US9267184B2 - Systems and methods for processing alloy ingots - Google Patents

Systems and methods for processing alloy ingots Download PDF

Info

Publication number
US9267184B2
US9267184B2 US12/700,963 US70096310A US9267184B2 US 9267184 B2 US9267184 B2 US 9267184B2 US 70096310 A US70096310 A US 70096310A US 9267184 B2 US9267184 B2 US 9267184B2
Authority
US
United States
Prior art keywords
ingot
alloy
metallic material
circumferential surface
processing method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US12/700,963
Other languages
English (en)
Other versions
US20110195270A1 (en
Inventor
Urban J. De Souza
Robin M. Forbes Jones
Richard L. Kennedy
Christopher M. O'Brien
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ATI Properties LLC
Original Assignee
ATI Properties LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ATI Properties LLC filed Critical ATI Properties LLC
Priority to US12/700,963 priority Critical patent/US9267184B2/en
Assigned to ATI PROPERTIES, INC. reassignment ATI PROPERTIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FORBES JONES, ROBIN M., KENNEDY, RICHARD L., O'BRIEN, CHRISTOPHER M., DESOUZA, URBAN J.
Priority to EP11703525.3A priority patent/EP2531319B1/fr
Priority to CN201180007922.XA priority patent/CN102741005B/zh
Priority to RU2012137783/02A priority patent/RU2599925C2/ru
Priority to ES11703525T priority patent/ES2699697T3/es
Priority to JP2012551996A priority patent/JP5894087B2/ja
Priority to PL11703525T priority patent/PL2531319T3/pl
Priority to BR112012019283-3A priority patent/BR112012019283B1/pt
Priority to KR1020127019425A priority patent/KR101661794B1/ko
Priority to DK11703525.3T priority patent/DK2531319T3/en
Priority to MX2012008902A priority patent/MX338478B/es
Priority to PCT/US2011/022213 priority patent/WO2011097085A1/fr
Priority to UAA201210478A priority patent/UA111712C2/uk
Priority to HUE11703525A priority patent/HUE042127T2/hu
Priority to AU2011213196A priority patent/AU2011213196B2/en
Priority to CA2786742A priority patent/CA2786742C/fr
Priority to PT11703525T priority patent/PT2531319T/pt
Priority to TW100104023A priority patent/TWI584890B/zh
Priority to TW106111807A priority patent/TWI630963B/zh
Publication of US20110195270A1 publication Critical patent/US20110195270A1/en
Priority to IL220844A priority patent/IL220844A/en
Priority to US15/048,210 priority patent/US11059088B2/en
Publication of US9267184B2 publication Critical patent/US9267184B2/en
Application granted granted Critical
Priority to IL255087A priority patent/IL255087B/en
Assigned to ATI PROPERTIES LLC reassignment ATI PROPERTIES LLC CERTIFICATE OF CONVERSION Assignors: ATI PROPERTIES, INC.
Priority to US16/540,099 priority patent/US11059089B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D31/00Other methods for working sheet metal, metal tubes, metal profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/02Special casting characterised by the nature of the product by its peculiarity of shape; of works of art
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • B23K9/044Built-up welding on three-dimensional surfaces
    • B23K9/046Built-up welding on three-dimensional surfaces on surfaces of revolution
    • B23K9/048Built-up welding on three-dimensional surfaces on surfaces of revolution on cylindrical surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/003General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals by induction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/04Refining by applying a vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/18Electroslag remelting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/20Arc remelting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]

Definitions

  • the present disclosure is directed to systems and methods for processing alloy ingots.
  • the present disclosure is also directed to processes for hot working alloy ingots.
  • Metal alloy products may be prepared, for example, using ingot metallurgy operations or powder metallurgy operations.
  • Ingot metallurgy operations may involve the melting of an alloy feedstock and the casting of the molten material into an ingot.
  • a non-limiting example of an ingot metallurgy operation is a “triple melt” technique, which includes three melting operations: (1) vacuum induction melting (VIM) to prepare a desired alloy composition from a feedstock; (2) electroslag refining (ESR), which may reduce levels of, for example, oxygen-containing inclusions; and (3) vacuum arc remelting (VAR), which may reduce compositional segregation that may occur during solidification after ESR.
  • An ingot may be formed during solidification after a VAR operation.
  • Powder metallurgy operations may involve atomization of molten alloy and the collection and consolidation of solidified metallurgical powders into an ingot.
  • a non-limiting example of a powder metallurgy operation includes the steps of: (1) VIM to prepare a desired alloy composition from a feedstock; (2) atomization of molten alloy into molten alloy droplets that solidify into alloy powder; (3) optionally, sieving to reduce inclusions; (4) canning and degassing; and (5) pressing to consolidate the alloy powder into an alloy ingot.
  • the alloy ingots formed from ingot metallurgy operations and powder metallurgy operations may be hot worked to produce other alloy products.
  • the ingot may undergo forging and/or extrusion to form a billet or other alloy article from the ingot.
  • Embodiments disclosed herein are directed to an ingot processing method.
  • An ingot processing method may comprise depositing a metallic material layer onto at least a region of a surface of an alloy ingot.
  • the ingot processing method may be characterized in that the metallic material layer reduces an incidence of surface cracking of the alloy ingot during hot working.
  • the hot working process may comprise applying force to an alloy ingot to deform the alloy ingot.
  • the alloy ingot may include a metallic material layer deposited onto at least a region of a surface of the alloy ingot.
  • the hot working process may be characterized in that the force is applied onto the metallic material layer.
  • An ingot processing system may comprise an ingot positioning apparatus.
  • the ingot positioning apparatus may be configured to rotate an ingot about a long axis of the ingot.
  • the ingot processing system may also comprise a welding apparatus.
  • the welding apparatus may be configured to deposit a metallic material layer as a weld deposit onto at least a region of a surface of an ingot.
  • FIG. 1A is a side view of an ingot having a metallic material layer deposited onto the end surfaces of the ingot
  • FIG. 1B is a perspective view of the ingot shown in FIG. 1A ;
  • FIG. 2 is a perspective view of an ingot having a metallic material layer deposited onto a circumferential surface of the ingot;
  • FIG. 3A is a side view of an ingot having a metallic material layer deposited onto the end surfaces and a circumferential surface of the ingot
  • FIG. 3B is a perspective view of the ingot shown in FIG. 3A ;
  • FIGS. 4A-4D are perspective views illustrating one method of depositing metallic material as weld deposits onto a circumferential surface of an ingot
  • FIGS. 5A-5D are perspective views illustrating another method of depositing metallic material as weld deposits onto a circumferential surface of an ingot
  • FIG. 6A is a perspective view illustrating another embodiment of a method of depositing metallic material as a weld deposit onto a circumferential surface of an ingot
  • FIG. 6B is a perspective view of the ingot shown in FIG. 6A and having a metallic material layer deposited as a weld deposit over the entire circumferential surface of the ingot;
  • FIG. 7A is a side cross-sectional view of an ingot in an upset forging operation
  • FIG. 7B is an expanded partial side cross-sectional view of the ingot shown in FIG. 7A after upset forging
  • FIG. 7C is a side cross-sectional view of an ingot in an upset forging operation and having a metallic material layer deposited onto the end surfaces of the ingot
  • FIG. 7D is an expanded partial side cross-sectional view of the ingot shown in FIG. 7C after upset forging;
  • FIG. 8A is a side cross-sectional view of an ingot in a draw forging operation
  • FIG. 8B is an expanded partial side cross-sectional view of the ingot shown in FIG. 8A after draw forging
  • FIG. 8C is a side cross-sectional view of an ingot in a draw forging operation and having a metallic material layer deposited onto the circumferential surface of the ingot
  • FIG. 8D is an expanded partial side cross-sectional view of the ingot shown in FIG. 8C after draw forging;
  • FIG. 9 is a photograph of two 3-inch alloy cubes, each having a metallic material layer deposited by a welding operation on the top surface of the cube (as oriented in the photograph);
  • FIGS. 10A and 10B are photographs of the two die-contacting surfaces of a 1-inch pancake that was press forged from a 3-inch alloy cube having a metallic material layer deposited by a welding operation onto one die-contacting surface of the alloy cube;
  • FIG. 11 is a photograph of a sectioned 1-inch pancake that was press forged from a 3-inch alloy cube having a metallic material layer deposited by a welding operation onto one die-contacting surface of the alloy cube (the top surface as oriented in the photograph), and FIG. 11A is a micrograph taken along the cross-section of the welded surface as indicated in FIG. 11 .
  • any numerical range recited herein is intended to include all sub-ranges subsumed therein.
  • a range of “1 to 10” is intended to include all sub-ranges between (and including) the recited minimum value of 1 and the recited maximum value of 10, that is, having a minimum value equal to or greater than 1 and a maximum value of equal to or less than 10.
  • Any maximum numerical limitation recited herein is intended to include all lower numerical limitations subsumed therein and any minimum numerical limitation recited herein is intended to include all higher numerical limitations subsumed therein. Accordingly, Applicants reserve the right to amend the present disclosure, including the claims, to expressly recite any sub-range subsumed within the ranges expressly recited herein. All such ranges are intended to be inherently disclosed herein such that amending to expressly recite any such sub-ranges would comply with the requirements of 35 U.S.C. ⁇ 112, first paragraph, and 35 U.S.C. ⁇ 132(a).
  • grammatical articles “one”, “a”, “an”, and “the”, as used herein, are intended to include “at least one” or “one or more”, unless otherwise indicated.
  • the articles are used herein to refer to one or more than one (i.e., to at least one) of the grammatical objects of the article.
  • a component means one or more components, and thus, possibly, more than one component is contemplated and may be employed or used in an implementation of the described embodiments.
  • the various embodiments disclosed and described herein can comprise, consist of, or consist essentially of, the features, aspects, characteristics, and the like, as variously described herein.
  • the various embodiments disclosed and described herein can also comprise additional or optional features, aspects, characteristics, and the like, that are known in the art or that may otherwise be included in various embodiments as implemented in practice.
  • crack sensitive alloys tend to form cracks during working operations.
  • Crack sensitive alloy ingots may form cracks during hot working operations used to produce alloy articles from the crack sensitive alloy ingots.
  • alloy billets may be formed from alloy ingots using forge conversion.
  • Other alloy articles may be formed from alloy billets or alloy ingots using extrusion or other working operations.
  • the production yield of alloy articles (e.g., alloy billets) formed from crack sensitive alloy ingots using hot working operations may be low because of the incidence of surface cracking of the alloy ingots during the hot working (e.g., during forging or extrusion).
  • hot working refers to the application of force to a workpiece at a temperature greater than ambient temperature, wherein the applied force deforms the workpiece.
  • the temperature of an alloy ingot undergoing the working operation may be greater than the temperature of the dies used to mechanically apply force to the surfaces of the ingot.
  • the resulting thermal gradient off-set between the ingot surfaces and the contacting dies may contribute to surface cracking of the ingot during hot working, particularly for ingots formed from crack sensitive alloys, such as, for example, nickel base, iron base, nickel-iron base, and cobalt base alloys and superalloys.
  • Embodiments disclosed herein are directed to ingot processing methods and hot working processes characterized by a reduction in the incidence of surface cracking of an alloy ingot during a hot working operation.
  • the described methods and/or processes may comprise depositing a metallic material layer onto at least a region of a surface of an alloy ingot.
  • the alloy ingot may be hot worked by applying a force to the alloy ingot at the region of the surface having the deposited metallic material layer. The applied force may deform the alloy ingot.
  • the alloy ingot may comprise a crack sensitive alloy.
  • various nickel base, iron base, nickel-iron base, and cobalt base alloys and superalloys may be crack sensitive, especially during hot working operations.
  • An alloy ingot may be formed from such crack sensitive alloys and superalloys.
  • a crack sensitive alloy ingot may be formed from alloys or superalloys including, but not limited to, Alloy 718, Alloy 720, Rene 41TM alloy, Rene 88TM alloy, Waspaloy® alloy, and Inconel® 100.
  • the methods, processes, and systems described herein are generally applicable to any alloy characterized by a relatively low ductility at hot working temperatures.
  • alloy includes conventional alloys and superalloys, wherein superalloys exhibit relatively good surface stability, corrosion and oxidation resistance, high strength, and high creep resistance at high temperatures.
  • An alloy ingot may be formed using an ingot metallurgy operation or a powder metallurgy operation.
  • an alloy ingot may be formed by VIM followed by VAR (a VIM-VAR operation).
  • an alloy ingot may be formed by triple melting in which an ESR operation is performed intermediate a VIM operation and a VAR operation (a VIM-ESR-VAR operation).
  • an alloy ingot may be formed using a powder metallurgy operation involving atomization of molten alloy and the collection and consolidation of resulting metallurgical powders into an ingot.
  • an alloy ingot may be formed using a spray forming operation.
  • VIM may be used to prepare a base alloy composition from a feedstock.
  • An ESR operation may optionally be used after VIM.
  • Molten alloy may be extracted from a VIM or ESR melt pool and atomized to form molten droplets.
  • the molten alloy may be extracted from a melt pool using a cold wall induction guide (CIG), for example.
  • CCG cold wall induction guide
  • the molten alloy droplets may be deposited using a spray forming operation to form a solidified ingot.
  • an alloy ingot may be heat treated and/or surface conditioned.
  • an alloy ingot may be exposed to high temperatures to homogenize the alloy composition and microstructure of the ingot.
  • the high temperatures may be above the recrystallization temperature of the alloy but below the melting point temperature of the alloy.
  • An alloy ingot may be surface conditioned, for example, by grinding or peeling the surface of the ingot.
  • An alloy ingot may also be sanded and/or buffed.
  • Surface conditioning operations may be performed before and/or after any optional heat treatment steps, such as, for example, homogenization at high temperatures.
  • a metallic material layer may be deposited and metallurgically bonded to at least a region of a surface of an alloy ingot.
  • a metallic material layer may be deposited as a weld deposit onto a surface of an ingot.
  • a weld deposit may be metallurgically bonded to at least a region of a surface of an alloy ingot using welding operations including, but not limited to, metal inert gas (MIG) welding, tungsten insert gas (TIG) welding, plasma welding, submerged arc welding, and electron-beam welding.
  • MIG metal inert gas
  • TOG tungsten insert gas
  • the metallic material layer may comprise a metallic material that is more ductile and/or malleable than the alloy of the underlying ingot at the particular working temperature to be used.
  • the metallic material layer may comprise a metallic material that exhibits greater toughness and/or lesser hardness than the alloy of the underlying ingot at the particular working temperature to be used.
  • the metallic material layer insulates the underlying ingot surface from the surfaces of contacting dies, thereby preventing the underlying ingot surface from cooling to a brittle temperature at which the surface may more readily crack during hot working.
  • the metallic material layer may comprise a metallic material that is oxidation resistant. In various embodiments, the metallic material layer does not oxidize during hot working or otherwise.
  • the metallic material layer may comprise a metallic material exhibiting a relatively high stiffness (e.g., a relatively low elastic modulus). In various embodiments, the metallic material layer does not thin out substantially during hot working (e.g., where the application of force by one or more dies would cause a relatively low stiffness metallic material to thin out on the underlying ingot surface).
  • the metallic material and the alloy forming the underlying ingot may comprise the same base metal.
  • the alloy ingot comprises a nickel base alloy or superalloy (e.g., Alloy 720, Rene 88TM alloy, or Waspaloy® alloy)
  • the metallic material of the deposited layer may also comprise a nickel base alloy, such as, for example, a nickel base weld alloy (e.g., Techalloy 606TM alloy (available from Techalloy Company/Central Wire)).
  • the metallic material layer may be deposited to a thickness sufficient to insulate the underlying ingot surface from the surfaces of contacting dies, thereby preventing the underlying ingot surface from cooling to a temperature at which the underlying surface may more readily crack during hot working. In this manner, greater hot working temperatures may generally correlate with greater metallic material layer thicknesses. In various embodiments, the metallic material layer may be deposited to a thickness of 0.25 inches to 0.5 inches onto at least a region of a surface of an alloy ingot.
  • the temperature range over which alloys can be effectively hot worked is based on the temperature at which cracks initiate in the alloy. At a given starting temperature for a hot working operation, some alloys can be effectively hot worked over a larger temperature range than other alloys because of differences in the temperature at which cracks initiate in the alloy. For alloys having a relatively small hot working temperature range (i.e., the difference between the starting temperature and the temperature at which cracks initiate), the thickness of the metallic material layer may need to be relatively greater to prevent the underlying ingot from cooling down to a brittle temperature range in which cracks initiate. Likewise, for alloys having a relatively large hot working temperature range, the thickness of the metallic material layer may be relatively smaller to and still prevent the underlying ingot from cooling down to a brittle temperature range in which cracks initiate.
  • the metallic material layer may be deposited onto at least one end of an alloy ingot.
  • FIGS. 1A and 1B illustrate an elongated alloy ingot 10 having opposed ends 13 a and 13 b .
  • Metallic material layers 15 a and 15 b are deposited onto the ends 13 a and 13 b of the alloy ingot 10 .
  • FIGS. 1A and 1B show metallic material layers on both ends 13 a and 13 b of the ingot 10
  • a metallic material layer may be deposited onto only one end of an elongated alloy ingot and the other, opposed end may not have a deposited metallic material layer.
  • FIGS. 1A and 1B illustrate an elongated alloy ingot 10 having opposed ends 13 a and 13 b .
  • Metallic material layers 15 a and 15 b are deposited onto the ends 13 a and 13 b of the alloy ingot 10 .
  • FIGS. 1A and 1B show metallic material layers on both ends 13 a and 13 b of the ingot 10
  • a metallic material layer may be deposited onto only a portion or region of one or both of the opposed end surfaces of an elongated alloy ingot.
  • the metallic material may be more ductile than the alloy of the ingot.
  • the metallic material layer may be deposited onto at least a region of a circumferential surface of a cylindrical alloy ingot.
  • FIG. 2 illustrates an alloy ingot 20 having opposed ends 23 a and 23 b and a circumferential surface 27 (indicated by dashed lines).
  • a metallic material layer 25 is deposited onto the circumferential surface 27 of the alloy ingot 20 .
  • FIG. 2 shows the metallic material layer fully covering the circumferential surface 27
  • a metallic material layer may be deposited onto only a portion or region of a circumferential surface of a cylindrical alloy ingot.
  • FIGS. 3A and 3B illustrate an alloy ingot 30 having opposed ends 33 a and 33 b and a circumferential surface 37 (indicated by dashed lines).
  • Metallic material layer 35 is deposited onto the circumferential surface 37 and the ends 33 a and 33 b of the alloy ingot 30 . In this manner, the alloy ingot 30 is entirely covered with a deposited metallic material layer 35 .
  • the surfaces of the underlying ingot are shown as dashed lines in FIGS. 3A and 3B .
  • 3A and 3B show metallic material layers fully covering the ends and the circumferential surface of the ingot 30
  • a metallic material layer also may be deposited onto only portions or regions of one or both of the opposed end surfaces and/or the circumferential surface of an elongated cylindrical alloy ingot.
  • a metallic material layer may be deposited as a weld deposit onto at least a region of a surface of an alloy ingot by rotating the ingot about a long axis of the ingot and depositing the metallic material as a weld deposit onto a first region of a circumferential surface of the rotating ingot.
  • the metallic material layer may be deposited using at least one stationary welding torch. The welding torch may deposit the metallic material onto the surface of the ingot as the ingot rotates and the surface passes beneath the torch. In this manner, a ring-shaped layer of metallic material may be deposited onto a first region of the circumferential surface of the cylindrical ingot as the ingot proceeds through at least one rotation.
  • At least one welding torch may be re-positioned to a location adjacent to the deposited ring-shaped layer of the metallic material.
  • the re-positioning may be performed by moving at least one welding torch relative to the ingot, and/or moving the ingot relative to the at least one welding torch.
  • a re-positioned welding torch may then deposit additional metallic material as a weld deposit onto a second or subsequent region of the circumferential surface of the rotating ingot.
  • a second or subsequent ring-shaped metallic material layer may be formed adjacent to a previously deposited ring-shaped metallic material layer.
  • ring-shaped layers of metallic material may be successively formed adjacent to each other and in contact with each other so that the metallic material layers collectively form a continuous layer covering at least a region of a circumferential surface of a cylindrical ingot.
  • the re-positioning of at least one welding torch and the depositing of a ring-shaped layer of metallic material may be repeated successively until the circumferential surface of the alloy ingot is substantially covered with a continuous metallic material layer.
  • welding operation parameters, welding torch positioning, and ingot positioning may be predetermined and/or actively controlled to form a uniform metallic material layer over at least a region of a surface of an alloy ingot.
  • FIGS. 4A-4D collectively illustrate an embodiment of the deposition of metallic material as weld deposits onto at least a region of a surface of an alloy ingot.
  • Alloy ingot 100 rotates about long axis 101 as indicated by arrow 102 .
  • Welding torches 110 remain stationary and deposit metallic material 150 onto the circumferential surface 170 of the ingot 100 as the ingot 100 rotates about long axis 101 .
  • the metallic material 150 may be more ductile and/or malleable than the alloy of the alloy ingot 100 when the ingot is at a temperature at which the ingot 100 is worked.
  • the welding torches 110 deposit metallic material 150 onto first regions 171 of the circumferential surface 170 of the ingot 100 as the circumferential surface 170 passes beneath the welding torches 110 .
  • the welding torches 110 remain stationary until the ingot 100 proceeds through at least one rotation, and ring-shaped layers of metallic material 150 are deposited onto the first regions 171 of the circumferential surface 170 of the ingot 100 ( FIG. 4C ).
  • the welding torches 110 are re-positioned by moving the torches a distance in a direction parallel to the long axis 101 of the ingot 100 , as indicated by arrows 112 in FIG. 4C .
  • the welding torches 110 are re-positioned so that the welding torches 110 are located adjacent to the first regions 171 and, therefore, adjacent to the ring-shaped layers of metallic material 150 already deposited ( FIG. 4D ).
  • 4C illustrates re-positioning the welding torches 110 by moving the welding torches 110 parallel to long axis 101
  • the position of the welding torches 110 relative to the ingot 100 also may be changed by moving the ingot 100 parallel to long axis 101 .
  • the re-positioned welding torches 110 deposit additional metallic material 150 ′ as weld deposits onto second regions 172 of the circumferential surface 170 of the ingot 100 as the ingot 100 rotates about long axis 101 .
  • second ring-shaped layers of metallic material 150 ′ are deposited adjacent to the first ring-shaped layers of metallic material 150 .
  • the changing of the relative positions of the welding torches 110 and the ingot 100 , and the depositing of ring-shaped layers of metallic material may be successively repeated until the circumferential surface 170 of the alloy ingot 100 is substantially covered with metallic material, as illustrated in FIG. 2 , for example.
  • a metallic material layer may be deposited as a weld deposit onto at least a region of a surface of an ingot by moving at least one welding torch along a first region of a circumferential surface of a cylindrical ingot, in the direction of a long axis of the ingot. At least one welding torch may be moved along the first region of the circumferential surface of the cylindrical ingot, in a direction of the long axis of the ingot, while the cylindrical ingot is held stationary. Alternatively, at least one welding torch may be held stationary while the cylindrical ingot is moved in a direction of the long axis of the ingot and the first region of the circumferential surface of the cylindrical ingot passes beneath the at least one welding torch.
  • At least one welding torch may deposit metallic material onto the first region of the circumferential surface of the ingot, parallel to the long axis of the ingot. In this manner, a layer of the metallic material may be deposited onto the circumferential surface of the ingot generally parallel to the long axis of the ingot.
  • the cylindrical ingot may be re-positioned to move the deposited metallic material layer (and the corresponding region of the circumferential surface) away from at least one welding torch and to move a second or subsequent region of the circumferential surface toward at least one welding torch.
  • additional metallic material may be deposited as a weld deposit onto the cylindrical surface of the ingot by moving at least one welding torch in a direction parallel to the long axis of the ingot along the second or subsequent region of the circumferential surface of the ingot.
  • At least one welding torch may be moved along the second or subsequent region of the circumferential surface of the cylindrical ingot, in a direction parallel to a long axis of the ingot, while the cylindrical ingot is held stationary.
  • at least one welding torch may be held stationary while the cylindrical ingot is moved parallel to the long axis of the ingot and the second or subsequent region of the circumferential surface of the cylindrical ingot passes beneath at least one welding torch.
  • At least one welding torch may deposit metallic material onto the second or subsequent region of the circumferential surface of the ingot.
  • an additional axial layer of the metallic material may be deposited onto the circumferential surface of the ingot generally parallel to the long axis of the ingot and adjacent to and in contact with a previously deposited layer of the metallic material that also was deposited generally parallel to the long axis of the ingot.
  • both the position of at least one welding torch and the ingot may be moved so that the position of the at least one welding torch relative to the circumferential surface of the ingot is changed.
  • the relative re-positioning of the cylindrical ingot and at least one welding torch and the depositing of layers of metallic material on the ingot's circumferential surface in directions parallel to a long axis of the ingot may be successively repeated until the circumferential surface of the alloy ingot is substantially covered with metallic material.
  • welding operation parameters, welding torch positioning, and ingot positioning may be predetermined and/or actively controlled to form a uniform metallic material layer over at least a region of a surface of an alloy ingot.
  • FIGS. 5A-5D collectively illustrate an embodiment of the deposition of metallic material as weld deposits onto at least a region of a surface of an alloy ingot.
  • alloy ingot 200 is shown having a long axis 201 and a circumferential surface 270 .
  • a layer of metallic material 250 is shown deposited onto region 271 of the circumferential surface 250 of the ingot 200 , positioned in a direction parallel to long axis 201 .
  • Welding torches 210 deposit additional metallic material as weld deposits 250 ′ onto the region 272 of circumferential surface 270 as the welding torches 210 move along region 272 in a direction parallel to long axis 201 , as indicated by arrows 212 .
  • the welding torches 210 move as indicated by arrows 212 until a layer of metallic material 250 is deposited along generally the entire length of ingot 200 in region 272 of the circumferential surface 270 ( FIG. 5C ).
  • the ingot 200 is re-positioned to move the metallic material layer 250 (and the region 272 ) away from the welding torches 210 and to move a region 273 of the circumferential surface 270 toward the welding torches 210 .
  • the ingot 200 is re-positioned by rotating the ingot 200 through a predetermined index angle, indicated by the Greek letter theta ( ⁇ ) in FIGS. 5A-5D .
  • another layer of metallic material is deposited as weld deposits 250 ′′ onto the region 273 of the cylindrical surface 270 of the ingot 200 by moving the welding torches 210 along the region 273 of the circumferential surface 270 of the cylindrical ingot 200 in a direction parallel to long axis 201 , as indicated by arrows 212 .
  • additional layers of metallic material 250 are formed adjacent to each other and in contact around the circumferential surface 270 of the ingot 200 .
  • a first layer of metallic material was deposited onto region 271 of the circumferential surface 270 .
  • the alloy ingot 200 was then rotated through a predetermined index angle ⁇ 1 .
  • a second layer of metallic material was deposited onto region 272 of the circumferential surface 270 .
  • the alloy ingot was then rotated through a predetermined index angle ⁇ 2 .
  • a third layer is shown being deposited onto region 273 of the circumferential surface 270 in FIG. 4D in a direction parallel to long axis 201 .
  • the re-positioning of the ingot 200 , movement of the welding torches 210 , and deposition of layers of metallic material may be successively repeated until the circumferential surface 270 of the alloy ingot 200 is substantially covered with metallic material, as illustrated in FIG. 2 , for example.
  • FIGS. 5A-5D show welding torches 210 moving along regions ( 271 , 272 , 273 ) of the circumferential surface 270 of the ingot 200 in direction parallel to long axis 201 , indicated by arrows 212 , while the ingot 200 is held stationary.
  • the welding torches 210 may be held stationary and the ingot 200 may be moved in the direction of long axis 201 so that regions ( 271 , 272 , 273 ) of the circumferential surface 270 of the ingot 200 pass beneath the stationary welding torches 210 .
  • the welding torches 210 may deposit layers of metallic material 250 onto the regions ( 271 , 272 , 273 ) of the circumferential surface 270 of the ingot 200 .
  • additional layers of the metallic material may be deposited onto the circumferential surface 270 of the ingot 200 generally parallel to the long axis 201 of the ingot 200 and adjacent to each other until the ingot 200 is substantially covered with metallic material, as illustrated in FIG. 2 , for example.
  • the metallic material layer may be deposited as a weld deposit onto a surface of an ingot by rotating the ingot about a long axis of the ingot and depositing the metallic material as a weld deposit onto a circumferential surface of the rotating ingot.
  • the metallic material layer may be deposited using at least one moving welding torch. At least one welding torch may move parallel to the long axis of the ingot and deposits the metallic material onto the surface of the ingot as the ingot rotates. In this manner, a deposit of metallic material may be deposited in a helical fashion onto the circumferential surface of the cylindrical ingot as the ingot rotates and at least one welding torch moves.
  • FIG. 6A illustrates the deposition of metallic material as a weld deposit onto at least a region of a surface of an alloy ingot.
  • Alloy ingot 300 is shown having a long axis 301 and a circumferential surface 370 .
  • a deposit of metallic material 350 is shown deposited in a helical fashion onto the circumferential surface 370 of the ingot 300 .
  • Welding torch 310 deposits the metallic material layer 350 onto the circumferential surface 370 as the welding torch 310 moves parallel to long axis 301 , as indicated by arrow 312 , while the ingot 300 simultaneously rotates about long axis 301 , as indicated by arrow 302 .
  • the welding torch 310 moves as indicated by arrow 312 and the ingot 300 rotates as indicated by arrow 302 until a layer of metallic material 350 is deposited along generally the entire circumferential surface 370 ( FIG. 6B ).
  • An alloy ingot including a metallic material layer deposited onto at least a region of a surface of the alloy ingot may be hot worked by applying force to the alloy ingot.
  • Force may be applied to an alloy ingot in at least one region of at least one surface of the alloy ingot having a metallic material layer deposited onto at least one region.
  • force may be applied to an ingot by applying the force to the metallic material layer deposited onto the ingot.
  • a hot working operation may comprise a forging operation and/or an extrusion operation.
  • an alloy ingot having a metallic material layer deposited onto at least a region of a surface of the alloy ingot may be upset forged and/or draw forged.
  • An upset-and-draw forging operation may comprise one or more sequences of an upset forging operation and one or more sequences of a draw forging operation.
  • the end surfaces of an ingot may be in contact with forging dies that apply force to the ingot that compresses the length of the ingot and increases the cross-section of the ingot.
  • the side surfaces e.g., the circumferential surface of a cylindrical ingot
  • forging dies that apply force to the ingot that compresses the cross-section of the ingot and increases the length of the ingot.
  • FIGS. 7A and 7C illustrate an upset forging operation.
  • Forging dies 480 / 480 ′ apply force to the opposed ends of an ingot 400 / 400 ′. The force is applied generally parallel to the long axis 401 / 401 ′ of the ingot 400 / 400 ′, as indicated by arrows 485 / 485 ′.
  • FIG. 7A shows an ingot 400 without a deposited metallic material layer on opposed ends of the ingot 400 .
  • FIG. 7C shows an ingot 400 ′ including metallic material layers 450 deposited onto the opposed ends of the ingot 400 ′.
  • the ends of the ingot 400 are in contact with the forging dies 480 ( FIG. 7A ).
  • the metallic material layers 450 are in contact with the forging dies 480 ′ ( FIG. 7C ).
  • FIGS. 7B and 7D illustrate a die-contacting surface of each of the ingots 400 and 400 ′ after upset forging as illustrated in FIGS. 7A and 7C , respectively.
  • the die-contacting surface 490 of the ingot 400 exhibits surface cracking.
  • the die-contacting surface 490 ′ of the ingot 400 ′ which includes metallic material layer 450 , does not exhibit surface cracking.
  • the deposited metallic material layer 450 reduces the incidence of surface cracking in a forged alloy ingot relative to an otherwise identical forged alloy ingot lacking such a metallic material layer.
  • FIGS. 8A and 8C illustrate a draw forging operation.
  • Forging dies 580 / 580 ′ apply force to an ingot 500 / 500 ′.
  • the force is applied generally perpendicular to the long axis 501 / 501 ′ of the ingot 500 / 500 ′, as indicated by arrows 585 / 585 ′.
  • the forging dies 580 / 580 ′ apply force to the ingot 500 / 500 ′ along generally the entire length of the ingot 500 / 500 ′ by moving generally parallel to the long axis 501 / 501 ′ of the ingot 500 / 500 ′, as indicated by arrows 587 / 587 ′.
  • FIG. 8A shows an ingot 500 without a metallic material layer.
  • FIG. 8C shows an ingot 500 ′ having a metallic material layer 550 deposited onto a circumferential surface of the ingot 500 ′.
  • the circumferential surface of the ingot 500 is in contact with the forging dies 580 ( FIG. 8A ).
  • the metallic material layer 550 is in contact with the forging dies 580 ′ ( FIG. 8C ).
  • FIGS. 8B and 8D illustrate the die-contacting surfaces of the ingots 500 and 500 ′ after draw forging as illustrated in FIGS. 8A and 8C , respectively.
  • the die-contacting surface 590 of the ingot 500 exhibits surface cracking.
  • the die-contacting surface 590 ′ of the ingot 500 ′ which includes metallic material layer 550 , does not exhibit surface cracking.
  • the deposited metallic material layer 550 reduces the incidence of surface cracking in a forged alloy ingot relative to an otherwise identical forged alloy ingot lacking such a metallic material layer.
  • an ingot having a metallic material layer deposited onto at least a region of a surface of the ingot may be subjected to one or more upset-and-draw forging operations.
  • an ingot may be first upset forged and then draw forged.
  • the upset and draw sequence may be repeated twice more for a total of three sequential upset and draw forging operations.
  • One or more of the die-contacting surfaces of the ingot may have a metallic material layer deposited onto the die-contacting surfaces of the ingot before the ingot is forged.
  • an ingot having a metallic material layer deposited onto at least a region of a surface of the ingot may be subjected to one or more extrusion operations.
  • a cylindrical ingot may be forced through a circular die, thereby decreasing the diameter and increasing the length of the ingot.
  • One or more of the die-contacting surfaces of the ingot may have a metallic material layer deposited onto die-contacting surfaces of the ingot before the ingot is extruded.
  • the methods and processes described herein may be used to produce a wrought billet from a cast, consolidated, or spray formed ingot.
  • the forge conversion or extrusion conversion of an ingot to a billet or other worked article may produce a finer grain structure in the article as compared to the former ingot.
  • the methods and processes described herein may improve the yield of forged or extruded products (such as, for example, billets) from alloy ingots because the metallic material layer may reduce the incidence of surface cracking of the ingot during the forging and/or extrusion operations.
  • a relatively more ductile metallic material layer deposited onto at least a region of a surface of a relatively less ductile alloy ingot may more readily tolerate the strain induced by working dies. It also has been observed that a metallic material layer deposited onto at least a region of a surface of an alloy ingot may also more readily tolerate the temperature differential between the working dies and the ingot during hot working. In this manner, it has been observed that a deposited metallic material layer may exhibit zero or minor surface cracking while surface crack initiation is prevented or reduced in the underlying ingot during working.
  • At least a portion of a deposited metallic material layer may be removed from the product formed from the ingot during the hot working.
  • a grinding, peeling, and/or turning operation may be used to remove at least a portion of the metallic material layer.
  • at least a portion of a deposited metallic material layer may be removed from a billet formed by working an ingot by peeling (lathe-turning) and/or grinding the billet.
  • ingots having a deposited metallic material layer may be hot worked to form products that may be used to fabricate various articles.
  • the processes described herein may be used to form nickel base, iron base, nickel-iron base, or cobalt base alloy or superalloy billets.
  • Billets or other products formed from hot worked ingots may be used to fabricate articles including, but not limited to, turbine components, such as, for example, disks and rings for turbine engines and various land based turbines.
  • Other articles fabricated from ingots processed according to various embodiments described herein may include, but are not limited to, valves, engine components, shafts, and fasteners.
  • Embodiments disclosed herein are also directed to an ingot processing system and an ingot processing apparatus.
  • the ingot processing system and apparatus may comprise an ingot positioning apparatus and a welding apparatus.
  • the ingot positioning apparatus may comprise an ingot rotating apparatus configured to rotate an ingot about a long axis of the ingot.
  • the welding apparatus may be configured to deposit a metallic material layer as a weld deposit onto at least a region of a surface of an ingot.
  • the ingot rotating apparatus may comprise a lathe configured to rotate an ingot about the long axis of the ingot.
  • the ingot rotating apparatus may rotate the ingot continuously through one or more full rotations, or the ingot rotating device may discontinuously rotate the ingot sequentially through predetermined index angles, depending, for example, upon the configuration of the welding apparatus.
  • the welding apparatus may comprise at least one welding torch, such as, for example, a wire-fed MIG welding torch. At least one welding torch may be configured to deposit a layer of a metallic material as a weld deposit onto at least a region of a surface of an ingot. At least one welding torch may be configured to deposit a metallic material layer as a weld deposit onto at least a region of an end surface of an ingot. At least one welding torch may be configured to deposit a metallic material layer as a weld deposit onto at least a region of a circumferential surface of a cylindrical ingot. At least one welding torch may be configured to deposit metallic material onto the top of the circumferential surface of a cylindrical ingot. In this manner, gravity effects on a deposited weld bead may be reduced or eliminated.
  • At least one welding torch may be a MIG welding torch. At least one welding torch may have a wire feed. At least one welding torch may be positioned a predetermined distance from a surface of an ingot. At least one welding torch may be configured with a predetermined wire feed rate, a predetermined wire voltage, and/or a predetermined inert gas purge flow rate. The torch-ingot surface distance, wire feed rate, voltage, inert gas purge flow rate, and/or various other welding operation parameters may be predetermined so that a metallic material layer is uniformly weld deposited onto the ingot. The identity of various other welding operation parameters may depend upon the particular type of welding operation utilized (e.g., MIG, TIG, etc.).
  • the heat input (e.g., energy per unit length) used in the particular welding operation may be maintained substantially uniform over the surface of the ingot onto which the metallic material is weld deposited. In this manner, weld-associated cracking of the underlying ingot surface may be reduced or eliminated, and the quality of the metallurgical bond between the underlying ingot and the weld deposit may be enhanced. In various embodiments, the heat input to the ingot during a welding operation may be minimized.
  • the welding apparatus may comprise one welding torch, a linear array of two or more welding torches, or a two- or three-dimensional array of three or more welding torches.
  • FIGS. 4A-4D , 5 A- 5 D show a linear array of three welding torches.
  • FIG. 6A shows one welding torch.
  • the number and configuration of the welding torches comprising the welding apparatus may vary depending upon the particular implementation of the described ingot processing methods, systems, and apparatuses.
  • the ingot processing system may comprise a control system.
  • the control system may be configured to move and position the welding apparatus in conjunction with the ingot positioning apparatus to uniformly deposit a metallic material layer onto at least a region of a surface of the ingot.
  • the control system may control the torch-surface distance, welding operation parameters, the movement and position of at least one welding torch relative to an ingot surface, and/or the movement and positioning of an ingot.
  • the control system may be configured to move at least one welding torch in a generally linear manner parallel to the long axis of an ingot and along a region of the circumferential surface of the ingot parallel to the long axis.
  • the control system may also be configured to position at least one welding torch to deposit metallic material as a weld deposit onto opposed end surfaces of an ingot.
  • control system may be configured to control at least one welding torch to uniformly deposit the metallic material onto a rough surface of the ingot.
  • the wire feed rate of a consumable electrode in a MIG welding torch, the voltage of the wire electrode, the torch-ingot surface distance, and the torch movement/positioning may be actively controlled to deliver a stable arc over a rotating or stationary ingot. In this manner, a substantially uniform layer of metallic material may be deposited onto the ingot.
  • the control system may be configured to automate the deposition of a metallic material layer as a weld deposit onto at least one end of an alloy ingot.
  • the control system may be configured to automate the deposition of a metallic material layer as a weld deposit onto a circumferential surface of a cylindrical alloy ingot.
  • the ingot processing system may be configured to deposit metallic material as a weld deposit onto a first region of a circumferential surface of a rotating cylindrical ingot using at least one stationary welding torch. In this manner, the ingot processing system may deposit a ring-shaped layer of the metallic material around the circumferential surface of the cylindrical ingot.
  • the ingot processing system may be configured to re-position at least one welding torch adjacent to a deposited ring-shaped layer of the metallic material after a rotating cylindrical ingot proceeds through at least one rotation.
  • the ingot processing system may be configured to deposit the metallic material as a weld deposit onto a second or subsequent region of the circumferential surface of the rotating cylindrical ingot using at least one re-positioned stationary welding torch.
  • the ingot processing system may deposit another ring-shaped layer of the metallic material onto the circumferential surface of the cylindrical ingot.
  • the ingot processing system may be configured to repeat the re-positioning of at least one welding torch and the deposition of ring-shaped metallic material layers in an automated manner until the circumferential surface of a cylindrical ingot is substantially covered with a metallic material layer.
  • the ingot processing system may be configured to deposit metallic material as a weld deposit onto a first region of a circumferential surface of a stationary ingot along a direction parallel to a long axis of the ingot using at least one welding torch configured to move parallel to the long axis of the ingot and along the first region. In this manner, the ingot processing system may deposit a layer of the metallic material onto the first region of the circumferential surface of the cylindrical ingot.
  • the ingot processing system may be configured to re-position the cylindrical ingot to move the first region of the circumferential surface away from at least one welding torch and to move a second region of the circumferential surface toward at least one welding torch. For example, the ingot may be rotated through a predetermined index angle by the ingot rotating device.
  • the ingot processing system may be configured to deposit metallic material as a weld deposit onto a second or subsequent region of the circumferential surface of the stationary ingot along a direction parallel to a long axis of the ingot using at least one welding torch configured to move parallel to the long axis of the ingot and along the second region. In this manner, the ingot processing system may deposit a layer of the metallic material onto the second region of the circumferential surface of the cylindrical ingot.
  • the ingot processing system may be configured to repeat the re-positioning of the ingot and the depositing of metallic material layers along a direction parallel to a long axis of an ingot in an automated manner until the circumferential surface of a cylindrical ingot is substantially covered with a metallic material layer.
  • the ingot processing system may be configured to deposit metallic material as a weld deposit onto a surface of an ingot by rotating the ingot about a long axis of the ingot and simultaneously moving the welding torch parallel to a long axis of the ingot.
  • the metallic material layer may be deposited using at least one moving welding torch under the control of the control system. In this manner, a deposit of metallic material may be deposited in a helical fashion onto the circumferential surface of the cylindrical ingot as the ingot rotates about the long axis and as at least one welding torch moves parallel to the long axis.
  • Three-inch cubes of Rene 88TM alloy were used in a hot working operation.
  • the cubes were randomly cut from scrap portions of a Rene 88TM billet.
  • the cubes were heat treated at 2100° F. for 4 hours to increase the grain size of the alloy cubes to match the workability characteristics of a Rene 88TM ingot.
  • One face surface of each cube was conditioned by grinding on a disk grinder followed by sanding with a belt sander.
  • a TechAlloy 606TM alloy layer was deposited as a weld deposit onto the conditioned face surface of each cube using MIG welding (0.045 inch diameter TechAlloy 606 wire, 220 inch-per-minute, 18V wire voltage, 50 cubic feet per minute argon purge).
  • FIG. 9 is a photograph of two 3-inch cubes of Rene 88TM alloy each having TechAlloy 606TM alloy layers weld deposited onto the top surfaces as oriented in the photograph.
  • a Rene 88TM alloy cube having a TechAlloy 606TM alloy layer was heated to 2000° F. over a one-hour period and press forged at temperature.
  • the face surface having the TechAlloy 606TM alloy layer was placed in contact with the bottom die and the opposite face surface, which lacked a TechAlloy 606TM alloy layer, was placed in contact with the upper die.
  • the 3-inch cube was press forged to a 1-inch pancake using an approximately 1-inch-per-second strain rate.
  • FIGS. 10A and 10B are photographs of opposing sides of a 1-inch pancake pressed forged from a 3-inch cube.
  • FIG. 10A shows the non-layered side surface of the pancake
  • FIG. 10B shows the side surface having the TechAlloy 606TM alloy layer.
  • the crack sensitivity of the Rene 88TM alloy is visible on the forged, non-layered surface shown in FIG. 10A .
  • Surface cracking is clearly visible on the surface lacking a TechAlloy 606TM alloy layer as shown in FIG. 10A .
  • the TechAlloy 606TM alloy layer substantially reduced the incidence of surface cracking of the alloy during the forging.
  • FIG. 11 is a photograph of a sectioned 1-inch pancake pressed forged from a 3-inch alloy cube as described above.
  • the interface between the TechAlloy 606TM alloy layer and the underlying forged Rene 88TM was imaged using optical microscopy at a mid-radius location (labeled “ 11 A” in FIG. 11 ), which corresponded to the cross-section of the welded surface of the pancake (the top surface as oriented in the photograph).
  • FIG. 11A is a micrograph taken at the mid-radius location as indicated in FIG. 11 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Forging (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Extrusion Of Metal (AREA)
  • Arc Welding In General (AREA)
US12/700,963 2010-02-05 2010-02-05 Systems and methods for processing alloy ingots Active 2031-12-10 US9267184B2 (en)

Priority Applications (23)

Application Number Priority Date Filing Date Title
US12/700,963 US9267184B2 (en) 2010-02-05 2010-02-05 Systems and methods for processing alloy ingots
UAA201210478A UA111712C2 (uk) 2010-02-05 2011-01-24 Системи і способи для обробки зливків із сплавів
AU2011213196A AU2011213196B2 (en) 2010-02-05 2011-01-24 Systems and methods for processing alloy ingots
RU2012137783/02A RU2599925C2 (ru) 2010-02-05 2011-01-24 Системы и способы для обработки слитков из сплавов
ES11703525T ES2699697T3 (es) 2010-02-05 2011-01-24 Sistemas y métodos para el procesamiento de lingotes de aleación
JP2012551996A JP5894087B2 (ja) 2010-02-05 2011-01-24 合金インゴットを処理するためのシステムおよび方法
PL11703525T PL2531319T3 (pl) 2010-02-05 2011-01-24 Systemy i sposoby przetwarzania wlewków stopowych
BR112012019283-3A BR112012019283B1 (pt) 2010-02-05 2011-01-24 método e sistema de processamento, e processo para trabalho a quente de lingote
KR1020127019425A KR101661794B1 (ko) 2010-02-05 2011-01-24 합금 잉곳을 가공하기 위한 시스템 및 방법
DK11703525.3T DK2531319T3 (en) 2010-02-05 2011-01-24 Systems and methods for machining alloy blocks
MX2012008902A MX338478B (es) 2010-02-05 2011-01-24 Sistemas y metodos para el procesamiento de lingotes de aleaciones.
PCT/US2011/022213 WO2011097085A1 (fr) 2010-02-05 2011-01-24 Systèmes et procédés permettant de traiter des lingots d'alliage
EP11703525.3A EP2531319B1 (fr) 2010-02-05 2011-01-24 Systèmes et procédés permettant de traiter des lingots d'alliage
HUE11703525A HUE042127T2 (hu) 2010-02-05 2011-01-24 Összeállítások és eljárások ötvözetbugák feldolgozására
CN201180007922.XA CN102741005B (zh) 2010-02-05 2011-01-24 用于加工合金锭的系统和方法
CA2786742A CA2786742C (fr) 2010-02-05 2011-01-24 Systemes et procedes permettant de traiter des lingots d'alliage
PT11703525T PT2531319T (pt) 2010-02-05 2011-01-24 Sistemas e métodos para processar lingotes de liga
TW100104023A TWI584890B (zh) 2010-02-05 2011-02-01 加工合金錠之系統及方法
TW106111807A TWI630963B (zh) 2010-02-05 2011-02-01 加工合金錠之系統及方法
IL220844A IL220844A (en) 2010-02-05 2012-07-10 Alloy ingot systems and methods
US15/048,210 US11059088B2 (en) 2010-02-05 2016-02-19 Systems and methods for processing alloy ingots
IL255087A IL255087B (en) 2010-02-05 2017-10-17 Systems and methods for processing alloy ingots
US16/540,099 US11059089B2 (en) 2010-02-05 2019-08-14 Systems and methods for processing alloy ingots

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/700,963 US9267184B2 (en) 2010-02-05 2010-02-05 Systems and methods for processing alloy ingots

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/048,210 Continuation US11059088B2 (en) 2010-02-05 2016-02-19 Systems and methods for processing alloy ingots

Publications (2)

Publication Number Publication Date
US20110195270A1 US20110195270A1 (en) 2011-08-11
US9267184B2 true US9267184B2 (en) 2016-02-23

Family

ID=43706790

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/700,963 Active 2031-12-10 US9267184B2 (en) 2010-02-05 2010-02-05 Systems and methods for processing alloy ingots
US15/048,210 Active 2031-04-22 US11059088B2 (en) 2010-02-05 2016-02-19 Systems and methods for processing alloy ingots
US16/540,099 Active US11059089B2 (en) 2010-02-05 2019-08-14 Systems and methods for processing alloy ingots

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/048,210 Active 2031-04-22 US11059088B2 (en) 2010-02-05 2016-02-19 Systems and methods for processing alloy ingots
US16/540,099 Active US11059089B2 (en) 2010-02-05 2019-08-14 Systems and methods for processing alloy ingots

Country Status (19)

Country Link
US (3) US9267184B2 (fr)
EP (1) EP2531319B1 (fr)
JP (1) JP5894087B2 (fr)
KR (1) KR101661794B1 (fr)
CN (1) CN102741005B (fr)
AU (1) AU2011213196B2 (fr)
BR (1) BR112012019283B1 (fr)
CA (1) CA2786742C (fr)
DK (1) DK2531319T3 (fr)
ES (1) ES2699697T3 (fr)
HU (1) HUE042127T2 (fr)
IL (2) IL220844A (fr)
MX (1) MX338478B (fr)
PL (1) PL2531319T3 (fr)
PT (1) PT2531319T (fr)
RU (1) RU2599925C2 (fr)
TW (2) TWI630963B (fr)
UA (1) UA111712C2 (fr)
WO (1) WO2011097085A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11059089B2 (en) 2010-02-05 2021-07-13 Ati Properties Llc Systems and methods for processing alloy ingots

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8230899B2 (en) 2010-02-05 2012-07-31 Ati Properties, Inc. Systems and methods for forming and processing alloy ingots
US10207312B2 (en) 2010-06-14 2019-02-19 Ati Properties Llc Lubrication processes for enhanced forgeability
US8789254B2 (en) 2011-01-17 2014-07-29 Ati Properties, Inc. Modifying hot workability of metal alloys via surface coating
JP5973717B2 (ja) * 2011-12-16 2016-08-23 株式会社Uacj アルミニウム合金複合材及びその製造方法、アルミニウム合金鍛造品
US9539636B2 (en) 2013-03-15 2017-01-10 Ati Properties Llc Articles, systems, and methods for forging alloys
US9027374B2 (en) 2013-03-15 2015-05-12 Ati Properties, Inc. Methods to improve hot workability of metal alloys
US9251371B2 (en) 2014-07-07 2016-02-02 Twilio, Inc. Method and system for applying data retention policies in a computing platform
US9765416B2 (en) * 2015-06-24 2017-09-19 Ati Properties Llc Alloy melting and refining method
ES2873299T3 (es) * 2015-09-08 2021-11-03 Deutsche Edelstahlwerke Specialty Steel Gmbh & Co Kg Procedimiento para fabricar un componente con una sección de núcleo consistente en acero
US10587180B2 (en) 2016-05-13 2020-03-10 Otis Elevator Company Magnetic elevator drive member and method of manufacture
JP6631896B2 (ja) * 2016-09-29 2020-01-15 日立金属株式会社 Ni基超耐熱合金の熱間押出成形方法およびNi基超耐熱合金押出材の製造方法
JP6660042B2 (ja) * 2016-09-30 2020-03-04 日立金属株式会社 Ni基超耐熱合金押出材の製造方法およびNi基超耐熱合金押出材
JP6873859B2 (ja) * 2017-07-31 2021-05-19 株式会社東芝 溶接装置および溶接方法
JP7381422B2 (ja) * 2020-08-28 2023-11-15 株式会社神戸製鋼所 造形物の製造方法及び造形物
CN118222798B (zh) * 2024-05-24 2024-08-06 成都先进金属材料产业技术研究院股份有限公司 一种uns n08367合金板材及其制备方法

Citations (147)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US899827A (en) 1908-04-23 1908-09-29 Frank Cutter Process of making ingots.
US2191478A (en) 1938-08-26 1940-02-27 Kellogg M W Co Apparatus for producing composite metal articles
US2295702A (en) 1939-09-01 1942-09-15 Haynes Stellite Co Method of and apparatus for applying metal coatings
GB684013A (en) 1950-03-10 1952-12-10 Comptoir Ind Etirage Hot deformation of metals
US2630220A (en) 1949-01-19 1953-03-03 Comptoir Ind Etirage Lubricating process with fibrous material in the hot extrusion of metals
US2706850A (en) 1950-03-10 1955-04-26 Comptoir Ind Etirage Hot deformation of metals
US2893555A (en) 1955-04-20 1959-07-07 Comptoir Ind Etirage Lubrication in the hot extrusion of metals
US3001059A (en) 1956-08-20 1961-09-19 Copperweld Steel Co Manufacture of bimetallic billets
US3021594A (en) 1958-02-05 1962-02-20 Brev Cls Soc D Expl Des Metal-shaping lubricant compositions and method
US3122828A (en) 1963-01-14 1964-03-03 Special Metals Inc Conversion of heat-sensitive alloys with aid of a thermal barrier
US3181324A (en) 1963-02-28 1965-05-04 Johns Manville Lubricant pad for extruding hot metals
US3339271A (en) 1964-07-01 1967-09-05 Wyman Gordon Co Method of hot working titanium and titanium base alloys
US3423975A (en) 1965-04-22 1969-01-28 Cefilac Method of hot-extruding metals which require a low rate of deformation
US3431597A (en) 1966-02-07 1969-03-11 Dow Chemical Co Apparatus for dispensing viscous materials into molds
US3446606A (en) 1965-07-14 1969-05-27 United Aircraft Corp Refractory metal articles having oxidation-resistant coating
US3493713A (en) 1967-02-20 1970-02-03 Arcos Corp Electric arc overlay welding
GB1202080A (en) 1967-12-22 1970-08-12 Wiggin & Co Ltd Henry Forging billets
GB1207675A (en) 1967-03-16 1970-10-07 Int Combustion Holdings Ltd Improvements in or relating to methods and apparatus for the manufacture of composite metal tubing
US3617685A (en) 1970-08-19 1971-11-02 Chromalloy American Corp Method of producing crack-free electron beam welds of jet engine components
US3690135A (en) 1970-04-16 1972-09-12 Johns Manville Die pad for extruding hot metals
US3693419A (en) 1970-12-30 1972-09-26 Us Air Force Compression test
US3814212A (en) 1972-05-12 1974-06-04 Universal Oil Prod Co Working of non-ferrous metals
SU435288A1 (ru) 1973-04-02 1974-07-05 СПОСОБ ПОЛУЧЕНИЯ БИМЕТАЛЛИЧЕСКИХСЛИТКОВФОНД енооЕРтоа
US3863325A (en) 1973-05-25 1975-02-04 Aluminum Co Of America Glass cloth in metal forging
US3869393A (en) 1970-05-21 1975-03-04 Everlube Corp Of America Solid lubricant adhesive film
US3959543A (en) 1973-05-17 1976-05-25 General Electric Company Non-linear resistance surge arrester disc collar and glass composition thereof
US3992202A (en) 1974-10-11 1976-11-16 Crucible Inc. Method for producing aperture-containing powder-metallurgy article
JPS52114524A (en) 1976-03-24 1977-09-26 Hitachi Ltd Production method of steel ingot by vacuum arc melting method
US4055975A (en) 1977-04-01 1977-11-01 Lockheed Aircraft Corporation Precision forging of titanium
US4060250A (en) * 1976-11-04 1977-11-29 De Laval Turbine Inc. Rotor seal element with heat resistant alloy coating
JPS53108842A (en) 1977-03-05 1978-09-22 Kobe Steel Ltd Manufacture of steel materials having coated stainless steel layer
JPS5452656A (en) 1977-10-05 1979-04-25 Kobe Steel Ltd Manufacture of steel products covered by stainless steel
US4217318A (en) 1975-02-28 1980-08-12 Honeywell Inc. Formation of halide optical elements by hydrostatic press forging
US4226758A (en) 1977-02-23 1980-10-07 Gandy Frictions Limited Friction material
US4257812A (en) 1979-01-17 1981-03-24 The Babcock & Wilcox Company Fibrous refractory products
JPS56109128A (en) 1980-02-04 1981-08-29 Sankin Kogyo Kk Lubricant for warm and hot forging work
JPS57209736A (en) 1981-06-19 1982-12-23 Mitsubishi Heavy Ind Ltd Hot plastic working method for metallic material
SU1015951A1 (ru) 1981-07-21 1983-05-07 Всесоюзный научно-исследовательский и проектный институт тугоплавких металлов и твердых сплавов Способ изготовлени изделий из труднодеформируемых материалов
SU1076162A1 (ru) 1982-12-24 1984-02-29 Уральский научно-исследовательский институт трубной промышленности Способ непрерывного производства сварных остеклованных труб
JPS59179214A (ja) 1983-03-30 1984-10-11 Sumitomo Metal Ind Ltd 熱間押出し製管法
US4544523A (en) 1983-10-17 1985-10-01 Crucible Materials Corporation Cladding method for producing a lined alloy article
JPS61255757A (ja) 1985-05-07 1986-11-13 Nippon Kokan Kk <Nkk> 滴下式鋳造方法
JPS61269929A (ja) 1985-05-24 1986-11-29 Nippon Parkerizing Co Ltd 金属材料の潤滑処理方法
SU1299985A1 (ru) 1985-07-11 1987-03-30 Симферопольский государственный университет им.М.В.Фрунзе Способ изготовлени оптических деталей
GB2190319A (en) 1986-05-16 1987-11-18 Derek Harry Graddon Redman Apparatus for weld cladding on metal surfaces
US4728448A (en) 1986-05-05 1988-03-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Carbide/fluoride/silver self-lubricating composite
US4744504A (en) 1985-01-24 1988-05-17 Turner William C Method of manufacturing a clad tubular product by extrusion
US4780484A (en) 1987-01-27 1988-10-25 Mankiewicz Gebr. & Co. (Gmbh & Co. Kg) Molding material and its use as construction and repair material
US4843856A (en) 1987-10-26 1989-07-04 Cameron Iron Works Usa, Inc. Method of forging dual alloy billets
JPH01271021A (ja) 1988-04-21 1989-10-30 Mitsubishi Heavy Ind Ltd 超耐熱合金の鍛造法
JPH01274319A (ja) 1988-04-25 1989-11-02 Fujikura Ltd 繊維分散型超電導線の製造方法
SU1540977A1 (ru) 1988-05-05 1990-02-07 Всесоюзный Сельскохозяйственный Институт Заочного Образования Устройство дл наплавки поверхностей тел вращени
JPH02104435A (ja) 1988-10-11 1990-04-17 Mitsubishi Steel Mfg Co Ltd チタン合金の熱間成形のための潤滑方法
JPH02107795A (ja) 1988-10-14 1990-04-19 Tohoku Ricoh Co Ltd 銅一スズ合金メツキ浴
US4935198A (en) 1986-09-03 1990-06-19 Avesta Nyby Powder Ab Method for the powder-metallurgical manufacture of tubes or like elongated profiles
EP0386515A2 (fr) 1989-03-04 1990-09-12 Fried. Krupp Gesellschaft mit beschränkter Haftung Procédé pour la production d'un composite métallique qui a une région présentant une résistance élevée à l'usure et dispositif pour la mise en oeuvre du procédé
US4961991A (en) 1990-01-29 1990-10-09 Ucar Carbon Technology Corporation Flexible graphite laminate
JPH03174938A (ja) 1989-12-02 1991-07-30 Kobe Steel Ltd Ni基超耐熱合金の熱間鍛造方法
US5052464A (en) 1988-05-11 1991-10-01 Hitachi, Ltd. Method of casting a member having an improved surface layer
JPH04118133A (ja) 1990-09-07 1992-04-20 Daido Steel Co Ltd 熱間塑性加工用潤滑剤
SU1761364A1 (ru) * 1990-03-05 1992-09-15 Производственное объединение "Новокраматорский машиностроительный завод" Способ ковки поковок типа пластин
GB2262540A (en) 1991-12-20 1993-06-23 Rmi Titanium Co Enhancement of hot workability of titanium alloy by coating with titanium
US5259965A (en) 1990-09-21 1993-11-09 Nissan Motor Co., Ltd. Titanium lubricating material suitable for use in vacuum
US5263349A (en) 1992-09-22 1993-11-23 E. I. Du Pont De Nemours And Company Extrusion of seamless molybdenum rhenium alloy pipes
JPH0663743A (ja) 1992-08-13 1994-03-08 Kanto Special Steel Works Ltd 熱間圧延用複合ロールの製造法
US5302414A (en) 1990-05-19 1994-04-12 Anatoly Nikiforovich Papyrin Gas-dynamic spraying method for applying a coating
WO1994013849A1 (fr) 1992-12-14 1994-06-23 United Technologies Corporation Procede de forgeage de superalliage et composition afferente
US5348446A (en) 1993-04-28 1994-09-20 General Electric Company Bimetallic turbine airfoil
RU2020020C1 (ru) 1989-05-16 1994-09-30 Самарский филиал Научно-исследовательского института технологии и организации производства двигателей Способ горячей штамповки жаропрочных титановых сплавов
US5374323A (en) 1991-08-26 1994-12-20 Aluminum Company Of America Nickel base alloy forged parts
JPH073840A (ja) 1993-06-14 1995-01-06 Fujita Corp クローラ走行式作業機械
WO1995035396A1 (fr) 1994-06-22 1995-12-28 United Technologies Corporation Alliage a base de nickel pour la reparation de substrats
US5525779A (en) 1993-06-03 1996-06-11 Martin Marietta Energy Systems, Inc. Intermetallic alloy welding wires and method for fabricating the same
RU2070461C1 (ru) 1993-11-12 1996-12-20 Малое научно-производственное технологическое предприятие "ТЭСП" Способ получения технологического двухслойного антифрикционного покрытия для обработки материалов давлением
US5665180A (en) 1995-06-07 1997-09-09 The United States Of America As Represented By The Secretary Of The Air Force Method for hot rolling single crystal nickel base superalloys
WO1998005463A1 (fr) 1996-08-05 1998-02-12 Welding Services, Inc. Procede et dispositif de soudure par chargement a deux passes de soudage
US5743120A (en) 1995-05-12 1998-04-28 H.C. Starck, Inc. Wire-drawing lubricant and method of use
US5743121A (en) 1996-05-31 1998-04-28 General Electric Company Reducible glass lubricants for metalworking
US5783530A (en) 1989-10-31 1998-07-21 Alcan International Limited Non-staining solid lubricants
US5788142A (en) 1995-10-04 1998-08-04 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Process for joining, coating or repairing parts made of intermetallic material
JPH1110222A (ja) 1997-06-18 1999-01-19 Sumitomo Metal Ind Ltd 熱間押出用ガラスパッド
WO1999002743A1 (fr) 1997-07-11 1999-01-21 Johnson Matthey Electronics, Inc. Article metallique a structures et textures fines et uniformes et procede de fabrication correspondant
US5902762A (en) 1997-04-04 1999-05-11 Ucar Carbon Technology Corporation Flexible graphite composite
US5908670A (en) 1996-06-24 1999-06-01 Tafa, Incorporated Apparatus for rotary spraying a metallic coating
RU2133652C1 (ru) 1998-03-30 1999-07-27 Товарищество с ограниченной ответственностью "Директ" Способ получения наплавленного на изделие покрытия
US5951792A (en) 1997-09-22 1999-09-14 Asea Brown Boveri Ag Method for welding age-hardenable nickel-base alloys
US5989487A (en) 1999-03-23 1999-11-23 Materials Modification, Inc. Apparatus for bonding a particle material to near theoretical density
JPH11320073A (ja) 1998-05-20 1999-11-24 Aoki Kogyo Kk 鋳込法による2層ニッケル基合金クラッド鋼板の製造方法
US6006564A (en) 1998-12-10 1999-12-28 Honda Of America Mfg., Inc. Application of dry lubricant to forming dies and forging dies that operate with high force
RU2145981C1 (ru) 1998-08-05 2000-02-27 Открытое акционерное общество Верхнесалдинское металлургическое производственное объединение Способ защиты поверхности слитков
US6120624A (en) 1998-06-30 2000-09-19 Howmet Research Corporation Nickel base superalloy preweld heat treatment
JP2000288674A (ja) 1999-04-02 2000-10-17 Sumitomo Metal Ind Ltd 金属の高温塑性加工方法およびそれに使用する樹脂フィルム
JP2000312905A (ja) 1999-04-26 2000-11-14 Sumitomo Metal Ind Ltd B含有オーステナイト系ステンレス鋼の熱間加工方法
US6154959A (en) 1999-08-16 2000-12-05 Chromalloy Gas Turbine Corporation Laser cladding a turbine engine vane platform
US6269669B1 (en) 1998-04-06 2001-08-07 Nisshinbo Industries, Inc. Surface-treating method for back plate for friction material
US6312022B1 (en) 2000-03-27 2001-11-06 Metex Mfg. Corporation Pipe joint and seal
US6329079B1 (en) * 1999-10-27 2001-12-11 Nooter Corporation Lined alloy tubing and process for manufacturing the same
US6330818B1 (en) 1998-12-17 2001-12-18 Materials And Manufacturing Technologies Solutions Company Lubrication system for metalforming
US20020005233A1 (en) 1998-12-23 2002-01-17 John J. Schirra Die cast nickel base superalloy articles
US20020019321A1 (en) 1998-02-17 2002-02-14 Robert W. Balliett Metalworking lubrication
WO2002027067A1 (fr) 2000-09-28 2002-04-04 Japan Ultra-High Temperature Materials Research Institute Materiau resistant a la chaleur comprenant un alliage a base de niobium
US6418795B2 (en) 2000-04-06 2002-07-16 Korea Advanced Institute Of Science And Technology Method of measuring shear friction factor through backward extrusion process
US20020172587A1 (en) 2001-03-14 2002-11-21 Sorin Keller Method for welding together two parts which are exposed to different temperatures, and turbomachine produced using a method of this type
US6484790B1 (en) 1999-08-31 2002-11-26 Cummins Inc. Metallurgical bonding of coated inserts within metal castings
US6547952B1 (en) 2001-07-13 2003-04-15 Brunswick Corporation System for inhibiting fouling of an underwater surface
JP2003239025A (ja) 2001-12-10 2003-08-27 Sumitomo Titanium Corp 高融点金属溶解方法
JP2003260535A (ja) 2002-03-06 2003-09-16 Toto Ltd 有底部品の製造方法
US6623690B1 (en) 2001-07-19 2003-09-23 Crucible Materials Corporation Clad power metallurgy article and method for producing the same
US20040079453A1 (en) 2002-10-25 2004-04-29 Groh Jon Raymond Nickel-base alloy and its use in casting and welding operations
US20040105774A1 (en) 2002-11-26 2004-06-03 Del Corso Gregory J. Process for improving the hot workability of a cast superalloy ingot
US6774346B2 (en) 2001-05-21 2004-08-10 Thermal Solutions, Inc. Heat retentive inductive-heatable laminated matrix
EP1197570B1 (fr) 2000-10-13 2004-12-29 General Electric Company Alliage à base de nickel et son utilisation pour des operations de soudage ou de forgeage
US20050011070A1 (en) 2002-12-18 2005-01-20 Rice Derek A. Spun metal form used to manufacture dual alloy turbine wheel
JP2005040810A (ja) 2003-07-24 2005-02-17 Nippon Steel Corp プレス加工用金属板及び該金属板への固体潤滑剤付与方法及び装置
US20050044800A1 (en) 2003-09-03 2005-03-03 Hall David R. Container assembly for HPHT processing
US20050118453A1 (en) 2003-12-01 2005-06-02 General Electric Company Beta-phase nickel aluminide coating
US20050273994A1 (en) 2004-06-10 2005-12-15 Bergstrom David S Clad alloy substrates and method for making same
US20060008352A1 (en) 2004-07-07 2006-01-12 Siemens Westinghouse Power Corporation Composite gas turbine discs for increased performance and reduced cost
US20060035102A1 (en) 2003-11-25 2006-02-16 Ramgopal Darolia Strengthened bond coats for thermal barrier coatings
US20060093752A1 (en) 2004-10-29 2006-05-04 General Electric Company Methods for depositing gamma-prime nickel aluminide coatings
US20060093851A1 (en) 2004-10-29 2006-05-04 General Electric Company Superalloy article having a gamma-prime nickel aluminide coating
US20060093850A1 (en) 2004-10-29 2006-05-04 General Electric Company Coating systems containing gamma-prime nickel aluminide coating
RU2275997C2 (ru) 2004-07-14 2006-05-10 Общество с ограниченной ответственностью фирма "Директ" Способ автоматической электродуговой наплавки изделий типа тел вращения
US7114548B2 (en) 2004-12-09 2006-10-03 Ati Properties, Inc. Method and apparatus for treating articles during formation
US20060239852A1 (en) 2000-11-18 2006-10-26 Rolls-Royce, Plc Nickel alloy composition
US7208116B2 (en) 2000-09-29 2007-04-24 Rolls-Royce Plc Nickel base superalloy
US7257981B2 (en) 2001-03-29 2007-08-21 Showa Denko K.K. Closed forging method, forging production system using the method, forging die used in the method and system, and preform or yoke produced by the method and system
US7316057B2 (en) 2004-10-08 2008-01-08 Siemens Power Generation, Inc. Method of manufacturing a rotating apparatus disk
RU2337158C2 (ru) 2006-11-24 2008-10-27 ОАО "Златоустовый металлургический завод" Способ производства биметаллических слитков
JP2009066661A (ja) 2007-09-17 2009-04-02 General Electric Co <Ge> 鍛造金型及び鍛造方法
RU2355791C2 (ru) 2007-05-30 2009-05-20 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Способ изготовления слитков высокореакционных металлов и сплавов и вауумная дуговая печь для изготовления слитков высокореакционных металлов и сплавов
CN101517112A (zh) 2006-08-11 2009-08-26 联邦-蒙古尔烧结产品有限公司 改进的粉末冶金组合物
US7618684B2 (en) 2002-12-12 2009-11-17 Innovatech, Llc Method of forming a coating on a surface of a substrate
JP2010000519A (ja) 2008-06-20 2010-01-07 Sanyo Special Steel Co Ltd 熱間押出鋼管の内面ガラス挿入方法
US7770427B2 (en) 2003-02-18 2010-08-10 Showa Denko K.K. Metal forged product, upper or lower arm, preform of the arm, production method for the metal forged product, forging die, and metal forged product production system
EP2286942A1 (fr) 2009-08-20 2011-02-23 General Electric Company Conteneur présentant volume et coins ajustables et méthode de compaction isostatique à chaud utilisant ce conteneur
US7927085B2 (en) 2006-08-31 2011-04-19 Hall David R Formable sealant barrier
US20110195269A1 (en) 2010-02-05 2011-08-11 Ati Properties, Inc. Systems and methods for forming and processing alloy ingots
US20110302979A1 (en) 2010-06-14 2011-12-15 Ati Properties, Inc. Lubrication processes for enhanced forgeability
US8303289B2 (en) 2009-08-24 2012-11-06 General Electric Company Device and method for hot isostatic pressing container
US8327681B2 (en) 2007-04-20 2012-12-11 Shell Oil Company Wellbore manufacturing processes for in situ heat treatment processes
US20130142686A1 (en) 2011-12-02 2013-06-06 Ati Properties, Inc. Endplate for hot isostatic pressing canister, hot isostatic pressing canister, and hot isostatic pressing method
US8545994B2 (en) 2009-06-02 2013-10-01 Integran Technologies Inc. Electrodeposited metallic materials comprising cobalt
US8567226B2 (en) 2008-10-06 2013-10-29 GM Global Technology Operations LLC Die for use in sheet metal forming processes
US20140271337A1 (en) 2013-03-15 2014-09-18 Ati Properties, Inc. Articles, systems, and methods for forging alloys
US20140260478A1 (en) 2013-03-15 2014-09-18 Ati Properties, Inc. Methods to improve hot workability of metal alloys
US20140290321A1 (en) 2011-01-17 2014-10-02 Ati Properties, Inc. Hot workability of metal alloys via surface coating

Family Cites Families (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US279678A (en) * 1883-06-19 Flour-packer
US3127015A (en) 1964-03-31 schieren
US2653026A (en) 1950-03-20 1953-09-22 Abram M Feltus Aerial target
US3067473A (en) 1960-03-29 1962-12-11 Firth Sterling Inc Producing superior quality ingot metal
US3105048A (en) 1961-01-23 1963-09-24 Engelhard Ind Inc Solid lubricant
US3390079A (en) 1964-07-20 1968-06-25 Utakoji Masaru Method of hot extrusion of metallic articles
US3566661A (en) 1968-07-29 1971-03-02 Budd Co Metal forming
US3752216A (en) 1969-05-14 1973-08-14 Sandel Ind Inc Apparatus for homogeneous refining and continuously casting metals and alloys
JPS4892261A (fr) 1972-03-08 1973-11-30
US3945240A (en) 1972-10-16 1976-03-23 United Technologies Corporation Diffusion bonding separator
JPS5339183B2 (fr) 1974-07-22 1978-10-19
GB1472939A (en) 1974-08-21 1977-05-11 Osprey Metals Ltd Method for making shaped articles from sprayed molten metal
JPS52147556A (en) 1976-06-02 1977-12-08 Kobe Steel Ltd Hollow billet preupset process
FR2382509A1 (fr) 1976-12-21 1978-09-29 Eutectic Corp Application a la flamme d'un revetement metallique sur un organe de forme cylindrique, notamment rouleau secheur
JPS5922958Y2 (ja) 1977-03-10 1984-07-09 山内ゴム工業株式会社 成型プレス用クツシヨン材
JPS596724B2 (ja) 1978-02-14 1984-02-14 株式会社神戸製鋼所 ホロビレツトのエキスパンシヨン工具
JPS55122661A (en) 1979-03-15 1980-09-20 Sumitomo Metal Ind Ltd Steel ingot for rolled wheel and production thereof
JPS6047012B2 (ja) 1980-04-15 1985-10-19 株式会社神戸製鋼所 合金鋼、鋼、耐熱合金の高温潤滑押出し方法
JPS608984B2 (ja) 1980-12-29 1985-03-07 新日本製鐵株式会社 熱間押出加工用ガラス潤滑剤
US4377371A (en) 1981-03-11 1983-03-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Laser surface fusion of plasma sprayed ceramic turbine seals
JPS58143012U (ja) 1982-03-16 1983-09-27 住友金属工業株式会社 押抜き製管素材の潤滑剤塗布設備
JPS59227992A (ja) 1983-06-08 1984-12-21 Agency Of Ind Science & Technol 塑性加工用潤滑剤
BR8305575A (pt) 1983-06-10 1985-02-20 Huntington Alloys Processo para remover lubrificante de vidro de um extrudado;processo para extrusar tarugos lubrificados com vidro
JPS60215557A (ja) 1984-04-06 1985-10-28 Dai Ichi Kogyo Seiyaku Co Ltd ガラス繊維集束剤
US5981081A (en) 1984-09-18 1999-11-09 Union Carbide Coatings Service Corporation Transition metal boride coatings
JPS61148407U (fr) 1985-03-05 1986-09-12
CN85103156A (zh) 1985-04-21 1986-03-10 李声寿 提高高温合金锻造质量的一种简单新工艺
JPS62230450A (ja) 1986-03-31 1987-10-09 Sumitomo Metal Ind Ltd 押抜製管における穿孔方法
JPS6428382A (en) 1987-07-24 1989-01-30 Honda Motor Co Ltd Method for coating stock for hot plastic working
JPS6448832A (en) 1987-08-18 1989-02-23 Shinetsu Chemical Co Modifier for composite material
JPH01254337A (ja) 1988-04-04 1989-10-11 Daido Steel Co Ltd 鍛造方法
SU1606252A1 (ru) 1988-07-19 1990-11-15 Специальное Конструкторско-Технологическое Бюро "Тантал" При Уфимском Авиационном Институте Им.Серго Орджоникидзе Блок теплоизол ции штампа дл изотермической штамповки
JPH0390212A (ja) 1989-09-01 1991-04-16 Sumitomo Metal Ind Ltd 稠密六方晶金属の熱間押出方法
JPH03277751A (ja) 1990-03-27 1991-12-09 Mitsubishi Materials Corp 再溶解用電極の製造方法
JP2725436B2 (ja) 1990-04-17 1998-03-11 三菱マテリアル株式会社 鍛造用金型
JP2725438B2 (ja) 1990-05-07 1998-03-11 三菱マテリアル株式会社 恒温鍛造法および恒温鍛造用潤滑シート
JPH0436445A (ja) 1990-05-31 1992-02-06 Sumitomo Metal Ind Ltd 耐食性チタン合金継目無管の製造方法
JPH0713243B2 (ja) 1990-07-06 1995-02-15 住友金属工業株式会社 高耐食性Ni基合金管の製造方法
AU8753091A (en) 1990-10-19 1992-05-20 United Technologies Corporation Rheologically controlled glass lubricant for hot metal working
JP3021795B2 (ja) 1991-06-27 2000-03-15 日東紡績株式会社 シランカップリング剤および積層板用ガラス繊維製品
JPH05147975A (ja) 1991-11-26 1993-06-15 Nichias Corp 耐熱性ガラス繊維
JPH05177289A (ja) 1991-12-26 1993-07-20 Daido Steel Co Ltd 型入鍛造における失熱防止方法
JPH0663638A (ja) 1992-08-20 1994-03-08 Nippon Muki Co Ltd 金属管の製造法並びにその製造に用いる潤滑材
JP2743736B2 (ja) 1992-09-24 1998-04-22 住友金属工業株式会社 熱間押出し製管方法
US5489680A (en) * 1992-10-13 1996-02-06 American Home Products Corporation Carbamates of rapamycin
JPH06154842A (ja) 1992-11-25 1994-06-03 Nippon Steel Corp 熱間押出方法
JPH06277748A (ja) 1993-03-26 1994-10-04 Furukawa Alum Co Ltd アルミニウム押出材の製造方法および製造装置
JPH06328125A (ja) 1993-05-24 1994-11-29 Nkk Corp 2相ステンレス鋼継目無鋼管の製造方法
JPH0711403A (ja) 1993-06-29 1995-01-13 Sumitomo Metal Ind Ltd 耐粒界破壊性を有するNi基合金の製造方法
JP2807151B2 (ja) 1993-09-20 1998-10-08 株式会社神戸製鋼所 熱間据込鍛造法
JP2807160B2 (ja) 1993-12-17 1998-10-08 株式会社神戸製鋼所 熱間据込鍛造法
JPH07223018A (ja) 1994-02-14 1995-08-22 Nippon Steel Corp 熱間押出加工用ガラス潤滑剤
EP0774525B1 (fr) 1995-11-17 2000-02-23 Ngk Insulators, Ltd. Moule d'un alliage de cuivre pour aluminium ou ses alliages
JP3460442B2 (ja) 1996-04-10 2003-10-27 株式会社日立製作所 鉛フリーはんだ及びそれを用いた実装品
US5743151A (en) * 1996-08-12 1998-04-28 Chrysler Corporation Locking mechanism for tilt steering column
US6296043B1 (en) 1996-12-10 2001-10-02 Howmet Research Corporation Spraycast method and article
RU2145982C1 (ru) 1998-09-04 2000-02-27 ОАО Верхнесалдинское металлургическое производственное объединение Способ защиты поверхности слябов
US6979477B2 (en) * 2000-09-06 2005-12-27 Urethane Soy Systems Company Vegetable oil-based coating and method for application
US6202277B1 (en) 1999-10-28 2001-03-20 General Electric Company Reusable hard tooling for article consolidation and consolidation method
JP3584966B2 (ja) 2000-01-21 2004-11-04 日東紡績株式会社 耐熱性ガラス繊維及びその製造方法
TW562714B (en) * 2000-06-07 2003-11-21 Mitsubishi Materials Corp Method and apparatus for manufacturing copper and/or copper alloy ingot having no shrinkage cavity and having smooth surface without wrinkles
JP2002299019A (ja) 2001-03-30 2002-10-11 Mitsui Eng & Shipbuild Co Ltd 発熱体保温方式誘導加熱炉
JP4212314B2 (ja) 2002-08-05 2009-01-21 旭化成エレクトロニクス株式会社 ガラスフィラー
JP3865705B2 (ja) 2003-03-24 2007-01-10 トーカロ株式会社 耐食性および耐熱性に優れる熱遮蔽皮膜被覆材並びにその製造方法
US6865917B2 (en) 2003-03-27 2005-03-15 Ford Motor Company Flanging and hemming process with radial compression of the blank stretched surface
JP2005066656A (ja) * 2003-08-26 2005-03-17 Aisan Ind Co Ltd チタンを含有する金属製部材の製造方法
US7188498B2 (en) 2004-12-23 2007-03-13 Gm Global Technology Operations, Inc. Reconfigurable tools and/or dies, reconfigurable inserts for tools and/or dies, and methods of use
WO2006069753A1 (fr) 2004-12-28 2006-07-06 Technical University Of Denmark Procede de fabrication de connexions entre metal et verre, metal et metal ou metal et ceramique
FR2880827B1 (fr) 2005-01-14 2008-07-25 Snecma Moteurs Sa Presse de forgeage du type a matrices chaudes et moyen d'isolation thermique pour la presse
JP2007054867A (ja) 2005-08-25 2007-03-08 Jaroc:Kk 温間加工用スウェージング装置
US7803212B2 (en) 2005-09-22 2010-09-28 Ati Properties, Inc. Apparatus and method for clean, rapidly solidified alloys
CN101421066A (zh) 2006-02-20 2009-04-29 高级压力机自动装置公司 用于刻划铸锭和将其断开的方法和设备
US7611592B2 (en) 2006-02-23 2009-11-03 Ati Properties, Inc. Methods of beta processing titanium alloys
US20080070024A1 (en) 2006-08-10 2008-03-20 Curran William F Layered fire retardant barrier panel
CN101412066B (zh) 2007-10-17 2012-10-03 沈阳黎明航空发动机(集团)有限责任公司 一种gh4169合金盘的锤锻工艺
CN100552063C (zh) * 2008-01-02 2009-10-21 西北有色金属研究院 一种洁净钛及钛合金铸锭的生产方法
JP5371338B2 (ja) 2008-09-10 2013-12-18 住友軽金属工業株式会社 アルミニウム熱間鍛造用潤滑離型剤、及びそれを用いたアルミニウム熱間鍛造方法
DE102009025197B4 (de) 2008-10-01 2012-11-08 Thyssenkrupp Vdm Gmbh Verfahren zur Herstellung von Verbundmetall-Halbzeugen
JP4518205B2 (ja) 2008-12-01 2010-08-04 住友金属工業株式会社 熱間穿孔用上面ガラス成形材および熱間押出製管用ビレットの製造方法
US20100236317A1 (en) 2009-03-19 2010-09-23 Sigelko Jeff D Method for forming articles at an elevated temperature
CN101554491B (zh) 2009-05-27 2012-10-03 四川大学 液相热喷涂制备生物活性玻璃涂层的方法
RU2415967C2 (ru) 2009-06-08 2011-04-10 Учреждение Российской Академии Наук Институт Проблем Сверхпластичности Металлов Ран Способ получения защитного покрытия на заготовках из металлов и сплавов
US9267184B2 (en) 2010-02-05 2016-02-23 Ati Properties, Inc. Systems and methods for processing alloy ingots
JP5532148B2 (ja) 2010-12-28 2014-06-25 日立金属株式会社 型打鍛造方法および鍛造品の製造方法
US20120073693A1 (en) 2011-03-22 2012-03-29 Owens Corning Intellectual Capital, Llc Insulation and methods of insulating
JP5724860B2 (ja) 2011-12-07 2015-05-27 新日鐵住金株式会社 熱間穿孔用エキスパンション装置

Patent Citations (164)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US899827A (en) 1908-04-23 1908-09-29 Frank Cutter Process of making ingots.
US2191478A (en) 1938-08-26 1940-02-27 Kellogg M W Co Apparatus for producing composite metal articles
US2295702A (en) 1939-09-01 1942-09-15 Haynes Stellite Co Method of and apparatus for applying metal coatings
US2630220A (en) 1949-01-19 1953-03-03 Comptoir Ind Etirage Lubricating process with fibrous material in the hot extrusion of metals
GB684013A (en) 1950-03-10 1952-12-10 Comptoir Ind Etirage Hot deformation of metals
US2706850A (en) 1950-03-10 1955-04-26 Comptoir Ind Etirage Hot deformation of metals
US2893555A (en) 1955-04-20 1959-07-07 Comptoir Ind Etirage Lubrication in the hot extrusion of metals
US3001059A (en) 1956-08-20 1961-09-19 Copperweld Steel Co Manufacture of bimetallic billets
US3021594A (en) 1958-02-05 1962-02-20 Brev Cls Soc D Expl Des Metal-shaping lubricant compositions and method
US3122828A (en) 1963-01-14 1964-03-03 Special Metals Inc Conversion of heat-sensitive alloys with aid of a thermal barrier
US3181324A (en) 1963-02-28 1965-05-04 Johns Manville Lubricant pad for extruding hot metals
US3339271A (en) 1964-07-01 1967-09-05 Wyman Gordon Co Method of hot working titanium and titanium base alloys
US3423975A (en) 1965-04-22 1969-01-28 Cefilac Method of hot-extruding metals which require a low rate of deformation
US3446606A (en) 1965-07-14 1969-05-27 United Aircraft Corp Refractory metal articles having oxidation-resistant coating
US3431597A (en) 1966-02-07 1969-03-11 Dow Chemical Co Apparatus for dispensing viscous materials into molds
US3493713A (en) 1967-02-20 1970-02-03 Arcos Corp Electric arc overlay welding
GB1207675A (en) 1967-03-16 1970-10-07 Int Combustion Holdings Ltd Improvements in or relating to methods and apparatus for the manufacture of composite metal tubing
GB1202080A (en) 1967-12-22 1970-08-12 Wiggin & Co Ltd Henry Forging billets
US3690135A (en) 1970-04-16 1972-09-12 Johns Manville Die pad for extruding hot metals
US3869393A (en) 1970-05-21 1975-03-04 Everlube Corp Of America Solid lubricant adhesive film
US3617685A (en) 1970-08-19 1971-11-02 Chromalloy American Corp Method of producing crack-free electron beam welds of jet engine components
US3693419A (en) 1970-12-30 1972-09-26 Us Air Force Compression test
US3814212A (en) 1972-05-12 1974-06-04 Universal Oil Prod Co Working of non-ferrous metals
SU435288A1 (ru) 1973-04-02 1974-07-05 СПОСОБ ПОЛУЧЕНИЯ БИМЕТАЛЛИЧЕСКИХСЛИТКОВФОНД енооЕРтоа
US3959543A (en) 1973-05-17 1976-05-25 General Electric Company Non-linear resistance surge arrester disc collar and glass composition thereof
US3863325A (en) 1973-05-25 1975-02-04 Aluminum Co Of America Glass cloth in metal forging
US3992202A (en) 1974-10-11 1976-11-16 Crucible Inc. Method for producing aperture-containing powder-metallurgy article
US4217318A (en) 1975-02-28 1980-08-12 Honeywell Inc. Formation of halide optical elements by hydrostatic press forging
JPS52114524A (en) 1976-03-24 1977-09-26 Hitachi Ltd Production method of steel ingot by vacuum arc melting method
US4060250A (en) * 1976-11-04 1977-11-29 De Laval Turbine Inc. Rotor seal element with heat resistant alloy coating
US4226758A (en) 1977-02-23 1980-10-07 Gandy Frictions Limited Friction material
JPS53108842A (en) 1977-03-05 1978-09-22 Kobe Steel Ltd Manufacture of steel materials having coated stainless steel layer
US4055975A (en) 1977-04-01 1977-11-01 Lockheed Aircraft Corporation Precision forging of titanium
JPS5452656A (en) 1977-10-05 1979-04-25 Kobe Steel Ltd Manufacture of steel products covered by stainless steel
US4257812A (en) 1979-01-17 1981-03-24 The Babcock & Wilcox Company Fibrous refractory products
JPS56109128A (en) 1980-02-04 1981-08-29 Sankin Kogyo Kk Lubricant for warm and hot forging work
JPS57209736A (en) 1981-06-19 1982-12-23 Mitsubishi Heavy Ind Ltd Hot plastic working method for metallic material
SU1015951A1 (ru) 1981-07-21 1983-05-07 Всесоюзный научно-исследовательский и проектный институт тугоплавких металлов и твердых сплавов Способ изготовлени изделий из труднодеформируемых материалов
SU1076162A1 (ru) 1982-12-24 1984-02-29 Уральский научно-исследовательский институт трубной промышленности Способ непрерывного производства сварных остеклованных труб
JPS59179214A (ja) 1983-03-30 1984-10-11 Sumitomo Metal Ind Ltd 熱間押出し製管法
US4544523A (en) 1983-10-17 1985-10-01 Crucible Materials Corporation Cladding method for producing a lined alloy article
US4744504A (en) 1985-01-24 1988-05-17 Turner William C Method of manufacturing a clad tubular product by extrusion
JPS61255757A (ja) 1985-05-07 1986-11-13 Nippon Kokan Kk <Nkk> 滴下式鋳造方法
JPS61269929A (ja) 1985-05-24 1986-11-29 Nippon Parkerizing Co Ltd 金属材料の潤滑処理方法
SU1299985A1 (ru) 1985-07-11 1987-03-30 Симферопольский государственный университет им.М.В.Фрунзе Способ изготовлени оптических деталей
US4728448A (en) 1986-05-05 1988-03-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Carbide/fluoride/silver self-lubricating composite
GB2190319A (en) 1986-05-16 1987-11-18 Derek Harry Graddon Redman Apparatus for weld cladding on metal surfaces
US4935198A (en) 1986-09-03 1990-06-19 Avesta Nyby Powder Ab Method for the powder-metallurgical manufacture of tubes or like elongated profiles
US4780484A (en) 1987-01-27 1988-10-25 Mankiewicz Gebr. & Co. (Gmbh & Co. Kg) Molding material and its use as construction and repair material
US4843856A (en) 1987-10-26 1989-07-04 Cameron Iron Works Usa, Inc. Method of forging dual alloy billets
JPH01271021A (ja) 1988-04-21 1989-10-30 Mitsubishi Heavy Ind Ltd 超耐熱合金の鍛造法
JPH01274319A (ja) 1988-04-25 1989-11-02 Fujikura Ltd 繊維分散型超電導線の製造方法
SU1540977A1 (ru) 1988-05-05 1990-02-07 Всесоюзный Сельскохозяйственный Институт Заочного Образования Устройство дл наплавки поверхностей тел вращени
US5052464A (en) 1988-05-11 1991-10-01 Hitachi, Ltd. Method of casting a member having an improved surface layer
JPH02104435A (ja) 1988-10-11 1990-04-17 Mitsubishi Steel Mfg Co Ltd チタン合金の熱間成形のための潤滑方法
JPH02107795A (ja) 1988-10-14 1990-04-19 Tohoku Ricoh Co Ltd 銅一スズ合金メツキ浴
EP0386515A2 (fr) 1989-03-04 1990-09-12 Fried. Krupp Gesellschaft mit beschränkter Haftung Procédé pour la production d'un composite métallique qui a une région présentant une résistance élevée à l'usure et dispositif pour la mise en oeuvre du procédé
RU2020020C1 (ru) 1989-05-16 1994-09-30 Самарский филиал Научно-исследовательского института технологии и организации производства двигателей Способ горячей штамповки жаропрочных титановых сплавов
US5783530A (en) 1989-10-31 1998-07-21 Alcan International Limited Non-staining solid lubricants
JPH03174938A (ja) 1989-12-02 1991-07-30 Kobe Steel Ltd Ni基超耐熱合金の熱間鍛造方法
US4961991A (en) 1990-01-29 1990-10-09 Ucar Carbon Technology Corporation Flexible graphite laminate
SU1761364A1 (ru) * 1990-03-05 1992-09-15 Производственное объединение "Новокраматорский машиностроительный завод" Способ ковки поковок типа пластин
US5302414A (en) 1990-05-19 1994-04-12 Anatoly Nikiforovich Papyrin Gas-dynamic spraying method for applying a coating
US5302414B1 (en) 1990-05-19 1997-02-25 Anatoly N Papyrin Gas-dynamic spraying method for applying a coating
JPH04118133A (ja) 1990-09-07 1992-04-20 Daido Steel Co Ltd 熱間塑性加工用潤滑剤
US5259965A (en) 1990-09-21 1993-11-09 Nissan Motor Co., Ltd. Titanium lubricating material suitable for use in vacuum
US5374323A (en) 1991-08-26 1994-12-20 Aluminum Company Of America Nickel base alloy forged parts
GB2262540A (en) 1991-12-20 1993-06-23 Rmi Titanium Co Enhancement of hot workability of titanium alloy by coating with titanium
US5298095A (en) 1991-12-20 1994-03-29 Rmi Titanium Company Enhancement of hot workability of titanium base alloy by use of thermal spray coatings
JPH0663743A (ja) 1992-08-13 1994-03-08 Kanto Special Steel Works Ltd 熱間圧延用複合ロールの製造法
US5263349A (en) 1992-09-22 1993-11-23 E. I. Du Pont De Nemours And Company Extrusion of seamless molybdenum rhenium alloy pipes
WO1994013849A1 (fr) 1992-12-14 1994-06-23 United Technologies Corporation Procede de forgeage de superalliage et composition afferente
US5348446A (en) 1993-04-28 1994-09-20 General Electric Company Bimetallic turbine airfoil
US5525779A (en) 1993-06-03 1996-06-11 Martin Marietta Energy Systems, Inc. Intermetallic alloy welding wires and method for fabricating the same
JPH073840A (ja) 1993-06-14 1995-01-06 Fujita Corp クローラ走行式作業機械
RU2070461C1 (ru) 1993-11-12 1996-12-20 Малое научно-производственное технологическое предприятие "ТЭСП" Способ получения технологического двухслойного антифрикционного покрытия для обработки материалов давлением
WO1995035396A1 (fr) 1994-06-22 1995-12-28 United Technologies Corporation Alliage a base de nickel pour la reparation de substrats
US5743120A (en) 1995-05-12 1998-04-28 H.C. Starck, Inc. Wire-drawing lubricant and method of use
US5665180A (en) 1995-06-07 1997-09-09 The United States Of America As Represented By The Secretary Of The Air Force Method for hot rolling single crystal nickel base superalloys
US5788142A (en) 1995-10-04 1998-08-04 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Process for joining, coating or repairing parts made of intermetallic material
EP0767028B1 (fr) 1995-10-04 2000-01-05 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Procédé d'assemblage par frittage réactif de pièces en matériau intermétallique et application dérivées
US5743121A (en) 1996-05-31 1998-04-28 General Electric Company Reducible glass lubricants for metalworking
US5908670A (en) 1996-06-24 1999-06-01 Tafa, Incorporated Apparatus for rotary spraying a metallic coating
WO1998005463A1 (fr) 1996-08-05 1998-02-12 Welding Services, Inc. Procede et dispositif de soudure par chargement a deux passes de soudage
US5902762A (en) 1997-04-04 1999-05-11 Ucar Carbon Technology Corporation Flexible graphite composite
JPH1110222A (ja) 1997-06-18 1999-01-19 Sumitomo Metal Ind Ltd 熱間押出用ガラスパッド
WO1999002743A1 (fr) 1997-07-11 1999-01-21 Johnson Matthey Electronics, Inc. Article metallique a structures et textures fines et uniformes et procede de fabrication correspondant
US5951792A (en) 1997-09-22 1999-09-14 Asea Brown Boveri Ag Method for welding age-hardenable nickel-base alloys
US20020019321A1 (en) 1998-02-17 2002-02-14 Robert W. Balliett Metalworking lubrication
RU2133652C1 (ru) 1998-03-30 1999-07-27 Товарищество с ограниченной ответственностью "Директ" Способ получения наплавленного на изделие покрытия
US6269669B1 (en) 1998-04-06 2001-08-07 Nisshinbo Industries, Inc. Surface-treating method for back plate for friction material
JPH11320073A (ja) 1998-05-20 1999-11-24 Aoki Kogyo Kk 鋳込法による2層ニッケル基合金クラッド鋼板の製造方法
US6120624A (en) 1998-06-30 2000-09-19 Howmet Research Corporation Nickel base superalloy preweld heat treatment
EP0969114B1 (fr) 1998-06-30 2005-01-12 Howmet Research Corporation Procédé de pré-soudage traitement thermique d'un superalliage à base de nickel
RU2145981C1 (ru) 1998-08-05 2000-02-27 Открытое акционерное общество Верхнесалдинское металлургическое производственное объединение Способ защиты поверхности слитков
US6006564A (en) 1998-12-10 1999-12-28 Honda Of America Mfg., Inc. Application of dry lubricant to forming dies and forging dies that operate with high force
US6330818B1 (en) 1998-12-17 2001-12-18 Materials And Manufacturing Technologies Solutions Company Lubrication system for metalforming
US20020005233A1 (en) 1998-12-23 2002-01-17 John J. Schirra Die cast nickel base superalloy articles
US6309591B1 (en) 1999-03-23 2001-10-30 Materials Modification, Inc. Apparatus for bonding a particle material to near theoretical density
US5989487A (en) 1999-03-23 1999-11-23 Materials Modification, Inc. Apparatus for bonding a particle material to near theoretical density
JP2000288674A (ja) 1999-04-02 2000-10-17 Sumitomo Metal Ind Ltd 金属の高温塑性加工方法およびそれに使用する樹脂フィルム
JP2000312905A (ja) 1999-04-26 2000-11-14 Sumitomo Metal Ind Ltd B含有オーステナイト系ステンレス鋼の熱間加工方法
WO2001012381A1 (fr) 1999-08-16 2001-02-22 Chromalloy Gas Turbine Corporation Garnissage au laser de la plate-forme de la roue d'ailettes d'un moteur a turbine
US6154959A (en) 1999-08-16 2000-12-05 Chromalloy Gas Turbine Corporation Laser cladding a turbine engine vane platform
US6484790B1 (en) 1999-08-31 2002-11-26 Cummins Inc. Metallurgical bonding of coated inserts within metal castings
US6329079B1 (en) * 1999-10-27 2001-12-11 Nooter Corporation Lined alloy tubing and process for manufacturing the same
US6312022B1 (en) 2000-03-27 2001-11-06 Metex Mfg. Corporation Pipe joint and seal
US6418795B2 (en) 2000-04-06 2002-07-16 Korea Advanced Institute Of Science And Technology Method of measuring shear friction factor through backward extrusion process
WO2002027067A1 (fr) 2000-09-28 2002-04-04 Japan Ultra-High Temperature Materials Research Institute Materiau resistant a la chaleur comprenant un alliage a base de niobium
US7208116B2 (en) 2000-09-29 2007-04-24 Rolls-Royce Plc Nickel base superalloy
EP1197570B1 (fr) 2000-10-13 2004-12-29 General Electric Company Alliage à base de nickel et son utilisation pour des operations de soudage ou de forgeage
US20060239852A1 (en) 2000-11-18 2006-10-26 Rolls-Royce, Plc Nickel alloy composition
US20020172587A1 (en) 2001-03-14 2002-11-21 Sorin Keller Method for welding together two parts which are exposed to different temperatures, and turbomachine produced using a method of this type
US6753504B2 (en) 2001-03-14 2004-06-22 Alstom Technology Ltd Method for welding together two parts which are exposed to different temperatures, and turbomachine produced using a method of this type
US7257981B2 (en) 2001-03-29 2007-08-21 Showa Denko K.K. Closed forging method, forging production system using the method, forging die used in the method and system, and preform or yoke produced by the method and system
US6774346B2 (en) 2001-05-21 2004-08-10 Thermal Solutions, Inc. Heat retentive inductive-heatable laminated matrix
US6547952B1 (en) 2001-07-13 2003-04-15 Brunswick Corporation System for inhibiting fouling of an underwater surface
US6773824B2 (en) 2001-07-19 2004-08-10 Crucible Materials Corp. Clad power metallurgy article and method for producing the same
US6623690B1 (en) 2001-07-19 2003-09-23 Crucible Materials Corporation Clad power metallurgy article and method for producing the same
JP2003239025A (ja) 2001-12-10 2003-08-27 Sumitomo Titanium Corp 高融点金属溶解方法
JP2003260535A (ja) 2002-03-06 2003-09-16 Toto Ltd 有底部品の製造方法
US20040079453A1 (en) 2002-10-25 2004-04-29 Groh Jon Raymond Nickel-base alloy and its use in casting and welding operations
US20040105774A1 (en) 2002-11-26 2004-06-03 Del Corso Gregory J. Process for improving the hot workability of a cast superalloy ingot
US7618684B2 (en) 2002-12-12 2009-11-17 Innovatech, Llc Method of forming a coating on a surface of a substrate
US7000306B2 (en) 2002-12-18 2006-02-21 Honeywell International, Inc. Spun metal form used to manufacture dual alloy turbine wheel
US20050011070A1 (en) 2002-12-18 2005-01-20 Rice Derek A. Spun metal form used to manufacture dual alloy turbine wheel
US20050061855A1 (en) 2002-12-18 2005-03-24 Rice Derek A. Spun metal form used to manufacture dual alloy turbine wheel
US7770427B2 (en) 2003-02-18 2010-08-10 Showa Denko K.K. Metal forged product, upper or lower arm, preform of the arm, production method for the metal forged product, forging die, and metal forged product production system
JP2005040810A (ja) 2003-07-24 2005-02-17 Nippon Steel Corp プレス加工用金属板及び該金属板への固体潤滑剤付与方法及び装置
US20050044800A1 (en) 2003-09-03 2005-03-03 Hall David R. Container assembly for HPHT processing
US20060035102A1 (en) 2003-11-25 2006-02-16 Ramgopal Darolia Strengthened bond coats for thermal barrier coatings
US7172820B2 (en) 2003-11-25 2007-02-06 General Electric Company Strengthened bond coats for thermal barrier coatings
US20050118453A1 (en) 2003-12-01 2005-06-02 General Electric Company Beta-phase nickel aluminide coating
US20050273994A1 (en) 2004-06-10 2005-12-15 Bergstrom David S Clad alloy substrates and method for making same
US20060008352A1 (en) 2004-07-07 2006-01-12 Siemens Westinghouse Power Corporation Composite gas turbine discs for increased performance and reduced cost
RU2275997C2 (ru) 2004-07-14 2006-05-10 Общество с ограниченной ответственностью фирма "Директ" Способ автоматической электродуговой наплавки изделий типа тел вращения
US7722330B2 (en) 2004-10-08 2010-05-25 Siemens Energy, Inc. Rotating apparatus disk
US7316057B2 (en) 2004-10-08 2008-01-08 Siemens Power Generation, Inc. Method of manufacturing a rotating apparatus disk
US20060093850A1 (en) 2004-10-29 2006-05-04 General Electric Company Coating systems containing gamma-prime nickel aluminide coating
US20060093851A1 (en) 2004-10-29 2006-05-04 General Electric Company Superalloy article having a gamma-prime nickel aluminide coating
US20060093752A1 (en) 2004-10-29 2006-05-04 General Electric Company Methods for depositing gamma-prime nickel aluminide coatings
US7288328B2 (en) 2004-10-29 2007-10-30 General Electric Company Superalloy article having a gamma-prime nickel aluminide coating
US7114548B2 (en) 2004-12-09 2006-10-03 Ati Properties, Inc. Method and apparatus for treating articles during formation
CN101517112A (zh) 2006-08-11 2009-08-26 联邦-蒙古尔烧结产品有限公司 改进的粉末冶金组合物
US7927085B2 (en) 2006-08-31 2011-04-19 Hall David R Formable sealant barrier
RU2337158C2 (ru) 2006-11-24 2008-10-27 ОАО "Златоустовый металлургический завод" Способ производства биметаллических слитков
US8327681B2 (en) 2007-04-20 2012-12-11 Shell Oil Company Wellbore manufacturing processes for in situ heat treatment processes
RU2355791C2 (ru) 2007-05-30 2009-05-20 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Способ изготовления слитков высокореакционных металлов и сплавов и вауумная дуговая печь для изготовления слитков высокореакционных металлов и сплавов
JP2009066661A (ja) 2007-09-17 2009-04-02 General Electric Co <Ge> 鍛造金型及び鍛造方法
JP2010000519A (ja) 2008-06-20 2010-01-07 Sanyo Special Steel Co Ltd 熱間押出鋼管の内面ガラス挿入方法
US8567226B2 (en) 2008-10-06 2013-10-29 GM Global Technology Operations LLC Die for use in sheet metal forming processes
US8545994B2 (en) 2009-06-02 2013-10-01 Integran Technologies Inc. Electrodeposited metallic materials comprising cobalt
EP2286942A1 (fr) 2009-08-20 2011-02-23 General Electric Company Conteneur présentant volume et coins ajustables et méthode de compaction isostatique à chaud utilisant ce conteneur
US8376726B2 (en) 2009-08-20 2013-02-19 General Electric Company Device and method for hot isostatic pressing container having adjustable volume and corner
US8303289B2 (en) 2009-08-24 2012-11-06 General Electric Company Device and method for hot isostatic pressing container
US20110195269A1 (en) 2010-02-05 2011-08-11 Ati Properties, Inc. Systems and methods for forming and processing alloy ingots
US20120279678A1 (en) 2010-02-05 2012-11-08 Ati Properties, Inc. Systems and Methods for Forming and Processing Alloy Ingots
US20140246165A1 (en) 2010-02-05 2014-09-04 Ati Properties, Inc. Systems and methods for forming and processing alloy ingots
US20110302978A1 (en) 2010-06-14 2011-12-15 Ati Properties, Inc. Lubrication processes for enhanced forgeability
US20110302979A1 (en) 2010-06-14 2011-12-15 Ati Properties, Inc. Lubrication processes for enhanced forgeability
US20140290321A1 (en) 2011-01-17 2014-10-02 Ati Properties, Inc. Hot workability of metal alloys via surface coating
US20130142686A1 (en) 2011-12-02 2013-06-06 Ati Properties, Inc. Endplate for hot isostatic pressing canister, hot isostatic pressing canister, and hot isostatic pressing method
US20140271337A1 (en) 2013-03-15 2014-09-18 Ati Properties, Inc. Articles, systems, and methods for forging alloys
US20140260478A1 (en) 2013-03-15 2014-09-18 Ati Properties, Inc. Methods to improve hot workability of metal alloys

Non-Patent Citations (35)

* Cited by examiner, † Cited by third party
Title
"A New Nickel Superalloy", Machine Design, Hayes International Inc., published by Penton Publishing, Mar. 23, 2006, p. 41.
Advanced Solutions for Higher Performance and Longer Life, ATI Powder Metals Applications, printed from http://www.alleghenytechnologies.com/atipowder/applications/default.asp on Sep. 22, 2011, 4 pages.
Alloy 309. Specification Sheet: Alloy 309. Sandmeyer Steel Company. 2013 http://www.sandmeyersteel.com/309-309S.html. *
Anchor Industrial Sales, Inc. Product Data Sheets, Style #412 Fiberglass cloth, Style #412IB Fiberglass Mats, 2008, 2 pages.
ASTM E1019-08 (2008): Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Fusion Techniques.
ASTM E2465-06 (2006): Standard Test Method for Analysis of Ni-Base Alloys by X-ray Fluorescence Spectrometry.
Atlan et al., Metal Forming: Fundamentals and Applications, Ch. 6., Friction in Metal Forming, ASM: 1993.
Belfort, M.G. and V.E. Patton, "Equipment for arc and slag welding and weld deposition", Moscow, High School, 1974.
Carbon steel. E-Z LOK. AISI 12L14 Steel, cold drawn, 19-38 mm round. 2013 http://www.ezlok.com/TechnicalInfo/MPCarbonSteel.html. *
Charpy V-Notch Impact Testing, History and Process, Laboratory Testing, Inc., 2 pages.
Chesney, Peter, A New Spray Coating Process for Manufacture of Stainless Steel Clad Construction Steel with Resistance to Corrosion by De-icing Salts & Seawater, Spray Forming International, Cayce, South Carolina, USA, Thermal Spray 2003: Advancing the Science and Applying the Technology, ASM International, 2003, 5 pages.
Crucible Compaction Metals P/M Low Carbon Astroloy, Supersolvus, printed from http://www/matweb.com/search/datasheet-print.aspx?matguid=e1bac255c1964e19a43b29 . . . on Aug. 17, 2011, 2 pages.
Donachie et al., Superalloys: A Technical Guide, Melting and Conversion, pp. 56-77, ASM International, 2002.
Gayda, John, "NASA/TM-2001-210814 High Temperature Fatigue Crack Growth Behavior of Alloy 10", Glenn Research Center, Cleveland, Ohio, National Aeronautics and Space Administration, Apr. 2001, 7 pages.
Horn et al., Auftragschweibetaungen mit Hastelloy alloy B-42 (Overlay welding with Hastelloy B-42), Materials and Corrosion, 43:8, 1992, pp. 381-387.
Horn et al., Auftragschweiβungen mit Hastelloy alloy B-42 (Overlay welding with Hastelloy B-42), Materials and Corrosion, 43:8, 1992, pp. 381-387.
Insulating Method Improves Superalloy Forging, Baosteel Technical Research, Apr. 23, 2012, vol. 5, No. 4, 2 pages.
ITC-100 Base Coat, ITC-296A Top Coat, Coatings, http://budgetcastingsupply.com/ITC-Wool, 2013.
ITC-100, ITC-200, ITC-213 Ceramic Coatings, BCS International Technical Ceramics Coatings, http://budgetcastingsupply.com/ITC.php, Feb. 2013, 3 pages.
Ito et al., Blast erosion properties of overlay weld metal, Welding International, 5:3, 1991, pp. 192-197.
Levin et al., Robotic weld overlay coatings for erosion control, Quarterly Technical Progress Report for U.S. DOE Grant No. DE-FG22-92PS92542, Lehigh University, Energy Research Center, Apr. 25, 1995.
Maziasz et al., Overview of the development of FeAl intermetallic alloys, Proceedings of the 2d International Conference on Heat-Resistant Materials, Sep. 1, 1995.
McGraw Hill Encyclopedia of Science and Technology, 1992, McGraw Hill Inc., vol. 11, pp. 32-33.
Paton et al., ESS LM as a way for heavy ingot manufacturing, LMPC, 2007.
Rockwell Hardness Testing, Materials Evaluation and Engineering, Inc., 2009, 2 pages.
Santella, An overview of the welding of Ni3Al and Fe3Al alloys, ASME and ASM Materials Conference, Dec. 31, 1996.
Schey et al., Laboratory Testing of Glass Lubricants, Lubrication Engineering/Tribology and Lubrication Technology, Society of Tribologists and Lubrication Engineers, US, vol. 30, No. 10, Oct. 1, 1974, pp. 489-497.
Shivpuri, R. and S. Kini, Lubricants and Their Applications in Forging, ASM Handbook, vol. 14A, Metalworking: Bulk Forming, Semiatin, S.L., ed., 2005, ASM International, Ohio, US, p. 84.
Steel Handbook, 3rd Edition, Bar Steel/Steel Tube/Rolling Common Equipment, Edited by Iron and Steel Inst. of Japan, Jun. 27, 2010.
Tillack, Weld fabrication of nickel-containing materials, Practical handbook of stainless steels & nickel alloys, Lamb ed., CASTI Publishing Inc., ASM International, Aug. 1999, pp. 325-370.
U.S. Appl. No. 13/007,692, filed Jan. 17, 2011.
U.S. Appl. No. 13/833,043, filed Mar. 15, 2013.
U.S. Appl. No. 14/278,134, filed May 15, 2014.
Wlodek et al., "The Structure of Rene 88 DT", Superalloys 1996, Eds. Kissinger et al., The Minerals, Metals & Materials Society, 1996, pp. 129-136.
Zielinska et al., "Thermal properties of cast nickel based superalloys", Archives of Materials Science and Engineering, vol. 44, Issue 1, Jul. 2010, pp. 35-38.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11059089B2 (en) 2010-02-05 2021-07-13 Ati Properties Llc Systems and methods for processing alloy ingots
US11059088B2 (en) 2010-02-05 2021-07-13 Ati Properties Llc Systems and methods for processing alloy ingots

Also Published As

Publication number Publication date
US20160167100A1 (en) 2016-06-16
EP2531319B1 (fr) 2018-08-29
KR101661794B1 (ko) 2016-10-04
AU2011213196A1 (en) 2012-08-02
JP2013518727A (ja) 2013-05-23
MX2012008902A (es) 2012-08-17
AU2011213196B2 (en) 2014-09-25
US11059089B2 (en) 2021-07-13
MX338478B (es) 2016-04-18
CA2786742A1 (fr) 2011-08-11
BR112012019283A2 (pt) 2018-05-08
IL255087B (en) 2019-09-26
US11059088B2 (en) 2021-07-13
TWI584890B (zh) 2017-06-01
ES2699697T3 (es) 2019-02-12
PT2531319T (pt) 2018-12-04
EP2531319A1 (fr) 2012-12-12
US20110195270A1 (en) 2011-08-11
CA2786742C (fr) 2018-02-27
PL2531319T3 (pl) 2019-03-29
RU2599925C2 (ru) 2016-10-20
TW201722577A (zh) 2017-07-01
IL220844A0 (en) 2012-08-30
DK2531319T3 (en) 2018-12-17
CN102741005B (zh) 2016-03-23
TW201143939A (en) 2011-12-16
UA111712C2 (uk) 2016-06-10
TWI630963B (zh) 2018-08-01
BR112012019283B1 (pt) 2021-02-09
IL255087A0 (en) 2017-12-31
WO2011097085A1 (fr) 2011-08-11
CN102741005A (zh) 2012-10-17
US20190366414A1 (en) 2019-12-05
JP5894087B2 (ja) 2016-03-23
KR20120123740A (ko) 2012-11-09
RU2012137783A (ru) 2014-03-10
IL220844A (en) 2017-10-31
HUE042127T2 (hu) 2019-06-28

Similar Documents

Publication Publication Date Title
US11059089B2 (en) Systems and methods for processing alloy ingots
Chen et al. Additive manufacturing of titanium aluminides
EP2531627B1 (fr) Systèmes et procédés de formage et de traitement de lingots d&#39;alliage
RU2645636C2 (ru) Способы улучшения обрабатываемости в горячем состоянии металлических сплавов
AU2014259520B2 (en) Systems and methods for processing alloy ingots

Legal Events

Date Code Title Description
AS Assignment

Owner name: ATI PROPERTIES, INC., OREGON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DESOUZA, URBAN J.;FORBES JONES, ROBIN M.;KENNEDY, RICHARD L.;AND OTHERS;SIGNING DATES FROM 20100128 TO 20100205;REEL/FRAME:024041/0304

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: ATI PROPERTIES LLC, OREGON

Free format text: CERTIFICATE OF CONVERSION;ASSIGNOR:ATI PROPERTIES, INC.;REEL/FRAME:044222/0065

Effective date: 20160526

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8