US20160365407A1 - Capacitor With 3D NAND Memory - Google Patents

Capacitor With 3D NAND Memory Download PDF

Info

Publication number
US20160365407A1
US20160365407A1 US14/739,717 US201514739717A US2016365407A1 US 20160365407 A1 US20160365407 A1 US 20160365407A1 US 201514739717 A US201514739717 A US 201514739717A US 2016365407 A1 US2016365407 A1 US 2016365407A1
Authority
US
United States
Prior art keywords
capacitor terminal
strips
stack
terminal strips
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/739,717
Other languages
English (en)
Inventor
Hang-Ting Lue
Teng-Hao Yeh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macronix International Co Ltd
Original Assignee
Macronix International Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/049,303 external-priority patent/US8598032B2/en
Priority claimed from US13/114,931 external-priority patent/US8383512B2/en
Application filed by Macronix International Co Ltd filed Critical Macronix International Co Ltd
Assigned to MACRONIX INTERNATIONAL CO., LTD. reassignment MACRONIX INTERNATIONAL CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LUE, HANG-TING, YEH, TENG-HAO
Priority to CN201510498244.1A priority Critical patent/CN106252353B/zh
Priority to TW104126756A priority patent/TWI566447B/zh
Priority to US15/279,203 priority patent/US10388720B2/en
Priority to US15/285,808 priority patent/US9716137B1/en
Publication of US20160365407A1 publication Critical patent/US20160365407A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D1/00Resistors, capacitors or inductors
    • H10D1/60Capacitors
    • H10D1/68Capacitors having no potential barriers
    • H10D1/692Electrodes
    • H10D1/711Electrodes having non-planar surfaces, e.g. formed by texturisation
    • H10D1/716Electrodes having non-planar surfaces, e.g. formed by texturisation having vertical extensions
    • H01L28/60
    • H01L27/0629
    • H01L27/11526
    • H01L27/11556
    • H01L27/11573
    • H01L27/11582
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B41/27Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/40Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/50Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the boundary region between the core region and the peripheral circuit region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/40EEPROM devices comprising charge-trapping gate insulators characterised by the peripheral circuit region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/50EEPROM devices comprising charge-trapping gate insulators characterised by the boundary region between the core and peripheral circuit regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D1/00Resistors, capacitors or inductors
    • H10D1/60Capacitors
    • H10D1/68Capacitors having no potential barriers
    • H10D1/692Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/80Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
    • H10D84/811Combinations of field-effect devices and one or more diodes, capacitors or resistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D89/00Aspects of integrated devices not covered by groups H10D84/00 - H10D88/00
    • H10D89/10Integrated device layouts

Definitions

  • Capacitors are electronic devices including two terminals separated by insulating material. When there is a voltage difference between the two terminals, an electric field is created between the two terminals thereby storing electrical energy. The amount of electrical charge that can be stored on a capacitor per volt across the terminals is referred to as capacitance. Terminals are typically in the form of plates of various shapes, surface contours and sizes. The capacitance is generally a function of the dielectric constant ⁇ of the dielectric layer, directly proportional to the area of the opposed terminals and inversely proportional to the distance between the terminals. Placing two or more capacitors in parallel results in a total capacitance of the combination that is equal to the sum of the capacitances of the individual capacitors.
  • a stack of capacitors connected in parallel has a low area footprint from the bottom capacitor in the stack of capacitors, and yet a large capacitance from the summed capacitance of the capacitors in the stack connected in parallel.
  • the stacked capacitor is fabricated by many steps which results in increased complexity and cost of the overall integrated circuit. It would be desirable to take advantage of the low area footprint, large capacitance of the stacked capacitor, while minimizing additional fabrication complexity and cost resulting from the addition of the stacked capacitor to an integrated circuit.
  • Various aspects of the technology involve integrated circuits having both a 3D NAND memory array with a stack of conductive strips, and a stacked capacitor with a stack of capacitor terminal strips. Because the integrated circuit is already being fabricated to include a 3D NAND array, overall complexity is changed little from fabricating stacks of conductive strips for a capacitor in addition to the NAND memory array.
  • One aspect of the technology includes an integrated circuit with a substrate, a 3D NAND memory array with a stack of conductive strips, and a stacked capacitor with a stack of capacitor terminal strips. Multiple conductive strips in the stack of conductive strips, and multiple capacitor terminal strips of the stack of capacitor terminal strips, share a same plurality of vertical distances from the substrate.
  • the stack of conductive strips is at least one of: transistor channels in the 3D NAND memory array, conductors routing signals that select memory cells in the 3D NAND memory array, and conductors routing output from the 3D NAND memory array.
  • the 3D NAND memory array is a vertical gate memory array, and the conductive strips in the stack are NAND transistor channels in the vertical gate memory array.
  • the 3D NAND memory array is a vertical channel memory array, and the conductive strips in the stack are word lines in the vertical channel memory array.
  • the stack of capacitor terminal strips includes a first plurality of capacitor terminal strips alternating with a second plurality of capacitor terminal strips.
  • the first plurality of capacitor terminal strips are electrically connected together and the second plurality of capacitor terminal strips are electrically connected together.
  • the stack of capacitor terminal strips has a first end and a second end. Multiple capacitor terminal strips in the stack of capacitor terminal strips are electrically connected together at the first end, and multiple capacitor terminal strips in the stack of capacitor terminal strips are electrically connected together at the second end.
  • the embodiment further comprises a conductive plug electrically connected to at least one of the capacitor terminal strips at an intermediate point in between the first end and the second end.
  • the stack of capacitor terminal strips is one of a plurality of stacks of capacitor terminal strips having lengths between first ends and second ends.
  • the plurality of stacks of capacitor terminal strips include the first plurality of capacitor terminal strips alternating with the second plurality of capacitor terminal strips.
  • the first plurality of capacitor terminal strips in the plurality of stacks of capacitor terminal strips are electrically coupled together via the first ends and at intermediate points in between the first ends and second ends.
  • FIG. 1 Another aspect of the technology is a computer readable medium comprising a layout for an integrated circuit including designs for a plurality of masks.
  • the integrated circuit includes a 3D NAND memory array with a stack of conductive strips as described herein, and a capacitor with a stack of capacitor terminal strips as described herein. Multiple masks in the plurality of masks each define at least one conductive strip in the stack of conductive strips and at least one capacitor terminal strip in the stack of capacitor terminal strips.
  • a further aspect of the technology is a method of making an integrated circuit comprises:
  • FIG. 1 is an end view of stacks of conductive material for both a capacitor and a 3D NAND array on a same substrate.
  • FIG. 2 is a side view of a capacitor with a stack of conductive material from FIG. 1 .
  • FIGS. 3 and 4 are circuit diagrams of different ways to interconnect individual capacitors in a stack of conductive material, resulting in different overall capacitances of the stack of conductive material as a whole.
  • FIG. 5 is a perspective illustration of a three-dimensional, vertical gate NAND-flash memory device with stacks of conductive material from FIG. 1 .
  • FIG. 6 is a perspective illustration of an alternative three-dimensional, vertical channel NAND-flash memory device with stacks of conductive material from FIG. 1 .
  • FIGS. 7-8 are steps in a process for forming the stacks of conductive material for both a capacitor and a 3D NAND array on a same substrate from FIG. 1 .
  • FIG. 9 is a top view of a capacitor with stacks of conductive material, with an overlay of mask regions defining varying etch depths for electrical conductors.
  • FIG. 10 is a side view of a capacitor with stacks of conductive material.
  • FIGS. 11-14 illustrate a sequence of steps creating electrical conductors at an interconnect region in contact with extensions of the terminal layers, such as shown in the example of FIG. 10 , providing electrical access to a serpentine, stacked plate capacitor assembly.
  • FIG. 15 is a simplified block diagram of an integrated circuit with stacks of conductive material for both a capacitor and a 3D NAND array on a same substrate.
  • FIG. 16 is a simplified block diagram of a computer system that implements software incorporating aspects of the present technology.
  • FIG. 16A shows a nontransitory computer readable medium storing computer readable data with aspects of the present technology.
  • Capacitance is very useful electronic circuitry, but is expensive and has manufacturing difficulties when manufactured in semiconductors. Capacitance can be used to help reduce voltage variations and can be used to help save data in memory, such as SRAM, DRAM and Flash, either during normal operations or due to unexpected power failures. While there are system-level products for providing such capacitance, there may be advantages to providing it at the semiconductor level, including system cost, power and reliability.
  • FIG. 1 is an end view of stacks of conductive material for both a capacitor and a 3D NAND array on a same substrate.
  • the strips of conductive material and strips of insulator extend into and out of the page to the extent of the lengths of the strips of conductive material and strips of insulator.
  • the same insulator layer 10 is the base for stacks of conductive material that are in both a capacitor and a 3D NAND array. Insulator layer 10 is over a substrate layer 9 . Stacks 15 a and 15 b are included in capacitor devices. Stacks 15 c and 15 d are included in a 3D NAND array.
  • the zigzag lines through the insulator layer 10 indicate that the capacitor and a 3D NAND array are spaced apart on the same insulator layer 10 .
  • the stacks are spaced apart on a same conductive substrate, and the bottom of each stack is an insulator strip.
  • strips of conductive material alternate with strips of insulator.
  • an insulator strip 12 a electrically insulates proximate strips of conductive material 11 a and 13 a in the same stack from each other.
  • Insulator strip 14 a is above top-most conductive material strip 13 a .
  • a same arrangement of insulator strips and conductive material strips is in stacks 15 b, 15 c, and 15 d.
  • Conductive material strips 13 a , 13 b , 13 c , and 13 d share a same plane position and thus have a same vertical position relative to each other.
  • Conductive material strips 11 a , 11 b , 11 c , and 11 d also share a same plane position and thus have a same vertical position relative to each other.
  • Conductive material strips 13 a , 13 b , 13 c , and 13 d have a different plane position relative to conductive material strips 11 a , 11 b , 11 c , and 11 d ; thus conductive material strips 13 a , 13 b , 13 c , and 13 d have a different vertical position relative to conductive material strips 11 a, 11 b , 11 c, and 11 d.
  • the bottom insulator strip on the common conductive substrate isolates the conductive substrate shared by multiple stacks from the bottom-most conductive strip in each stack.
  • the strips of conductive material in both the capacitor terminal stacks and the 3D NAND array can be implemented using polysilicon or epitaxial single crystal silicon having n-type or p-type doping.
  • the insulator strips can be implemented for example using silicon dioxide, other silicon oxides, or silicon nitride.
  • the 3D NAND array of the integrated circuit includes stacks 15 c and 15 d of strips of conductive material. So complexity and cost of the integrated circuit is not appreciably increased from the further inclusion of stacks 15 a and 15 b of strips of conductive material as capacitors of the integrated circuit.
  • FIG. 2 is a side view of a capacitor with a stack of conductive material from FIG. 1 .
  • the strips of conductive material and strips of insulator extend into and out of the page to the extent of the widths of the strips of conductive material and strips of insulator.
  • Insulator layer 10 is the base for the stack of conductive material that in a capacitor device. Insulator layer 10 is over a substrate layer 9 . Additional stacks of conductive material for additional capacitor device can be elsewhere on the insulator layer 10 . Also, a 3D NAND array with multiple stacks of conductive material is elsewhere on the insulator layer 10 . In another embodiment, the stack is on a conductive substrate, and the bottom of each stack is an insulator strip. The capacitor suppresses parasitic capacitance by omitting the well-to-substrate capacitance of well capacitors, which could be in the range of about tenths of picofarads.
  • the stack strips of conductive material alternate with strips of insulator.
  • the stack includes capacitor terminal strip 1 21 , capacitor terminal strip 2 23 , capacitor terminal strip 3 25 , capacitor terminal strip 4 27 , capacitor terminal strip 5 29 , capacitor terminal strip 6 31 , capacitor terminal strip 7 33 , and capacitor terminal strip 8 35 .
  • the stack also includes insulator strip 1 22 , insulator strip 2 24 , insulator strip 3 26 , insulator strip 4 28 , insulator strip 5 30 , insulator strip 6 32 , insulator strip 7 34 , and insulator strip 8 36 . Accordingly, the capacitor terminal strips alternate with insulator strips.
  • An insulator strip electrically insulates proximate strips capacitor terminal strips in the same stack from each other.
  • the strips of conductive material in both the capacitor terminal stacks and the 3D NAND array can be implemented using polysilicon or epitaxial single crystal silicon having n-type or p-type doping.
  • the insulator strips can be implemented for example using silicon dioxide, other silicon oxides, or silicon nitride.
  • Terminal connection circuit 1 37 and terminal connection circuit 2 38 electrically connect together capacitor terminal strips. Such terminal connection circuits electrically connect the multiple capacitors within the stack in parallel. As discussed below, the parallel connection sums the capacitances of the multiple capacitors within the stack, resulting in a high total capacitance of the stack.
  • Terminal connection circuit 1 37 electrically connects the “odd” capacitor terminal strips, including capacitor terminal strip 1 21 , capacitor terminal strip 3 25 , capacitor terminal strip 5 29 , and capacitor terminal strip 7 33 .
  • Terminal connection circuit 2 38 electrically connects the “even” capacitor terminal strips, including capacitor terminal strip 2 23 , capacitor terminal strip 4 27 , capacitor terminal strip 6 31 , and capacitor terminal strip 8 35 .
  • the stack includes seven capacitors each having a respective one of the insulator strips as the capacitor's intermediate dielectric.
  • the seven capacitors each have two terminals, including a first capacitor terminal which is one of the “odd” capacitor terminal strips, and a second capacitor terminal which is one of the “even” capacitor terminal strips.
  • Other embodiments have more or fewer capacitors in the stack. Other embodiments connect in parallel only a subset of the capacitors in the stack. Other embodiments connect in series two or more of the capacitors in the stack. Other embodiments connect in series two or more of the capacitors in the stack, and connect in parallel two or more of the capacitors in the stack. Other embodiments allow one or more of the intermediate terminals to float, to allow more leeway in the layout.
  • FIGS. 3 and 4 are circuit diagrams of different ways to interconnect individual capacitors in a stack of conductive material, resulting in different overall capacitances of the stack of conductive material as a whole.
  • FIG. 3 has four capacitors connected to electrical conductors 46 . 0 and 46 . 1 , 46 . 2 and 46 . 3 , 46 . 4 and 46 . 5 , and 46 . 6 and 46 . 7 .
  • the individual capacitors identified as C 01 , C 23 , C 45 and C 67 in FIG. 3 , can be placed in parallel.
  • electrical conductors 46 . 0 , 46 . 2 , 46 . 4 and 46 . 6 are shorted to one another as a first terminal 47 and electrical conductors 46 . 1 , 46 . 3 , 46 . 5 and 46 . 7 are shorted to one another as a second terminal 48 .
  • FIG. 4 shows each of capacitors C 01 , C 23 , C 45 and C 67 connected in series. While the total capacitance C T for the FIG. 4 example is less than the capacitance of any of the individual capacitors, placing the capacitors in series is useful when working with high voltages because each capacitor only sees a fraction of the total voltage.
  • Other embodiments can connect series-connected capacitors and parallel-connected capacitors.
  • FIG. 5 is a perspective illustration of a three-dimensional, vertical gate NAND-flash memory device with stacks of conductive material from FIG. 1 .
  • the device illustrated in FIG. 1 includes stacks of active lines in active layers of the array, alternating with insulating lines. Insulating material is removed from the drawing to expose additional structure. For example, insulating lines are removed between the semiconductor lines in the stacks, and between the stacks of semiconductor lines.
  • a multilayer array is formed on an insulating layer, and includes a plurality of word lines 125 - 1 , . . . , 125 -N conformal with the plurality of stacks.
  • the plurality of stacks includes semiconductor lines 112 , 113 , 114 , and 115 in multiple planes. Semiconductor lines in the same plane are electrically coupled together by bit line contact pads (e.g. 102 B).
  • the plurality of stacks are formed on a same substrate as stacks in capacitors, as shown in FIG. 1 .
  • Bit line contact pads 112 A, 113 A, 114 A, and 115 A are on the near end of the figure terminate semiconductor lines, such as semiconductor lines 112 , 113 , 114 , and 115 . As illustrated, these bit line contact pads 112 A, 113 A, 114 A, and 115 A are electrically connected by interlayer connectors to different bit lines in an overlying patterned metal layer, e.g. ML 3 , for connection to decoding circuitry to select planes within the array. These bit line contact pads 112 A, 113 A, 114 A, and 115 A can be formed over stepped substrate structures as discussed below, and patterned at the same time that the plurality of stacks is defined.
  • these bit line contact pads 102 B, 103 B, 104 B, and 105 B are electrically connected by interlayer connectors to different bit lines in an overlying patterned metal layer, e.g. ML 3 , for connection to decoding circuitry to select planes within the array.
  • These bit line contact pads 102 B, 103 B, 104 B, and 105 B can be formed over stepped substrate structures as discussed below, and patterned at the same time that the plurality of stacks is defined.
  • any given stack of semiconductor lines is coupled to either the bit line contact pads 112 A, 113 A, 114 A, and 115 A, or the bit line contact pads 102 B, 103 B, 104 B, and 105 B, but not both.
  • a stack of semiconductor bit lines has one of the two opposite orientations of bit line end-to-source line end orientation, or source line end-to-bit line end orientation.
  • the stack of semiconductor lines 112 , 113 , 114 , and 115 has bit line end-to-source line end orientation; and the stack of semiconductor lines 102 , 103 , 104 , and 105 has source line end-to-bit line end orientation.
  • the stack of semiconductor lines 112 , 113 , 114 , and 115 terminated by the bit line contact pads 112 A, 113 A, 114 A, and 115 A, passes through SSL gate structure 119 , ground select line GSL 126 , word lines 125 - 1 WL through 125 -N WL, ground select line GSL 127 , and is terminated at the other end by source line 128 .
  • the stack of semiconductor lines 112 , 113 , 114 , and 115 does not reach the bit line structures 102 B, 103 B, 104 B, and 105 B.
  • the stack of semiconductor lines 102 , 103 , 104 , and 105 terminated by the bit line contact pads 102 B, 103 B, 104 B, and 105 B, passes through SSL gate structure 109 , ground select line GSL 127 , word lines 125 -N WL through 125 - 1 WL, ground select line GSL 126 , and is terminated at the other end by a source line (obscured by other parts of the figure).
  • the stack of semiconductor lines 102 , 103 , 104 , and 105 does not reach the bit line structures 112 A, 113 A, 114 A, and 115 A.
  • a layer of memory material is disposed in interface regions at cross-points between surfaces of the semiconductor lines 112 - 115 and 102 - 105 and the plurality of word lines 125 - 1 through 125 - n.
  • Ground select lines GSL 126 and GSL 127 are conformal with the plurality of stacks, similar to the word lines.
  • Every stack of semiconductor lines is terminated at one end by bit line contact pads and at the other end by a source line.
  • the stack of semiconductor lines 112 , 113 , 114 , and 115 is terminated by bit line contact pads 112 A, 113 A, 114 A, and 115 A, and terminated on the other end by a source line 128 .
  • Bit lines and string select lines are formed at the metal layers ML 1 , ML 2 , and ML 3 .
  • Bit lines are coupled to a plane decoder (not shown) in the peripheral area on the circuit.
  • String select lines are coupled to a string select line decoder (not shown) in the peripheral area on the circuit.
  • the ground select lines GSL 126 and 127 can be patterned during the same step that the word lines 125 - 1 through 125 -n are defined. Ground select devices are formed at cross-points between surfaces of the plurality of stacks and ground select lines GSL 126 and 127 .
  • the SSL gate structures 119 and 109 can be patterned during the same step that the word lines 125 - 1 through 125 -n are defined. String select devices are formed at cross-points between surfaces of the plurality of stacks and string select (SSL) gate structures 119 and 109 . These devices are coupled to decoding circuitry for selecting the strings within particular stacks in the array.
  • FIG. 6 is a perspective illustration of an alternative three-dimensional, vertical channel NAND-flash memory device with stacks of conductive material from FIG. 1 .
  • the memory device includes an array of NAND strings of memory cells, and can be a double-gate vertical channel memory array (DGVC).
  • the memory device includes an integrated circuit substrate 201 , and a plurality of stacks of conductive strips alternating with insulating material.
  • the stacks include at least a bottom plane of conductive strips (GSL), a plurality of intermediate planes of conductive strips (WLs), and a top plane of conductive strips (SSLs).
  • the stacks are formed on a same substrate as stacks in capacitors, as shown in FIG. 1 .
  • a stack 210 includes a bottom plane of conductive strips (GSL), a plurality of intermediate planes of conductive strips (WLs) ranging from WL 0 to WL N-1 , and a top plane of conductive strips (SSLs), where N can be 8, 16, 32, 64 and so on.
  • the insulating material is removed from the drawing to expose additional structure. For example, the insulating material is removed between the conductive strips in the stacks, and is removed between the stacks of conductive strips.
  • a plurality of bit line structures is arranged orthogonally over, having surfaces conformal with, the plurality of stacks, including inter-stack semiconductor body elements 220 between the stacks and linking elements 230 over the stacks connecting the semiconductor body elements 220 .
  • the memory device includes memory elements in interface regions at cross-points 280 between side surfaces of the conductive strips in the plurality of intermediate planes (WLs) in the stacks and the inter-stack semiconductor body elements 220 of the plurality of bit line structures.
  • a reference conductor 260 is disposed between the bottom plane (GSL) of conductive strips and the integrated circuit substrate 201 .
  • At least one reference line structure is arranged orthogonally over the plurality of stacks, including inter-stack semiconductor elements 240 between the stacks in electrical communication with the reference conductor 260 , and linking elements 250 over the stacks 210 connecting the inter-stack semiconductor elements 240 .
  • the semiconductor elements 240 can have a higher conductivity than the semiconductor body elements 220 .
  • the memory device includes string select switches 290 at interface regions with the top plane of conductive strips, and reference select switches 270 at interface regions with the bottom plane (GSL) of conductive strips.
  • the memory device can further include decoding circuitry coupled to the conductive strips in the plurality of stacks.
  • the decoding circuitry can include word line decoding circuits, and string selection line decoding circuits coupled to the top plane of conductive strips (SSLs) in the plurality of stacks. String selection lines in the top plane of conductive strips are independently coupled to and controlled by the string selection line decoding circuits.
  • Conductive strips in the intermediate planes (WLs), and conductive strips in the bottom plane (GSL) are connected together to reduce decoder areas and consequently an overall size of the memory device. Conductive strips in the top plane (SSL) are individually decoded to allow correct bit line decoding.
  • the memory device can include contact pads which provide linking elements, such as contact pads 261 and 262 , connecting sets of word lines in the intermediate planes (WL), and interlayer connectors, such as interlayer connectors 271 and 272 , coupled to landing areas in the contact pads 261 and 262 , and to the word line decoding circuits (not shown).
  • the landing areas are at interface regions between bottom surfaces of the interlayer connectors and top surfaces of the contact pads.
  • interlayer connectors e.g. 271 and 272 for sets of word lines at multiple layers in the plurality of intermediate planes are arranged in a staircase structure, and are connected to landing areas at two different layers in the plurality of intermediate planes.
  • the contact pads can be formed over a stepped substrate structure as described below.
  • the staircase structure can be formed in a vertical contact region near the boundary of a memory cell region for the array of memory cells and a peripheral region for components of peripheral circuits.
  • the vertical contact region can include contact pads 261 and 262 , and interlayer connectors 271 and 272 .
  • the memory device can include ground selection line decoding circuits coupled to the at least one bottom plane (GSL) of conductive strips in the plurality of stacks.
  • the memory device can include contact pads, such as a contact pad 263 , connecting sets of ground selection lines in the bottom plane (GSL) of conductive strips, and interlayer connectors, such as an interlayer connector 273 , coupled to landing areas in the contact pads, and to the ground selection line decoding circuits (not shown).
  • the memory device includes a first overlying conductive layer (not shown) connected to the plurality of bit line structures, including a plurality of global bit lines coupled to sensing circuits.
  • the memory device also includes a second overlying conductive layer (not shown) connected to the at least one reference conductor structure, coupled to a reference voltage source.
  • Insulating layers in the stack can be the same as or different from the other layers.
  • Representative insulating materials that can be used include a silicon oxide, a silicon nitride, a silicon oxynitride, silicate, or other materials.
  • Low dielectric constant (low-k) materials having a dielectric constant smaller than that of silicon dioxide, such as SiCHO x can be used.
  • High dielectric constant (high-k) materials having a dielectric constant greater than that of silicon dioxide, such as HfO x , HfON, AlO x , RuO x , TiO x , can be used also.
  • Conductor or semiconductor layers in the stack can be the same as or different from the other layers.
  • Representative materials that can be used include semiconductors including undoped and doped polysilicon (using dopants such as As, P, B), combinations of semiconductor structures, silicides including TiSi, CoSi, oxide semiconductors, including InZnO, InGaZnO, and combinations of semiconductors and silicides.
  • Conductive layers in the stack can also be a metal, a conductive compound, or combinations of materials including Al, Cu, W, Ti, Co, Ni, TiN, TaN, TaA 1 N, and others.
  • FIGS. 7-8 are steps in a process for forming the stacks of conductive material for both a capacitor and a 3D NAND array on a same substrate from FIG. 1 .
  • FIG. 7 a structure is shown which results from alternating deposition of insulating layers 210 , 212 , 214 and semiconductor layers 211 , 213 formed using doped semiconductors for example in a blanket deposition in the array area of a chip.
  • the semiconductor layers 211 , 213 can be implemented using polysilicon or epitaxial single crystal silicon having n-type or p-type doping.
  • a typical thickness range of the semiconductor layers is from 200 to 500 angstroms.
  • Inter-level insulating layers 210 , 212 , 214 can be implemented for example using silicon dioxide, other silicon oxides, or silicon nitride. These layers can be formed in a variety of ways, including low pressure chemical vapor deposition LPCVD processes available in the art.
  • the zigzag lines through the insulator layer 210 indicate that the capacitor and a 3D NAND array are spaced apart on the same insulator layer 210 .
  • the stacks are spaced apart on a same conductive substrate, and the bottom of each stack is an insulator strip.
  • FIG. 8 shows the result of a first lithographic patterning step used to define a plurality of ridge-shaped stacks 250 of semiconductor strips, where the semiconductor strips are implemented using the material of the semiconductor layers 211 , 213 , and separated by the insulating layers 212 , 214 .
  • Deep, high aspect ratio trenches can be formed in the stack, supporting many layers, using lithography based processes applying a carbon hard mask and reactive ion etching.
  • the same insulator layer 210 is the base for stacks of conductive material that are in both a capacitor and a 3D NAND array.
  • Stack 215 a is included in a capacitor device.
  • Stack 15 b is included in a 3D NAND array.
  • Conductive material strips 213 a and 213 b share a same plane position and thus have a same vertical position relative to each other. Conductive material strips 211 a and 211 b also share a same plane position and thus have a same vertical position relative to each other. Conductive material strips 213 a and 213 b have a different plane position relative to conductive material strips 211 a and 211 b ; thus conductive material strips 213 a and 213 b have a different vertical position relative to conductive material strips 211 a and 211 b.
  • the zigzag lines through the insulator layer 210 indicate that the capacitor and a 3D NAND array are spaced apart on the same insulator layer 210 .
  • the stacks are spaced apart on a same conductive substrate, and the bottom of each stack is an insulator strip.
  • the capacitor structures can be made on what could be called a rough surface conductor so that the upper portion of substrate 12 and ridges 16 would be made of electrical conductors and thus act as an electrically conductive terminal layer.
  • the conductors can be a metal or combination of metals, include Al, Cu, W, Ti, Co, Ni.
  • the conductors can also be metal compounds, such as TiN/TaN/AlCu, or semiconductor compounds, such as heavily doped Si (using dopants such as As, P, B.); silicides including TiSi, CoSi.
  • typical dielectric materials include SiO 2 , SiN, SiON.
  • high dielectric constant (high-k) materials having a dielectric constant greater than that of silicon dioxide, such as HfO x , HfON, AlO x , RuO x , TiO x , are generally preferred.
  • the dielectric materials may also be a multi-layer, such as silicon oxide/silicon nitride, silicon oxide (ONO), silicon oxide, high-k dielectric, silicon oxide (O/high-k/O), which provide higher k values and create less concern about capacitance leakage.
  • a suitable deposition technique for dielectric layer 22 would be, for example, atomic layer deposition ALD, high density plasma chemical vapor deposition HDCVD, low density plasma chemical vapor deposition LPCVD, etc., depending on the chosen materials.
  • the process of depositing the terminal layers 20 and dielectric layers 22 proceeds until a desired number of serpentine plate capacitors 18 are created.
  • the size of trench width 26 and the ratio between trench width 26 and ridge height 32 typically limits the number of terminal and dielectric layers 20 , 22 .
  • the size of trench width 26 is usually greater than ridge width 30 .
  • FIG. 9 is a top view of a capacitor with stacks of conductive material, with an overlay of mask regions defining varying etch depths for electrical conductors.
  • the stacks of conductive strips extend into and out of the page to the extent of the heights of the stacks.
  • Other embodiments have fewer or more stacks of conductive material.
  • the stacks have lengths with a first end and a second end. The first ends are interconnected electrically by terminal connection circuit 1 37 and the second ends are interconnected electrically by terminal connection circuit 2 38 .
  • Terminal connection circuit 1 37 interconnects “odd” numbered layers of capacitor terminal strips.
  • Terminal connection circuit 2 38 interconnects “even” numbered layers of capacitor terminal strips. Such interconnection can be seen in FIG. 2 .
  • the dimensions of the capacitor terminal strips can be sufficiently large such that even the minimal resistance of the conductive strips results in unacceptably long RC delay.
  • An example RC delay calculation of the capacitor in FIG. 2 follows:
  • the capacitor terminal strips at different layers can be coupled to terminal connection circuit 1 37 or terminal connection circuit 2 38 not just at ends of the stacks, but also at an intermediate position between the first ends and the second ends.
  • Such more frequent terminal connections are called strap connections. Strap connections reduce the resistance L in the example RC delay calculation.
  • the strap connections are defined by the overlay of mask regions defining varying etch depths for the strap connections.
  • Mask region 306 defines an etch depth of 4 layers.
  • Mask regions 302 define an etch depth of 2 layers.
  • Mask regions 304 define an etch depth of 1 layer.
  • the etch depths vary from 0 layers to 7 layers, depending on the combination of mask regions 302 , 304 , and 306 which overlie each other above particular stacks of conductive material.
  • the conductive material stacks have the following combined etch depths for the strap connections.
  • 15 e has a 7 layer etch depth
  • 15 f has a 6 layer etch depth
  • 15 g has a 5 layer etch depth
  • 15 h has a 4 layer etch depth
  • 15 i has a 3 layer etch depth
  • 15 j has a 2 layer etch depth
  • 15 k has a 1 layer etch depth
  • 15 l has a 0 layer etch depth.
  • FIG. 10 is a side view of a capacitor with stacks of conductive material.
  • the different layers of conductive material are contacted by conductive plugs of different depths.
  • Such an array of conductive plugs can be used as the strap contacts or as the terminal connection circuits in FIG. 9 .
  • the staircase plugs can have the same pitch as the stacks of conductive material.
  • FIGS. 11-14 illustrate a sequence of steps creating electrical conductors at an interconnect region in contact with extensions of the terminal layers, such as shown in the example of FIG. 10 .
  • terminal layer extensions 40 are identified in the figures as terminal layer extensions 40 . 0 through 40 . 7 with the top most being 40 . 0 .
  • the locations for the electrical conductors 46 for contact with the corresponding terminal layer extensions 40 are labeled 0 through 7 in the figures. Similar numbering occurs with dielectric layer extensions 42 .
  • an interconnect region 44 is located at the top of one or more dielectric ridges 16 or at the bottom of one or more trenches 15 , then terminal conductors 46 will directly contact the terminal layers 20 with terminal layer extensions 40 being unnecessary.
  • a first photoresist mask 50 shown in FIG. 11 , is created on dielectric layer extension 42 . 0 at electrical conductor locations 0 , 2 , 4 , 6 and on the far side of location 7 .
  • the regions covered by photoresist masks are sometimes referred to as mask regions.
  • the regions not covered by first photoresist mask 50 are then etched one level through dielectric layer extension 42 . 0 and terminal layer extension 40 . 0 to create the structure shown in FIG. 11 .
  • first photoresist mask 50 is removed and then a second photoresist mask 54 is formed on the resulting structure of FIG.
  • third photoresist mask 58 is removed and an optional conformal dielectric barrier layer material can be deposited on the exposed surfaces, including over the stair stepped landing pads 60 , to create a dielectric barrier layer 62 .
  • Barrier layer 62 is used as an etching stop and is can be made of silicon nitride.
  • Dielectric fill layer 24 is deposited on the resulting structure. Appropriate vias are then formed through dielectric fill layer 24 and through the dielectric barrier layer 62 covering the landing pad 60 of each of terminal layer extensions 40 . 0 - 40 . 7 .
  • Electrical conductors 46 are then formed in the vias to provide electrical connection with landing pads 60 of terminal layer extensions 40 and thus with terminal layers 20 capacitors to create the structure shown in FIG. 14 .
  • Electrical conductors 46 can be made of the same electrical conductor materials discussed above. However, doped Si, W and Cu may be preferred because of the existing knowledge about chemical mechanical polishing of these electrically conductive materials. Electrical conductors 46 are identified as 46 . 0 - 46 . 7 corresponding to locations 0 - 7 .
  • More than one interconnect region 44 could be used to access the landing pads 60 at the various levels. Some or all of the landing pads 60 at the different levels could be accessed by the same or different interconnect region 44 .
  • the process for creating electrical conductors 46 can be referred to as a binary process, based on 2 0 .. . 2 n-1 withn being the number of etching steps. That is, first photoresist mask 50 alternatingly covers 2 0 landing pads 60 and exposes 2 0 landing pads 60 ; second photoresist mask 54 alternatingly covers 2 1 landing pads 60 and exposes 2 1 landing pads 60 ; third photoresist mask 58 alternatingly covers 2 2 landing pads 60 and exposes 2 2 landing pads 60 ; and so on.
  • n masks can be used to provide access to 2 n landing pads 60 for 2 n terminalconductors 46 .
  • using three masks provides access to 8 landing pads 60 for 8 terminal conductors 46 .
  • FIG. 15 is a simplified block diagram of an integrated circuit with stacks of conductive material for both a capacitor and a 3D NAND array on a same substrate.
  • the integrated circuit line 975 includes a 3D NAND flash memory array 960 , implemented as described herein, on a semiconductor substrate with stacks of conductive material and with capacitors with stacks of conductive material.
  • a row decoder 961 is coupled to a plurality of word lines 962 , and arranged along rows in the memory array 960 .
  • a column decoder 963 is coupled to a plurality of SSL lines 964 arranged along columns corresponding to stacks in the memory array 960 for reading and programming data from the memory cells in the array 960 .
  • a plane decoder 958 is coupled to a plurality of planes in the memory array 960 via bit lines 959 .
  • Addresses are supplied on bus 965 to column decoder 963 , row decoder 961 and plane decoder 958 .
  • Sense amplifiers and data-in structures in block 966 are coupled to the column decoder 963 in this example via data bus 967 .
  • Data is supplied via the data-in line 971 from input/output ports on the integrated circuit 975 or from other data sources internal or external to the integrated circuit 975 , to the data-in structures in block 966 .
  • other circuitry 974 is included on the integrated circuit, such as a general purpose processor or special purpose application circuitry, or a combination of modules providing system-on-a-chip functionality supported by the NAND flash memory cell array.
  • Data is supplied via the data-out line 972 from the sense amplifiers in block 966 to input/output ports on the integrated circuit 975 , or to other data destinations internal or external to the integrated circuit 975 .
  • a controller implemented in this example using bias arrangement state machine 969 controls the application of bias arrangement supply voltage generated or provided through the voltage supply or supplies in block 968 , such as read, erase, program, erase verify and program verify voltages.
  • the controller can be implemented using special-purpose logic circuitry as known in the art.
  • the controller comprises a general-purpose processor, which may be implemented on the same integrated circuit, which executes a computer program to control the operations of the device.
  • a combination of special-purpose logic circuitry and a general-purpose processor may be utilized for implementation of the controller.
  • the substrate also includes capacitors with stacks of conductive material 999 on the same substrate as the 3D NAND flash memory array 960 .
  • FIG. 16 is a simplified block diagram of a computer system 110 that implements software incorporating aspects of the present invention. While the present paper indicates individual steps carrying out specified operations, it will be appreciated that each step is actually implemented with software instructions that cause the computer system 110 to operate in the specified manner.
  • Computer system 210 typically includes a processor subsystem 214 which communicates with a number of peripheral devices via bus subsystem 212 .
  • peripheral devices may include a storage subsystem 224 , comprising a memory subsystem 226 and a file storage subsystem 228 , user interface input devices 222 , user interface output devices 220 , and a network interface subsystem 216 .
  • the input and output devices allow user interaction with computer system 210 .
  • Network interface subsystem 216 provides an interface to outside networks, including an interface to communication network 218 , and is coupled via communication network 218 to corresponding interface devices in other computer systems.
  • Communication network 218 may comprise many interconnected computer systems and communication links. These communication links may be wireline links, optical links, wireless links, or any other mechanisms for communication of information. While in one embodiment, communication network 218 is the Internet, in other embodiments, communication network 218 may be any suitable computer network.
  • NICs network interface cards
  • ICs integrated circuits
  • ICs integrated circuits
  • macrocells fabricated on a single integrated circuit chip with other components of the computer system.
  • User interface input devices 222 may include a keyboard, pointing devices such as a mouse, trackball, touchpad, or graphics tablet, a scanner, a touch screen incorporated into the display, audio input devices such as voice recognition systems, microphones, and other types of input devices.
  • pointing devices such as a mouse, trackball, touchpad, or graphics tablet
  • audio input devices such as voice recognition systems, microphones, and other types of input devices.
  • use of the term “input device” is intended to include all possible types of devices and ways to input information into computer system 210 or onto computer network 218 .
  • User interface output devices 220 may include a display subsystem, a printer, a fax machine, or nonvisual displays such as audio output devices.
  • the display subsystem may include a cathode ray tube (CRT), a flat panel device such as a liquid crystal display (LCD), a projection device, or some other mechanism for creating a visible image.
  • the display subsystem may also provide non visual display such as via audio output devices.
  • output device is intended to include all possible types of devices and ways to output information from computer system 110 to the user or to another machine or computer system.
  • Non-transitory storage subsystem 224 stores the basic programming and data constructs that provide the functionality of certain embodiments of the present technology.
  • the various modules implementing the functionality of certain embodiments of the invention may be stored in storage subsystem 224 .
  • Some examples are EDA programs for a cell or layout including stacks of conductive material for NAND memory arrays and capacitors on the same substrate as described herein. These software modules are generally executed by processor subsystem 214 .
  • Storage subsystem 224 also represents storage accessible to the computer system on which the various software mentioned herein are stored. In another embodiment some or all of the software is located on storage accessible to the computer system via the network 218 .
  • Memory subsystem 226 typically includes a number of memories including a main random access memory (RAM) 230 for storage of instructions and data during program execution and a read only memory (ROM) 232 in which fixed instructions are stored.
  • File storage subsystem 228 provides persistent storage for program and data files, and may include a hard disk drive, a floppy disk drive along with associated removable media, a CD ROM drive, an optical drive, or removable media cartridges.
  • the databases and modules implementing the functionality of certain embodiments of the invention may have been provided on a computer readable medium such as one or more CD-ROMs, and may be stored by file storage subsystem 228 .
  • the host memory 226 contains, among other things, computer instructions which, when executed by the processor subsystem 214 , cause the computer system to operate or perform functions as described herein. As used herein, processes and software that are said to run in or on “the host” or “the computer”, execute on the processor subsystem 214 in response to computer instructions and data in the host memory subsystem 226 including any other local or remote storage for such instructions and data.
  • Bus subsystem 212 provides a mechanism for letting the various components and subsystems of computer system 210 communicate with each other as intended. Although bus subsystem 212 is shown schematically as a single bus, alternative embodiments of the bus subsystem may use multiple busses.
  • Computer system 210 itself can be of varying types including a personal computer, a portable computer, a workstation, a computer terminal, a network computer, a television, a mainframe, a server farm, or any other data processing system or user device. Due to the ever changing nature of computers and networks, the description of computer system 210 is intended only as a specific example for purposes of illustrating certain embodiments of the present invention. Many other configurations of computer system 210 are possible having more or less components than the computer system depicted.
  • FIG. 16A shows a nontransitory computer readable medium 240 which stores a cell or layout 280 with stacks of conductive material in a NAND array and in a capacitor on a same substrate.
  • the nontransitory computer readable medium can be any of the nontransitory memories discussed in connection with the storage subsystem 224 .

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
US14/739,717 2011-03-16 2015-06-15 Capacitor With 3D NAND Memory Abandoned US20160365407A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201510498244.1A CN106252353B (zh) 2011-05-24 2015-08-14 具有三维nand存储器的电容器的集成电路及其制造方法
TW104126756A TWI566447B (zh) 2011-05-24 2015-08-17 具有三維反及記憶體之電容器
US15/279,203 US10388720B2 (en) 2011-03-16 2016-09-28 Capacitor with 3D NAND memory
US15/285,808 US9716137B1 (en) 2011-05-24 2016-10-05 3D capacitor with 3D memory

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/049,303 US8598032B2 (en) 2011-01-19 2011-03-16 Reduced number of masks for IC device with stacked contact levels
US13/114,931 US8383512B2 (en) 2011-01-19 2011-05-24 Method for making multilayer connection structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/279,203 Division US10388720B2 (en) 2011-03-16 2016-09-28 Capacitor with 3D NAND memory

Publications (1)

Publication Number Publication Date
US20160365407A1 true US20160365407A1 (en) 2016-12-15

Family

ID=47470261

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/739,717 Abandoned US20160365407A1 (en) 2011-03-16 2015-06-15 Capacitor With 3D NAND Memory
US15/279,203 Active 2035-09-06 US10388720B2 (en) 2011-03-16 2016-09-28 Capacitor with 3D NAND memory
US15/285,808 Active US9716137B1 (en) 2011-05-24 2016-10-05 3D capacitor with 3D memory

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/279,203 Active 2035-09-06 US10388720B2 (en) 2011-03-16 2016-09-28 Capacitor with 3D NAND memory
US15/285,808 Active US9716137B1 (en) 2011-05-24 2016-10-05 3D capacitor with 3D memory

Country Status (4)

Country Link
US (3) US20160365407A1 (enrdf_load_stackoverflow)
JP (1) JP2012244180A (enrdf_load_stackoverflow)
CN (1) CN106252353B (enrdf_load_stackoverflow)
TW (1) TWI566447B (enrdf_load_stackoverflow)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160351576A1 (en) * 2015-05-26 2016-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN108735756A (zh) * 2017-04-13 2018-11-02 Asm知识产权私人控股有限公司 衬底处理方法及通过所述衬底处理方法制造的半导体器件
US10332936B2 (en) 2017-04-19 2019-06-25 Macronix International Co., Ltd. 3D stacking semiconductor device
US10340286B2 (en) * 2017-02-01 2019-07-02 Micron Technology, Inc. Methods of forming NAND memory arrays
US20190355735A1 (en) * 2017-06-15 2019-11-21 Micron Technology, Inc. Methods of improving adhesion of photoresist in a staircase structure and methods of forming a staircase structure
US10541252B2 (en) 2017-02-01 2020-01-21 Micron Technology, Inc. Memory arrays, and methods of forming memory arrays
CN112951836A (zh) * 2019-11-26 2021-06-11 铠侠股份有限公司 半导体存储装置
EP4432804A1 (en) * 2023-03-17 2024-09-18 Samsung Electronics Co., Ltd. Semiconductor device, electronic system including the same, and method of fabricating the same
EP4465297A1 (en) * 2023-05-18 2024-11-20 Macronix International Co., Ltd. Memory including thermal anneal circuits and methods for operating the same

Families Citing this family (353)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
US8802201B2 (en) 2009-08-14 2014-08-12 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US9312155B2 (en) 2011-06-06 2016-04-12 Asm Japan K.K. High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules
US10854498B2 (en) 2011-07-15 2020-12-01 Asm Ip Holding B.V. Wafer-supporting device and method for producing same
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
US9017481B1 (en) 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
US20160376700A1 (en) 2013-02-01 2016-12-29 Asm Ip Holding B.V. System for treatment of deposition reactor
US10683571B2 (en) 2014-02-25 2020-06-16 Asm Ip Holding B.V. Gas supply manifold and method of supplying gases to chamber using same
US10167557B2 (en) 2014-03-18 2019-01-01 Asm Ip Holding B.V. Gas distribution system, reactor including the system, and methods of using the same
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US9657845B2 (en) 2014-10-07 2017-05-23 Asm Ip Holding B.V. Variable conductance gas distribution apparatus and method
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US9646987B2 (en) 2015-06-03 2017-05-09 Kabushiki Kaisha Toshiba Semiconductor memory device and production method thereof
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10600673B2 (en) 2015-07-07 2020-03-24 Asm Ip Holding B.V. Magnetic susceptor to baseplate seal
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
JP6549466B2 (ja) * 2015-10-22 2019-07-24 ラピスセミコンダクタ株式会社 半導体装置及び半導体装置の製造方法
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10343920B2 (en) 2016-03-18 2019-07-09 Asm Ip Holding B.V. Aligned carbon nanotubes
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10190213B2 (en) 2016-04-21 2019-01-29 Asm Ip Holding B.V. Deposition of metal borides
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US10032628B2 (en) 2016-05-02 2018-07-24 Asm Ip Holding B.V. Source/drain performance through conformal solid state doping
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US10714385B2 (en) 2016-07-19 2020-07-14 Asm Ip Holding B.V. Selective deposition of tungsten
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
KR102532607B1 (ko) 2016-07-28 2023-05-15 에이에스엠 아이피 홀딩 비.브이. 기판 가공 장치 및 그 동작 방법
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10643826B2 (en) 2016-10-26 2020-05-05 Asm Ip Holdings B.V. Methods for thermally calibrating reaction chambers
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10643904B2 (en) 2016-11-01 2020-05-05 Asm Ip Holdings B.V. Methods for forming a semiconductor device and related semiconductor device structures
US10134757B2 (en) 2016-11-07 2018-11-20 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
KR102546317B1 (ko) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. 기체 공급 유닛 및 이를 포함하는 기판 처리 장치
KR102551799B1 (ko) * 2016-12-06 2023-07-05 삼성전자주식회사 반도체 소자
KR102762543B1 (ko) 2016-12-14 2025-02-05 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
KR102700194B1 (ko) 2016-12-19 2024-08-28 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10655221B2 (en) 2017-02-09 2020-05-19 Asm Ip Holding B.V. Method for depositing oxide film by thermal ALD and PEALD
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
CN106876397B (zh) 2017-03-07 2020-05-26 长江存储科技有限责任公司 三维存储器及其形成方法
CN106920796B (zh) 2017-03-08 2019-02-15 长江存储科技有限责任公司 一种3d nand存储器件及其制造方法
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
USD876504S1 (en) 2017-04-03 2020-02-25 Asm Ip Holding B.V. Exhaust flow control ring for semiconductor deposition apparatus
TWI640063B (zh) * 2017-04-17 2018-11-01 旺宏電子股份有限公司 三維堆疊半導體裝置及其製造方法
KR102457289B1 (ko) 2017-04-25 2022-10-21 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법 및 반도체 장치의 제조 방법
CN108807452A (zh) * 2017-05-02 2018-11-13 上海磁宇信息科技有限公司 一种超高密度随机存储器架构
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
WO2018208719A1 (en) 2017-05-08 2018-11-15 Micron Technology, Inc. Memory arrays
KR102275052B1 (ko) 2017-05-08 2021-07-09 마이크론 테크놀로지, 인크 메모리 어레이
US12040200B2 (en) 2017-06-20 2024-07-16 Asm Ip Holding B.V. Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus
CN109119403B (zh) * 2017-06-22 2020-11-27 中芯国际集成电路制造(上海)有限公司 用于形成字线的掩膜版、半导体存储器件以及测试结构
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US10685834B2 (en) 2017-07-05 2020-06-16 Asm Ip Holdings B.V. Methods for forming a silicon germanium tin layer and related semiconductor device structures
KR20190009245A (ko) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. 반도체 소자 구조물 형성 방법 및 관련된 반도체 소자 구조물
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US10541333B2 (en) 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US11043499B2 (en) 2017-07-27 2021-06-22 Micron Technology, Inc. Memory arrays comprising memory cells
TWI815813B (zh) 2017-08-04 2023-09-21 荷蘭商Asm智慧財產控股公司 用於分配反應腔內氣體的噴頭總成
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
USD900036S1 (en) 2017-08-24 2020-10-27 Asm Ip Holding B.V. Heater electrical connector and adapter
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
KR102491945B1 (ko) 2017-08-30 2023-01-26 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
KR102401446B1 (ko) 2017-08-31 2022-05-24 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
JP2019047093A (ja) 2017-09-07 2019-03-22 東芝メモリ株式会社 半導体装置およびその製造方法
JP2019057623A (ja) 2017-09-21 2019-04-11 東芝メモリ株式会社 積層配線構造体及び積層配線構造体の製造方法
KR102630301B1 (ko) 2017-09-21 2024-01-29 에이에스엠 아이피 홀딩 비.브이. 침투성 재료의 순차 침투 합성 방법 처리 및 이를 이용하여 형성된 구조물 및 장치
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
WO2019066893A1 (en) * 2017-09-29 2019-04-04 Intel Corporation 2S-1C 4F2 CROSS-POINT MEMORY DRAM MATRIX
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
KR102393342B1 (ko) 2017-10-26 2022-05-03 삼성전자주식회사 반도체 메모리 및 방법
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
KR102443047B1 (ko) * 2017-11-16 2022-09-14 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 방법 및 그에 의해 제조된 장치
KR102408621B1 (ko) 2017-11-20 2022-06-15 삼성전자주식회사 커패시터를 포함하는 불휘발성 메모리 장치
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
CN111316417B (zh) 2017-11-27 2023-12-22 阿斯莫Ip控股公司 与批式炉偕同使用的用于储存晶圆匣的储存装置
CN108172565B (zh) * 2017-12-27 2020-12-11 上海艾为电子技术股份有限公司 一种mom电容及集成电路
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
WO2019142055A2 (en) 2018-01-19 2019-07-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
TWI799494B (zh) 2018-01-19 2023-04-21 荷蘭商Asm 智慧財產控股公司 沈積方法
USD903477S1 (en) 2018-01-24 2020-12-01 Asm Ip Holdings B.V. Metal clamp
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
USD880437S1 (en) 2018-02-01 2020-04-07 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10731249B2 (en) 2018-02-15 2020-08-04 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
US10658181B2 (en) 2018-02-20 2020-05-19 Asm Ip Holding B.V. Method of spacer-defined direct patterning in semiconductor fabrication
KR102636427B1 (ko) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법 및 장치
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
KR102646467B1 (ko) 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. 기판 상에 전극을 형성하는 방법 및 전극을 포함하는 반도체 소자 구조
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
KR102501472B1 (ko) 2018-03-30 2023-02-20 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법
KR102600229B1 (ko) 2018-04-09 2023-11-10 에이에스엠 아이피 홀딩 비.브이. 기판 지지 장치, 이를 포함하는 기판 처리 장치 및 기판 처리 방법
US10515810B2 (en) * 2018-04-10 2019-12-24 Macronix International Co., Ltd. Self-aligned di-silicon silicide bit line and source line landing pads in 3D vertical channel memory
TWI843623B (zh) 2018-05-08 2024-05-21 荷蘭商Asm Ip私人控股有限公司 藉由循環沉積製程於基板上沉積氧化物膜之方法及相關裝置結構
US12025484B2 (en) 2018-05-08 2024-07-02 Asm Ip Holding B.V. Thin film forming method
US12272527B2 (en) 2018-05-09 2025-04-08 Asm Ip Holding B.V. Apparatus for use with hydrogen radicals and method of using same
KR20190129718A (ko) 2018-05-11 2019-11-20 에이에스엠 아이피 홀딩 비.브이. 기판 상에 피도핑 금속 탄화물 막을 형성하는 방법 및 관련 반도체 소자 구조
KR102596988B1 (ko) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법 및 그에 의해 제조된 장치
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
TWI840362B (zh) 2018-06-04 2024-05-01 荷蘭商Asm Ip私人控股有限公司 水氣降低的晶圓處置腔室
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
KR102568797B1 (ko) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. 기판 처리 시스템
CN112292477A (zh) 2018-06-27 2021-01-29 Asm Ip私人控股有限公司 用于形成含金属的材料的循环沉积方法及包含含金属的材料的膜和结构
TWI871083B (zh) 2018-06-27 2025-01-21 荷蘭商Asm Ip私人控股有限公司 用於形成含金屬材料之循環沉積製程
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
KR102686758B1 (ko) 2018-06-29 2024-07-18 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법 및 반도체 장치의 제조 방법
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10825827B2 (en) 2018-07-05 2020-11-03 Sandisk Technologies Llc Non-volatile memory with pool capacitor
US10818685B2 (en) 2018-07-05 2020-10-27 Sandisk Technologies Llc Non-volatile memory with pool capacitor
US10847452B2 (en) * 2018-07-05 2020-11-24 Sandisk Technologies Llc Non-volatile memory with capacitors using metal under signal line or above a device capacitor
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US10777567B2 (en) 2018-08-22 2020-09-15 International Business Machines Corporation Epitaxy lateral overgrowth for 3D NAND
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102707956B1 (ko) 2018-09-11 2024-09-19 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
CN110970344B (zh) 2018-10-01 2024-10-25 Asmip控股有限公司 衬底保持设备、包含所述设备的系统及其使用方法
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102592699B1 (ko) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. 기판 지지 유닛 및 이를 포함하는 박막 증착 장치와 기판 처리 장치
US10847365B2 (en) 2018-10-11 2020-11-24 Asm Ip Holding B.V. Method of forming conformal silicon carbide film by cyclic CVD
US10811256B2 (en) 2018-10-16 2020-10-20 Asm Ip Holding B.V. Method for etching a carbon-containing feature
KR102546322B1 (ko) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 및 기판 처리 방법
KR102605121B1 (ko) 2018-10-19 2023-11-23 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 및 기판 처리 방법
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US12378665B2 (en) 2018-10-26 2025-08-05 Asm Ip Holding B.V. High temperature coatings for a preclean and etch apparatus and related methods
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR102748291B1 (ko) 2018-11-02 2024-12-31 에이에스엠 아이피 홀딩 비.브이. 기판 지지 유닛 및 이를 포함하는 기판 처리 장치
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10559458B1 (en) 2018-11-26 2020-02-11 Asm Ip Holding B.V. Method of forming oxynitride film
US12040199B2 (en) 2018-11-28 2024-07-16 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US10950618B2 (en) 2018-11-29 2021-03-16 Micron Technology, Inc. Memory arrays
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
KR102636428B1 (ko) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치를 세정하는 방법
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
JP7504584B2 (ja) 2018-12-14 2024-06-24 エーエスエム・アイピー・ホールディング・ベー・フェー 窒化ガリウムの選択的堆積を用いてデバイス構造体を形成する方法及びそのためのシステム
TWI819180B (zh) 2019-01-17 2023-10-21 荷蘭商Asm 智慧財產控股公司 藉由循環沈積製程於基板上形成含過渡金屬膜之方法
KR102727227B1 (ko) 2019-01-22 2024-11-07 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
CN111524788B (zh) 2019-02-01 2023-11-24 Asm Ip私人控股有限公司 氧化硅的拓扑选择性膜形成的方法
KR102626263B1 (ko) 2019-02-20 2024-01-16 에이에스엠 아이피 홀딩 비.브이. 처리 단계를 포함하는 주기적 증착 방법 및 이를 위한 장치
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
TWI845607B (zh) 2019-02-20 2024-06-21 荷蘭商Asm Ip私人控股有限公司 用來填充形成於基材表面內之凹部的循環沉積方法及設備
KR102638425B1 (ko) 2019-02-20 2024-02-21 에이에스엠 아이피 홀딩 비.브이. 기판 표면 내에 형성된 오목부를 충진하기 위한 방법 및 장치
TWI842826B (zh) 2019-02-22 2024-05-21 荷蘭商Asm Ip私人控股有限公司 基材處理設備及處理基材之方法
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
KR102762833B1 (ko) 2019-03-08 2025-02-04 에이에스엠 아이피 홀딩 비.브이. SiOCN 층을 포함한 구조체 및 이의 형성 방법
KR102782593B1 (ko) 2019-03-08 2025-03-14 에이에스엠 아이피 홀딩 비.브이. SiOC 층을 포함한 구조체 및 이의 형성 방법
KR20200116033A (ko) 2019-03-28 2020-10-08 에이에스엠 아이피 홀딩 비.브이. 도어 개방기 및 이를 구비한 기판 처리 장치
KR102809999B1 (ko) 2019-04-01 2025-05-19 에이에스엠 아이피 홀딩 비.브이. 반도체 소자를 제조하는 방법
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
KR20200125453A (ko) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. 기상 반응기 시스템 및 이를 사용하는 방법
KR20200130121A (ko) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. 딥 튜브가 있는 화학물질 공급원 용기
KR20200130118A (ko) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. 비정질 탄소 중합체 막을 개질하는 방법
KR20200130652A (ko) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. 표면 상에 재료를 증착하는 방법 및 본 방법에 따라 형성된 구조
JP7598201B2 (ja) 2019-05-16 2024-12-11 エーエスエム・アイピー・ホールディング・ベー・フェー ウェハボートハンドリング装置、縦型バッチ炉および方法
JP7612342B2 (ja) 2019-05-16 2025-01-14 エーエスエム・アイピー・ホールディング・ベー・フェー ウェハボートハンドリング装置、縦型バッチ炉および方法
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
KR20200141003A (ko) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. 가스 감지기를 포함하는 기상 반응기 시스템
KR20200141931A (ko) 2019-06-10 2020-12-21 에이에스엠 아이피 홀딩 비.브이. 석영 에피택셜 챔버를 세정하는 방법
KR20200143254A (ko) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. 개질 가스를 사용하여 전자 구조를 형성하는 방법, 상기 방법을 수행하기 위한 시스템, 및 상기 방법을 사용하여 형성되는 구조
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
JP7414411B2 (ja) * 2019-06-14 2024-01-16 キオクシア株式会社 半導体記憶装置
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
KR20210005515A (ko) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치용 온도 제어 조립체 및 이를 사용하는 방법
JP7499079B2 (ja) 2019-07-09 2024-06-13 エーエスエム・アイピー・ホールディング・ベー・フェー 同軸導波管を用いたプラズマ装置、基板処理方法
CN112216646A (zh) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 基板支撑组件及包括其的基板处理装置
KR20210010307A (ko) 2019-07-16 2021-01-27 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR20210010816A (ko) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. 라디칼 보조 점화 플라즈마 시스템 및 방법
KR20210010820A (ko) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. 실리콘 게르마늄 구조를 형성하는 방법
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
TWI839544B (zh) 2019-07-19 2024-04-21 荷蘭商Asm Ip私人控股有限公司 形成形貌受控的非晶碳聚合物膜之方法
KR20210010817A (ko) 2019-07-19 2021-01-28 에이에스엠 아이피 홀딩 비.브이. 토폴로지-제어된 비정질 탄소 중합체 막을 형성하는 방법
CN112309843A (zh) 2019-07-29 2021-02-02 Asm Ip私人控股有限公司 实现高掺杂剂掺入的选择性沉积方法
CN112309900A (zh) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 基板处理设备
CN112309899A (zh) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 基板处理设备
US12169361B2 (en) 2019-07-30 2024-12-17 Asm Ip Holding B.V. Substrate processing apparatus and method
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
KR20210018759A (ko) 2019-08-05 2021-02-18 에이에스엠 아이피 홀딩 비.브이. 화학물질 공급원 용기를 위한 액체 레벨 센서
CN112342526A (zh) 2019-08-09 2021-02-09 Asm Ip私人控股有限公司 包括冷却装置的加热器组件及其使用方法
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
JP2021031769A (ja) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. 成膜原料混合ガス生成装置及び成膜装置
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
KR20210024423A (ko) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. 홀을 구비한 구조체를 형성하기 위한 방법
KR20210024420A (ko) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. 비스(디에틸아미노)실란을 사용하여 peald에 의해 개선된 품질을 갖는 실리콘 산화물 막을 증착하기 위한 방법
JP7241901B2 (ja) * 2019-08-23 2023-03-17 長江存儲科技有限責任公司 メモリデバイス及び方法
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
CN113130502B (zh) 2019-09-03 2022-11-22 长江存储科技有限责任公司 利用虚设存储块作为池电容器的非易失性存储器件
US11282849B2 (en) 2019-09-03 2022-03-22 Yangtze Memory Technologies Co., Ltd. Non-volatile memory device utilizing dummy memory block as pool capacitor
KR102806450B1 (ko) 2019-09-04 2025-05-12 에이에스엠 아이피 홀딩 비.브이. 희생 캡핑 층을 이용한 선택적 증착 방법
KR102733104B1 (ko) 2019-09-05 2024-11-22 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
CN112593212B (zh) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 通过循环等离子体增强沉积工艺形成拓扑选择性氧化硅膜的方法
TWI846953B (zh) 2019-10-08 2024-07-01 荷蘭商Asm Ip私人控股有限公司 基板處理裝置
KR20210042810A (ko) 2019-10-08 2021-04-20 에이에스엠 아이피 홀딩 비.브이. 활성 종을 이용하기 위한 가스 분배 어셈블리를 포함한 반응기 시스템 및 이를 사용하는 방법
KR20210043460A (ko) 2019-10-10 2021-04-21 에이에스엠 아이피 홀딩 비.브이. 포토레지스트 하부층을 형성하기 위한 방법 및 이를 포함한 구조체
US12009241B2 (en) 2019-10-14 2024-06-11 Asm Ip Holding B.V. Vertical batch furnace assembly with detector to detect cassette
TWI834919B (zh) 2019-10-16 2024-03-11 荷蘭商Asm Ip私人控股有限公司 氧化矽之拓撲選擇性膜形成之方法
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR102845724B1 (ko) 2019-10-21 2025-08-13 에이에스엠 아이피 홀딩 비.브이. 막을 선택적으로 에칭하기 위한 장치 및 방법
KR20210050453A (ko) 2019-10-25 2021-05-07 에이에스엠 아이피 홀딩 비.브이. 기판 표면 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
CN111092082B (zh) * 2019-11-01 2023-11-07 上海新储集成电路有限公司 一种混合架构存储器及其制作方法
KR20210054983A (ko) 2019-11-05 2021-05-14 에이에스엠 아이피 홀딩 비.브이. 도핑된 반도체 층을 갖는 구조체 및 이를 형성하기 위한 방법 및 시스템
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
KR20210062561A (ko) 2019-11-20 2021-05-31 에이에스엠 아이피 홀딩 비.브이. 기판의 표면 상에 탄소 함유 물질을 증착하는 방법, 상기 방법을 사용하여 형성된 구조물, 및 상기 구조물을 형성하기 위한 시스템
CN112951697B (zh) 2019-11-26 2025-07-29 Asmip私人控股有限公司 基板处理设备
US11450529B2 (en) 2019-11-26 2022-09-20 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
CN112885693B (zh) 2019-11-29 2025-06-10 Asmip私人控股有限公司 基板处理设备
CN112885692B (zh) 2019-11-29 2025-08-15 Asmip私人控股有限公司 基板处理设备
JP7527928B2 (ja) 2019-12-02 2024-08-05 エーエスエム・アイピー・ホールディング・ベー・フェー 基板処理装置、基板処理方法
US10984957B1 (en) * 2019-12-03 2021-04-20 International Business Machines Corporation Printed circuit board embedded capacitor
KR20210070898A (ko) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
CN112992667A (zh) 2019-12-17 2021-06-18 Asm Ip私人控股有限公司 形成氮化钒层的方法和包括氮化钒层的结构
KR20210080214A (ko) 2019-12-19 2021-06-30 에이에스엠 아이피 홀딩 비.브이. 기판 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조
JP7636892B2 (ja) 2020-01-06 2025-02-27 エーエスエム・アイピー・ホールディング・ベー・フェー チャネル付きリフトピン
KR20210089077A (ko) 2020-01-06 2021-07-15 에이에스엠 아이피 홀딩 비.브이. 가스 공급 어셈블리, 이의 구성 요소, 및 이를 포함하는 반응기 시스템
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
KR20210093163A (ko) 2020-01-16 2021-07-27 에이에스엠 아이피 홀딩 비.브이. 고 종횡비 피처를 형성하는 방법
KR102675856B1 (ko) 2020-01-20 2024-06-17 에이에스엠 아이피 홀딩 비.브이. 박막 형성 방법 및 박막 표면 개질 방법
TW202513845A (zh) 2020-02-03 2025-04-01 荷蘭商Asm Ip私人控股有限公司 半導體裝置結構及其形成方法
TW202146882A (zh) 2020-02-04 2021-12-16 荷蘭商Asm Ip私人控股有限公司 驗證一物品之方法、用於驗證一物品之設備、及用於驗證一反應室之系統
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
KR20210103956A (ko) 2020-02-13 2021-08-24 에이에스엠 아이피 홀딩 비.브이. 수광 장치를 포함하는 기판 처리 장치 및 수광 장치의 교정 방법
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
CN113410160A (zh) 2020-02-28 2021-09-17 Asm Ip私人控股有限公司 专用于零件清洁的系统
TW202139347A (zh) 2020-03-04 2021-10-16 荷蘭商Asm Ip私人控股有限公司 反應器系統、對準夾具、及對準方法
KR20210116249A (ko) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. 록아웃 태그아웃 어셈블리 및 시스템 그리고 이의 사용 방법
KR20210116240A (ko) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. 조절성 접합부를 갖는 기판 핸들링 장치
CN113394086A (zh) 2020-03-12 2021-09-14 Asm Ip私人控股有限公司 用于制造具有目标拓扑轮廓的层结构的方法
KR102663224B1 (ko) * 2020-03-13 2024-05-03 양쯔 메모리 테크놀로지스 씨오., 엘티디. 3차원 메모리를 위한 접촉 구조들
US12173404B2 (en) 2020-03-17 2024-12-24 Asm Ip Holding B.V. Method of depositing epitaxial material, structure formed using the method, and system for performing the method
KR102755229B1 (ko) 2020-04-02 2025-01-14 에이에스엠 아이피 홀딩 비.브이. 박막 형성 방법
KR102719377B1 (ko) 2020-04-03 2024-10-17 에이에스엠 아이피 홀딩 비.브이. 배리어층 형성 방법 및 반도체 장치의 제조 방법
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
KR20210128343A (ko) 2020-04-15 2021-10-26 에이에스엠 아이피 홀딩 비.브이. 크롬 나이트라이드 층을 형성하는 방법 및 크롬 나이트라이드 층을 포함하는 구조
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
KR20210130646A (ko) 2020-04-21 2021-11-01 에이에스엠 아이피 홀딩 비.브이. 기판을 처리하기 위한 방법
TW202208671A (zh) 2020-04-24 2022-03-01 荷蘭商Asm Ip私人控股有限公司 形成包括硼化釩及磷化釩層的結構之方法
TWI884193B (zh) 2020-04-24 2025-05-21 荷蘭商Asm Ip私人控股有限公司 形成含氮化釩層及包含該層的結構之方法
KR20210132612A (ko) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. 바나듐 화합물들을 안정화하기 위한 방법들 및 장치
KR20210132600A (ko) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. 바나듐, 질소 및 추가 원소를 포함한 층을 증착하기 위한 방법 및 시스템
TW202146831A (zh) 2020-04-24 2021-12-16 荷蘭商Asm Ip私人控股有限公司 垂直批式熔爐總成、及用於冷卻垂直批式熔爐之方法
KR102783898B1 (ko) 2020-04-29 2025-03-18 에이에스엠 아이피 홀딩 비.브이. 고체 소스 전구체 용기
KR20210134869A (ko) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Foup 핸들러를 이용한 foup의 빠른 교환
TW202147543A (zh) 2020-05-04 2021-12-16 荷蘭商Asm Ip私人控股有限公司 半導體處理系統
KR102788543B1 (ko) 2020-05-13 2025-03-27 에이에스엠 아이피 홀딩 비.브이. 반응기 시스템용 레이저 정렬 고정구
TW202146699A (zh) 2020-05-15 2021-12-16 荷蘭商Asm Ip私人控股有限公司 形成矽鍺層之方法、半導體結構、半導體裝置、形成沉積層之方法、及沉積系統
TW202147383A (zh) 2020-05-19 2021-12-16 荷蘭商Asm Ip私人控股有限公司 基材處理設備
KR102795476B1 (ko) 2020-05-21 2025-04-11 에이에스엠 아이피 홀딩 비.브이. 다수의 탄소 층을 포함한 구조체 및 이를 형성하고 사용하는 방법
KR20210145079A (ko) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. 기판을 처리하기 위한 플랜지 및 장치
TWI873343B (zh) 2020-05-22 2025-02-21 荷蘭商Asm Ip私人控股有限公司 用於在基材上形成薄膜之反應系統
KR20210146802A (ko) 2020-05-26 2021-12-06 에이에스엠 아이피 홀딩 비.브이. 붕소 및 갈륨을 함유한 실리콘 게르마늄 층을 증착하는 방법
TWI876048B (zh) 2020-05-29 2025-03-11 荷蘭商Asm Ip私人控股有限公司 基板處理方法
TW202212620A (zh) 2020-06-02 2022-04-01 荷蘭商Asm Ip私人控股有限公司 處理基板之設備、形成膜之方法、及控制用於處理基板之設備之方法
KR20210156219A (ko) 2020-06-16 2021-12-24 에이에스엠 아이피 홀딩 비.브이. 붕소를 함유한 실리콘 게르마늄 층을 증착하는 방법
TW202218133A (zh) 2020-06-24 2022-05-01 荷蘭商Asm Ip私人控股有限公司 形成含矽層之方法
TWI873359B (zh) 2020-06-30 2025-02-21 荷蘭商Asm Ip私人控股有限公司 基板處理方法
TW202202649A (zh) 2020-07-08 2022-01-16 荷蘭商Asm Ip私人控股有限公司 基板處理方法
TWI864307B (zh) 2020-07-17 2024-12-01 荷蘭商Asm Ip私人控股有限公司 用於光微影之結構、方法與系統
TWI878570B (zh) 2020-07-20 2025-04-01 荷蘭商Asm Ip私人控股有限公司 用於沉積鉬層之方法及系統
KR20220011092A (ko) 2020-07-20 2022-01-27 에이에스엠 아이피 홀딩 비.브이. 전이 금속층을 포함하는 구조체를 형성하기 위한 방법 및 시스템
TW202219303A (zh) 2020-07-27 2022-05-16 荷蘭商Asm Ip私人控股有限公司 薄膜沉積製程
KR20220021863A (ko) 2020-08-14 2022-02-22 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법
US12040177B2 (en) 2020-08-18 2024-07-16 Asm Ip Holding B.V. Methods for forming a laminate film by cyclical plasma-enhanced deposition processes
TW202228863A (zh) 2020-08-25 2022-08-01 荷蘭商Asm Ip私人控股有限公司 清潔基板的方法、選擇性沉積的方法、及反應器系統
TWI874701B (zh) 2020-08-26 2025-03-01 荷蘭商Asm Ip私人控股有限公司 形成金屬氧化矽層及金屬氮氧化矽層的方法
TW202229601A (zh) 2020-08-27 2022-08-01 荷蘭商Asm Ip私人控股有限公司 形成圖案化結構的方法、操控機械特性的方法、裝置結構、及基板處理系統
TW202217045A (zh) 2020-09-10 2022-05-01 荷蘭商Asm Ip私人控股有限公司 沉積間隙填充流體之方法及相關系統和裝置
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
KR20220036866A (ko) 2020-09-16 2022-03-23 에이에스엠 아이피 홀딩 비.브이. 실리콘 산화물 증착 방법
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
KR20220041751A (ko) 2020-09-25 2022-04-01 에이에스엠 아이피 홀딩 비.브이. 반도체 처리 방법
US12009224B2 (en) 2020-09-29 2024-06-11 Asm Ip Holding B.V. Apparatus and method for etching metal nitrides
KR20220045900A (ko) 2020-10-06 2022-04-13 에이에스엠 아이피 홀딩 비.브이. 실리콘 함유 재료를 증착하기 위한 증착 방법 및 장치
CN114293174A (zh) 2020-10-07 2022-04-08 Asm Ip私人控股有限公司 气体供应单元和包括气体供应单元的衬底处理设备
TW202229613A (zh) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 於階梯式結構上沉積材料的方法
KR20220050048A (ko) 2020-10-15 2022-04-22 에이에스엠 아이피 홀딩 비.브이. 반도체 소자의 제조 방법, 및 ether-cat을 사용하는 기판 처리 장치
KR20220053482A (ko) 2020-10-22 2022-04-29 에이에스엠 아이피 홀딩 비.브이. 바나듐 금속을 증착하는 방법, 구조체, 소자 및 증착 어셈블리
TW202223136A (zh) 2020-10-28 2022-06-16 荷蘭商Asm Ip私人控股有限公司 用於在基板上形成層之方法、及半導體處理系統
TW202229620A (zh) 2020-11-12 2022-08-01 特文特大學 沉積系統、用於控制反應條件之方法、沉積方法
TW202229795A (zh) 2020-11-23 2022-08-01 荷蘭商Asm Ip私人控股有限公司 具注入器之基板處理設備
TW202235649A (zh) 2020-11-24 2022-09-16 荷蘭商Asm Ip私人控股有限公司 填充間隙之方法與相關之系統及裝置
TW202235675A (zh) 2020-11-30 2022-09-16 荷蘭商Asm Ip私人控股有限公司 注入器、及基板處理設備
KR102812468B1 (ko) 2020-12-03 2025-05-26 삼성전자주식회사 반도체 장치 및 이를 포함하는 전자 시스템
KR102824045B1 (ko) 2020-12-10 2025-06-23 에스케이하이닉스 주식회사 반도체 장치 및 반도체 장치의 제조 방법
US12255053B2 (en) 2020-12-10 2025-03-18 Asm Ip Holding B.V. Methods and systems for depositing a layer
TW202233884A (zh) 2020-12-14 2022-09-01 荷蘭商Asm Ip私人控股有限公司 形成臨限電壓控制用之結構的方法
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
TW202232639A (zh) 2020-12-18 2022-08-16 荷蘭商Asm Ip私人控股有限公司 具有可旋轉台的晶圓處理設備
TW202231903A (zh) 2020-12-22 2022-08-16 荷蘭商Asm Ip私人控股有限公司 過渡金屬沉積方法、過渡金屬層、用於沉積過渡金屬於基板上的沉積總成
TW202242184A (zh) 2020-12-22 2022-11-01 荷蘭商Asm Ip私人控股有限公司 前驅物膠囊、前驅物容器、氣相沉積總成、及將固態前驅物裝載至前驅物容器中之方法
TW202226899A (zh) 2020-12-22 2022-07-01 荷蘭商Asm Ip私人控股有限公司 具匹配器的電漿處理裝置
JP2022146819A (ja) 2021-03-22 2022-10-05 キオクシア株式会社 半導体記憶装置
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD1023959S1 (en) 2021-05-11 2024-04-23 Asm Ip Holding B.V. Electrode for substrate processing apparatus
KR102645343B1 (ko) * 2021-08-17 2024-03-08 서울대학교산학협력단 3차원 시냅스 소자 스택 및 이를 이용한 3차원 적층형 시냅스 어레이 및 3차원 시냅스 소자 스택의 제조 방법
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
USD1060598S1 (en) 2021-12-03 2025-02-04 Asm Ip Holding B.V. Split showerhead cover
US11842789B2 (en) 2022-03-30 2023-12-12 Macronix International Co., Ltd. Capacitor string structure, memory device and electronic device
TWI803265B (zh) * 2022-03-30 2023-05-21 旺宏電子股份有限公司 電容串結構、記憶體裝置及電子裝置
US12200925B2 (en) 2022-04-19 2025-01-14 Macronix International Co., Ltd. Capacitors in memory devices
CN117320441A (zh) * 2022-06-22 2023-12-29 长鑫存储技术有限公司 半导体结构及其制造方法
CN117998856A (zh) * 2022-11-01 2024-05-07 武汉新芯集成电路制造有限公司 存储块及其制程方法

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03270225A (ja) * 1990-03-20 1991-12-02 Fujitsu Ltd 半導体装置の製造方法
JP3013407B2 (ja) * 1990-08-08 2000-02-28 ソニー株式会社 半導体メモリ装置
US5439848A (en) * 1992-12-30 1995-08-08 Sharp Microelectronics Technology, Inc. Method for fabricating a self-aligned multi-level interconnect
US6366519B1 (en) 1995-03-09 2002-04-02 Macronix International Co., Ltd. Regulated reference voltage circuit for flash memory device and other integrated circuit applications
US6063688A (en) 1997-09-29 2000-05-16 Intel Corporation Fabrication of deep submicron structures and quantum wire transistors using hard-mask transistor width definition
US6034882A (en) 1998-11-16 2000-03-07 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
JP5792918B2 (ja) 2000-08-14 2015-10-14 サンディスク・スリー・ディ・リミテッド・ライアビリティ・カンパニーSandisk 3D Llc 高集積メモリデバイス
US6891262B2 (en) 2001-07-19 2005-05-10 Sony Corporation Semiconductor device and method of producing the same
US7081377B2 (en) 2002-06-27 2006-07-25 Sandisk 3D Llc Three-dimensional memory
EP1537584B1 (en) 2002-09-11 2017-10-25 Ovonyx Memory Technology, LLC Programming a phase-change material memory
US6933224B2 (en) 2003-03-28 2005-08-23 Micron Technology, Inc. Method of fabricating integrated circuitry
US6879505B2 (en) 2003-03-31 2005-04-12 Matrix Semiconductor, Inc. Word line arrangement having multi-layer word line segments for three-dimensional memory array
DE20321085U1 (de) 2003-10-23 2005-12-29 Commissariat à l'Energie Atomique Phasenwechselspeicher, Phasenwechselspeicheranordnung, Phasenwechselspeicherzelle, 2D-Phasenwechselspeicherzellen-Array, 3D-Phasenwechselspeicherzellen-Array und Elektronikbaustein
US6906940B1 (en) 2004-02-12 2005-06-14 Macronix International Co., Ltd. Plane decoding method and device for three dimensional memories
US7378702B2 (en) 2004-06-21 2008-05-27 Sang-Yun Lee Vertical memory device structures
US7301818B2 (en) 2005-09-12 2007-11-27 Macronix International Co., Ltd. Hole annealing methods of non-volatile memory cells
US7495294B2 (en) 2005-12-21 2009-02-24 Sandisk Corporation Flash devices with shared word lines
US7351666B2 (en) 2006-03-17 2008-04-01 International Business Machines Corporation Layout and process to contact sub-lithographic structures
JP4909735B2 (ja) 2006-06-27 2012-04-04 株式会社東芝 不揮発性半導体メモリ
JP2008078404A (ja) 2006-09-21 2008-04-03 Toshiba Corp 半導体メモリ及びその製造方法
KR101169396B1 (ko) 2006-12-22 2012-07-30 삼성전자주식회사 비휘발성 메모리 소자 및 그 동작 방법
ITRM20070107A1 (it) 2007-02-27 2008-08-28 Micron Technology Inc Sistema di inibizione di autoboost locale con linea di parole schermata
US7382647B1 (en) 2007-02-27 2008-06-03 International Business Machines Corporation Rectifying element for a crosspoint based memory array architecture
US7560785B2 (en) 2007-04-27 2009-07-14 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device having multiple fin heights
US7646625B2 (en) 2007-06-29 2010-01-12 Qimonda Ag Conditioning operations for memory cells
JP2009016400A (ja) * 2007-06-29 2009-01-22 Toshiba Corp 積層配線構造体及びその製造方法並びに半導体装置及びその製造方法
US7749855B2 (en) 2007-08-14 2010-07-06 Spansion Llc Capacitor structure used for flash memory
KR20090037690A (ko) 2007-10-12 2009-04-16 삼성전자주식회사 비휘발성 메모리 소자, 그 동작 방법 및 그 제조 방법
US8098517B2 (en) 2007-10-31 2012-01-17 Ovonyx, Inc. Method of restoring variable resistance memory device
KR20090079694A (ko) 2008-01-18 2009-07-22 삼성전자주식회사 비휘발성 메모리 소자 및 그 제조 방법
US7910973B2 (en) 2008-03-17 2011-03-22 Kabushiki Kaisha Toshiba Semiconductor storage device
US8106519B2 (en) 2008-04-22 2012-01-31 Macronix International Co., Ltd. Methods for pitch reduction
JP2009295694A (ja) 2008-06-03 2009-12-17 Toshiba Corp 不揮発性半導体記憶装置及びその製造方法
JP5143280B2 (ja) 2008-06-11 2013-02-13 エヌエックスピー ビー ヴィ 相変化メモリ及び制御方法
KR101434588B1 (ko) * 2008-06-11 2014-08-29 삼성전자주식회사 반도체 장치 및 그 제조 방법
US7915667B2 (en) 2008-06-11 2011-03-29 Qimonda Ag Integrated circuits having a contact region and methods for manufacturing the same
KR20080091416A (ko) * 2008-08-14 2008-10-13 김성동 3차원 반도체 장치, 그 제조 방법 및 동작 방법
US8399336B2 (en) * 2008-08-19 2013-03-19 International Business Machines Corporation Method for fabricating a 3D integrated circuit device having lower-cost active circuitry layers stacked before higher-cost active circuitry layer
US8680650B2 (en) 2009-02-03 2014-03-25 Micron Technology, Inc. Capacitor structures having improved area efficiency
JP5305980B2 (ja) * 2009-02-25 2013-10-02 株式会社東芝 不揮発性半導体記憶装置、及びその製造方法
TWI433302B (zh) 2009-03-03 2014-04-01 Macronix Int Co Ltd 積體電路自對準三度空間記憶陣列及其製作方法
KR101565798B1 (ko) 2009-03-31 2015-11-05 삼성전자주식회사 콘택 패드와 도전 라인과의 일체형 구조를 가지는 반도체 소자
US8829646B2 (en) 2009-04-27 2014-09-09 Macronix International Co., Ltd. Integrated circuit 3D memory array and manufacturing method
US8036016B2 (en) 2009-09-01 2011-10-11 Micron Technology, Inc. Maintenance process to enhance memory endurance
US8154128B2 (en) 2009-10-14 2012-04-10 Macronix International Co., Ltd. 3D integrated circuit layer interconnect
US8383512B2 (en) 2011-01-19 2013-02-26 Macronix International Co., Ltd. Method for making multilayer connection structure
KR101624975B1 (ko) * 2009-11-17 2016-05-30 삼성전자주식회사 3차원 반도체 기억 소자
KR20110107190A (ko) 2010-03-24 2011-09-30 삼성전자주식회사 저항성 메모리의 마모 셀 관리 방법 및 장치
US8941166B2 (en) 2010-12-29 2015-01-27 Macronix International Co., Ltd. Multiple patterning method
US8432719B2 (en) 2011-01-18 2013-04-30 Macronix International Co., Ltd. Three-dimensional stacked and-type flash memory structure and methods of manufacturing and operating the same hydride
US8724390B2 (en) * 2011-01-19 2014-05-13 Macronix International Co., Ltd. Architecture for a 3D memory array
US8598032B2 (en) 2011-01-19 2013-12-03 Macronix International Co., Ltd Reduced number of masks for IC device with stacked contact levels
US9048341B2 (en) 2011-03-16 2015-06-02 Macronix International Co., Ltd. Integrated circuit capacitor and method
US8488387B2 (en) 2011-05-02 2013-07-16 Macronix International Co., Ltd. Thermally assisted dielectric charge trapping flash
US8824212B2 (en) 2011-05-02 2014-09-02 Macronix International Co., Ltd. Thermally assisted flash memory with segmented word lines
US8891293B2 (en) 2011-06-23 2014-11-18 Macronix International Co., Ltd. High-endurance phase change memory devices and methods for operating the same
US9082555B2 (en) 2011-08-22 2015-07-14 Micron Technology, Inc. Structure comprising multiple capacitors and methods for forming the structure
JP2013065382A (ja) 2011-09-20 2013-04-11 Toshiba Corp 不揮発性半導体記憶装置
KR101868047B1 (ko) * 2011-11-09 2018-06-19 에스케이하이닉스 주식회사 비휘발성 메모리 장치 및 그 제조 방법
US8933502B2 (en) * 2011-11-21 2015-01-13 Sandisk Technologies Inc. 3D non-volatile memory with metal silicide interconnect
US8643142B2 (en) * 2011-11-21 2014-02-04 Sandisk Technologies Inc. Passive devices for 3D non-volatile memory
US8951859B2 (en) * 2011-11-21 2015-02-10 Sandisk Technologies Inc. Method for fabricating passive devices for 3D non-volatile memory
JP2013207123A (ja) 2012-03-29 2013-10-07 Toshiba Corp 半導体装置
US9064563B2 (en) 2013-02-08 2015-06-23 Seagate Technology Llc Optimization of variable resistance memory cells
JP2014187324A (ja) 2013-03-25 2014-10-02 Toshiba Corp 不揮発性半導体記憶装置および不揮発性半導体記憶装置の製造方法
KR102193685B1 (ko) 2014-05-02 2020-12-21 삼성전자주식회사 수직 구조의 비휘발성 메모리 소자
US9336878B2 (en) 2014-06-18 2016-05-10 Macronix International Co., Ltd. Method and apparatus for healing phase change memory devices
KR20170022477A (ko) 2015-08-20 2017-03-02 에스케이하이닉스 주식회사 반도체 메모리 장치

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160351576A1 (en) * 2015-05-26 2016-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11963360B2 (en) 2015-05-26 2024-04-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10431591B2 (en) 2017-02-01 2019-10-01 Micron Technology, Inc. NAND memory arrays
US10541252B2 (en) 2017-02-01 2020-01-21 Micron Technology, Inc. Memory arrays, and methods of forming memory arrays
US10340286B2 (en) * 2017-02-01 2019-07-02 Micron Technology, Inc. Methods of forming NAND memory arrays
US11201164B2 (en) 2017-02-01 2021-12-14 Micron Technology, Inc. Memory devices
CN108735756A (zh) * 2017-04-13 2018-11-02 Asm知识产权私人控股有限公司 衬底处理方法及通过所述衬底处理方法制造的半导体器件
US10332936B2 (en) 2017-04-19 2019-06-25 Macronix International Co., Ltd. 3D stacking semiconductor device
US10600796B2 (en) 2017-06-15 2020-03-24 Micron Technology, Inc. Methods of forming staircase structures
US10930659B2 (en) * 2017-06-15 2021-02-23 Micron Technology, Inc. Methods of improving adhesion of photoresist in a staircase structure and methods of forming a staircase structure
US20190355735A1 (en) * 2017-06-15 2019-11-21 Micron Technology, Inc. Methods of improving adhesion of photoresist in a staircase structure and methods of forming a staircase structure
US11678481B2 (en) 2017-06-15 2023-06-13 Micron Technology, Inc. Methods of forming a staircase structure
US12232314B2 (en) 2017-06-15 2025-02-18 Lodestar Licensing Group Llc Methods of forming a staircase structure
CN112951836A (zh) * 2019-11-26 2021-06-11 铠侠股份有限公司 半导体存储装置
EP4432804A1 (en) * 2023-03-17 2024-09-18 Samsung Electronics Co., Ltd. Semiconductor device, electronic system including the same, and method of fabricating the same
EP4465297A1 (en) * 2023-05-18 2024-11-20 Macronix International Co., Ltd. Memory including thermal anneal circuits and methods for operating the same

Also Published As

Publication number Publication date
TW201644079A (en) 2016-12-16
US20170018570A1 (en) 2017-01-19
CN106252353A (zh) 2016-12-21
TWI566447B (zh) 2017-01-11
US10388720B2 (en) 2019-08-20
US9716137B1 (en) 2017-07-25
CN106252353B (zh) 2019-09-03
JP2012244180A (ja) 2012-12-10

Similar Documents

Publication Publication Date Title
US10388720B2 (en) Capacitor with 3D NAND memory
US10658374B2 (en) Vertical semiconductor device
US11653500B2 (en) Memory array contact structures
US9373633B2 (en) Methods of forming non-volatile memory devices including vertical NAND strings
KR102635442B1 (ko) 반도체 장치 및 그 제조방법
US8383512B2 (en) Method for making multilayer connection structure
US11264399B2 (en) Semiconductor device and method of manufacturing the same
US8574992B2 (en) Contact architecture for 3D memory array
US9236346B2 (en) 3-D IC device with enhanced contact area
US12336179B2 (en) Semiconductor device and manufacturing method of the semiconductor device
US9425209B1 (en) Multilayer 3-D structure with mirror image landing regions
KR20140076797A (ko) 반도체 소자 및 그 제조 방법
US11903183B2 (en) Conductive line contact regions having multiple multi-direction conductive lines and staircase conductive line contact structures for semiconductor devices
KR102634441B1 (ko) 반도체 장치의 제조방법
CN111009528A (zh) 三维半导体存储器装置
US20230027955A1 (en) Non-volatile memory device
CN106601751B (zh) 具有镜像落着区的多层三维结构及集成电路
KR20120131115A (ko) 다층 연결 구조 및 이의 제조 방법
CN103094201B (zh) 存储器装置及其制造方法
US20230225127A1 (en) Semiconductor device
US20250280540A1 (en) Semiconductor device and manufacturing method of the semiconductor device
US20250056807A1 (en) Semiconductor devices

Legal Events

Date Code Title Description
AS Assignment

Owner name: MACRONIX INTERNATIONAL CO., LTD., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LUE, HANG-TING;YEH, TENG-HAO;REEL/FRAME:035839/0089

Effective date: 20150611

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION