmacológicas potenciadas |
| US8841255B2 (en) | 2005-12-20 | 2014-09-23 | Duke University | Therapeutic agents comprising fusions of vasoactive intestinal peptide and elastic peptides |
| US20130172274A1 (en) | 2005-12-20 | 2013-07-04 | Duke University | Methods and compositions for delivering active agents with enhanced pharmacological properties |
| RU2427383C2 (ru) | 2006-01-18 | 2011-08-27 | КьюПиЭс, ЭлЭлСи | Фармацевтические композиции с повышенной стабильностью |
| WO2007092772A2 (en) | 2006-02-03 | 2007-08-16 | Medimmune, Inc. | Protein formulations |
| US7704953B2 (en) | 2006-02-17 | 2010-04-27 | Mdrna, Inc. | Phage displayed cell binding peptides |
| WO2007109354A2 (en) | 2006-03-21 | 2007-09-27 | Amylin Pharmaceuticals, Inc. | Peptide-peptidase inhibitor conjugates and methods of using same |
| MX2008013168A (es) | 2006-04-13 | 2008-10-27 | Sod Conseils Rech Applic | Composiciones faramaceuticas del peptido 1 similar al glucagon humano, exendina-4 y análogos de los mismos. |
| BRPI0709964A2 (pt) | 2006-04-14 | 2011-08-02 | Mannkind Corp | formulações farmacêuticas contendo peptìdeo glucagon do tipo 1 (glp-1) |
| PE20110235A1 (es) | 2006-05-04 | 2011-04-14 | Boehringer Ingelheim Int | Combinaciones farmaceuticas que comprenden linagliptina y metmorfina |
| WO2007133778A2 (en) | 2006-05-12 | 2007-11-22 | Amylin Pharmaceuticals, Inc. | Methods to restore glycemic control |
| WO2007139589A1 (en) | 2006-05-26 | 2007-12-06 | Bristol-Myers Squibb Company | Sustained release glp-1 receptor modulators |
| CN101501209B (zh) | 2006-06-21 | 2013-06-05 | 百奥勤有限公司 | 具有促胰岛素活性的生物活性多肽的制备方法 |
| EP2051697A2 (en) | 2006-07-05 | 2009-04-29 | Foamix Ltd. | Foamable vehicle comprising dicarboxylic acid or dicarboxylic acid ester and pharmaceutical compositions thereof |
| JP5102833B2 (ja) | 2006-07-24 | 2012-12-19 | バイオレクシス ファーマシューティカル コーポレーション | エキセンディン融合タンパク質 |
| US7928186B2 (en) | 2006-08-02 | 2011-04-19 | Phoenix Pharmaceuticals, Inc. | Cell permeable bioactive peptide conjugates |
| EP2046284A1 (en) | 2006-08-04 | 2009-04-15 | Nastech Pharmaceutical Company Inc. | Compositions for intranasal delivery of human insulin and uses thereof |
| AU2007284759B2 (en) | 2006-08-09 | 2010-10-28 | Intarcia Therapeutics, Inc. | Osmotic delivery systems and piston assemblies |
| US8497240B2 (en) | 2006-08-17 | 2013-07-30 | Amylin Pharmaceuticals, Llc | DPP-IV resistant GIP hybrid polypeptides with selectable properties |
| AU2007284365A1 (en) | 2006-08-17 | 2008-02-21 | Amylin Pharmaceuticals, Inc. | DPP-IV resistant GIP hybrid polypeptides with selectable properties |
| EP2057189B1 (en) * | 2006-08-25 | 2013-03-06 | Novo Nordisk A/S | Acylated exendin-4 compounds |
| CN101125207B (zh) | 2006-11-14 | 2012-09-05 | 上海华谊生物技术有限公司 | 带有聚乙二醇基团的艾塞丁或其类似物及其制剂和用途 |
| JP2010512399A (ja) | 2006-12-12 | 2010-04-22 | アミリン・ファーマシューティカルズ,インコーポレイテッド | 医薬製剤及びその調製方法 |
| RU2432361C2 (ru) | 2007-01-05 | 2011-10-27 | КовЭкс Текнолоджиз Айэлэнд Лимитед | Соединения агонисты рецептора глюкагоноподобного белка-1 (glp-1r) |
| CN101663317A (zh) | 2007-01-05 | 2010-03-03 | CovX科技爱尔兰有限公司 | 胰高血糖素样蛋白-1受体glp-1r激动剂化合物 |
| EP2124974B1 (en) | 2007-01-05 | 2017-03-15 | Indiana University Research and Technology Corporation | Glucagon analogs exhibiting enhanced solubility in physiological ph buffers |
| WO2008098212A2 (en) | 2007-02-08 | 2008-08-14 | Diobex, Inc. | Extended release formulations of glucagon and other peptides and proteins |
| US8420598B2 (en) | 2007-04-20 | 2013-04-16 | B & L Delipharm Corp. | Mono modified exendin with polyethylene glycol or its derivatives and uses thereof |
| RU2440097C2 (ru) | 2007-04-23 | 2012-01-20 | Интарсия Терапьютикс, Инк. | Способ лечения диабета ii типа и ожирения, осмотическое устройство для доставки и способ его изготовления |
| WO2008134425A1 (en) | 2007-04-27 | 2008-11-06 | Cedars-Sinai Medical Center | Use of glp-1 receptor agonists for the treatment of gastrointestinal disorders |
| US7829664B2 (en) | 2007-06-01 | 2010-11-09 | Boehringer Ingelheim International Gmbh | Modified nucleotide sequence encoding glucagon-like peptide-1 (GLP-1), nucleic acid construct comprising same for production of glucagon-like peptide-1 (GLP-1), human cells comprising said construct and insulin-producing constructs, and methods of use thereof |
| US9353170B2 (en) | 2007-06-08 | 2016-05-31 | Sanofi-Aventis Deutschland Gmbh | Long-acting transient polymer conjugates of exendin |
| WO2009009562A2 (en) | 2007-07-10 | 2009-01-15 | Eli Lilly And Company | Glp-1-fc fusion protein formulation |
| WO2009020802A2 (en) | 2007-08-03 | 2009-02-12 | Eli Lilly And Company | Treatment for obesity |
| CN101366692A (zh) | 2007-08-15 | 2009-02-18 | 江苏豪森药业股份有限公司 | 一种稳定的艾塞那肽制剂 |
| US8816047B2 (en) | 2007-08-30 | 2014-08-26 | Cure DM Group Holdings, LLC | Compositions and methods of using proislet peptides and analogs thereof |
| ES2532116T3 (es) | 2007-09-05 | 2015-03-24 | Novo Nordisk A/S | Péptidos derivados con A-B-C-D y sus usos terapéuticos |
| WO2009035540A2 (en) | 2007-09-07 | 2009-03-19 | Ipsen Pharma S.A.S. | Analogues of exendin-4 and exendin-3 |
| KR20100090692A (ko) | 2007-10-24 | 2010-08-16 | 맨카인드 코포레이션 | 활성제의 전달 |
| US8785396B2 (en) | 2007-10-24 | 2014-07-22 | Mannkind Corporation | Method and composition for treating migraines |
| HUE025485T2 (en) | 2007-10-24 | 2016-02-29 | Mannkind Corp | Respiratory dry powder formulation containing GLP-1 for use in the treatment of hyperglycemia and diabetes by pulmonary administration |
| ES2558155T3 (es) | 2007-10-30 | 2016-02-02 | Indiana University Research And Technology Corporation | Compuestos que muestran actividad antagonista de glucacón y agonista de GLP-1 |
| EP2217701B9 (en) | 2007-10-30 | 2015-02-18 | Indiana University Research and Technology Corporation | Glucagon antagonists |
| ES2612736T3 (es) | 2007-11-16 | 2017-05-18 | Novo Nordisk A/S | Composiciones farmacéuticas estables que comprenden liraglutida y degludec |
| EP2224945B1 (en) | 2007-11-23 | 2012-05-16 | Michael Rothkopf | Methods of enhancing diabetes resolution |
| CN101444618B (zh) | 2007-11-26 | 2012-06-13 | 杭州九源基因工程有限公司 | 含有艾塞那肽的药物制剂 |
| CN102026666B (zh) | 2007-12-11 | 2013-10-16 | 常山凯捷健生物药物研发(河北)有限公司 | 促胰岛素肽缀合物制剂 |
| KR20100111682A (ko) | 2008-01-09 | 2010-10-15 | 사노피-아벤티스 도이칠란트 게엠베하 | 극히 지연된 시간-작용 프로필을 갖는 신규 인슐린 유도체 |
| WO2009099763A1 (en) | 2008-01-30 | 2009-08-13 | Indiana University Research And Technology Corporation | Ester-based peptide prodrugs |
| EP2237799B1 (en) | 2008-02-01 | 2019-04-10 | Ascendis Pharma A/S | Prodrug comprising a self-cleavable linker |
| SG188126A1 (en) | 2008-02-06 | 2013-03-28 | Biocon Ltd | Fermentation media comprising urea-like nitrogen sources and its use for the production of secondary metabolits, enzymes and recombinant proteias |
| WO2009114959A1 (zh) | 2008-03-20 | 2009-09-24 | 中国人民解放军军事医学科学院毒物药物研究所 | 可注射用缓释药物制剂及其制备方法 |
| CA2720864C (en) | 2008-04-07 | 2017-07-04 | National Institute Of Immunology | Compositions useful for the treatment of diabetes and other chronic disorder |
| WO2009137080A1 (en) | 2008-05-07 | 2009-11-12 | Merrion Research Iii Limited | Compositions of gnrh related compounds and processes of preparation |
| WO2009143285A2 (en) | 2008-05-21 | 2009-11-26 | Amylin Pharmaceuticals, Inc. | Exendins to lower cholestrol and triglycerides |
| US8329419B2 (en) | 2008-05-23 | 2012-12-11 | Amylin Pharmaceuticals, Llc | GLP-1 receptor agonist bioassays |
| CA3153292A1 (en) | 2008-06-13 | 2009-12-17 | Mannkind Corporation | A dry powder inhaler and system for drug delivery |
| US8485180B2 (en) | 2008-06-13 | 2013-07-16 | Mannkind Corporation | Dry powder drug delivery system |
| BRPI0914889A2 (pt) | 2008-06-17 | 2015-11-24 | Otsuka Chemical Co Ltd | peptídeo glp-1 adicionado de cadeia oligossacarídica |
| SG192405A1 (en) | 2008-06-17 | 2013-08-30 | Univ Indiana Res & Tech Corp | Gip-based mixed agonists for treatment of metabolic disorders and obesity |
| KR20110039230A (ko) | 2008-06-17 | 2011-04-15 | 인디애나 유니버시티 리서치 앤드 테크놀로지 코퍼레이션 | 생리학적 pH 완충액에서 강화된 용해도 및 안정성을 나타내는 글루카곤 유사체 |
| WO2009158704A2 (en) | 2008-06-27 | 2009-12-30 | Duke University | Therapeutic agents comprising elastin-like peptides |
| US20110129522A1 (en) | 2008-07-21 | 2011-06-02 | Transpharma Medical Ltd. | Transdermal system for extended delivery of incretins and incretn mimetic peptides |
| WO2010013012A2 (en) | 2008-08-01 | 2010-02-04 | Lund University Bioscience Ab | Novel polypeptides and uses thereof |
| CN101670096B (zh) | 2008-09-11 | 2013-01-16 | 杭州九源基因工程有限公司 | 含有艾塞那肽的药物制剂 |
| HUE048608T2 (hu) | 2008-10-17 | 2020-08-28 | Sanofi Aventis Deutschland | Egy inzulin és egy GLP-1 agonista kombinációja |
| JP2012511586A (ja) | 2008-12-10 | 2012-05-24 | グラクソスミスクライン・リミテッド・ライアビリティ・カンパニー | 医薬組成物 |
| EP2376097A4 (en) | 2008-12-19 | 2012-10-03 | Univ Indiana Res & Tech Corp | PEPTIDE PRODRUGS OF AMIDE-BASED GLUCAGON SUPERFAMILY |
| CN101538323B (zh) | 2009-01-13 | 2012-05-09 | 深圳翰宇药业股份有限公司 | 一种纯化艾塞那肽的方法 |
| EP2403490B1 (en) | 2009-03-04 | 2019-08-07 | MannKind Corporation | An improved dry powder drug delivery system |
| EP2403569B1 (en) | 2009-03-05 | 2014-04-23 | Sanofi-Aventis Deutschland GmbH | Drug delivery device with retractable needle |
| US8642544B2 (en) | 2009-04-01 | 2014-02-04 | Amylin Pharmaceuticals, Llc | N-terminus conformationally constrained GLP-1 receptor agonist compounds |
| WO2010118034A2 (en) | 2009-04-06 | 2010-10-14 | Board Of Regents, The University Of Texas System | Cyclic peptide analogues for non-invasive imaging of pancreatic beta-cells |
| JP5727459B2 (ja) | 2009-04-22 | 2015-06-03 | アルテオゼン, インクAlteogen, Inc | 体内持続性を維持することにより体内半減期が増加したタンパク質またはペプチド融合体 |
| CN101870728A (zh) | 2009-04-23 | 2010-10-27 | 派格生物医药(苏州)有限公司 | 新型Exendin变体及其缀合物 |
| CN101559041B (zh) | 2009-05-19 | 2014-01-15 | 中国科学院过程工程研究所 | 粒径均一的多肽药物缓释微球或微囊制剂及制备方法 |
| JP5698223B2 (ja) | 2009-05-20 | 2015-04-08 | サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | 薬物送達デバイスにおける薬物含有カートリッジ用の栓 |
| EP3189868B1 (en) | 2009-05-20 | 2024-10-23 | Sanofi-Aventis Deutschland GmbH | A bung for drug containing cartridges in drug delivery devices comprising an electronic coding feature |
| EP2435061A4 (en) | 2009-05-28 | 2013-03-27 | Amylin Pharmaceuticals Inc | DAMPING GLP-1 RECEPTOR AGONIST COMPOUNDS |
| JP2012529463A (ja) | 2009-06-11 | 2012-11-22 | ノヴォ ノルディスク アー/エス | 2型糖尿病を治療するための、glp−1とfgf21との組合せ |
| RU2012101274A (ru) | 2009-06-16 | 2013-07-27 | Индиана Юниверсити Рисерч Энд Текнолоджи Корпорейшн | Соединения глюкагона, активные в отношении рецептора gip |
| JP5932642B2 (ja) | 2009-07-02 | 2016-06-08 | アンジオケム インコーポレーテッド | 多量体ペプチドコンジュゲートおよびその使用 |
| CN101601646B (zh) | 2009-07-22 | 2011-03-23 | 南京凯瑞尔纳米生物技术有限公司 | 治疗糖尿病的鼻腔滴剂及其制备方法 |
| WO2011011675A1 (en) | 2009-07-23 | 2011-01-27 | Zelos Therapeutics, Inc. | Pharmaceutically acceptable formulations/compositions for peptidyl drugs |
| NZ598021A (en) | 2009-07-31 | 2014-05-30 | Sanofi Aventis Deutschland | Prodrugs comprising an insulin linker conjugate |
| WO2011016030A1 (en) * | 2009-08-03 | 2011-02-10 | Technion Research & Development Foundation Ltd. | Hydrogen production by an autothermal heat exchanger packed-bed membrane gas reformer |
| WO2011017835A1 (en) | 2009-08-11 | 2011-02-17 | Nanjing University | Preparation method of protein or peptide nanoparticles for in vivo drug delivery by unfolding and refolding |
| CN101993485B (zh) | 2009-08-20 | 2013-04-17 | 重庆富进生物医药有限公司 | 促胰岛素分泌肽类似物同源二聚体及其用途 |
| CA2774552A1 (en) | 2009-09-30 | 2011-04-07 | Glaxo Group Limited | Drug fusions and conjugates with extended half life |
| US20110097386A1 (en) | 2009-10-22 | 2011-04-28 | Biodel, Inc. | Stabilized glucagon solutions |
| US9610329B2 (en) | 2009-10-22 | 2017-04-04 | Albireo Pharma, Inc. | Stabilized glucagon solutions |
| EP2490708B1 (en) | 2009-10-22 | 2013-03-27 | Biodel Inc. | Stabilized glucagon solutions |
| EP2495255A4 (en) | 2009-10-30 | 2013-05-15 | Otsuka Chemical Co Ltd | GLYCOSYLATED FORM OF AN ANTIGENIC GLP-1 ANALOG |
| EA021983B1 (ru) | 2009-11-02 | 2015-10-30 | Пфайзер Инк. | Производные диоксабицикло[3.2.1]октан-2,3,4-триола |
| EP2496249B1 (en) | 2009-11-03 | 2016-03-09 | Amylin Pharmaceuticals, LLC | Glp-1 receptor agonist for use in treating obstructive sleep apnea |
| RU2537239C2 (ru) | 2009-11-13 | 2014-12-27 | Санофи-Авентис Дойчланд Гмбх | Фармацевтическая композиция, включающая агонист glp-1, инсулин и метионин |
| LT2498801T (lt) | 2009-11-13 | 2018-05-10 | Sanofi-Aventis Deutschland Gmbh | Farmacinė kompozicija, apimanti despro36eksendin-4(1-39)-lys6-nh2 ir metioniną |
| WO2011084459A1 (en) | 2009-12-15 | 2011-07-14 | Metabolic Solutions Development Company | Ppar-sparing thiazolidinediones and combinations for the treatment of obesity and other metabolic diseases |
| AU2010331926B2 (en) | 2009-12-15 | 2014-03-27 | Cirius Therapeutics, Inc. | PPAR-sparing thiazolidinediones and combinations for the treatment of neurodegenerative diseases |
| US8912335B2 (en) | 2009-12-15 | 2014-12-16 | Metabolic Solutions Development Company, Llc | PPAR-sparing thiazolidinedione salts for the treatment of metabolic diseases |
| CN102753170A (zh) | 2009-12-15 | 2012-10-24 | 新陈代谢解决方案开发公司 | 治疗糖尿病及其它代谢性疾病的ppar节制的噻唑烷二酮和组合 |
| WO2011080103A1 (en) | 2009-12-16 | 2011-07-07 | Novo Nordisk A/S | Double-acylated glp-1 derivatives |
| WO2011075623A1 (en) | 2009-12-18 | 2011-06-23 | Latitude Pharmaceuticals, Inc. | One - phase gel compos ition compri s ing phos pholi pids |
| CN101798588B (zh) | 2009-12-21 | 2015-09-09 | 上海仁会生物制药股份有限公司 | Glp-1受体激动剂生物学活性测定方法 |
| AR079344A1 (es) | 2009-12-22 | 2012-01-18 | Lilly Co Eli | Analogo peptidico de oxintomodulina, composicion farmaceutica que lo comprende y uso para preparar un medicamento util para tratar diabetes no insulinodependiente y/u obesidad |
| JO2976B1 (en) | 2009-12-22 | 2016-03-15 | ايلي ليلي اند كومباني | Axentomodulin polypeptide |
| JP2013517307A (ja) | 2010-01-20 | 2013-05-16 | ジーランド ファーマ アクティーゼルスカブ | 心臓病の処置 |
| MX2012008603A (es) | 2010-01-27 | 2013-01-25 | Univ Indiana Res & Tech Corp | Conjugados de antagonista de glucagon-agonista de gip y composiciones para el tratamiento de desordenes metabolicos y obesidad. |
| DK2531233T3 (en) | 2010-02-01 | 2019-03-11 | Sanofi Aventis Deutschland | PATTERN HOLDER, PHARMACEUTICAL SUPPLY AND PROCEDURE FOR KEEPING A CARTRIDGE IN A CARTRIDGE |
| WO2011109784A1 (en) | 2010-03-05 | 2011-09-09 | Conjuchem, Llc | Formulation of insulinotropic peptide conjugates |
| AR080592A1 (es) | 2010-03-26 | 2012-04-18 | Lilly Co Eli | Peptido con actividad para el gip-r y glp-1-r, formulacion famaceutica que lo comprende, su uso para preparar un medicamento util para el tratamiento de diabetes mellitus y para inducir la perdida de peso |
| CA2797089A1 (en) | 2010-05-13 | 2011-11-17 | Indiana University Research And Technology Corporation | Glucagon superfamily peptides exhibiting g protein-coupled receptor activity |
| WO2011143209A1 (en) | 2010-05-13 | 2011-11-17 | Indiana University Research And Technology Corporation | Glucagon superfamily peptides exhibiting nuclear hormone receptor activity |
| BR112012029280A2 (pt) | 2010-05-20 | 2016-11-29 | Glaxo Group Ltd | variante de domínio variável único de imunoglobulina antialbumina sérica, imunoglobulina anti-sa, ligando multiespecífico, proteína de fusão, composição, ácido nucleico, vetor, célula hospedeira isolada, e, uso de uma variante, ligando multiespecífico ou proteína de fusão |
| US8263554B2 (en) | 2010-06-09 | 2012-09-11 | Amylin Pharmaceuticals, Inc. | Methods of using GLP-1 receptor agonists to treat pancreatitis |
| CN101891823B (zh) | 2010-06-11 | 2012-10-03 | 北京东方百泰生物科技有限公司 | 一种Exendin-4及其类似物融合蛋白 |
| US8636711B2 (en) | 2010-06-14 | 2014-01-28 | Legacy Emanuel Hospital & Health Center | Stabilized glucagon solutions and uses therefor |
| RU2571331C1 (ru) | 2010-06-21 | 2015-12-20 | Маннкайнд Корпорейшн | Системы и способы доставки сухих порошковых лекарств |
| MX2012014576A (es) | 2010-06-24 | 2013-02-21 | Univ Indiana Res & Tech Corp | Profarmacos de peptido de la superfamilia de glucagon basado en amida. |
| WO2011162830A2 (en) | 2010-06-24 | 2011-12-29 | Biousian Biosystems, Inc. | Glucagon-like peptide-1 glycopeptides |
| WO2011163473A1 (en) | 2010-06-25 | 2011-12-29 | Indiana University Research And Technology Corporation | Glucagon analogs exhibiting enhanced solubility and stability in physiological ph buffers |
| WO2012012352A2 (en) | 2010-07-19 | 2012-01-26 | Amidebio, Llc | Modified peptides and proteins |
| US20120046225A1 (en) | 2010-07-19 | 2012-02-23 | The Regents Of The University Of Colorado, A Body Corporate | Stable glucagon formulations for the treatment of hypoglycemia |
| JP2013535471A (ja) | 2010-07-28 | 2013-09-12 | アミリン・ファーマシューティカルズ,リミテッド・ライアビリティ・カンパニー | 安定化した領域を有するglp−1受容体アゴニスト化合物 |
| CN102397558B (zh) | 2010-09-09 | 2013-08-14 | 中国人民解放军军事医学科学院毒物药物研究所 | Exendin-4类似物的定位聚乙二醇化修饰物及其用途 |
| EP2438930A1 (en) | 2010-09-17 | 2012-04-11 | Sanofi-Aventis Deutschland GmbH | Prodrugs comprising an exendin linker conjugate |
| EP2621538B1 (en) | 2010-09-28 | 2015-12-16 | Amylin Pharmaceuticals, LLC | Engineered polypeptides having enhanced duration of action |
| WO2012059762A1 (en) | 2010-11-03 | 2012-05-10 | Arecor Limited | Novel composition comprising glucagon |
| EP3536368B1 (en) | 2010-11-09 | 2025-09-17 | MannKind Corporation | Dry powder inhaler comprising a serotonin receptor agonist and a diketopiperazine for treating migraines |
| EP2460552A1 (en) | 2010-12-06 | 2012-06-06 | Sanofi-Aventis Deutschland GmbH | Drug delivery device with locking arrangement for dose button |
| CN102552883B (zh) | 2010-12-09 | 2014-02-19 | 天津药物研究院 | 一种多肽复合物、药物组合物、其制备方法和应用 |
| RS60321B1 (sr) | 2010-12-16 | 2020-07-31 | Novo Nordisk As | Čvrste kompozicije koje sadrže glp-1 agonist i so n-(8-(2- hidroksibenzoil)amino)kaprilne kiseline |
| EP2654767A4 (en) | 2010-12-22 | 2014-05-21 | Amylin Pharmaceuticals Inc | GLP-1 RECEPTOR AGONISTS FOR ISLAND CELL TRANSPLANTATION |
| CN102532301B (zh) | 2010-12-31 | 2014-09-03 | 上海医药工业研究院 | 一类新型的Exendin-4类似物及其制备方法 |
| US20120208755A1 (en) | 2011-02-16 | 2012-08-16 | Intarcia Therapeutics, Inc. | Compositions, Devices and Methods of Use Thereof for the Treatment of Cancers |
| CN102100906A (zh) | 2011-02-18 | 2011-06-22 | 深圳翰宇药业股份有限公司 | 一种艾塞那肽的药用制剂及其制备方法 |
| SG193389A1 (en) | 2011-03-10 | 2013-10-30 | Xeris Pharmaceuticals Inc | Stable formulations for parenteral injection of peptide drugs |
| CN102718858B (zh) | 2011-03-29 | 2014-07-02 | 天津药物研究院 | 胰高血糖素样肽-1类似物单体、二聚体及其制备方法与应用 |
| CN102718868A (zh) | 2011-03-30 | 2012-10-10 | 上海华谊生物技术有限公司 | 定点单取代聚乙二醇化Exendin类似物及其制备方法 |
| US9790262B2 (en) | 2011-04-05 | 2017-10-17 | Longevity Biotech, Inc. | Compositions comprising glucagon analogs and methods of making and using the same |
| EP2696897A2 (en) | 2011-04-11 | 2014-02-19 | Yeda Research and Development Co. Ltd. | Albumin binding probes and drug conjugates thereof |
| WO2012150503A2 (en) | 2011-05-03 | 2012-11-08 | Zealand Pharma A/S | Glu-glp-1 dual agonist signaling-selective compounds |
| CN102766204B (zh) | 2011-05-05 | 2014-10-15 | 天津药物研究院 | 胰高血糖素样肽-1突变体多肽及其制备方法和其应用 |
| KR20240110072A (ko) | 2011-05-18 | 2024-07-12 | 메더리스 다이어비티즈, 엘엘씨 | 인슐린 저항성에 대한 개선된 펩티드 제약 |
| EP2714069A4 (en) | 2011-05-25 | 2015-06-24 | Amylin Pharmaceuticals Llc | LONG-TERM CONJUGATES WITH TWO HORMONES |
| UA113626C2 (xx) | 2011-06-02 | 2017-02-27 | Композиція для лікування діабету, що містить кон'югат інсуліну тривалої дії та кон'югат інсулінотропного пептиду тривалої дії | |
| SG10201604564XA (en) | 2011-06-10 | 2016-07-28 | Hanmi Science Co Ltd | Novel oxyntomodulin derivatives and pharmaceutical composition for treating obesity comprising the same |
| CN103764673A (zh) | 2011-06-10 | 2014-04-30 | 北京韩美药品有限公司 | 葡萄糖依赖性促胰岛素多肽类似物、其药物组合物及应用 |
| NZ618331A (en) | 2011-06-17 | 2016-04-29 | Halozyme Inc | Stable formulations of a hyaluronan-degrading enzyme |
| HRP20190265T1 (hr) | 2011-06-17 | 2019-04-05 | Hanmi Science Co., Ltd. | Konjugat koji sadrži oksintomodulin i fragment imunoglobulina i njegova uporaba |
| BR112013032717A2 (pt) | 2011-06-22 | 2017-01-24 | Univ Indiana Res & Tech Corp | coagonistas do receptor de glucagon/glp-1 |
| US9156902B2 (en) | 2011-06-22 | 2015-10-13 | Indiana University Research And Technology Corporation | Glucagon/GLP-1 receptor co-agonists |
| CN103906528A (zh) | 2011-06-24 | 2014-07-02 | 安米林药品有限责任公司 | 用glp-1受体激动剂的缓释制剂治疗糖尿病的方法 |
| KR101357117B1 (ko) | 2011-06-28 | 2014-02-06 | 비앤엘델리팜 주식회사 | 폴리에틸렌글라이콜 또는 이의 유도체로 페길화된 엑센딘-4 유사체, 이의 제조방법 및 이를 유효성분으로 함유하는 당뇨병 예방 또는 치료용 약학적 조성물 |
| JP6396211B2 (ja) | 2011-07-04 | 2018-09-26 | インペリアル・イノベイションズ・リミテッド | 新規化合物及び摂食行動に対するそれらの効果 |
| WO2013009545A1 (en) | 2011-07-08 | 2013-01-17 | Amylin Pharmaceuticals, Inc. | Engineered polypeptides having enhanced duration of action with reduced immunogenicity |
| JP5950477B2 (ja) | 2011-08-10 | 2016-07-13 | アドシア | 少なくとも1種の基礎インスリンの注射溶液 |
| EP2747832A4 (en) | 2011-08-24 | 2015-01-07 | Phasebio Pharmaceuticals Inc | AGGREGATE FORMULATIONS FOR DELAYED RELEASE |
| CN103189389B (zh) | 2011-09-03 | 2017-08-11 | 深圳市健元医药科技有限公司 | 新的glp‑ⅰ类似物及其制备方法和用途 |
| CN104093735B (zh) | 2011-09-23 | 2018-07-06 | 诺沃—诺迪斯克有限公司 | 新的胰高血糖素类似物 |
| MX359329B (es) | 2011-10-28 | 2018-09-25 | Sanofi Aventis Deutschland | Una combinación farmacéutica para usarse en el tratamiento de un paciente que padece diabetes tipo 2. |
| CN102363633B (zh) | 2011-11-16 | 2013-11-20 | 天津拓飞生物科技有限公司 | 胰高血糖素样肽-1突变体多肽及其制备方法、药物组合物和其应用 |
| WO2013074910A1 (en) | 2011-11-17 | 2013-05-23 | Indiana University Research And Technology Corporation | Glucagon superfamily peptides exhibiting glucocorticoid receptor activity |
| HRP20200567T1 (hr) | 2011-11-29 | 2020-06-26 | Jurox Pty Ltd | Stabilni injektabilni farmaceutski pripravci koji sadrže 2-hidroksipropil-beta-ciklodekstrin i alfaksalon |
| DE12858350T1 (de) | 2011-12-16 | 2021-10-07 | Modernatx, Inc. | Modifizierte mrna zusammensetzungen |
| ES2623786T3 (es) | 2011-12-22 | 2017-07-12 | Pfizer Inc. | Procedimiento de purificación de una muestra de anticuerpo H38C2 |
| IN2014CN04401A (enExample) | 2011-12-23 | 2015-09-04 | Zealand Pharma As | |
| EP2797585A4 (en) | 2011-12-29 | 2015-10-07 | Latitude Pharmaceuticals Inc | STABILIZED GLUCAGONNANOULULSIONS |
| CN113730555A (zh) | 2012-01-09 | 2021-12-03 | 阿道恰公司 | Ph为7且至少含pi为5.8至8.5之基础胰岛素和取代共聚(氨基酸)的可注射溶液 |
| EP2844269A4 (en) | 2012-03-28 | 2016-01-06 | Amylin Pharmaceuticals Llc | TRANSMUCOSAL ADMINISTRATION OF MANIPULATED POLYPEPTIDES |
| WO2013148871A1 (en) | 2012-03-28 | 2013-10-03 | Amylin Pharmaceuticals, Llc | Engineered polypeptides |
| CN104411338A (zh) | 2012-04-02 | 2015-03-11 | 现代治疗公司 | 用于产生与人类疾病相关的生物制剂和蛋白质的修饰多核苷酸 |
| HK1206601A1 (en) | 2012-04-02 | 2016-01-15 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of biologics and proteins associated with human disease |
| CN102649947A (zh) | 2012-04-20 | 2012-08-29 | 无锡和邦生物科技有限公司 | 一种用于测定glp-1及其功能类似物生物活性的细胞株及其应用 |
| US20150111246A1 (en) | 2012-04-24 | 2015-04-23 | Astrazeneca Pharmaceuticals Lp | Site-specific enzymatic modification of exendins and analogs thereof |
| US20130289241A1 (en) | 2012-04-26 | 2013-10-31 | Shanghai Ambiopharm, Inc. | Method for preparing exenatide |
| US8901484B2 (en) | 2012-04-27 | 2014-12-02 | Sanofi-Aventis Deutschland Gmbh | Quantification of impurities for release testing of peptide products |
| WO2013182217A1 (en) | 2012-04-27 | 2013-12-12 | Sanofi-Aventis Deutschland Gmbh | Quantification of impurities for release testing of peptide products |
| CA2872315A1 (en) | 2012-05-03 | 2013-11-07 | Zealand Pharma A/S | Glucagon-like-peptide-2 (glp-2) analogues |
| AU2013255751B2 (en) | 2012-05-03 | 2017-10-05 | Zealand Pharma A/S | GIP-GLP-1 dual agonist compounds and methods |
| EP2664374A1 (en) | 2012-05-15 | 2013-11-20 | F. Hoffmann-La Roche AG | Lysin-glutamic acid dipeptide derivatives |
| CN103421094A (zh) | 2012-05-24 | 2013-12-04 | 上海医药工业研究院 | 一种具有epo类似活性的多肽化合物 |
| WO2013177565A1 (en) | 2012-05-25 | 2013-11-28 | Amylin Pharmaceuticals, Llc | Insulin-pramlintide compositions and methods for making and using them |
| AR091422A1 (es) | 2012-06-14 | 2015-02-04 | Sanofi Sa | Analogos peptidicos de la exendina 4 |
| CA2877358A1 (en) | 2012-06-21 | 2013-12-27 | Indiana University Research And Technology Corporation | Glucagon analogs exhibiting gip receptor activity |
| RS57347B1 (sr) | 2012-06-21 | 2018-08-31 | Univ Indiana Res & Tech Corp | Analozi glukagona koji ispoljavaju aktivnost gip receptora |
| CN104619369B (zh) | 2012-07-12 | 2018-01-30 | 曼金德公司 | 干粉药物输送系统和方法 |
| CN109456400A (zh) | 2012-07-23 | 2019-03-12 | 西兰制药公司 | 胰高血糖素类似物 |
| AR094821A1 (es) | 2012-07-25 | 2015-09-02 | Hanmi Pharm Ind Co Ltd | Formulación líquida de un conjugado de péptido insulinotrópico de acción prolongada |
| AR092862A1 (es) | 2012-07-25 | 2015-05-06 | Hanmi Pharm Ind Co Ltd | Formulacion liquida de insulina de accion prolongada y un peptido insulinotropico y metodo de preparacion |
| KR101968344B1 (ko) | 2012-07-25 | 2019-04-12 | 한미약품 주식회사 | 옥신토모듈린 유도체를 포함하는 고지혈증 치료용 조성물 |
| EP2934562A1 (en) | 2012-08-14 | 2015-10-28 | Wockhardt Limited | Pharmaceutical microparticulate compositions of polypeptides |
| US20150258198A1 (en) | 2012-08-14 | 2015-09-17 | Wockhardt Limited | Pharmaceutical microparticulate compositions of polypeptides |
| CN102816244A (zh) | 2012-08-23 | 2012-12-12 | 无锡和邦生物科技有限公司 | 一种Exendin-4肽与人血清白蛋白HSA的融合蛋白及其制备方法 |
| CN102827270A (zh) | 2012-09-13 | 2012-12-19 | 无锡和邦生物科技有限公司 | 一种聚乙二醇化艾塞那肽衍生物及其用途 |
| TWI608013B (zh) | 2012-09-17 | 2017-12-11 | 西蘭製藥公司 | 升糖素類似物 |
| EP2895506A1 (en) | 2012-09-17 | 2015-07-22 | Imperial Innovations Limited | Peptide analogues of glucagon and glp1 |
| AR092873A1 (es) | 2012-09-26 | 2015-05-06 | Cadila Healthcare Ltd | Peptidos como agonistas triples de los receptores de gip, glp-1 y glugagon |
| UA116217C2 (uk) | 2012-10-09 | 2018-02-26 | Санофі | Пептидна сполука як подвійний агоніст рецепторів glp1-1 та глюкагону |
| KR101993393B1 (ko) | 2012-11-06 | 2019-10-01 | 한미약품 주식회사 | 옥신토모듈린 유도체를 포함하는 당뇨병 또는 비만성 당뇨병 치료용 조성물 |
| TWI816739B (zh) | 2012-11-06 | 2023-10-01 | 南韓商韓美藥品股份有限公司 | 包含調酸素及免疫球蛋白片段之蛋白質接合物的液態製劑 |
| US11065304B2 (en) | 2012-11-20 | 2021-07-20 | Mederis Diabetes, Llc | Peptide pharmaceuticals for insulin resistance |
| TWI674270B (zh) | 2012-12-11 | 2019-10-11 | 英商梅迪繆思有限公司 | 用於治療肥胖之升糖素與glp-1共促效劑 |
| HRP20181300T1 (hr) | 2012-12-21 | 2018-10-05 | Sanofi | Derivati eksendina-4 kao dvostruki glp1/gip- ili trostruki glp1/gip/glukagon agonisti |
| CN103908657A (zh) | 2012-12-31 | 2014-07-09 | 复旦大学附属华山医院 | 胰升糖素样肽-1类似物在制备眼科疾病药物中的用途 |
| BR112015023071A2 (pt) | 2013-03-14 | 2017-07-18 | Univ Indiana Res & Tech Corp | conjugados de insulina-incretina |
| WO2014140222A1 (en) | 2013-03-14 | 2014-09-18 | Medimmune Limited | Pegylated glucagon and glp-1 co-agonists for the treatment of obesity |
| US20160058881A1 (en) | 2013-03-15 | 2016-03-03 | Indiana University Research And Technology Corporation | Prodrugs with prolonged action |
| MY174727A (en) | 2013-04-18 | 2020-05-11 | Novo Nordisk As | Stable, protracted glp-1/glucagon receptor co-agonists for medical use |
| JP2014227368A (ja) | 2013-05-21 | 2014-12-08 | 国立大学法人帯広畜産大学 | 糖尿病および高血糖状態の処置のためのグルカゴンアナログ |
| CN103304660B (zh) | 2013-07-12 | 2016-08-10 | 上海昂博生物技术有限公司 | 一种利拉鲁肽的合成方法 |
| CN103405753B (zh) | 2013-08-13 | 2016-05-11 | 上海仁会生物制药股份有限公司 | 稳定的促胰岛素分泌肽水针药物组合物 |
| AP2016009212A0 (en) | 2013-10-17 | 2016-05-31 | Zealand Pharma As | Acylated glucagon analogues |
| US9988429B2 (en) | 2013-10-17 | 2018-06-05 | Zealand Pharma A/S | Glucagon analogues |
| AU2014345570B2 (en) | 2013-11-06 | 2019-01-24 | Zealand Pharma A/S | Glucagon-GLP-1-GIP triple agonist compounds |
| EP3080149A1 (en) | 2013-12-13 | 2016-10-19 | Sanofi | Dual glp-1/glucagon receptor agonists |
| TW201609796A (zh) | 2013-12-13 | 2016-03-16 | 賽諾菲公司 | 非醯化之艾塞那肽-4(exendin-4)胜肽類似物 |
| WO2015086731A1 (en) | 2013-12-13 | 2015-06-18 | Sanofi | Exendin-4 peptide analogues as dual glp-1/glucagon receptor agonists |
| WO2015086732A1 (en) | 2013-12-13 | 2015-06-18 | Sanofi | Exendin-4 peptide analogues |
| WO2015086728A1 (en) | 2013-12-13 | 2015-06-18 | Sanofi | Exendin-4 peptide analogues as dual glp-1/gip receptor agonists |
| EP3080154B1 (en) | 2013-12-13 | 2018-02-07 | Sanofi | Dual glp-1/gip receptor agonists |
| CN103665148B (zh) | 2013-12-17 | 2016-05-11 | 中国药科大学 | 一种可口服给药的降糖多肽及其制法和用途 |
| CN103980358B (zh) | 2014-01-03 | 2016-08-31 | 杭州阿诺生物医药科技股份有限公司 | 一种制备利拉鲁肽的方法 |
| AU2015205624A1 (en) | 2014-01-09 | 2016-07-14 | Sanofi | Stabilized pharmaceutical formulations of insulin analogues and/or insulin derivatives |
| CN111658604A (zh) | 2014-01-09 | 2020-09-15 | 赛诺菲 | 胰岛素类似物和/或胰岛素衍生物的稳定化不含甘油的药物制剂 |
| GB201404002D0 (en) | 2014-03-06 | 2014-04-23 | Imp Innovations Ltd | Novel compounds |
| TW201625670A (zh) | 2014-04-07 | 2016-07-16 | 賽諾菲公司 | 衍生自exendin-4之雙重glp-1/升糖素受體促效劑 |
| TW201625669A (zh) | 2014-04-07 | 2016-07-16 | 賽諾菲公司 | 衍生自艾塞那肽-4(Exendin-4)之肽類雙重GLP-1/升糖素受體促效劑 |
| TW201625668A (zh) | 2014-04-07 | 2016-07-16 | 賽諾菲公司 | 作為胜肽性雙重glp-1/昇糖素受體激動劑之艾塞那肽-4衍生物 |
| US9932381B2 (en) | 2014-06-18 | 2018-04-03 | Sanofi | Exendin-4 derivatives as selective glucagon receptor agonists |
| CN106519015B (zh) | 2014-09-23 | 2020-04-17 | 深圳市图微安创科技开发有限公司 | 胃泌酸调节素类似物 |
| CN107108713A (zh) | 2014-10-10 | 2017-08-29 | 诺和诺德股份有限公司 | 稳定的基于glp‑1的glp‑1/胰高血糖素受体共激动剂 |
| EA201790914A1 (ru) | 2014-10-24 | 2017-08-31 | Мерк Шарп И Доум Корп. | Коагонисты рецепторов глюкагона и glp-1 |
| WO2016198604A1 (en) | 2015-06-12 | 2016-12-15 | Sanofi | Exendin-4 derivatives as dual glp-1 /glucagon receptor agonists |
| WO2016198624A1 (en) | 2015-06-12 | 2016-12-15 | Sanofi | Exendin-4 derivatives as trigonal glp-1/glucagon/gip receptor agonists |
-
2013
- 2013-08-10 UA UAA201504488A patent/UA116217C2/uk unknown
- 2013-10-07 AR ARP130103627A patent/AR092925A1/es unknown
- 2013-10-08 EA EA201590715A patent/EA030023B1/ru not_active IP Right Cessation
- 2013-10-08 SI SI201330838T patent/SI2906595T1/sl unknown
- 2013-10-08 NZ NZ706898A patent/NZ706898A/en not_active IP Right Cessation
- 2013-10-08 BR BR112015007685A patent/BR112015007685A2/pt not_active IP Right Cessation
- 2013-10-08 ES ES13773767.2T patent/ES2647418T3/es active Active
- 2013-10-08 WO PCT/EP2013/070882 patent/WO2014056872A1/en not_active Ceased
- 2013-10-08 AU AU2013328802A patent/AU2013328802B2/en not_active Ceased
- 2013-10-08 NO NO13773767A patent/NO2906595T3/no unknown
- 2013-10-08 PE PE2015000458A patent/PE20150900A1/es unknown
- 2013-10-08 EP EP13773767.2A patent/EP2906595B1/en active Active
- 2013-10-08 RS RS20171151A patent/RS56515B1/sr unknown
- 2013-10-08 LT LTEP13773767.2T patent/LT2906595T/lt unknown
- 2013-10-08 CN CN201380064117.XA patent/CN104837864B/zh active Active
- 2013-10-08 DK DK13773767.2T patent/DK2906595T3/da active
- 2013-10-08 PT PT137737672T patent/PT2906595T/pt unknown
- 2013-10-08 HR HRP20171726TT patent/HRP20171726T1/hr unknown
- 2013-10-08 MX MX2015004531A patent/MX359533B/es active IP Right Grant
- 2013-10-08 TW TW102136267A patent/TWI613213B/zh not_active IP Right Cessation
- 2013-10-08 KR KR1020157010088A patent/KR102179751B1/ko active Active
- 2013-10-08 JP JP2015535054A patent/JP6373270B2/ja active Active
- 2013-10-08 HU HUE13773767A patent/HUE037150T2/hu unknown
- 2013-10-08 SG SG11201501770WA patent/SG11201501770WA/en unknown
- 2013-10-08 CA CA2887272A patent/CA2887272C/en active Active
- 2013-10-08 PL PL13773767T patent/PL2906595T3/pl unknown
- 2013-10-08 MY MYPI2015000584A patent/MY168749A/en unknown
- 2013-10-09 US US14/049,597 patent/US9365632B2/en active Active
- 2013-10-09 UY UY35072A patent/UY35072A/es not_active Application Discontinuation
-
2015
- 2015-03-09 IL IL237641A patent/IL237641B/en active IP Right Grant
- 2015-03-11 ZA ZA2015/01694A patent/ZA201501694B/en unknown
- 2015-03-17 TN TNP2015000101A patent/TN2015000101A1/fr unknown
- 2015-03-24 DO DO2015000073A patent/DOP2015000073A/es unknown
- 2015-03-26 PH PH12015500688A patent/PH12015500688A1/en unknown
- 2015-03-27 GT GT201500081A patent/GT201500081A/es unknown
- 2015-03-31 CL CL2015000811A patent/CL2015000811A1/es unknown
- 2015-04-17 CR CR20150200A patent/CR20150200A/es unknown
-
2016
- 2016-04-15 US US15/130,647 patent/US20160220643A1/en not_active Abandoned
- 2016-08-24 CL CL2016002137A patent/CL2016002137A1/es unknown
-
2017
- 2017-11-14 CY CY20171101194T patent/CY1119987T1/el unknown
- 2017-12-11 US US15/837,958 patent/US10758592B2/en active Active
Patent Citations (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2004035623A2 (en) | 2002-10-02 | 2004-04-29 | Zealand Pharma A/S | Stabilized exendin-4 compounds |
| WO2006134340A2 (en) | 2005-06-13 | 2006-12-21 | Imperial Innovations Limited | Oxyntomodulin analogues and their effects on feeding behaviour |
| WO2007139941A2 (en) * | 2006-05-26 | 2007-12-06 | Amylin Pharmaceuticals, Inc. | Composition and methods for treatment of congestive heart failure |
| WO2008071972A1 (en) | 2006-12-13 | 2008-06-19 | Imperial Innovations Limited | Novel compounds and their effects on feeding behaviour |
| WO2008081418A1 (en) * | 2007-01-05 | 2008-07-10 | Covx Technologies Ireland Limited | Glucagon-like protein-1 receptor (glp-1r) agonist compounds |
| WO2008101017A2 (en) | 2007-02-15 | 2008-08-21 | Indiana Unversity Research And Technology Corporation | Glucagon/glp-1 receptor co-agonists |
| WO2008152403A1 (en) | 2007-06-15 | 2008-12-18 | Zealand Pharma A/S | Glucagon analogues |
| WO2009155258A2 (en) | 2008-06-17 | 2009-12-23 | Indiana University Research And Technology Corporation | Glucagon/glp-1 receptor co-agonists |
| WO2010070251A1 (en) | 2008-12-15 | 2010-06-24 | Zealand Pharma A/S | Glucagon analogues |
| WO2010070252A1 (en) | 2008-12-15 | 2010-06-24 | Zealand Pharma A/S | Glucagon analogues |
| WO2010070253A1 (en) | 2008-12-15 | 2010-06-24 | Zealand Pharma A/S | Glucagon analogues |
| WO2010070255A1 (en) | 2008-12-15 | 2010-06-24 | Zealand Pharma A/S | Glucagon analogues |
| WO2010096052A1 (en) | 2009-02-19 | 2010-08-26 | Merck Sharp & Dohme Corp. | Oxyntomodulin analogs |
| WO2010096142A1 (en) | 2009-02-19 | 2010-08-26 | Merck Sharp & Dohme, Corp. | Oxyntomodulin analogs |
| WO2011006497A1 (en) | 2009-07-13 | 2011-01-20 | Zealand Pharma A/S | Acylated glucagon analogues |
| WO2011024110A2 (en) * | 2009-08-27 | 2011-03-03 | Rinat Neuroscience Corporation | Glucagon-like peptide-1 receptor (glp-1r) agonists for treating autoimmune disorders |
| WO2011075393A2 (en) | 2009-12-18 | 2011-06-23 | Indiana University Research And Technology Corporation | Glucagon/glp-1 receptor co-agonists |
| WO2011117415A1 (en) | 2010-03-26 | 2011-09-29 | Novo Nordisk A/S | Novel glucagon analogues |
| WO2011117416A1 (en) | 2010-03-26 | 2011-09-29 | Novo Nordisk A/S | Novel glucagon analogues |
| EP2387989A2 (en) | 2010-05-19 | 2011-11-23 | Sanofi | Long - acting formulations of insulins |
| WO2011152182A1 (ja) | 2010-05-31 | 2011-12-08 | 株式会社ジェイテクト | 被覆部材の製造方法 |
| WO2011152181A1 (ja) | 2010-06-01 | 2011-12-08 | 本田技研工業株式会社 | Dc/dcコンバータの制御装置 |
| WO2011160630A2 (en) | 2010-06-23 | 2011-12-29 | Zealand Pharma A/S | Glucagon analogues |
| WO2012088116A2 (en) | 2010-12-22 | 2012-06-28 | Indiana University Research And Technology Corporation | Glucagon analogs exhibiting gip receptor activity |
Non-Patent Citations (35)
| Title |
|---|
| "Handbook of Pharmaceutical excipients", May 2013 |
| "Handbook of Pharmaceutical Excipients, PhP", May 2013 |
| "Handbook of Pharmaceutical Salts, Properties, Selection and Use", 2002, VERLAG HELVETICA CHIMICA ACTA, ZURICH, SWITZERLAND, AND WILEY-VCH, WEINHEIM |
| "Remington: The Science and Practice of Pharmacy", 2000, LIPPENCOTT WILLIAMS & WILKINS |
| "Rote Liste", 2012 |
| "Rote Liste", 2013 |
| "USP Dictionary of USAN and International Drug Names", 2011 |
| BUNCK MC ET AL., DIABETES CARE., vol. 34, 2011, pages 2041 - 7 |
| BUSE, J.B. ET AL., LANCET, vol. 374, 2009, pages 39 - 47 |
| D. S. KING; C. G. FIELDS; G. B. FIELDS, INT. J. PEPTIDE PROTEIN RES., vol. 36, 1990, pages 255 - 266 |
| DAY ET AL., NAT CHEM BIOL, vol. 5, 2009, pages 749 |
| DAY JW ET AL., NATURE CHEM BIOL, vol. 5, 2009, pages 749 - 757 |
| DE OTZEN ET AL., BIOCHEMISTRY, vol. 45, 2006, pages 14503 - 14512 |
| DE OTZEN, BIOCHEMISTRY, vol. 45, 2006, pages 14503 - 14512 |
| DIABETES, vol. 58, 2009, pages 2258 |
| DIABETOLOGIA, vol. 56, 2013, pages 1417 - 1424 |
| DRUCKER DJ ET AL., NATURE DRUG DISC. REV., vol. 9, 2010, pages 267 - 268 |
| E. ATHERTON; R. C. SHEPPARD: "Solid Phase Peptide Synthesis. A Practical Approach", 1989, OXFORD-IRL PRESS |
| ENG J., DIABETES, vol. 45, no. 2, 1996, pages 152A |
| ENG, J. ET AL., J. BIOL. CHEM., vol. 267, 1992, pages 7402 - 05 |
| GENTILELLA R ET AL., DIABETES OBES METAB., vol. 11, 2009, pages 544 - 56 |
| GREENE, T. W.; WUTS, P. G. M.: "Protective Groups in Organic Synthesis", 1999, WILEY & SONS |
| HARGROVE DM ET AL., REGUL. PEPT., vol. 141, 2007, pages 113 - 9 |
| HJORT ET AL., JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 269, 1994, pages 30121 - 30124 |
| HOLST, J., J. PHYSIOL. REV., vol. 87, 2007, pages 1409 |
| KRSTENANSKY ET AL., BIOCHEMISTRY, vol. 25, 1986, pages 3833 - 3839 |
| MEIER, J., J. NAT. REV. ENDOCRINOL., vol. 8, 2012, pages 728 |
| NORRIS SL ET AL., DIABET MED., vol. 26, 2009, pages 837 - 46 |
| POCAI ET AL., OBESITY, vol. 20, 2012, pages 1566 - 1571 |
| ROTE LISTE, 2012 |
| ROTE LISTE, 2013 |
| S. FICHT; R.J.PAYNE; R.T. GUY; C.-H. WONG, CHEM. EUR. J., vol. 14, 2008, pages 3620 - 3629 |
| S.R. CHHABRA ET AL., TETRAHEDRON LETT., vol. 39, 1998, pages 1603 |
| STEWART; YOUNG: "Solid Phase Peptide Synthesis", 1984, PIERCE CHEMICAL CO. |
| VA GAULT ET AL., BIOCHEM PHARMACOL, vol. 85, 2013, pages 16655 - 16662 |
Cited By (54)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10758592B2 (en) | 2012-10-09 | 2020-09-01 | Sanofi | Exendin-4 derivatives as dual GLP1/glucagon agonists |
| US10253079B2 (en) | 2012-12-21 | 2019-04-09 | Sanofi | Functionalized Exendin-4 derivatives |
| US9670261B2 (en) | 2012-12-21 | 2017-06-06 | Sanofi | Functionalized exendin-4 derivatives |
| US9745360B2 (en) | 2012-12-21 | 2017-08-29 | Sanofi | Dual GLP1/GIP or trigonal GLP1/GIP/glucagon agonists |
| WO2015086733A1 (en) * | 2013-12-13 | 2015-06-18 | Sanofi | Dual glp-1/glucagon receptor agonists |
| US9789165B2 (en) | 2013-12-13 | 2017-10-17 | Sanofi | Exendin-4 peptide analogues as dual GLP-1/GIP receptor agonists |
| US9694053B2 (en) | 2013-12-13 | 2017-07-04 | Sanofi | Dual GLP-1/glucagon receptor agonists |
| US9750788B2 (en) | 2013-12-13 | 2017-09-05 | Sanofi | Non-acylated exendin-4 peptide analogues |
| US9751926B2 (en) | 2013-12-13 | 2017-09-05 | Sanofi | Dual GLP-1/GIP receptor agonists |
| US9771406B2 (en) | 2014-04-07 | 2017-09-26 | Sanofi | Peptidic dual GLP-1/glucagon receptor agonists derived from exendin-4 |
| US9758561B2 (en) | 2014-04-07 | 2017-09-12 | Sanofi | Dual GLP-1/glucagon receptor agonists derived from exendin-4 |
| US9775904B2 (en) | 2014-04-07 | 2017-10-03 | Sanofi | Exendin-4 derivatives as peptidic dual GLP-1/glucagon receptor agonists |
| US9932381B2 (en) | 2014-06-18 | 2018-04-03 | Sanofi | Exendin-4 derivatives as selective glucagon receptor agonists |
| CN107750168A (zh) * | 2015-06-05 | 2018-03-02 | 赛诺菲 | 包含glp1/胰高血糖素双重激动剂接头透明质酸缀合物的前药 |
| US10806797B2 (en) | 2015-06-05 | 2020-10-20 | Sanofi | Prodrugs comprising an GLP-1/glucagon dual agonist linker hyaluronic acid conjugate |
| WO2016193371A1 (en) | 2015-06-05 | 2016-12-08 | Sanofi | Prodrugs comprising an glp-1/glucagon dual agonist linker hyaluronic acid conjugate |
| WO2016198624A1 (en) | 2015-06-12 | 2016-12-15 | Sanofi | Exendin-4 derivatives as trigonal glp-1/glucagon/gip receptor agonists |
| WO2016198628A1 (en) | 2015-06-12 | 2016-12-15 | Sanofi | Non-acylated exendin-4 derivatives as dual glp-1/glucagon receptor agonists |
| US9982029B2 (en) | 2015-07-10 | 2018-05-29 | Sanofi | Exendin-4 derivatives as selective peptidic dual GLP-1/glucagon receptor agonists |
| WO2018069295A1 (en) | 2016-10-10 | 2018-04-19 | Sanofi | Method of preparing peptides comprising a lipophilically modified lysine side chain |
| US11021512B2 (en) | 2016-10-10 | 2021-06-01 | Sanofi | Method of preparing peptides comprising a lipophilically modified lysine side chain |
| US10538567B2 (en) | 2016-12-02 | 2020-01-21 | Sanofi | Compounds as peptidic trigonal GLP1/glucagon/GIP receptor agonists |
| US11141489B2 (en) | 2016-12-02 | 2021-10-12 | Sanofi | Conjugates comprising an GLP-1/Glucagon dual agonist, a linker and hyaluronic acid |
| US10519211B2 (en) | 2016-12-02 | 2019-12-31 | Sanofi | Compounds as peptidic GLP1/glucagon/GIP receptor agonists |
| WO2018100134A1 (en) | 2016-12-02 | 2018-06-07 | Sanofi | New compounds as peptidic trigonal glp1/glucagon/gip receptor agonists |
| US10792367B2 (en) | 2016-12-02 | 2020-10-06 | Sanofi | Conjugates comprising an GLP-1/glucagon dual agonist, a linker and hyaluronic acid |
| WO2018100135A1 (en) | 2016-12-02 | 2018-06-07 | Sanofi | New compounds as peptidic glp1/glucagon/gip receptor agonists |
| WO2018100174A1 (en) | 2016-12-02 | 2018-06-07 | Sanofi | Conjugates comprising an glp-1/glucagon dual agonist, a linker and hyaluronic acid |
| US10392366B2 (en) | 2017-02-21 | 2019-08-27 | Sanofi | Azetidine compounds as GPR119 modulators for the treatment of diabetes, obesity, dyslipidemia and related disorders |
| WO2018153849A1 (en) | 2017-02-21 | 2018-08-30 | Sanofi | Azetidine compounds as gpr119 modulators for the treatment of diabetes, obesity, dyslipidemia and related disorders |
| WO2019030268A1 (en) | 2017-08-09 | 2019-02-14 | Sanofi | GLP-1 / GLUCAGON RECEPTOR AGONISTS FOR THE TREATMENT OF HEPATIC STEATOSIS AND STÉATOHÉPATITE |
| US11352405B2 (en) | 2017-08-09 | 2022-06-07 | Sanofi | GLP-1/glucagon receptor agonists in the treatment of fatty liver disease and steatohepatitis |
| WO2019122109A1 (en) | 2017-12-21 | 2019-06-27 | Sanofi | Liquid pharmaceutical composition |
| US11590206B2 (en) | 2017-12-21 | 2023-02-28 | Sanofi | Liquid pharmaceutical composition |
| US11873328B2 (en) | 2018-04-05 | 2024-01-16 | Sun Pharmaceutical Industries Limited | GLP-1 analogues |
| US11242373B2 (en) | 2018-04-05 | 2022-02-08 | Sun Pharmaceutical Industries Limited | GLP-1 analogues |
| US11447535B2 (en) | 2018-04-05 | 2022-09-20 | Sun Pharmaceutical Industries Limited | GLP-1 analogues |
| US12421289B2 (en) | 2018-04-05 | 2025-09-23 | Sun Pharmaceutical Industries Limited | GLP-1 analogues |
| US11866477B2 (en) | 2018-04-05 | 2024-01-09 | Sun Pharmaceutical Industries Limited | GLP-1 analogues |
| US11560402B2 (en) | 2018-04-10 | 2023-01-24 | Sanofi-Aventis Deutschland Gmbh | Method for cleavage of solid phase-bound peptides from the solid phase |
| US11028123B2 (en) | 2018-04-10 | 2021-06-08 | Sanofi-Aventis Deutschland Gmbh | Capping of unprotected amino groups during peptide synthesis |
| WO2019229225A1 (en) | 2018-05-30 | 2019-12-05 | Sanofi | Conjugates comprising an glp-1/glucagon/gip triple receptor agonist, a linker and hyaluronic acid |
| WO2021175974A1 (en) | 2020-03-06 | 2021-09-10 | Sanofi | Peptides as selective gip receptor agonists |
| US12378296B2 (en) | 2020-04-24 | 2025-08-05 | Boehringer Ingelheim International Gmbh | Glucagon analogues as long-acting GLP-1/glucagon receptor agonists in the treatment of fatty liver disease and steatohepatitis |
| WO2021214220A1 (en) | 2020-04-24 | 2021-10-28 | Boehringer Ingelheim International Gmbh | Glucagon analogues as long-acting glp-1/glucagon receptor agonists in the treatment of fatty liver disease and steatohepatitis |
| US11813312B2 (en) | 2020-04-24 | 2023-11-14 | Boehringer Ingelheim International Gmbh | Glucagon analogues as long-acting GLP-1/glucagon receptor agonists in the treatment of fatty liver disease and steatohepatitis |
| WO2022133148A1 (en) * | 2020-12-17 | 2022-06-23 | Intarcia Therapeutics, Inc. | Long acting glucagon like polypeptide-1 (glp-1) receptor agonists and methods of use |
| US12084485B2 (en) | 2020-12-17 | 2024-09-10 | I2O Therapeutics, Inc. | Long acting glucagon like polypeptide-1 (GLP-1) receptor agonists and methods of use |
| WO2023006923A1 (en) | 2021-07-30 | 2023-02-02 | Boehringer Ingelheim International Gmbh | Dose regimen for long-acting glp1/glucagon receptor agonists |
| WO2023031455A1 (en) | 2021-09-06 | 2023-03-09 | Sanofi Sa | New peptides as potent and selective gip receptor agonists |
| WO2024165571A2 (en) | 2023-02-06 | 2024-08-15 | E-Therapeutics Plc | Inhibitors of expression and/or function |
| WO2025125576A2 (en) | 2023-12-15 | 2025-06-19 | E-Therapeutics Plc | Inhibitors of expression and/or function |
| WO2025133348A1 (en) | 2023-12-22 | 2025-06-26 | E-Therapeutics Plc | Inhibitors of expression and/or function |
| WO2025196502A1 (en) | 2024-03-20 | 2025-09-25 | North Carolina Agricultural & Technical State University | Choline kinase inhibitors as a therapeutic treatment for obesity |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU2013328802B2 (en) | Exendin-4 derivatives as dual GLP1/Glucagon agonists | |
| US10253079B2 (en) | Functionalized Exendin-4 derivatives | |
| AU2015243611B2 (en) | Dual GLP-1 / glucagon receptor agonists derived from exendin-4 | |
| WO2013186240A2 (en) | Exendin-4 peptide analogues | |
| CA2944682A1 (en) | Exendin-4 derivatives as peptidic dual glp-1 / glucagon receptor agonists | |
| HK1209766B (en) | Exendin-4 derivatives as dual glp1/glucagon agonists | |
| OA17436A (en) | Functionalized exendin-4 derivatives. | |
| OA17287A (en) | New indanyloxydihydrobenzofuranylacetic acids | |
| HK1211233B (en) | Exendin-4 derivatives as dual glp1/gip- or trigonal glp1/gip/glucagon agonists |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13773767 Country of ref document: EP Kind code of ref document: A1 |
|
| DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
| REEP | Request for entry into the european phase |
Ref document number: 2013773767 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2013773767 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 237641 Country of ref document: IL |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 12015500688 Country of ref document: PH |
|
| WWE | Wipo information: entry into national phase |
Ref document number: DZP2015000177 Country of ref document: DZ |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2015000811 Country of ref document: CL |
|
| ENP | Entry into the national phase |
Ref document number: 2015535054 Country of ref document: JP Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 2887272 Country of ref document: CA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 000458-2015 Country of ref document: PE |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2015/004531 Country of ref document: MX |
|
| WWE | Wipo information: entry into national phase |
Ref document number: CR2015-000200 Country of ref document: CR |
|
| ENP | Entry into the national phase |
Ref document number: 20157010088 Country of ref document: KR Kind code of ref document: A |
|
| REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112015007685 Country of ref document: BR |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 15100828 Country of ref document: CO |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 38066 Country of ref document: MA |
|
| ENP | Entry into the national phase |
Ref document number: 2013328802 Country of ref document: AU Date of ref document: 20131008 Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 201590715 Country of ref document: EA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: IDP00201502780 Country of ref document: ID |
|
| ENP | Entry into the national phase |
Ref document number: 112015007685 Country of ref document: BR Kind code of ref document: A2 Effective date: 20150407 |