US20160365407A1 - Capacitor With 3D NAND Memory - Google Patents
Capacitor With 3D NAND Memory Download PDFInfo
- Publication number
- US20160365407A1 US20160365407A1 US14/739,717 US201514739717A US2016365407A1 US 20160365407 A1 US20160365407 A1 US 20160365407A1 US 201514739717 A US201514739717 A US 201514739717A US 2016365407 A1 US2016365407 A1 US 2016365407A1
- Authority
- US
- United States
- Prior art keywords
- capacitor terminal
- strips
- stack
- terminal strips
- conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 203
- 230000015654 memory Effects 0.000 title claims abstract description 62
- 239000000758 substrate Substances 0.000 claims abstract description 35
- 239000004020 conductor Substances 0.000 claims description 96
- 238000000034 method Methods 0.000 claims description 26
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 84
- 239000004065 semiconductor Substances 0.000 description 42
- 239000012212 insulator Substances 0.000 description 40
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 19
- 239000000463 material Substances 0.000 description 14
- 238000005516 engineering process Methods 0.000 description 13
- 238000003860 storage Methods 0.000 description 13
- 229920002120 photoresistant polymer Polymers 0.000 description 11
- 238000004891 communication Methods 0.000 description 9
- 239000011229 interlayer Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 229910052814 silicon oxide Inorganic materials 0.000 description 9
- 229910052581 Si3N4 Inorganic materials 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000011810 insulating material Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- 235000012239 silicon dioxide Nutrition 0.000 description 6
- -1 SiCHOx Chemical compound 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 4
- 239000003989 dielectric material Substances 0.000 description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- 229920005591 polysilicon Polymers 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000001459 lithography Methods 0.000 description 3
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229910021332 silicide Inorganic materials 0.000 description 3
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical class [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 229910017107 AlOx Inorganic materials 0.000 description 2
- 229910019001 CoSi Inorganic materials 0.000 description 2
- 229910004143 HfON Inorganic materials 0.000 description 2
- 229910019897 RuOx Inorganic materials 0.000 description 2
- 229910003087 TiOx Inorganic materials 0.000 description 2
- 229910008484 TiSi Inorganic materials 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- HLLICFJUWSZHRJ-UHFFFAOYSA-N tioxidazole Chemical compound CCCOC1=CC=C2N=C(NC(=O)OC)SC2=C1 HLLICFJUWSZHRJ-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910016570 AlCu Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910004541 SiN Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000001393 microlithography Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D1/00—Resistors, capacitors or inductors
- H10D1/60—Capacitors
- H10D1/68—Capacitors having no potential barriers
- H10D1/692—Electrodes
- H10D1/711—Electrodes having non-planar surfaces, e.g. formed by texturisation
- H10D1/716—Electrodes having non-planar surfaces, e.g. formed by texturisation having vertical extensions
-
- H01L28/60—
-
- H01L27/0629—
-
- H01L27/11526—
-
- H01L27/11556—
-
- H01L27/11573—
-
- H01L27/11582—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/20—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
- H10B41/23—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
- H10B41/27—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/40—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/50—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the boundary region between the core region and the peripheral circuit region
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/20—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
- H10B43/23—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
- H10B43/27—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/40—EEPROM devices comprising charge-trapping gate insulators characterised by the peripheral circuit region
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/50—EEPROM devices comprising charge-trapping gate insulators characterised by the boundary region between the core and peripheral circuit regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D1/00—Resistors, capacitors or inductors
- H10D1/60—Capacitors
- H10D1/68—Capacitors having no potential barriers
- H10D1/692—Electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/811—Combinations of field-effect devices and one or more diodes, capacitors or resistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D89/00—Aspects of integrated devices not covered by groups H10D84/00 - H10D88/00
- H10D89/10—Integrated device layouts
Definitions
- Capacitors are electronic devices including two terminals separated by insulating material. When there is a voltage difference between the two terminals, an electric field is created between the two terminals thereby storing electrical energy. The amount of electrical charge that can be stored on a capacitor per volt across the terminals is referred to as capacitance. Terminals are typically in the form of plates of various shapes, surface contours and sizes. The capacitance is generally a function of the dielectric constant ⁇ of the dielectric layer, directly proportional to the area of the opposed terminals and inversely proportional to the distance between the terminals. Placing two or more capacitors in parallel results in a total capacitance of the combination that is equal to the sum of the capacitances of the individual capacitors.
- a stack of capacitors connected in parallel has a low area footprint from the bottom capacitor in the stack of capacitors, and yet a large capacitance from the summed capacitance of the capacitors in the stack connected in parallel.
- the stacked capacitor is fabricated by many steps which results in increased complexity and cost of the overall integrated circuit. It would be desirable to take advantage of the low area footprint, large capacitance of the stacked capacitor, while minimizing additional fabrication complexity and cost resulting from the addition of the stacked capacitor to an integrated circuit.
- Various aspects of the technology involve integrated circuits having both a 3D NAND memory array with a stack of conductive strips, and a stacked capacitor with a stack of capacitor terminal strips. Because the integrated circuit is already being fabricated to include a 3D NAND array, overall complexity is changed little from fabricating stacks of conductive strips for a capacitor in addition to the NAND memory array.
- One aspect of the technology includes an integrated circuit with a substrate, a 3D NAND memory array with a stack of conductive strips, and a stacked capacitor with a stack of capacitor terminal strips. Multiple conductive strips in the stack of conductive strips, and multiple capacitor terminal strips of the stack of capacitor terminal strips, share a same plurality of vertical distances from the substrate.
- the stack of conductive strips is at least one of: transistor channels in the 3D NAND memory array, conductors routing signals that select memory cells in the 3D NAND memory array, and conductors routing output from the 3D NAND memory array.
- the 3D NAND memory array is a vertical gate memory array, and the conductive strips in the stack are NAND transistor channels in the vertical gate memory array.
- the 3D NAND memory array is a vertical channel memory array, and the conductive strips in the stack are word lines in the vertical channel memory array.
- the stack of capacitor terminal strips includes a first plurality of capacitor terminal strips alternating with a second plurality of capacitor terminal strips.
- the first plurality of capacitor terminal strips are electrically connected together and the second plurality of capacitor terminal strips are electrically connected together.
- the stack of capacitor terminal strips has a first end and a second end. Multiple capacitor terminal strips in the stack of capacitor terminal strips are electrically connected together at the first end, and multiple capacitor terminal strips in the stack of capacitor terminal strips are electrically connected together at the second end.
- the embodiment further comprises a conductive plug electrically connected to at least one of the capacitor terminal strips at an intermediate point in between the first end and the second end.
- the stack of capacitor terminal strips is one of a plurality of stacks of capacitor terminal strips having lengths between first ends and second ends.
- the plurality of stacks of capacitor terminal strips include the first plurality of capacitor terminal strips alternating with the second plurality of capacitor terminal strips.
- the first plurality of capacitor terminal strips in the plurality of stacks of capacitor terminal strips are electrically coupled together via the first ends and at intermediate points in between the first ends and second ends.
- FIG. 1 Another aspect of the technology is a computer readable medium comprising a layout for an integrated circuit including designs for a plurality of masks.
- the integrated circuit includes a 3D NAND memory array with a stack of conductive strips as described herein, and a capacitor with a stack of capacitor terminal strips as described herein. Multiple masks in the plurality of masks each define at least one conductive strip in the stack of conductive strips and at least one capacitor terminal strip in the stack of capacitor terminal strips.
- a further aspect of the technology is a method of making an integrated circuit comprises:
- FIG. 1 is an end view of stacks of conductive material for both a capacitor and a 3D NAND array on a same substrate.
- FIG. 2 is a side view of a capacitor with a stack of conductive material from FIG. 1 .
- FIGS. 3 and 4 are circuit diagrams of different ways to interconnect individual capacitors in a stack of conductive material, resulting in different overall capacitances of the stack of conductive material as a whole.
- FIG. 5 is a perspective illustration of a three-dimensional, vertical gate NAND-flash memory device with stacks of conductive material from FIG. 1 .
- FIG. 6 is a perspective illustration of an alternative three-dimensional, vertical channel NAND-flash memory device with stacks of conductive material from FIG. 1 .
- FIGS. 7-8 are steps in a process for forming the stacks of conductive material for both a capacitor and a 3D NAND array on a same substrate from FIG. 1 .
- FIG. 9 is a top view of a capacitor with stacks of conductive material, with an overlay of mask regions defining varying etch depths for electrical conductors.
- FIG. 10 is a side view of a capacitor with stacks of conductive material.
- FIGS. 11-14 illustrate a sequence of steps creating electrical conductors at an interconnect region in contact with extensions of the terminal layers, such as shown in the example of FIG. 10 , providing electrical access to a serpentine, stacked plate capacitor assembly.
- FIG. 15 is a simplified block diagram of an integrated circuit with stacks of conductive material for both a capacitor and a 3D NAND array on a same substrate.
- FIG. 16 is a simplified block diagram of a computer system that implements software incorporating aspects of the present technology.
- FIG. 16A shows a nontransitory computer readable medium storing computer readable data with aspects of the present technology.
- Capacitance is very useful electronic circuitry, but is expensive and has manufacturing difficulties when manufactured in semiconductors. Capacitance can be used to help reduce voltage variations and can be used to help save data in memory, such as SRAM, DRAM and Flash, either during normal operations or due to unexpected power failures. While there are system-level products for providing such capacitance, there may be advantages to providing it at the semiconductor level, including system cost, power and reliability.
- FIG. 1 is an end view of stacks of conductive material for both a capacitor and a 3D NAND array on a same substrate.
- the strips of conductive material and strips of insulator extend into and out of the page to the extent of the lengths of the strips of conductive material and strips of insulator.
- the same insulator layer 10 is the base for stacks of conductive material that are in both a capacitor and a 3D NAND array. Insulator layer 10 is over a substrate layer 9 . Stacks 15 a and 15 b are included in capacitor devices. Stacks 15 c and 15 d are included in a 3D NAND array.
- the zigzag lines through the insulator layer 10 indicate that the capacitor and a 3D NAND array are spaced apart on the same insulator layer 10 .
- the stacks are spaced apart on a same conductive substrate, and the bottom of each stack is an insulator strip.
- strips of conductive material alternate with strips of insulator.
- an insulator strip 12 a electrically insulates proximate strips of conductive material 11 a and 13 a in the same stack from each other.
- Insulator strip 14 a is above top-most conductive material strip 13 a .
- a same arrangement of insulator strips and conductive material strips is in stacks 15 b, 15 c, and 15 d.
- Conductive material strips 13 a , 13 b , 13 c , and 13 d share a same plane position and thus have a same vertical position relative to each other.
- Conductive material strips 11 a , 11 b , 11 c , and 11 d also share a same plane position and thus have a same vertical position relative to each other.
- Conductive material strips 13 a , 13 b , 13 c , and 13 d have a different plane position relative to conductive material strips 11 a , 11 b , 11 c , and 11 d ; thus conductive material strips 13 a , 13 b , 13 c , and 13 d have a different vertical position relative to conductive material strips 11 a, 11 b , 11 c, and 11 d.
- the bottom insulator strip on the common conductive substrate isolates the conductive substrate shared by multiple stacks from the bottom-most conductive strip in each stack.
- the strips of conductive material in both the capacitor terminal stacks and the 3D NAND array can be implemented using polysilicon or epitaxial single crystal silicon having n-type or p-type doping.
- the insulator strips can be implemented for example using silicon dioxide, other silicon oxides, or silicon nitride.
- the 3D NAND array of the integrated circuit includes stacks 15 c and 15 d of strips of conductive material. So complexity and cost of the integrated circuit is not appreciably increased from the further inclusion of stacks 15 a and 15 b of strips of conductive material as capacitors of the integrated circuit.
- FIG. 2 is a side view of a capacitor with a stack of conductive material from FIG. 1 .
- the strips of conductive material and strips of insulator extend into and out of the page to the extent of the widths of the strips of conductive material and strips of insulator.
- Insulator layer 10 is the base for the stack of conductive material that in a capacitor device. Insulator layer 10 is over a substrate layer 9 . Additional stacks of conductive material for additional capacitor device can be elsewhere on the insulator layer 10 . Also, a 3D NAND array with multiple stacks of conductive material is elsewhere on the insulator layer 10 . In another embodiment, the stack is on a conductive substrate, and the bottom of each stack is an insulator strip. The capacitor suppresses parasitic capacitance by omitting the well-to-substrate capacitance of well capacitors, which could be in the range of about tenths of picofarads.
- the stack strips of conductive material alternate with strips of insulator.
- the stack includes capacitor terminal strip 1 21 , capacitor terminal strip 2 23 , capacitor terminal strip 3 25 , capacitor terminal strip 4 27 , capacitor terminal strip 5 29 , capacitor terminal strip 6 31 , capacitor terminal strip 7 33 , and capacitor terminal strip 8 35 .
- the stack also includes insulator strip 1 22 , insulator strip 2 24 , insulator strip 3 26 , insulator strip 4 28 , insulator strip 5 30 , insulator strip 6 32 , insulator strip 7 34 , and insulator strip 8 36 . Accordingly, the capacitor terminal strips alternate with insulator strips.
- An insulator strip electrically insulates proximate strips capacitor terminal strips in the same stack from each other.
- the strips of conductive material in both the capacitor terminal stacks and the 3D NAND array can be implemented using polysilicon or epitaxial single crystal silicon having n-type or p-type doping.
- the insulator strips can be implemented for example using silicon dioxide, other silicon oxides, or silicon nitride.
- Terminal connection circuit 1 37 and terminal connection circuit 2 38 electrically connect together capacitor terminal strips. Such terminal connection circuits electrically connect the multiple capacitors within the stack in parallel. As discussed below, the parallel connection sums the capacitances of the multiple capacitors within the stack, resulting in a high total capacitance of the stack.
- Terminal connection circuit 1 37 electrically connects the “odd” capacitor terminal strips, including capacitor terminal strip 1 21 , capacitor terminal strip 3 25 , capacitor terminal strip 5 29 , and capacitor terminal strip 7 33 .
- Terminal connection circuit 2 38 electrically connects the “even” capacitor terminal strips, including capacitor terminal strip 2 23 , capacitor terminal strip 4 27 , capacitor terminal strip 6 31 , and capacitor terminal strip 8 35 .
- the stack includes seven capacitors each having a respective one of the insulator strips as the capacitor's intermediate dielectric.
- the seven capacitors each have two terminals, including a first capacitor terminal which is one of the “odd” capacitor terminal strips, and a second capacitor terminal which is one of the “even” capacitor terminal strips.
- Other embodiments have more or fewer capacitors in the stack. Other embodiments connect in parallel only a subset of the capacitors in the stack. Other embodiments connect in series two or more of the capacitors in the stack. Other embodiments connect in series two or more of the capacitors in the stack, and connect in parallel two or more of the capacitors in the stack. Other embodiments allow one or more of the intermediate terminals to float, to allow more leeway in the layout.
- FIGS. 3 and 4 are circuit diagrams of different ways to interconnect individual capacitors in a stack of conductive material, resulting in different overall capacitances of the stack of conductive material as a whole.
- FIG. 3 has four capacitors connected to electrical conductors 46 . 0 and 46 . 1 , 46 . 2 and 46 . 3 , 46 . 4 and 46 . 5 , and 46 . 6 and 46 . 7 .
- the individual capacitors identified as C 01 , C 23 , C 45 and C 67 in FIG. 3 , can be placed in parallel.
- electrical conductors 46 . 0 , 46 . 2 , 46 . 4 and 46 . 6 are shorted to one another as a first terminal 47 and electrical conductors 46 . 1 , 46 . 3 , 46 . 5 and 46 . 7 are shorted to one another as a second terminal 48 .
- FIG. 4 shows each of capacitors C 01 , C 23 , C 45 and C 67 connected in series. While the total capacitance C T for the FIG. 4 example is less than the capacitance of any of the individual capacitors, placing the capacitors in series is useful when working with high voltages because each capacitor only sees a fraction of the total voltage.
- Other embodiments can connect series-connected capacitors and parallel-connected capacitors.
- FIG. 5 is a perspective illustration of a three-dimensional, vertical gate NAND-flash memory device with stacks of conductive material from FIG. 1 .
- the device illustrated in FIG. 1 includes stacks of active lines in active layers of the array, alternating with insulating lines. Insulating material is removed from the drawing to expose additional structure. For example, insulating lines are removed between the semiconductor lines in the stacks, and between the stacks of semiconductor lines.
- a multilayer array is formed on an insulating layer, and includes a plurality of word lines 125 - 1 , . . . , 125 -N conformal with the plurality of stacks.
- the plurality of stacks includes semiconductor lines 112 , 113 , 114 , and 115 in multiple planes. Semiconductor lines in the same plane are electrically coupled together by bit line contact pads (e.g. 102 B).
- the plurality of stacks are formed on a same substrate as stacks in capacitors, as shown in FIG. 1 .
- Bit line contact pads 112 A, 113 A, 114 A, and 115 A are on the near end of the figure terminate semiconductor lines, such as semiconductor lines 112 , 113 , 114 , and 115 . As illustrated, these bit line contact pads 112 A, 113 A, 114 A, and 115 A are electrically connected by interlayer connectors to different bit lines in an overlying patterned metal layer, e.g. ML 3 , for connection to decoding circuitry to select planes within the array. These bit line contact pads 112 A, 113 A, 114 A, and 115 A can be formed over stepped substrate structures as discussed below, and patterned at the same time that the plurality of stacks is defined.
- these bit line contact pads 102 B, 103 B, 104 B, and 105 B are electrically connected by interlayer connectors to different bit lines in an overlying patterned metal layer, e.g. ML 3 , for connection to decoding circuitry to select planes within the array.
- These bit line contact pads 102 B, 103 B, 104 B, and 105 B can be formed over stepped substrate structures as discussed below, and patterned at the same time that the plurality of stacks is defined.
- any given stack of semiconductor lines is coupled to either the bit line contact pads 112 A, 113 A, 114 A, and 115 A, or the bit line contact pads 102 B, 103 B, 104 B, and 105 B, but not both.
- a stack of semiconductor bit lines has one of the two opposite orientations of bit line end-to-source line end orientation, or source line end-to-bit line end orientation.
- the stack of semiconductor lines 112 , 113 , 114 , and 115 has bit line end-to-source line end orientation; and the stack of semiconductor lines 102 , 103 , 104 , and 105 has source line end-to-bit line end orientation.
- the stack of semiconductor lines 112 , 113 , 114 , and 115 terminated by the bit line contact pads 112 A, 113 A, 114 A, and 115 A, passes through SSL gate structure 119 , ground select line GSL 126 , word lines 125 - 1 WL through 125 -N WL, ground select line GSL 127 , and is terminated at the other end by source line 128 .
- the stack of semiconductor lines 112 , 113 , 114 , and 115 does not reach the bit line structures 102 B, 103 B, 104 B, and 105 B.
- the stack of semiconductor lines 102 , 103 , 104 , and 105 terminated by the bit line contact pads 102 B, 103 B, 104 B, and 105 B, passes through SSL gate structure 109 , ground select line GSL 127 , word lines 125 -N WL through 125 - 1 WL, ground select line GSL 126 , and is terminated at the other end by a source line (obscured by other parts of the figure).
- the stack of semiconductor lines 102 , 103 , 104 , and 105 does not reach the bit line structures 112 A, 113 A, 114 A, and 115 A.
- a layer of memory material is disposed in interface regions at cross-points between surfaces of the semiconductor lines 112 - 115 and 102 - 105 and the plurality of word lines 125 - 1 through 125 - n.
- Ground select lines GSL 126 and GSL 127 are conformal with the plurality of stacks, similar to the word lines.
- Every stack of semiconductor lines is terminated at one end by bit line contact pads and at the other end by a source line.
- the stack of semiconductor lines 112 , 113 , 114 , and 115 is terminated by bit line contact pads 112 A, 113 A, 114 A, and 115 A, and terminated on the other end by a source line 128 .
- Bit lines and string select lines are formed at the metal layers ML 1 , ML 2 , and ML 3 .
- Bit lines are coupled to a plane decoder (not shown) in the peripheral area on the circuit.
- String select lines are coupled to a string select line decoder (not shown) in the peripheral area on the circuit.
- the ground select lines GSL 126 and 127 can be patterned during the same step that the word lines 125 - 1 through 125 -n are defined. Ground select devices are formed at cross-points between surfaces of the plurality of stacks and ground select lines GSL 126 and 127 .
- the SSL gate structures 119 and 109 can be patterned during the same step that the word lines 125 - 1 through 125 -n are defined. String select devices are formed at cross-points between surfaces of the plurality of stacks and string select (SSL) gate structures 119 and 109 . These devices are coupled to decoding circuitry for selecting the strings within particular stacks in the array.
- FIG. 6 is a perspective illustration of an alternative three-dimensional, vertical channel NAND-flash memory device with stacks of conductive material from FIG. 1 .
- the memory device includes an array of NAND strings of memory cells, and can be a double-gate vertical channel memory array (DGVC).
- the memory device includes an integrated circuit substrate 201 , and a plurality of stacks of conductive strips alternating with insulating material.
- the stacks include at least a bottom plane of conductive strips (GSL), a plurality of intermediate planes of conductive strips (WLs), and a top plane of conductive strips (SSLs).
- the stacks are formed on a same substrate as stacks in capacitors, as shown in FIG. 1 .
- a stack 210 includes a bottom plane of conductive strips (GSL), a plurality of intermediate planes of conductive strips (WLs) ranging from WL 0 to WL N-1 , and a top plane of conductive strips (SSLs), where N can be 8, 16, 32, 64 and so on.
- the insulating material is removed from the drawing to expose additional structure. For example, the insulating material is removed between the conductive strips in the stacks, and is removed between the stacks of conductive strips.
- a plurality of bit line structures is arranged orthogonally over, having surfaces conformal with, the plurality of stacks, including inter-stack semiconductor body elements 220 between the stacks and linking elements 230 over the stacks connecting the semiconductor body elements 220 .
- the memory device includes memory elements in interface regions at cross-points 280 between side surfaces of the conductive strips in the plurality of intermediate planes (WLs) in the stacks and the inter-stack semiconductor body elements 220 of the plurality of bit line structures.
- a reference conductor 260 is disposed between the bottom plane (GSL) of conductive strips and the integrated circuit substrate 201 .
- At least one reference line structure is arranged orthogonally over the plurality of stacks, including inter-stack semiconductor elements 240 between the stacks in electrical communication with the reference conductor 260 , and linking elements 250 over the stacks 210 connecting the inter-stack semiconductor elements 240 .
- the semiconductor elements 240 can have a higher conductivity than the semiconductor body elements 220 .
- the memory device includes string select switches 290 at interface regions with the top plane of conductive strips, and reference select switches 270 at interface regions with the bottom plane (GSL) of conductive strips.
- the memory device can further include decoding circuitry coupled to the conductive strips in the plurality of stacks.
- the decoding circuitry can include word line decoding circuits, and string selection line decoding circuits coupled to the top plane of conductive strips (SSLs) in the plurality of stacks. String selection lines in the top plane of conductive strips are independently coupled to and controlled by the string selection line decoding circuits.
- Conductive strips in the intermediate planes (WLs), and conductive strips in the bottom plane (GSL) are connected together to reduce decoder areas and consequently an overall size of the memory device. Conductive strips in the top plane (SSL) are individually decoded to allow correct bit line decoding.
- the memory device can include contact pads which provide linking elements, such as contact pads 261 and 262 , connecting sets of word lines in the intermediate planes (WL), and interlayer connectors, such as interlayer connectors 271 and 272 , coupled to landing areas in the contact pads 261 and 262 , and to the word line decoding circuits (not shown).
- the landing areas are at interface regions between bottom surfaces of the interlayer connectors and top surfaces of the contact pads.
- interlayer connectors e.g. 271 and 272 for sets of word lines at multiple layers in the plurality of intermediate planes are arranged in a staircase structure, and are connected to landing areas at two different layers in the plurality of intermediate planes.
- the contact pads can be formed over a stepped substrate structure as described below.
- the staircase structure can be formed in a vertical contact region near the boundary of a memory cell region for the array of memory cells and a peripheral region for components of peripheral circuits.
- the vertical contact region can include contact pads 261 and 262 , and interlayer connectors 271 and 272 .
- the memory device can include ground selection line decoding circuits coupled to the at least one bottom plane (GSL) of conductive strips in the plurality of stacks.
- the memory device can include contact pads, such as a contact pad 263 , connecting sets of ground selection lines in the bottom plane (GSL) of conductive strips, and interlayer connectors, such as an interlayer connector 273 , coupled to landing areas in the contact pads, and to the ground selection line decoding circuits (not shown).
- the memory device includes a first overlying conductive layer (not shown) connected to the plurality of bit line structures, including a plurality of global bit lines coupled to sensing circuits.
- the memory device also includes a second overlying conductive layer (not shown) connected to the at least one reference conductor structure, coupled to a reference voltage source.
- Insulating layers in the stack can be the same as or different from the other layers.
- Representative insulating materials that can be used include a silicon oxide, a silicon nitride, a silicon oxynitride, silicate, or other materials.
- Low dielectric constant (low-k) materials having a dielectric constant smaller than that of silicon dioxide, such as SiCHO x can be used.
- High dielectric constant (high-k) materials having a dielectric constant greater than that of silicon dioxide, such as HfO x , HfON, AlO x , RuO x , TiO x , can be used also.
- Conductor or semiconductor layers in the stack can be the same as or different from the other layers.
- Representative materials that can be used include semiconductors including undoped and doped polysilicon (using dopants such as As, P, B), combinations of semiconductor structures, silicides including TiSi, CoSi, oxide semiconductors, including InZnO, InGaZnO, and combinations of semiconductors and silicides.
- Conductive layers in the stack can also be a metal, a conductive compound, or combinations of materials including Al, Cu, W, Ti, Co, Ni, TiN, TaN, TaA 1 N, and others.
- FIGS. 7-8 are steps in a process for forming the stacks of conductive material for both a capacitor and a 3D NAND array on a same substrate from FIG. 1 .
- FIG. 7 a structure is shown which results from alternating deposition of insulating layers 210 , 212 , 214 and semiconductor layers 211 , 213 formed using doped semiconductors for example in a blanket deposition in the array area of a chip.
- the semiconductor layers 211 , 213 can be implemented using polysilicon or epitaxial single crystal silicon having n-type or p-type doping.
- a typical thickness range of the semiconductor layers is from 200 to 500 angstroms.
- Inter-level insulating layers 210 , 212 , 214 can be implemented for example using silicon dioxide, other silicon oxides, or silicon nitride. These layers can be formed in a variety of ways, including low pressure chemical vapor deposition LPCVD processes available in the art.
- the zigzag lines through the insulator layer 210 indicate that the capacitor and a 3D NAND array are spaced apart on the same insulator layer 210 .
- the stacks are spaced apart on a same conductive substrate, and the bottom of each stack is an insulator strip.
- FIG. 8 shows the result of a first lithographic patterning step used to define a plurality of ridge-shaped stacks 250 of semiconductor strips, where the semiconductor strips are implemented using the material of the semiconductor layers 211 , 213 , and separated by the insulating layers 212 , 214 .
- Deep, high aspect ratio trenches can be formed in the stack, supporting many layers, using lithography based processes applying a carbon hard mask and reactive ion etching.
- the same insulator layer 210 is the base for stacks of conductive material that are in both a capacitor and a 3D NAND array.
- Stack 215 a is included in a capacitor device.
- Stack 15 b is included in a 3D NAND array.
- Conductive material strips 213 a and 213 b share a same plane position and thus have a same vertical position relative to each other. Conductive material strips 211 a and 211 b also share a same plane position and thus have a same vertical position relative to each other. Conductive material strips 213 a and 213 b have a different plane position relative to conductive material strips 211 a and 211 b ; thus conductive material strips 213 a and 213 b have a different vertical position relative to conductive material strips 211 a and 211 b.
- the zigzag lines through the insulator layer 210 indicate that the capacitor and a 3D NAND array are spaced apart on the same insulator layer 210 .
- the stacks are spaced apart on a same conductive substrate, and the bottom of each stack is an insulator strip.
- the capacitor structures can be made on what could be called a rough surface conductor so that the upper portion of substrate 12 and ridges 16 would be made of electrical conductors and thus act as an electrically conductive terminal layer.
- the conductors can be a metal or combination of metals, include Al, Cu, W, Ti, Co, Ni.
- the conductors can also be metal compounds, such as TiN/TaN/AlCu, or semiconductor compounds, such as heavily doped Si (using dopants such as As, P, B.); silicides including TiSi, CoSi.
- typical dielectric materials include SiO 2 , SiN, SiON.
- high dielectric constant (high-k) materials having a dielectric constant greater than that of silicon dioxide, such as HfO x , HfON, AlO x , RuO x , TiO x , are generally preferred.
- the dielectric materials may also be a multi-layer, such as silicon oxide/silicon nitride, silicon oxide (ONO), silicon oxide, high-k dielectric, silicon oxide (O/high-k/O), which provide higher k values and create less concern about capacitance leakage.
- a suitable deposition technique for dielectric layer 22 would be, for example, atomic layer deposition ALD, high density plasma chemical vapor deposition HDCVD, low density plasma chemical vapor deposition LPCVD, etc., depending on the chosen materials.
- the process of depositing the terminal layers 20 and dielectric layers 22 proceeds until a desired number of serpentine plate capacitors 18 are created.
- the size of trench width 26 and the ratio between trench width 26 and ridge height 32 typically limits the number of terminal and dielectric layers 20 , 22 .
- the size of trench width 26 is usually greater than ridge width 30 .
- FIG. 9 is a top view of a capacitor with stacks of conductive material, with an overlay of mask regions defining varying etch depths for electrical conductors.
- the stacks of conductive strips extend into and out of the page to the extent of the heights of the stacks.
- Other embodiments have fewer or more stacks of conductive material.
- the stacks have lengths with a first end and a second end. The first ends are interconnected electrically by terminal connection circuit 1 37 and the second ends are interconnected electrically by terminal connection circuit 2 38 .
- Terminal connection circuit 1 37 interconnects “odd” numbered layers of capacitor terminal strips.
- Terminal connection circuit 2 38 interconnects “even” numbered layers of capacitor terminal strips. Such interconnection can be seen in FIG. 2 .
- the dimensions of the capacitor terminal strips can be sufficiently large such that even the minimal resistance of the conductive strips results in unacceptably long RC delay.
- An example RC delay calculation of the capacitor in FIG. 2 follows:
- the capacitor terminal strips at different layers can be coupled to terminal connection circuit 1 37 or terminal connection circuit 2 38 not just at ends of the stacks, but also at an intermediate position between the first ends and the second ends.
- Such more frequent terminal connections are called strap connections. Strap connections reduce the resistance L in the example RC delay calculation.
- the strap connections are defined by the overlay of mask regions defining varying etch depths for the strap connections.
- Mask region 306 defines an etch depth of 4 layers.
- Mask regions 302 define an etch depth of 2 layers.
- Mask regions 304 define an etch depth of 1 layer.
- the etch depths vary from 0 layers to 7 layers, depending on the combination of mask regions 302 , 304 , and 306 which overlie each other above particular stacks of conductive material.
- the conductive material stacks have the following combined etch depths for the strap connections.
- 15 e has a 7 layer etch depth
- 15 f has a 6 layer etch depth
- 15 g has a 5 layer etch depth
- 15 h has a 4 layer etch depth
- 15 i has a 3 layer etch depth
- 15 j has a 2 layer etch depth
- 15 k has a 1 layer etch depth
- 15 l has a 0 layer etch depth.
- FIG. 10 is a side view of a capacitor with stacks of conductive material.
- the different layers of conductive material are contacted by conductive plugs of different depths.
- Such an array of conductive plugs can be used as the strap contacts or as the terminal connection circuits in FIG. 9 .
- the staircase plugs can have the same pitch as the stacks of conductive material.
- FIGS. 11-14 illustrate a sequence of steps creating electrical conductors at an interconnect region in contact with extensions of the terminal layers, such as shown in the example of FIG. 10 .
- terminal layer extensions 40 are identified in the figures as terminal layer extensions 40 . 0 through 40 . 7 with the top most being 40 . 0 .
- the locations for the electrical conductors 46 for contact with the corresponding terminal layer extensions 40 are labeled 0 through 7 in the figures. Similar numbering occurs with dielectric layer extensions 42 .
- an interconnect region 44 is located at the top of one or more dielectric ridges 16 or at the bottom of one or more trenches 15 , then terminal conductors 46 will directly contact the terminal layers 20 with terminal layer extensions 40 being unnecessary.
- a first photoresist mask 50 shown in FIG. 11 , is created on dielectric layer extension 42 . 0 at electrical conductor locations 0 , 2 , 4 , 6 and on the far side of location 7 .
- the regions covered by photoresist masks are sometimes referred to as mask regions.
- the regions not covered by first photoresist mask 50 are then etched one level through dielectric layer extension 42 . 0 and terminal layer extension 40 . 0 to create the structure shown in FIG. 11 .
- first photoresist mask 50 is removed and then a second photoresist mask 54 is formed on the resulting structure of FIG.
- third photoresist mask 58 is removed and an optional conformal dielectric barrier layer material can be deposited on the exposed surfaces, including over the stair stepped landing pads 60 , to create a dielectric barrier layer 62 .
- Barrier layer 62 is used as an etching stop and is can be made of silicon nitride.
- Dielectric fill layer 24 is deposited on the resulting structure. Appropriate vias are then formed through dielectric fill layer 24 and through the dielectric barrier layer 62 covering the landing pad 60 of each of terminal layer extensions 40 . 0 - 40 . 7 .
- Electrical conductors 46 are then formed in the vias to provide electrical connection with landing pads 60 of terminal layer extensions 40 and thus with terminal layers 20 capacitors to create the structure shown in FIG. 14 .
- Electrical conductors 46 can be made of the same electrical conductor materials discussed above. However, doped Si, W and Cu may be preferred because of the existing knowledge about chemical mechanical polishing of these electrically conductive materials. Electrical conductors 46 are identified as 46 . 0 - 46 . 7 corresponding to locations 0 - 7 .
- More than one interconnect region 44 could be used to access the landing pads 60 at the various levels. Some or all of the landing pads 60 at the different levels could be accessed by the same or different interconnect region 44 .
- the process for creating electrical conductors 46 can be referred to as a binary process, based on 2 0 .. . 2 n-1 withn being the number of etching steps. That is, first photoresist mask 50 alternatingly covers 2 0 landing pads 60 and exposes 2 0 landing pads 60 ; second photoresist mask 54 alternatingly covers 2 1 landing pads 60 and exposes 2 1 landing pads 60 ; third photoresist mask 58 alternatingly covers 2 2 landing pads 60 and exposes 2 2 landing pads 60 ; and so on.
- n masks can be used to provide access to 2 n landing pads 60 for 2 n terminalconductors 46 .
- using three masks provides access to 8 landing pads 60 for 8 terminal conductors 46 .
- FIG. 15 is a simplified block diagram of an integrated circuit with stacks of conductive material for both a capacitor and a 3D NAND array on a same substrate.
- the integrated circuit line 975 includes a 3D NAND flash memory array 960 , implemented as described herein, on a semiconductor substrate with stacks of conductive material and with capacitors with stacks of conductive material.
- a row decoder 961 is coupled to a plurality of word lines 962 , and arranged along rows in the memory array 960 .
- a column decoder 963 is coupled to a plurality of SSL lines 964 arranged along columns corresponding to stacks in the memory array 960 for reading and programming data from the memory cells in the array 960 .
- a plane decoder 958 is coupled to a plurality of planes in the memory array 960 via bit lines 959 .
- Addresses are supplied on bus 965 to column decoder 963 , row decoder 961 and plane decoder 958 .
- Sense amplifiers and data-in structures in block 966 are coupled to the column decoder 963 in this example via data bus 967 .
- Data is supplied via the data-in line 971 from input/output ports on the integrated circuit 975 or from other data sources internal or external to the integrated circuit 975 , to the data-in structures in block 966 .
- other circuitry 974 is included on the integrated circuit, such as a general purpose processor or special purpose application circuitry, or a combination of modules providing system-on-a-chip functionality supported by the NAND flash memory cell array.
- Data is supplied via the data-out line 972 from the sense amplifiers in block 966 to input/output ports on the integrated circuit 975 , or to other data destinations internal or external to the integrated circuit 975 .
- a controller implemented in this example using bias arrangement state machine 969 controls the application of bias arrangement supply voltage generated or provided through the voltage supply or supplies in block 968 , such as read, erase, program, erase verify and program verify voltages.
- the controller can be implemented using special-purpose logic circuitry as known in the art.
- the controller comprises a general-purpose processor, which may be implemented on the same integrated circuit, which executes a computer program to control the operations of the device.
- a combination of special-purpose logic circuitry and a general-purpose processor may be utilized for implementation of the controller.
- the substrate also includes capacitors with stacks of conductive material 999 on the same substrate as the 3D NAND flash memory array 960 .
- FIG. 16 is a simplified block diagram of a computer system 110 that implements software incorporating aspects of the present invention. While the present paper indicates individual steps carrying out specified operations, it will be appreciated that each step is actually implemented with software instructions that cause the computer system 110 to operate in the specified manner.
- Computer system 210 typically includes a processor subsystem 214 which communicates with a number of peripheral devices via bus subsystem 212 .
- peripheral devices may include a storage subsystem 224 , comprising a memory subsystem 226 and a file storage subsystem 228 , user interface input devices 222 , user interface output devices 220 , and a network interface subsystem 216 .
- the input and output devices allow user interaction with computer system 210 .
- Network interface subsystem 216 provides an interface to outside networks, including an interface to communication network 218 , and is coupled via communication network 218 to corresponding interface devices in other computer systems.
- Communication network 218 may comprise many interconnected computer systems and communication links. These communication links may be wireline links, optical links, wireless links, or any other mechanisms for communication of information. While in one embodiment, communication network 218 is the Internet, in other embodiments, communication network 218 may be any suitable computer network.
- NICs network interface cards
- ICs integrated circuits
- ICs integrated circuits
- macrocells fabricated on a single integrated circuit chip with other components of the computer system.
- User interface input devices 222 may include a keyboard, pointing devices such as a mouse, trackball, touchpad, or graphics tablet, a scanner, a touch screen incorporated into the display, audio input devices such as voice recognition systems, microphones, and other types of input devices.
- pointing devices such as a mouse, trackball, touchpad, or graphics tablet
- audio input devices such as voice recognition systems, microphones, and other types of input devices.
- use of the term “input device” is intended to include all possible types of devices and ways to input information into computer system 210 or onto computer network 218 .
- User interface output devices 220 may include a display subsystem, a printer, a fax machine, or nonvisual displays such as audio output devices.
- the display subsystem may include a cathode ray tube (CRT), a flat panel device such as a liquid crystal display (LCD), a projection device, or some other mechanism for creating a visible image.
- the display subsystem may also provide non visual display such as via audio output devices.
- output device is intended to include all possible types of devices and ways to output information from computer system 110 to the user or to another machine or computer system.
- Non-transitory storage subsystem 224 stores the basic programming and data constructs that provide the functionality of certain embodiments of the present technology.
- the various modules implementing the functionality of certain embodiments of the invention may be stored in storage subsystem 224 .
- Some examples are EDA programs for a cell or layout including stacks of conductive material for NAND memory arrays and capacitors on the same substrate as described herein. These software modules are generally executed by processor subsystem 214 .
- Storage subsystem 224 also represents storage accessible to the computer system on which the various software mentioned herein are stored. In another embodiment some or all of the software is located on storage accessible to the computer system via the network 218 .
- Memory subsystem 226 typically includes a number of memories including a main random access memory (RAM) 230 for storage of instructions and data during program execution and a read only memory (ROM) 232 in which fixed instructions are stored.
- File storage subsystem 228 provides persistent storage for program and data files, and may include a hard disk drive, a floppy disk drive along with associated removable media, a CD ROM drive, an optical drive, or removable media cartridges.
- the databases and modules implementing the functionality of certain embodiments of the invention may have been provided on a computer readable medium such as one or more CD-ROMs, and may be stored by file storage subsystem 228 .
- the host memory 226 contains, among other things, computer instructions which, when executed by the processor subsystem 214 , cause the computer system to operate or perform functions as described herein. As used herein, processes and software that are said to run in or on “the host” or “the computer”, execute on the processor subsystem 214 in response to computer instructions and data in the host memory subsystem 226 including any other local or remote storage for such instructions and data.
- Bus subsystem 212 provides a mechanism for letting the various components and subsystems of computer system 210 communicate with each other as intended. Although bus subsystem 212 is shown schematically as a single bus, alternative embodiments of the bus subsystem may use multiple busses.
- Computer system 210 itself can be of varying types including a personal computer, a portable computer, a workstation, a computer terminal, a network computer, a television, a mainframe, a server farm, or any other data processing system or user device. Due to the ever changing nature of computers and networks, the description of computer system 210 is intended only as a specific example for purposes of illustrating certain embodiments of the present invention. Many other configurations of computer system 210 are possible having more or less components than the computer system depicted.
- FIG. 16A shows a nontransitory computer readable medium 240 which stores a cell or layout 280 with stacks of conductive material in a NAND array and in a capacitor on a same substrate.
- the nontransitory computer readable medium can be any of the nontransitory memories discussed in connection with the storage subsystem 224 .
Landscapes
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510498244.1A CN106252353B (zh) | 2011-05-24 | 2015-08-14 | 具有三维nand存储器的电容器的集成电路及其制造方法 |
TW104126756A TWI566447B (zh) | 2011-05-24 | 2015-08-17 | 具有三維反及記憶體之電容器 |
US15/279,203 US10388720B2 (en) | 2011-03-16 | 2016-09-28 | Capacitor with 3D NAND memory |
US15/285,808 US9716137B1 (en) | 2011-05-24 | 2016-10-05 | 3D capacitor with 3D memory |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/049,303 US8598032B2 (en) | 2011-01-19 | 2011-03-16 | Reduced number of masks for IC device with stacked contact levels |
US13/114,931 US8383512B2 (en) | 2011-01-19 | 2011-05-24 | Method for making multilayer connection structure |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/279,203 Division US10388720B2 (en) | 2011-03-16 | 2016-09-28 | Capacitor with 3D NAND memory |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160365407A1 true US20160365407A1 (en) | 2016-12-15 |
Family
ID=47470261
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/739,717 Abandoned US20160365407A1 (en) | 2011-03-16 | 2015-06-15 | Capacitor With 3D NAND Memory |
US15/279,203 Active 2035-09-06 US10388720B2 (en) | 2011-03-16 | 2016-09-28 | Capacitor with 3D NAND memory |
US15/285,808 Active US9716137B1 (en) | 2011-05-24 | 2016-10-05 | 3D capacitor with 3D memory |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/279,203 Active 2035-09-06 US10388720B2 (en) | 2011-03-16 | 2016-09-28 | Capacitor with 3D NAND memory |
US15/285,808 Active US9716137B1 (en) | 2011-05-24 | 2016-10-05 | 3D capacitor with 3D memory |
Country Status (4)
Country | Link |
---|---|
US (3) | US20160365407A1 (enrdf_load_stackoverflow) |
JP (1) | JP2012244180A (enrdf_load_stackoverflow) |
CN (1) | CN106252353B (enrdf_load_stackoverflow) |
TW (1) | TWI566447B (enrdf_load_stackoverflow) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160351576A1 (en) * | 2015-05-26 | 2016-12-01 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
CN108735756A (zh) * | 2017-04-13 | 2018-11-02 | Asm知识产权私人控股有限公司 | 衬底处理方法及通过所述衬底处理方法制造的半导体器件 |
US10332936B2 (en) | 2017-04-19 | 2019-06-25 | Macronix International Co., Ltd. | 3D stacking semiconductor device |
US10340286B2 (en) * | 2017-02-01 | 2019-07-02 | Micron Technology, Inc. | Methods of forming NAND memory arrays |
US20190355735A1 (en) * | 2017-06-15 | 2019-11-21 | Micron Technology, Inc. | Methods of improving adhesion of photoresist in a staircase structure and methods of forming a staircase structure |
US10541252B2 (en) | 2017-02-01 | 2020-01-21 | Micron Technology, Inc. | Memory arrays, and methods of forming memory arrays |
CN112951836A (zh) * | 2019-11-26 | 2021-06-11 | 铠侠股份有限公司 | 半导体存储装置 |
EP4432804A1 (en) * | 2023-03-17 | 2024-09-18 | Samsung Electronics Co., Ltd. | Semiconductor device, electronic system including the same, and method of fabricating the same |
EP4465297A1 (en) * | 2023-05-18 | 2024-11-20 | Macronix International Co., Ltd. | Memory including thermal anneal circuits and methods for operating the same |
Families Citing this family (353)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9394608B2 (en) | 2009-04-06 | 2016-07-19 | Asm America, Inc. | Semiconductor processing reactor and components thereof |
US8802201B2 (en) | 2009-08-14 | 2014-08-12 | Asm America, Inc. | Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species |
US9312155B2 (en) | 2011-06-06 | 2016-04-12 | Asm Japan K.K. | High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules |
US10854498B2 (en) | 2011-07-15 | 2020-12-01 | Asm Ip Holding B.V. | Wafer-supporting device and method for producing same |
US20130023129A1 (en) | 2011-07-20 | 2013-01-24 | Asm America, Inc. | Pressure transmitter for a semiconductor processing environment |
US9017481B1 (en) | 2011-10-28 | 2015-04-28 | Asm America, Inc. | Process feed management for semiconductor substrate processing |
US10714315B2 (en) | 2012-10-12 | 2020-07-14 | Asm Ip Holdings B.V. | Semiconductor reaction chamber showerhead |
US20160376700A1 (en) | 2013-02-01 | 2016-12-29 | Asm Ip Holding B.V. | System for treatment of deposition reactor |
US10683571B2 (en) | 2014-02-25 | 2020-06-16 | Asm Ip Holding B.V. | Gas supply manifold and method of supplying gases to chamber using same |
US10167557B2 (en) | 2014-03-18 | 2019-01-01 | Asm Ip Holding B.V. | Gas distribution system, reactor including the system, and methods of using the same |
US11015245B2 (en) | 2014-03-19 | 2021-05-25 | Asm Ip Holding B.V. | Gas-phase reactor and system having exhaust plenum and components thereof |
US10858737B2 (en) | 2014-07-28 | 2020-12-08 | Asm Ip Holding B.V. | Showerhead assembly and components thereof |
US9890456B2 (en) | 2014-08-21 | 2018-02-13 | Asm Ip Holding B.V. | Method and system for in situ formation of gas-phase compounds |
US10941490B2 (en) | 2014-10-07 | 2021-03-09 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
US9657845B2 (en) | 2014-10-07 | 2017-05-23 | Asm Ip Holding B.V. | Variable conductance gas distribution apparatus and method |
US10276355B2 (en) | 2015-03-12 | 2019-04-30 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
US9646987B2 (en) | 2015-06-03 | 2017-05-09 | Kabushiki Kaisha Toshiba | Semiconductor memory device and production method thereof |
US10458018B2 (en) | 2015-06-26 | 2019-10-29 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
US10600673B2 (en) | 2015-07-07 | 2020-03-24 | Asm Ip Holding B.V. | Magnetic susceptor to baseplate seal |
US10211308B2 (en) | 2015-10-21 | 2019-02-19 | Asm Ip Holding B.V. | NbMC layers |
JP6549466B2 (ja) * | 2015-10-22 | 2019-07-24 | ラピスセミコンダクタ株式会社 | 半導体装置及び半導体装置の製造方法 |
US11139308B2 (en) | 2015-12-29 | 2021-10-05 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
US10529554B2 (en) | 2016-02-19 | 2020-01-07 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
US10343920B2 (en) | 2016-03-18 | 2019-07-09 | Asm Ip Holding B.V. | Aligned carbon nanotubes |
US10865475B2 (en) | 2016-04-21 | 2020-12-15 | Asm Ip Holding B.V. | Deposition of metal borides and silicides |
US10190213B2 (en) | 2016-04-21 | 2019-01-29 | Asm Ip Holding B.V. | Deposition of metal borides |
US10367080B2 (en) | 2016-05-02 | 2019-07-30 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
US10032628B2 (en) | 2016-05-02 | 2018-07-24 | Asm Ip Holding B.V. | Source/drain performance through conformal solid state doping |
US11453943B2 (en) | 2016-05-25 | 2022-09-27 | Asm Ip Holding B.V. | Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor |
US10612137B2 (en) | 2016-07-08 | 2020-04-07 | Asm Ip Holdings B.V. | Organic reactants for atomic layer deposition |
US9859151B1 (en) | 2016-07-08 | 2018-01-02 | Asm Ip Holding B.V. | Selective film deposition method to form air gaps |
US10714385B2 (en) | 2016-07-19 | 2020-07-14 | Asm Ip Holding B.V. | Selective deposition of tungsten |
US9812320B1 (en) | 2016-07-28 | 2017-11-07 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
KR102532607B1 (ko) | 2016-07-28 | 2023-05-15 | 에이에스엠 아이피 홀딩 비.브이. | 기판 가공 장치 및 그 동작 방법 |
US9887082B1 (en) | 2016-07-28 | 2018-02-06 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10643826B2 (en) | 2016-10-26 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for thermally calibrating reaction chambers |
US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
US10714350B2 (en) | 2016-11-01 | 2020-07-14 | ASM IP Holdings, B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10229833B2 (en) | 2016-11-01 | 2019-03-12 | Asm Ip Holding B.V. | Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10643904B2 (en) | 2016-11-01 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for forming a semiconductor device and related semiconductor device structures |
US10134757B2 (en) | 2016-11-07 | 2018-11-20 | Asm Ip Holding B.V. | Method of processing a substrate and a device manufactured by using the method |
KR102546317B1 (ko) | 2016-11-15 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | 기체 공급 유닛 및 이를 포함하는 기판 처리 장치 |
KR102551799B1 (ko) * | 2016-12-06 | 2023-07-05 | 삼성전자주식회사 | 반도체 소자 |
KR102762543B1 (ko) | 2016-12-14 | 2025-02-05 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
US11447861B2 (en) | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
KR102700194B1 (ko) | 2016-12-19 | 2024-08-28 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US10269558B2 (en) | 2016-12-22 | 2019-04-23 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10867788B2 (en) | 2016-12-28 | 2020-12-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US11390950B2 (en) | 2017-01-10 | 2022-07-19 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US10655221B2 (en) | 2017-02-09 | 2020-05-19 | Asm Ip Holding B.V. | Method for depositing oxide film by thermal ALD and PEALD |
US10468261B2 (en) | 2017-02-15 | 2019-11-05 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
CN106876397B (zh) | 2017-03-07 | 2020-05-26 | 长江存储科技有限责任公司 | 三维存储器及其形成方法 |
CN106920796B (zh) | 2017-03-08 | 2019-02-15 | 长江存储科技有限责任公司 | 一种3d nand存储器件及其制造方法 |
US10529563B2 (en) | 2017-03-29 | 2020-01-07 | Asm Ip Holdings B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
USD876504S1 (en) | 2017-04-03 | 2020-02-25 | Asm Ip Holding B.V. | Exhaust flow control ring for semiconductor deposition apparatus |
TWI640063B (zh) * | 2017-04-17 | 2018-11-01 | 旺宏電子股份有限公司 | 三維堆疊半導體裝置及其製造方法 |
KR102457289B1 (ko) | 2017-04-25 | 2022-10-21 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 및 반도체 장치의 제조 방법 |
CN108807452A (zh) * | 2017-05-02 | 2018-11-13 | 上海磁宇信息科技有限公司 | 一种超高密度随机存储器架构 |
US10770286B2 (en) | 2017-05-08 | 2020-09-08 | Asm Ip Holdings B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
US10892156B2 (en) | 2017-05-08 | 2021-01-12 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film on a substrate and related semiconductor device structures |
WO2018208719A1 (en) | 2017-05-08 | 2018-11-15 | Micron Technology, Inc. | Memory arrays |
KR102275052B1 (ko) | 2017-05-08 | 2021-07-09 | 마이크론 테크놀로지, 인크 | 메모리 어레이 |
US12040200B2 (en) | 2017-06-20 | 2024-07-16 | Asm Ip Holding B.V. | Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus |
CN109119403B (zh) * | 2017-06-22 | 2020-11-27 | 中芯国际集成电路制造(上海)有限公司 | 用于形成字线的掩膜版、半导体存储器件以及测试结构 |
US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
US10685834B2 (en) | 2017-07-05 | 2020-06-16 | Asm Ip Holdings B.V. | Methods for forming a silicon germanium tin layer and related semiconductor device structures |
KR20190009245A (ko) | 2017-07-18 | 2019-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자 구조물 형성 방법 및 관련된 반도체 소자 구조물 |
US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US10541333B2 (en) | 2017-07-19 | 2020-01-21 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11018002B2 (en) | 2017-07-19 | 2021-05-25 | Asm Ip Holding B.V. | Method for selectively depositing a Group IV semiconductor and related semiconductor device structures |
US10590535B2 (en) | 2017-07-26 | 2020-03-17 | Asm Ip Holdings B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
US11043499B2 (en) | 2017-07-27 | 2021-06-22 | Micron Technology, Inc. | Memory arrays comprising memory cells |
TWI815813B (zh) | 2017-08-04 | 2023-09-21 | 荷蘭商Asm智慧財產控股公司 | 用於分配反應腔內氣體的噴頭總成 |
US10692741B2 (en) | 2017-08-08 | 2020-06-23 | Asm Ip Holdings B.V. | Radiation shield |
US10770336B2 (en) | 2017-08-08 | 2020-09-08 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US10249524B2 (en) | 2017-08-09 | 2019-04-02 | Asm Ip Holding B.V. | Cassette holder assembly for a substrate cassette and holding member for use in such assembly |
US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11139191B2 (en) | 2017-08-09 | 2021-10-05 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
USD900036S1 (en) | 2017-08-24 | 2020-10-27 | Asm Ip Holding B.V. | Heater electrical connector and adapter |
US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
KR102491945B1 (ko) | 2017-08-30 | 2023-01-26 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
US11056344B2 (en) | 2017-08-30 | 2021-07-06 | Asm Ip Holding B.V. | Layer forming method |
KR102401446B1 (ko) | 2017-08-31 | 2022-05-24 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
JP2019047093A (ja) | 2017-09-07 | 2019-03-22 | 東芝メモリ株式会社 | 半導体装置およびその製造方法 |
JP2019057623A (ja) | 2017-09-21 | 2019-04-11 | 東芝メモリ株式会社 | 積層配線構造体及び積層配線構造体の製造方法 |
KR102630301B1 (ko) | 2017-09-21 | 2024-01-29 | 에이에스엠 아이피 홀딩 비.브이. | 침투성 재료의 순차 침투 합성 방법 처리 및 이를 이용하여 형성된 구조물 및 장치 |
US10844484B2 (en) | 2017-09-22 | 2020-11-24 | Asm Ip Holding B.V. | Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US10658205B2 (en) | 2017-09-28 | 2020-05-19 | Asm Ip Holdings B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
WO2019066893A1 (en) * | 2017-09-29 | 2019-04-04 | Intel Corporation | 2S-1C 4F2 CROSS-POINT MEMORY DRAM MATRIX |
US10403504B2 (en) | 2017-10-05 | 2019-09-03 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US10319588B2 (en) | 2017-10-10 | 2019-06-11 | Asm Ip Holding B.V. | Method for depositing a metal chalcogenide on a substrate by cyclical deposition |
KR102393342B1 (ko) | 2017-10-26 | 2022-05-03 | 삼성전자주식회사 | 반도체 메모리 및 방법 |
US10923344B2 (en) | 2017-10-30 | 2021-02-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
US10910262B2 (en) | 2017-11-16 | 2021-02-02 | Asm Ip Holding B.V. | Method of selectively depositing a capping layer structure on a semiconductor device structure |
KR102443047B1 (ko) * | 2017-11-16 | 2022-09-14 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 방법 및 그에 의해 제조된 장치 |
KR102408621B1 (ko) | 2017-11-20 | 2022-06-15 | 삼성전자주식회사 | 커패시터를 포함하는 불휘발성 메모리 장치 |
US11022879B2 (en) | 2017-11-24 | 2021-06-01 | Asm Ip Holding B.V. | Method of forming an enhanced unexposed photoresist layer |
US11639811B2 (en) | 2017-11-27 | 2023-05-02 | Asm Ip Holding B.V. | Apparatus including a clean mini environment |
CN111316417B (zh) | 2017-11-27 | 2023-12-22 | 阿斯莫Ip控股公司 | 与批式炉偕同使用的用于储存晶圆匣的储存装置 |
CN108172565B (zh) * | 2017-12-27 | 2020-12-11 | 上海艾为电子技术股份有限公司 | 一种mom电容及集成电路 |
US10872771B2 (en) | 2018-01-16 | 2020-12-22 | Asm Ip Holding B. V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
WO2019142055A2 (en) | 2018-01-19 | 2019-07-25 | Asm Ip Holding B.V. | Method for depositing a gap-fill layer by plasma-assisted deposition |
TWI799494B (zh) | 2018-01-19 | 2023-04-21 | 荷蘭商Asm 智慧財產控股公司 | 沈積方法 |
USD903477S1 (en) | 2018-01-24 | 2020-12-01 | Asm Ip Holdings B.V. | Metal clamp |
US11018047B2 (en) | 2018-01-25 | 2021-05-25 | Asm Ip Holding B.V. | Hybrid lift pin |
USD880437S1 (en) | 2018-02-01 | 2020-04-07 | Asm Ip Holding B.V. | Gas supply plate for semiconductor manufacturing apparatus |
US11081345B2 (en) | 2018-02-06 | 2021-08-03 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
US10896820B2 (en) | 2018-02-14 | 2021-01-19 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US11685991B2 (en) | 2018-02-14 | 2023-06-27 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US10731249B2 (en) | 2018-02-15 | 2020-08-04 | Asm Ip Holding B.V. | Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus |
US10658181B2 (en) | 2018-02-20 | 2020-05-19 | Asm Ip Holding B.V. | Method of spacer-defined direct patterning in semiconductor fabrication |
KR102636427B1 (ko) | 2018-02-20 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 및 장치 |
US10975470B2 (en) | 2018-02-23 | 2021-04-13 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
US11629406B2 (en) | 2018-03-09 | 2023-04-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate |
US11114283B2 (en) | 2018-03-16 | 2021-09-07 | Asm Ip Holding B.V. | Reactor, system including the reactor, and methods of manufacturing and using same |
KR102646467B1 (ko) | 2018-03-27 | 2024-03-11 | 에이에스엠 아이피 홀딩 비.브이. | 기판 상에 전극을 형성하는 방법 및 전극을 포함하는 반도체 소자 구조 |
US11230766B2 (en) | 2018-03-29 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11088002B2 (en) | 2018-03-29 | 2021-08-10 | Asm Ip Holding B.V. | Substrate rack and a substrate processing system and method |
KR102501472B1 (ko) | 2018-03-30 | 2023-02-20 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 |
KR102600229B1 (ko) | 2018-04-09 | 2023-11-10 | 에이에스엠 아이피 홀딩 비.브이. | 기판 지지 장치, 이를 포함하는 기판 처리 장치 및 기판 처리 방법 |
US10515810B2 (en) * | 2018-04-10 | 2019-12-24 | Macronix International Co., Ltd. | Self-aligned di-silicon silicide bit line and source line landing pads in 3D vertical channel memory |
TWI843623B (zh) | 2018-05-08 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | 藉由循環沉積製程於基板上沉積氧化物膜之方法及相關裝置結構 |
US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
US12272527B2 (en) | 2018-05-09 | 2025-04-08 | Asm Ip Holding B.V. | Apparatus for use with hydrogen radicals and method of using same |
KR20190129718A (ko) | 2018-05-11 | 2019-11-20 | 에이에스엠 아이피 홀딩 비.브이. | 기판 상에 피도핑 금속 탄화물 막을 형성하는 방법 및 관련 반도체 소자 구조 |
KR102596988B1 (ko) | 2018-05-28 | 2023-10-31 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 및 그에 의해 제조된 장치 |
US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
TWI840362B (zh) | 2018-06-04 | 2024-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 水氣降低的晶圓處置腔室 |
US11286562B2 (en) | 2018-06-08 | 2022-03-29 | Asm Ip Holding B.V. | Gas-phase chemical reactor and method of using same |
US10797133B2 (en) | 2018-06-21 | 2020-10-06 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
KR102568797B1 (ko) | 2018-06-21 | 2023-08-21 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 시스템 |
CN112292477A (zh) | 2018-06-27 | 2021-01-29 | Asm Ip私人控股有限公司 | 用于形成含金属的材料的循环沉积方法及包含含金属的材料的膜和结构 |
TWI871083B (zh) | 2018-06-27 | 2025-01-21 | 荷蘭商Asm Ip私人控股有限公司 | 用於形成含金屬材料之循環沉積製程 |
US10612136B2 (en) | 2018-06-29 | 2020-04-07 | ASM IP Holding, B.V. | Temperature-controlled flange and reactor system including same |
KR102686758B1 (ko) | 2018-06-29 | 2024-07-18 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 및 반도체 장치의 제조 방법 |
US10388513B1 (en) | 2018-07-03 | 2019-08-20 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10755922B2 (en) | 2018-07-03 | 2020-08-25 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10825827B2 (en) | 2018-07-05 | 2020-11-03 | Sandisk Technologies Llc | Non-volatile memory with pool capacitor |
US10818685B2 (en) | 2018-07-05 | 2020-10-27 | Sandisk Technologies Llc | Non-volatile memory with pool capacitor |
US10847452B2 (en) * | 2018-07-05 | 2020-11-24 | Sandisk Technologies Llc | Non-volatile memory with capacitors using metal under signal line or above a device capacitor |
US10767789B2 (en) | 2018-07-16 | 2020-09-08 | Asm Ip Holding B.V. | Diaphragm valves, valve components, and methods for forming valve components |
US11053591B2 (en) | 2018-08-06 | 2021-07-06 | Asm Ip Holding B.V. | Multi-port gas injection system and reactor system including same |
US10883175B2 (en) | 2018-08-09 | 2021-01-05 | Asm Ip Holding B.V. | Vertical furnace for processing substrates and a liner for use therein |
US10829852B2 (en) | 2018-08-16 | 2020-11-10 | Asm Ip Holding B.V. | Gas distribution device for a wafer processing apparatus |
US10777567B2 (en) | 2018-08-22 | 2020-09-15 | International Business Machines Corporation | Epitaxy lateral overgrowth for 3D NAND |
US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US11024523B2 (en) | 2018-09-11 | 2021-06-01 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102707956B1 (ko) | 2018-09-11 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 |
US11049751B2 (en) | 2018-09-14 | 2021-06-29 | Asm Ip Holding B.V. | Cassette supply system to store and handle cassettes and processing apparatus equipped therewith |
CN110970344B (zh) | 2018-10-01 | 2024-10-25 | Asmip控股有限公司 | 衬底保持设备、包含所述设备的系统及其使用方法 |
US11232963B2 (en) | 2018-10-03 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102592699B1 (ko) | 2018-10-08 | 2023-10-23 | 에이에스엠 아이피 홀딩 비.브이. | 기판 지지 유닛 및 이를 포함하는 박막 증착 장치와 기판 처리 장치 |
US10847365B2 (en) | 2018-10-11 | 2020-11-24 | Asm Ip Holding B.V. | Method of forming conformal silicon carbide film by cyclic CVD |
US10811256B2 (en) | 2018-10-16 | 2020-10-20 | Asm Ip Holding B.V. | Method for etching a carbon-containing feature |
KR102546322B1 (ko) | 2018-10-19 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 및 기판 처리 방법 |
KR102605121B1 (ko) | 2018-10-19 | 2023-11-23 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 및 기판 처리 방법 |
USD948463S1 (en) | 2018-10-24 | 2022-04-12 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate supporting apparatus |
US12378665B2 (en) | 2018-10-26 | 2025-08-05 | Asm Ip Holding B.V. | High temperature coatings for a preclean and etch apparatus and related methods |
US11087997B2 (en) | 2018-10-31 | 2021-08-10 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
KR102748291B1 (ko) | 2018-11-02 | 2024-12-31 | 에이에스엠 아이피 홀딩 비.브이. | 기판 지지 유닛 및 이를 포함하는 기판 처리 장치 |
US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
US11031242B2 (en) | 2018-11-07 | 2021-06-08 | Asm Ip Holding B.V. | Methods for depositing a boron doped silicon germanium film |
US10847366B2 (en) | 2018-11-16 | 2020-11-24 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
US10818758B2 (en) | 2018-11-16 | 2020-10-27 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US10559458B1 (en) | 2018-11-26 | 2020-02-11 | Asm Ip Holding B.V. | Method of forming oxynitride film |
US12040199B2 (en) | 2018-11-28 | 2024-07-16 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US10950618B2 (en) | 2018-11-29 | 2021-03-16 | Micron Technology, Inc. | Memory arrays |
US11217444B2 (en) | 2018-11-30 | 2022-01-04 | Asm Ip Holding B.V. | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
KR102636428B1 (ko) | 2018-12-04 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치를 세정하는 방법 |
US11158513B2 (en) | 2018-12-13 | 2021-10-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
JP7504584B2 (ja) | 2018-12-14 | 2024-06-24 | エーエスエム・アイピー・ホールディング・ベー・フェー | 窒化ガリウムの選択的堆積を用いてデバイス構造体を形成する方法及びそのためのシステム |
TWI819180B (zh) | 2019-01-17 | 2023-10-21 | 荷蘭商Asm 智慧財產控股公司 | 藉由循環沈積製程於基板上形成含過渡金屬膜之方法 |
KR102727227B1 (ko) | 2019-01-22 | 2024-11-07 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
CN111524788B (zh) | 2019-02-01 | 2023-11-24 | Asm Ip私人控股有限公司 | 氧化硅的拓扑选择性膜形成的方法 |
KR102626263B1 (ko) | 2019-02-20 | 2024-01-16 | 에이에스엠 아이피 홀딩 비.브이. | 처리 단계를 포함하는 주기적 증착 방법 및 이를 위한 장치 |
US11482533B2 (en) | 2019-02-20 | 2022-10-25 | Asm Ip Holding B.V. | Apparatus and methods for plug fill deposition in 3-D NAND applications |
TWI845607B (zh) | 2019-02-20 | 2024-06-21 | 荷蘭商Asm Ip私人控股有限公司 | 用來填充形成於基材表面內之凹部的循環沉積方法及設備 |
KR102638425B1 (ko) | 2019-02-20 | 2024-02-21 | 에이에스엠 아이피 홀딩 비.브이. | 기판 표면 내에 형성된 오목부를 충진하기 위한 방법 및 장치 |
TWI842826B (zh) | 2019-02-22 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | 基材處理設備及處理基材之方法 |
US11424119B2 (en) | 2019-03-08 | 2022-08-23 | Asm Ip Holding B.V. | Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer |
KR102762833B1 (ko) | 2019-03-08 | 2025-02-04 | 에이에스엠 아이피 홀딩 비.브이. | SiOCN 층을 포함한 구조체 및 이의 형성 방법 |
KR102782593B1 (ko) | 2019-03-08 | 2025-03-14 | 에이에스엠 아이피 홀딩 비.브이. | SiOC 층을 포함한 구조체 및 이의 형성 방법 |
KR20200116033A (ko) | 2019-03-28 | 2020-10-08 | 에이에스엠 아이피 홀딩 비.브이. | 도어 개방기 및 이를 구비한 기판 처리 장치 |
KR102809999B1 (ko) | 2019-04-01 | 2025-05-19 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자를 제조하는 방법 |
US11447864B2 (en) | 2019-04-19 | 2022-09-20 | Asm Ip Holding B.V. | Layer forming method and apparatus |
KR20200125453A (ko) | 2019-04-24 | 2020-11-04 | 에이에스엠 아이피 홀딩 비.브이. | 기상 반응기 시스템 및 이를 사용하는 방법 |
KR20200130121A (ko) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | 딥 튜브가 있는 화학물질 공급원 용기 |
KR20200130118A (ko) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | 비정질 탄소 중합체 막을 개질하는 방법 |
KR20200130652A (ko) | 2019-05-10 | 2020-11-19 | 에이에스엠 아이피 홀딩 비.브이. | 표면 상에 재료를 증착하는 방법 및 본 방법에 따라 형성된 구조 |
JP7598201B2 (ja) | 2019-05-16 | 2024-12-11 | エーエスエム・アイピー・ホールディング・ベー・フェー | ウェハボートハンドリング装置、縦型バッチ炉および方法 |
JP7612342B2 (ja) | 2019-05-16 | 2025-01-14 | エーエスエム・アイピー・ホールディング・ベー・フェー | ウェハボートハンドリング装置、縦型バッチ炉および方法 |
USD975665S1 (en) | 2019-05-17 | 2023-01-17 | Asm Ip Holding B.V. | Susceptor shaft |
USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
USD935572S1 (en) | 2019-05-24 | 2021-11-09 | Asm Ip Holding B.V. | Gas channel plate |
USD922229S1 (en) | 2019-06-05 | 2021-06-15 | Asm Ip Holding B.V. | Device for controlling a temperature of a gas supply unit |
KR20200141003A (ko) | 2019-06-06 | 2020-12-17 | 에이에스엠 아이피 홀딩 비.브이. | 가스 감지기를 포함하는 기상 반응기 시스템 |
KR20200141931A (ko) | 2019-06-10 | 2020-12-21 | 에이에스엠 아이피 홀딩 비.브이. | 석영 에피택셜 챔버를 세정하는 방법 |
KR20200143254A (ko) | 2019-06-11 | 2020-12-23 | 에이에스엠 아이피 홀딩 비.브이. | 개질 가스를 사용하여 전자 구조를 형성하는 방법, 상기 방법을 수행하기 위한 시스템, 및 상기 방법을 사용하여 형성되는 구조 |
USD944946S1 (en) | 2019-06-14 | 2022-03-01 | Asm Ip Holding B.V. | Shower plate |
JP7414411B2 (ja) * | 2019-06-14 | 2024-01-16 | キオクシア株式会社 | 半導体記憶装置 |
USD931978S1 (en) | 2019-06-27 | 2021-09-28 | Asm Ip Holding B.V. | Showerhead vacuum transport |
KR20210005515A (ko) | 2019-07-03 | 2021-01-14 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치용 온도 제어 조립체 및 이를 사용하는 방법 |
JP7499079B2 (ja) | 2019-07-09 | 2024-06-13 | エーエスエム・アイピー・ホールディング・ベー・フェー | 同軸導波管を用いたプラズマ装置、基板処理方法 |
CN112216646A (zh) | 2019-07-10 | 2021-01-12 | Asm Ip私人控股有限公司 | 基板支撑组件及包括其的基板处理装置 |
KR20210010307A (ko) | 2019-07-16 | 2021-01-27 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
KR20210010816A (ko) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 라디칼 보조 점화 플라즈마 시스템 및 방법 |
KR20210010820A (ko) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 게르마늄 구조를 형성하는 방법 |
US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
TWI839544B (zh) | 2019-07-19 | 2024-04-21 | 荷蘭商Asm Ip私人控股有限公司 | 形成形貌受控的非晶碳聚合物膜之方法 |
KR20210010817A (ko) | 2019-07-19 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 토폴로지-제어된 비정질 탄소 중합체 막을 형성하는 방법 |
CN112309843A (zh) | 2019-07-29 | 2021-02-02 | Asm Ip私人控股有限公司 | 实现高掺杂剂掺入的选择性沉积方法 |
CN112309900A (zh) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | 基板处理设备 |
CN112309899A (zh) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | 基板处理设备 |
US12169361B2 (en) | 2019-07-30 | 2024-12-17 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
KR20210018759A (ko) | 2019-08-05 | 2021-02-18 | 에이에스엠 아이피 홀딩 비.브이. | 화학물질 공급원 용기를 위한 액체 레벨 센서 |
CN112342526A (zh) | 2019-08-09 | 2021-02-09 | Asm Ip私人控股有限公司 | 包括冷却装置的加热器组件及其使用方法 |
USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
JP2021031769A (ja) | 2019-08-21 | 2021-03-01 | エーエスエム アイピー ホールディング ビー.ブイ. | 成膜原料混合ガス生成装置及び成膜装置 |
USD949319S1 (en) | 2019-08-22 | 2022-04-19 | Asm Ip Holding B.V. | Exhaust duct |
USD930782S1 (en) | 2019-08-22 | 2021-09-14 | Asm Ip Holding B.V. | Gas distributor |
USD979506S1 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Insulator |
USD940837S1 (en) | 2019-08-22 | 2022-01-11 | Asm Ip Holding B.V. | Electrode |
KR20210024423A (ko) | 2019-08-22 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | 홀을 구비한 구조체를 형성하기 위한 방법 |
KR20210024420A (ko) | 2019-08-23 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | 비스(디에틸아미노)실란을 사용하여 peald에 의해 개선된 품질을 갖는 실리콘 산화물 막을 증착하기 위한 방법 |
JP7241901B2 (ja) * | 2019-08-23 | 2023-03-17 | 長江存儲科技有限責任公司 | メモリデバイス及び方法 |
US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
CN113130502B (zh) | 2019-09-03 | 2022-11-22 | 长江存储科技有限责任公司 | 利用虚设存储块作为池电容器的非易失性存储器件 |
US11282849B2 (en) | 2019-09-03 | 2022-03-22 | Yangtze Memory Technologies Co., Ltd. | Non-volatile memory device utilizing dummy memory block as pool capacitor |
KR102806450B1 (ko) | 2019-09-04 | 2025-05-12 | 에이에스엠 아이피 홀딩 비.브이. | 희생 캡핑 층을 이용한 선택적 증착 방법 |
KR102733104B1 (ko) | 2019-09-05 | 2024-11-22 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
CN112593212B (zh) | 2019-10-02 | 2023-12-22 | Asm Ip私人控股有限公司 | 通过循环等离子体增强沉积工艺形成拓扑选择性氧化硅膜的方法 |
TWI846953B (zh) | 2019-10-08 | 2024-07-01 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理裝置 |
KR20210042810A (ko) | 2019-10-08 | 2021-04-20 | 에이에스엠 아이피 홀딩 비.브이. | 활성 종을 이용하기 위한 가스 분배 어셈블리를 포함한 반응기 시스템 및 이를 사용하는 방법 |
KR20210043460A (ko) | 2019-10-10 | 2021-04-21 | 에이에스엠 아이피 홀딩 비.브이. | 포토레지스트 하부층을 형성하기 위한 방법 및 이를 포함한 구조체 |
US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
TWI834919B (zh) | 2019-10-16 | 2024-03-11 | 荷蘭商Asm Ip私人控股有限公司 | 氧化矽之拓撲選擇性膜形成之方法 |
US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
KR102845724B1 (ko) | 2019-10-21 | 2025-08-13 | 에이에스엠 아이피 홀딩 비.브이. | 막을 선택적으로 에칭하기 위한 장치 및 방법 |
KR20210050453A (ko) | 2019-10-25 | 2021-05-07 | 에이에스엠 아이피 홀딩 비.브이. | 기판 표면 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조 |
US11646205B2 (en) | 2019-10-29 | 2023-05-09 | Asm Ip Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
CN111092082B (zh) * | 2019-11-01 | 2023-11-07 | 上海新储集成电路有限公司 | 一种混合架构存储器及其制作方法 |
KR20210054983A (ko) | 2019-11-05 | 2021-05-14 | 에이에스엠 아이피 홀딩 비.브이. | 도핑된 반도체 층을 갖는 구조체 및 이를 형성하기 위한 방법 및 시스템 |
US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
KR20210062561A (ko) | 2019-11-20 | 2021-05-31 | 에이에스엠 아이피 홀딩 비.브이. | 기판의 표면 상에 탄소 함유 물질을 증착하는 방법, 상기 방법을 사용하여 형성된 구조물, 및 상기 구조물을 형성하기 위한 시스템 |
CN112951697B (zh) | 2019-11-26 | 2025-07-29 | Asmip私人控股有限公司 | 基板处理设备 |
US11450529B2 (en) | 2019-11-26 | 2022-09-20 | Asm Ip Holding B.V. | Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface |
CN112885693B (zh) | 2019-11-29 | 2025-06-10 | Asmip私人控股有限公司 | 基板处理设备 |
CN112885692B (zh) | 2019-11-29 | 2025-08-15 | Asmip私人控股有限公司 | 基板处理设备 |
JP7527928B2 (ja) | 2019-12-02 | 2024-08-05 | エーエスエム・アイピー・ホールディング・ベー・フェー | 基板処理装置、基板処理方法 |
US10984957B1 (en) * | 2019-12-03 | 2021-04-20 | International Business Machines Corporation | Printed circuit board embedded capacitor |
KR20210070898A (ko) | 2019-12-04 | 2021-06-15 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
CN112992667A (zh) | 2019-12-17 | 2021-06-18 | Asm Ip私人控股有限公司 | 形成氮化钒层的方法和包括氮化钒层的结构 |
KR20210080214A (ko) | 2019-12-19 | 2021-06-30 | 에이에스엠 아이피 홀딩 비.브이. | 기판 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조 |
JP7636892B2 (ja) | 2020-01-06 | 2025-02-27 | エーエスエム・アイピー・ホールディング・ベー・フェー | チャネル付きリフトピン |
KR20210089077A (ko) | 2020-01-06 | 2021-07-15 | 에이에스엠 아이피 홀딩 비.브이. | 가스 공급 어셈블리, 이의 구성 요소, 및 이를 포함하는 반응기 시스템 |
US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
KR20210093163A (ko) | 2020-01-16 | 2021-07-27 | 에이에스엠 아이피 홀딩 비.브이. | 고 종횡비 피처를 형성하는 방법 |
KR102675856B1 (ko) | 2020-01-20 | 2024-06-17 | 에이에스엠 아이피 홀딩 비.브이. | 박막 형성 방법 및 박막 표면 개질 방법 |
TW202513845A (zh) | 2020-02-03 | 2025-04-01 | 荷蘭商Asm Ip私人控股有限公司 | 半導體裝置結構及其形成方法 |
TW202146882A (zh) | 2020-02-04 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 驗證一物品之方法、用於驗證一物品之設備、及用於驗證一反應室之系統 |
US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
KR20210103956A (ko) | 2020-02-13 | 2021-08-24 | 에이에스엠 아이피 홀딩 비.브이. | 수광 장치를 포함하는 기판 처리 장치 및 수광 장치의 교정 방법 |
US11781243B2 (en) | 2020-02-17 | 2023-10-10 | Asm Ip Holding B.V. | Method for depositing low temperature phosphorous-doped silicon |
CN113410160A (zh) | 2020-02-28 | 2021-09-17 | Asm Ip私人控股有限公司 | 专用于零件清洁的系统 |
TW202139347A (zh) | 2020-03-04 | 2021-10-16 | 荷蘭商Asm Ip私人控股有限公司 | 反應器系統、對準夾具、及對準方法 |
KR20210116249A (ko) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | 록아웃 태그아웃 어셈블리 및 시스템 그리고 이의 사용 방법 |
KR20210116240A (ko) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | 조절성 접합부를 갖는 기판 핸들링 장치 |
CN113394086A (zh) | 2020-03-12 | 2021-09-14 | Asm Ip私人控股有限公司 | 用于制造具有目标拓扑轮廓的层结构的方法 |
KR102663224B1 (ko) * | 2020-03-13 | 2024-05-03 | 양쯔 메모리 테크놀로지스 씨오., 엘티디. | 3차원 메모리를 위한 접촉 구조들 |
US12173404B2 (en) | 2020-03-17 | 2024-12-24 | Asm Ip Holding B.V. | Method of depositing epitaxial material, structure formed using the method, and system for performing the method |
KR102755229B1 (ko) | 2020-04-02 | 2025-01-14 | 에이에스엠 아이피 홀딩 비.브이. | 박막 형성 방법 |
KR102719377B1 (ko) | 2020-04-03 | 2024-10-17 | 에이에스엠 아이피 홀딩 비.브이. | 배리어층 형성 방법 및 반도체 장치의 제조 방법 |
US11437241B2 (en) | 2020-04-08 | 2022-09-06 | Asm Ip Holding B.V. | Apparatus and methods for selectively etching silicon oxide films |
US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
KR20210128343A (ko) | 2020-04-15 | 2021-10-26 | 에이에스엠 아이피 홀딩 비.브이. | 크롬 나이트라이드 층을 형성하는 방법 및 크롬 나이트라이드 층을 포함하는 구조 |
US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
KR20210130646A (ko) | 2020-04-21 | 2021-11-01 | 에이에스엠 아이피 홀딩 비.브이. | 기판을 처리하기 위한 방법 |
TW202208671A (zh) | 2020-04-24 | 2022-03-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成包括硼化釩及磷化釩層的結構之方法 |
TWI884193B (zh) | 2020-04-24 | 2025-05-21 | 荷蘭商Asm Ip私人控股有限公司 | 形成含氮化釩層及包含該層的結構之方法 |
KR20210132612A (ko) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | 바나듐 화합물들을 안정화하기 위한 방법들 및 장치 |
KR20210132600A (ko) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | 바나듐, 질소 및 추가 원소를 포함한 층을 증착하기 위한 방법 및 시스템 |
TW202146831A (zh) | 2020-04-24 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 垂直批式熔爐總成、及用於冷卻垂直批式熔爐之方法 |
KR102783898B1 (ko) | 2020-04-29 | 2025-03-18 | 에이에스엠 아이피 홀딩 비.브이. | 고체 소스 전구체 용기 |
KR20210134869A (ko) | 2020-05-01 | 2021-11-11 | 에이에스엠 아이피 홀딩 비.브이. | Foup 핸들러를 이용한 foup의 빠른 교환 |
TW202147543A (zh) | 2020-05-04 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 半導體處理系統 |
KR102788543B1 (ko) | 2020-05-13 | 2025-03-27 | 에이에스엠 아이피 홀딩 비.브이. | 반응기 시스템용 레이저 정렬 고정구 |
TW202146699A (zh) | 2020-05-15 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 形成矽鍺層之方法、半導體結構、半導體裝置、形成沉積層之方法、及沉積系統 |
TW202147383A (zh) | 2020-05-19 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 基材處理設備 |
KR102795476B1 (ko) | 2020-05-21 | 2025-04-11 | 에이에스엠 아이피 홀딩 비.브이. | 다수의 탄소 층을 포함한 구조체 및 이를 형성하고 사용하는 방법 |
KR20210145079A (ko) | 2020-05-21 | 2021-12-01 | 에이에스엠 아이피 홀딩 비.브이. | 기판을 처리하기 위한 플랜지 및 장치 |
TWI873343B (zh) | 2020-05-22 | 2025-02-21 | 荷蘭商Asm Ip私人控股有限公司 | 用於在基材上形成薄膜之反應系統 |
KR20210146802A (ko) | 2020-05-26 | 2021-12-06 | 에이에스엠 아이피 홀딩 비.브이. | 붕소 및 갈륨을 함유한 실리콘 게르마늄 층을 증착하는 방법 |
TWI876048B (zh) | 2020-05-29 | 2025-03-11 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理方法 |
TW202212620A (zh) | 2020-06-02 | 2022-04-01 | 荷蘭商Asm Ip私人控股有限公司 | 處理基板之設備、形成膜之方法、及控制用於處理基板之設備之方法 |
KR20210156219A (ko) | 2020-06-16 | 2021-12-24 | 에이에스엠 아이피 홀딩 비.브이. | 붕소를 함유한 실리콘 게르마늄 층을 증착하는 방법 |
TW202218133A (zh) | 2020-06-24 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成含矽層之方法 |
TWI873359B (zh) | 2020-06-30 | 2025-02-21 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理方法 |
TW202202649A (zh) | 2020-07-08 | 2022-01-16 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理方法 |
TWI864307B (zh) | 2020-07-17 | 2024-12-01 | 荷蘭商Asm Ip私人控股有限公司 | 用於光微影之結構、方法與系統 |
TWI878570B (zh) | 2020-07-20 | 2025-04-01 | 荷蘭商Asm Ip私人控股有限公司 | 用於沉積鉬層之方法及系統 |
KR20220011092A (ko) | 2020-07-20 | 2022-01-27 | 에이에스엠 아이피 홀딩 비.브이. | 전이 금속층을 포함하는 구조체를 형성하기 위한 방법 및 시스템 |
TW202219303A (zh) | 2020-07-27 | 2022-05-16 | 荷蘭商Asm Ip私人控股有限公司 | 薄膜沉積製程 |
KR20220021863A (ko) | 2020-08-14 | 2022-02-22 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 |
US12040177B2 (en) | 2020-08-18 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a laminate film by cyclical plasma-enhanced deposition processes |
TW202228863A (zh) | 2020-08-25 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | 清潔基板的方法、選擇性沉積的方法、及反應器系統 |
TWI874701B (zh) | 2020-08-26 | 2025-03-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成金屬氧化矽層及金屬氮氧化矽層的方法 |
TW202229601A (zh) | 2020-08-27 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成圖案化結構的方法、操控機械特性的方法、裝置結構、及基板處理系統 |
TW202217045A (zh) | 2020-09-10 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 沉積間隙填充流體之方法及相關系統和裝置 |
USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
KR20220036866A (ko) | 2020-09-16 | 2022-03-23 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 산화물 증착 방법 |
USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
KR20220041751A (ko) | 2020-09-25 | 2022-04-01 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 처리 방법 |
US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
KR20220045900A (ko) | 2020-10-06 | 2022-04-13 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 함유 재료를 증착하기 위한 증착 방법 및 장치 |
CN114293174A (zh) | 2020-10-07 | 2022-04-08 | Asm Ip私人控股有限公司 | 气体供应单元和包括气体供应单元的衬底处理设备 |
TW202229613A (zh) | 2020-10-14 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | 於階梯式結構上沉積材料的方法 |
KR20220050048A (ko) | 2020-10-15 | 2022-04-22 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자의 제조 방법, 및 ether-cat을 사용하는 기판 처리 장치 |
KR20220053482A (ko) | 2020-10-22 | 2022-04-29 | 에이에스엠 아이피 홀딩 비.브이. | 바나듐 금속을 증착하는 방법, 구조체, 소자 및 증착 어셈블리 |
TW202223136A (zh) | 2020-10-28 | 2022-06-16 | 荷蘭商Asm Ip私人控股有限公司 | 用於在基板上形成層之方法、及半導體處理系統 |
TW202229620A (zh) | 2020-11-12 | 2022-08-01 | 特文特大學 | 沉積系統、用於控制反應條件之方法、沉積方法 |
TW202229795A (zh) | 2020-11-23 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | 具注入器之基板處理設備 |
TW202235649A (zh) | 2020-11-24 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | 填充間隙之方法與相關之系統及裝置 |
TW202235675A (zh) | 2020-11-30 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | 注入器、及基板處理設備 |
KR102812468B1 (ko) | 2020-12-03 | 2025-05-26 | 삼성전자주식회사 | 반도체 장치 및 이를 포함하는 전자 시스템 |
KR102824045B1 (ko) | 2020-12-10 | 2025-06-23 | 에스케이하이닉스 주식회사 | 반도체 장치 및 반도체 장치의 제조 방법 |
US12255053B2 (en) | 2020-12-10 | 2025-03-18 | Asm Ip Holding B.V. | Methods and systems for depositing a layer |
TW202233884A (zh) | 2020-12-14 | 2022-09-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成臨限電壓控制用之結構的方法 |
US11946137B2 (en) | 2020-12-16 | 2024-04-02 | Asm Ip Holding B.V. | Runout and wobble measurement fixtures |
TW202232639A (zh) | 2020-12-18 | 2022-08-16 | 荷蘭商Asm Ip私人控股有限公司 | 具有可旋轉台的晶圓處理設備 |
TW202231903A (zh) | 2020-12-22 | 2022-08-16 | 荷蘭商Asm Ip私人控股有限公司 | 過渡金屬沉積方法、過渡金屬層、用於沉積過渡金屬於基板上的沉積總成 |
TW202242184A (zh) | 2020-12-22 | 2022-11-01 | 荷蘭商Asm Ip私人控股有限公司 | 前驅物膠囊、前驅物容器、氣相沉積總成、及將固態前驅物裝載至前驅物容器中之方法 |
TW202226899A (zh) | 2020-12-22 | 2022-07-01 | 荷蘭商Asm Ip私人控股有限公司 | 具匹配器的電漿處理裝置 |
JP2022146819A (ja) | 2021-03-22 | 2022-10-05 | キオクシア株式会社 | 半導体記憶装置 |
USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
USD1023959S1 (en) | 2021-05-11 | 2024-04-23 | Asm Ip Holding B.V. | Electrode for substrate processing apparatus |
KR102645343B1 (ko) * | 2021-08-17 | 2024-03-08 | 서울대학교산학협력단 | 3차원 시냅스 소자 스택 및 이를 이용한 3차원 적층형 시냅스 어레이 및 3차원 시냅스 소자 스택의 제조 방법 |
USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
USD1060598S1 (en) | 2021-12-03 | 2025-02-04 | Asm Ip Holding B.V. | Split showerhead cover |
US11842789B2 (en) | 2022-03-30 | 2023-12-12 | Macronix International Co., Ltd. | Capacitor string structure, memory device and electronic device |
TWI803265B (zh) * | 2022-03-30 | 2023-05-21 | 旺宏電子股份有限公司 | 電容串結構、記憶體裝置及電子裝置 |
US12200925B2 (en) | 2022-04-19 | 2025-01-14 | Macronix International Co., Ltd. | Capacitors in memory devices |
CN117320441A (zh) * | 2022-06-22 | 2023-12-29 | 长鑫存储技术有限公司 | 半导体结构及其制造方法 |
CN117998856A (zh) * | 2022-11-01 | 2024-05-07 | 武汉新芯集成电路制造有限公司 | 存储块及其制程方法 |
Family Cites Families (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03270225A (ja) * | 1990-03-20 | 1991-12-02 | Fujitsu Ltd | 半導体装置の製造方法 |
JP3013407B2 (ja) * | 1990-08-08 | 2000-02-28 | ソニー株式会社 | 半導体メモリ装置 |
US5439848A (en) * | 1992-12-30 | 1995-08-08 | Sharp Microelectronics Technology, Inc. | Method for fabricating a self-aligned multi-level interconnect |
US6366519B1 (en) | 1995-03-09 | 2002-04-02 | Macronix International Co., Ltd. | Regulated reference voltage circuit for flash memory device and other integrated circuit applications |
US6063688A (en) | 1997-09-29 | 2000-05-16 | Intel Corporation | Fabrication of deep submicron structures and quantum wire transistors using hard-mask transistor width definition |
US6034882A (en) | 1998-11-16 | 2000-03-07 | Matrix Semiconductor, Inc. | Vertically stacked field programmable nonvolatile memory and method of fabrication |
JP5792918B2 (ja) | 2000-08-14 | 2015-10-14 | サンディスク・スリー・ディ・リミテッド・ライアビリティ・カンパニーSandisk 3D Llc | 高集積メモリデバイス |
US6891262B2 (en) | 2001-07-19 | 2005-05-10 | Sony Corporation | Semiconductor device and method of producing the same |
US7081377B2 (en) | 2002-06-27 | 2006-07-25 | Sandisk 3D Llc | Three-dimensional memory |
EP1537584B1 (en) | 2002-09-11 | 2017-10-25 | Ovonyx Memory Technology, LLC | Programming a phase-change material memory |
US6933224B2 (en) | 2003-03-28 | 2005-08-23 | Micron Technology, Inc. | Method of fabricating integrated circuitry |
US6879505B2 (en) | 2003-03-31 | 2005-04-12 | Matrix Semiconductor, Inc. | Word line arrangement having multi-layer word line segments for three-dimensional memory array |
DE20321085U1 (de) | 2003-10-23 | 2005-12-29 | Commissariat à l'Energie Atomique | Phasenwechselspeicher, Phasenwechselspeicheranordnung, Phasenwechselspeicherzelle, 2D-Phasenwechselspeicherzellen-Array, 3D-Phasenwechselspeicherzellen-Array und Elektronikbaustein |
US6906940B1 (en) | 2004-02-12 | 2005-06-14 | Macronix International Co., Ltd. | Plane decoding method and device for three dimensional memories |
US7378702B2 (en) | 2004-06-21 | 2008-05-27 | Sang-Yun Lee | Vertical memory device structures |
US7301818B2 (en) | 2005-09-12 | 2007-11-27 | Macronix International Co., Ltd. | Hole annealing methods of non-volatile memory cells |
US7495294B2 (en) | 2005-12-21 | 2009-02-24 | Sandisk Corporation | Flash devices with shared word lines |
US7351666B2 (en) | 2006-03-17 | 2008-04-01 | International Business Machines Corporation | Layout and process to contact sub-lithographic structures |
JP4909735B2 (ja) | 2006-06-27 | 2012-04-04 | 株式会社東芝 | 不揮発性半導体メモリ |
JP2008078404A (ja) | 2006-09-21 | 2008-04-03 | Toshiba Corp | 半導体メモリ及びその製造方法 |
KR101169396B1 (ko) | 2006-12-22 | 2012-07-30 | 삼성전자주식회사 | 비휘발성 메모리 소자 및 그 동작 방법 |
ITRM20070107A1 (it) | 2007-02-27 | 2008-08-28 | Micron Technology Inc | Sistema di inibizione di autoboost locale con linea di parole schermata |
US7382647B1 (en) | 2007-02-27 | 2008-06-03 | International Business Machines Corporation | Rectifying element for a crosspoint based memory array architecture |
US7560785B2 (en) | 2007-04-27 | 2009-07-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device having multiple fin heights |
US7646625B2 (en) | 2007-06-29 | 2010-01-12 | Qimonda Ag | Conditioning operations for memory cells |
JP2009016400A (ja) * | 2007-06-29 | 2009-01-22 | Toshiba Corp | 積層配線構造体及びその製造方法並びに半導体装置及びその製造方法 |
US7749855B2 (en) | 2007-08-14 | 2010-07-06 | Spansion Llc | Capacitor structure used for flash memory |
KR20090037690A (ko) | 2007-10-12 | 2009-04-16 | 삼성전자주식회사 | 비휘발성 메모리 소자, 그 동작 방법 및 그 제조 방법 |
US8098517B2 (en) | 2007-10-31 | 2012-01-17 | Ovonyx, Inc. | Method of restoring variable resistance memory device |
KR20090079694A (ko) | 2008-01-18 | 2009-07-22 | 삼성전자주식회사 | 비휘발성 메모리 소자 및 그 제조 방법 |
US7910973B2 (en) | 2008-03-17 | 2011-03-22 | Kabushiki Kaisha Toshiba | Semiconductor storage device |
US8106519B2 (en) | 2008-04-22 | 2012-01-31 | Macronix International Co., Ltd. | Methods for pitch reduction |
JP2009295694A (ja) | 2008-06-03 | 2009-12-17 | Toshiba Corp | 不揮発性半導体記憶装置及びその製造方法 |
JP5143280B2 (ja) | 2008-06-11 | 2013-02-13 | エヌエックスピー ビー ヴィ | 相変化メモリ及び制御方法 |
KR101434588B1 (ko) * | 2008-06-11 | 2014-08-29 | 삼성전자주식회사 | 반도체 장치 및 그 제조 방법 |
US7915667B2 (en) | 2008-06-11 | 2011-03-29 | Qimonda Ag | Integrated circuits having a contact region and methods for manufacturing the same |
KR20080091416A (ko) * | 2008-08-14 | 2008-10-13 | 김성동 | 3차원 반도체 장치, 그 제조 방법 및 동작 방법 |
US8399336B2 (en) * | 2008-08-19 | 2013-03-19 | International Business Machines Corporation | Method for fabricating a 3D integrated circuit device having lower-cost active circuitry layers stacked before higher-cost active circuitry layer |
US8680650B2 (en) | 2009-02-03 | 2014-03-25 | Micron Technology, Inc. | Capacitor structures having improved area efficiency |
JP5305980B2 (ja) * | 2009-02-25 | 2013-10-02 | 株式会社東芝 | 不揮発性半導体記憶装置、及びその製造方法 |
TWI433302B (zh) | 2009-03-03 | 2014-04-01 | Macronix Int Co Ltd | 積體電路自對準三度空間記憶陣列及其製作方法 |
KR101565798B1 (ko) | 2009-03-31 | 2015-11-05 | 삼성전자주식회사 | 콘택 패드와 도전 라인과의 일체형 구조를 가지는 반도체 소자 |
US8829646B2 (en) | 2009-04-27 | 2014-09-09 | Macronix International Co., Ltd. | Integrated circuit 3D memory array and manufacturing method |
US8036016B2 (en) | 2009-09-01 | 2011-10-11 | Micron Technology, Inc. | Maintenance process to enhance memory endurance |
US8154128B2 (en) | 2009-10-14 | 2012-04-10 | Macronix International Co., Ltd. | 3D integrated circuit layer interconnect |
US8383512B2 (en) | 2011-01-19 | 2013-02-26 | Macronix International Co., Ltd. | Method for making multilayer connection structure |
KR101624975B1 (ko) * | 2009-11-17 | 2016-05-30 | 삼성전자주식회사 | 3차원 반도체 기억 소자 |
KR20110107190A (ko) | 2010-03-24 | 2011-09-30 | 삼성전자주식회사 | 저항성 메모리의 마모 셀 관리 방법 및 장치 |
US8941166B2 (en) | 2010-12-29 | 2015-01-27 | Macronix International Co., Ltd. | Multiple patterning method |
US8432719B2 (en) | 2011-01-18 | 2013-04-30 | Macronix International Co., Ltd. | Three-dimensional stacked and-type flash memory structure and methods of manufacturing and operating the same hydride |
US8724390B2 (en) * | 2011-01-19 | 2014-05-13 | Macronix International Co., Ltd. | Architecture for a 3D memory array |
US8598032B2 (en) | 2011-01-19 | 2013-12-03 | Macronix International Co., Ltd | Reduced number of masks for IC device with stacked contact levels |
US9048341B2 (en) | 2011-03-16 | 2015-06-02 | Macronix International Co., Ltd. | Integrated circuit capacitor and method |
US8488387B2 (en) | 2011-05-02 | 2013-07-16 | Macronix International Co., Ltd. | Thermally assisted dielectric charge trapping flash |
US8824212B2 (en) | 2011-05-02 | 2014-09-02 | Macronix International Co., Ltd. | Thermally assisted flash memory with segmented word lines |
US8891293B2 (en) | 2011-06-23 | 2014-11-18 | Macronix International Co., Ltd. | High-endurance phase change memory devices and methods for operating the same |
US9082555B2 (en) | 2011-08-22 | 2015-07-14 | Micron Technology, Inc. | Structure comprising multiple capacitors and methods for forming the structure |
JP2013065382A (ja) | 2011-09-20 | 2013-04-11 | Toshiba Corp | 不揮発性半導体記憶装置 |
KR101868047B1 (ko) * | 2011-11-09 | 2018-06-19 | 에스케이하이닉스 주식회사 | 비휘발성 메모리 장치 및 그 제조 방법 |
US8933502B2 (en) * | 2011-11-21 | 2015-01-13 | Sandisk Technologies Inc. | 3D non-volatile memory with metal silicide interconnect |
US8643142B2 (en) * | 2011-11-21 | 2014-02-04 | Sandisk Technologies Inc. | Passive devices for 3D non-volatile memory |
US8951859B2 (en) * | 2011-11-21 | 2015-02-10 | Sandisk Technologies Inc. | Method for fabricating passive devices for 3D non-volatile memory |
JP2013207123A (ja) | 2012-03-29 | 2013-10-07 | Toshiba Corp | 半導体装置 |
US9064563B2 (en) | 2013-02-08 | 2015-06-23 | Seagate Technology Llc | Optimization of variable resistance memory cells |
JP2014187324A (ja) | 2013-03-25 | 2014-10-02 | Toshiba Corp | 不揮発性半導体記憶装置および不揮発性半導体記憶装置の製造方法 |
KR102193685B1 (ko) | 2014-05-02 | 2020-12-21 | 삼성전자주식회사 | 수직 구조의 비휘발성 메모리 소자 |
US9336878B2 (en) | 2014-06-18 | 2016-05-10 | Macronix International Co., Ltd. | Method and apparatus for healing phase change memory devices |
KR20170022477A (ko) | 2015-08-20 | 2017-03-02 | 에스케이하이닉스 주식회사 | 반도체 메모리 장치 |
-
2012
- 2012-05-21 JP JP2012115192A patent/JP2012244180A/ja active Pending
-
2015
- 2015-06-15 US US14/739,717 patent/US20160365407A1/en not_active Abandoned
- 2015-08-14 CN CN201510498244.1A patent/CN106252353B/zh active Active
- 2015-08-17 TW TW104126756A patent/TWI566447B/zh active
-
2016
- 2016-09-28 US US15/279,203 patent/US10388720B2/en active Active
- 2016-10-05 US US15/285,808 patent/US9716137B1/en active Active
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160351576A1 (en) * | 2015-05-26 | 2016-12-01 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US11963360B2 (en) | 2015-05-26 | 2024-04-16 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US10431591B2 (en) | 2017-02-01 | 2019-10-01 | Micron Technology, Inc. | NAND memory arrays |
US10541252B2 (en) | 2017-02-01 | 2020-01-21 | Micron Technology, Inc. | Memory arrays, and methods of forming memory arrays |
US10340286B2 (en) * | 2017-02-01 | 2019-07-02 | Micron Technology, Inc. | Methods of forming NAND memory arrays |
US11201164B2 (en) | 2017-02-01 | 2021-12-14 | Micron Technology, Inc. | Memory devices |
CN108735756A (zh) * | 2017-04-13 | 2018-11-02 | Asm知识产权私人控股有限公司 | 衬底处理方法及通过所述衬底处理方法制造的半导体器件 |
US10332936B2 (en) | 2017-04-19 | 2019-06-25 | Macronix International Co., Ltd. | 3D stacking semiconductor device |
US10600796B2 (en) | 2017-06-15 | 2020-03-24 | Micron Technology, Inc. | Methods of forming staircase structures |
US10930659B2 (en) * | 2017-06-15 | 2021-02-23 | Micron Technology, Inc. | Methods of improving adhesion of photoresist in a staircase structure and methods of forming a staircase structure |
US20190355735A1 (en) * | 2017-06-15 | 2019-11-21 | Micron Technology, Inc. | Methods of improving adhesion of photoresist in a staircase structure and methods of forming a staircase structure |
US11678481B2 (en) | 2017-06-15 | 2023-06-13 | Micron Technology, Inc. | Methods of forming a staircase structure |
US12232314B2 (en) | 2017-06-15 | 2025-02-18 | Lodestar Licensing Group Llc | Methods of forming a staircase structure |
CN112951836A (zh) * | 2019-11-26 | 2021-06-11 | 铠侠股份有限公司 | 半导体存储装置 |
EP4432804A1 (en) * | 2023-03-17 | 2024-09-18 | Samsung Electronics Co., Ltd. | Semiconductor device, electronic system including the same, and method of fabricating the same |
EP4465297A1 (en) * | 2023-05-18 | 2024-11-20 | Macronix International Co., Ltd. | Memory including thermal anneal circuits and methods for operating the same |
Also Published As
Publication number | Publication date |
---|---|
TW201644079A (en) | 2016-12-16 |
US20170018570A1 (en) | 2017-01-19 |
CN106252353A (zh) | 2016-12-21 |
TWI566447B (zh) | 2017-01-11 |
US10388720B2 (en) | 2019-08-20 |
US9716137B1 (en) | 2017-07-25 |
CN106252353B (zh) | 2019-09-03 |
JP2012244180A (ja) | 2012-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10388720B2 (en) | Capacitor with 3D NAND memory | |
US10658374B2 (en) | Vertical semiconductor device | |
US11653500B2 (en) | Memory array contact structures | |
US9373633B2 (en) | Methods of forming non-volatile memory devices including vertical NAND strings | |
KR102635442B1 (ko) | 반도체 장치 및 그 제조방법 | |
US8383512B2 (en) | Method for making multilayer connection structure | |
US11264399B2 (en) | Semiconductor device and method of manufacturing the same | |
US8574992B2 (en) | Contact architecture for 3D memory array | |
US9236346B2 (en) | 3-D IC device with enhanced contact area | |
US12336179B2 (en) | Semiconductor device and manufacturing method of the semiconductor device | |
US9425209B1 (en) | Multilayer 3-D structure with mirror image landing regions | |
KR20140076797A (ko) | 반도체 소자 및 그 제조 방법 | |
US11903183B2 (en) | Conductive line contact regions having multiple multi-direction conductive lines and staircase conductive line contact structures for semiconductor devices | |
KR102634441B1 (ko) | 반도체 장치의 제조방법 | |
CN111009528A (zh) | 三维半导体存储器装置 | |
US20230027955A1 (en) | Non-volatile memory device | |
CN106601751B (zh) | 具有镜像落着区的多层三维结构及集成电路 | |
KR20120131115A (ko) | 다층 연결 구조 및 이의 제조 방법 | |
CN103094201B (zh) | 存储器装置及其制造方法 | |
US20230225127A1 (en) | Semiconductor device | |
US20250280540A1 (en) | Semiconductor device and manufacturing method of the semiconductor device | |
US20250056807A1 (en) | Semiconductor devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MACRONIX INTERNATIONAL CO., LTD., TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LUE, HANG-TING;YEH, TENG-HAO;REEL/FRAME:035839/0089 Effective date: 20150611 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |