WO2011152182A1 - 被覆部材の製造方法 - Google Patents

被覆部材の製造方法 Download PDF

Info

Publication number
WO2011152182A1
WO2011152182A1 PCT/JP2011/060977 JP2011060977W WO2011152182A1 WO 2011152182 A1 WO2011152182 A1 WO 2011152182A1 JP 2011060977 W JP2011060977 W JP 2011060977W WO 2011152182 A1 WO2011152182 A1 WO 2011152182A1
Authority
WO
WIPO (PCT)
Prior art keywords
dlc film
base material
processing chamber
covering member
gas
Prior art date
Application number
PCT/JP2011/060977
Other languages
English (en)
French (fr)
Inventor
雅裕 鈴木
和芳 山川
齊藤 利幸
Original Assignee
株式会社ジェイテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイテクト filed Critical 株式会社ジェイテクト
Priority to CN201180026566.6A priority Critical patent/CN102918177B/zh
Priority to JP2012518306A priority patent/JPWO2011152182A1/ja
Priority to US13/696,921 priority patent/US20130059093A1/en
Priority to EP11789591.2A priority patent/EP2578726B1/en
Publication of WO2011152182A1 publication Critical patent/WO2011152182A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/515Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using pulsed discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/04Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/046Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with at least one amorphous inorganic material layer, e.g. DLC, a-C:H, a-C:Me, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/343Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not

Definitions

  • the present invention relates to a method for manufacturing a covering member in which at least a part of a substrate surface is covered with a DLC film.
  • the DLC film is formed by, for example, a plasma CVD (Plasma Chemical Vapor Deposition) method. Specifically, the processing chamber containing the substrate is evacuated, and a raw material gas containing a carbon-based compound such as methane, hydrogen gas, and argon gas is continuously introduced, and a predetermined processing pressure is set in the processing chamber. Depressurize to.
  • a voltage is applied to the base material to generate plasma in the processing chamber, thereby generating ions and radicals from the source gas and causing a chemical reaction on the surface of the base material.
  • a film mainly composed of C (carbon) can be deposited on the surface of the film.
  • the plasma CVD method a DC plasma CVD method in which a DC voltage is applied to the substrate, a DC pulse plasma CVD method in which a DC pulse voltage is applied, or the like is employed.
  • Si silicon
  • the conformability of the DLC film in the initial stage of use hereinafter referred to as “initial conformability”
  • the DLC film has good low friction properties from the initial stage of use. Can be granted. Therefore, in the plasma CVD method, an organosilicon compound that is a raw material of Si may be added to the raw material gas.
  • organosilicon compound for example, a silane compound such as tetramethylsilane is generally used. Further, in the DLC film forming process by plasma CVD under a high pressure reduction (low pressure) such that the processing pressure in the processing chamber is 20 Pa or less, for example, as described in Patent Document 1, hexamethyldisilazane or Hexamethyldisiloxane may be used.
  • hexamethyldisilazane is a liquid at normal temperature and pressure, and has a high boiling point of about 125 ° C. at normal pressure. Therefore, in order to continue to introduce such hexamethyldisilazane into the processing chamber in a DLC film forming step under reduced pressure in a large amount and continuously vaporized as described above, for example, a vaporization supply device equipped with a heater or the like And the vaporization supply device needs to be continuously operated during the DLC film forming process. Accordingly, there arises a new problem that the structure and operation of the plasma CVD apparatus are complicated and the energy required for operation is increased.
  • tetramethylsilane has a low boiling point of 26 ° C. at normal pressure. For this reason, it is possible to smoothly vaporize at normal temperature without causing heating or the like by simply bringing it into contact with the reduced-pressure atmosphere in the processing chamber, and the above-mentioned problems do not occur. Therefore, in the DLC film forming step under reduced pressure, it is common to use tetramethylsilane as the organosilicon compound.
  • the processing pressure is increased as described above. Nevertheless, the effect of improving the deposition rate of the DLC film cannot be obtained sufficiently. That is, when the processing pressure in the processing chamber is increased within the above range, the partial pressure of the carbon-based compound serving as the C material and the silane compound serving as the Si material increases. However, the deposition rate of the DLC film cannot be sufficiently improved to meet the increased partial pressure.
  • An object of the present invention is to provide a method for producing a covering member that can increase the deposition rate of the DLC film as much as possible, and can minimize damage to the substrate on which at least a part of the surface of the substrate is the basis of the covering member. There is.
  • One embodiment of the present invention is a method of manufacturing a covering member in which at least a part of the surface of a base material is covered with a DLC film, and contains at least a carbon-based compound and oxygen in a processing chamber containing the base material.
  • a source gas containing an organosilicon compound is introduced, and plasma is generated by applying a voltage to the substrate under a processing pressure of 100 Pa or more and 400 Pa or less to form a DLC film on the surface of the substrate.
  • a method of manufacturing a covering member including a DLC film forming step is provided.
  • an oxygen-containing organosilicon compound is selectively used in place of a conventional silane compound such as tetramethylsilane as the organosilicon compound added to the raw material gas.
  • a conventional silane compound such as tetramethylsilane
  • the film formation rate of the DLC film formed on the surface of the substrate in the DLC film formation process under reduced pressure is compared with the case of using conventional tetramethylsilane or the like. Greatly improved.
  • the productivity of the covering member in which at least a part of the surface of the base material is coated with the DLC film can be further improved as compared with the current situation, and the damage received by the base material of the covering member is reduced as much as possible. This makes it possible to expand the range of material selection.
  • the oxygen-containing organosilicon compound may be hexamethyldisiloxane.
  • the boiling point of hexamethyldisiloxane is about 70 ° C. when the boiling point is 100 ° C. at normal pressure and the processing pressure in the processing chamber is 100 Pa or more and 400 Pa or less. Accordingly, it is sufficiently vaporized in a state where it is in contact with a reduced-pressure atmosphere in the processing chamber, that is, under a reduced pressure, such as a relatively gentle heating of less than 100 ° C., for example, a heating of a bath containing hexamethyldisiloxane. be able to.
  • the productivity of the covering member can be further improved in combination with the availability of hexamethyldisiloxane and the low cost.
  • a direct current plasma CVD method or a direct current pulse plasma CVD method may be employed, but it is particularly preferable to employ a direct current pulse plasma CVD method.
  • the manufacturing method of the said covering member WHEREIN You may generate
  • the DC pulse plasma CVD method for example, the use of the DC plasma CVD method, and the generation of abnormal discharge that leads to temperature rise compared to the case where plasma is generated by applying a DC voltage to the substrate. It is possible to further stabilize the plasma generated in the processing chamber while suppressing as much as possible. Therefore, the treatment temperature can be suppressed to, for example, 300 ° C. or lower, and damage to the substrate due to the temperature rise can be minimized.
  • the DLC film formed by the direct-current pulse plasma CVD method has a smooth surface, the initial conformability can be further improved in combination with the fact that the DLC film contains Si.
  • the deposition rate of the DLC film can be increased as much as possible, and the productivity of the covering member in which at least a part of the surface of the base material is covered with the DLC film can be further improved from the current state. Damage to the base material of the base can be minimized.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a plasma CVD apparatus 1 used in a method for manufacturing a covering member 20 according to an embodiment of the present invention.
  • the covering member 20 can be manufactured by a direct current pulse plasma CVD method or a direct current plasma CVD method.
  • the plasma CVD apparatus 1 shown in the figure includes a processing chamber 3 surrounded by a partition wall 2, a base 5 that holds a base material 4 that is a source of a covering member 20 in the processing chamber 3, and a source gas in the processing chamber 3.
  • a source gas introduction pipe 6 for introducing gas, an exhaust system 7 for evacuating the inside of the processing chamber 3, and a DC pulse voltage or a DC voltage for converting the gas introduced into the processing chamber 3 into plasma.
  • a power source 8 to be generated.
  • the base 5 includes a support plate 9 in a horizontal posture and a support shaft 10 that extends in the vertical direction and supports the support plate 9.
  • a support plate 9 in a horizontal posture
  • a support shaft 10 that extends in the vertical direction and supports the support plate 9.
  • the base 5 for example, a three-stage type in which three support plates 9 are arranged in the vertical direction is employed.
  • the base 5 is entirely formed using a conductive material such as copper.
  • a negative electrode of a power source 8 is connected to the base 5.
  • the partition wall 2 of the processing chamber 3 is formed using a conductive material such as stainless steel.
  • a positive electrode of a power source 8 is connected to the partition wall 2.
  • the partition wall 2 is grounded.
  • the partition wall 2 and the base 5 are insulated by an insulating member 11. Therefore, the partition wall 2 is kept at the ground potential.
  • the source gas introduction pipe 6 extends in the horizontal direction above the base 5 in the processing chamber 3.
  • a number of source gas discharge holes 12 arranged along the longitudinal direction of the source gas introduction pipe 6 are formed in a portion of the source gas introduction pipe 6 facing the base 5.
  • a source gas containing a carbon-based compound and an oxygen-containing organosilicon-based compound as component gases is supplied to the source gas introduction pipe 6.
  • the source gas introduction pipe 6 is connected to a plurality of branch introduction pipes (not shown) for introducing each component gas from the supply source of each component gas (a gas cylinder, a container for storing liquid, etc.) to the processing chamber 3. ing.
  • Each branch introduction pipe is provided with a flow rate adjusting valve (not shown) for adjusting the flow rate of the component gas from each supply source.
  • the container which accommodates the liquid among supply sources is provided with the heating means (not shown) for heating a liquid as needed.
  • the exhaust system 7 includes a first exhaust pipe 13 and a second exhaust pipe 14 that communicate with the processing chamber 3, a first on-off valve 15, a second on-off valve 16, a third on-off valve 19, a first pump 17, and a first pump 17. 2 pump 18.
  • a first opening / closing valve 15 and a first pump 17 are interposed in this order from the processing chamber 3 side in the middle of the first exhaust pipe 13.
  • a low vacuum pump such as an oil rotary vacuum pump (rotary pump) or a diaphragm vacuum pump is employed.
  • the oil rotary vacuum pump is a positive displacement vacuum pump that reduces the airtight space and the ineffective space between components such as a rotor, a stator, and a sliding blade with oil.
  • Examples of the oil rotary vacuum pump adopted as the first pump 17 include a rotary blade type oil rotary vacuum pump and a swing piston type vacuum pump.
  • the tip of the second exhaust pipe 14 is connected between the first opening / closing valve 15 and the first pump 17 in the first exhaust pipe 13.
  • a second opening / closing valve 16, a second pump 18, and a third opening / closing valve 19 are interposed in this order from the processing chamber 3 side in the middle of the second exhaust pipe 14.
  • a high vacuum pump such as a turbo molecular pump or an oil diffusion pump is employed.
  • FIG. 2 is a cross-sectional view showing a surface layer portion of the covering member 20 manufactured by the manufacturing method using the plasma CVD apparatus 1.
  • the covering member 20 includes a base material 4 and a DLC film 21 formed on the surface of the base material 4.
  • a material of the base material 4 for example, when the covering member 20 is various sliding members mounted on an automobile, tool steel, carbon steel, stainless steel, etc. that are generally used to form the sliding member are used. Various steel materials are mentioned.
  • the content ratio of Si in the DLC film 21 is, for example, about 7% by mass or more and 30% by mass or less, particularly about 20% by mass. .
  • the thickness of the DLC film 21 is, for example, about 0.1 to 10.0 ⁇ m.
  • the peeling start load that causes mode 2 “local peeling” is defined as the peeling strength of the DLC film 21 on the base material 4 by the scratch test specified in JSME S010 (1996) of the Japan Society of Mechanical Engineers, the peeling The starting load is, for example, 25N or more.
  • the base material 4 is set on the support plate 9 of the base 5 in the processing chamber 3. After that, the processing chamber 3 is closed. Next, after the first pump 17 is driven with the first, second, and third on-off valves 15, 16, 19 closed, the inside of the processing chamber 3 is evacuated by opening the first on-off valve 15. When the inside of the processing chamber 3 is evacuated to a predetermined vacuum level by the first pump 17, the first opening / closing valve 15 is closed and the third opening / closing valve 19 is opened to drive the second pump 18. By opening the valve 16, the inside of the processing chamber 3 is further evacuated by the first and second pumps 17 and 18.
  • the raw material gas is introduced into the processing chamber 3 through the raw material gas introduction pipe 6 from a supply source (not shown) while continuing the exhausting alone.
  • a source gas for example, a carbon compound and an oxygen-containing organosilicon compound added with hydrogen gas, argon gas, or the like are used. Hydrogen gas and argon gas act to stabilize the plasma.
  • the argon gas also acts to harden the DLC film 21 by pressing and solidifying C deposited on the surface of the substrate 4.
  • Examples of the carbon-based compound include one or two hydrocarbon compounds that are gas or liquid at normal temperature and normal pressure, such as methane (CH 4 ), acetylene (C 2 H 2 ), and benzene (C 6 H 6 ).
  • Examples of the oxygen-containing organosilicon compound include one or more organosilicon compounds containing an oxygen atom at any position in the molecule, such as a siloxane compound and an alkoxysilane compound.
  • examples of the siloxane compound include hexamethyldisiloxane [(CH 3 ) 3 Si—O—Si (CH 3 ) 3 , boiling point at normal pressure: 100 ° C.], 1,1,3,3-tetramethyldi Siloxane [(CH 3 ) 2 SiH—O—SiH (CH 3 ) 2 , boiling point at normal pressure: 71 ° C.] and the like are preferably used.
  • alkoxysilane compound trimethylethoxysilane [(CH 3 ) 3 SiOC 2 H 5 , boiling point at normal pressure: 75 ° C.], dimethoxydimethylsilane [(CH 3 ) 2 Si (OCH 3 ) 2 ), normal pressure And the like, methyltrimethoxysilane [CH 3 Si (OCH 3 ) 3 ), boiling point at normal pressure: 103 ° C.] and the like are preferably used.
  • hexamethyldisiloxane is particularly preferable for the reason described above. While adjusting the flow rate adjustment valve of the branch introduction pipe (not shown) for each component gas, while adjusting the flow rate ratio of each component gas and the total flow rate of the raw material gas that is a mixed gas of each component gas, The source gas is introduced into the processing chamber 3 through the source gas introduction pipe 6 to adjust the processing pressure in the processing chamber 3 to 100 Pa or more and 400 Pa or less.
  • the processing pressure is less than 100 Pa, since the amount of the source gas introduced into the processing chamber 3 is small as described above, the deposition speed of the DLC film 21 is low, and the DLC film 21 having a predetermined thickness is formed. Takes a long time. Therefore, the initial purpose of increasing the deposition rate of the DLC film 21 as much as possible to further improve the productivity of the covering member 20 as compared to the present state and minimizing the damage to the base material 4 that is the basis of the covering member 20 is as much as possible. Cannot be achieved.
  • the processing pressure exceeds 400 Pa, plasma cannot be generated stably, and thus a good DLC film 21 having a uniform density and excellent friction and wear resistance is formed on the substrate. Can not do it.
  • the flow rate of the oxygen-containing organosilicon compound among the component gases is, for example, that of carbon compound, hydrogen gas, and argon gas in order to achieve a suitable range of the content ratio of Si contained in the DLC film 21 described above.
  • the total flow rate is 2.20 as a ratio to the reference flow rate, it is preferably adjusted to 0.01 or more, particularly 0.03 or more with respect to the total flow rate 2.20. .20 to 0.12 or less, particularly 0.06 or less.
  • the flow rate of the oxygen-containing organosilicon compound is less than the above range, the effect of increasing the deposition rate of the DLC film 21 by adding the oxygen-containing organosilicon compound to the mixed gas cannot be sufficiently obtained.
  • the initial purpose of reducing the damage received by the base material 4 as a base of the covering member 20 as much as possible cannot be achieved while further improving the productivity.
  • the effect of improving the initial conformability of the DLC film 21 by adding Si in the preferable range to the DLC film 21 to be formed may not be obtained.
  • a large amount of powder mainly containing excess Si may be generated in the processing chamber 3.
  • the powder is taken into the DLC film 21 to reduce the uniformity of density and thickness, the peel strength with respect to the base material 4 or the like, or penetrates into each part constituting the plasma CVD apparatus 1 and functions of each part. May be disturbed. Furthermore, as a result of the need for a powder removal step to prevent these problems from occurring, the productivity of the covering member 20 may be reduced.
  • the flow rate of the carbon compound is preferably adjusted to about 50% of the total flow rate 2.20 of the carbon compound, hydrogen gas, and argon gas.
  • the power supply 8 is turned on to generate a potential difference between the partition wall 2 and the base 5, thereby generating plasma in the processing chamber 3.
  • a plasma is generated by applying a DC pulse voltage between the partition wall 2 and the base 5 by turning on the power supply 8. Due to the generation of this plasma, ions and radicals are generated from the source gas in the processing chamber 3 and are attracted to the surface of the substrate 4 based on the potential difference. Then, a chemical reaction occurs on the surface of the substrate 4, and a DLC film 21 containing Si as a main component is deposited on the surface of the substrate 4.
  • FIG. 3 is a graph showing an example of a waveform of a DC pulse voltage applied from the power source 8 to the base material 4.
  • the set voltage value of the DC pulse voltage is set to a value of about ⁇ 1000 V, for example. That is, when the power supply 8 is turned on, a potential difference of 1000 V is generated between the partition wall 2 and the base 5. In other words, a negative DC pulse voltage of 1000 V is applied to the substrate 4 set on the base 5, and the substrate 4 functions as a negative electrode. Since the waveform is pulsed, abnormal discharge does not occur in the processing chamber 3 even when such a high voltage is applied, and the temperature rise of the base material 4 can be suppressed, and the processing temperature can be suppressed to 300 ° C. or lower, for example.
  • a value obtained by dividing the pulse width ⁇ by the pulse period represented by the reciprocal (1 / f) of the frequency f, that is, the pulse width ⁇ is multiplied by the frequency f as shown in the equation (1).
  • the duty ratio obtained as a value is preferably set to 5% or more, particularly about 50%.
  • the frequency f is preferably set to 200 Hz or more and 2000 Hz or less, particularly about 1000 Hz.
  • a direct current plasma CVD method may be employed instead of the direct current pulse plasma CVD method. That is, when the power source 8 is turned on, a DC voltage is applied between the partition wall 2 and the base 5 to generate plasma. Due to the generation of this plasma, ions and radicals are generated from the source gas in the processing chamber 3 and are attracted to the surface of the substrate 4 based on the potential difference. Then, a chemical reaction occurs on the surface of the substrate 4, and a DLC film 21 containing Si as a main component is deposited on the surface of the substrate 4.
  • the deposition rate of the DLC film 21 can be increased, the productivity of the covering member 20 can be further improved from the current level. Further, although there is a possibility of temperature rise, damage to the base material 4 that is the base of the covering member 20 can be reduced.
  • the power supply 8 is turned off and the introduction of the source gas is stopped. Cool down to room temperature while continuing to exhaust.
  • the first opening / closing valve 15 is closed, and instead, a leak valve (not shown) is opened to introduce outside air into the processing chamber 3, the inside of the processing chamber 3 is returned to normal pressure, the processing chamber is opened, and the substrate 4 is opened. Take out. Thereby, the covering member 20 in which at least a part of the surface of the substrate 4 is covered with the DLC film 21 is manufactured.
  • a clutch plate of a friction clutch for example, a clutch plate of a friction clutch, a worm of a steering device (a DLC film is formed on a tooth surface), an inner ring / outer ring of a bearing (a DLC film is formed on a raceway surface), a bearing retainer, and a propeller shaft (drive) Shaft, male spline part and / or female spline part).
  • the surface of the substrate 4 Prior to forming the DLC film 21 on the surface of the substrate 4 by performing the DC pulse plasma CVD method or the DC plasma CVD method, the surface of the substrate 4 may be subjected to ion bombardment. When performing ion bombardment, for example, plasma is generated by turning on the power supply 8 while introducing argon gas and hydrogen gas into the processing chamber 3.
  • ions and radicals are generated from the argon gas in the processing chamber 3, and different molecules and the like that are bombarded on the surface of the substrate 4 based on the potential difference and adsorbed on the surface of the substrate 4 are sputtered. It can be removed, the surface can be activated, or the atomic arrangement can be modified.
  • the peel strength of the DLC film 21 formed by the plasma CVD method in the next step can be increased, and the frictional properties and wear resistance can be further improved.
  • the DLC film 21 is not directly formed on the surface of the base material 4, and a nitride film such as SiN or CrN, or an intermediate layer made of Cr, Ti, SiC or the like is provided between the surface of the base material 4 and the DLC film 21.
  • positioned may be sufficient.
  • Examples and Comparative Examples a DLC film was formed on the surface of a base material 4 made of tool steel (SKH4) using the plasma CVD apparatus 1 shown in FIG.
  • methane as a carbon-based compound
  • hexamethyldisiloxane as an oxygen-containing organosilicon-based material
  • a mixed gas of hydrogen gas and argon gas is used as a raw material gas.
  • hexamethyldisiloxane is used instead.
  • Tetramethylsilane was used as the silane compound.
  • the ratio of the flow rates of the three components of methane, hydrogen gas, and argon gas is methane: 1.00, hydrogen: 0.60, and argon: 0.60, and the total of the flow rate ratios is 2.20. It was.
  • the flow rate of hexamethyldisiloxane was adjusted to 0.03 (Example 1) and 0.06 (Example 2), respectively, with respect to the total ratio of the flow rates of the three components of 2.20.
  • the flow rate of tetramethylsilane was adjusted to 0.06 with respect to the total ratio of the flow rates of the three components, 2.20.
  • the power source 8 one that generates a DC pulse voltage was used.
  • the set voltage value of the DC pulse voltage was set to -1000 V
  • the frequency f was set to 1000 Hz
  • the duty ratio was set to 50%.
  • the inside of the processing chamber 3 is evacuated according to the procedure described above, and then only argon gas is introduced, the power source 8 is turned on to generate plasma in the processing chamber 3 to perform ion bombardment, and then the source gas is introduced. Then, the processing pressure in the processing chamber 3 was adjusted to 400 Pa. Next, the power source 8 was turned on again to generate plasma in the processing chamber 3, and a DLC film 21 was formed on the surface of the substrate 4 by direct current pulse plasma CVD.
  • the deposition rate of the DLC film can be improved by using hexamethyldisiloxane, which is an oxygen-containing organosilicon compound, instead of tetramethylsilane, which is a silane compound.
  • a DLC film was formed on the surface of the base material 4 made of tool steel (SKH4) by a direct current plasma CVD method to produce a covering member.
  • a mixed gas of methane as a carbon-based compound, tetramethylsilane as a silane compound, hydrogen gas, and argon gas was used as a raw material gas.
  • the ratio of the flow rates of the three components of methane, hydrogen gas, and argon gas is methane: 1.00, hydrogen: 0.60, and argon: 0.60, and the flow rate of tetramethylsilane is 3 It adjusted to 0.06 with respect to the total 2.20 of the ratio of the flow rate of a component.
  • the set voltage value of the DC voltage was set to ⁇ 1000 V, respectively, and the treatment pressure was adjusted to 50 to 400 Pa.
  • FIG. 4 is a graph showing the nanoindentation hardness of the DLC film included in the covering members manufactured using Examples 1 and 2 and Comparative Example 1.
  • the DLC film 21 included in the covering member 20 manufactured using the first embodiment may be referred to as “DLC film 21 of the first embodiment”, and the coating manufactured using the second embodiment.
  • the DLC film 21 included in the member 20 may be referred to as “DLC film 21 of Example 2”.
  • the DLC film included in the covering member manufactured using Comparative Example 2 may be referred to as “DLC film of Comparative Example 2”.
  • the DLC film 21 of Example 2 has sufficient hardness, it is slightly softer than the DLC film of Comparative Example 2.
  • the DLC film 21 of Example 1 has the same hardness as the DLC film of Comparative Example 2. Therefore, it can be seen that a DLC film having a hardness as high as that of a DLC film formed using a silane compound as a raw material gas under a high temperature environment can be manufactured using the manufacturing method of the first embodiment. Moreover, it turns out that the DLC film which has sufficient hardness can be manufactured using the manufacturing method of this Example 2.
  • the DLC film has a structure in which both a graphite bond (sp 2 bond) and an amorphous structure are mixed.
  • the characteristics (physical properties) of the DLC film greatly depend on the ratio between the graphite bond and the amorphous structure contained in the DLC film.
  • Raman spectra of the measured DLC film using a Raman spectroscopy can be waveform separation and D band having a peak near 1350 cm -1, in the G band having a peak near 1580 cm -1.
  • the G band indicates the presence of sp 2 bonds (graphite bonds), and the D band indicates the presence of sp 2 bonds broken.
  • the presence of the D band indicates that the DLC film has an amorphous structure.
  • FIG. 5 is a graph showing an example of a Raman spectrum of the DLC films of Examples and Comparative Examples.
  • FIG. 6 is a graph obtained by separating the Raman spectrum of the DLC film 21 of Example 1 into a G band and a D band.
  • FIG. 7 is a graph obtained by separating the Raman spectrum of the DLC film of Comparative Example 2 into a G band and a D band.
  • the Raman spectra of the DLC films of Examples 1 and 2 and Comparative Example 2 are shown side by side in the vertical direction shown in FIG. 5, and the peak intensity around 1800 cm ⁇ 1 of each Raman spectrum is the weakest. .
  • FIG. 5 shows that each Raman spectrum has a peak near the peak position of the G band and the peak position of the D band.
  • FIGS 6 and 7 show not only the Raman spectrum but also the curve fitting of the Raman spectrum, the curve fitting S1 and S2 of the entire Raman spectrum, the curve fitting G1 and G2 of the Raman spectrum of the G band, and the Raman spectrum of the D band.
  • Curve fittings D1 and D2 are shown.
  • the entire curve fittings S1 and S2 are waveforms obtained by adding the curve fittings G1 and G2 for the G band and the curve fittings D1 and D2 for the D band.
  • Each curve fitting S1, S2, G1, G2, D1, D2 can be obtained, for example, by a general curve fitting method in which a Raman spectrum is fitted with a sum of a plurality of Gaussian functions or Lorentz functions. 6 and 7 that the peak intensity ratio in the DLC film 21 of Example 1 and the peak intensity ratio in the DLC film of Comparative Example 2 are substantially the same. Therefore, it can be seen that a DLC film having excellent hardness comparable to that of a DLC film formed using a silane compound as a source gas in a high temperature environment can be manufactured using the manufacturing method of Example 1.

Abstract

 この被覆部材の製造方法は、基材を収容する処理室内に、炭素系化合物、および酸素含有有機ケイ素系化合物を含有する原料ガスを導入して処理圧力100Pa以上、400Pa以下の条件下、基材に電圧を印加することによりプラズマを発生させて、基材の表面にDLC膜を形成するDLC膜形成工程を備える。酸素含有有機ケイ素系化合物として、たとえばヘキサメチルジシロキサンが用いられる。DLC膜形成工程では、たとえば直流パルス電圧が基材に印加される。

Description

被覆部材の製造方法
 本発明は、基材表面の少なくとも一部がDLC膜で被覆された被覆部材の製造方法に関するものである。
 例えば自動車の燃費を低減させるため、自動車に搭載される各種摺動部材の摺動抵抗を低減させることが求められる。そのため摺動部材のもとになる基材表面の少なくとも一部を、低摩擦性および耐摩耗性(高硬度性)を有するDLC(Diamond Like Carbon)膜によって被覆する場合がある。
 DLC膜は、例えばプラズマCVD(Plasma Chemical Vapor Deposition)法によって形成される。具体的には、基材を収容する処理室内を真空排気し、かつメタン等の炭素系化合物、水素ガス、およびアルゴンガス等を含む原料ガスを継続的に導入して処理室内を所定の処理圧力に減圧する。そして、その減圧状態を維持しながら、基材に電圧を印加して処理室内にプラズマを発生させることで、原料ガスからイオンやラジカルを生成させるとともに基材の表面で化学反応させて、基材の表面にC(炭素)を主体とする膜(DLC膜)を堆積させることができる。
 プラズマCVD法としては、基材に直流電圧を印加する直流プラズマCVD法や、直流パルス電圧を印加する直流パルスプラズマCVD法等が採用される。
 形成するDLC膜中にSi(ケイ素)を含有させると、使用初期におけるDLC膜のなじみ性(以下「初期なじみ性」という。)を向上して、前記使用初期からDLC膜に良好な低摩擦性を付与できる。そのためプラズマCVD法において、Siの原料となる有機ケイ素系化合物を原料ガス中に添加する場合がある。
 前記有機ケイ素系化合物としては、例えばテトラメチルシラン等のシラン化合物が一般的に用いられる。また、処理室内の処理圧力が20Pa以下といった高減圧(低圧)下でのプラズマCVD法によるDLC膜形成工程では、例えば特許文献1に記載のように、前記シラン化合物に代えてヘキサメチルジシラザンやヘキサメチルジシロキサン等を使用する場合もある。
 しかし前記高減圧下でのDLC膜形成工程では、処理室中に導入される原料ガスの量が少ないため、DLC膜の成膜速度が小さく、所定の厚みを有するDLC膜を形成するのに長時間を要する。そのため、前記摺動部材等の生産性が低いという問題がある。
 また、基材が長時間に亘ってプラズマに曝され続けることと、それに伴う温度上昇とによって前記基材が受けるダメージが大きくなる傾向がある。したがって、基材の材料選択の幅が狭くなる、つまりダメージに十分に耐え得る材料からなる基材の表面にしかDLC膜を形成できないという問題もある。
特開2009-185336号公報
 処理圧力を、例えば100Pa以上、400Pa以下程度とした比較的低減圧(高圧)下でのプラズマCVD法によるDLC膜形成工程を採用することが検討されている。これにより、処理圧力中の、膜形成成分であるCの原料となる炭素系化合物やSiの原料となるシラン化合物の分圧を高めて、成膜速度を向上することが実現できる。
 しかし、かかる低減圧下でのDLC膜形成工程では、処理圧力中の所定の分圧を維持するために、成膜を実施している間、有機ケイ素系化合物を多量に、しかも継続的に処理室内に導入しつづける必要がある。
 ところが、例えばヘキサメチルジシラザンは常温、常圧下で液体であり、しかも常圧での沸点が約125℃と高い。そのため、かかるヘキサメチルジシラザンを、低減圧下でのDLC膜形成工程において前記のように多量、かつ継続的に気化させながら処理室内に導入し続けるためには、例えばヒータ等を備えた気化供給装置を設置して、DLC膜形成工程の間、気化供給装置を作動させ続ける必要がある。したがって、プラズマCVD装置の構造および操作が複雑化したり、運転に要するエネルギーが増加したりするといった新たな問題を生じる。
 これに対し、例えばテトラメチルシランは常圧での沸点が26℃と低い。そのため、処理室内の減圧された雰囲気と接触させるだけで、特に加熱等をすることなしに、常温でスムースに気化させることができて前記の問題を生じることがない。そのため低減圧下でのDLC膜形成工程においては、有機ケイ素系化合物としてテトラメチルシランを使用するのが一般的である。
 しかし発明者の検討によると、テトラメチルシラン等のシラン化合物を含む原料ガスを低減圧下でのDLC膜形成工程に用いた場合には、先に説明したように処理圧力を増加させているにも拘らず、DLC膜の成膜速度を向上する効果を十分に得ることができない。
 すなわち処理室内の処理圧力を前記範囲内に高めると、Cの原料となる炭素系化合物やSiの原料となるシラン化合物の分圧が増加する。しかしながら、DLC膜の成膜速度を、その分圧の増加分に見合うほどには十分に向上させることができないのである。
 そのため、摺動部材等の被覆部材の生産性が低いという問題や、基材が長時間に亘ってプラズマに曝され続けることと、それに伴う温度上昇とによって基材が受けるダメージが大きくなる傾向があるという問題は、未だ完全に解消されるに至っていないのが現状である。特に基材が受けるダメージは、処理圧力が高くなるほど大きくなる傾向がある。
 本発明の目的は、DLC膜の成膜速度をできるだけ高めて、基材表面の少なくとも一部が前記被覆部材のもとになる基材が受けるダメージを極力小さくできる被覆部材の製造方法を提供することにある。
 本発明の一実施形態は、基材の表面の少なくとも一部がDLC膜で被覆された被覆部材の製造方法であって、前記基材を収容する処理室内に、少なくとも炭素系化合物、および酸素含有有機ケイ素系化合物を含む原料ガスを導入して処理圧力100Pa以上、400Pa以下の条件下、前記基材に電圧を印加することによりプラズマを発生させて、前記基材の表面にDLC膜を形成するDLC膜形成工程を含む、被覆部材の製造方法を提供する(請求項1)。
 この方法によれば、原料ガス中に添加する有機ケイ素系化合物として、従来のテトラメチルシラン等のシラン化合物に代えて酸素含有有機ケイ素系化合物を選択的に用いる。これにより、その詳細なメカニズムは詳らかではないが、低減圧下でのDLC膜形成工程において基材の表面に形成されるDLC膜の成膜速度を、従来のテトラメチルシラン等を使用する場合に比べて大幅に向上できる。
 そのため、基材表面の少なくとも一部がDLC膜で被覆された被覆部材の生産性を現状よりもさらに向上できるとともに、被覆部材のもとになる基材が受けるダメージを極力小さくして、基材の材料選択の幅をこれまでより拡げることが可能となる。
 前記被覆部材の製造方法は、前記酸素含有有機ケイ素系化合物は、ヘキサメチルジシロキサンであってもよい(請求項2)。
 この方法によれば、ヘキサメチルジシロキサンの沸点が常圧で100℃、処理室内の処理圧力100Pa以上、400Pa以下の範囲内では70℃前後である。したがって、処理室内の減圧された雰囲気と接触させた状態、すなわち減圧下において100℃未満の比較的緩やかな加熱、例えばヘキサメチルジシロキサンを収容する容器を湯煎するといった程度の加熱で十分に気化させることができる。
 そのため、プラズマCVD装置の構造および操作が複雑化したり、運転に要するエネルギーが増加したりするのを抑制できる。しかも、ヘキサメチルジシロキサンの入手がしやすく、かつ安価であることと相まって、被覆部材の生産性をより一層向上できる。
 DLC膜形成工程においては、直流プラズマCVD法、および直流パルスプラズマCVD法のいずれを採用してもよいが、特に直流パルスプラズマCVD法を採用するのが好ましい。
 また、前記被覆部材の製造方法は、前記DLC膜形成工程において、前記基材に直流パルス電圧を印加することによりプラズマを発生させてもよい(請求項3)。
 この方法、つまり直流パルスプラズマCVD法によれば、例えば直流プラズマCVD法を採用して、基材に直流電圧を印加することによりプラズマを発生させる場合と比べて、温度上昇に繋がる異常放電の発生をできるだけ抑制しながら、処理室内に発生させるプラズマをより一層安定化させることができる。そのため処理温度を例えば300℃以下に抑制して、温度上昇によって基材が受けるダメージを極力小さくすることができる。
 また直流パルスプラズマCVD法によって形成されるDLC膜は表面が滑らかであるため、DLC膜がSiを含むことと相まって、初期なじみ性をさらに向上することもできる。
 前記被覆部材の製造方法によれば、DLC膜の成膜速度をできるだけ高めて、基材表面の少なくとも一部がDLC膜で被覆された被覆部材の生産性を現状よりさらに向上できるとともに、被覆部材のもとになる基材が受けるダメージを極力小さくできる。
 本発明における前述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。
本発明の一実施形態に係る被覆部材の製造方法に用いるプラズマCVD装置の一例を示す模式的な断面図である。 前記プラズマCVD装置を用いて前記製造方法によって製造される被覆部材の表層部を示す断面図である。 前記プラズマCVD装置の電源から基材に印加される直流パルス電圧の波形の一例を示すグラフである。 実施例および比較例のDLC膜のナノインデンション硬さを示すグラフである。 実施例および比較例のDLC膜のラマンスペクトルの一例を示すグラフである。 実施例1のDLC膜のラマンスペクトルを、GバンドとDバンドとに波形分離したグラフである。 比較例2のDLC膜のラマンスペクトルを、GバンドとDバンドとに波形分離したグラフである。
 図1は、本発明の一実施形態に係る被覆部材20の製造方法に用いるプラズマCVD装置1の構成を示す模式的な断面図である。このプラズマCVD装置1を用いて、直流パルスプラズマCVD法、もしくは直流プラズマCVD法により被覆部材20を製造することができる。
 図のプラズマCVD装置1は、隔壁2で取り囲まれた処理室3と、処理室3内で被覆部材20のもとになる基材4を保持する基台5と、処理室3内に原料ガスを導入するための原料ガス導入管6と、処理室3内を真空排気するための排気系7と、処理室3内に導入されたガスをプラズマ化させるための直流パルス電圧、または直流電圧を発生させる電源8とを備えている。
 基台5は、水平姿勢をなす支持プレート9と、鉛直方向に延び、支持プレート9を支持する支持軸10とを備えている。この実施形態では、基台5として、例えば、支持プレート9が上下方向に3つ並んで配置された3段式のものが採用されている。
 基台5は、全体が銅などの導電材料を用いて形成されている。基台5には電源8の負極が接続されている。
 処理室3の隔壁2は、ステンレス鋼等の導電材料を用いて形成されている。隔壁2には、電源8の正極が接続されている。また隔壁2はアース接続されている。また隔壁2と基台5とは絶縁部材11によって絶縁されている。そのため隔壁2はアース電位に保たれている。電源8がオンされて直流パルス電圧、または直流電圧が発生すると、隔壁2と基台5との間に電位差が生じる。
 原料ガス導入管6は、処理室3内における基台5の上方を水平方向に延びている。原料ガス導入管6の基台5に対向する部分には、原料ガス導入管6の長手方向に沿って配列された多数の原料ガス吐出孔12が形成されている。原料ガス吐出孔12から原料ガスが吐出することにより、処理室3内に原料ガスが導入される。
 原料ガス導入管6には、成分ガスとして炭素系化合物、および酸素含有有機ケイ素系化合物を含む原料ガスが供給される。原料ガス導入管6には、各成分ガスの供給源(ガスボンベや液体を収容する容器等)からそれぞれの成分ガスを処理室3に導くための複数の分岐導入管(図示せず)が接続されている。各分岐導入管には、前記各供給源からの成分ガスの流量を調節するための流量調節バルブ(図示せず)等が設けられている。また供給源のうち液体を収容する容器には、必要に応じて、液体を加熱するための加熱手段(図示せず)が設けられている。
 排気系7は、処理室3に連通する第1排気管13および第2排気管14と、第1開閉バルブ15、第2開閉バルブ16、および第3開閉バルブ19と、第1ポンプ17および第2ポンプ18とを備えている。
 第1排気管13の途中部には、第1開閉バルブ15および第1ポンプ17が、処理室3側からこの順で介装されている。第1ポンプ17としては、例えば油回転真空ポンプ(ロータリポンプ)やダイヤフラム真空ポンプなどの低真空ポンプが採用される。油回転真空ポンプは、ロータ、ステータおよび摺動翼板などの部品の間の気密空間および無効空間を油によって減少させる容積移送式真空ポンプである。第1ポンプ17として採用される油回転真空ポンプとしては、回転翼型油回転真空ポンプや揺動ピストン型真空ポンプが挙げられる。
 また第2排気管14の先端は、第1排気管13における第1開閉バルブ15と第1ポンプ17との間に接続されている。第2排気管14の途中部には、第2開閉バルブ16、第2ポンプ18、および第3開閉バルブ19が、処理室3側からこの順で介装されている。第2ポンプ18としては、例えばターボ分子ポンプ、油拡散ポンプなどの高真空ポンプが採用される。
 図2は、プラズマCVD装置1を用いて前記製造方法によって製造される被覆部材20の表層部を示す断面図である。
 図2を参照して、被覆部材20は基材4と、基材4の表面に形成されたDLC膜21とを含む。
 基材4の材質としては、例えば被覆部材20が自動車に搭載される各種摺動部材である場合、前記摺動部材を形成するために一般的に用いられる工具鋼、炭素鋼、ステンレス鋼等の各種鋼材が挙げられる。
 前記摺動部材の場合、先に説明した初期なじみ性を向上する効果を考慮すると、DLC膜21におけるSiの含有割合は、例えば7質量%以上、30質量%以下、特に20質量%程度である。またDLC膜21の膜厚は、例えば0.1~10.0μm程度である。さらに日本機械学会基準JSME S010(1996)において規定されたスクラッチ試験によって、モード2「局所的な剥離」を生じる剥離開始荷重を、基材4に対するDLC膜21の剥離強度として規定した場合、前記剥離開始荷重は、例えば25N以上である。
 プラズマCVD装置1を用いて基材4の表面にDLC膜21を形成して被覆部材20を製造するには、まず処理室3内の基台5の支持プレート9上に基材4をセットしたのち処理室3を閉じる。
 次いで第1、第2、および第3開閉バルブ15、16、19を閉じた状態で第1ポンプ17を駆動させたのち、第1開閉バルブ15を開くことにより処理室3内を真空排気する。処理室3内が第1ポンプ17によって所定の真空度まで真空排気された時点で第1開閉バルブ15を閉じるとともに第3開閉バルブ19を開いて第2ポンプ18を駆動させた後、第2開閉バルブ16を開くことにより、第1および第2ポンプ17、18によって処理室3内をさらに真空排気する。
 処理室3内が所定の真空度に達した時点で第2開閉バルブ16を閉じ、第2ポンプ18を停止させ、第3開閉バルブ19を閉じるとともに第1開閉バルブ15を開いて第1ポンプ17だけで排気を続けながら、図示しない供給源から原料ガス導入管6を通して原料ガスを処理室3内に導入する。
 原料ガスとしては、例えば炭素系化合物、および酸素含有有機ケイ素系化合物に、さらに水素ガス、およびアルゴンガス等を加えたものを用いる。水素ガス、およびアルゴンガスはプラズマを安定化させる作用をする。またアルゴンガスは、基材4の表面に堆積したCを押し固めてDLC膜21を硬膜化する作用もする。
 炭素系化合物としては、例えばメタン(CH)、アセチレン(C)、ベンゼン(C)等の、常温、常圧下で気体もしくは液体である炭化水素化合物の1種または2種以上が挙げられる。
 また酸素含有有機ケイ素系化合物としては、例えばシロキサン化合物やアルコキシシラン化合物等の、分子中の任意の位置に酸素原子を含む有機ケイ素系化合物の1種または2種以上が挙げられる。
 このうちシロキサン化合物としては、例えばヘキサメチルジシロキサン〔(CHSi-O-Si(CH、常圧での沸点:100℃〕、1,1,3,3-テトラメチルジシロキサン〔(CHSiH-O-SiH(CH、常圧での沸点:71℃〕等が好適に使用される。
 またアルコキシシラン化合物としては、トリメチルエトキシシラン〔(CHSiOC、常圧での沸点:75℃〕、ジメトキシジメチルシラン〔(CHSi(OCH)、常圧での沸点:81℃〕、メチルトリメトキシシラン〔CHSi(OCH)、常圧での沸点:103℃〕等が好適に使用される。
 中でも、特に先に説明した理由によりヘキサメチルジシロキサンが好ましい。
 前記各成分ガスのための、図示しない分岐導入管の流量調節バルブを調節して、前記各成分ガスの流量比、および各成分ガスの混合ガスである原料ガスの総流量を調節しながら、前記原料ガスを、原料ガス導入管6を通して処理室3内に導入して、処理室3内の処理圧力を100Pa以上、400Pa以下に調節する。
 処理圧力が100Pa未満では、先に説明したように処理室3中に導入される原料ガスの量が少ないためDLC膜21の成膜速度が小さく、所定の厚みを有するDLC膜21を形成するのに長時間を要する。
 そのため、DLC膜21の成膜速度をできるだけ高めて被覆部材20の生産性を現状よりさらに向上するとともに、被覆部材20のもとになる基材4が受けるダメージを極力小さくするという初期の目的を達成することができない。
 一方、処理圧力が400Paを超える場合には、プラズマを安定して発生させることができないため、基材上に、密度等が均一で摩擦性および耐摩耗性に優れた良好なDLC膜21を形成することができない。
 また各成分ガスのうち酸素含有有機ケイ素系化合物の流量は、先に説明したDLC膜21中に含まれるSiの含有割合の好適範囲を達成するために、例えば炭素化合物と水素ガスとアルゴンガスの合計の流量を、基準になる流量との比で2.20としたとき、合計の流量2.20に対して0.01以上、特に0.03以上に調節するのが好ましく、合計の流量2.20に対して0.12以下、特に0.06以下に調節するのが好ましい。
 酸素含有有機ケイ素系化合物の流量が前記範囲未満では、混合ガスに酸素含有有機ケイ素系化合物を加えることによる、DLC膜21の成膜速度を高める効果が十分に得られないため、被覆部材20の生産性を現状よりさらに向上するとともに、被覆部材20のもとになる基材4が受けるダメージを極力小さくするという初期の目的を達成できないおそれがある。また形成するDLC膜21中に前記好適範囲でSiを含有させてDLC膜21の初期なじみ性を向上する効果が十分に得られないおそれもある。
 一方、酸素含有有機ケイ素系化合物の流量が前記範囲を超える場合には、成膜速度が高くなりすぎてDLC膜21の密度や、基材4に対する剥離強度等が低下する傾向がある。また、膜中に含まれるSi量が多いほどDLC膜21が軟らかくなる傾向もある。そのため密度等が均一で剥離強度、摩擦性および耐摩耗性に優れた良好なDLC膜21を形成できないおそれがある。
 また基材4の表面にDLC膜21が形成される以外に、処理室3内に、主として過剰のSiを含む多量の粉体が発生する場合もある。前記粉体は、DLC膜21中に取り込まれて密度や厚みの均一性や、あるいは基材4に対する剥離強度等を低下させたり、プラズマCVD装置1を構成する各部に侵入して前記各部の機能を阻害したりするおそれがある。さらに、これらの問題が生じるのを防止するために粉体除去の工程が必要となる結果、被覆部材20の生産性が低下するおそれもある。
 炭素化合物の流量は、前記炭素化合物と水素ガスとアルゴンガスの合計の流量2.20中のおよそ50%程度に調節するのが好ましい。
 次いで電源8をオンして、隔壁2と基台5との間に電位差を生じさせることにより、処理室3内にプラズマを発生させる。
 例えば直流パルスプラズマCVD法では、電源8をオンすることにより、隔壁2と基台5との間に直流パルス電圧を印加してプラズマを発生させる。このプラズマの発生により、処理室3内において原料ガスからイオンやラジカルが生成されるとともに、電位差に基づいて基材4の表面に引き付けられる。そして基材4の表面で化学反応が生じて、基材4の表面にCを主体としてSiを含有するDLC膜21が堆積される。
 図3は、電源8から基材4に印加される直流パルス電圧の波形の一例を示すグラフである。直流パルス電圧の設定電圧値は、例えば-1000V程度の値に設定される。すなわち電源8がオンされると、隔壁2と基台5との間に1000Vの電位差が生じる。言い換えれば1000Vの負極性の直流パルス電圧が、基台5上にセットされた基材4に印加され、基材4は負極として機能する。波形がパルス状であるので、かかる高電圧が印加されても処理室3内に異常放電は生じず、基材4の温度上昇を抑制して、処理温度を例えば300℃以下に抑制できる。
 前記直流パルス電圧においては、そのパルス幅τを周波数fの逆数(1/f)で表されるパルス周期で除算した値、つまり式(1)に示すようにパルス幅τを周波数fで乗算した値として求められるデューティー比を5%以上、特に50%程度に設定するのが好ましい。また周波数fは200Hz以上、2000Hz以下、特に1000Hz程度に設定するのが好ましい。
 これにより、DLC膜21の成膜速度をさらに向上して、被覆部材20の生産性を現状よりさらに向上するとともに、被覆部材20のもとになる基材4が受けるダメージをより一層小さくできる。
 デューティー比=τ×f   (1)
 本実施形態においては、直流パルスプラズマCVD法に代えて直流プラズマCVD法を採用してもよい。すなわち電源8をオンすることにより、隔壁2と基台5との間に直流電圧を印加してプラズマを発生させる。このプラズマの発生により、処理室3内において原料ガスからイオンやラジカルが生成されるとともに、前記電位差に基づいて基材4の表面に引き付けられる。そして基材4の表面で化学反応が生じて、基材4の表面にCを主体としてSiを含有するDLC膜21が堆積される。
 この場合も、DLC膜21の成膜速度を高めることができるため、被覆部材20の生産性を現状よりさらに向上できる。また温度上昇の可能性はあるものの、被覆部材20のもとになる基材4が受けるダメージを小さくできる。
 前記DLC膜形成工程を実施して基材4の表面に所定の膜厚を有するDLC膜21が形成された時点で電源8をオフするとともに、原料ガスの導入を停止した後、第1ポンプ17による排気を続けながら常温まで冷却する。次いで第1開閉バルブ15を閉じ、代わって図示しないリークバルブを開いて処理室3内に外気を導入して、処理室3内を常圧に戻した後、処理室を開いて基材4を取り出す。これにより基材4の表面の少なくとも一部がDLC膜21によって被覆された被覆部材20が製造される。
 被覆部材20としては、例えば摩擦クラッチのクラッチプレート、ステアリング装置のウォーム(歯面にDLC膜形成)、軸受の内輪・外輪(軌道面にDLC膜形成)、軸受の保持器、およびプロペラシャフト(駆動軸、雄スプライン部および/または雌スプライン部にDLC膜形成)などが挙げられる。
 なお直流パルスプラズマCVD法、または直流プラズマCVD法を実施して基材4の表面にDLC膜21を形成するのに先立って、基材4の表面をイオンボンバード処理してもよい。イオンボンバード処理を実施する場合は、例えば処理室3内にアルゴンガス、および水素ガスを導入しながら電源8をオンしてプラズマを発生させる。このプラズマの発生により、処理室3内においてアルゴンガスからイオンやラジカルが生成されるとともに、電位差に基づいて基材4の表面に打ち付けられて、基材4の表面に吸着される異分子等をスパッタリング除去したり、前記表面を活性化したり原子配列等を改質したりできる。
 そのため次工程でプラズマCVD法によって形成されるDLC膜21の剥離強度を高めたり、摩擦性および耐摩耗性をさらに向上したりすることができる。
 また基材4の表面上に直接DLC膜21が形成されずに、基材4の表面とDLC膜21との間に、例えばSiN、CrN等の窒化膜やCr、Ti、SiC等からなる中間層が配置された構成であってもよい。
 次に、実施例および比較例について説明する。
 実施例および比較例では、図1に示すプラズマCVD装置1を用いて、工具鋼(SKH4)からなる基材4の表面にDLC膜を形成し、被覆部材を製造した。
 原料ガスとして実施例では、炭素系化合物としてのメタン、酸素含有有機ケイ素系含有物としてのヘキサメチルジシロキサン、水素ガスおよびアルゴンガスの混合ガスを用い、比較例1では、ヘキサメチルジシロキサンに代えて、シラン化合物としてのテトラメチルシランを用いた。
 前記各成分ガスのうちメタン、水素ガス、およびアルゴンガスの3成分の流量の比をメタン:1.00、水素:0.60およびアルゴン:0.60とし、流量の比の合計を2.20とした。
 実施例ではヘキサメチルジシロキサンの流量を、前記3成分の流量の比の合計2.20に対して、それぞれ0.03(実施例1)、0.06(実施例2)に調節した。また比較例ではテトラメチルシランの流量を、前記3成分の流量の比の合計2.20に対して0.06に調節した。
 電源8としては直流パルス電圧を発生するものを用い、直流パルス電圧の設定電圧値は、それぞれ-1000V、周波数fは1000Hz、デューティー比は50%に設定した。
 先に説明した手順で処理室3内を真空排気し、次いでアルゴンガスのみを導入して電源8をオンして処理室3内にプラズマを発生させてイオンボンバード処理をした後、原料ガスを導入して処理室3内の処理圧力を400Paに調節した。次いで再び電源8をオンして処理室3内にプラズマを発生させて、直流パルスプラズマCVD法により基材4の表面にDLC膜21を形成した。
 形成したDLC膜の表面粗さRa、RzJIS〔日本工業規格JIS B0601:2001〕、塑性、剥離開始荷重〔前述の日本機械学会基準JSME S010(1996)〕、窒化深さ、および膜厚を測定した。また成膜時間と膜厚とから1時間あたりの成膜速度を求めた。
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、シラン化合物であるテトラメチルシランに代えて、酸素含有有機ケイ素系化合物であるヘキサメチルジシロキサンを用いることにより、DLC膜の成膜速度を向上できることが確認された。
 比較例2は、直流プラズマCVD法により、工具鋼(SKH4)からなる基材4の表面にDLC膜を形成して被覆部材を製造した。比較例2では、原料ガスとして、炭素系化合物としてのメタン、シラン化合物としてのテトラメチルシラン、水素ガスおよびアルゴンガスの混合ガスを用いた。前記各成分ガスのうちメタン、水素ガス、およびアルゴンガスの3成分の流量の比をメタン:1.00、水素:0.60およびアルゴン:0.60とし、テトラメチルシランの流量を、前記3成分の流量の比の合計2.20に対して0.06に調節した。直流電圧の設定電圧値は、それぞれ-1000Vに設定し、処理圧力を50~400Paに調節した。
 図4は、実施例1および2、ならびに比較例1を用いて製造された被覆部材に含まれるDLC膜のナノインデンション硬さを示すグラフである。以下の説明では、実施例1を用いて製造された被覆部材20に含まれるDLC膜21を、「実施例1のDLC膜21」と言う場合があり、実施例2を用いて製造された被覆部材20に含まれるDLC膜21を、「実施例2のDLC膜21」と言う場合がある。また、比較例2を用いて製造された被覆部材に含まれるDLC膜を、「比較例2のDLC膜」という場合がある。
 実施例2のDLC膜21は十分な硬度を有するものの、比較例2のDLC膜と比べて若干柔らかい。一方、実施例1のDLC膜21は比較例2のDLC膜と同程度の硬さを有している。そのため、高温環境下で、かつシラン化合物を原料ガスとして形成されたDLC膜と同程度の優れた硬度を有するDLC膜を、この実施例1の製造方法を用いて製造できることがわかる。また、この実施例2の製造方法を用いて、十分な硬度を有するDLC膜を製造できることがわかる。
 ところで、DLC膜は、グラファイト結合(sp結合)とアモルファス構造との両方が混在した構造を有している。DLC膜の特性(物性)は、当該DLC膜に含まれるグラファイト結合とアモルファス構造との比に大きく依存している。
 ラマン分光法を用いて測定されたDLC膜のラマンスペクトルは、1350cm-1付近にピークを有するDバンドと、1580cm-1付近にピークを有するGバンドとに波形分離することができる。Gバンドはsp結合(グラファイト結合)の存在を示し、Dバンドはsp結合が崩壊したものの存在を示す。また、Dバンドの存在は、DLC膜がアモルファス構造を有していることを示す。
 図5は、実施例および比較例のDLC膜のラマンスペクトルの一例を示すグラフである。図6は、実施例1のDLC膜21のラマンスペクトルを、GバンドとDバンドとに波形分離したグラフである。また、図7は、比較例2のDLC膜のラマンスペクトルを、GバンドとDバンドとに波形分離したグラフである。
 図5では、実施例1および2、ならびに比較例2のDLC膜の各ラマンスペクトルを、図5に示す上下方向に並べて記載しており、各ラマンスペクトルの1800cm-1付近のピーク強度が最も弱い。この図5から、各ラマンスペクトルは、Gバンドのピーク位置付近およびDバンドのピーク位置付近でそれぞれピークを有していることがわかる。
 図6および図7には、ラマンスペクトルだけでなく、ラマンスペクトルのカーブフィッティングとして、ラマンスペクトル全体のカーブフィッティングS1,S2、GバンドのラマンスペクトルのカーブフィッティングG1,G2、およびDバンドのラマンスペクトルのカーブフィッティングD1,D2を示す。言い換えれば、全体の各カーブフィッティングS1,S2は、Gバンドの各カーブフィッティングG1,G2と、Dバンドの各カーブフィッティングD1,D2とを足し合わせた波形になる。
 なお、各カーブフィッティングS1,S2,G1,G2,D1,D2は、たとえば、ラマンスペクトルを、複数のガウス関数またはローレンツ関数の和でフィッテングする、一般的なカーブフィッティング方法によって得ることができる。
 図6および図7から、実施例1のDLC膜21におけるピーク強度比と、比較例2のDLC膜におけるピーク強度比とがほぼ同程度であることが理解される。そのため、高温環境下で、かつシラン化合物を原料ガスとして形成されたDLC膜と同程度の優れた硬度を有するDLC膜を、実施例1の製造方法を用いて製造できることがわかる。
 本発明を具体的な態様により詳細に説明したが、前記の内容を理解した当業者は、その変更、改変および均等物を容易に考えられるであろう。したがって、本発明は請求の範囲とその均等の範囲とするべきである。
 本出願は、2010年5月31日に日本国特許庁に提出された特願2010-124552号に対応しており、この出願の全開示はここに引用により組み込まれるものとする。
 1:プラズマCVD装置、2:隔壁、3:処理室、4:基材、5:基台、6:原料ガス導入管、7:排気系、8:電源、9:支持プレート、10:支持軸、11:絶縁部材、12:原料ガス吐出孔、13:第1排気管、14:第2排気管、15:第1開閉バルブ、16:第2開閉バルブ、17:第1ポンプ、18:第2ポンプ、19:第3開閉バルブ、20:被覆部材、21:DLC膜

Claims (3)

  1.  基材表面の少なくとも一部がDLC膜で被覆された被覆部材の製造方法であって、
     前記基材を収容する処理室内に、少なくとも炭素系化合物、および酸素含有有機ケイ素系化合物を含む原料ガスを導入して処理圧力100Pa以上、400Pa以下の条件下、前記基材に電圧を印加することによりプラズマを発生させて、前記基材の表面にDLC膜を形成するDLC膜形成工程を含む、被覆部材の製造方法。
  2.  前記酸素含有有機ケイ素系化合物は、ヘキサメチルジシロキサンである請求項1に記載の被覆部材の製造方法。
  3.  前記DLC膜形成工程において、前記基材に直流パルス電圧を印加することによりプラズマを発生させる請求項1または2に記載の被覆部材の製造方法。
PCT/JP2011/060977 2010-05-31 2011-05-12 被覆部材の製造方法 WO2011152182A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180026566.6A CN102918177B (zh) 2010-05-31 2011-05-12 覆盖部件的制造方法
JP2012518306A JPWO2011152182A1 (ja) 2010-05-31 2011-05-12 被覆部材の製造方法
US13/696,921 US20130059093A1 (en) 2010-05-31 2011-05-12 Method of producing coated member
EP11789591.2A EP2578726B1 (en) 2010-05-31 2011-05-12 Method for manufacturing a coated member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-124552 2010-05-31
JP2010124552 2010-05-31

Publications (1)

Publication Number Publication Date
WO2011152182A1 true WO2011152182A1 (ja) 2011-12-08

Family

ID=45066564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060977 WO2011152182A1 (ja) 2010-05-31 2011-05-12 被覆部材の製造方法

Country Status (5)

Country Link
US (1) US20130059093A1 (ja)
EP (1) EP2578726B1 (ja)
JP (2) JPWO2011152182A1 (ja)
CN (1) CN102918177B (ja)
WO (1) WO2011152182A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013186240A2 (en) 2012-06-14 2013-12-19 Sanofi Exendin-4 peptide analogues
WO2014056872A1 (en) 2012-10-09 2014-04-17 Sanofi Exendin-4 derivatives as dual glp1/glucagon agonists
WO2014147124A1 (en) 2013-03-21 2014-09-25 Sanofi-Aventis Deutschland Gmbh Synthesis of hydantoin containing peptide products
WO2014147129A1 (en) 2013-03-21 2014-09-25 Sanofi-Aventis Deutschland Gmbh Synthesis of cyclic imide containing peptide products
WO2014161835A1 (en) 2013-04-03 2014-10-09 Sanofi Modified blood glucose regulating proteins with altered pharmacological activity profile and preparation thereof
WO2015086731A1 (en) 2013-12-13 2015-06-18 Sanofi Exendin-4 peptide analogues as dual glp-1/glucagon receptor agonists
WO2015086733A1 (en) 2013-12-13 2015-06-18 Sanofi Dual glp-1/glucagon receptor agonists
WO2016193371A1 (en) 2015-06-05 2016-12-08 Sanofi Prodrugs comprising an glp-1/glucagon dual agonist linker hyaluronic acid conjugate
JP2018048393A (ja) * 2016-07-19 2018-03-29 ウニベルシダーデ・フェデラル・デ・サンタ・カタリナ 導電性構成部品をコーティングするための方法および導電性構成部品用コーティング
WO2018100174A1 (en) 2016-12-02 2018-06-07 Sanofi Conjugates comprising an glp-1/glucagon dual agonist, a linker and hyaluronic acid

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106211763B (zh) * 2014-03-25 2019-08-27 住友金属矿山株式会社 包覆焊料材料及其制造方法
CN104593724A (zh) * 2015-01-13 2015-05-06 上海应用技术学院 掺杂硅元素的类金刚石涂层的制备工艺
KR20170048787A (ko) * 2015-10-27 2017-05-10 세메스 주식회사 기판 처리 장치 및 기판 처리 방법
CN113463064A (zh) * 2021-09-03 2021-10-01 长沙中金智能装备有限公司 一种钢筋撕碎用超硬刀盘及制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307935A (ja) * 2003-04-07 2004-11-04 Mitsubishi Shoji Plast Kk ガスバリア性薄膜コーティングプラスチック容器の製造方法
JP2007126732A (ja) * 2005-11-07 2007-05-24 Mitsubishi Shoji Plast Kk プラズマcvd成膜装置及びガスバリア性プラスチック容器の製造方法
JP2008173936A (ja) * 2007-01-22 2008-07-31 Mitsubishi Plastics Ind Ltd ガスバリア性フィルム
JP2009174039A (ja) * 2008-01-28 2009-08-06 Panasonic Electric Works Co Ltd ダイヤモンド状炭素被膜の製造方法及び摺動部材
JP2009185336A (ja) 2008-02-06 2009-08-20 Yamaguchi Prefecture 非晶質炭素膜及びその成膜方法
JP4372833B1 (ja) * 2009-04-13 2009-11-25 麒麟麦酒株式会社 ガスバリア性薄膜コーティングプラスチック容器の製造方法
JP2010124552A (ja) 2008-11-17 2010-06-03 Toshiba Corp 電気車制御装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3473959A (en) * 1964-08-10 1969-10-21 Licentia Gmbh Method for coating semiconductors and apparatus
US6110544A (en) * 1997-06-26 2000-08-29 General Electric Company Protective coating by high rate arc plasma deposition
US6203898B1 (en) * 1997-08-29 2001-03-20 3M Innovatave Properties Company Article comprising a substrate having a silicone coating
US20020032073A1 (en) * 1998-02-11 2002-03-14 Joseph J. Rogers Highly durable and abrasion resistant composite diamond-like carbon decorative coatings with controllable color for metal substrates
US6447891B1 (en) * 1999-05-03 2002-09-10 Guardian Industries Corp. Low-E coating system including protective DLC
JP4330067B2 (ja) * 2003-02-12 2009-09-09 株式会社ジェイテクト アモルファス炭素膜の成膜方法
JP4653964B2 (ja) * 2003-04-08 2011-03-16 株式会社栗田製作所 Dlc膜の成膜方法およびdlc成膜物
US20050103620A1 (en) * 2003-11-19 2005-05-19 Zond, Inc. Plasma source with segmented magnetron cathode
JP2005270163A (ja) * 2004-03-23 2005-10-06 Shizuoka Prefecture 医療用メス
JP4372663B2 (ja) * 2004-10-27 2009-11-25 株式会社豊田中央研究所 エンジン動弁系部品
WO2007041381A1 (en) * 2005-09-29 2007-04-12 Uab Research Foundation Ultra smooth nanostructured diamond films and compositions and methods for producing same
US20070259184A1 (en) * 2006-05-04 2007-11-08 Commonwealth Scientific And Industrial Research Organisation Method of mounting objects for chemical vapour deposition
JP2009035584A (ja) * 2007-07-31 2009-02-19 Jtekt Corp 摺動部材
JP5741891B2 (ja) * 2009-06-19 2015-07-01 株式会社ジェイテクト Dlc膜形成方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307935A (ja) * 2003-04-07 2004-11-04 Mitsubishi Shoji Plast Kk ガスバリア性薄膜コーティングプラスチック容器の製造方法
JP2007126732A (ja) * 2005-11-07 2007-05-24 Mitsubishi Shoji Plast Kk プラズマcvd成膜装置及びガスバリア性プラスチック容器の製造方法
JP2008173936A (ja) * 2007-01-22 2008-07-31 Mitsubishi Plastics Ind Ltd ガスバリア性フィルム
JP2009174039A (ja) * 2008-01-28 2009-08-06 Panasonic Electric Works Co Ltd ダイヤモンド状炭素被膜の製造方法及び摺動部材
JP2009185336A (ja) 2008-02-06 2009-08-20 Yamaguchi Prefecture 非晶質炭素膜及びその成膜方法
JP2010124552A (ja) 2008-11-17 2010-06-03 Toshiba Corp 電気車制御装置
JP4372833B1 (ja) * 2009-04-13 2009-11-25 麒麟麦酒株式会社 ガスバリア性薄膜コーティングプラスチック容器の製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KAZUYUKI NAKANISHI ET AL.: "Chokuryu Plasma CVD-ho ni yoru DLC-Si-maku no Tairyo Shori no Kento", THE SURFACE FINISHING SOCIETY OF JAPAN KOEN TAIKAI KOEN YOSHISHU, vol. 112TH, 2005, pages 88, XP008170133 *
MASAHIRO SUZUKI ET AL.: "The effect of pre- sputtering on running-in process in friction of DLC film", ZAIRYO GIJUTSU, vol. 28, no. 1, 25 January 2010 (2010-01-25), pages 14 - 20, XP008169894 *
MASAHIRO SUZUKI ET AL.: "The effect of pre- sputtering on tribological properties of DLC films", ZAIRYO GIJUTSU, vol. 27, no. 6, 2009, pages 225 - 230, XP008169904 *
P. DVORAK ET AL.: "Plasma deposition of diamond- like protective coating with silicon oxide content", 46TH ANNUAL TECHNICAL CONFERENCE PROCEEDINGS, 2003 SOCIETY OF VACCUM COATERS, vol. 46, 2003, pages 541 - 545, XP008169906 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013186240A2 (en) 2012-06-14 2013-12-19 Sanofi Exendin-4 peptide analogues
US9181305B2 (en) 2012-06-14 2015-11-10 Sanofi Exendin-4 peptide analogues
WO2014056872A1 (en) 2012-10-09 2014-04-17 Sanofi Exendin-4 derivatives as dual glp1/glucagon agonists
US9365632B2 (en) 2012-10-09 2016-06-14 Sanofi Exendin-4 derivatives as dual GLP1/glucagon agonists
WO2014147124A1 (en) 2013-03-21 2014-09-25 Sanofi-Aventis Deutschland Gmbh Synthesis of hydantoin containing peptide products
WO2014147129A1 (en) 2013-03-21 2014-09-25 Sanofi-Aventis Deutschland Gmbh Synthesis of cyclic imide containing peptide products
WO2014161835A1 (en) 2013-04-03 2014-10-09 Sanofi Modified blood glucose regulating proteins with altered pharmacological activity profile and preparation thereof
WO2015086731A1 (en) 2013-12-13 2015-06-18 Sanofi Exendin-4 peptide analogues as dual glp-1/glucagon receptor agonists
WO2015086733A1 (en) 2013-12-13 2015-06-18 Sanofi Dual glp-1/glucagon receptor agonists
WO2016193371A1 (en) 2015-06-05 2016-12-08 Sanofi Prodrugs comprising an glp-1/glucagon dual agonist linker hyaluronic acid conjugate
JP2018048393A (ja) * 2016-07-19 2018-03-29 ウニベルシダーデ・フェデラル・デ・サンタ・カタリナ 導電性構成部品をコーティングするための方法および導電性構成部品用コーティング
WO2018100174A1 (en) 2016-12-02 2018-06-07 Sanofi Conjugates comprising an glp-1/glucagon dual agonist, a linker and hyaluronic acid

Also Published As

Publication number Publication date
JP2016094670A (ja) 2016-05-26
JP6071020B2 (ja) 2017-02-01
JPWO2011152182A1 (ja) 2013-07-25
CN102918177A (zh) 2013-02-06
EP2578726A4 (en) 2017-04-05
EP2578726A1 (en) 2013-04-10
CN102918177B (zh) 2015-09-09
US20130059093A1 (en) 2013-03-07
EP2578726B1 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
JP6071020B2 (ja) 被覆部材の製造方法
JP5574165B2 (ja) 被覆部材の製造方法
JP5892387B2 (ja) 被覆部材の製造方法
JP2012082477A (ja) Dlc被覆部材
US8821990B2 (en) DLC film-forming method and DLC film
JP5099693B2 (ja) 非晶質炭素膜及びその成膜方法
JP2006291355A (ja) 非晶質炭素被膜部材
JP6238053B2 (ja) 摺動部材
JP5557011B2 (ja) 被覆部材の製造方法
JP2009035584A (ja) 摺動部材
JP2011026660A (ja) 摺動部材およびその製造方法
JP2006161075A (ja) 硬質炭素膜およびその形成方法
JP2008266704A (ja) 耐熱耐酸化性炭素膜及びその形成方法並びに耐熱耐酸化性炭素膜被覆物品及びその製造方法
JP5696889B2 (ja) 被覆部材の製造方法
JP5131078B2 (ja) 硬質非晶質炭素被覆部材およびその製造方法
JP2016084491A (ja) 摺動システムおよび摺動部材
JP2016098422A (ja) 炭素系被膜、それを備えた摺動部材、および摺動部材製造方法
JPS62222067A (ja) セラミツクスが被着された部材の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180026566.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789591

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012518306

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13696921

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011789591

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE