WO2005015581A1 - 軟磁性複合粉末及びその製造方法並び軟磁性成形体の製造方法 - Google Patents

軟磁性複合粉末及びその製造方法並び軟磁性成形体の製造方法 Download PDF

Info

Publication number
WO2005015581A1
WO2005015581A1 PCT/JP2004/005772 JP2004005772W WO2005015581A1 WO 2005015581 A1 WO2005015581 A1 WO 2005015581A1 JP 2004005772 W JP2004005772 W JP 2004005772W WO 2005015581 A1 WO2005015581 A1 WO 2005015581A1
Authority
WO
WIPO (PCT)
Prior art keywords
soft magnetic
powder
insulating material
inorganic insulating
resin
Prior art date
Application number
PCT/JP2004/005772
Other languages
English (en)
French (fr)
Inventor
Kiyotaka Matsukawa
Kozo Ishihara
Ikuo Uemoto
Masafumi Taniguchi
Original Assignee
Nippon Kagaku Yakin Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kagaku Yakin Co., Ltd. filed Critical Nippon Kagaku Yakin Co., Ltd.
Priority to US10/567,336 priority Critical patent/US7390567B2/en
Priority to JP2005512892A priority patent/JP4452240B2/ja
Publication of WO2005015581A1 publication Critical patent/WO2005015581A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15358Making agglomerates therefrom, e.g. by pressing
    • H01F1/15366Making agglomerates therefrom, e.g. by pressing using a binder
    • H01F1/15375Making agglomerates therefrom, e.g. by pressing using a binder using polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/294Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
    • Y10T428/2942Plural coatings
    • Y10T428/2949Glass, ceramic or metal oxide in coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/32Composite [nonstructural laminate] of inorganic material having metal-compound-containing layer and having defined magnetic layer

Definitions

  • the present invention relates to a soft magnetic composite powder, a method for producing the same, and a method for producing a soft magnetic compact using the soft magnetic composite powder.
  • Carbon iron, ferrite, sendust or an amorphous alloy is used as a soft magnetic material used for a magnetic core of a transformer choke coil for high frequency.
  • a method of solidifying a powder of the soft magnetic material via an insulating layer to form a soft magnetic molded body is used to increase electric resistance in a high frequency range.
  • a method of compacting into a compact by using a low melting point glass as a binder for a soft magnetic material see JP-A-63-158810, or A method of compacting using a low-melting glass and a resin as a binder, followed by baking to burn off only the luster to form a calcined body (see Japanese Patent Application Laid-Open No. 2001-73062) )
  • a method has been proposed in which a resin composition containing a soft magnetic material is molded by injection molding to form an injection molded body (see Japanese Patent Application Laid-Open No. 11-31612). Disclosure of the invention
  • the present invention has been made to solve the above-mentioned problems, and to provide a method for manufacturing a soft magnetic molded body that can be easily molded, while ensuring electrical insulation between soft magnetic material powders and ensuring good magnetic properties. The purpose was.
  • the present inventors have used a composite powder obtained by coating at least a part of the surface of a soft magnetic material powder with an inorganic insulating material and fusing a resin material to the inorganic insulating material. Accordingly, the present invention has been completed by focusing on the fact that electrical insulation between the soft magnetic material powders can be ensured and the moldability can be improved.
  • the soft magnetic composite powder of the present invention is a composite powder used for producing a soft magnetic molded body, wherein the surface of the soft magnetic powder is coated with an electrically insulating material containing at least an inorganic insulating material, A resin material is fused to the surface of the insulating material so as to partially cover the surface of the soft magnetic powder.
  • a resin material can be used as the electric insulating material in addition to the inorganic insulating material. By using a resin material, workability during molding can be improved.
  • a glass material can be used as the inorganic insulating material. Because the glass material has a softening point, the composite powder can be easily joined together by heating.
  • an amorphous soft magnetic alloy can be used for the soft magnetic material powder. This is because a soft magnetic molded article having high magnetic permeability and excellent properties such as corrosion resistance and strength can be obtained.
  • the composite powder is preferably granulated. This is because the granulated composite powder has high packing density and high deformability.
  • the soft magnetic composite powder of the present invention can be produced, for example, using the following method. That is, the surface of the soft magnetic material powder is coated with an electrically insulating material containing at least an inorganic insulating material, and a resin material is melted on the surface of the inorganic insulating material so as to partially cover the surface of the soft magnetic material powder.
  • a method for producing a soft magnetic composite powder comprising: The soft magnetic material powder is coated with the inorganic insulating material, and then the soft magnetic material powder and the resin material are mixed, and the resin material is fused to the inorganic insulating material.
  • a glass material can be used as the inorganic insulating material, and the glass material can be fused to the surface of the soft magnetic powder to form a glass layer, and a resin material can be fused to the glass layer. Further, a low melting point glass can be used as the glass material.
  • another method for producing a soft magnetic composite powder according to the present invention comprises a step of coating the surface of the soft magnetic material powder with an electrically insulating material containing at least an inorganic insulating material, wherein the surface of the inorganic insulating material is A method for producing a soft magnetic composite powder, wherein a resin material is fused so as to partially cover the surface of a soft magnetic powder, the soft magnetic powder, the inorganic insulating material, and the resin material And coating the surface of the soft magnetic material powder with an inorganic insulating material and a resin material, while fusing the resin material to the inorganic insulating material.
  • a soft magnetic compact can be produced, for example, by the following method.
  • the surface of the soft magnetic powder is coated with at least an electrically insulating material containing an inorganic insulating material, and the surface of the inorganic insulating material is coated with a resin material so as to partially cover the surface of the soft magnetic powder.
  • the fusion-bonded soft magnetic composite powder is filled in a mold, pressed to form a green compact, and then the green compact is fired to obtain a fired body.
  • Another method for producing a soft magnetic molded article is as follows: a surface of a soft magnetic powder is coated with at least an electrically insulating material containing an inorganic insulating material, and a surface of the soft magnetic powder is coated on the surface of the inorganic insulating material.
  • the resin material is further added to the soft magnetic composite powder obtained by fusing the resin material so as to partially cover the powder, and the mixture is kneaded to obtain an injection molded body.
  • Another method for producing a soft magnetic molded article is as follows: a surface of a soft magnetic powder is coated with at least an electrically insulating material containing an inorganic insulating material, and a surface of the soft magnetic powder is coated on the surface of the inorganic insulating material.
  • the resin material is further added to the soft magnetic composite powder obtained by fusing the resin material so as to partially cover the powder, and kneaded to obtain an injection molded body, and the injection molded body is degreased and fired to obtain a fired body. It is characterized by.
  • the surface of the soft magnetic material is coated with an electrical insulating material containing at least an inorganic insulating material, and the inorganic insulating material has a resin material fused to the surface.
  • the resin material can be freely deformed with the fusion point with the inorganic insulating material as a fulcrum, and when the soft magnetic material powders approach each other, the soft magnetic material powder in contact with the resin material moves due to the deformation of the resin material It is possible to change direction and move to the gap between powder particles.
  • fine-grained soft magnetic powder is easy to move, and is extruded into voids formed by coarse-grained soft magnetic powder as the resin material is deformed, so that the packing density can be increased.
  • the resin material covers the entire surface of the soft magnetic powder, the resin material can be deformed in the film thickness direction, which is capable of being deformed in the film thickness direction.
  • partially covering the surface of the soft magnetic material powder refers to a state other than a state where the entire surface of the soft magnetic material powder is covered, and at least one surface of the resin material fused to the inorganic insulating material is covered. This indicates a state that does not exist in the part.
  • FIG. 1 is a SEM photograph showing the shape of one embodiment of the soft magnetic composite powder of the present invention.
  • FIG. 2 is an SEM photograph showing the shape of the glass-coated soft magnetic powder used in the present invention.
  • the electrically insulating material covering the surface of the soft magnetic powder is made of inorganic insulating material.
  • the soft magnetic material used in the present embodiment includes oxide materials such as ferrite, carbon iron, Fe—Si alloy, Ni—Fe alloy, and Fe or Co amorphous. Metallic materials such as alloys are included. It is preferable to use a soft magnetic amorphous alloy having excellent corrosion resistance, abrasion resistance, strength, and soft magnetic properties such as high magnetic permeability and low coercive force as compared with crystalline materials.
  • the soft magnetic amorphous alloy is not particularly limited, and a known amorphous alloy such as an iron-based or cobalt-based alloy can be used.
  • the inorganic insulating material used in the present embodiment for example, A 1 2 0 3, S i 0 2, Y 2 0 3, MgO, and Zeta r 0 2 such as an insulating metal or metalloid Oxides, glass materials, or mixtures thereof can be used, with glass materials being preferred.
  • glass materials low melting point glass is preferable. This is because it has a low softening temperature and can be fused to a soft magnetic amorphous alloy to cover its surface.
  • the low melting point glass is not particularly limited as long as it does not react with the soft magnetic powder and softens at a temperature lower than the crystallization start temperature of the soft magnetic amorphous alloy, preferably at about 550 ° C. or lower.
  • PbO B 2 0 3 system lead-based glass such as glass, P 2 0 5 system glass, Z nO- B a O-based glass, and ZnO- B 2 0 3 _S i 0 2 system glass
  • the known low melting point glass can be used.
  • a lead-free glass, P 2 0 5 based glass providing a low There softening point is preferred.
  • An example of the cite if P 2 0 5 6 0 ⁇ 80%, A 1 2 0 3 10% or less, 10 ⁇ 20% ZnO, L i 2 0 10% or less, the Na 2 ⁇ 10% or less, that of ⁇ Can be used.
  • thermoplastic resin examples include polyolefins such as polyethylene and polypropylene, polyvinyl alcohol, polyethylene oxide, polyphenylene sulfide (PPS), liquid crystal polymer, polyetheretherketone (PEEK), polyimide, and polyetherimid.
  • PPS polyphenylene sulfide
  • PEEK polyetheretherketone
  • Polyacetal polyethersulfone, polysulfone, polycarbonate, polyethylene terephthalate.
  • Polybutylene terephthalate polyphenylene oxide, polyphthalenoleamide.
  • Polyamide etc.
  • phenolic resin epoxy resin, unsaturated polyester resin, diaryl lid Rate resins, melamine resins, urea resins, and the like, and mixtures thereof.
  • the resin material may be in the form of a powdery powder, but is preferably in the form of a powder that is easily mixed.
  • the surface of the soft magnetic powder is coated in advance with an inorganic insulating material to form an inorganic insulating layer, and then a resin material is fused to the inorganic insulating layer.
  • a powder coating method such as mechanofusion, a wet thin film manufacturing method such as an electroless metal sol-gel method, or a dry method such as sputtering.
  • a thin film manufacturing method or the like can be used.
  • the powder coating method can be performed using, for example, a powder coating apparatus described in JP-A-2001-73062. According to this method, the soft magnetic powder and the low-melting glass powder are subjected to strong compressive frictional force, and the soft magnetic powder and the low-melting glass powder are fused with each other and the glass powders are welded to each other to form the surface of the soft magnetic powder. Can be obtained as a composite powder coated with an inorganic insulating layer made of low-melting glass.
  • a resin powder is added to and mixed with the soft magnetic powder having the inorganic insulating layer.
  • Part of the resin powder is melted by mechanical energy during mixing, and the melted part is fused to the inorganic insulating layer.
  • a soft magnetic composite powder can be obtained.
  • a known solid-phase mixing method such as a pole mill can be used.
  • the mixing temperature may be room temperature or higher, but it is preferable to heat the resin material to a temperature higher than the softening temperature. This is because fusion of the resin powder to the inorganic insulating layer is promoted.
  • the particle size of the resin powder is smaller than the particle size of the soft magnetic material powder, and preferably less than half.
  • the particle size of the soft magnetic In the case of 300 ⁇ m or less, 150 ⁇ m or less, and 45 ⁇ m or less, they are preferably 150 ⁇ m or less, 75 ⁇ m or less, and 20 ⁇ m or less, respectively.
  • the composition of the composite powder is preferably such that the inorganic insulating material is 0.3 to 6% by weight, the resin material is 1 to 10% by weight, and the balance is a soft magnetic powder. 4 to 3% by weight, resin material 2 to 8% by weight, and the remainder is preferably soft magnetic powder, more preferably 0.4 to 1% by weight of inorganic insulating material, and resin material 3 to 3%. 8% by weight, and the balance must be soft magnetic powder. Note that required by, from 0.1 to 0.5 wt 0/0 lubricants can also be added in.
  • a stearate such as zinc stearate / calcium stearate can be added and mixed as a lubricant.
  • the composite powder of the present embodiment can be filled in a predetermined mold and molded using various molding methods such as compacting, injection molding, and extrusion molding.
  • various molding methods such as compacting, injection molding, and extrusion molding.
  • a soft magnetic composite powder is filled in a mold, press-molded at a predetermined pressure, and the molded green compact is fired, and the resin is burned off to obtain a fired body.
  • the firing temperature must be lower than the crystallization start temperature of the amorphous alloy.
  • the resin to be added may be the same as the resin in the composite powder or another resin.
  • the resin used for injection molding is preferably a heat-resistant resin having a deflection temperature under load specified by JISK 7191 of 100 ° C or more.
  • JISK 7191 a deflection temperature under load specified by JISK 7191 of 100 ° C or more.
  • polyolefin and polybutyl alcohol may be used.
  • Thermoplastic resins other than polyethylene oxide and polyethylene oxide, and the above-mentioned thermosetting resins are examples of the thermoplastic resins described above.
  • thermoplastic resin in the case of a thermoplastic resin, it is preferable to knead by heating at a temperature not lower than the softening temperature.
  • thermosetting resin it is preferable to knead the resin at a temperature not higher than its decomposition temperature, preferably at a temperature not higher than 300 ° C.
  • the content of the resin in the final molded body is preferably 5% by weight or more in order to ensure molding workability.
  • the composite powder is granulated.
  • the inside of the granulated particles also partially deforms the soft magnetic powder due to the effect of fusion of the resin.
  • the large-diameter particles and the small-diameter particles are densely packed and a high packing density is maintained.
  • the granulated particles can be deformed, resulting in a high packing density.
  • the granulated composite powder has a high packing density and a high deformability, and can be suitably used particularly for compacting.
  • Granulation can be performed by mixing and stirring granulation in which a resin powder is added to and mixed with a soft magnetic material powder having an inorganic insulating layer as described above.
  • a resin powder is added to and mixed with a soft magnetic material powder having an inorganic insulating layer as described above.
  • the shape of the granulated particles In order to make the particle size and the particle size uniform, it is preferable to use a composite powder as a raw material powder and use a known method such as a self-sufficient granulation method such as tumbling granulation or a forced granulation method such as spray drying.
  • Embodiment 2 is a known method such as a self-sufficient granulation method such as tumbling granulation or a forced granulation method such as spray drying.
  • the present embodiment relates to another method for producing a soft magnetic composite powder.
  • a composite powder is manufactured by heating the soft magnetic material powder described in the first embodiment, the inorganic insulating material, and the resin material to a temperature higher than the melting point of the resin material and mixing them.
  • glass powder is used for the inorganic insulating material and resin powder is used for the resin material.
  • the surface of the soft magnetic material powder is coated with a resin powder fused to the soft magnetic material powder and a glass powder bound by the resin powder, and further, a composite in which the resin powder is fused to the surface of the glass powder.
  • a powder can be obtained.
  • the particle size of the glass powder and the resin powder is smaller than the particle size of the soft magnetic material powder, and preferably less than half.
  • the particle size of the soft magnetic material powder is 300 ⁇ m or less, In the case of 0 ⁇ m or less and 45 ⁇ m or less, the particle diameters of the glass powder and the resin powder are preferably 150 ⁇ m or less, 75 ⁇ m or less, and preferably 20 ⁇ m or less.
  • composition of the composite powder is set as follows: 0.3 to inorganic insulating material: 0% by weight of L;
  • the inorganic insulation material from 0.4 to 6 wt%, the resin material 2 to 8 wt 0/0, and the remainder soft magnetic body as the powder, more preferably an inorganic insulating material from 0.4 to 6 wt 0/0, the resin material 3 to 8 wt%, and preferably formulated to balance the soft magnetic powder.
  • the present embodiment relates to a method for manufacturing a soft magnetic molded body.
  • a soft magnetic fired body is manufactured by so-called metal injection molding (MIM) using the composite powder described in Embodiments 1 and 2 as a raw material powder.
  • MIM is a method in which the above-described injection molded body is degreased and fired to obtain a fired body.
  • MIM metal injection molding
  • the strength of the compact after the degreasing step was extremely low, and it could not be used as a soft magnetic material as it was.
  • sintering of the molded body reduces the insulating properties and uses materials with high magnetic properties. It was difficult to get.
  • the thermal decomposition temperature of the resin in the composite powder is preferably equal to or higher than the thermal decomposition temperature of the resin added during injection molding (hereinafter referred to as “MIM resin”). .
  • MIM resin the thermal decomposition temperature of the resin added during injection molding
  • the MIM resin examples include thermoplastic resins having a function of imparting plasticity to raw material powder and imparting strength to a molded body at room temperature, such as an acrylic resin, a polyolefin resin, a polystyrene resin, and a polyimide resin, or A mixture containing two or more of them or a copolymer thereof can be used.
  • thermoplastic resins having a function of imparting plasticity to raw material powder and imparting strength to a molded body at room temperature
  • an acrylic resin such as an acrylic resin, a polyolefin resin, a polystyrene resin, and a polyimide resin, or A mixture containing two or more of them or a copolymer thereof can be used.
  • Specific examples include polyethylene, polypropylene, polystyrene, ethylene monoacetate vinylinole copolymer, ethylene monoethyl acrylate copolymer, polymethacrylic acrylic ester, and polyamide.
  • a wax or a plasticizer can be added as needed to improve degreasing and fluidity.
  • a natural wax such as beeswax, wood wax, montan wax, or a synthetic wax such as low-molecular-weight polyethylene, microcrystalline wax, or paraffin wax, or a mixture of two or more thereof can be used.
  • Wax can also be used as a plasticizer or lubricant.
  • a sublimable substance such as camphor may be used as the defatting accelerator.
  • di-2-ethylhexyl phthalenolate, getyl phthalate, di-n-butyl phthalate, and the like can be used. If necessary, higher lubricating fatty acids, fatty acid amides, fatty acid esters and the like can also be used as the lubricant.
  • a resin in the case of MIM, addition of a resin can be omitted when preparing a composite powder. That is, a resin material is added to a soft magnetic composite powder in which the surface of the soft magnetic material powder is coated with an electrically insulating material containing at least an inorganic insulating material, and the mixture is kneaded to obtain an injection molded body. It may be fired to obtain a fired body.
  • the molded body using the soft magnetic composite powder described in the above-described embodiment if only the magnetic core However, it can also be used for electromagnetic wave absorbers. That is, an electromagnetic wave absorber using a soft magnetic material having high magnetic permeability can reduce reflected waves and transmitted waves by absorbing electromagnetic waves.
  • electromagnetic wave absorbers have been used by dispersing the electromagnetic wave absorbing material in a matrix such as resin or rubber and molding them by extrusion or press molding, but it is easy to fill the electromagnetic wave absorbing material with high density.
  • sufficient electromagnetic wave absorption capacity has not been obtained.
  • the soft magnetic composite powder of the present invention the filling density of the soft magnetic material can be improved, so that the electromagnetic wave absorbing ability can be improved.
  • the compact using the soft magnetic composite powder described in the above embodiment can be used also as a magnetic shield material. Since the soft magnetic material having a high magnetic permeability is used and the filling density of the soft magnetic material dispersed in the matrix can be improved, the magnetic shield characteristics can be improved.
  • Epoxy resin as a thermosetting resin and polyethylene oxide as a thermoplastic resin were used for the resin powder, and stearic acid as a lubricant was used.
  • the Fe_Cr-Si-BC amorphous alloy and the resin powder used had a particle size adjusted to 45 ⁇ ra or less by a sieve.
  • An epoxy resin powder, polyethylene oxide (PEO) powder, and stearic acid were added to the Fe-Cr-Si-B-C amorphous alloy coated with low-melting glass to obtain the composition shown in Table 1.
  • Zinc was added and mixed at a temperature of 112 ° C using a pole mill to obtain a composite powder.
  • the continuous formability was evaluated by the following method. That is, when the press forming is automatically operated, the compact is taken out by ejecting the lower punch and projecting the compact. At the time of automatic operation, it was determined how easily the green compact could be taken out and how much the shape was maintained, depending on the speed of the automatic operation. 20 for those that can be automatically operated at the speed of 20 pieces, 15 for those that can be automatically driven at the speed of Z, 15 for those that can be automatically operated at the speed of 10 pieces / minute, The case where the operation is difficult, that is, when it is necessary to remove the green compact by hand, is designated as X.
  • the magnetic permeability was measured according to JIS C2561.
  • Example 1 The surface of Fe—Cr—Si—B—C amorphous alloy adjusted to a particle size of less than 150 / m, less than 75 / m, and less than 45 ⁇ m by a sieve Glass coating was performed using low-melting glass in the same manner as described above. Next, an epoxy resin powder, a polyethylene oxide powder, and zinc stearate were added so as to have the composition shown in Table 1, and mixed at room temperature using a ball mill to obtain a composite powder. Although the molding of this composite powder was examined in the same manner as in Example 1, a large pressing pressure was required, and molding was difficult. Therefore, the pressure at which the shape can be given was set as the molding pressure (samples 6 to 8). Further, the measurement of the magnetic permeability could not be performed.
  • Example 9 Using an Fe-Cr-Si-B-C amorphous alloy without glass coating, epoxy resin powder, polyethylene oxide powder, Then, zinc stearate was added and mixed at 112 ° C. using a pole mill to obtain a composite powder. This composite powder was treated in the same manner as in Example 1 to obtain a green compact (Sample 9).
  • Samples 1 to 4 were able to significantly reduce the molding pressure compared to Samples 6 to 8. Further, the magnetic permeability also had a good value. This is considered to be due to the fact that in the case of samples 1 to 4, the resin powder fused to the glass layer reduced the friction between the soft magnetic powders, facilitated the movement of the soft magnetic powder, and increased the filling degree. .
  • Sample 5 which had a resin content exceeding 1 O wt%, had poor fluidity and was difficult to fill into a mold, had a low packing density, and could not be molded by automatic operation. Ma
  • the heating rate was reduced during firing, the fired body was broken by the pressure of the decomposition gas of the resin.
  • the coil could not be wound due to the low strength, and the permeability could not be measured.
  • Sample 9 which was not coated with glass, could be molded at a low molding pressure by adding resin, but had a low magnetic permeability. This is considered to be due to insufficient insulation between the soft magnetic powders because there is no glass layer.
  • FIG. 1 is an S-photograph of the composite powder used to prepare Sample 1.
  • the resin powder was fused to the glass-coated amorphous alloy shown in the S ⁇ photograph in Fig. 2.
  • the composite powder of the present invention has been granulated, and has a structure in which the coarse and fine grains of the amorphous alloy are densely packed to fill the voids between the grains. I understand.
  • the low melting point glass powder and the epoxy resin powder used in Example 1 were added to the Fe—Cr—Si_ —C amorphous alloy used in Example 1 so as to have the composition shown in Table 2.
  • the mixture was added and mixed at a temperature of 112 ° C. using a ball mill to obtain a composite powder (hereinafter, referred to as a triple mixing method).
  • the amorphous alloy powder and the epoxy resin were adjusted to a predetermined particle size using a sieve.
  • the obtained composite powder was treated in the same manner as in Example 1 to obtain a fired body (samples 10 to 19).
  • Example 2 The same soft magnetic powder and low-melting glass powder as in Example 1 were used.
  • Polyamide which is a thermoplastic resin, was used as the resin powder.
  • the polyamide used had a particle size adjusted to 45 / zm or less by a sieve.
  • a polyamide resin was further added to the produced composite powder so as to have the composition shown in Table 5, and this mixed powder was put into a kneading extruder and kneaded to produce molding pellets.
  • This The molding pellet was supplied to an injection molding machine and injection-molded at a cylinder temperature of 290 ° C, an injection pressure of 200 MPa, and a mold temperature of 100 ° C to obtain an injection-molded product (sample 2). 0 to 22).
  • the sample shape was T-80.
  • the DC superimposed characteristic I 1 was evaluated by the ratio of the inductance at the time of superimposing 14 A to the inductance at the time of superimposing 0 A DC. That is, when the ratio was 97% or more, ⁇ , 94% or more, ⁇ , 90% or more, ⁇ , and 90% or less, X.
  • Example 5 The same powder as in Example 3 was prepared by using a non-glass-coated Fe—Cr—Si—B—C amorphous alloy and adding an amide resin powder to the composition shown in Table 5. Injection molding was performed according to the method to obtain injection molded articles (samples 23 and 24). Table 5.
  • both the continuous formability and the magnetic properties were excellent.
  • the samples 23 and 24 using the mixed powder showed good properties in terms of continuous formability and magnetic permeability, but poor DC superimposition properties. That is, in the case of Samples 23 and 24, the permeability is apt to decrease when a DC current is applied while being superimposed on an AC. This is because, in the case of Sample 2 3 and 2 4, covering the front surface of the soft magnetic powder by the glass powder or resin powder is insufficient and damage electrical insulation between the soft magnetic powder has not been sufficiently ensured it is conceivable that.
  • Example 3 The same soft magnetic powder and low-melting glass powder as in Example 3 were used.
  • Polyamide which is a thermoplastic resin, was used as the resin powder.
  • the polyamide used had a particle size adjusted to 45 ⁇ or less by a sieve.
  • Polyamide resin powder was added to a Fe-Cr-Si-B-C amorphous alloy coated with a low melting glass using a powder coating device so that the resin content was 2 wt%. The mixture was mixed at a temperature of 250 ° C. using Bono Reminore to obtain a composite powder. For comparison, a composite powder containing no polyamide resin powder was also prepared.
  • the prepared composite powder so as to have the composition shown in Table 7, and the mixed powder is put into a kneading extruder and kneaded.
  • a pellet for molding was produced. This molding pellet was supplied to an injection molding machine, and injection molding was performed at a cylinder temperature of 290 ° C, an injection pressure of 200 MPa, and a mold temperature of 100 ° C to obtain an injection molded body.
  • the sample shape was T-80. Table 7.
  • the DC superimposition characteristics were evaluated by the ratio of the inductance at the time of superimposing 14 A to the inductance at the time of superimposing 0 A DC. That is, when the ratio was 97% or more, ⁇ , 94% or more, ⁇ , 90% or more, ⁇ , and 90% or less, X.
  • Sample 25 exhibited good characteristics in terms of DC superimposition characteristics, continuous formability, and magnetic permeability.
  • the sample 26 using the composite powder containing no polyamide resin exhibited relatively good characteristics.
  • the surface of the soft magnetic material powder is coated with at least an electrically insulating material containing an inorganic insulating material, and the surface of the inorganic insulating material is soft magnetic. Since the resin material is fused so as to partially cover the surface of the body powder, friction between the soft magnetic powders during molding is reduced, molding pressure is reduced, workability is improved, and packing density is increased. Can be improved. Furthermore, since the electrical insulating material ensures electrical insulation between the soft magnetic powders, a high permeability can be obtained.
  • the soft magnetic composite powder of the present invention can be suitably used not only for a high-frequency transformer and a core of a choke coil but also for an electromagnetic wave absorber and a magnetic shield.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Magnetic Ceramics (AREA)

Abstract

軟磁性体粉末の表面が少なくとも無機絶縁性材料を含む電気絶縁性材料で被覆され、その無機絶縁性材料の表面には軟磁性体粉末の表面を部分的に覆うように樹脂材料が融着されている軟磁性複合粉末を用いて軟磁性成形体を製造する。これにより、軟磁性材料粉末間の電気絶縁性を確保して良好な磁気特性を確保するとともに、容易に成形することができる。

Description

明 細 書 軟磁性複合粉末及びその製造方法並び軟磁性成形体の製造方法 技術分野
本発明は、 軟磁性複合粉末及びその製造方法並びその軟磁性複合粉末を用いた 軟磁性成形体の製造方法に関する。 背景技術
高周波用のトランスゃチョークコイルの磁心等に使用される軟磁性材料には、 カルボ二ル鉄、 フェライト、 センダストあるいは非晶質合金が用いられている。 これらの軟磁性材料を磁心に用いる場合、 高周波領域での電気抵抗を大きくする ために、 軟磁性材料の粉末を絶縁層を介して固化して軟磁性成形体とする方法が 用いられている。 例えば、 軟磁性材料の結着剤として低融点ガラスを用いて圧粉 成形して圧粉体とする方法 (特開昭 6 3 - 1 5 8 8 1 0号公報参照) や、 あるい は、 結着剤として低融点ガラスと樹脂を用いて圧粉成形し、 次いで焼成して樹月旨 のみを焼失させて焼成体とする方法 (特開 2 0 0 1— 7 3 0 6 2号公報参照) が 提案されている。 また、 軟磁性材料を含む樹脂組成物を射出成形により成形し射 出成形体とする方法も提案されている (特開平 1 1— 3 1 6 1 2号公報参照) 。 発明の開示
しかしながら、 結着剤として低融点ガラスを用いると、 軟磁性材料粉末間の電 気的絶縁性の確保が容易となる一方、 軟磁性材料及びガラスのいずれも硬い材料 であるため、 圧粉成形時に高いプレス圧力を必要とする。 そのため、 大型のプレ ス装置を必要とし、 また金型寿命が短くなり製造コストが高くなるという問題が めった。
また、 樹脂組成物を成形する場合、 軟磁性材料粉末間の電気絶縁性を確保する ため多量の樹脂を添加せざるを得ず、 そのため、 磁気特性が低下するという問題 があった。 そこで、 本発明は、 上記課題を解決し、 軟磁性材料粉末間の電気絶縁性を確保 して良好な磁気特性を確保するとともに、 成形の容易な軟磁性成形体の製造方法 を提供することを目的とした。
上記課題を解決するため、 本発明者らは、 軟磁性体粉末の表面の少なくとも一 部を無機絶縁性材料で被覆し、 その無機絶縁性材料に樹脂材料を融着させた複合 粉末を用いることにより、 軟磁性材料粉末間の電気絶縁性を確保するとともに、 成形加工性を向上できることに着目して本発明を完成させたものである。
すなわち、 本発明の軟磁性複合粉末は、 軟磁性成形体の製造に用いる複合粉末 であって、 軟磁性体粉末の表面が少なくとも無機絶縁性材料を含む電気絶縁性材 料で被覆され、 該無機絶縁性材料の表面には軟磁性体粉末の表面を部分的に覆う ように樹脂材料が融着されて成ることを特徴とする。
また、 上記電気絶縁性材料に無機絶縁性材料を用い、 軟磁性体粉末の表面に無 機絶縁性材料から成る無機絶縁層を形成し、 その無機絶縁層に樹脂材料を融着さ せた複合粉末を用いることもできる。 無機絶縁層で軟磁性体粉末を被覆すること により、 軟磁性体粉末間の電気絶縁性をさらに向上させることができる。
また、 上記電気絶縁性材料に、 無機絶縁性材料に加え樹脂材料を用いることも できる。 樹脂材料を用いることにより、 成形時の加工性を向上させることができ る。
また、 上記無機絶縁性材料にガラス材料を用いることもできる。 ガラス材料は 軟化点を有するため、 加熱することにより容易に複合粉末同士を接合することが できるからである。
また、 上記軟磁性体粉末に非晶質軟磁性合金を用いることができる。 高透磁率 で耐食性や強度等の特性に優れた軟磁性成形体を得ることができるからである。 また、 複合粉末は造粒されていることが好ましい。 造粒された複合粉末は高い 充填密度と高い変形能を有するからである。
本発明の軟磁性複合粉末は、 例えば、 以下の方法を用いて製造することができ る。 すなわち、 軟磁性体粉末の表面が少なくとも無機絶縁性材料を含む電気絶縁 性材料で被覆され、 該無機絶縁性材料の表面には軟磁性体粉末の表面を部分的に 覆うように樹脂材料が融着されて成る軟磁性複合粉末の製造方法であって、 上記 軟磁性体粉末を上記無機絶縁性材料で被覆し、 次いで上記軟磁性体粉末と上記樹 脂材料とを混合し、 上記無機絶縁性材料に上記樹脂材料を融着させる。
また、 上記無機絶縁性材料にガラス材料を用い、 そのガラス材料を軟磁性体粉 末の表面に融着させてガラス層を形成し、 そのガラス層に樹脂材料を融着させる ことができる。 また、 そのガラス材料に低融点ガラスを用いることができる。 また、 本発明の軟磁性複合粉末の別の製造方法は、 軟磁性体粉末の表面が少な くとも無機絶縁性材料を含む電気絶縁性材料で被覆され、 該無機絶縁性材料の表 面には軟磁性体粉末の表面を部分的に覆うように樹脂材料が融着されて成る軟磁 性複合粉末の製造方法であって、 上記軟磁性体粉末と、 上記無機絶縁性材料と、 上記樹脂材料とを混合し、 軟磁性体粉末の表面を無機絶縁性材料と樹脂材料で被 覆する一方、 上記無機絶縁性材料に上記樹脂材料を融着させることを特徴とする。 本発明の軟磁性複合粉末を用い、 例えば、 以下の方法により軟磁性成形体を製 造することができる。 すなわち、 軟磁性体粉末の表面が少なくとも無機絶縁性材 料を含む電気絶縁性材料で被覆され、 該無機絶縁性材料の表面には軟磁性体粉末 の表面を部分的に覆うように樹脂材料が融着されて成る軟磁性複合粉末を金型内 に充填し加圧して圧粉体となし、 次いで該圧粉体を焼成して焼成体とすることを 特徴とする。
また、 軟磁性成形体の別の製造方法は、 軟磁性体粉末の表面が少なくとも無機 絶縁性材料を含む電気絶縁性材料で被覆され、 該無機絶縁性材料の表面には軟磁 性体粉末の表面を部分的に覆うように樹脂材料が融着されて成る軟磁性複合粉末 にさらに樹脂材料を添加し、 混練して射出成形体とすることを特徴とする。
また、 軟磁性成形体の別の製造方法は、 軟磁性体粉末の表面が少なくとも無機 絶縁性材料を含む電気絶縁性材料で被覆され、 該無機絶縁性材料の表面には軟磁 性体粉末の表面を部分的に覆うように樹脂材料が融着されて成る軟磁性複合粉末 にさらに樹脂材料を添加し、 混練して射出成形体とし、 該射出成形体を脱脂及び 焼成して焼成体とすることを特徴とする。
本発明の軟磁性複合粉末は、 軟磁性体の表面が少なくとも無機絶縁性材料を含 む電気絶縁性材料で被覆され、 その無機絶縁材料はその表面に融着した樹脂材料 を有している。 これにより、 複合粉末を加圧成形する場合、 軟磁性体粉末同士が 直接接触するのを防止することができるので、 軟磁性体粉末間の摩擦を低減して プレス圧力をより小さくすることができる。 特に、 その樹脂材料は、 軟磁性体粉 末の表面を部分的に覆っているので、 軟磁性体粉末の表面の全面を覆う場合に比 ベ、 より自由に変形できる。 すなわち、 樹脂材料は無機絶縁性材料との融着部を 支点として自由変形可能であり、 軟磁性体粉末同士が接近すると、 樹脂材料に接 触した軟磁性体粉末は樹脂材料の変形によりその移動方向を変え、 粉末粒子間の 空隙に移動することが可能である。 特に細粒の軟磁性体粉末は移動し易いため、 樹脂材料の変形に伴 、粗粒の軟磁性体粉末が形成する空隙に押出される結果、 充 填密度を高めることが可能となる。 これに対し、 樹脂材料が軟磁性体粉末の表面 の全面を覆う場合、 樹脂材料はその膜厚方向の変形は可能である力 膜幅方向へ の変形は抑制されるため、 軟磁性体粉末の移動が抑制され、 充填密度を高くする ことが困難となる。 また、 樹脂材料は無機絶縁性材料に融着しているので、 樹月旨 材料が変形しても無機絶縁性材料から容易に脱着することがなく、 軟磁性体粉末 同士の接触を防止することが可能となる。 また、 軟磁性体粉末の表面が無機絶縁 性材料を含む電気絶縁性材料で被覆されているので、 焼成体や射出成形体等の成 形体において、 軟磁性体粉末同士の直接接触を抑制して軟磁性体粉末間の電気絶 縁性を確保することもできる。 ここで、 軟磁性体粉末の表面を部分的に覆うとは、 軟磁性体粉末の表面の全面が被覆されている状態以外を指し、 無機絶縁性材料に 融着した樹脂材料が表面の少なくとも一部には存在しない状態を指すものである。 図面の簡単な説明
図 1は、 本発明の軟磁性複合粉末の一実施例の形状を示す S EM写真である。 図 2は、 本発明に用いたガラスコーティングした軟磁性体粉末の形状を示す S EM写真である。 発明を実施するための最良の形態
以下、 本発明の実施の形態について説明する。
実施の形態 1 .
本実施の形態では、 軟磁性体粉末の表面を被覆する電気絶縁性材料に無機絶縁 性材料を用いる複合粉末の一つの製造方法について説明する。
本実施の形態に用いる軟磁性体には、 フェライト等の酸化物系材料、 カルボ二 ル鉄、 Fe— S i合金、 N i—F e合金、 そして F e系あるいは C o系の非晶質 合金等の金属系材料が含まれる。 耐食性、 耐摩耗性、 強度、 そして高透磁率や低 保持力等の軟磁気特性が結晶系材料に比べ優れた軟磁性非晶質合金を用いること が好ましい。 軟磁性非晶質合金は特に限定されず、 鉄系やコバルト系等の公知の 非晶質合金を用いることができる。
また、 本実施の形態に用いる無機絶縁性材料には、 例えば、 A 1203、 S i 02、 Y203、 MgO、 そして Ζ r 02等の絶縁性の金属又は半金属の酸化物、 あるいはガラス材料、 又はそれらの混合物を用いることができるが、 ガラス材料 が好ましい。 ガラス材料の中でも、 低融点ガラスが好ましい。 低い軟化温度を有 し、 軟磁性非晶質合金に融着してその表面を被覆することができるからである。 低融点ガラスは、 軟磁性体粉末と反応せず、 軟磁性非晶質合金の結晶化開始温 度よりも低温、 好ましくは約 550°C以下で軟化するものであれば特に限定され ない。 例を挙げれば、 PbO— B203系ガラス等の鉛系ガラス、 P205系ガラ ス、 Z nO— B a O系ガラス、 そして ZnO— B203_S i 02系ガラス等の公 知の低融点ガラスを用いることができる。 好ましくは、 無鉛ガラスであって、 低 い軟化点を与える P205系ガラスが好ましい。 その一例を挙げれば P205 6 0〜80%、 A 1203 10%以下、 ZnO 10〜20%、 L i 20 10% 以下、 Na2〇 10%以下の,袓成のものを用いることができる。
また、 本発明に用いる樹脂は、 従来公知の熱可塑性樹脂又は熱硬化性樹脂を用 いることができる。 熱可塑性樹脂としては、 例えば、 ポリエチレンやポリプロピ レン等のポリオレフイン、 ポリビエルアルコール、 ポリエチレンオキサイド、 ポ リフエ二レンスルフイ ド (PPS) 、 液晶ポリマー、 ポリエーテルエーテルケト ン (PEEK) 、 ポリイミ ド、 ポリエーテルイミ ド、 ポリアセタール、 ポリエー テルサルホン、 ポリサルホン、 ポリカーボネート、 ポリエチレンテレフタレート. ポリブチレンテレフタレート、 ポリフエ二レンオキサイ ド、 ポリフタ一ノレアミ ド. ポリアミド等、 そしてそれらの混合物又は共重合体、 熱硬ィ匕性樹脂としては、 例 えば、 フエノール樹脂、 エポキシ樹脂、 不飽和ポリエステル樹脂、 ジァリルフタ レート樹脂、 メラミン樹脂、 尿素樹脂等、 そしてそれらの混合物を挙げることが できる。
また、 樹脂材料の形状は、 粉末状ゃ瞧状のものを用いることができるが、 混 合し易い粉末状が好ましい。
以下に、 複合粉末の作製方法の一例を説明する。 すなわち、 軟磁性体粉末の表 面を予め無機絶縁性材料で被覆して無機絶縁層を形成し、 次いでその無機絶縁層 に樹脂材料を融着させる。
軟磁性体粉末を無機絶縁性材料で被覆して無機絶縁層を形成する方法としては、 メカノフュージョン等の粉末コーティング法や、 無電解メツキゃゾルーゲル法等 の湿式薄膜作製法、 又はスパッタリング等の乾式薄膜作製法等を用いることがで きる。 粉末コーティング法は、 例えば特開 2 0 0 1— 7 3 0 6 2号公報に記載さ れた粉末コーティング装置を用いて行うことができる。 この方法によれば、 軟磁 性体粉末と低融点ガラス粉末が強力な圧縮摩擦力を受け、 軟磁性体粉末と低融点 ガラス粉末との融合及びガラス粉末同士の溶着により、 軟磁性体粉末の表面が低 融点ガラスから成る無機絶縁層で被覆された複合粉末を得ることができる。
次いで、 無機絶縁層を有する軟磁性体粉末に樹脂粉末を添加して混合する。 樹 脂粉末は混合時の機械的エネルギーにより一部が溶融して、 その溶融した部分が 無機絶縁層に融着する。 これにより軟磁性複合粉末を得ることができる。 混合に は、 ポールミル等の公知の固相混合方法を用いることができる。 なお、 混合時の 温度は室温以上であれば良いが、 樹脂材料の軟化温度以上の温度に加熱すること が好ましい。 樹脂粉末の無機絶縁層への融着が促進されるからである。
ここで、 無機絶縁層で被覆した軟磁性体粉末を用いる場合、 樹脂粉末の粒径は 軟磁性体粉末の粒径より小さく、 好ましくは半分以下であり、 例えば、 軟磁†生体 粉末の粒径が 3 0 0 m以下、 1 5 0 μ m以下、 そして 4 5 μ m以下の場合、 そ れぞれ 1 5 0 μ m以下、 7 5 μ m以下、 そして 2 0 μ m以下が好ましい。
また、 複合粉末の組成は、 無機絶縁性材料 0 . 3〜 6重量%、 樹脂材料 1〜 1 0重量%、 そして残部が軟磁性体粉末となるように、 より好ましくは、 無機絶縁 性材料 0 . 4〜 3重量%、 樹脂材料 2〜 8重量%、 そして残部が軟磁性体粉末と なるように、 さらに好ましくは無機絶縁性材料 0 . 4〜 1重量%、 樹脂材料 3〜 8重量%、 そして残部が軟磁性体粉末となるようにする必要がある。 なお、 必要 により、 0. 1〜0. 5重量0 /0の滑剤を添加することもできる。
また、 必要により、 潤滑剤としてステアリン酸亜鉛ゃステアリン酸カルシウム 等のステアリン酸塩を添加して混合することができる。
また、 本実施の形態の複合粉末を所定の金型に充填し、 圧粉成形、 射出成形、 そして押出成形等の種々の成形方法を用いて成形することができる。 例えば、 圧 粉成形の場合、 軟磁性複合粉末を金型内に充填し、 所定の加圧圧力でプレス成形 し、 成形した圧粉体を、 焼成し、 樹脂を焼失させて焼成体を得ることができる。 なお、 軟磁性体粉末に非晶質合金粉末を用いる場合には、 焼成温度を非晶質合金 の結晶化開始温度より低温とする必要がある。
また、 射出成形の場合、 成形加工性を確保するため、 軟磁性複合粉末にさらに 樹脂粉末を添加して混練する必要がある。 添加する樹脂は複合粉末中の樹脂と同 じ、 あるいは別の樹脂を用いることができる。 射出成形に用いる樹脂は、 J I S K 7 1 9 1で規定する荷重たわみ温度が 1 0 0 °C以上の耐熱性樹脂が好ましく、 例を挙げれば、 上述の熱可塑性樹脂の中でポリオレフイン、 ポリビュルアルコー ル、 ポリエチレンオキサイド以外の熱可塑性樹脂と、 上述の熱硬化性樹脂を用い ることができる。 なお、 混練に際し、 熱可塑性樹脂の場合、 その軟化温度以上の 温度で加熱して混練することが好ましい。 また、 熱硬化性樹脂の場合、 その分解 温度以下の温度、 好ましくは 3 0 0 °C以下の温度で混練することが好ましい。 な お、 射出成形の場合、 成形加工性確保のため、 最終成形体中の樹脂の含有量が 5 重量%以上となることが好まし 、。
なお、 複合粉末は造粒することが好ましい。 造粒すると、 造粒粒子内部も部分 的な樹脂の融着の効果により、 軟磁性粉末の自由変形が生じる結果、 大径粒子と 小径粒子とが密に充填され高い充填密度が維持される。 さらに、 造粒粒子間でも 部分的な樹脂の融着の効果により、 造粒粒子の変形が可能となる結果、 高い充填 密度を有することになる。 これにより、 造粒された複合粉末は高い充填密度と高 い変形能を有し、 特に圧粉成形に好適に用いることができる。
造粒は、 上記のように無機絶縁層を有する軟磁性体粉末に樹脂粉末を添加して 混合する混合攪拌造粒により行うことができる。 しかしながら、 造粒粒子の形状 や粒径を均一にするには、 複合粉末を原料粉とし、 転動造粒等の自足造粒法や、 スプレードライ等の強制造粒法等の公知の方法を用いて行うことが好ましい。 実施の形態 2 .
本実施の形態は、 軟磁性複合粉末の別の製造方法に関するものである。 本実施 の形態では、 実施の形態 1に記載した軟磁性体粉末と、 無機絶縁性材料と、 樹脂 材料とを樹脂材料の融点以上の温度に加熱して混合し複合粉末を製造する。 無機 絶縁性材料にはガラス粉末を用い、 樹脂材料には樹脂粉末を用いることが好まし レ、。 軟磁性体粉末の表面は、 軟磁性体粉末に融着した樹脂粉末とその樹脂粉末に より結着されたガラス粉末とで被覆され、 さらに、 そのガラス粉末の表面に樹脂 粉末が融着した複合粉末を得ることができる。
ここで、 ガラス粉末及び樹脂粉末の粒径は軟磁性体粉末の粒径より小さく、 好 ましくは半分以下であり、 例えば、 軟磁性体粉末の粒径が 3 0 0 μ m以下、 1 5 0 μ m以下、 そして 4 5 μ m以下の場合、 ガラス粉末と樹脂粉末の粒径は 1 5 0 m以下、 7 5 μ m以下、 そして 2 0 μ m以下が好ましい。
また、 複合粉末の組成を、 無機絶縁性材料 0 . 3〜: L 0重量%、 樹脂材料 1〜
1 0重量%、 そして残部が軟磁性体粉末となるように、 より好ましくは、 無機絶 縁性材料 0 . 4〜6重量%、 樹脂材料 2〜8重量0 /0、 そして残部が軟磁性体粉末 となるように、 さらに好ましくは無機絶縁性材料 0 . 4〜6重量0 /0、 樹脂材料 3 〜8重量%、 そして残部が軟磁性体粉末となるように配合するのが好ましい。 こ のように複合粉末の組成を調整することにより、 ガラス粉末に融着した樹脂粉末 が軟磁性体粉末の表面を部分的に覆うことが可能となり、 実施の形態 1の場合と 同様の効果を得ることができる。
実施の形態 3 ·
本実施の形態は、 軟磁性成形体の製造方法に関するものである。 本実施の形態 では、 実施の形態 1と 2に記載した複合粉末を原料粉として、 いわゆる金属射出 成形法 (M I M) により、 軟磁性焼成体を製造する。 M I Mは、 上述の射出成形 体を脱脂及び焼成して焼成体とするものである。 従来、 M I Mでは、 脱脂工程後 の成形体強度が非常に低く、 そのままでは軟磁性材料として使用することはでき なかった。 また、 成形体を焼結すると、 絶縁性が低下し、 磁気特性の高い材料を 得ることは困難であった。 し力 し、 本発明の複合粉末を原料粉に用いることによ り、 上述の圧粉成形一焼成法と同等の磁気特性を得ることができる。 ここで、 M I M用の複合粉末では、 複合粉末中の樹脂の熱分解温度が、 射出成形時に添加さ れる樹脂 (以下、 M I M用樹脂という) の熱分解温度と同じあるいはそれ以上で あることが好ましい。 脱脂及び焼成の最終段階まで、 射出成形体中の複合粉末の ネットワークを維持することができるからである。 また、 脱脂及び焼成を一段階 で行うこともできる。
M I M用樹脂としては、 原料粉に可塑性を与え、 また常温において成形体に強 度を付与する機能を有する熱可塑性樹脂、 例えば、 アクリル樹脂、 ポリオレフィ ン樹脂、 ポリスチレン樹脂、 そしてポリイミド樹脂の一種、 あるいはそれらの二 種以上を含む混合物、 あるいはそれらの共重合体を用いることができる。 具体例 として、 ポリエチレン、 ポリプロピレン、 ポリスチレン、 エチレン一酢酸ビニノレ 共重合体、 エチレン一ェチルアタリレート共重合体、 ポリメタクリル酸アクリル エステル、 ポリアミドを挙げることができる。
また、 脱脂性や流動性の改善のため、 ワックスや可塑剤などを必要により添加 することができる。
ワックスとしては、 密ろう、 木ろう、 モンタンワックス等の天然ろう、 低分子 ポリエチレン、 マイクロクリスタリンワックス、 パラフィンワックス等の合成ろ うの一種、 又はそれらの二種以上を混合して用いることができる。 ワックスは可 塑剤又は潤滑剤として兼用することもできる。 また、 必要により、 脱脂促進剤と して、 樟脳等の昇華性物質を用いることもできる。
可塑剤には、 フタノレ酸ジ _ 2—ェチルへキシル、 フタル酸ジェチル、 フタル酸 ジー n _ブチル等を用いることができる。 また、 必要により、 滑剤として、 高級 月旨肪酸、 脂肪酸アミド、 脂肪酸エステル等を用いることもできる。
なお、 M I Mにおいては、 複合粉末を作製する際に、 樹脂の添加を省略するこ ともできる。 すなわち、 軟磁性体粉末の表面が少なくとも無機絶縁性材料を含む 電気絶縁性材料で被覆された軟磁性複合粉末に樹脂材料を添加し、 混練して射出 成形体とし、 該射出成形体を脱脂及び焼成して焼成体とすることもできる。 上記の実施の形態で説明した軟磁性複合粉末を用いた成形体は、 磁心のみなら ず、 電磁波吸収体にも用いることができる。 すなわち、 高い透磁率を有する軟磁 性材料を用いた電磁波吸収体は、 電磁波を吸収することにより反射波及び透過波 を低減することができる。 従来、 電磁波吸収体は、 電磁波吸収材料を樹脂やゴム 等のマトリッタスに分散させ、 押出成形やプレス成形等により成形されて使用さ れているが、 電磁波吸収材料を高密度に充填するのは容易ではなく、 十分な電磁 波吸収能が得られていない。 し力 し、 本発明の軟磁性複合粉末を用いることによ り、 軟磁性材料の充填密度を向上させることができるため、 電磁波吸収能を向上 させることが可能となる。
また、 上記の実施の形態で説明した軟磁性複合粉末を用いた成形体は磁気シー ルド材にも用いることができる。 高い透磁率を有する軟磁性材料を用いるととも に、 マトリッタスに分散させる軟磁性材料の充填密度を向上させることができる ので、 磁気シールド特性を向上させることが可能となる。
以下、 実施例により本発明について詳細に説明する。
実施例 1.
圧粉成形による焼成体の製造 1
(軟磁性複合粉末の作製)
軟磁性体粉末には (Fe0.97Cr 0.。3) 76 (S i 0. 5B0. 2) 22C2の非晶質 合金に低融点ガラス粉末 ( P 2 O 5 60〜 80 %、 A 12 O 3 10 %以下、 Z nO 10〜20%、 L i 2O 10%以下、 Na2O 10%以下、 粒径 40 β m以下) を粉末コーティング法でコーティングしたものを用いた。 樹脂粉末に は熱硬化性樹脂であるエポキシ樹脂及び熱可塑性樹脂であるポリエチレンォキサ ィド、 そして潤滑剤としてステアリン酸亜 1を用いた。 なお、 F e _C r— S i -B-C系非晶質合金と樹脂粉末は篩により粒径を 45 μ ra以下に調整したもの を用いた。
低融点ガラスをコーティングした F e— C r— S i— B— C系非晶質合金に、 表 1の組成となるように、 エポキシ樹脂粉末、 ポリエチレンォキサイド ( P E O) 粉末、 そしてステアリン酸亜鉛を添加し、 ポールミルを用いて温度 112°C で混合し、 複合粉末を得た。
(成形体の作製) 樹脂粉末の含有量の異なる複合粉末を、 金型に充填後、 所定の圧力でプレス成 形して圧粉体を得、 次いでその圧粉体を 4 8 0 °Cで 1 5分間、 大気雰囲気で焼成 して樹脂を焼失させて焼成体 (直径 1 0 mm、 内径 5 mm、 厚さ 5 mm) (試料 1〜5 ) を得た。
(連続成形性の評価)
連続成形性は、 以下の方法により評価した。 すなわち、 プレス成形を自動運転 する際、 圧粉体の取出しは下パンチを突き出して圧粉体をけり出すことにより行 う。 自動運転の際、 自動運転の速度により、 圧粉体の取出し易さと形状がどの程 度維持されるかを判定した。 2 0個ノ分の速度で自動運転可能なものを◎、 1 5 個 Z分の速度で自動運転可能なものを〇、 1 0個/分の速度で自動運転可能なも のを△、 自動運転が困難、 すなわち圧粉体を手で取出す必要がある場合を Xと した。
(透磁率測定)
透磁率は、 J I S C 2 5 6 1に準じて測定した。
なお、 結果は、 試料 1 ( 1 MH zにおける透磁率約 6 0 ) を基準として表わし、 試料 1の値の一 5 %以上は◎、 試料 1の一 1 0 %以上は〇、 試料 1の一 1 5 %以 上は△、 そして試料 1の _ 1 5 %以下は Xである。
比較例 1 .
篩により 1 5 0 / m以下、 7 5 / m以下、 そして 4 5 μ m以下の粒度に調整し た F e— C r一 S i— B— C系非晶質合金の表面を実施例 1と同様の方法により 低融点ガラスを用いてガラスコーティングした。 次いで、 表 1の組成となるよう に、 エポキシ樹脂粉末、 ポリエチレンオキサイド粉末、 そしてステアリン酸亜鉛 を添加し、 ボールミルを用いて室温で混合し、 複合粉末を得た。 この複合粉末を 実施例 1と同様に成形することを検討したが、 大きなプレス圧力を必要とし成形 が困難であった。 そのため、 形状を付与できる程度の圧力を成形圧力とした (試 料 6〜8 ) 。 また、 透磁率の測定を行うことができなかった。
比較例 2 .
ガラスコーティングをしていない F e _ C r— S i— B— C系非晶質合金を用 い、 表 1の組成となるようにエポキシ樹脂粉末、 ポリエチレンオキサイド粉末、 そしてステアリン酸亜鉛を添加し、 ポールミルを用いて 1 1 2 °Cで混合し、 複合 粉末を得た。 この複合粉末を実施例 1の同様の方法により処理して圧粉成形体を 得た (試料 9 ) 。
表 1 .
Figure imgf000013_0001
表 2 .
Figure imgf000013_0002
(実施例 1についての結果)
試料 1から 4は、 試料 6から 8に比べ、 成形圧力を大幅に低下させることがで きた。 また、 透磁率も良好な値を有していた。 これは、 試料 1から 4の場合、 ガ ラス層に融着した樹脂粉末が軟磁性体粉末同士の摩擦を低下させ、 軟磁性体粉末 を移動し易くして充 ϋ度を高くしたためと考えられる。
し力 し、 樹脂含有量が 1 O w t %を超える試料 5は流動性が悪く金型への充填 が困難であり充填密度も低く、 また自動運転で成形することもできなかった。 ま た、 焼成時に昇温速度を遅くしないと樹脂の分解ガスの圧力により焼成体が ¾Μ した。 また、 昇温速度を遅くして焼成しても、 強度が弱いためコイルを卷くこと ができず透磁率の測定を行うことができなかった。
また、 ガラスコーティングを行わなかった試料 9は、 樹脂の添加により低い成 形圧力で成形可能であるが、 透磁率は低い値であった。 これは、 ガラス層が存在 しないため、 軟磁性体粉末間の絶縁が不十分なためと考えられる。
また、 図 1は試料 1の作製に用いた複合粉末の S ΕΜ写真である。 図 2の S Ε Μ写真に示すガラスコーティングした非晶質合金に樹脂粉末を融着させたもので ある。 この写真から明らかなように、 本努明の複合粉末は造粒されており、 非晶 質合金の粗粒と細粒が粒子間の空隙を埋めるように密に充填した構造をとってい ることがわかる。
実施例 2.
圧粉成形による焼成体の製造 2
(軟磁性複合粉末の作製)
実施例 1で用いた F e— C r— S i _ Β— C系非晶質合金に、 表 2の組成とな るように、 実施例 1で用いた低融点ガラス粉末とエポキシ樹脂粉末を添加し、 ボ ールミルを用いて温度 112°Cで混合し、 複合粉末を得た (以下、 3種混合法と いう。 ) 。 ここで、 非晶質合金粉末とエポキシ樹脂は篩を用いて所定の粒度に調 整した。 得られた複合粉末を実施例 1と同様の方法で処理して焼成体を得た (試 料 10〜 19 ) 。
表 3.
試料 軟磁性体粉末 低融点ガラス 樹脂 (熱硬化性樹脂)
No.
含有量 分級粒径 含有量 分級粒径 含有量 分級粒径
(wt%) (wt%) (μπι) (wt%) ( α)
1 0 97.5 一 150 0.5 -150 2.0 - 150
1 1 97.5 -150 0.5 -75 2.0 -75
1 2 97.5 -150 0.5 -45 2.0 -45
1 3 97.5 -45 0.5 -45 2.0 -45
1 4 97.5 -45 0.5 -45 2.0 -45
1 5 97.5 -45 0.5 -20 2.0 -20
1 6 94 -150 3.0 -45 3.0 -45
1 91 -150 6.0 -45 3.0 -45
1 8 83 -150 6.0 -45 8.0 -45
1 9 80 -150 6.0 -45 11.0 一 45 表 4 ·
Figure imgf000015_0001
(実施例 2についての結果)
3種混合法により複合粉末を作製した場合においても、 表 4に示すように、 比 較例 1の方法に比べ大幅に成形圧力を低下させることができた。 また、 連続成形 性と透磁率も良好であった。 し力 し、 樹脂含有量が 1 0 w t %を超える試料 1 9 は流動性が悪く金型への充填が困難であり充填密度も低く、 また自動運転で成形 することもできなかった。 また、 焼成時に昇温速度を遅くしないと樹脂の分解ガ スの圧力により焼成体が破損した。 また、 昇温速度を遅くして焼成しても、 強度 が弱いためコイルを卷くことができず透磁率の測定を行うことができなかった。 実施例 3 .
射出成形による射出成形体の製造
(軟磁性複合粉末の作製)
軟磁性体粉末と低融点ガラス粉末は実施例 1と同じものを用いた。 樹脂粉末に は熱可塑性樹脂であるポリアミドを用いた。 なお、 ポリアミドは篩により粒度を 4 5 /z m以下に調整したものを用いた。 粉末コーティング装置を用いて低融点ガ ラスをコーティングした F e—C r— S i— B— C系非晶質合金に、 樹脂の含有 量が 2 w t %となるように、 ポリアミド樹脂粉末を添加し、 ポー/レミノレを用いて 温度 2 5 0 °Cで混合し、 複合粉末を得た。
(射出成形)
作製した複合粉末に表 5の組成となるようにポリアミド樹脂をさらに添加し、 この混合粉を混練押出し機に投入し、 混練を行い成形用ペレットを作製した。 こ の成形用ペレツトを射出成形機へ供給し、 シリンダー温度 2 9 0 °C、 射出圧力 2 0 0 M P a、 金型温度 1 0 0 °Cで射出成形して射出成形体を得た (試料 2 0〜 2 2 ) 。 試料形状は T— 8 0とした。
(直流重畳特性の評価)
直流重畳特 I1生は、 直流 0 A重畳時のィンダクタンスに対する 1 4 A重畳時の ィンダクタンスの比率で評価した。 すなわち、 その比率が 9 7 %以上は◎、 9 4 %以上は〇、 9 0 %以上は△、 そして 9 0 %以下は Xとした。
比較例 3 .
ガラスコーティングをしていない F e— C r— S i— B— C系非晶質合金を用 い、 表 5の組成となるようにアミド樹脂粉末を添加した混合粉を実施例 3と同様 の方法により射出成形して射出成形体 (試料 2 3、 2 4 ) を得た。 表 5 .
Figure imgf000016_0001
(実施例 3についての結果)
複合粉末を用 ヽた試料 2 0から 2 2の場合、 連続成形性及び磁気特性とも良好 な特性を有していた。 これに対し、 混合粉を用いた試料 2 3と 2 4は、 連続成形 性と透磁率は良好な特性を示したが、 直流重畳特性は良くなかった。 すなわち、 試料 2 3と 2 4の場合、 交流と重畳して直流電流を流すと透磁率が低下し易い。 これは、 試料23と 24の場合、 ガラス粉末や樹脂粉末による軟磁性体粉末の表 面の被覆が不十分であり、 軟磁性体粉末間の電気絶縁性が十分に確保されていな いためと考えられる。
実施例 4.
金属射出成形 (MIM) による焼成体の製造
(軟磁性複合粉末の作製)
軟磁性体粉末と低融点ガラス粉末は実施例 3と同じものを用いた。 樹脂粉末に は熱可塑性樹脂であるポリアミドを用いた。 なお、 ポリアミドは篩により粒度を 45 μιη以下に調整したものを用いた。 粉末コーティング装置を用いて低融点ガ ラスをコーティングした F e—Cr— S i— B— C系非晶質合金に、 樹脂の含有 量が 2 wt%となるように、 ポリアミド樹脂粉末を添加し、 ボーノレミノレを用いて 温度 250°Cで混合し、 複合粉末を得た。 なお、 比較のため、 ポリアミド樹脂粉 末を含まない複合粉末も作製した。
谢出成形)
作製した複合粉末に表 7の組成となるように M I M用樹脂粉末 (パラフィンヮ ックス Zポリエチレン =75/25 (重量比) ) をさらに添加し、 この混合粉を 混練押出し機に投入し、 混練を行い成形用ぺレットを作製した。 この成形用ぺレ ットを射出成形機へ供給し、 シリンダー温度 290 °C、 射出圧力 200 M P a、 金型温度 100°Cで射出成形して射出成形体を得た。 試料形状は T— 80とした。 表 7.
Figure imgf000017_0001
* 1 :樹脂含有量の内訳は、 ポリアミド樹脂 3重量%、 M I M m 17重量% である。
* 2 :樹脂含有量の内訳は、 1^11^用樹脂20重量%でぁる。
(脱脂及び焼成)
得られた射出成形体の脱月旨と焼成を、 大気雰囲気で、 以下の表 8の昇温速度で 行い、 焼成体 (試料 25) を得た。 表 8 .
Figure imgf000018_0001
(直流重畳特性の評価)
直流重畳特性は、 直流 0 A重畳時のィンダクタンスに対する 1 4 A重畳時の インダクタンスの比率で評価した。 すなわち、 その比率が 9 7 %以上は◎、 9 4 %以上は〇、 9 0 %以上は△、 そして 9 0 %以下は Xとした。
(実施例 4についての結果)
表 9に示すように、 試料 2 5は、 直流重畳特性、 連続成形性、 そして透磁率と も良好な特性を示した。 なお、 本実施例では、 ポリアミド樹脂を含まない複合粉 末を用いた試料 2 6の比較的良好な特性を示した。
表 9 .
Figure imgf000018_0002
以上説明したように、 本発明の軟磁性複合粉末は、 軟磁性体粉末の表面が少な くとも無機絶縁性材料を含む電気絶縁性材料で被覆され、 その無機絶縁性材料の 表面には軟磁性体粉末の表面を部分的に覆うように樹脂材料が融着されているの で、 成形時に軟磁性体粉末同士の摩擦を低減し、 成形圧力を低下させ加工性を向 上させるとともに充填密度を向上させることができる。 さらに、 電気絶縁性材料 により軟磁性体粉末間の電気絶縁性が確保されるので、 高レヽ透磁率を得ることが できる。 そして、 本発明の軟磁性複合粉末は、 高周波用のトランスやチョークコ ィルの磁心のみならず、 電磁波吸収体や磁気シールドにも好適に使用することが できる。

Claims

1 . 軟磁性成形体の製造に用いる複合粉末であって、 軟磁性体粉末の表面が少 なくとも無機絶縁性材料を含む電気絶縁性材料で被覆され、 該無機絶縁性材料の 表面には軟磁性体粉末の表面を部分的に覆うように樹脂材料が融着されて成る軟 磁性複合粉末。
2. 上記軟磁性体粉末の表面が上記無機絶縁性材料から成る無機絶縁層で被覆 され、 該無機絶縁層に上記樹脂材ニニ P 料が融着されて成る請求項 1記載の軟磁性複合 青
粉末。
3. 上記電気絶縁性材料が上記樹脂材料のを含む請求項 1記載の軟磁性複合粉末。
4. 上記無機絶縁性材料がガラス材料である請求項 1力 ら 3のいずれか一つに 記載の軟磁性複合粉末。
5. 上記軟磁性体粉末が非晶質軟磁性合金である請求項 1カ ら 4のいずれか一 つに記載の軟磁性複合粉末。
6 . 上記樹月旨材料により造粒されて成る請求項 1カゝら 5のいずれか一つに記載 の軟磁性複合粉末。
7 · 軟磁性体粉末の表面が少なくとも無機絶縁性材料を含む電気絶縁性材料で 被覆され、 該無機絶縁性材料の表面には軟磁性体粉末の表面を部分的に覆うよう に樹脂材料が融着されて成る軟磁性複合粉末の製造方法であって、
上記軟磁性体粉末を上記無機絶縁性材料で被覆し、 次いで上記軟磁性体粉末と 上記樹脂材料とを混合し、 上記無機絶縁性材料に上記樹脂材料を融着させる軟磁 性複合粉末の製造方法。
8. 上記無機絶縁性材料がガラス材料であり、 上記軟磁性体粉末の表面に該ガ ラス材料を融着させてガラス層を形成し、 次いで該ガラス層に樹脂材料を融着さ せる請求項 7記載の製造方法。
9 . 上記ガラス材料が低融点ガラスである請求項 7又は 8に記載の製造方法。
1 0 . 軟磁性体粉末の表面が少なくとも無機絶縁性材料を含む電気絶縁性材料 で被覆され、 該無機絶縁性材料の表面には軟磁性体粉末の表面を部分的に覆うよ うに樹脂材料が融着されて成る軟磁性複合粉末の製造方法であって、 上記軟磁性体粉末と、 上記無機絶縁性材料と、 上記樹脂材料とを混合し、 軟磁 性体粉末の表面を無機絶縁性材料と樹脂材料で被覆する一方、 上記無機絶縁性材 料に上記樹脂材料を融着させる軟磁性複合粉末の製造方法。
1 1 . 軟磁性体粉末の表面が少なくとも無機絶縁性材料を含む電気絶縁性材料 で被覆され、 該無機絶縁性材料の表面には軟磁性体粉末の表面を部分的に覆うよ うに樹脂材料が融着されて成る軟磁性複合粉末を金型内に充填し加圧して圧粉体 となし、 次 ヽで該圧粉体を焼成して焼成体となす軟磁性成形体の製造方法。
1 2 . 軟磁性体粉末の表面が少なくとも無機絶縁性材料を含む電気絶縁性材料 で被覆され、 該無機絶縁性材料の表面には軟磁性体粉末の表面を部分的に覆うよ うに樹脂材料が融着されて成る軟磁性複合粉末に樹脂材料を添加し混練して射出 成形体となす軟磁性成形体の製造方法。
PCT/JP2004/005772 2003-08-06 2004-04-22 軟磁性複合粉末及びその製造方法並び軟磁性成形体の製造方法 WO2005015581A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/567,336 US7390567B2 (en) 2003-08-06 2004-04-22 Soft magnetic composite powder comprising an inorganic insulating coating, production method of the same, and production method of soft magnetic compact
JP2005512892A JP4452240B2 (ja) 2003-08-06 2004-04-22 軟磁性複合粉末及びその製造方法並び軟磁性成形体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003287975 2003-08-06
JP2003-287975 2003-08-06

Publications (1)

Publication Number Publication Date
WO2005015581A1 true WO2005015581A1 (ja) 2005-02-17

Family

ID=34131495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005772 WO2005015581A1 (ja) 2003-08-06 2004-04-22 軟磁性複合粉末及びその製造方法並び軟磁性成形体の製造方法

Country Status (5)

Country Link
US (1) US7390567B2 (ja)
JP (1) JP4452240B2 (ja)
KR (1) KR101077155B1 (ja)
CN (1) CN100565721C (ja)
WO (1) WO2005015581A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041961A (ja) * 2006-08-07 2008-02-21 Toshiba Corp 絶縁性磁性金属粒子および絶縁性磁性材料の製造方法
JP2008098289A (ja) * 2006-10-10 2008-04-24 Jtekt Corp 圧粉磁心およびこれの製造方法
JP2009019259A (ja) * 2007-07-13 2009-01-29 Daido Steel Co Ltd 非晶質軟磁性金属粉末および圧粉磁芯
JP2009059848A (ja) * 2007-08-31 2009-03-19 Tamura Seisakusho Co Ltd コア材とそれを用いたコア、そのコアを使用したチョークコイル
JP2009094428A (ja) * 2007-10-12 2009-04-30 Toko Inc 高透磁率磁性体モールド成形材料
JP2009120927A (ja) * 2007-11-19 2009-06-04 Nec Tokin Corp 軟磁性非晶質合金
JP2010062424A (ja) * 2008-09-05 2010-03-18 Toko Inc 電子部品の製造方法
JP2010141183A (ja) * 2008-12-12 2010-06-24 Tamura Seisakusho Co Ltd 圧粉磁心及びその製造方法
JP2010147218A (ja) * 2008-12-18 2010-07-01 Panasonic Corp フェライト系コンポジットシート及びその製造方法及びそれを使用した携帯端末用通信装置
JP2010232223A (ja) * 2009-03-25 2010-10-14 Seiko Epson Corp 絶縁物被覆軟磁性粉末、圧粉磁心および磁性素子
JP2010232225A (ja) * 2009-03-25 2010-10-14 Seiko Epson Corp 絶縁物被覆軟磁性粉末、圧粉磁心および磁性素子
JP2011054924A (ja) * 2009-08-07 2011-03-17 Tamura Seisakusho Co Ltd 圧粉磁心及びその製造方法
JP2012044156A (ja) * 2010-07-23 2012-03-01 Toyota Central R&D Labs Inc 圧粉磁心の製造方法および磁心用粉末の製造方法
US8288458B2 (en) * 2004-03-31 2012-10-16 Nippon Kagaku Yakin Co., Ltd. Composition of a functional material, and method of and apparatus for producing same
JP2012212853A (ja) * 2011-03-24 2012-11-01 Alps Green Devices Co Ltd 圧粉磁心及びその製造方法
CN104028762A (zh) * 2014-05-28 2014-09-10 浙江大学 一种软磁复合材料的制备方法
WO2015147064A1 (ja) * 2014-03-25 2015-10-01 Ntn株式会社 磁性コア部品および磁性素子、ならびに磁性コア部品の製造方法
JP2015185758A (ja) * 2014-03-25 2015-10-22 Ntn株式会社 アモルファス圧粉磁心とその製造方法
JP2015185776A (ja) * 2014-03-25 2015-10-22 Ntn株式会社 磁性コア部品および磁性素子、ならびに磁性コア部品の製造方法
JP2017123407A (ja) * 2016-01-07 2017-07-13 株式会社オートネットワーク技術研究所 複合材料成形体、リアクトル、及び複合材料成形体の製造方法
WO2018092664A1 (ja) 2016-11-16 2018-05-24 昭栄化学工業株式会社 金属粉末の製造方法
KR20240012412A (ko) 2021-05-28 2024-01-29 소에이 가가쿠 고교 가부시키가이샤 절연 피복 연자성 분말

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3728411B2 (ja) * 2001-09-18 2005-12-21 ソニー株式会社 磁性粒子の作製方法、磁性粒子および磁性材料
US7494600B2 (en) * 2003-12-29 2009-02-24 Höganäs Ab Composition for producing soft magnetic composites by powder metallurgy
TW200628062A (en) * 2004-12-03 2006-08-01 Nitta Corp Electromagnetic interference suppressor, antenna device, and electron information transfer device
KR100619141B1 (ko) * 2005-01-11 2006-08-31 공주대학교 산학협력단 고주파용 철계 연자성체 분말의 제조방법 및 이를 이용한연자성 코어
DE102005047451A1 (de) * 2005-09-30 2007-04-12 Siemens Ag Synchronmaschine
KR100697337B1 (ko) * 2006-09-28 2007-03-20 이일학 은(銀)나노 콜로이드 및 자성재료를 함유하는폴리카보네이트 수지관을 구비한 쇼핑카트.
DE102007034925A1 (de) * 2007-07-24 2009-01-29 Vacuumschmelze Gmbh & Co. Kg Verfahren zur Herstellung von Magnetkernen, Magnetkern und induktives Bauelement mit einem Magnetkern
KR101070778B1 (ko) * 2009-01-22 2011-10-06 한국과학기술연구원 자성 복합 분말, 이의 제조방법 및 이를 포함하는 전자파 노이즈 억제 필름
JP2010251696A (ja) * 2009-03-25 2010-11-04 Tdk Corp 軟磁性圧粉磁芯および軟磁性圧粉磁芯の製造方法
KR101152042B1 (ko) * 2009-12-25 2012-06-08 가부시키가이샤 다무라 세이사쿠쇼 압분 자심 및 그의 제조 방법
CN102693826B (zh) * 2011-03-24 2015-02-04 阿尔卑斯绿色器件株式会社 压粉磁心及其制造方法
CN102810386B (zh) * 2011-05-31 2016-07-13 美桀电子科技(深圳)有限公司 复合式磁芯及其制法
JP5974257B2 (ja) * 2011-07-11 2016-08-23 アルプス・グリーンデバイス株式会社 複合磁性粉末及び前記複合磁性粉末を用いた圧粉磁心
JP6036801B2 (ja) * 2012-02-17 2016-11-30 Tdk株式会社 軟磁性圧粉磁芯
EP2982707B1 (en) * 2012-06-28 2019-09-11 Dow Global Technologies LLC A composite material method of producing the same, and articles made therefrom
JP5919144B2 (ja) * 2012-08-31 2016-05-18 株式会社神戸製鋼所 圧粉磁心用鉄粉および圧粉磁心の製造方法
KR101499297B1 (ko) * 2012-12-04 2015-03-05 배은영 고온성형에 의한 고투자율 비정질 압분자심코아 및 그 제조방법
KR101375986B1 (ko) * 2013-01-18 2014-03-19 영남대학교 산학협력단 금속분말 사출성형법을 통한 Fe­Si 계 자성 코어 제조방법
JP2014209579A (ja) 2013-03-25 2014-11-06 Ntn株式会社 電気回路用コアおよびこれを用いた装置
KR101477652B1 (ko) * 2013-07-08 2015-01-06 영남대학교 산학협력단 Fe-6.5%Si 합금의 금속사출성형용 자성분말 코어 제조방법
US20160263653A1 (en) * 2013-10-25 2016-09-15 Golden Intellectual Property, Llc Amorphous alloy containing feedstock for powder injection molding
CN103589155B (zh) * 2013-10-30 2015-10-28 浙江大学 一种制备聚苯硫醚无机粒子复合材料的方法
JP6580817B2 (ja) * 2014-09-18 2019-09-25 Ntn株式会社 磁性コアの製造方法
KR101693686B1 (ko) * 2014-09-23 2017-01-09 주식회사 아모텍 스테이터 및 이를 구비한 모터
JP6550731B2 (ja) * 2014-11-28 2019-07-31 Tdk株式会社 コイル部品
TWI582800B (zh) * 2014-12-12 2017-05-11 Metal Ind Res And Dev Centre Method of making soft magnetic material
DE102015105431A1 (de) * 2015-04-09 2016-10-13 Volkswagen Ag Verfahren zur Herstellung eines weichmagnetischen Körpers
KR20160126751A (ko) * 2015-04-24 2016-11-02 삼성전기주식회사 코일 전자부품 및 그 제조방법
CN106024366A (zh) * 2016-06-21 2016-10-12 董开 一种一次成型的磁场成型方法和装置
DE102019103285A1 (de) * 2019-02-11 2020-08-13 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Stator zu einer optimierten Nutgrundisolation
KR102126062B1 (ko) * 2020-03-25 2020-06-23 주식회사 엠에스티테크 연자성 복합 재료 및 그 제조방법
CN111755196B (zh) * 2020-07-08 2021-06-18 广东泛瑞新材料有限公司 一种高防腐的铁硅铬合金软磁材料其制备方法
CN113327737B (zh) * 2021-05-25 2022-06-10 合泰盟方电子(深圳)股份有限公司 一种电感用软磁性复合材料及其制备方法
WO2023154521A1 (en) * 2022-02-11 2023-08-17 Horizon Technology Tailored permeability materials

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601816A (ja) * 1983-05-05 1985-01-08 ゼネラル・エレクトリツク・カンパニイ 鉄粉コア磁気装置
JPH0433301A (ja) * 1990-05-29 1992-02-04 Matsushita Electric Ind Co Ltd フェライト磁性体の製造方法
JPH06260319A (ja) * 1993-03-08 1994-09-16 Kobe Steel Ltd 高周波用圧粉磁心及びその製造方法
JPH10147832A (ja) * 1996-11-18 1998-06-02 Sumitomo Metal Mining Co Ltd パーマロイ焼結体の製造方法
JPH11256202A (ja) * 1998-03-10 1999-09-21 Masaaki Yagi 非晶質軟磁性合金粉末成形体の製造方法
JP2004143554A (ja) * 2002-10-25 2004-05-20 Jfe Steel Kk 被覆鉄基粉末

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4601753A (en) 1983-05-05 1986-07-22 General Electric Company Powdered iron core magnetic devices
JPS63158810A (ja) 1986-12-23 1988-07-01 Toshiba Corp 圧粉磁心
DE68921971T2 (de) * 1988-12-28 1995-08-03 Matsushita Electric Ind Co Ltd Komposit-Ferrit-Material.
US5798439A (en) * 1996-07-26 1998-08-25 National Research Council Of Canada Composite insulating coatings for powders, especially for magnetic applications
JP3838749B2 (ja) 1997-07-11 2006-10-25 株式会社メイト 軟磁性樹脂組成物
SE9702744D0 (sv) 1997-07-18 1997-07-18 Hoeganaes Ab Soft magnetic composites
JP2001073062A (ja) 1999-09-09 2001-03-21 Kubota Corp 非晶質軟磁性合金粉末成形体の製造方法
JP2003183702A (ja) * 2001-12-18 2003-07-03 Aisin Seiki Co Ltd 軟磁性粉末材料、軟磁性成形体及び軟磁性成形体の製造方法
KR100531253B1 (ko) * 2003-08-14 2005-11-28 (주) 아모센스 고주파 특성이 우수한 나노 결정립 금속 분말의 제조방법및 그 분말을 이용한 고주파용 연자성 코아의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601816A (ja) * 1983-05-05 1985-01-08 ゼネラル・エレクトリツク・カンパニイ 鉄粉コア磁気装置
JPH0433301A (ja) * 1990-05-29 1992-02-04 Matsushita Electric Ind Co Ltd フェライト磁性体の製造方法
JPH06260319A (ja) * 1993-03-08 1994-09-16 Kobe Steel Ltd 高周波用圧粉磁心及びその製造方法
JPH10147832A (ja) * 1996-11-18 1998-06-02 Sumitomo Metal Mining Co Ltd パーマロイ焼結体の製造方法
JPH11256202A (ja) * 1998-03-10 1999-09-21 Masaaki Yagi 非晶質軟磁性合金粉末成形体の製造方法
JP2004143554A (ja) * 2002-10-25 2004-05-20 Jfe Steel Kk 被覆鉄基粉末

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8288458B2 (en) * 2004-03-31 2012-10-16 Nippon Kagaku Yakin Co., Ltd. Composition of a functional material, and method of and apparatus for producing same
JP4585493B2 (ja) * 2006-08-07 2010-11-24 株式会社東芝 絶縁性磁性材料の製造方法
JP2008041961A (ja) * 2006-08-07 2008-02-21 Toshiba Corp 絶縁性磁性金属粒子および絶縁性磁性材料の製造方法
JP2008098289A (ja) * 2006-10-10 2008-04-24 Jtekt Corp 圧粉磁心およびこれの製造方法
JP2009019259A (ja) * 2007-07-13 2009-01-29 Daido Steel Co Ltd 非晶質軟磁性金属粉末および圧粉磁芯
JP2009059848A (ja) * 2007-08-31 2009-03-19 Tamura Seisakusho Co Ltd コア材とそれを用いたコア、そのコアを使用したチョークコイル
JP2009094428A (ja) * 2007-10-12 2009-04-30 Toko Inc 高透磁率磁性体モールド成形材料
JP2009120927A (ja) * 2007-11-19 2009-06-04 Nec Tokin Corp 軟磁性非晶質合金
JP2010062424A (ja) * 2008-09-05 2010-03-18 Toko Inc 電子部品の製造方法
JP2010141183A (ja) * 2008-12-12 2010-06-24 Tamura Seisakusho Co Ltd 圧粉磁心及びその製造方法
JP2010147218A (ja) * 2008-12-18 2010-07-01 Panasonic Corp フェライト系コンポジットシート及びその製造方法及びそれを使用した携帯端末用通信装置
JP2010232223A (ja) * 2009-03-25 2010-10-14 Seiko Epson Corp 絶縁物被覆軟磁性粉末、圧粉磁心および磁性素子
JP2010232225A (ja) * 2009-03-25 2010-10-14 Seiko Epson Corp 絶縁物被覆軟磁性粉末、圧粉磁心および磁性素子
JP2011054924A (ja) * 2009-08-07 2011-03-17 Tamura Seisakusho Co Ltd 圧粉磁心及びその製造方法
JP2012044156A (ja) * 2010-07-23 2012-03-01 Toyota Central R&D Labs Inc 圧粉磁心の製造方法および磁心用粉末の製造方法
JP2012212853A (ja) * 2011-03-24 2012-11-01 Alps Green Devices Co Ltd 圧粉磁心及びその製造方法
JP2015185776A (ja) * 2014-03-25 2015-10-22 Ntn株式会社 磁性コア部品および磁性素子、ならびに磁性コア部品の製造方法
WO2015147064A1 (ja) * 2014-03-25 2015-10-01 Ntn株式会社 磁性コア部品および磁性素子、ならびに磁性コア部品の製造方法
JP2015185758A (ja) * 2014-03-25 2015-10-22 Ntn株式会社 アモルファス圧粉磁心とその製造方法
CN104028762B (zh) * 2014-05-28 2016-08-24 浙江大学 一种软磁复合材料的制备方法
CN104028762A (zh) * 2014-05-28 2014-09-10 浙江大学 一种软磁复合材料的制备方法
JP2017123407A (ja) * 2016-01-07 2017-07-13 株式会社オートネットワーク技術研究所 複合材料成形体、リアクトル、及び複合材料成形体の製造方法
WO2017119439A1 (ja) * 2016-01-07 2017-07-13 株式会社オートネットワーク技術研究所 複合材料成形体、リアクトル、及び複合材料成形体の製造方法
WO2018092664A1 (ja) 2016-11-16 2018-05-24 昭栄化学工業株式会社 金属粉末の製造方法
WO2018092665A1 (ja) 2016-11-16 2018-05-24 昭栄化学工業株式会社 金属粉末の製造方法
KR20190085940A (ko) 2016-11-16 2019-07-19 소에이 가가쿠 고교 가부시키가이샤 금속 분말의 제조 방법
KR20190086469A (ko) 2016-11-16 2019-07-22 소에이 가가쿠 고교 가부시키가이샤 금속 분말의 제조 방법
US11426791B2 (en) 2016-11-16 2022-08-30 Shoei Chemical Inc. Method for producing metal powder
US11458536B2 (en) 2016-11-16 2022-10-04 Shoei Chemical Inc. Method for producing metal powder
KR20240012412A (ko) 2021-05-28 2024-01-29 소에이 가가쿠 고교 가부시키가이샤 절연 피복 연자성 분말
DE112022002808T5 (de) 2021-05-28 2024-03-07 Shoei Chemical Inc. Isoliertes beschichtetes weichmagnetisches Pulver

Also Published As

Publication number Publication date
JPWO2005015581A1 (ja) 2006-10-05
US7390567B2 (en) 2008-06-24
US20060165985A1 (en) 2006-07-27
CN100565721C (zh) 2009-12-02
CN1830043A (zh) 2006-09-06
JP4452240B2 (ja) 2010-04-21
KR101077155B1 (ko) 2011-10-27
KR20060054395A (ko) 2006-05-22

Similar Documents

Publication Publication Date Title
WO2005015581A1 (ja) 軟磁性複合粉末及びその製造方法並び軟磁性成形体の製造方法
JP6625334B2 (ja) 磁心用粉末の製造方法
JP3838730B2 (ja) 軟磁性複合材料
JP5363881B2 (ja) 軟磁性材料、およびこの軟磁性材料から構成される物品の製造方法
CN108140462B (zh) 压粉磁芯材料、压粉磁芯及其制造方法
JP3986043B2 (ja) 圧粉磁心及びその製造方法
JP5374537B2 (ja) 軟磁性粉末、造粒粉、圧粉磁心、電磁部品及び圧粉磁心の製造方法
CN101620909B (zh) 软磁材料及该软磁材料组成的制品的制造方法
JP2006179621A (ja) 成形体の製造方法および成形体
KR100650354B1 (ko) 비정질 연자성체의 제조 방법
JP2015185758A (ja) アモルファス圧粉磁心とその製造方法
JP4419829B2 (ja) 成形体の製造方法および成形体
WO2017150610A1 (ja) 圧粉磁心用造粒粉及びその製造方法
JP2018168402A (ja) 磁心用粉末および圧粉磁心の製造方法
JP2019041008A (ja) 圧粉磁心の製造方法及びこれに用いる圧粉磁心用混合粉末
JP3863990B2 (ja) 非晶質軟磁性合金粉末成形体の製造方法
JP2006310873A (ja) 圧粉磁心及びその製造方法
JP2020145310A (ja) 圧粉磁心材料
JP2830241B2 (ja) フェライト磁性体
JP2762531B2 (ja) フェライト磁性体およびその製造方法
JPH07153616A (ja) 樹脂複合フェライト、その製造方法及び電子部品用材
JPH036803A (ja) フェライト磁性体およびその製造方法
JPH01253209A (ja) 磁性体とその製造方法
JPH04101401A (ja) フェライト磁性体およびその製造方法
JPH04237104A (ja) フェライト磁性体およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480021670.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: KR

Ref document number: 1020067002118

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005512892

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006165985

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10567336

Country of ref document: US

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWP Wipo information: published in national office

Ref document number: 10567336

Country of ref document: US

122 Ep: pct application non-entry in european phase