WO2017150610A1 - 圧粉磁心用造粒粉及びその製造方法 - Google Patents

圧粉磁心用造粒粉及びその製造方法 Download PDF

Info

Publication number
WO2017150610A1
WO2017150610A1 PCT/JP2017/008110 JP2017008110W WO2017150610A1 WO 2017150610 A1 WO2017150610 A1 WO 2017150610A1 JP 2017008110 W JP2017008110 W JP 2017008110W WO 2017150610 A1 WO2017150610 A1 WO 2017150610A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
water
soluble polymer
magnetic particles
insulating coating
Prior art date
Application number
PCT/JP2017/008110
Other languages
English (en)
French (fr)
Inventor
哲隆 加古
大平 晃也
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2017150610A1 publication Critical patent/WO2017150610A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/08Metallic powder characterised by particles having an amorphous microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Definitions

  • the present invention relates to a granulated powder for a dust core (hereinafter also simply referred to as “granulated powder”) and a method for producing the same.
  • a dust core is an electromagnetic component obtained by compression molding soft magnetic particles (composite magnetic particles) whose surfaces are insulated.
  • the dust core is required to be downsized and highly efficient from the viewpoint of resource saving and energy saving. In order to satisfy these requirements, it is necessary to improve various characteristics such as magnetic flux density, magnetic permeability, and iron loss.
  • the composite magnetic particles are hard, the plastic deformability at the time of compression molding becomes poor, and it becomes difficult to obtain a dense green compact.
  • the composite magnetic particles are spherical with a uniform size, gaps are generated between the particles even if they are densely packed, and soft magnetic properties such as magnetic flux density and magnetic permeability are reduced.
  • the composite magnetic particles have a particle size distribution with a width such as 1 to 100 ⁇ m or 30 to 300 ⁇ m, it is possible to increase the density by filling the gaps between the large particles with small particles.
  • the fine particles since the fine particles are included, the fluidity of the raw material powder is lowered. This makes it difficult to automatically insert the raw material powder into the mold, and causes problems such as segregation during transportation (separation of coarse powder and fine powder) and penetration into the mold mold clearance.
  • the composite magnetic particles are more easily plastically deformed, and the shape of the composite magnetic particles is more distorted and the specific surface area is larger, the composite magnetic particles are more easily mechanically entangled with each other. Retention is enhanced.
  • Fe—Si, Fe—Si—Al, Fe-based amorphous, Fe-based nanocrystalline alloy powders and the like produced by the gas atomization method are substantially spherical in addition to high hardness. When such composite magnetic particles are used, mechanical entanglement between the particles is difficult to occur, so that the shape retaining property of the green compact is insufficient, and there is a risk of chipping or cracking during transportation.
  • Granulation refers to an operation of binding composite magnetic particles with a binder that functions as “glue” or “adhesive”. By adhering the composite magnetic particles by granulation, the particle size of each particle is increased, so that fluidity is increased and productivity is improved. In addition, by granulating the composite magnetic particles, each particle becomes a distorted non-spherical shape, so that shape retention after molding is improved, and breakage such as chipping and cracking during transportation is prevented.
  • Granulation methods include a method of mixing and mixing composite magnetic particles and a binder, and a method of volatilizing a solvent after applying a binder solution to the composite magnetic particles.
  • Patent Documents 1 and 2 below show examples in which water-soluble polyvinyl alcohol (PVA) is used as a binder.
  • PVA polyvinyl alcohol
  • the composite magnetic particles are bound to each other by adding and drying the PVA aqueous solution to the composite magnetic particles.
  • Patent Document 2 composite magnetic particles are granulated using PVA as a binder to obtain a test piece having a crushing strength of 15 MPa or more (Table 4 of Patent Document 2).
  • the addition amount of PVA is as high as 10 wt.% (Same paragraph 0075)
  • the density of the powder magnetic core becomes low due to the disappearance of PVA by the subsequent magnetic annealing, and the soft magnetic properties are inferior. There is.
  • the present invention increases the strength of the green compact before magnetic annealing to improve the handleability in the production of a powder magnetic core with granulated powder using a water-soluble binder, and the green compact after magnetic annealing.
  • the object is to increase the density of the dust core and increase the magnetic properties.
  • the present invention provides a powder magnetic core comprising a composite magnetic particle having a soft magnetic particle and an insulating coating covering the surface thereof, and a water-soluble polymer for bonding the composite magnetic particles.
  • a powder magnetic core comprising a composite magnetic particle having a soft magnetic particle and an insulating coating covering the surface thereof, and a water-soluble polymer for bonding the composite magnetic particles.
  • grain flour Provide grain flour.
  • the surface charge of the insulating coating in the aqueous solution is negative (or positive), and the surface charge of the water-soluble polymer in the aqueous solution is positive (or negative).
  • the present invention also provides a method for producing a granulated powder for a powder magnetic core, which is granulated while bringing an aqueous solution containing a water-soluble polymer into contact with a composite magnetic particle having a soft magnetic particle and an insulating coating covering the surface thereof. .
  • the surface charge of the insulating coating is negative (or positive)
  • the surface charge of the water-soluble polymer is positive (or negative).
  • the surface charge of the insulating film is negative (or positive) and the surface charge of the water-soluble polymer is positive (or negative), so that the composite magnetic particles and the water-soluble polymer are electrostatically attracted.
  • the composite magnetic particles are granulated through a water-soluble polymer.
  • electrostatic attraction By granulating using electrostatic attraction as described above, the composite magnetic particles are firmly bonded to each other through the water-soluble polymer, so that the strength of the green compact after molding (before magnetic annealing) is increased. .
  • a small amount of water-soluble polymer for example, 2.0 wt. Magnetic particles can be firmly bonded to each other.
  • the density of the compact (magnetic powder core) after magnetic annealing can be increased by reducing the blending amount of the binder (water-soluble polymer).
  • Examples of the insulating coating that covers the soft magnetic particles include silicon oxide (SiO 2 ) and titanium oxide (TiO 2 ). Since silicon oxide has an isoelectric point of 1.0 to 3.0, it is negatively charged in an aqueous solution exceeding pH 3.0. Further, since titanium oxide has an isoelectric point of about 4.8, it is negatively charged in an aqueous solution exceeding pH 4.8. Therefore, if a water-soluble polymer that is positively charged coexists in the aqueous solution, they are bonded to each other by electrostatic attraction. As such a water-soluble polymer, for example, polyethyleneimine, polydiallyldimethylammonium hydrochloride, polyallylamine, and polyallylamine hydrochloride can be used.
  • the insulating coating for covering the soft magnetic particles iron oxide, nickel oxide, tin oxide having an isoelectric point exceeding 8.0 can be used in addition to the above.
  • a negatively charged water-soluble polymer may be allowed to coexist in the aqueous solution.
  • a water-soluble polymer for example, polyacrylic acid, carboxymethylcellulose, alginic acid, ⁇ -carrageenan, chondroitin sulfate can be used.
  • the green compact formed by using the powder for powder magnetic core containing the granulated powder has high strength due to the bonding force between the insulating coating and the water-soluble polymer, but the water-soluble polymer is obtained by the subsequent magnetic annealing treatment. Since it decomposes and disappears, the green compact (dust core) after magnetic annealing may become fragile. Therefore, it is preferable to use a powder for a powder magnetic core in which glass powder is added to the granulated powder. When the green compact formed using this powder for powder magnetic core is heated to a temperature above the softening point of the glass powder and subjected to magnetic annealing, the softened or melted glass powder enters between the composite magnetic particles, and then The glass solidifies by cooling.
  • glass powder is usually blended to form an insulating film by coating the periphery of soft magnetic particles.
  • the blending amount of the glass powder becomes relatively large.
  • the composite magnetic particles in which the soft magnetic particles are previously coated with the insulating coating are used, it is not necessary to cover the entire surface of the soft magnetic particles with glass. Therefore, since the compounding quantity of glass powder can be made comparatively small (for example, 1.0 wt.% Or less), a high-density powder magnetic core can be obtained.
  • composite magnetic particles are granulated using electrostatic attraction between the insulating coating and the water-soluble polymer, so that the composite magnetic particles are firmly bonded to each other with a small amount of binder (water-soluble polymer). be able to.
  • This increases the strength of the green compact before magnetic annealing, improves the handling of the green compact, increases the density of the green compact (magnetic core) after magnetic annealing, and improves the magnetic properties. .
  • a dust core according to an embodiment of the present invention is manufactured through a granulated powder manufacturing process, a compacting process, and a magnetic annealing process.
  • a granulated powder manufacturing process a compacting process, and a magnetic annealing process.
  • an iron-based metal can be used as the material of the soft magnetic particle 1.
  • Fe pure iron
  • Fe—Si, Fe—Si—Al, Fe—Si—Cr, Fe—Ni, Fe— Ni-Mo, Fe-Al, Fe-Co, Fe-Co-V, Fe-Cr, Fe-based amorphous alloys, Fe-based nanocrystalline alloys, and the like can be used.
  • Co-based amorphous alloy, metallic glass, or the like may be used as the material for the soft magnetic particles 1.
  • the insulating coating 2 is formed of a material that can be charged positively or negatively in an aqueous solution having an arbitrary pH.
  • the insulating coating 2 is formed of, for example, a metal oxide, and specifically, formed of silicon oxide (SiO 2 ), titanium oxide (TiO 2 ), iron oxide, nickel oxide, tin oxide, or the like.
  • the insulating coating 2 may be one type or a combination of a plurality of types.
  • the surface of the soft magnetic particle 1 is covered with the insulating coating 2 to form the composite magnetic particle 3.
  • the insulating coating 2 preferably covers the entire surface of the soft magnetic particle 1.
  • the coating method of an insulating film is not specifically limited, For example, a rolling fluidized coating method, various chemical conversion treatments, etc. can be used.
  • the above-mentioned composite magnetic particles 3 and the water-soluble polymer 4 are allowed to coexist in an aqueous solution. Specifically, an aqueous solution containing the water-soluble polymer 4 is brought into contact with the aggregate of the composite magnetic particles 3. At this time, in this embodiment, as shown in the left diagram of FIG. 2, the surface of the insulating coating 2 of the composite magnetic particle 3 is negatively charged and the surface of the water-soluble polymer 4 is positively charged in an aqueous solution. . Thereby, as shown in the right diagram of FIG. 2, the insulating coating 2 and the water-soluble polymer 4 are attracted and bonded to each other by electrostatic attraction, and as a result, a plurality of composite magnetic particles 3 are interposed via the water-soluble polymer 4. Are combined.
  • the surface of the insulating coating 2 is negatively charged in an aqueous solution exceeding pH 4.8.
  • the water-soluble polymer 4 what is positively charged in the above aqueous solution may be selected.
  • a water-soluble polymer 4 for example, polyethyleneimine, polydiallyldimethylammonium hydrochloride, polyallylamine, polyallylamine hydrochloride and the like can be used.
  • the same effect as described above can be obtained.
  • the surface of the insulating coating 2 of the composite magnetic particle 3 is positively charged and the surface of the water-soluble polymer 4 is negatively charged in an aqueous solution.
  • the surface of the insulating coating 2 is positively charged in an aqueous solution having a pH of less than 8.0.
  • the water-soluble polymer 4 what is negatively charged in the above aqueous solution may be selected.
  • polyacrylic acid, carboxymethylcellulose, alginic acid, ⁇ -carrageenan, chondroitin sulfate and the like can be used.
  • a rolling method As a specific granulation method, a rolling method, a fluidized bed method, a spray drying method, a stirring method, an extrusion method, or the like can be used.
  • granulation is performed by spraying an aqueous solution of the water-soluble polymer 4 onto the composite magnetic particles 3 that are suspended by air and a rotor. In this way, the composite magnetic particles 3 are bonded to each other through the water-soluble polymer 4, and then dried to evaporate the solvent (water), whereby the granulated powder 5 is formed (see the right figure in FIG. 2).
  • Granulated powder 5 is preferably used after being classified to 300 ⁇ m or less. By excluding the granulated powder 5 larger than this, the particles are easily rearranged, and a dense green compact is easily obtained.
  • the concentration of the aqueous solution of the water-soluble polymer 4 used for granulation is preferably 5 to 15 wt.%, For example. If the concentration is lower than this, the processing time becomes longer, and the productivity may be reduced. If the concentration is higher than this, the granulated powder 5 is likely to be lumped, and a separate crushing step may be required.
  • the blending amount of the water-soluble polymer 4 is preferably 0.5 to 2.0 wt.% With respect to the composite magnetic particle 3, for example. If the amount is less than this, the composite magnetic particles 3 cannot be bound to each other, and the shape retainability may be insufficient. If the amount is larger than this, the green density becomes too low, and there is a possibility that desired magnetic properties cannot be obtained.
  • the molecular weight of the water-soluble polymer 4 is preferably 10,000 to 70,000. If the molecular weight of the water-soluble polymer 4 is too large, the viscosity of the solution is too high, so that the granulated powder tends to become lumpy and a separate crushing step may be required. On the other hand, if the molecular weight of the water-soluble polymer 4 is too small, the composite magnetic particles 3 cannot be bound to each other, and the shape retainability may be insufficient.
  • glass powder a glass powder having a softening point lower than an annealing temperature in a magnetic annealing step described later is used.
  • a glass powder having a softening point of 600 ° C. or less is used.
  • TeO 2 , V 2 O 5 , SnO, ZnO, P 2 O 5 , SiO 2 , B 2 O 3 , Bi 2 O 3 , Al 2 O 3 series, TiO 2 system and the like can be used, may be used in combination thereof a plurality of types.
  • SnO-based, P 2 O 5 -based, TeO 2 -based, and V 2 O 5 -based glass powders have a low softening point and are particularly effective for increasing strength in low-temperature firing.
  • the glass powder is 0.1 wt. % Or more is preferable.
  • the blending amount of the glass powder is 1.0 wt. % Or less.
  • the particle size (average particle size) of the glass powder can be selected in the range of 0.1 to 20 ⁇ m. However, the finer the glass powder, the higher the contact point with the composite magnetic particle 3 and the higher the strength. Therefore, the particle diameter of the glass powder is preferably 10 ⁇ m or less, for example.
  • a solid lubricant may be blended with the raw material powder as necessary. Since the composite magnetic particles 3 are not easily plastically deformed, spring back at the time of mold release is unlikely to occur, and compression molding and mold release are possible without adding a solid lubricant. However, it is desirable to add a small amount of a solid lubricant from the viewpoint of extending the life of the mold and ensuring the fluidity of the soft magnetic particles. Moreover, since the friction between the granulated powders 5 is reduced by the addition of the solid lubricant, it is possible to improve the bulk density and increase the density of the green compact.
  • the blending amount of the solid lubricant in the raw material powder is preferably 1 wt% or less. This is because if the solid lubricant is added excessively, the magnetic properties and strength are lowered due to the lower density of the green compact.
  • the solid lubricant examples include zinc stearate, calcium stearate, magnesium stearate, barium stearate, lithium stearate, iron stearate, aluminum stearate, stearic acid amide, ethylenebisstearic acid amide, oleic acid amide, ethylene Bisoleic acid amide, erucic acid amide, ethylene biserucic acid amide, lauric acid amide, palmitic acid amide, behenic acid amide, ethylene biscapric acid amide, ethylene bishydroxystearic acid amide, montanic acid amide, polyethylene, polyethylene oxide, starch , Molybdenum disulfide, tungsten disulfide, graphite, boron nitride, polytetrafluoroethylene, lauroyl lysine, melamine cyanurate, and the like can be used. These may be used alone or in combination of two or more. Further, the solid lubricant may be blended with the raw
  • the raw material powder is prepared by mixing the granulated powder 5, glass powder, and solid lubricant using a V-type or double-cone mixer.
  • the raw material powder is put into the mold and compressed to form a green compact having a predetermined shape.
  • the pressure during compression molding is preferably 980 to 2000 MPa. If the molding pressure is less than 980 MPa, sufficient density and strength are difficult to obtain, and if it exceeds 2000 MPa, the molding equipment becomes larger, the mold life is reduced, and the insulating coating is damaged due to friction between particles, resulting in lower electrical insulation. Because there is a risk of doing.
  • the granulated powders 5 are intertwined with each other, and the fine glass powder 6 and the solid lubricant 7 are dispersed between the granulated powders 5.
  • the composite magnetic particle 3 has a high hardness and a substantially spherical shape, the entanglement of the particles alone is weak and there is a concern that the strength is insufficient.
  • each particle has a distorted shape, and the entanglement between the particles becomes stronger. improves.
  • a crushing strength of 10 MPa or more can be obtained.
  • the plastic deformability of the composite magnetic particles 3 is improved, so that it is easy to obtain a dense green compact.
  • Magnetic annealing process By subjecting the green compact to magnetic annealing, crystal distortion generated during the production of the composite magnetic particle 3 and in each step such as compression molding is removed, and the magnetic characteristics are improved.
  • the green compact thus magnetically annealed becomes a dust core.
  • an inert atmosphere such as nitrogen or argon
  • an oxidizing atmosphere such as air, air, oxygen or steam, or a reducing atmosphere such as hydrogen
  • the temperature of magnetic annealing is, for example, 600 to 700 ° C.
  • the temperature is about 700 to 850 ° C. for Co—V, Fe—Cr, etc., and about 450 to 550 ° C. for Fe-based amorphous alloys.
  • the holding time of the magnetic annealing is about 5 to 60 minutes depending on the size of the part, and is set so that the inside of the part can be sufficiently heated. The longer the time, the easier it is to remove the strain. However, when the time is too long, the insulating coating 2 is deteriorated.
  • the glass in the green compact is formed by magnetic annealing. Since the powder 6 is softened or melted, the softened or melted glass 6 ′ enters between the plurality of composite magnetic powders 3 and solidifies, whereby the composite magnetic particles 3 are bonded to each other through the glass 6 ′.
  • the strength improvement effect of the green compact by softening / melting of the glass powder 6 exceeds the strength reduction of the green compact due to the disappearance of the water-soluble polymer 4, the strength of the green compact is consequently increased.
  • a dust core having a crushing strength of 20 MPa or more is obtained. Obtainable.
  • a separate degreasing step may be provided.
  • the water-soluble polymer 4 disappears due to the above-described magnetic annealing, and there is a concern that the density of the green compact is reduced.
  • the composite magnetic particles 3 can be granulated with a small amount of the water-soluble polymer 4 by utilizing the electrostatic attractive force between the insulating coating 2 and the water-soluble polymer 4. .
  • the use amount of the water-soluble polymer 4 is small, a decrease in density of the green compact due to the magnetic annealing can be suppressed, so that a dust core having excellent magnetic properties can be obtained.
  • the blending amount of the water-soluble polymer 4 is 2.0 wt. % Or less, preferably 1.0 wt. % Or less, the iron loss (excitation magnetic flux density: 0.1 T, frequency: 100 kHz) of the dust core can be reduced to 500 kW / m 3 or less.
  • the softened or melted glass 6 ′ covers the entire composite magnetic particle 3.
  • the composite magnetic particles 3 may be in direct contact with each other.
  • the soft magnetic particles 1 are not in direct contact with each other, and a decrease in magnetic properties can be prevented.
  • the present invention is not limited to the above embodiment.
  • the manufacturing method of the dust core is not limited to the above, and the granulated powder 5 and various thermoplastic resins can be kneaded and injection-molded by a molding machine.
  • Fe—Cr—Si—BC amorphous alloy powder having a particle size distribution of 1 to 200 ⁇ m was prepared as soft magnetic particles.
  • the soft magnetic particles were produced by a water atomization method.
  • the soft magnetic particles were coated with an insulating coating having a thickness of about 5 to 50 nm by using a rolling flow device to form composite magnetic particles.
  • the dust core was formed in a ring shape having an outer diameter of 20 mm, an inner diameter of 12 mm, and a height of 6 mm.
  • Insulating film is negatively charged in aqueous solution and water-soluble binder is positively charged
  • Soft magnetic particles were coated with SiO 2 and TiO 2 that were negatively charged in a basic solution as insulating films.
  • the binder polyethyleneimine, polydiallyldimethylammonium and polyallylamine having a high cation density in an aqueous solution were used.
  • the molecular weight of the binder is 10,000 to 70,000.
  • the binder aqueous solution concentration was 5 wt.%.
  • a rolling fluidizer was used to coat the insulating coating and granulate the composite magnetic particles.
  • the rolling fluidizer is MP-01 manufactured by Pauleck.
  • the granulated powder was mixed with 1.0 wt.% Of TeO 2 -V 2 O 7 glass powder.
  • the raw material powder consisting of granulated powder and glass powder was compression molded at 1470 MPa, and this green compact was magnetically annealed at 480 ° C. for 60 minutes in the air atmosphere to obtain each
  • the density of each test piece was calculated from the dimensions and weight.
  • the initial magnetic permeability was calculated from the series self-inductance, the number of windings, and dimensions under the condition of a frequency of 1 kHz using an impedance analyzer IM3570 manufactured by Hioki Electric Co., Ltd.
  • the initial permeability is desirably 50 or more.
  • the iron loss was measured with a BH analyzer SY-8219 manufactured by Iwatsu Measurement Co., Ltd.
  • the excitation magnetic flux density was 0.1 T, and the frequency was 100 kHz.
  • the iron loss is desirably 500 or less.
  • the crushing strength was measured with an autograph precision universal testing machine AG-Xplus manufactured by Shimadzu Corporation.
  • the crushing strength is preferably 10 MPa or more before annealing and 20 MPa or more after annealing. Density, initial permeability, and iron loss were measured after magnetic annealing, and the crushing strength was measured before and after magnetic annealing. The results are shown in Table 1 below.
  • NiO and MgO that are positively charged in the acidic solution were coated on the soft magnetic particles as an insulating coating.
  • the binder polyacrylic acid, carboxymethylcellulose, and alginic acid having high anion density in an aqueous solution were used. The molecular weight of the binder is 10,000 to 70,000. The binder aqueous solution concentration was 5 wt.%. After the magnetic annealing, the insulating film was coated and granulated in the same manner as in (1), and the density, initial permeability, iron loss, and crushing strength of the green compact were measured. The results are shown in Table 2 below.
  • Comparative Examples 1 to 3 exhibited low magnetic properties and low strength. This is because an insulating film that is easily negatively charged in an aqueous solution and a polymer that is easily negatively charged are combined, and these produce repulsive forces, resulting in a decrease in binding properties. Since the binding property is low, the density of the magnetic core is low, and the magnetic permeability and iron loss are reduced.
  • the nonionic binder has poor binding properties, and the green compact before annealing showed a low crushing strength. This is because no electrostatic interaction occurred between the insulating coating and the binder.
  • Comparative Example 6 in which the binder content was 0.1 wt.% The green compact collapsed during molding.
  • Comparative Example 7 whose binder compounding quantity is 3.0 wt.% was excellent in intensity
  • Comparative Examples 8 and 9 having a molecular weight of 1,800 or less the green compact collapsed during molding. This is because the binding ability as a polymer was extremely low.
  • Magnetic compacting was performed under various conditions on the green compact prepared in the same manner as (1). Specifically, the magnetic annealing temperature was 400 to 550 ° C., the holding time was 10 to 120 minutes, and the atmosphere was air or nitrogen. After the magnetic annealing, the insulating film was coated and granulated in the same manner as in (1), and the density, initial permeability, iron loss, and crushing strength of the green compact were measured. The results are shown in Table 6 below.
  • Examples 1 and 15 having an annealing temperature in the range of 480 to 500 ° C. exhibited high magnetic properties and high strength.
  • the comparative example 10 whose annealing temperature is 400 showed high iron loss. This is because when the annealing temperature was 400 ° C., the strain during molding could not be removed, and the hysteresis loss was increased.
  • the comparative example 11 whose annealing temperature is 550 degreeC also showed the high iron loss. This is because amorphous powder is crystallized when magnetic annealing is performed at 550 ° C.
  • Comparative Example 12 in which the holding time of the annealing treatment was 120 minutes resulted in high iron loss. This is due to deterioration of the insulating coating.
  • the atmosphere may be nitrogen (Example 17). If the atmosphere is an air atmosphere, a certain degree of strength can be expected due to the oxidation of the soft magnetic particles, but the controlling factor of the high strength is the low melting point glass, and the influence of the oxidizing atmosphere is low.
  • Comparative Example 13 having a molding pressure of 784 MPa showed low magnetic properties. This is because the density of the magnetic core was low. On the other hand, even if the molding pressure was increased to 1960 MPa, the insulating coating was not deteriorated, and both high magnetic properties and high strength were achieved (Examples 18, 19, 1, 20). Further, when heating is performed at the time of molding, the magnetic permeability becomes high (Examples 21 to 23). This is because the density of the magnetic core has increased. On the other hand, insulation could be maintained and there was no significant difference in iron loss.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

軟磁性粒子1及びその表面を被覆する絶縁被膜2を有する複合磁性粒子3を、水溶性ポリマー4を含む水溶液を用いて造粒することにより、圧粉磁心用造粒粉を製造する。水溶液中において、絶縁被膜2の表面電荷が正(あるいは負)であり、水溶性ポリマー3の表面電荷が負(あるいは正)である。これにより、水溶液中で、複合磁性粒子1と水溶性ポリマー3とを静電引力で結合する。

Description

圧粉磁心用造粒粉及びその製造方法
 本発明は、圧粉磁心用造粒粉(以下、単に「造粒粉」とも言う。)及びその製造方法に関する。
 圧粉磁心は、表面を絶縁処理した軟磁性粒子(複合磁性粒子)を圧縮成形した電磁部品である。圧粉磁心は、省資源・省エネルギーの観点から、小型化、高効率化が求められており、これらを満足するために、磁束密度、透磁率、鉄損といった諸特性を向上する必要がある。
 上記のような特性を高めるためには、圧粉磁心の高密度化が有効である。しかし、複合磁性粒子が硬い場合、圧縮成形時の塑性変形性が乏しくなるため、緻密な圧粉体を得にくくなる。例えば、複合磁性粒子が均一な大きさの球状であると仮定すると、たとえ密充填したとしても粒子間に隙間が生じてしまい、磁束密度、透磁率などの軟磁気特性の低下を引き起こす。
 例えば、複合磁性粒子が、1~100μmや30~300μmのような幅のある粒度分布を有するようにすれば、大きな粒子どうしの隙間を小さな粒子が埋めることで高密度化が可能となる。しかし、この場合、微細な粒子を含むため、原料粉の流動性が低下する。これにより、金型内への原料粉の自動挿入が困難となる他、搬送時の偏析(粗い粉と細かい粉の分離)や成形金型のクリアランスへの侵入などの問題が生じる。
 また、複合磁性粒子が塑性変形しやすいほど、また、複合磁性粒子の形状が歪であり比表面積が大きいほど、複合磁性粒子同士が機械的に絡み合いやすくなり、圧縮成形後の圧粉体の形状保持性が高められる。しかし、ガスアトマイズ法で作製したFe-Si、Fe-Si-Al、Fe系アモルファス、Fe基ナノ結晶合金粉等は、高硬度であることに加え、略球状である。このような複合磁性粒子を用いると、粒子同士の機械的な絡み合いが生じにくいため、圧粉体の形状保持性が不足して、搬送時に欠けや割れが生じる恐れがある。
 以上のような生産性および形状保持性の観点から、複合磁性粒子に造粒処理を施すことが望ましい。造粒とは、複合磁性粒子同士を、「糊」や「接着剤」として機能するバインダーで結着する操作を指す。造粒により複合磁性粒子同士が接着されることで、各粒子の粒径が大きくなるため、流動性が高まり、生産性が改善される。また、複合磁性粒子を造粒することにより、各粒子が歪な非球状となるため、成形後の形状保持性が高くなり、搬送時の欠けや割れ等の破損が防止される。
 造粒方法には、複合磁性粒子とバインダーを混合してミキシングする方法と、バインダー溶液を複合磁性粒子に塗布させた後、溶剤を揮発させる方法がある。
 前者のミキシング法には、バインダーとしてアクリル樹脂やポリビニルブチラールを用いた例がある。しかし、これらの方法では、複合磁性粒子を薄く、均質に被覆することが困難であり、多量のバインダーを要するため、圧粉磁心の密度の低下、ひいては軟磁気特性の低下を招く。
 後者の溶剤を揮発させる方法では、使用するバインダー種によってはアルコールやトルエンのような有機溶媒に溶解させる必要がある。この場合、造粒時に有機溶媒を揮発させる際に、作業者による有機溶媒の吸入や、有機溶媒の爆発及び周辺環境への流出を防止する対策が必要となり、コスト高を招く。
 一方、バインダーを水溶性とした場合は、溶媒は純水のみであるため、安全や環境対策にかかる費用は少なくて済む。水溶性バインダーを用いて圧粉磁心を得た例は多数ある。例えば下記の特許文献1及び2には、バインダーに水溶性のポリビニルアルコール(PVA)を使用した例が示されている。この場合、複合磁性粒子にPVA水溶液を添加、乾燥させることで、複合磁性粒子同士が結着する。
特開2015-12188号公報 国際公開第2015/137452号
 しかし、上記の特許文献1に示されている試験片の圧環強さは2MPaを下回るほど脆弱であるため(特許文献1の表1)、金型から抜き出す際にエッジが欠けてしまう恐れがある。
 一方、上記の特許文献2では、PVAをバインダーとして複合磁性粒子を造粒し、圧環強さ15MPa以上の試験片を得ている(特許文献2の表4)。しかし、この試験片では、PVAの添加量が10wt.%と高いため(同段落0075)、その後の磁気焼鈍でPVAが消失することにより圧粉磁心の密度が低くなり、軟磁気特性に劣る問題がある。
 そこで、本発明は、水溶性バインダーを用いた造粒粉により圧粉磁心を製造するにあたり、磁気焼鈍前の圧粉体の強度を高めて取り扱い性を向上させると共に、磁気焼鈍後の圧粉体(圧粉磁心)の密度を高めて磁気特性を高めることを目的とする。
 上記の目的を達成するために、本発明は、軟磁性粒子及びその表面を被覆する絶縁被膜を有する複合磁性粒子と、前記複合磁性粒子同士を結合する水溶性ポリマーとを有する圧粉磁心用造粒粉を提供する。水溶液中における前記絶縁被膜の表面電荷が負(あるいは正)であり、前記水溶液中における前記水溶性ポリマーの表面電荷が正(あるいは負)である。
 また、本発明は、軟磁性粒子及びその表面を被覆する絶縁被膜を有する複合磁性粒子に、水溶性ポリマーを含む水溶液を接触させながら造粒する圧粉磁心用造粒粉の製造方法を提供する。前記水溶液中において、前記絶縁被膜の表面電荷が負(あるいは正)であり、前記水溶性ポリマーの表面電荷が正(あるいは負)である。これにより、前記水溶液中で、前記複合磁性粒子と前記水溶性ポリマーとを静電引力で結合する。
 このように、水溶液中において、絶縁被膜の表面電荷を負(あるいは正)とし、水溶性ポリマーの表面電荷を正(あるいは負)とすることにより、複合磁性粒子と水溶性ポリマーとが静電引力により互いに結合され、複合磁性粒子が水溶性ポリマーを介して造粒される。このように静電引力を利用して造粒することで、複合磁性粒子同士が水溶性ポリマーを介して強固に結合されるため、成形後(磁気焼鈍前)の圧粉体の強度が高められる。また、静電引力を利用して造粒することで、例えばPVAをバインダーとした場合と比べて、少量の水溶性ポリマー(例えば、複合磁性粒子に対して2.0wt.%以下)で、複合磁性粒子同士を強固に結合することができる。このように、バインダー(水溶性ポリマー)の配合量を低減できることで、磁気焼鈍後の圧粉体(圧粉磁心)の密度が高められる。
 軟磁性粒子を被覆する絶縁被膜としては、例えば酸化ケイ素(SiO2)や酸化チタン(TiO2)を挙げることができる。酸化ケイ素は、等電点が1.0~3.0であるため、pH3.0を超える水溶液中では負に帯電する。また、酸化チタンは、等電点が4.8程度であるため、pH4.8を超える水溶液中では負に帯電する。従って、水溶液中に、正に帯電する水溶性ポリマーが共存すれば、互いに静電引力で結合する。このような水溶性ポリマーとしては、例えばポリエチレンイミン、ポリジアリルジメチルアンモニウム塩酸塩、ポリアリルアミン、塩酸ポリアリルアミンを使用することができる。
 軟磁性粒子を被覆する絶縁被膜としては、上記の他に、等電点が8.0を超える酸化鉄、酸化ニッケル、酸化スズを使用することもできる。この場合、pH8.0未満の水溶液中において絶縁被膜が正に帯電するため、この水溶液中に負に帯電する水溶性ポリマーを共存させればよい。このような水溶性ポリマーとしては、例えばポリアクリル酸、カルボキシメチルセルロース、アルギン酸、κ-カラギーナン、コンドロイチン硫酸を使用することができる。
 上記の造粒粉を含む圧粉磁心用粉末を用いて成形された圧粉体は、絶縁被膜と水溶性ポリマーとの結合力により高強度を有するが、その後の磁気焼鈍処理により水溶性ポリマーが分解されて消失するため、磁気焼鈍後の圧粉体(圧粉磁心)が脆弱となる恐れがある。そこで、上記の造粒粉にガラス粉を添加した圧粉磁心用粉末を用いることが好ましい。この圧粉磁心用粉末を用いて成形した圧粉体を、ガラス粉の軟化点以上の温度に加熱して磁気焼鈍を施すと、軟化あるいは溶融したガラス粉が複合磁性粒子の間に入り込み、その後の冷却によりガラスが固化する。これにより、ガラスを介して複合磁性粒子同士が強固に結合されるため、焼鈍後の圧粉体の強度が高められる。また、圧粉磁心用粉末にガラス粉を配合することで、粉末の流動度が向上するため、生産性が向上する。
 ところで、ガラス粉は、通常、軟磁性粒子の周囲をコーティングして絶縁被膜を形成するために配合される。この場合、軟磁性粒子の表面全体を覆う必要があるため、ガラス粉の配合量は比較的多くなる。これに対し、本発明では、軟磁性粒子を予め絶縁被膜で被覆した複合磁性粒子を用いているため、軟磁性粒子の表面全体をガラスで覆う必要はない。従って、ガラス粉の配合量を比較的少なめ(例えば1.0wt.%以下)にすることができるため、高密度な圧粉磁心を得ることができる。
 以上のように、絶縁被膜と水溶性ポリマーとの間の静電引力を利用して複合磁性粒子を造粒することで、少量のバインダー(水溶性ポリマー)により複合磁性粒子同士を強固に結合することができる。これにより、磁気焼鈍前の圧粉体の強度が高められ、圧粉体の取り扱い性が向上すると共に、磁気焼鈍後の圧粉体(圧粉磁心)の密度が高められ、磁気特性が向上する。
本発明の一実施形態に係る造粒粉の製造工程を示す断面図である。 複合磁性粒子を水溶性ポリマーで造粒する様子を示す断面図である。 磁気焼鈍前の圧粉体の組織を示す断面図である。 磁気焼鈍後の圧粉体の組織を示す断面図である。
 本発明の一実施形態に係る圧粉磁心は、造粒粉製造工程、圧粉工程、及び磁気焼鈍工程を経て製造される。以下、各工程を詳しく説明する。
[造粒粉製造工程]
 まず、図1に示すように、軟磁性粒子1に絶縁被膜2を被覆して複合磁性粒子3を形成する工程と、複合磁性粒子3同士を水溶性ポリマー4で結合する工程とを経て、造粒粉5を製造する。
 軟磁性粒子1の材料には、例えば鉄系金属が使用でき、具体的には、Fe(純鉄)、Fe-Si、Fe-Si-Al、Fe-Si-Cr、Fe-Ni、Fe-Ni-Mo、Fe-Al、Fe-Co、Fe-Co-V、Fe-Cr、Fe系アモルファス合金、Fe基ナノ結晶合金等を使用できる。この他、軟磁性粒子1の材料に、Co系アモルファス合金や金属ガラス等を使用してもよい。また、上記の粉末を複数種組み合わせて使用しても良い。
 絶縁被膜2は、任意のpHの水溶液中で正または負に帯電可能な材料で形成される。絶縁被膜2は、例えば金属酸化物で形成され、具体的には、酸化ケイ素(SiO2)、酸化チタン(TiO2)、酸化鉄、酸化ニッケル、酸化スズ等で形成される。絶縁被膜2は一種類でも構わないし、複数種組み合わせて使用しても良い。
 軟磁性粒子1の表面を絶縁被膜2で被覆することで、複合磁性粒子3が形成される。絶縁被膜2は、軟磁性粒子1の表面の全面を覆うことが好ましい。絶縁被膜の被覆方法は特に限定しないが、例えば、転動流動コーティング法や、各種化成処理等を使用できる。
 上記の複合磁性粒子3と、水溶性ポリマー4とを、水溶液中で共存させる。具体的には、水溶性ポリマー4を含む水溶液を、複合磁性粒子3の集合体に接触させる。このとき、本実施形態では、図2の左図に示すように、水溶液中おいて、複合磁性粒子3の絶縁被膜2の表面は負に帯電し、水溶性ポリマー4の表面は正に帯電する。これにより、図2の右図に示すように、絶縁被膜2と水溶性ポリマー4とが静電引力で互いに引き寄せあって結合し、その結果、水溶性ポリマー4を介して複数の複合磁性粒子3が結合される。
 例えば絶縁被膜2を酸化ケイ素や酸化チタンで形成した場合、pH4.8を超える水溶液中では絶縁被膜2の表面が負に帯電する。この場合、水溶性ポリマー4としては、上記の水溶液中で正に帯電するものを選定すればよい。このような水溶性ポリマー4としては、例えば、ポリエチレンイミン、ポリジアリルジメチルアンモニウム塩酸塩、ポリアリルアミン、塩酸ポリアリルアミン等が使用できる。
 上記の他、水溶液中おいて、複合磁性粒子3の絶縁被膜2の表面が正に帯電し、水溶性ポリマー4の表面が負に帯電する場合でも、上記と同様の効果を得ることができる。具体的には、例えば絶縁被膜2を酸化鉄、酸化ニッケル、あるいは酸化スズで形成した場合、pH8.0未満の水溶液中では絶縁被膜2の表面が正に帯電する。この場合、水溶性ポリマー4としては、上記の水溶液中で負に帯電するものを選定すればよい。このような水溶性ポリマー4としては、ポリアクリル酸、カルボキシメチルセルロース、アルギン酸、κ-カラギーナン、コンドロイチン硫酸などが使用できる。
 具体的な造粒方法としては、転動方式、流動層方式、噴霧乾燥方式、撹拌方式、押し出し方式等が使用できる。例えば転動方式では、エアとローターにより浮遊する複合磁性粒子3に、水溶性ポリマー4の水溶液をスプレーすることで、造粒が行われる。こうして複合磁性粒子3同士を水溶性ポリマー4を介して結合した後、乾燥させて溶媒(水)を蒸発させることにより、造粒粉5が形成される(図2の右図参照)。
 造粒粉5は300μm以下に分級して使用することが好ましい。これより大きい造粒粉5を除外することで、粒子が再配列しやすくなり、緻密な圧粉体を得やすくなる。
 造粒に用いる水溶性ポリマー4の水溶液の濃度は、例えば5~15wt.%とすることが好ましい。これ以下の濃度では処理時間が長くなり、生産性が低下する恐れがある。これ以上の濃度では造粒粉5がダマになりやすく、別途解砕工程が必要となる恐れがある。
 水溶性ポリマー4の配合量は、例えば複合磁性粒子3に対して0.5~2.0wt.%とすることが好ましい。これ以下の量では複合磁性粒子3同士を結着できず、形状保持性が不足する恐れがある。これ以上の量では圧粉体密度が低くなりすぎるため、所望の磁気特性が得られない恐れがある。
 水溶性ポリマー4の分子量は、10,000~70,000であることが好ましい。水溶性ポリマー4の分子量が大きすぎると溶液粘度が高すぎるため、造粒粉がダマになりやすく、別途解砕工程が必要となる恐れがある。一方、水溶性ポリマー4の分子量が小さすぎると複合磁性粒子3同士を結着できず、形状保持性が不足する恐れがある。
[圧粉工程]
 次に、上記の造粒粉5を含む原料粉(圧粉磁心用粉末)を金型内に投入し、これを圧縮成形することで、所定形状の圧粉体を得る。
 原料粉には、ガラス粉を配合することが好ましい。ガラス粉は、後述する磁気焼鈍工程における焼鈍温度よりも軟化点が低いものが用いられ、例えば軟化点が600℃以下のものが用いられる。具体的に、ガラス粉としては、TeO2系、V25系、SnO系、ZnO系、P25系、SiO2系、B23系、Bi23系、Al23系、TiO2系等が使用でき、これらを複数種組み合わせて使用しても良い。特にSnO系、P25系、TeO2系、V25系のガラス粉は、軟化点が低い特徴があり、低温焼成における高強度化に対して特に有効である。
 ガラス粉の配合量が少なすぎると、磁気焼鈍による強度向上効果が十分に得られない。従って、ガラス粉は、原料粉全体に対して0.1wt.%以上とすることが好ましい。一方、軟磁性粒子1は、既に絶縁被膜2で被覆されているため、ガラスで軟磁性粒子1の表面全体を多く必要はない。従って、ガラス粉の配合量を、原料粉全体に対して1.0wt.%以下とすることができる。なお、ガラス粉の粒径(平均粒径)は0.1~20μmの範囲で選択できる。ただし、ガラス粉が微細であるほど、複合磁性粒子3との接点が増して高強度になるため、ガラス粉の粒径は、例えば10μm以下とすることが好ましい。
 また、原料粉に、必要に応じて固体潤滑剤を配合しても良い。上記の複合磁性粒子3は塑性変形しにくいため、離型時のスプリングバックが生じにくく、固体潤滑剤を添加しなくても問題なく圧縮成形及び離型が可能である。ただし、金型の長寿命化や軟磁性粒子の流動性を確保する観点から、少量の固体潤滑剤を配合することが望ましい。また、固体潤滑剤の添加により、造粒粉5同士の摩擦が低減されるため、かさ密度の向上や圧粉体の高密度化を図ることができる。原料粉における固体潤滑剤の配合量は、1wt%以下とすることが好ましい。固体潤滑剤を過剰に配合すると、圧粉体の低密度化により磁気特性や強度が低下するからである。
 固体潤滑剤としては、例えば、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸バリウム、ステアリン酸リチウム、ステアリン酸鉄、ステアリン酸アルミニウム、ステアリン酸アミド、エチレンビスステアリン酸アミド、オレイン酸アミド、エチレンビスオレイン酸アミド、エルカ酸アミド、エチレンビスエルカ酸アミド、ラウリン酸アミド、パルチミン酸アミド、ベヘン酸アミド、エチレンビスカプリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、モンタン酸アミド、ポリエチレン、酸化ポリエチレン、スターチ、二硫化モリブデン、二硫化タングステン、グラファイト、窒化ホウ素、ポリテトラフルオロエチレン、ラウロイルリシン、シアヌル酸メラミン等を使用できる。これらは単独で使用しても構わないし、複数種組み合わせて使用しても良い。また、固体潤滑剤は、原料粉に配合して内部潤滑材として用いてもよいし、金型壁面に付着させて使用してもよい。
 本実施形態では、造粒粉5、ガラス粉、及び固体潤滑材を、V型やダブルコーン型のミキサーを用いて混合することにより、原料粉を作製する。この原料粉を金型の内部に投入し、圧縮することで、所定形状の圧粉体が成形される。
 このとき、原料粉にガラス粉が添加されているため、水溶性ポリマー4同士の接触が抑えられ、流動性が改善される。これにより、原料粉を金型内部に均一に投入することが可能となるため、密度が均一な圧粉体を得ることができる。
 圧縮成形時の圧力は、980 ~2000 MPaとすることが好ましい。980 MPa未満の成形圧では十分な密度や強度が得にくく、2000MPa以上では、成形装置の大型化、金型寿命の低下や、粒子どうしの摩擦により絶縁被膜に破損が生じて電気絶縁性が低下する恐れがあるからである。
 こうして成形された圧粉体の内部では、図3に示すように、造粒粉5同士が絡み合うと共に、造粒粉5の間に微細なガラス粉6及び固体潤滑剤7が分散している。このとき、複合磁性粒子3は、硬度が高く且つ略球状を成しているため、単体では粒子同士の絡み合いが弱く、強度が不足することが懸念される。本実施形態では、上記のように、複合磁性粒子3を造粒した造粒粉5を用いることで、各粒子が歪な形状となり、粒子同士の絡み合いが強くなるため、圧粉体の強度が向上する。例えば、上記の造粒粉5を用いて円筒状の圧粉体を成形した場合、10MPa以上の圧環強さを得ることができる。特に、室温~150℃まで加温しながら成形すると、複合磁性粒子3の塑性変形性が向上するため、緻密な圧粉体を得やすい。
[磁気焼鈍工程]
 上記の圧粉体に磁気焼鈍を施すことにより、複合磁性粒子3の製造時および圧縮成形等の各工程において生じた結晶歪が除去されて、磁気特性の向上が図られる。こうして磁気焼鈍が施された圧粉体が、圧粉磁心となる。磁気焼鈍時の雰囲気としては、窒素、アルゴンなどの不活性雰囲気、大気、空気、酸素、スチーム等の酸化性雰囲気、水素等の還元性雰囲気が使用できる。磁気焼鈍の温度は、例えばFe(純鉄)で600~700℃、Fe-Si、Fe-Si-Al、Fe-Si-Cr、Fe-Ni、Fe-Ni-Mo、Fe-Co、Fe-Co-V、Fe-Cr等で700~850℃、Fe系アモルファス合金で450~550℃程度である。磁気焼鈍の保持時間は、部品の大きさによるが、5~60分程度であり、部品の内部まで十分に加熱できるように設定する。時間は長い方が歪を除去しやすいが、長すぎると絶縁被膜2の劣化を引き起こす。
 上記のように圧粉体に磁気焼鈍を施すことにより、図4に示すように、水溶性ポリマー4及び固体潤滑剤7が分解・消失する。このように、複合磁性粉末3同士を結合していた水溶性ポリマー4が消失することで、圧粉体の強度低下が懸念されるが、本実施形態では、磁気焼鈍により圧粉体中のガラス粉6が軟化あるいは溶融するため、この軟化あるいは溶融したガラス6'が複数の複合磁性粉末3の間に入り込んで固化することで、ガラス6'を介して複合磁性粒子3同士が結合される。このとき、水溶性ポリマー4の消失による圧粉体の強度低下よりも、ガラス粉6の軟化・溶融による圧粉体の強度向上効果が上回るため、結果的に圧粉体の強度が高められる。例えば、造粒粉5及びガラス粉6を含む上記の原料粉を用いて円筒状の圧粉体を成形し、上記の焼鈍処理を施すことにより、20MPa以上の圧環強さを有する圧粉磁心を得ることができる。尚、固体潤滑剤7や水溶性ポリマー4を完全に除去するために、別途脱脂工程を設けてもよい。
 また、上記の磁気焼鈍により水溶性ポリマー4が消失することで、圧粉体の密度低下が懸念される。本実施形態では、既に述べたように、絶縁被膜2と水溶性ポリマー4との間の静電引力を利用することで、少量の水溶性ポリマー4で複合磁性粒子3を造粒することができる。このように、水溶性ポリマー4の使用量が少ないことで、磁気焼鈍による圧粉体の密度低下が抑えられるため、優れた磁気特性を有する圧粉磁心が得られる。例えば、水溶性ポリマー4の配合量を、複合磁性粒子3に対して2.0wt.%以下、好ましくは1.0wt.%以下とすることで、圧粉磁心の鉄損(励磁磁束密度:0.1T、周波数:100kHz)を500kW/m3以下とすることができる。
 また、本実施形態では、圧粉体中のガラス粉6の配合量が比較的少ないため(0.1wt.%以下)、軟化あるいは溶融したガラス6'が複合磁性粒子3の全体を覆うことはなく、複合磁性粒子3同士が直接接触することもある。しかし、複合磁性粒子3は、予め絶縁被膜2で覆われているため、軟磁性粒子1同士が直接接触することはなく、磁気特性の低下を防止できる。
 本発明は上記の実施形態に限られない。例えば、圧粉磁心の製造方法は上記に限らず、上記の造粒粉5と各種熱可塑性樹脂を混練し、成形機で射出成型を行うことも可能である。
 上記の圧粉磁心の製造工程において、絶縁被膜とバインダー(水溶性ポリマー)の表面電荷が圧粉体の強度に与える効果を確認するために、以下の試験を行った。
 本試験では、軟磁性粒子として、1~200μmの粒度分布を有するFe-Cr-Si-B-C系アモルファス合金粉末を用意した。この軟磁性粒子は水アトマイズ法で作製した。この軟磁性粒子に、転動流動装置を用いて、5~50nm程度の厚さを有する絶縁被膜を被覆させ、複合磁性粒子を形成した。この複合磁性粒子をバインダー(水溶性ポリマー)で造粒した後、ガラス粉を添加して原料粉を作製した。この原料粉を圧粉成形した後、磁気焼鈍を施すことにより、圧粉磁心を得た。圧粉磁心は、外径20mm×内径12mm×高さ6mmのリング状とした。
(1)水溶液中で、絶縁被膜が負に、水溶性バインダー正に帯電する場合
 塩基性溶液中で負に帯電するSiO2、TiO2を絶縁被膜として軟磁性粒子に被覆した。バインダーは水溶液中でのカチオン密度の高いポリエチレンイミン、ポリジアリルジメチルアンモニウム、ポリアリルアミンを用いた。バインダーの分子量は10,000~70,000である。バインダー水溶液濃度は5wt.%とした。絶縁被膜の被覆及び複合磁性粒子の造粒には、転動流動装置を用いた。転動流動装置はパウレック社製MP-01である。造粒粉にTeO2-V27系のガラス粉を1.0wt.%配合した。造粒粉及びガラス粉からなる原料粉を1470MPaで圧縮成形し、この圧粉体を480℃で60分、大気雰囲気中で磁気焼鈍し、各試験片を得た。
 各試験片の密度は寸法及び重量から算出した。初透磁率は日置電機株式会社製インピーダンスアナライザーIM3570を用い、周波数1kHzの条件で直列自己インダクタンス、巻線数および寸法から算出した。初透磁率は50以上が望ましい。鉄損は岩通計測株式会社製B-HアナライザSY-8219で測定した。励磁磁束密度は0.1T、周波数は100kHzの条件で測定した。鉄損は500以下が望ましい。圧環強さは株式会社島津製作所製オートグラフ精密万能試験機AG-Xplusで測定した。圧環強さは焼鈍前で10MPa以上、焼鈍後で20MPa以上が望ましい。密度、初透磁率、鉄損は磁気焼鈍後に、圧環強さは磁気焼鈍前後に測定した。下記の表1に結果を示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~6の何れも、高磁気特性と高強度を両立した。これは、水溶液中で負に帯電しやすい絶縁被膜と正に帯電しやすいポリマーを組み合わせたためである。また、実施例1~6の何れも、磁気焼鈍後の強度は同等の値を示した。これは、低融点ガラスの軟化、接着が強度の支配因子であるからである。
(2)水溶液中で、絶縁被膜が正に、水溶性バインダーが負に帯電する場合
 酸性溶液中で正に帯電するNiO、MgOを絶縁被膜として軟磁性粒子に被覆した。バインダーは水溶液中でのアニオン密度の高いポリアクリル酸、カルボキシメチルセルロース、アルギン酸を用いた。なお、バインダーの分子量は10,000~70,000である。バインダー水溶液濃度は5wt.%とした。磁気焼鈍後に(1)と同様に絶縁被膜の被覆および造粒を施し、圧粉体の密度、初透磁率、鉄損、圧環強さを測定した。下記の表2に結果を示す。
Figure JPOXMLDOC01-appb-T000002
 実施例7~12の何れも、高磁気特性と高強度を両立した。これは、水溶液中で正に帯電しやすい絶縁被膜と負に帯電しやすいポリマーを組み合わせたためである。また、実施例7~12の何れも、磁気焼鈍後の強度は同等の値を示した。これは、低融点ガラスの軟化、接着が強度の支配因子であるからである。
(3)水溶液中で、絶縁被膜と水溶性バインダーが同種の電荷に帯電する場合
 酸性溶液中で負に帯電するSiO2を絶縁被膜として軟磁性粒子に被覆した。バインダーは水溶液中でのアニオン密度の高いポリアクリル酸、カルボキシメチルセルロース、アルギン酸を用いた。なお、バインダーの分子量は10,000~70,000である。バインダー水溶液濃度は5wt.%とした。磁気焼鈍後に(1)と同様に絶縁被膜の被覆および造粒を施し、圧粉体の密度、初透磁率、鉄損、圧環強さを測定した。下記の表3に結果を示す。
Figure JPOXMLDOC01-appb-T000003
 比較例1~3の何れも、低磁気特性かつ低強度を示した。これは、水溶液中で負に帯電しやすい絶縁被膜と負に帯電しやすいポリマーを組み合わせたため、これらが斥力を生み、結着性が低下したためである。結着性が低いため、磁心の密度が低く、透磁率および鉄損が低下した。
(4)水溶液中で帯電しにくい水溶性バインダーを用いた場合
 中性溶液中で負に帯電するSiO2を絶縁被膜として軟磁性粒子に被覆した。バインダーは、水溶液中で帯電しにくいポリビニルアルコール、ポリビニルブチラールを用いた。なお、バインダーの分子量は10,000~70,000である。バインダー水溶液濃度は5wt.%とした。磁気焼鈍後に(1)と同様に絶縁被膜の被覆および造粒を施し、圧粉体の密度、初透磁率、鉄損、圧環強さを測定した。下記の表4に結果を示す。
Figure JPOXMLDOC01-appb-T000004
 ノニオン性のバインダーは結着性が悪く、焼鈍前の圧粉体は低い圧環強さを示した。これは、絶縁被膜とバインダー間に静電相互作用が生じなかったためである。
(5)水溶性バインダーの分子量と添加量が圧粉体強度に与える影響について
 塩基性溶液中で負に帯電するSiO2、TiO2を絶縁被膜として軟磁性粒子に被覆した。バインダーは水溶液中でのカチオン密度の高いポリエチレンイミンを用いた。ポリエチレンイミンの分子量は600~70,000の間とした。ポリエチレンイミンの配合量は、複合磁性粒子に対して0.1~3.0wt.%とした。磁気焼鈍後に(1)と同様に絶縁被膜の被覆および造粒を施し、圧粉体の密度、初透磁率、鉄損、圧環強さを測定した。下記の表5に結果を示す。
Figure JPOXMLDOC01-appb-T000005
 バインダー配合量が0.5~1.0wt.%の範囲である実施例1及び13は高磁気特性と高強度を示した。一方、バインダー配合量が0.1wt.%である比較例6は、成形時に圧粉体が崩壊した。また、バインダー配合量が3.0wt.%である比較例7は、強度に優れるものの、低磁気特性だった。これは、バインダーが少なすぎると結着しにくくなり、多すぎると磁心の密度が低下することに起因する。また、分子量が1,800以下である比較例8及び9は、成形時に圧粉体が崩壊した。これは、高分子としての結着能が著しく低かったためである。
(6)磁気焼鈍条件が磁気特性に与える影響について
 (1)と同様に作成した圧粉体に対し、様々な条件で磁気焼鈍を施した。具体的に、磁気焼鈍温度を400~550℃、保持時間を10~120分、雰囲気を大気または窒素とした。磁気焼鈍後に(1)と同様に絶縁被膜の被覆および造粒を施し、圧粉体の密度、初透磁率、鉄損、圧環強さを測定した。下記の表6に結果を示す。
Figure JPOXMLDOC01-appb-T000006
 焼鈍温度が480~500℃の範囲である実施例1及び15は、高磁気特性と高強度を示した。一方、焼鈍温度が400である比較例10は高鉄損を示した。これは、焼鈍温度が400℃では成形時の歪を除去しきれなかったため、ヒステリシス損が高くなったためである。また、焼鈍温度が550℃である比較例11も高鉄損を示した。これは、550℃で磁気焼鈍するとアモルファス粉が結晶化するためである。
 焼鈍処理の保持時間を10分に変更しても大きく鉄損が低下することはない(実施例16)。一方、焼鈍処理の保持時間を120分とした比較例12は高鉄損となった。これは、絶縁被膜の劣化に起因する。雰囲気は窒素中でもよい(実施例17)。雰囲気が大気雰囲気だと、軟磁性粒子の酸化により、ある程度の高強度化が見込めるが、高強度の支配因子は低融点ガラスであり、酸化雰囲気の影響は低いためである。
(7)成形条件が磁気特性に与える影響について
 (1)と同様の原料粉を作製し、圧力980~1960MPaの範囲で成形した。また、室温~150℃の範囲で加温しながら成形した。磁気焼鈍後に(1)と同様に絶縁被膜の被覆および造粒を施し、圧粉体の密度、初透磁率、鉄損、圧環強さを測定した。下記の表7に結果を示す。
Figure JPOXMLDOC01-appb-T000007
 成形圧が784MPaである比較例13は低磁気特性を示した。これは、磁心の密度が低かったためである。一方、成形圧を1960MPaまで高めても、絶縁被膜の劣化はなく、高磁気特性と高強度を両立した(実施例18、19、1、20)。また、成形時に加温を施すと、高透磁率となる(実施例21~23)。これは磁心の密度が高まったためである。一方、絶縁性は維持でき、鉄損に大きな差異はなかった。
1     軟磁性粒子
2     絶縁被膜
3     複合磁性粒子
4     水溶性ポリマー
5     造粒粉
6     ガラス粉
7     固体潤滑剤

Claims (14)

  1.  軟磁性粒子及びその表面を被覆する絶縁被膜を有する複合磁性粒子と、前記複合磁性粒子同士を結合する水溶性ポリマーとを有する圧粉磁心用造粒粉であって、
     水溶液中における前記絶縁被膜の表面電荷が負であり、前記水溶液中における前記水溶性ポリマーの表面電荷が正である圧粉磁心用造粒粉。
  2.  前記絶縁被膜が酸化ケイ素であり、前記水溶性ポリマーがポリエチレンイミンである請求項1に記載の圧粉磁心用造粒粉。
  3.  軟磁性粒子及びその表面を被覆する絶縁被膜を有する複合磁性粒子と、前記複合磁性粒子同士を結合する水溶性ポリマーとを有する圧粉磁心用造粒粉であって、
     水溶液中における前記絶縁被膜の表面電荷が正であり、前記水溶液中における前記水溶性ポリマーの表面電荷が負である圧粉磁心用造粒粉。
  4.  前記絶縁被膜が酸化ニッケルであり、前記水溶性ポリマーがポリアクリル酸である請求項3に記載の圧粉磁心用造粒粉。
  5.  前記水溶性ポリマーの配合量が、前記複合磁性粒子に対して2.0wt.%以下である請求項1~4の何れか1項に記載の圧粉磁心用造粒粉。
  6.  請求項1~5の何れか1項に記載の圧粉磁心用造粒粉と、ガラス粉とを含む圧粉磁心用粉末。
  7.  前記ガラス粉の配合量が1.0wt.%以下である請求項6に記載の圧粉磁心用粉末。
  8.  軟磁性粒子及びその表面を被覆する絶縁被膜を有する複合磁性粒子を、水溶性ポリマーを含む水溶液を用いて造粒する圧粉磁心用造粒粉の製造方法であって、
     前記水溶液中において、前記絶縁被膜の表面電荷が負であり、前記水溶性ポリマーの表面電荷が正であり、
     前記水溶液中で、前記複合磁性粒子と前記水溶性ポリマーとを静電引力で結合する圧粉磁心用造粒粉の製造方法。
  9.  前記絶縁被膜が酸化ケイ素であり、前記水溶性ポリマーがポリエチレンイミンである請求項8に記載の圧粉磁心用造粒粉の製造方法。
  10.  軟磁性粒子及びその表面を被覆する絶縁被膜を有する複合磁性粒子を、水溶性ポリマーを含む水溶液を用いて造粒する圧粉磁心用造粒粉の製造方法であって、
     前記水溶液中において、前記絶縁被膜の表面電荷が正であり、前記水溶性ポリマーの表面電荷が負であり、
     前記水溶液中で、前記複合磁性粒子と前記水溶性ポリマーとを静電引力で結合する圧粉磁心用造粒粉の製造方法。
  11.  前記絶縁被膜が酸化ニッケルであり、前記水溶性ポリマーがポリアクリル酸である請求項10に記載の圧粉磁心用造粒粉の製造方法。
  12.  前記水溶性ポリマーの配合量が、前記複合磁性粒子に対して2.0wt.%以下である請求項8~11の何れか1項に記載の圧粉磁心用造粒粉の製造方法。
  13.  請求項8~12の何れか1項に記載の方法により圧粉磁心用造粒粉を製造する工程と、前記圧粉磁心用造粒粉とガラス粉とを混合して圧粉磁心用粉末を得る工程と、前記圧粉磁心用粉末を圧縮して圧粉体を成形する工程と、前記圧粉体を、前記ガラス粉の軟化点以上の温度に加熱して磁気焼鈍を施す工程とを有する圧粉磁心の製造方法。
  14.  前記圧粉磁心用粉末における前記ガラス粉の配合量が1.0wt.%以下である請求項13に記載の圧粉磁心の製造方法。
PCT/JP2017/008110 2016-03-03 2017-03-01 圧粉磁心用造粒粉及びその製造方法 WO2017150610A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-040915 2016-03-03
JP2016040915A JP2017157734A (ja) 2016-03-03 2016-03-03 圧粉磁心用造粒粉及びその製造方法

Publications (1)

Publication Number Publication Date
WO2017150610A1 true WO2017150610A1 (ja) 2017-09-08

Family

ID=59744007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008110 WO2017150610A1 (ja) 2016-03-03 2017-03-01 圧粉磁心用造粒粉及びその製造方法

Country Status (2)

Country Link
JP (1) JP2017157734A (ja)
WO (1) WO2017150610A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7124342B2 (ja) * 2018-02-28 2022-08-24 セイコーエプソン株式会社 絶縁物被覆軟磁性粉末、絶縁物被覆軟磁性粉末の製造方法、圧粉磁心、磁性素子、電子機器および移動体
CN111710778B (zh) * 2020-07-27 2022-03-22 西安交通大学 一种可拉伸的磁电驻极体及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006082073A (ja) * 2004-08-20 2006-03-30 Tosoh Corp 複合粒子の製造方法および複合粒子
JP2010156054A (ja) * 2004-02-24 2010-07-15 Hitachi Metals Ltd 金属微粒子およびその製造方法ならびに磁気ビーズ
JP2012067379A (ja) * 2010-08-27 2012-04-05 Toshiba Corp 金属含有粒子集合体、金属含有粒子複合部材、及びそれらの製造方法
WO2016056351A1 (ja) * 2014-10-10 2016-04-14 株式会社村田製作所 軟磁性材料粉末及びその製造方法、並びに、磁心及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156054A (ja) * 2004-02-24 2010-07-15 Hitachi Metals Ltd 金属微粒子およびその製造方法ならびに磁気ビーズ
JP2006082073A (ja) * 2004-08-20 2006-03-30 Tosoh Corp 複合粒子の製造方法および複合粒子
JP2012067379A (ja) * 2010-08-27 2012-04-05 Toshiba Corp 金属含有粒子集合体、金属含有粒子複合部材、及びそれらの製造方法
WO2016056351A1 (ja) * 2014-10-10 2016-04-14 株式会社村田製作所 軟磁性材料粉末及びその製造方法、並びに、磁心及びその製造方法

Also Published As

Publication number Publication date
JP2017157734A (ja) 2017-09-07

Similar Documents

Publication Publication Date Title
CN108140462B (zh) 压粉磁芯材料、压粉磁芯及其制造方法
JP6436082B2 (ja) 圧粉磁心、これを用いたコイル部品および圧粉磁心の製造方法
JP5363881B2 (ja) 軟磁性材料、およびこの軟磁性材料から構成される物品の製造方法
JP4452240B2 (ja) 軟磁性複合粉末及びその製造方法並び軟磁性成形体の製造方法
JP6625334B2 (ja) 磁心用粉末の製造方法
WO2012057153A1 (ja) 軟磁性粉末、造粒粉、圧粉磁心、電磁部品及び圧粉磁心の製造方法
JP2012077363A (ja) 冶金用粉末の製造方法および圧粉磁心の製造方法
JP5470683B2 (ja) 圧粉磁心用金属粉末および圧粉磁心の製造方法
JP2009302165A (ja) 圧粉磁心及びその製造方法
WO2015079856A1 (ja) 圧粉磁心、コイル部品、及び圧粉磁心の製造方法
JP2014138134A (ja) 圧粉磁心とその製造方法
JP2014120678A (ja) 圧粉成形体、及び圧粉成形体の製造方法
JP2015005581A (ja) 圧粉磁心とその製造方法
WO2017159366A1 (ja) 圧粉磁心用混合粉末及びその製造方法
WO2017150610A1 (ja) 圧粉磁心用造粒粉及びその製造方法
JP2014086672A (ja) 圧粉磁心及びその製造方法、磁心用粉末及びその製造方法
JP4419829B2 (ja) 成形体の製造方法および成形体
JP2012151179A (ja) 圧粉コア
JP2019041008A (ja) 圧粉磁心の製造方法及びこれに用いる圧粉磁心用混合粉末
CN108028131B (zh) 压粉磁芯的制造方法
JP2012129217A (ja) 圧粉磁心のための加圧成形用粉体及び圧粉磁心の製造方法
JP2020053439A (ja) 複合磁性材料、メタルコンポジットコア、リアクトル、及びメタルコンポジットコアの製造方法
JP3863990B2 (ja) 非晶質軟磁性合金粉末成形体の製造方法
CN104124032A (zh) 软磁芯及其制造方法
JP2014116527A (ja) 圧粉磁心の製造方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17760074

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17760074

Country of ref document: EP

Kind code of ref document: A1