RU2612521C2 - Новые пролекарства нуклеиновых кислот и способы их применения - Google Patents

Новые пролекарства нуклеиновых кислот и способы их применения Download PDF

Info

Publication number
RU2612521C2
RU2612521C2 RU2012102480A RU2012102480A RU2612521C2 RU 2612521 C2 RU2612521 C2 RU 2612521C2 RU 2012102480 A RU2012102480 A RU 2012102480A RU 2012102480 A RU2012102480 A RU 2012102480A RU 2612521 C2 RU2612521 C2 RU 2612521C2
Authority
RU
Russia
Prior art keywords
alkyl
nucleic acid
tert
aryl
prodrug
Prior art date
Application number
RU2012102480A
Other languages
English (en)
Other versions
RU2012102480A (ru
Inventor
Грегори Л. ВЕРДИН
Мина МИНА
Наоки ИВАМОТО
Original Assignee
Онтории, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43429503&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2612521(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Онтории, Инк. filed Critical Онтории, Инк.
Publication of RU2012102480A publication Critical patent/RU2012102480A/ru
Application granted granted Critical
Publication of RU2612521C2 publication Critical patent/RU2612521C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7115Nucleic acids or oligonucleotides having modified bases, i.e. other than adenine, guanine, cytosine, uracil or thymine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/712Nucleic acids or oligonucleotides having modified sugars, i.e. other than ribose or 2'-deoxyribose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7125Nucleic acids or oligonucleotides having modified internucleoside linkage, i.e. other than 3'-5' phosphodiesters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/02Nutrients, e.g. vitamins, minerals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/655Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms
    • C07F9/65515Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a five-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/02Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7076Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines containing purines, e.g. adenosine, adenylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Diabetes (AREA)
  • Nutrition Science (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)

Abstract

Изобретение относится к применимым в медицине олигонуклеотидам формулы 1:
Figure 00000333
где R1 представляет собой -ОН или -SH; R2 представляет собой H, -ОН или -ORb, где Rb представляет собой блокирующую группу, которая временно маскирует реакционноспособность функциональной группы и может быть удалена; Ва представляет собой аденин, цитозин, 5-метилцитозин, гуанин, тимин или урацил; фрагмент X выбран из
-OCH2CH2S-S(O)2R10, -OCH2CH2S-SCH2CH2OH, -OCH2CH2CO2H,
Figure 00000334
,
Figure 00000335
,
Figure 00000336
,
Figure 00000337
,
Figure 00000338
,
Figure 00000339
,
Figure 00000340
,
Figure 00000341
,
Figure 00000342
,
Figure 00000343
,
Figure 00000344
,
Figure 00000345
,
Figure 00000346
,
Figure 00000347
, и
Figure 00000348
,
R10 представляет собой C1-4 алкил; R11 представляет собой С1-10 алкил или С3-10 циклоалкил; R12 представляет собой Н или С1-10 алкил; R3 представляет собой H; n равно целому числу от 10 до 200; и Х-фосфонатный фрагмент в каждом случае независимо образован с более чем 98% диастереомерной чистотой по данным 31Р ЯМР спектроскопии или обращенно-фазовой ВЭЖХ. Предложен новый олигонуклеотид, перспективный для лечения рака. 6 з.п. ф-лы, 4 ил., 2 табл., 395 пр.

Description

ПЕРЕКРЕСТНЫЕ ССЫЛКИ
Данная заявка испрашивает приоритет по промежуточной заявке США №61/223,369, поданной 6 июля 2009 г., и промежуточной заявке США №61/242,722, поданной 15 сентября 2009 г., которые включены в данное описание путем отсылки в полном объеме.
ОБЛАСТЬ ТЕХНИКИ
В данном описании описаны пролекарства нуклеиновых кислот и пролекарства нуклеиновых кислот, содержащие хиральные фосфорсодержащие фрагменты, а также способы их получения и применения.
УРОВЕНЬ ТЕХНИКИ
Олигонуклеотиды пригодны для применения в терапевтической, диагностической, исследовательской областях, а также в области новых и наноматериалов, Применение природных последовательностей ДНК или РНК ограничено, например, уровнем их устойчивости к действию нуклеаз. Дополнительно, исследования in vitro показали, что на свойства антисмысловых нуклеотидов, такие как сродство связывания, последовательность-специфичное связывание с комплементарной РНК, устойчивость к действию нуклеаз, влияет конфигурация атомов фосфора. Таким образом, существует потребность в пролекарствах стереоопределенных олигонуклеотидов, обеспечивающих дополнительную стабильность молекулам олигонуклеотидов во множестве областей применения in vitro и in vivo. Пролекарства стереоопределенных олигонуклеотидов, которые содержат нуклеиновые кислоты с модифицированным атомом фосфора и способы их применения, описаны в данном описании.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
В одном из вариантов предлагается пролекарство хиральной нуклеиновой кислоты.
В одном из вариантов предлагается пролекарство нуклеиновой кислоты следующей структуры:
Figure 00000001
где R1 представляет собой -ОН, -SH, -NRdRd, -N3, галоген, водород, алкил, алкенил, алкинил, алкил-Y1-, алкенил-Y1-, алкинил-Y1-, арил-Y1-, гетероарил-Y1-, -Р(O)(Re)2, -HP(O)(Re), -ORa или -SRc;
Y1 представляет собой О, NRd, S или Se;
Ra представляет собой блокирующую группу;
Rc представляет собой блокирующую группу;
Rd, в каждом случае независимо, представляет собой водород, алкил, алкенил, алкинил, арил, ацил, замещенный силил, карбамат, P(O)(Re)2 или -HP(O)(Re);
Re, в каждом случае независимо, представляет собой водород, алкил, арил, алкенил, алкинил, алкил-Y2-, алкенил-Y2-, алкинил-Y2-, арил-Y2- или гетероарил-Y2- или катион, который представляет собой Na+, Li+1 или K+1;
Y2 представляет собой О, NRd или S;
R2, в каждом случае независимо, представляет собой водород, -ОН, -SH, -NRdRd, -N3, галоген, алкил, алкенил, алкинил, алкил-Y1-, алкенил-Y1-, алкинил-Y1-, арил-Y1-, гетероарил-Y1-, -ORb или -SRc, где Rb представляет собой блокирующую группу;
Ba, в каждом случае независимо, представляет собой блокированный или неблокированный аденин, цитозин, гуанин, тимин, урацил или модифицированное нуклеиновое основание;
по меньшей мере в одном случае Х представляет собой -OCH2CH2S-S(O)2R10, -OCH2CH2S-SCH2CH2OH, -OCH2CH2CO2H,
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000005
,
Figure 00000006
,
Figure 00000007
,
Figure 00000008
,
Figure 00000009
,
Figure 00000010
,
Figure 00000011
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
,
Figure 00000023
,
Figure 00000024
,
Figure 00000025
R3 представляет собой водород, блокирующую группу, связывающий фрагмент, соединенный с твердой подложкой или соединенный с нуклеиновой кислотой;
R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода;
R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил;
R12 представляет собой водород или алкил;
Z представляет собой S или О;
q равно 0, 1 или 3;
w равно 1, 2, 3, 4, 5 или 6;
R15 и R16 независимо представляют собой водород или метил;
R17 выбран из алкила, арила или CH2CH=CH2;
R18 выбран из N(CH3)2,
Figure 00000026
,
Figure 00000027
,
Figure 00000028
,
Figure 00000029
и
Figure 00000030
; и
n равно целому числу от 1 до приблизительно 200.
В другом варианте предлагается пролекарство нуклеиновой кислоты следующей структуры:
Figure 00000001
где R1 представляет собой -ОН, -SH, -NRdRd, -N3, галоген, водород, алкил, алкенил, алкинил, алкил-Y1-, алкенил-Y1-, алкинил-Y1-, арил-Y1-, гетероарил-Y1-, -P(O)(Re)2, -HP(O)(Re), -ORa или -SRc;
Y1 представляет собой О, NRd, S или Se;
Ra представляет собой блокирующую группу;
Rc представляет собой блокирующую группу;
Rd, в каждом случае независимо, представляет собой водород, алкил, алкенил, алкинил, арил, ацил, замещенный силил, карбамат, P(O)(Re)2 или -HP(O)(Re);
Re, в каждом случае независимо, представляет собой водород, алкил, арил, алкенил, алкинил, алкил-Y2-, алкенил-Y2-, алкинил-Y2-, арил-Y2- или гетероарил-Y2- или катион, который представляет собой Na+1, Li+1 или K+1;
Y2 представляет собой О, NRd или S;
R2, в каждом случае независимо, представляет собой водород, -ОН, -SH, -NRdRd, -N3, галоген, алкил, алкенил, алкинил, алкил-Y1-, алкенил-Y1-, алкинил-Y1-, арил-Y1-, гетероарил-Y1-, -ORb или -SRc, где Rb представляет собой блокирующую группу;
Ba, в каждом случае независимо, представляет собой блокированный или неблокированный аденин, цитозин, гуанин, тимин, урацил или модифицированное нуклеиновое основание;
по меньшей мере в одном случае Х представляет собой
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
или
Figure 00000023
;
R3 представляет собой водород, блокирующую группу, связывающий фрагмент, соединенный с твердой подложкой или соединенный с нуклеиновой кислотой;
R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода;
R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил;
R12 представляет собой водород или алкил; и n равно целому числу от 1 до приблизительно 200.
В дополнительном варианте предлагается пролекарство нуклеиновой кислоты, где диастереомерная чистота каждого Х-фосфонатного фрагмента соединения Формулы 1 составляет более 98% по данным 31P ЯМР спектроскопии или обращенно-фазовой ВЭЖХ.
В дополнительном варианте предлагается пролекарство нуклеиновой кислоты, где каждый Х-фосфонатный фрагмент находится в Rp конфигурации.
В дополнительном варианте предлагается пролекарство нуклеиновой кислоты, где каждый Х-фосфонатный фрагмент находится в SP конфигурации. В дополнительном варианте предлагается пролекарство нуклеиновой кислоты, где каждый Х-фосфонат независимо находится в RP конфигурации или Sp конфигурации.
В дополнительном варианте предлагается пролекарство нуклеиновой кислоты, где R10 представляет собой метил. В дополнительном варианте предлагается пролекарство нуклеиновой кислоты, где R11 представляет собой метил. В дополнительном варианте предлагается пролекарство нуклеиновой кислоты, где R12 представляет собой метил.
В дополнительном варианте предлагается пролекарство нуклеиновой кислоты, где по меньшей мере 25% фрагментов Х в пролекарстве нуклеиновой кислоты независимо выбраны из
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
и
Figure 00000023
. В дополнительном варианте предлагается пролекарство нуклеиновой кислоты, где по меньшей мере 50% фрагментов Х в пролекарстве нуклеиновой кислоты независимо выбраны из
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
и
Figure 00000023
. В дополнительном варианте предлагается пролекарство нуклеиновой кислоты, где по меньшей мере 90% фрагментов Х в пролекарстве нуклеиновой кислоты независимо выбраны из
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
и
Figure 00000023
.
В дополнительном варианте предлагается пролекарство нуклеиновой кислоты, где каждый фрагмент Х в пролекарстве нуклеиновой кислоты независимо выбран из
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
и
Figure 00000023
.
В дополнительном варианте предлагается пролекарство нуклеиновой кислоты, где каждый фрагмент Х в пролекарстве нуклеиновой кислоты независимо выбран из -OCH2CH2S-S(O)2R10, -OCH2CH2S-SCH2CH2OH, -OCH2CH2CO2H,
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000005
,
Figure 00000006
,
Figure 00000007
,
Figure 00000008
,
Figure 00000031
,
Figure 00000010
,
Figure 00000011
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
,
Figure 00000023
,
Figure 00000024
или
Figure 00000025
;
R3 представляет собой водород, блокирующую группу, связывающий фрагмент, соединенный с твердой подложкой или соединенный с нуклеиновой кислотой;
R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода;
R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил;
R12 представляет собой водород или алкил;
Z представляет собой S или О;
q равно 0, 1 или 3;
w равно 1, 2, 3, 4, 5 или 6;
R15 и R16 независимо представляют собой водород или метил;
R17 выбран из алкила, арила или CH2CH=СН2; и
R18 выбран из N(СН3)2,
Figure 00000026
,
Figure 00000027
,
Figure 00000028
,
Figure 00000029
и
Figure 00000030
.
В одном из вариантов предлагается пролекарство нуклеиновой кислоты следующей структуры:
Figure 00000032
где R1 представляет собой -ОН, -SH, -NRdRd, -N3, галоген, водород, алкил, алкенил, алкинил, алкил-Y1-, алкенил-Y1-, алкинил-Y1-, арил-Y1-, гетероарил-Y1-, -P(O)(Re)2, -HP(O)(Re), -ORa или -SRc;
Y1 представляет собой О, NRd, S или Se;
Ra представляет собой блокирующую группу;
Rc представляет собой блокирующую группу;
Rd, в каждом случае независимо, представляет собой водород, алкил, алкенил, алкинил, арил, ацил, замещенный силил, карбамат, -P(O)(Re)2 или -НР(O)(Re);
Re, в каждом случае независимо, представляет собой водород, алкил, арил, алкенил, алкинил, алкил-Y2-, алкенил-Y2-, алкинил-Y2-, арил-Y2- или гетероарил-Y2- или катион, который представляет собой Na+1, Li+1 или K+1;
Y2 представляет собой О, NRd или S;
R2, в каждом случае независимо, представляет собой водород, -ОН, -SH, -NRdRd, -N3, галоген, алкил, алкенил, алкинил, алкил-Y1-, алкенил-Y1-, алкинил-Y1-, арил-Y1-, гетероарил-Y1-, -ORb или -SRc, где Rb представляет собой блокирующую группу;
Ва, в каждом случае независимо, представляет собой блокированный или неблокированный аденин, цитозин, гуанин, тимин, урацил или модифицированное нуклеиновое основание;
по меньшей мере один Х представляет собой
Figure 00000003
,
Figure 00000012
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000019
,
Figure 00000020
или
Figure 00000023
,
где R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода; R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил; и R12 представляет собой водород или алкил.
R3 представляет собой водород, блокирующую группу, связывающий фрагмент, соединенный с твердой подложкой или соединенный с нуклеиновой кислотой; и n равно целому числу от 1 до приблизительно 200.
В дополнительном варианте предлагается пролекарство нуклеиновой кислоты, где R10 представляет собой метил. В дополнительном варианте предлагается пролекарство нуклеиновой кислоты, где R11 представляет собой метил. В дополнительном варианте предлагается пролекарство нуклеиновой кислоты, где R12 представляет собой метил
В дополнительном варианте предлагается пролекарство нуклеиновой кислоты, где по меньшей мере 25% фрагментов Х в пролекарстве нуклеиновой кислоты независимо выбраны из
Figure 00000003
,
Figure 00000012
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000019
,
Figure 00000021
и
Figure 00000023
,
где R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода; R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил; и R12 представляет собой водород или алкил. В дополнительном варианте предлагается пролекарство нуклеиновой кислоты, где по меньшей мере 50% фрагментов Х в пролекарстве нуклеиновой кислоты независимо выбраны из
Figure 00000003
,
Figure 00000012
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000019
,
Figure 00000021
и
Figure 00000023
,
где R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода; R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил; и R12 представляет собой водород или алкил. В дополнительном варианте предлагается пролекарство нуклеиновой кислоты, где по меньшей мере 90% фрагментов Х в пролекарстве нуклеиновой кислоты независимо выбраны из
Figure 00000003
,
Figure 00000012
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000019
,
Figure 00000021
и
Figure 00000023
,
где R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода; R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил; и R12 представляет собой водород или алкил. В дополнительном варианте предлагается пролекарство нуклеиновой кислоты, где каждый фрагмент Х в пролекарстве нуклеиновой кислоты независимо выбран из
Figure 00000003
,
Figure 00000012
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000019
,
Figure 00000021
и
Figure 00000023
,
где R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода; R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил; и R12 представляет собой водород или алкил.
В одном из вариантов предлагается фармацевтическая композиция, содержащая пролекарство нуклеиновой кислоты следующей структуры:
Figure 00000001
где R1 представляет собой -ОН, -SH, -NRdRd, -N3, галоген, водород, алкил, алкенил, алкинил, алкил-Y1-, алкенил-Y1-, алкинил-Y1-, арил-Y1-, гетероарил-Y1-, -P(O)(Re)2, -HP(O)(Re), -ORa или -SRc;
Y1 представляет собой О, NRd, S или Se;
Ra представляет собой блокирующую группу;
Rc представляет собой блокирующую группу;
Rd, в каждом случае независимо, представляет собой водород, алкил, алкенил, алкинил, арил, ацил, замещенный силил, карбамат, -P(O)(Re)2 или -HP(O)(Re);
Re, в каждом случае независимо, представляет собой водород, алкил, арил, алкенил, алкинил, алкил-Y2-, алкенил-Y2-, алкинил-Y2-, арил-Y2- или гетероарил-Y2- или катион, который представляет собой Na+1, Li+1 или K+1;
Y2 представляет собой О, NRd или S;
R2, в каждом случае независимо, представляет собой водород, -ОН, -SH, -NRdRd, -N3, галоген, алкил, алкенил, алкинил, алкил-Y1-, алкенил-Y1-, алкинил-Y1-, арил-Y1-, гетероарил-Y1-, -ORb или -SRc, где Rb представляет собой блокирующую группу;
Ва, в каждом случае независимо, представляет собой блокированный или неблокированный аденин, цитозин, гуанин, тимин, урацил или модифицированное нуклеиновое основание;
где по меньшей мере один фрагмент Х в пролекарстве нуклеиновой кислоты независимо выбран из
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
и
Figure 00000023
;
где R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода; R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил; и R12 представляет собой водород или алкил;
R3 представляет собой водород, блокирующую группу, связывающий фрагмент, соединенный с твердой подложкой или соединенный с нуклеиновой кислотой; и n равно целому числу от 1 до приблизительно 200;
где способ, применяемый для синтеза пролекарства нуклеиновой кислоты, включает следующие стадии: (1) реакцию молекулы, содержащей ахиральный Н-фосфонатный фрагмент, и нуклеозида, содержащего 5'-ОН фрагмент, с образованием конденсированного промежуточного соединения; и (2) превращение конденсированного промежуточного соединения в пролекарство нуклеиновой кислоты, содержащее хиральный Х-фосфонатный фрагмент.
В другом варианте предлагается фармацевтическая композиция, содержащая пролекарство нуклеиновой кислоты, структура которого представлена Формулой 1, где диастереомерная чистота каждого Х-фосфонатного фрагмента соединения Формулы 1 составляет более 98% по данным 3l? ЯМР спектроскопии или обращенно-фазовой ВЭЖХ. В другом варианте предлагается фармацевтическая композиция, содержащая пролекарство нуклеиновой кислоты, структура которого представлена Формулой 1, где каждый Х-фосфонатный фрагмент находится в RP конфигурации. В другом варианте предлагается фармацевтическая композиция, содержащая пролекарство нуклеиновой кислоты, структура которого представлена Формулой 1, где каждый Х-фосфонатный фрагмент находится в SP конфигурации. В другом варианте предлагается фармацевтическая композиция, содержащая пролекарство нуклеиновой кислоты, структура которого представлена Формулой 1, где каждый Х-фосфонат независимо находится в RP конфигурации или Sp конфигурации.
В другом варианте предлагается фармацевтическая композиция, содержащая пролекарство нуклеиновой кислоты, структура которого представлена Формулой 1, где по меньшей мере 25% фрагментов Х в пролекарстве нуклеиновой кислоты независимо выбраны из
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
и
Figure 00000023
,
где R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода; R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил; и R12 представляет собой водород или алкил. В другом варианте предлагается фармацевтическая композиция, содержащая пролекарство нуклеиновой кислоты, структура которого представлена Формулой 1, где по меньшей мере 50% фрагментов Х в пролекарстве нуклеиновой кислоты независимо выбраны из
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
и
Figure 00000023
,
где R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода; R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил; и R12 представляет собой водород или алкил. В другом варианте предлагается фармацевтическая композиция, содержащая пролекарство нуклеиновой кислоты, структура которого представлена Формулой 1, где по меньшей мере 90% фрагментов Х в пролекарстве нуклеиновой кислоты независимо выбраны из
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
и
Figure 00000023
,
где R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода; R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил; и R12 представляет собой водород или алкил. В другом варианте предлагается фармацевтическая композиция, содержащая пролекарство нуклеиновой кислоты, структура которого представлена Формулой 1, где в каждом случае Х независимо выбран из
Figure 00000003
,
Figure 00000012
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
и
Figure 00000023
,
где R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода; R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил; и R12 представляет собой водород или алкил.
В другом варианте предлагается фармацевтическая композиция, содержащая пролекарство нуклеиновой кислоты, структура которого представлена Формулой 1, где R10 представляет собой метил. В другом варианте предлагается фармацевтическая композиция, содержащая пролекарство нуклеиновой кислоты, структура которого представлена Формулой 1, где R11 представляет собой метил. В другом варианте предлагается фармацевтическая композиция, содержащая пролекарство нуклеиновой кислоты, структура которого представлена Формулой 1, где R12 представляет собой метил.
В одном из вариантов предлагается способ лечения заболевания, связанного с регуляцией вверх РНКазы L путем введения терапевтического количества пролекарства хиральной нуклеиновой кислоты. В другом варианте предлагается способ лечения заболевания, связанного с регуляцией вверх РНКазы L, где заболевание представляет собой синдром хронической усталости. В другом варианте предлагается способ лечения заболевания, связанного с регуляцией вниз РНКазы L, путем введения терапевтического количества пролекарства хиральной нуклеиновой кислоты. В другом варианте предлагается способ лечения заболевания, сопровождающегося регуляцией вниз РНКазы L, где заболевание представляет собой рак. В другом варианте, рак выбран из рака предстательной железы, ободочной и прямой кишки и поджелудочной железы. В одном из вариантов, рак с регуляцией вниз РНКазы L представляет собой рак поджелудочной железы. В другом варианте рак с регуляцией вниз РНКазы L представляет собой рак предстательной железы. Еще в одном варианте, рак с регуляцией вниз РНКазы L представляет собой рак ободочной и прямой кишки.
В одном из вариантов предлагается способ лечения рака, который включает введение терапевтического количества пролекарства нуклеиновой кислоты следующей структуры:
Figure 00000001
где R1 представляет собой -ОН, -SH, -NRdRd, -N3, галоген, водород, алкил, алкенил, алкинил, алкил-Y1-, алкенил-Y1-, алкинил-Y1-, арил-Y1-, гетероарил-Y1-, -P(O)(Re)2, -HP(O)(Re), -ORa или -SRc;
Y1 представляет собой О, NRd, S или Se;
Ra представляет собой блокирующую группу;
Rc представляет собой блокирующую группу;
Rd, в каждом случае независимо, представляет собой водород, алкил, алкенил, алкинил, арил, ацил, замещенный силил, карбамат, -P(O)(Re)2 или -HP(O)(Re);
Re, в каждом случае независимо, представляет собой водород, алкил, арил, алкенил, алкинил, алкил-Y2-, алкенил-Y2-, алкинил-Y2-, арил-Y2- или гетероарил-Y2- или катион, который представляет собой Na+1, Li+1 или K+1;
Y2 представляет собой О, NRd или S;
R2, в каждом случае независимо, представляет собой водород, -ОН, -SH, -NRdRd, -N3, галоген, алкил, алкенил, алкинил, алкил-Y1-, алкенил-Y1-, алкинил-Y1-, арил-Y1-, гетероарил-Y1-, -ORb или -SRc, где Rb представляет собой блокирующую группу;
Ва, в каждом случае независимо, представляет собой блокированный или неблокированный аденин, цитозин, гуанин, тимин, урацил или модифицированное нуклеиновое основание;
по меньшей мере один фрагмент Х в пролекарстве нуклеиновой кислоты независимо выбран из
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
и
Figure 00000023
,
где R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода; R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил; и R12 представляет собой водород или алкил;
R3 представляет собой водород, блокирующую группу, связывающий фрагмент, соединенный с твердой подложкой или соединенный с нуклеиновой кислотой; и n равно целому числу от 1 до приблизительно 200;
R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода;
где способ, применяемый для синтеза пролекарства нуклеиновой кислоты, включает следующие стадии: (1) реакцию молекулы, содержащей ахиральный Н-фосфонатный фрагмент, и нуклеозида, содержащего 5'-ОН фрагмент, с образованием конденсированного промежуточного соединения; и (2) превращение конденсированного промежуточного соединения в пролекарство нуклеиновой кислоты, содержащее хиральный Х-фосфонатный фрагмент.
В другом варианте предлагается способ лечения рака, который включает введение терапевтического количества соединения Формулы 1, где по меньшей мере 25% фрагментов Х в пролекарстве нуклеиновой кислоты независимо выбраны из
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
и
Figure 00000023
,
где R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода; R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил; и R12 представляет собой водород или алкил. В другом варианте предлагается способ лечения рака, который включает введение терапевтического количества соединения Формулы 1, где по меньшей мере 50% фрагментов Х в пролекарстве нуклеиновой кислоты независимо выбраны из
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
и
Figure 00000023
,
где R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода; R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил; и R12 представляет собой водород или алкил. В другом варианте предлагается способ лечения рака, который включает введение терапевтического количества соединения Формулы 1, где по меньшей мере 90% фрагментов Х в пролекарстве нуклеиновой кислоты независимо выбраны из
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
и
Figure 00000023
,
где R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода; R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил; и R12 представляет собой водород или алкил. В другом варианте предлагается способ лечения рака, который включает введение терапевтического количества соединения Формулы 1, где в каждом случае Х независимо выбран из
Figure 00000003
,
Figure 00000012
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000016
,
Figure 00000017
,
Figure 00000019
,
Figure 00000021
и
Figure 00000023
,
где R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода; R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил; и R12 представляет собой водород или алкил.
В другом варианте предлагается способ лечения рака, который включает введение терапевтического количества соединения Формулы 1, где R10 представляет собой метил. В другом варианте предлагается способ лечения рака, который включает введение терапевтического количества соединения Формулы 1, где R11 представляет собой метил. В другом варианте предлагается способ лечения рака, который включает введение терапевтического количества соединения Формулы 1, где R12 представляет собой метил.
В другом варианте предлагается способ лечения рака, который включает введение терапевтического количества соединения Формулы 1, где диастереомерная чистота каждого Х-фосфонатного фрагмента соединения Формулы 1 составляет более 98% по данным 31Р ЯМР спектроскопии или обращенно-фазовой ВЭЖХ. В другом варианте предлагается способ лечения рака, который включает введение терапевтического количества соединения Формулы 1, где каждый Х-фосфонатный фрагмент находится в RP конфигурации. В другом варианте предлагается способ лечения рака, который включает введение терапевтического количества соединения Формулы 1, где каждый Х-фосфонатный фрагмент находится в SP конфигурации. В другом варианте предлагается способ лечения рака, который включает введение терапевтического количества соединения Формулы 1, где каждый Х-фосфонат независимо находится в RP конфигурации или Sp конфигурации.
В другом варианте предлагается способ лечения рака, который включает введение терапевтического количества соединения Формулы 1, где рак представляет собой рак поджелудочной железы.
В одном из вариантов предлагается пролекарство нуклеиновой кислоты следующей структуры:
Figure 00000033
где R1 представляет собой -ОН, -SH, -NRdRd, -N3, галоген, водород, алкил, алкенил, алкинил, алкил-Y1-, алкенил-Y1-, алкинил-Y1-, арил-Y1-, гетероарил-Y1-, -P(O)(Re)2, -HP(O)(Re)2, -ORa или -SRc;
Y1 представляет собой О, NRd, S или Se;
Ra представляет собой блокирующую группу;
Rc представляет собой блокирующую группу;
Rd, в каждом случае независимо, представляет собой водород, алкил, алкенил, алкинил, арил, ацил, замещенный силил, карбамат, -P(O)(Re)2 или -НР(O)(Re);
в каждом случае Re представляет собой независимо водород, алкил, арил, алкенил, алкинил, алкил-Y2-, алкенил-Y2-, алкинил-Y2-, арил-Y2- или гетероарил-Y2- или катион, который представляет собой Na+1, Li+1 или K+1;
Y2 представляет собой О, NRd или S;
R2, в каждом случае независимо, представляет собой водород, -ОН, -SH, -NRdRd, -N3, галоген, алкил, алкенил, алкинил, алкил-Y1-, алкенил-Y1-, алкинил-Y1-, арил-Y1-, гетероарил-Y1-, -ORb или -SRc, где Rb представляет собой блокирующую группу;
Ва, в каждом случае независимо, представляет собой блокированный или неблокированный аденин, цитозин, гуанин, тимин, урацил или модифицированное нуклеиновое основание;
по меньшей мере в одном случае Х представляет собой
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
или
Figure 00000023
;
R3 представляет собой водород, блокирующую группу, связывающий фрагмент, соединенный с твердой подложкой или соединенный с нуклеиновой кислотой;
R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода;
R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил;
R12 представляет собой водород или алкил; и
n равно целому числу от 1 до приблизительно 200.
В одном из вариантов предлагается пролекарство нуклеиновой кислоты Формулы 2, где диастереомерная чистота каждого Х-фосфонатного фрагмента соединения Формулы 2 составляет более 98% по данным 31Р ЯМР спектроскопии или обращенно-фазовой ВЭЖХ. В другом варианте предлагается пролекарство нуклеиновой кислоты Формулы 2, где каждый Х-фосфонатный фрагмент находится в RP конфигурации. В другом варианте предлагается пролекарство нуклеиновой кислоты Формулы 2, где каждый Х-фосфонатный фрагмент находится в SP конфигурации. В другом варианте предлагается пролекарство нуклеиновой кислоты Формулы 2, где каждый Х-фосфонат независимо находится в RP конфигурации или Sp конфигурации.
В другом варианте предлагается пролекарство нуклеиновой кислоты Формулы 2, где R10 представляет собой метил. В другом варианте предлагается пролекарство нуклеиновой кислоты Формулы 2, где R11 представляет собой метил. В другом варианте предлагается пролекарство нуклеиновой кислоты Формулы 2, где R12 представляет собой метил.
В другом варианте предлагается пролекарство нуклеиновой кислоты Формулы 2, где по меньшей мере 25% фрагментов Х в пролекарстве нуклеиновой кислоты независимо выбраны из
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
и
Figure 00000023
.
В другом варианте предлагается пролекарство нуклеиновой кислоты Формулы 2, где по меньшей мере 50% фрагментов Х в пролекарстве нуклеиновой кислоты независимо выбраны из
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
и
Figure 00000023
.
В другом варианте предлагается пролекарство нуклеиновой кислоты Формулы 2, где по меньшей мере 90% фрагментов Х в пролекарстве нуклеиновой кислоты независимо выбраны из
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
и
Figure 00000023
.
В другом варианте предлагается пролекарство нуклеиновой кислоты Формулы 2, где каждый фрагмент Х в пролекарстве нуклеиновой кислоты независимо выбран из
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
и
Figure 00000023
.
В одном из вариантов предлагается фармацевтическая композиция, содержащая пролекарство нуклеиновой кислоты следующей структуры:
Figure 00000033
где R1 представляет собой -ОН, -SH, -NRdRd, -N3, галоген, водород, алкил, алкенил, алкинил, алкил-Y1-, алкенил-Y1-, алкинил-Y1-, арил-Y1-, гетероарил-Y1-, -P(O)(Re)2, -HP(O)(Re), -ORa или -SRc;
Y1 представляет собой О, NRd, S или Se;
Ra представляет собой блокирующую группу;
Rc представляет собой блокирующую группу;
Rd, в каждом случае независимо, представляет собой водород, алкил, алкенил, алкинил, арил, ацил, замещенный силил, карбамат, -P(O)(Re)2 или -HP(O)(Re);
Re, в каждом случае независимо, представляет собой водород, алкил, арил, алкенил, алкинил, алкил-Y2-, алкенил-Y2-, алкинил-Y2-, арил-Y2- или гетероарил-Y2- или катион, который представляет собой Na+1, Li+1 или K+1;
Y2 представляет собой О, NRd или S;
R2, в каждом случае независимо, представляет собой водород, -ОН, -SH, -NRdRd, -N3, галоген, алкил, алкенил, алкинил, алкил-Y1-, алкенил-Y1-, алкинил-Y1-, арил-Y1-, гетероарил-Y1-, -ORb или -SRc, где Rb представляет собой блокирующую группу;
Ва, в каждом случае независимо, представляет собой блокированный или неблокированный аденин, цитозин, гуанин, тимин, урацил или модифицированное нуклеиновое основание;
где по меньшей мере один фрагмент Х в пролекарстве нуклеиновой кислоты независимо выбран из
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
и
Figure 00000023
,
где R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода; R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил; и R12 представляет собой водород или алкил;
R3 представляет собой водород, блокирующую группу, связывающий фрагмент, соединенный с твердой подложкой или соединенный с нуклеиновой кислотой; и n равно целому числу от 1 до приблизительно 200;
где способ, применяемый для синтеза пролекарства нуклеиновой кислоты, включает следующие стадии: (1) реакцию молекулы, содержащей ахиральный Н-фосфонатный фрагмент, и нуклеозида, содержащего 5'-ОН фрагмент, с образованием конденсированного промежуточного соединения; и (2) превращение конденсированного промежуточного соединения в пролекарство нуклеиновой кислоты, содержащее хиральный Х-фосфонатный фрагмент.
В другом варианте предлагается фармацевтическая композиция, содержащая соединение Формулы 2, где диастереомерная чистота каждого X-фосфонатного фрагмента соединения Формулы 2 составляет более 98% по данным 31P ЯМР спектроскопии или обращенно-фазовой ВЭЖХ. В другом варианте предлагается фармацевтическая композиция, содержащая соединение Формулы 2, где каждый Х-фосфонатный фрагмент находится в RP конфигурации. В другом варианте предлагается фармацевтическая композиция, содержащая соединение Формулы 2, где каждый Х-фосфонатный фрагмент находится в SP конфигурации. В другом варианте предлагается фармацевтическая композиция, содержащая соединение Формулы 2, где каждый Х-фосфонат независимо находится в RP конфигурации или Sp конфигурации.
В другом варианте предлагается фармацевтическая композиция, содержащая соединение Формулы 2, где по меньшей мере 25% фрагментов Х в пролекарстве нуклеиновой кислоты независимо выбраны из
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
и
Figure 00000023
,
где R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода; R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил; и R12 представляет собой водород или алкил. В другом варианте предлагается фармацевтическая композиция, содержащая соединение Формулы 2, где по меньшей мере 50% фрагментов Х в пролекарстве нуклеиновой кислоты независимо выбраны из
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
и
Figure 00000023
,
где R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода; R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил; и R12 представляет собой водород или алкил. В другом варианте предлагается фармацевтическая композиция, содержащая соединение Формулы 2, где по меньшей мере 90% фрагментов Х в пролекарстве нуклеиновой кислоты независимо выбраны из
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
и
Figure 00000023
,
где R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода; R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил; и R12 представляет собой водород или алкил. В другом варианте предлагается фармацевтическая композиция, содержащая соединение Формулы 2, где в каждом случае Х независимо выбран из
Figure 00000003
,
Figure 00000012
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
и
Figure 00000023
,
где R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода; R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил; и R12 представляет собой водород или алкил.
В другом варианте предлагается фармацевтическая композиция, содержащая соединение Формулы 2, где R10 представляет собой метил. В другом варианте предлагается фармацевтическая композиция, содержащая соединение Формулы 2, где R11 представляет собой метил. В другом варианте предлагается фармацевтическая композиция, содержащая соединение Формулы 2, где R12 представляет собой метил.
В одном из вариантов предлагается способ лечения рака, который включает введение терапевтического количества пролекарства нуклеиновой кислоты следующей структуры:
Figure 00000033
где R1 представляет собой -ОН, -SH, -NRdRd, -N3, галоген, водород, алкил, алкенил, алкинил, алкил-Y1-, алкенил-Y1-, алкинил-Y1-, арил-Y1-, гетероарил-Y1-, -P(O)(Re)2, -HP(O)(Re), -ORa или -SRc;
Y1 представляет собой О, NR1, S или Se;
Ra представляет собой блокирующую группу;
Rc представляет собой блокирующую группу;
Rd, в каждом случае независимо, представляет собой водород, алкил, алкенил, алкинил, арил, ацил, замещенный силил, карбамат, -P(O)(Re)2 или -HP(O)(Re);
Re, в каждом случае независимо, представляет собой водород, алкил, арил, алкенил, алкинил, алкил-Y2-, алкенил-Y2-, алкинил-Y2-, арил-Y2- или гетероарил-Y2- или катион, который представляет собой Na+1, Li+1 или K+1;
Y2 представляет собой О, NRd или S;
R2, в каждом случае независимо, представляет собой водород, -ОН, -SH, -NRdRd, -N3, галоген, алкил, алкенил, алкинил, алкил-Y1-, алкенил-Y1-, алкинил-Y1-, арил-Y1-, гетероарил-Y1-, -ORb или -SRc, где Rb представляет собой блокирующую группу;
Ва, в каждом случае независимо, представляет собой блокированный или неблокированный аденин, цитозин, гуанин, тимин, урацил или модифицированное нуклеиновое основание;
по меньшей мере один фрагмент Х в пролекарстве нуклеиновой кислоты независимо выбран из
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
и
Figure 00000023
,
где R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода; R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил; и R12 представляет собой водород или алкил;
R3 представляет собой водород, блокирующую группу, связывающий фрагмент, соединенный с твердой подложкой или соединенный с нуклеиновой кислотой; и n равно целому числу от 1 до приблизительно 200;
R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода;
где способ, применяемый для синтеза пролекарства нуклеиновой кислоты, включает следующие стадии: (1) реакцию молекулы, содержащей ахиральный Н-фосфонатный фрагмент, и нуклеозида, содержащего 5'-ОН фрагмент, с образованием конденсированного промежуточного соединения; и (2) превращение конденсированного промежуточного соединения в пролекарство нуклеиновой кислоты, содержащее хиральный Х-фосфонатный фрагмент.
В другом варианте предлагается способ лечения рака, который включает введение терапевтического количества соединения, структура которого представлена Формулой 2, где по меньшей мере 25% фрагментов Х в пролекарстве нуклеиновой кислоты независимо выбраны из
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
и
Figure 00000023
,
где R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода; R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил; и R12 представляет собой водород или алкил.
В другом варианте предлагается способ лечения рака, который включает введение терапевтического количества соединения, структура которого представлена Формулой 2, где по меньшей мере 50% фрагментов Х в пролекарстве нуклеиновой кислоты независимо выбраны из
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
и
Figure 00000023
,
где R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода; R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил; и R12 представляет собой водород или алкил.
В другом варианте предлагается способ лечения рака, который включает введение терапевтического количества соединения, структура которого представлена Формулой 2, где по меньшей мере 90% фрагментов Х в пролекарстве нуклеиновой кислоты независимо выбраны из
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
и
Figure 00000023
,
где R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода; R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил; и R12 представляет собой водород или алкил. В другом варианте предлагается способ лечения рака, который включает введение терапевтического количества соединения, структура которого представлена Формулой 2, где в каждом случае Х независимо выбран из
Figure 00000003
,
Figure 00000012
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000016
,
Figure 00000017
,
Figure 00000019
,
Figure 00000021
и
Figure 00000023
,
где R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода; R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил; и R12 представляет собой водород или алкил.
В другом варианте предлагается способ лечения рака, который включает введение терапевтического количества соединения, структура которого представлена Формулой 2, где R10 представляет собой метил. В другом варианте предлагается способ лечения рака, который включает введение терапевтического количества соединения, структура которого представлена Формулой 2, где R11 представляет собой метил. В другом варианте предлагается способ лечения рака, который включает введение терапевтического количества соединения, структура которого представлена Формулой 2, где R12 представляет собой метил
В другом варианте предлагается способ лечения рака, который включает введение терапевтического количества соединения, структура которого представлена Формулой 2, где диастереомерная чистота каждого Х-фосфонатного фрагмента соединения Формулы 2 составляет более 98% по данным 31P ЯМР спектроскопии или обращенно-фазовой ВЭЖХ.
В другом варианте предлагается способ лечения рака, который включает введение терапевтического количества соединения, структура которого представлена Формулой 2, где каждый Х-фосфонатный фрагмент находится в RP конфигурации. В другом варианте предлагается способ лечения рака, который включает введение терапевтического количества соединения, структура которого представлена Формулой 2, где каждый Х-фосфонатный фрагмент находится в SP конфигурации. В другом варианте предлагается способ лечения рака, который включает введение терапевтического количества соединения, структура которого представлена Формулой 2, где каждый Х-фосфонат независимо находится в RP конфигурации или Sp конфигурации.
В одном из вариантов предлагается способ лечения рака, который включает введение терапевтического количества соединения, структура которого представлена Формулой 2, где рак представляет собой рак поджелудочной железы.
В одном из вариантов предлагается способ лечения рака, который включает введение терапевтического количества соединения, структура которого представлена Формулой 2, где соединение представлено следующей формулой:
Figure 00000034
где каждый А представляет собой аденин, и каждый R11 независимо выбран из алкила, арила, гетероарила, гетероциклила и циклоалкила. В дополнительном варианте предлагается способ лечения рака поджелудочной железы, который включает введение терапевтического количества соединения Формулы А3-2.
В одном из вариантов предлагается способ лечения рака, который включает введение терапевтического количества соединения, структура которого представлена Формулой 2, где соединение представлено следующей формулой:
Figure 00000035
В дополнительном варианте предлагается способ лечения рака поджелудочной железы, включающий введение терапевтического количества соединения Формулы A3-3.
В одном из вариантов предлагается соединение или его фармацевтически приемлемая соль следующей формулы:
Figure 00000036
где каждый А представляет собой аденин; и по меньшей мере один фрагмент Х представляет собой
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
или
Figure 00000023
,
где R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода; R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил; и R12 представляет собой водород или алкил.
В другом варианте предлагается соединение или его фармацевтически приемлемая соль, представленное структурой Формулы А3-1, где по меньшей мере два фрагмента Х в пролекарстве нуклеиновой кислоты независимо выбраны из
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
и
Figure 00000023
,
где R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода; R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил; и R12 представляет собой водород или алкил.
В другом варианте предлагается соединение или его фармацевтически приемлемая соль, представленное структурой Формулы А3-1, где по меньшей мере три фрагмента Х в пролекарстве нуклеиновой кислоты независимо выбраны из
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
и
Figure 00000023
,
где R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода; R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил; и R12 представляет собой водород или алкил.
В другом варианте предлагается соединение или его фармацевтически приемлемая соль, представленное структурой Формулы А3-1, где каждый фрагмент Х в пролекарстве нуклеиновой кислоты независимо выбран из
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
и
Figure 00000023
,
где R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода; R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил; и R12 представляет собой водород или алкил.
В другом варианте предлагается соединение или его фармацевтически приемлемая соль, представленное структурой Формулы А3-1, где соединение представлено следующей формулой:
Figure 00000035
Все публикации и патентные заявки, раскрытые в описании данной заявки, включены в данное описание путем отсылки во всем объеме, в такой же степени, как если бы каждая отдельная публикация или патентная заявка была конкретно и отдельно указана как включенная путем ссылки.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Новые признаки изобретения конкретно определены в прилагаемой формуле изобретения. Лучшее понимание признаков и преимуществ данного изобретения будет достигнуто со ссылкой на следующее подробное описание, где приведены иллюстративные варианты, в которых применяются принципы изобретения, и сопутствующие фигуры.
На фиг.1 представлен характерный профиль, полученный методом аналитической ВЭЖХ для соединения 64 и GSH.
На фиг.2 представлен характерный профиль, полученный методом ВЭЖХ для соединения 64а, глутатионового аддукта и конечного продукта после высвобождения из про-фрагмента.
На фиг.3 представлен график превращения во времени для соединений 64а и 64b.
На фиг.4 представлено протекание реакции во времени по данным ЖХ-МС для высвобождения соединения 64а из пролекарства при содействии глутатиона.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Заголовки разделов приведены в данном описании только для целей систематизации материала и не должны интерпретироваться как ограничивающие описанный предмет. Все документы или части документов, процитированные в заявке, в том числе, не ограничиваясь ими, патенты, патентные заявки, статьи, книги, руководства и монографии, явно включены путем ссылки в полном объеме для любой цели.
Если не указано иное, следующие термины, используемые в данной заявке, включая описание и формулу изобретения, имеют определения, приведенные ниже. Следует отметить, что в описании и прилагаемой формуле изобретения, формы единственного числа "a" "an" и "the" включают множественное число, если из контекста явно не следует противоположное. Если не указано иное, применяются традиционные методы масс-спектроскопии, ЯМР, ВЭЖХ, химии белков, биохимии, техники рекомбинации ДНК и фармакологические методы. В данной заявке применение слов "или" или "и" обозначает "и/или", если не указано иное. Кроме того, применение термина "в том числе", а также других форм, таких как "включают", "включает" и "включены" не является ограничивающим.
Некоторые химические термины
Если не указано иное, применение общих химических терминов, таких как, не ограничиваясь ими, "алкил", "амин", "арил" обозначает незамещенный радикал.
В данном описании C1-Cx включает C12, С13.. С1х. Только для примера, группа, обозначенная "C1-C4" показывает, что фрагмент содержит от 1 до 4 атомов углерода, т.е. группы, содержащие 1 атом углерода, 2 атома углерода, 3 атома углерода или 4 атома углерода, а также интервалы C1-C2 и C13. Таким образом, только для примера, "C1-C4 алкил" показывает, что алкильная группа содержит от 1 до 4 атомов углерода, т.е. алкильная группа выбрана из метила, этила, пропила, изо-пропила, н-бутила, изо-бутила, втор-бутила и трет-бутила. Если указание на нее содержится в данном описании, численный интервал, например, "1-10" обозначает каждое целое число в указанном интервале; например, "1-10 атомов углерода" означает, что группа может содержать 1 атом углерода, 2 атома углерода, 3 атома углерода, 4 атома углерода, 5 атомов углерода, 6 атомов углерода, 7 атомов углерода, 8 атомов углерода, 9 атомов углерода или 10 атомов углерода.
Термины "гетероатом" или "гетеро" в данном описании отдельно или в комбинации, обозначают атом, который не является атомом углерода или водорода. Гетероатомы могут быть независимо выбраны из кислорода, азота, серы, фосфора, кремния, селена и олова, но не ограничиваются ими. В вариантах, где присутствует два или более гетероатомов, два или более гетероатомов могут быть одинаковыми, или некоторые или все из двух или более гетероатомов могут отличаться от других.
Термин "алкил" в данном описании, отдельно или в комбинации, обозначает неразветвленный или разветвленный насыщенный углеводородный монорадикал, содержащий от 1 до приблизительно 10 атомов углерода или от 1 до 6 атомов углерода. Примеры включают, не ограничиваясь ими, метил, этил, н-пропил, изопропил, 2-метил-1-пропил, 2-метил-2-пропил, 2-метил-1-бутил, 3-метил-1-бутил, 2-метил-3-бутил, 2,2-диметил-1-пропил, 2-метил-1-пентил, 3-метил-1-пентил, 4-метил-1-пентил, 2-метил-2-пентил, 3-метил-2-пентил, 4-метил-2-пентил, 2,2-диметил-1-бутил, 3,3-диметил-1-бутил, 2-этил-1-бутил, н-бутил, изобутил, втор-бутил, трет-бутил, «-пентил, изопентил, неопентил, трет-амил и гексил, а также более длинные алкильные группы, такие как гептил, октил, и т.п. При упоминании в данном описании, численный интервал, например, "С16 алкил" или "C1-6 алкил", обозначает, что алкильная группа может состоять из 1 атома углерода, 2 атомов углерода, 3 атомов углерода, 4 атомов углерода, 5 атомов углерода или 6 атомов углерода. В одном из вариантов "алкил" является замещенным. Если не указано иное, "алкил" является незамещенным.
Термин "алкенил" в данном описании, отдельно или в комбинации, обозначает неразветвленный или разветвленный углеводородный монорадикал, содержащий одну или больше углерод-углеродных двойных связей и содержащий от 2 до приблизительно 10 атомов углерода или от 2 до приблизительно 6 атомов углерода. Группа может находиться в цис- или транс-конформации относительно двойной связи(ей), и предусматривается, что она включает оба изомера. Примеры включают, не ограничиваясь ими, этенил (-СН=CH2), 1-пропенил (-CH2CH=СН2), изопропенил [-C(CH3)=CH2], бутенил, 1,3-бутадиенил, и т.п. При упоминании в данном описании, численный интервал, например, "C2-C6 алкенил" или "С2-6 алкенил", обозначает, что алкенильная группа может состоять из 2 атомов углерода, 3 атомов углерода, 4 атомов углерода, 5 атомов углерода или 6 атомов углерода. В одном из вариантов "алкенил" является замещенным. Если не указано иное, "алкенил" является незамещенным.
Термин "алкинил" в данном описании, отдельно или в комбинации, обозначает неразветвленный или разветвленный углеводородный монорадикал, содержащий одну или больше углерод-углеродных тройных связей и содержащий от 2 до приблизительно 10 атомов углерода или от 2 до приблизительно 6 атомов углерода. Примеры включают, не ограничиваясь ими, этинил, 2-пропинил, 2-бутинил, 1,3-бутадиинил, и т.п. При упоминании в данном описании, численный интервал, такой как "С26 алкинил" или "С2-6 алкинил", обозначает, что алкинильная группа может состоять из 2 атомов углерода, 3 атомов углерода, 4 атомов углерода, 5 атомов углерода или 6 атомов углерода. В одном из вариантов "алкинил" является замещенным. Если не указано иное, "алкинил" является незамещенным.
Термины "гетероалкил", "гетероалкенил" и "гетероалкинил" в данном описании, отдельно или в комбинации, обозначают алкильные, алкенильные и алкинильные структуры, соответственно, как описано выше, где один или больше из атомов углерода в основной цепи (и, при необходимости, любые связанные с ними атомы водорода) независимо заменены на гетероатом (т.е. атом, не являющийся атомом углерода, например, не ограничиваясь ими, кислород, азот, сера, кремний, фосфор, олово или их комбинация) или гетероатомную группу, такую как, не ограничиваясь ими, -O-O-, -S-S-, -O-S-, -S-O-, =N-N=, -N=N-, -N=N-NH-, -P(O)2, -O-P(O)2, -P(O)2-O-, -S(O)-, -S(O)2-, -SnH2-, и т.п.
Термины "галогеналкил", "галогеналкенил" и "галогеналкинил" в данном описании, отдельно или в комбинации, обозначают алкильные, алкенильные и алкинильные группы, соответственно, как определено выше, где один или больше атомов водорода заменены на атомы фтора, хлора, брома или йода или их комбинации. В некоторых вариантах два или более атомов водорода могут быть заменены одинаковыми атомами галогена (например, дифторметил); в других вариантах два или более атомов водорода могут быть заменены разными атомами галогена (например, 1-хлор-1-фтор-1-йодэтил). Неограничивающими примерами галогеналкильных групп являются фторметил, хлорметил и бромэтил.
Неограничивающим примером галогеналкенильной группы является бромэтенил. Неограничивающим примером галогеналкинильной группы является хлорэтинил.
Термин "углеродная цепь" в данном описании, отдельно или в комбинации, обозначает любую алкильную, алкенильную, алкинильную, гетероалкильную, гетероалкенильную или гетероалкинильную группу, которая является линейной, циклической или любой их комбинацией. Если цепь является частью линкера, и такой линкер включает одно или больше колец как часть скелета ядра, для целей вычисления длины цепи, "цепь" включает только те атомы углерода, которые составляют нижнюю часть или верхнюю часть данного кольца, но не обе, и где верхняя и нижняя части кольца(колец) не равны по длине, то более короткое расстояние будет использоваться для определения длины цепи. Если цепь содержит гетероатомы как часть скелета, такие атомы не считаются частью длины углеродной цепи.
Термин "циклоалкил" в данном описании, отдельно или в комбинации, обозначает монорадикал насыщенного углеводородного кольца, содержащий от 3 до приблизительно 15 атомов углерода в кольце или от 3 до приблизительно 10 атомов углерода в кольце, хотя может включать дополнительные неуглеродные атомы кольца в качестве заместителей (например, метилциклопропил). При упоминании в данном описании, численный интервал, например, "С36 циклоалкил " или "С3-6 циклоалкил", обозначает, что циклоалкильная группа может состоять из 3 атомов углерода, 4 атомов углерода, 5 атомов углерода или 6 атомов углерода, т.е. представляет собой циклопропил, циклобутил, циклопентил или циклогептил, хотя данное определение также охватывает употребление термина "циклоалкил", где численный интервал не обозначен. Термин включает конденсированные, неконденсированные, соединенные мостиком и спирорадикалы. Конденсированный циклоалкил может содержать от 2 до 4 конденсированных колец, где кольцо, через которое осуществляется присоединение, представляет собой циклоалкильное кольцо, и другие отдельные кольца могут быть алициклическими, гетероциклическими, ароматическими, гетероароматическими или любой их комбинацией. Примеры включают, не ограничиваясь ими, циклопропил, циклопентил, циклогексил, декалинил и бицикло[2,2,1]гептильную и адамантильную системы колец. Иллюстративные примеры включают, не ограничиваясь ими, следующие фрагменты:
Figure 00000037
,
Figure 00000038
,
Figure 00000039
,
Figure 00000040
,
Figure 00000041
,
Figure 00000042
,
Figure 00000043
,
Figure 00000044
,
Figure 00000045
,
Figure 00000046
,
Figure 00000047
,
Figure 00000048
,
Figure 00000049
,
Figure 00000050
,
Figure 00000051
,
Figure 00000052
,
Figure 00000053
,
Figure 00000054
,
Figure 00000055
и т.п.
В одном из вариантов "циклоалкил" является замещенным. Если не указано иное, the "циклоалкил" является незамещенным.
Термины "неароматический гетероциклил" и "гетероалициклил" в данном описании, отдельно или в комбинации, обозначают насыщенные, частично ненасыщенные или полностью ненасыщенные монорадикалы неароматического кольца, содержащего от 3 до приблизительно 12 атомов в кольце, где один или больше из атомов кольца представляют собой атом, не являющийся атомом углерода, независимо выбранный из кислорода, азота, серы, фосфора, кремния, селена и олова, не ограничиваясь указанными атомами. В вариантах, где два или более гетероатомов присутствуют в кольце, два или более гетероатомов могут быть одинаковыми или разными. Термины включают конденсированные, неконденсированные, соединенные мостиком и спирорадикалы. Конденсированный неароматических гетероциклический радикал может содержать от 2 до 4 конденсированных колец, где кольцо, через которое осуществляется присоединение, является неароматическим гетероциклом, и другие отдельные кольца могут быть алициклическими, гетероциклическими, ароматическими, гетероароматическими, или любой их комбинацией. Системы конденсированных колец могут быть конденсированными поперек одинарной связи или двойной связи, а также поперек связей, которые представляют собой связи углерод-угдерод, углерод-гетероатом или гетероатом-гетероатом. Термины также включают радикалы, содержащие от 3 до приблизительно 12 скелетных атомов в кольце, а также содержащие от 3 до приблизительно 10 скелетных атомов в кольце. Присоединение неароматической гетероциклической субъединицы к исходной молекуле может осуществляться через гетероатом или атом углерода. Подобным образом, дополнительное замещение может осуществляться при гетероатоме или атоме углерода. В качестве неограничивающего примера, имидазолидиновый неароматический гетероцикл может быть присоединен к исходной молекуле через содержащиеся в гетероцикле атомы N (имидазолидин-1-ил или имидазолидин-3-ил) или любой из атомов углерода (имидазолидин-2-ил имидазолидин-4-ил или имидазолидин-5-ил). В некоторых вариантах неароматические гетероциклы содержат одну или больше карбонильных или тиокарбонильных групп, например, таких как оксо- и тиосодержащие группы. Примеры включают, не ограничиваясь ими, пирролидинил, тетрагидрофуранил, дигидрофуранил, тетрагидротиенил, тетрагидропиранил, дигидропиранил, тетрагидротиопиранил, пиперидин, морфолино, тиоморфолино, тиоксанил, пиперазинил, азетидинил, оксетанил, тиетанил, гомопиперидинил, оксепанил, тиепанил, оксазепинил, диазепинил, тиазепинил, 1,2,3,6-тетрагидрорпиридинил, 2-пирролинил, 3-пирролинил, индолинил, 2Н-пиранил, 4Н-пиранил, диоксанил, 1,3-диоксоланил, пиразолинил, дитианил, дитиоланил, дигидропиранил, дигидротиенил, дигидрофуранил, пиразолидинил, имидазолинил, имидазолидинил, 3-азабицикло[3,1,0]гексанил, 3-азабицикло[4,1,0]гептанил, 3H-индолил и хинолизинил. Иллюстративные примеры гетероциклоалкильных групп, которые также называются неароматическими гетероциклами, включают:
Figure 00000056
,
Figure 00000057
,
Figure 00000058
,
Figure 00000059
,
Figure 00000060
,
Figure 00000061
,
Figure 00000062
,
Figure 00000063
,
Figure 00000064
,
Figure 00000065
,
Figure 00000066
,
Figure 00000067
,
Figure 00000068
,
Figure 00000069
,
Figure 00000070
,
Figure 00000071
,
Figure 00000072
,
Figure 00000073
,
Figure 00000074
,
Figure 00000075
,
Figure 00000076
,
Figure 00000077
,
Figure 00000078
,
Figure 00000079
,
Figure 00000080
,
Figure 00000081
,
Figure 00000082
,
Figure 00000083
,
Figure 00000084
и т.д.
Термины также включают все кольцевые формы углеводородов, в том числе, не ограничиваясь ими, моносахариды, дисахариды и олигосахариды. В одном из вариантов "неароматический гетероциклил" или "гетероалициклил" является замещенным. Если не указано иное, "неароматический гетероциклил" или "гетероалициклил" является незамещенным.
Термин "арил" в данном описании, отдельно или в комбинации, обозначает ароматический углеводородный радикал, содержащий от 6 до приблизительно 12 атомов углерода в кольце, и включает конденсированные и неконденсированные арильные кольца. Арильный радикал, содержащий конденсированные кольца, включает от 2 до 4 конденсированных колец, где присоединение осуществляется через арильное кольцо, и другие отдельные кольца могут быть алициклическими, гетероциклическими, ароматическими, гетероароматическими, или любой их комбинацией. Кроме того, термин «арил» включает конденсированные и неконденсированные кольца, содержащие от 6 до приблизительно 12 атомов углерода в кольце, а также содержащие от 6 до приблизительно 10 атомов углерода в кольце. Неограничивающий пример арильной группы с одним кольцом включает фенил; арильные группы с конденсированными кольцами включает нафтил, фенантренил, антраценил, азуленил; и би-арильной группы с неконденсированными кольцами включает бифенил. В одном из вариантов "арил" является замещенным. Если не указано иное, "арил" является незамещенным.
Термин "гетероарил" в данном описании, отдельно или в комбинации, обозначает ароматические монорадикалы, содержащие от приблизительно 5 до приблизительно 12 скелетных атомов в кольце, где один или больше атомов в кольце представляет собой гетероатом, независимо выбранный из кислорода, азота, серы, фосфора, кремния, селена и олова, не ограничиваясь указанными атомами, и при условии, что кольцо в указанной группе не содержит двух смежных атомов О или S. В вариантах, где два или больше гетероатомов присутствуют в кольце, два или больше гетероатомов могут быть одинаковыми, или все из двух или больше гетероатомов могут быть разными. Термин «гетероарил» включает конденсированные и неконденсированные гетероарильные радикалы, содержащие по меньшей мере один гетероатом. Термин «гетероарил» также включает конденсированные и неконденсированные гетероарилы, содержащие от 5 до приблизительно 12 скелетных атомов в кольце, а также содержащие от 5 до приблизительно 10 скелетных атомов в кольце. Присоединение к гетероарильной группе может осуществляться через атом углерода или гетероатом. Таким образом, в качестве неограничивающего примера, имидазольная группа может быть присоединена к исходной молекуле через любой из атомов углерода (имидазол-2-ил, имидазол-4-ил или имидазол-5-ил) или атомов азота (имидазол-1-ил или имидазол-3-ил). Подобным образом, гетероарильная группа дополнительно может быть замещена при любом или всех атомах углерода и/или любом или всех гетероатомах. Конденсированный гетероарильный радикал может содержать от 2 до 4 конденсированных колец, где кольцо, через которое осуществляется присоединение, представляет собой гетероароматическое кольцо, и другие отдельные кольца могут быть алициклическими, гетероциклическими, ароматическими, гетероароматическими, или любой их комбинацией. Неограничивающий пример гетероарильной группы с одним кольцом включает пиридил; гетероарильной группы с конденсированными кольцами включает бензимидазолил, хинолинил, акридинил; и неконденсированной би-гетероарильной группы включает бипиридинил. Другие примеры гетероарилов включают, не ограничиваясь ими, фуранил, тиенил, оксазолил, акридинил, феназинил, бензимидазолил, бензофуранил, бензоксазолил, бензотиазолил, бензотиадиазолил, бензотиофенил, бензоксадиазолил, бензотриазолил, имидазолил, индолил, изоксазолил, изохинолинил, индолизинил, изотиазолил, изоиндолил, оксадиазолил, индазолил, пиридил, пиридазил, пиримидил, пиразинил, пирролил, пиразинил, пиразолил, пуринил, фталазинил, птеридинил, хинолинил, хиназолинил, хиноксалинил, триазолил, тетразолил, тиазолил, триазинил, тиадиазолил, и т.п., и их оксиды, такие как, например, пиридил-N-оксид. Иллюстративные примеры гетероарильных групп включают следующие фрагменты:
Figure 00000085
,
Figure 00000086
,
Figure 00000087
,
Figure 00000088
,
Figure 00000089
,
Figure 00000090
,
Figure 00000091
,
Figure 00000092
,
Figure 00000093
,
Figure 00000094
,
Figure 00000095
,
Figure 00000096
,
Figure 00000097
,
Figure 00000098
,
Figure 00000099
,
Figure 00000100
,
Figure 00000101
,
Figure 00000102
,
Figure 00000103
,
Figure 00000104
,
Figure 00000105
,
Figure 00000106
,
Figure 00000107
,
Figure 00000108
и т.д.
В одном из вариантов "гетероарил" является замещенным. Если не указано иное, "гетероарил" является незамещенным.
Термин "гетероциклил" в данном описании, отдельно или в комбинации, коллективно обозначает гетероалициклические и гетероарильные группы. Таким образом, независимо от указанного количества атомов углерода в гетероцикле (например, С16 гетероцикл), по меньшей мере один неуглеродный атом (гетероатом) должен присутствовать в кольце. Такие обозначения, как "C1-C6 гетероцикл" касаются только количества атомов углерода в кольце и не обозначают общего количества атомов в кольце. Такие обозначения, как "4-6-членный гетероцикл" обозначают общее количество атомов, которые содержатся в кольце (т.е. 4-, 5- или 6-членное кольцо, где по меньшей мере один атом представляет собой атом углерода, по меньшей мере один атом представляет собой гетероатом, и остальные 2-4 атома представляют собой атомы углерода или гетероатомы). Для гетероциклов, содержащих два или больше гетероатомов, указанные два или больше гетероатомов могут быть одинаковыми или разными. Неароматические гетероциклические группы включают группы, содержащие только 3 атома в кольце, тогда как ароматические гетероциклические группы должны содержать по меньшей мере 5 атомов в кольце. Присоединение (т.е. присоединение к исходной молекуле или дополнительное замещение) к гетероциклу может осуществляться через гетероатом или атом углерода. В одном из вариантов "гетероциклил" является замещенным. Если не указано иное, "гетероциклил" является незамещенным.
Термины "галоген", "гало" или "галогенид" в данном описании, отдельно или в комбинации обозначают фтор, хлор, бром и/или йод.
Некоторые фармацевтические термины
Термины "субъект", "пациент" или "индивидуум" в данном описании в отношении индивидуумов, страдающих от расстройства, и т.п., включают млекопитающих и субъектов, не относящихся к млекопитающим. Примеры млекопитающих включают, не ограничиваясь ими, любого члена класс Млекопитающих: человека, негуманоидных приматов, таких как шимпанзе и другие виды обезьян и мартышек; сельскохозяйственных животных, таких как телята, лошади, овцы, козы, свиньи; домашних животных, таких как кролики, собаки и кошки; лабораторных животных, в том числе грызунов, таких как крысы, мыши и морские свинки, и т.п. Примеры субъектов, не относящихся к млекопитающим, включают, не ограничиваясь ими, птиц, рыб, и т.п. В одном из вариантов способов и композиций, предложенных в данном описании, млекопитающее представляет собой человека.
Термины "эффективное количество", "терапевтически эффективное количество" или "фармацевтически эффективное количество" в данном описании обозначают количество по меньшей мере одного агента или соединения, которое при введении является достаточным для лечения или профилактики конкретного заболевания или состояния. Результатом может быть уменьшение и/или облегчение признаков, симптомов или причин заболевания, или любое другое желательное изменение биологической системы. Например, "эффективное количество" в терапии представляет собой количество композиции, содержащей соединение, раскрытое в данном описании, необходимое для достижения клинически значимого уменьшения тяжести заболевания. Подходящее "эффективное" количество в любом отдельном случае может быть определено с использованием таких методик, как исследование повышения дозы.
В данном описании термины "лечение" или "терапия", "облегчение" или "улучшение" используются равнозначным образом. Эти термин указывают на подход для получения полезных или желательных результатов, в том числе, но не ограничиваясь ими, терапевтической выгоды и/или профилактической выгоды. Под терапевтической выгодой подразумевается устранение или облегчение основного расстройства, подлежащего лечению. Также, терапевтическая выгода достигается при устранении или облегчении одного или больше физиологических симптомов, связанных с основным расстройством, таким образом, что улучшение наблюдается у больного, несмотря на, что больной может все еще страдать основным расстройством. Для достижения профилактической выгоды композиции могут вводиться больному, подверженному риску развития конкретного заболевания, или больному, который сообщает об одном или больше физиологических симптомов заболевания, даже если диагноз этого заболевания может быть не установлен.
Термин "терапевтический эффект" используется в данном описании и включает терапевтическую выгоду и/или профилактическую выгоду, как изложено выше. Профилактический эффект включает задержку или исключение появления заболевания или состояния, задержку или исключение появления симптомов заболевания или состояния, замедление, остановку или изменение прогрессирования заболевания или состояния, или любую их комбинацию.
Термин "фармацевтически приемлемый" в данном описании обозначает материал, такой как носитель или разбавитель, который не создает помех биологической активности или свойствам соединений, описанных в данном описании, и является относительно нетоксичным, т.е. материал может вводиться индивидууму без провоцирован™ нежелательных биологических эффектов или вредного взаимодействия с любым из компонентов композиции, в которой этот материал содержится.
Термин "фармацевтическая композиция" в данном описании обозначает биологически активное соединение, необязательно смешанное по меньшей мере с одним фармацевтически приемлемым химическим компонентом, таким как, не ограничиваясь ими, носители, стабилизаторы, разбавители, диспергирующие средства, суспендирующие средства, загустители и/или вспомогательные вещества.
Термин "носитель" в данном описании обозначает относительно нетоксичные химические соединения или средства, которые облегчают проникновение соединения в клетки или ткани.
Термин "пролекарство" обозначает соединение, которое может превращаться в физиологических условиях или путем сольволиза в биологически активное соединение, описанное в данном описании. Таким образом, термин "пролекарство" обозначает прекурсор биологически активного соединения, который является фармацевтически приемлемым. Пролекарство может быть инертным при введении субъекту, но превращаться in vivo в активное соединение, например, посредством гидролиза. Пролекарство соединения часто обеспечивает преимущества растворимости, совместимости с тканями или замедленного высвобождения в организме млекопитающих (см., например, Bundgard, П., Design of Prodrugs (1985), pp.7-9, 21-24 (Elsevier, Амстердам). Обсуждение пролекарств приведено в Higuchi, Т., et al., "Pro-drugs as Novel Delivery Systems," A.C.S. Symposium Series, Vol.14, и в Bioreversible Carriers in Drug Design, ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987, оба из которых включены в данное описание путем ссылки в полном объеме. Термин "пролекарство" также предназначен включать любые ковалентно связанные носители, которые высвобождают активное соединение in vivo, при введении такого пролекарства субъекту-млекопитающему. Пролекарство активного соединения, описанного в данном описании, может быть получено путем модификации функциональных групп, присутствующих в активном соединении, таким образом, что модифицирующие группы отщепляются при шаблонном манипулировании или in vivo, с образованием исходного активного соединения. Пролекарства включают соединения, где гидрокси-, амино- или меркаптогруппа соединена с какой-либо группой, которая, при введении Пролекарства активного соединения субъекту-млекопитающему, отщепляется с образованием свободной гидрокси-, амино- или меркаптогруппы, соответственно. Примеры пролекарств включают, не ограничиваясь ими, ацилокси, тиоацилокси, 2-карбоалкоксиэтил, дисульфид, тиаминальные и енол-эфирные производные нуклеиновой кислоты с модифицированным атомом фосфора.
Термины "про-олигонуклеотид" или "пронуклеотид" или "пролекарство нуклеиновой кислоты" обозначают олигонуклеотид, модифицированный таким образом, чтобы быть пролекарством олигонуклеотида.
Некоторые термины в области нуклеиновых кислот
Природные нуклеиновые кислоты содержат фосфатный скелет;
искусственные нуклеиновые кислоты могут содержать другие виды скелета, но содержат такие же основания.
Термин "нуклеотид" в данном описании обозначает мономерную единицу полинуклеотида, которая состоит из гетероциклического основания, сахара и одной или больше фосфорнокислых групп. Природные основания (гуанин [G], аденин [А], цитозин [С], тимин [Т] и урацил [U]) - это производные пурина или пиримидина, однако, следует понимать, что природные и неприродные аналоги оснований также включены. Природные сахара - это пентоза (пятиуглеродный сахар), дезоксирибоза (которая формирует ДНК) или рибоза (которая формирует РНК), однако, следует понимать, что природные и неприродные сахара также включены. Нуклеиновые кислоты присоединены через фосфорнокислые связи, с образованием нуклеиновых кислот или полинуклеотидов, однако, множество других соединений известны из уровня техники (например, не ограничиваясь ими, фосфортиоаты, боранофосфаты, и т.п.). Искусственные нуклеиновые кислоты включают ПНК (пептид-нуклеиновые кислоты), фосфортиоаты и другие варианты фосфатного скелета природных нуклеиновых кислот.
Термин "нуклеозид" обозначает фрагмент, где нуклеиновое основание или модифицированное нуклеиновое основание связаны с сахаром или модифицированным сахаром.
Термин "сахар" обозначает моносахарид в закрытой и/или открытой форме. Сахара включают, не ограничиваясь ими, рибозный, дезоксирибозный, пентофуранозный, пентопиранозный и гексопиранозный фрагменты.
Термин "модифицированный сахар" обозначает фрагмент, который может заменить сахар. Модифицированный сахар имитирует пространственное расположение, электронные свойства или некоторое другое физико-химическое свойство сахара.
Термины "нуклеиновая кислота" и "полинуклеотид" в данном описании обозначают полимерную форму нуклеотидов любой длины, т.е. рибонуклеотиды (РНК) или дезоксирибонуклеотиды (ДНК). Эти термины обозначают первичную структуру молекул и, таким образом, включают двухцепочечные и одноцепочечные ДНК, а также двухцепочечные и одноцепочечные РНК. Эти термины включают, как эквиваленты, аналоги РНК или ДНК, полученные из нуклеотидных аналогов и модифицированных полинуклеотидов, таких как например, не ограничиваясь ими, метилированные и/или кэппированные полинуклеотиды. Термины охватывают поли- или олиго-рибонуклеотиды (РНК) и поли- или олиго-дезоксирибонуклеотиды (ДНК); РНК или ДНК, происходящие от N-гликозидов или С-гликозидов нуклеиновых оснований и/или модифицированных нуклеиновых оснований; нуклеиновые кислоты, происходящие от сахаров и/или модифицированных сахаров; и нуклеиновые кислоты, происходящие от фосфатных мостиков и/или модифицированных фосфатных мостиков. Термин включает нуклеиновые кислоты, содержащие какие-либо комбинации нуклеиновых оснований, модифицированных нуклеиновых оснований, сахаров, модифицированных сахаров, фосфатных мостиков или модифицированных фосфатных мостиков. Примеры включают, не ограничиваясь ими, нуклеиновые кислоты, содержащие рибозные фрагменты, нуклеиновые кислоты, содержащие дезоксирибозные фрагменты, нуклеиновые кислоты, содержащие как рибозные, так и дезоксирибозные фрагменты, нуклеиновые кислоты, содержащие рибозные и модифицированные рибозные фрагменты. Приставка поли- обозначает нуклеиновые кислоты, содержащие от приблизительно 1 до приблизительно 10000 мономерных нуклеотидных единиц, и приставка олиго- обозначает нуклеиновые кислоты, содержащие от приблизительно 1 до приблизительно 200 мономерных нуклеотидных единиц.
Термин "нуклеиновое основание" обозначает части нуклеиновых кислот, которые образуют водородную связь, соединяющую одну цепь нуклеиновой кислоты с другой комплементарной цепью специфичным для последовательности образом. Наиболее распространенными природными основаниями являются аденин (А), гуанин (G), урацил (U), цитозин (С) и тимин (Т).
Термин "модифицированное нуклеиновое основание" обозначает фрагмент, который может заменить нуклеиновое основание. Модифицированное нуклеиновое основание имитирует пространственное расположение, электронные свойства или некоторое другое физико-химическое свойство нуклеинового основания и сохраняет свойство образования водородных связей, соединяющих одну цепь нуклеиновой кислоты с другой специфичным для последовательности образом. Модифицированные нуклеиновые основания могут спариваться со всеми пятью природными основаниями (урацил, тимин, аденин, цитозин или гуанин), не влияя в существенной мере на поведение при плавлении, распознавание внутриклеточными ферментами или активность спаренного олигонуклеотида.
Термин "хиральный реактив" обозначает соединение, которое является хиральным или энантиомерно чистым и может использоваться для асимметрической индукции в синтезе нуклеиновых кислот.
Термины "хиральный лиганд" или "хиральный адъювант" обозначаю фрагмент, который является хиральным или энантиомерно чистым и контролирует стереохимический результат реакции.
В реакции конденсации, термин "конденсирующий реактив" обозначает реактив, который активизирует менее реакционноспособный сайт и делает его более восприимчивым к атаке нуклеофила.
Термин "блокирующая группа" обозначает группу, которая временно маскирует реакционноспособность функциональной группы. Маскировка функциональной группы может быть впоследствии отменена удалением блокирующей группы.
Термины "борирующие агенты", "серосодержащий электрофил", "селеносодержащий электрофил" обозначают соединения, пригодные на стадии модификации, используемой для введения групп BH3, S, и Se, соответственно, с целью модификации при атоме фосфора.
Термин "фрагмент" обозначает определенный сегмент или функциональную группу молекулы. Химические фрагментами часто называют химические объекты, введенные в или присоединенные к молекуле.
Термин "твердая подложка" обозначает любую подложку, которая позволяет массовое производство нуклеиновых кислот синтетическим способом и при необходимости может быть использована снова. В данном описании термин обозначает полимер, нерастворимый в средах, используемых на стадиях реакции, целью который является синтез нуклеиновых кислот, и дериватизированных для охвата реакционноспособных групп.
Термин "связывающий фрагмент" обозначает любой фрагмент, необязательно помещенный между терминальным нуклеозидом и твердой подложкой или между терминальным нуклеозидом и другим нуклеозидом, нуклеотидом или нуклеиновой кислотой.
"Молекула ДНК" обозначает полимерную форму дезоксирибонуклеотидов (аденина, гуанина, тимина или цитозина) в форме одноцепочечной или двухцепочечной спирали. Данный термин обозначает только первичную и вторичную структуру молекулы, и не ограничивается какими-либо конкретными третичными формами. Таким образом, данный термин включает двухцепочечную ДНК, среди прочего, в виде линейных молекул ДНК (например, рестрикционные фрагменты), вирусов, плазмид и хромосом. В обсуждении структуры конкретных двухцепочечных молекул ДНК, последовательности могут быть описаны согласно обычному соглашению предоставления только последовательности в 5'→3' направлении вдоль нетранскрибированной цепи ДНК (т.е. цепь, последовательность которого гомологична мРНК).
"Кодирующая последовательность" или "кодирующий участок" ДНК - это двухцепочечная последовательность ДНК, которая транскрибируется и транслируется в полипептид in vivo, при размещении под контролем подходящей последовательности для контроля экспрессии. Границы кодирующей последовательности ("открытая рамка считывания" или "ОРС") определяются стартовым кодоном на 5'-конце (амино) и кодоном остановки трансляции на 3'-конце (карбоксил). Кодирующая последовательность может включать, не ограничиваясь ими, последовательности прокариот, кДНК из мРНК эукариот, геномные последовательности ДНК эукариот (например, млекопитающих) и синтетические последовательности ДНК. Сигнал полиаденилирования и последовательность окончания транскрипции обычно размещены в направлении 3' по отношению к кодирующей последовательности. Термин "некодирующая последовательность" или "некодирующий участок" обозначает участки полинуклеотидной последовательности, которые не транслируются в аминокислоты (например, 5' и 3' нетранслируемые участки).
Термин "рамка считывания" обозначает одну из шести возможных рамок считывания, по три в каждом направлении, двухцепочечной молекулы ДНК. Используемая рамка считывания определяет, какие кодоны используются для кодирования аминокислот в пределах кодирующей последовательности молекулы ДНК.
В данном описании "антисмысловая" молекула нуклеиновой кислоты охватывает последовательность нуклеотидов, комплементарную к "смысловой" нуклеиновой кислоте, кодирующей белок, например, комплементарную к кодирующей цепи двухцепочечной молекуле кДНК, комплементарную к последовательности мРНК или комплементарную к кодирующей цепи гена. Соответственно, молекула антисмысловой нуклеиновой кислоты может образовывать водородную связь с молекулой смысловой нуклеиновой кислоты.
Термин "пара оснований" ("bp"): спаривание аденина (А) с тимином (Т) или цитозина (С) с гуанином (G) в двухцепочечной молекуле ДНК. В РНК урацил (U) замещает тимин.
В данном описании "кодон" обозначает три нуклеотида, которые при транскрибировании и трансляции кодируют одинарный остаток аминокислоты; или в случае UUA, UGA или UAG кодируют сигнал окончания. Кодоны, кодирующие аминокислоты, хорошо известны из уровня техники и для удобства приведены в табл.1.
Таблица 1
Таблица использования кодонов
Кодон Аминокислота АА Сокр. Кодон Аминокислота АА Сокр.
UUU Фенилаланин Phe F UCU Серин Ser S
UUC Фенилаланин Phe F UCC Серии Ser S
UUA Лейцин Leu L UCA Серин Ser S
UUG Лейцин Leu L UCG Серин Ser S
CUU Лейцин Leu L ECU Пролин Pro P
CUE Лейцин Leu L CCC Пролин Pro P
CUA Лейцин Leu L CCA Пролин Pro P
CUG Лейцин Leu L CCG Пролин Pro P
AUU Изолейцин He I ACU Треонин Thr Т
AUC Изолейцин He I ACC Треонин Thr Т
AUA Изолейцин He I АСА Треонин Thr Т
AUG Метионин Met M ACH Треонин Thr Т
GUU Валин Val V GCU Аланин Ala А
GUC Валин Val v GCC Аланин Ala А
GUA Валин Val V GCA Аланин Ala А
GUG Валин Val v GCG Аланин Ala А
UAU Тирозин Tyr Y UGU Цистеин Cys С
UAC Тирозин Tyr Y UGC Цистеин Cys С
UUA Стоп UGA Стоп
UAG Стоп UGG Триптофан Trp W
CAU Гистидин His H CGU Аргинин Arg R
САС Гистидин His H CGC Аргинин Arg R
САА Глутамин Gln Q CGA Аргинин Arg R
CAG Глутамин Gln Q CGG Аргинин Arg R
AAU Аспарагин Asn N AGU Серин Ser S
ААС Аспарагин Asn N AGC Серин Ser S
ААА Лизин Lys K AGA Аргинин Arg R
AAG Лизин Lys K AGG Аргинин Arg R
GAU Аспартат Asp D GGU Глицин Gly G
GAC Аспартат Asp D GGC Глицин Gly G
GAA Глутамат Glu E GGA Глицин Gly G
GAG Глутамат Glu E GGG Глицин Gly G
В данном описании "положение качания" обозначает третье положение кодона. Мутации в молекуле ДНК в пределах положения качания кодона, в некоторых вариантах, приводят к безмолвным или консервативным мутациям на уровне аминокислоты. Например, существует четыре кодона, которые кодируют глицин, т.е. GGU, GGC, GGA и GGG, поэтому мутация какого-либо нуклеотида в «положении качания» до любого другого нуклеотида не приводит к изменению на уровне аминокислоты кодируемого белка и, таким образом, является безмолвной заменой.
Соответственно, "безмолвная замена" или "безмолвная мутация" - такая, при которой нуклеотид в пределах кодона изменен, но не приводит к изменению остатка аминокислоты, кодируемого кодоном. Примеры включают мутации в третьем положении кодона, а также в первом положении некоторых кодонов, таких как кодон "CGG", который, в случае видоизменения до AGG, все еще кодирует Arg.
Термины "ген", "рекомбинантный ген" и "генная конструкция" в данном описании обозначают молекулу ДНК, или часть молекулы ДНК, которая кодирует белок или его часть. Молекула ДНК может содержать открытую рамку считывания, кодирующую белок (как последовательности экзонов), и может дополнительно включать последовательности интрона. Термин "интрон" в данном описании обозначает наличие в представленном гене последовательности ДНК, которая не транслируется в белок и найдена в некоторых, но не во всех случаях, между экзонами. Для гена, который функционально связан (или это может включать) с одним или больше промоторами, энхансерами, репрессорами и/или другими регуляторными последовательностями, может быть желательной модуляция активности или экспрессии гена, как хорошо известно из уровня техники.
В данном описании "комплементарная ДНК" или "кДНК" включает рекомбинантные полинуклеотиды, синтезированные обратной транскрипцией мРНК, из которых исключены перемежающие последовательности (интроны).
"Гомология", "идентичность" или "сходство" обозначают сходство последовательностей между двумя молекулами нуклеиновой кислоты. Каждое из понятий «гомология и идентичность» может быть определено путем сравнения положений в каждой их последовательностей, которая может быть выровнена для целей сравнения. Если равноценное положение в сравниваемых последовательностях занято таким же основанием, то молекулы идентичны в этом положении; если равноценное положение занято таким же или подобным остатком нуклеиновой кислоты (например, со сходной стерической и/или электронной природой), то молекулы могут быть названы гомологичными (сходными) по данному положению. Выражение процента гомологии/сходства или идентичности обозначает функцию количества идентичных или сходных остатков нуклеиновых кислот в положениях, разделяемых сравниваемыми последовательностями. "Несходная" или "негомологичная" последовательность обладает менее чем 40% идентичностью, менее чем 35% идентичностью, менее чем 30% идентичностью или менее чем 25% идентичностью с последовательностью, описанной в данном описании. При сравнении двух последовательностей, отсутствие остатков (аминокислот или нуклеиновых кислот) или присутствие добавочных остатков также уменьшает степень идентичности и гомологии/сходства.
Термин "гомология" описывает математически обоснованное сравнение последовательностей на предмет сходства, которое используется для идентификации генов с подобными функциями или мотивами. Последовательности нуклеиновых кислот, описанные в данном описании, могут использоваться в качестве "последовательности запроса" для выполнения поиска в публичных базах данных, например, с целью идентификации других членов семейства, связанных последовательностей или гомологов. Такой поиск может выполняться с использованием программ NBLAST и XBLAST (версия 2.0) Altschul, et al. (1990) J. Mol. Biol. 215:403-10. Поиск нуклеотида методом BLAST может выполняться с помощью программы NBLAST, score = 100, wordlength = 12, чтобы получить последовательности нуклеотидов, гомологичные молекулам нуклеиновых кислот по изобретению. Чтобы получить выравнивание с промежутками для целей сравнения, Gapped BLAST может использоваться, как описано в Altschul, et al. (1997) Nucleic Acids Res. 25(17):3389-3402. При использовании программ BLAST и Gapped BLAST, используемые по умолчанию параметры соответствующих программ (например, XBLAST и BLAST) могут применяться (см. www.ncbi.nlm.nih.gov).
В данном описании "идентичность" подразумевает процент идентичных нуклеотидных остатков в соответствующих положениях двух или больше последовательностей, при выравнивании последовательностей с целью максимизации соответствия последовательностей, т.е. с учетом промежутком и вставок. Идентичность может быть легко вычислена известными способами, в том числе, не ограничиваясь ими, описанными в (Computational Molecular Biology, Lesk, A.M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D.W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part I, Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991; и Carillo, H., and Lipman, D., SIAM J. Applied Math., 48: 1073 (1988). Способы определения идентичность разработаны для обеспечения наибольшего совпадения между проверяемыми последовательностями. Кроме того, способы определения идентичности заложены в публично доступных компьютерных программах. Способы определить идентичность двух последовательностей с помощью компьютерной программы включают, не ограничиваясь ими, пакеты программ GCG (Devereux, J., et al., Nucleic Acids Research 12 (1): 387 (1984)), BLASTP, BLASTN и FASTA (Altschul, S.F. et al., J. Molec. Biol. 215: 403-410 (1990) и Altschul et al. Nuc. Acids Res. 25: 3389-3402 (1997)). Программа BLAST X публично доступна от NCBI и из других источников (BLAST Manual, Altschul, S., et al., NCBI NLM NIH Bethesda, Md. 20894; Altschul, S., et al., J. Mol. Biol. 215: 403-410 (1990). Хорошо известный алгоритм Smith Waterman также может применяться для определения идентичности.
"Гетерологичный" участок последовательности ДНК - это идентифицируемый сегмент ДНК в пределах последовательности ДНК большего размера, который не найден в связи с последовательностью большего размера в природе. Таким образом, если гетерологичный участок кодирует ген млекопитающего, фланг гена обычно может быть защищен ДНК, которая не защищает фланг геномной ДНК млекопитающего в геноме исходного организма. Другой пример гетерологичной кодирующей последовательности - это последовательность, где непосредственно кодирующая последовательность не найдена в природе (например, кДНК, где геномная кодирующая последовательность содержит интроны или синтетические последовательности, включающие кодоны или другие мотивы, чем немодифицированный ген). Аллельные вариации или природные мутационные события не дают начало гетерологичному участку ДНК, в соответствии с определением в данном описании.
Термин «переходные мутации» обозначает замены оснований в последовательности ДНК, где пиримидиновое основание (цитидин [С] или тимин [Т]) заменяется на другое пиримидиновое основание или пуриновое основание (аденозин [А] или гуанозин [G]) заменяется на другое пуриновое основание.
Термин «трансверсивные мутации» обозначает замены оснований в последовательности ДНК, где пиримидиновое основание (цитидин [С] или тимин [Т]) заменяется на пуриновое основание (аденозин [А] или гуанозин [G]), или пуриновое основание заменяется на пиримидиновое основание.
Пролекарства нуклеиновых кислот, содержащие хиральный X-фосфонатный фрагмент
Общие принципы дизайна пролекарств описаны Bundgard (Design and Application of Prodrugs. В Textbook of Drug Design and Development; Krogsgaard-Larsen, P., Bundgard, H., Eds.; Harwood: Reading, UK, 1991).
Одна из стратегий улучшения фармацевтических свойств молекул с желательной биологической активностью, но недостаточными фармацевтическими свойствами состоит во введении целевой молекулы в виде производного-пролекарства. Такое пролекарство может демонстрировать одно или больше свойств: повышение биодоступности при пероральном введении, повышение проницаемости клетки, повышение растворимости в воде, уменьшение пресистемного метаболизма, повышение стабильности, активный транспорт кишечными носителями или избегание носителей, выводящих молекулы, по сравнению с исходной молекулой.
Олигонуклеотиды обладают несколькими фармацевтическими свойствами, которые могут быть улучшены с применением пролекарственных стратегий. В частности, олигонуклеотиды быстро разлагаются нуклеазами и слабо захватываются клетками через цитоплазматическую мембрану клетки (Poijarvi-Virta et al., Curr. Med. Chem. (2006), 13(28);3441-65; Wagner et al., Med. Res. Rev. (2000), 20(6):417-51; Peyrottes et al., Mini Rev. Med. Chem. (2004), 4 (4): 395-408; Gosselin et al., (1996), 43(1):196-208; Bologna et al., (2002), Antisense & Nucleic Acid Drug Development 12:33-41). В одном из примеров, Vives et al., (Nucleic Acids Research (1999), 27 (20): 4071-76) обнаружили, что трет-бугил SATE про-олигонуклеотиды демонстрируют значительное увеличение проникновения в клетку по сравнению с исходным олигонуклеотидом.
В некоторых вариантах пролекарственный фрагмент селективно удаляется эстеразами, нуклеазами или ферментом цитохром Р450, в том числе, не ограничиваясь ими, представленными в перечне ниже.
Семейство Ген
CYP1 CYP1A1, CYP1A2, CYP1B1
CYP2 CYP2A6, CYP2A7, CYP2A13, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP2F1, CYP2J2, CYP2R1, CYP2S1, CYP2U1, CYP2W1
CYP3 CYP3A4, CYP3A5, CYP3A7, CYP3A43
CYP4 CYP4A11, CYP4A22, CYP4B1, CYP4F2, CYP4F3, CYP4F8, CYP4F11, CYP4F12, CYP4F22, CYP4V2, CYP4X1, CYP4Z1
CYP5 CYP5A1
CYP7 CYP7A1, CYP7B1
CYP8 CYP8A1 (простациклинсинтетаза), CYP8B1 (биосинтез желчных кислот)
CYP11 CYP11A1, CYP11B1, CYP11B2
CYP17 CYP17A1
CYP19 CYP19A1
CYP20 CYP20A1
Семейство Ген
CYP21 CYP21A2
CYP24 CYP24A1
CYP26 CYP26A1, CYP26B1, CYP26C1
CYP27 CYP27A1 (биосинтез желчных кислот), CYP27B1 (витамин D3 1-альфагидроксилаза, активирует витамин D3), CYP27C1 (функция неизвестна)
CYP39 CYP39A1
CYP46 CYP46A1
CYP51 CYP51A1 (ланостерол 14-альфадезметилаза)
В некоторых вариантах пролекарственный фрагмент удаляется до переноса про-олигонуклеотида через мембрану клетки. В других вариантах пролекарственный фрагмент удаляется из про-олигонуклеотида только после переноса через мембрану клетки. Альтернативно, пролекарственный фрагмент удаляется только после переноса в органеллу в пределах клетки. В некоторых вариантах пролекарственный фрагмент удаляется посредством неферментативного процесса, в том числе, не ограничиваясь ими, самопроизвольное восстановление внутри клетки.
В данном изобретении описаны пролекарства нуклеиновых кислот, содержащие модификацию хирального Х-фосфоната, где модификация улучшает одно или больше физико-химических, фармакокинетических или фармакодинамических свойств нуклеиновой кислоты. Пролекарственный фрагмент соединен с атомом кислорода или серы, который присоединен к атоме фосфора фосфонатной или фосфортиоатной группы нуклеотида. Пролекарственный фрагмент включает, не ограничиваясь ими, 8-ацил-2-тиоэтильные, ацилокси, тиоацилокси, 2-карбоалкоксиэтильные, дисульфидные, тиаминальные и енол-эфирные производные.
В одном из вариантов пролекарственный фрагмент представляет собой S-ацил-2-тиоэтильный фрагмент следующей структуры:
Figure 00000004
где R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил. В некоторых вариантах R11 представляет собой метил, этил или циклопропил.
В других вариантах пролекарственный фрагмент представляет собой ацилокси фрагмент следующей структуры:
Figure 00000002
где R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил, и R12 представляет собой водород или алкил. В некоторых вариантах R11 представляет собой метил, и R12 представляет собой водород.
Альтернативно, пролекарственный фрагмент представляет собой тиоацилокси фрагмент следующей структуры:
Figure 00000003
где R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил, и R12 представляет собой водород или алкил. В некоторых вариантах R11 представляет собой метил, и R12 представляет собой водород.
В изобретении также предлагаются пролекарства 2-карбоалкоксиэтил фрагмента следующей структуры:
Figure 00000012
или
Figure 00000013
где R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода. В некоторых вариантах R10 представляет собой метил или этил.
В других вариантах, пролекарственный фрагмент представляет собой дисульфидный фрагмент следующей структуры:
Figure 00000014
где R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил. В некоторых вариантах R11 представляет собой метил, этил или бензил.
В дополнительных вариантах, пролекарственный фрагмент представляет собой тиоацетальный фрагмент следующей структуры:
Figure 00000015
где R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода, и R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил. В некоторых вариантах R10 представляет собой метил, и R11 представляет собой метил или фенил.
В изобретении также предлагаются фрагменты пролекарства енольного эфира следующей структуры:
Figure 00000109
или
Figure 00000110
где R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил. В некоторых вариантах фрагмент пролекарства С3-енольного эфира или фрагмент пролекарства С4-енольного эфира, находящийся в цис-форме. В некоторых вариантах фрагмент пролекарства С3-енольного эфира или фрагмент пролекарства С4-енольного эфира, R11 представляет собой метил, этил или фенил.
В одном из вариантов пролекарственный фрагмент представляет собой триалкиламмонийметильный фрагмент, структура которого представлена одной из следующих формул:
Figure 00000018
или
Figure 00000019
.
В одном из вариантов пролекарственный фрагмент представляет собой алкилгидроксаматный фрагмент, структура которого представлена одной из следующих формул:
Figure 00000020
или
Figure 00000021
.
В одном из вариантов пролекарственный фрагмент представляет собой ацилгидроксаматный фрагмент, структура которого представлена одной из следующих формул:
Figure 00000022
или
Figure 00000023
.
В одном из вариантов предлагается пролекарство нуклеиновой кислоты следующей структуры:
Figure 00000001
где R1 представляет собой -ОН, -SH, -NRdRd, -N3, галоген, водород, алкил, алкенил, алкинил, алкил-Y1-, алкенил-Y1-, алкинил-Y1-, арил-Y1-, гетероарил-Y1-, P(O)(Re)2, -HP(O)(Re), -ORa или -SRc;
Y1 представляет собой О, NRd, S или Se;
Ra представляет собой блокирующую группу;
Rc представляет собой блокирующую группу;
Rd, в каждом случае независимо, представляет собой водород, алкил, алкенил, алкинил, арил, ацил, замещенный силил, карбамат, P(О)(Re)2 или -HP(O)(Re);
Re, в каждом случае независимо, представляет собой водород, алкил, арил, алкенил, алкинил, алкил-Y2-, алкенил-Y2-, алкинил-Y2-, арил-Y2- или гетероарил-Y2- или катион, который представляет собой Na+1, Li+1 или K+1;
Y2 представляет собой О, NRd или S;
R2, в каждом случае независимо, представляет собой водород, -ОН, -SH, -NRdRd, -N3, галоген, алкил, алкенил, алкинил, алкил-Y1-, алкенил-Y1-, алкинил-Y1-, арил-Y1-, гетероарил-Y1-, -ORb или -SRc, где Rb представляет собой блокирующую группу;
Ва, в каждом случае независимо, представляет собой блокированный или неблокированный аденин, цитозин, гуанин, тимин, урацил или модифицированное нуклеиновое основание;
по меньшей мере в одном случае Х представляет собой
-OCH2CH2S-S(O)2R10, -OCH2CH2S-SCH2CH2OH, -OCH2CH2CO2H,
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000111
,
Figure 00000112
,
Figure 00000113
,
Figure 00000114
,
Figure 00000115
,
Figure 00000116
,
Figure 00000117
,
Figure 00000012
,
Figure 00000118
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
,
Figure 00000023
,
Figure 00000024
или
Figure 00000025
;
R3 представляет собой водород, блокирующую группу, связывающий фрагмент, соединенный с твердой подложкой или соединенный с нуклеиновой кислотой;
R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода;
R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил;
R12 представляет собой водород или алкил;
Z представляет собой S или О;
q равно 0, 1 или 3;
w равно 1, 2, 3, 4, 5 или 6;
R15 и R16 независимо представляют собой водород или метил;
R17 выбран из алкила, арила или CH2CH=СН2;
Figure 00000026
,
Figure 00000027
,
Figure 00000028
,
Figure 00000029
и
Figure 00000030
; и
n равно целому числу от 1 до приблизительно 200.
В одном из аспектов изобретения предлагается пролекарство нуклеиновой кислоты следующей структуры:
Figure 00000001
где R1 представляет собой -ОН, -SH, -NRdRd, -N3, галоген, водород, алкил, алкенил, алкинил, алкил-Y1-, алкенил-Y1-, алкинил-Y1-, арил-Y1-, гетероарил-Y1-, -OP(O)(Re)2, -HP(O)(Re), -ORa или -SRc;
Y1 представляет собой О, NRd, S или Se;
Ra представляет собой блокирующую группу;
Rc представляет собой блокирующую группу;
Rd в каждом случае независимо, представляет собой водород, алкил, алкенил, алкинил, арил, ацил, замещенный силил, карбамат, -P(O)(Re)2 или -HP(O)(Re);
Re, в каждом случае независимо, представляет собой водород, алкил, арил, алкенил, алкинил, алкил-Y2-, алкенил-Y2-, алкинил-Y2-, арил-Y2- или гетероарил-Y2- или катион, который представляет собой Na+1, Li+1 или K+1;
Y2 представляет собой О, NRd или S;
R2, в каждом случае независимо, представляет собой водород, -ОН, -SH, -NRdRd, -N3, галоген, алкил, алкенил, алкинил, алкил-Y1-, алкенил-Y1-, алкинил-Y1-, арил-Y1-, гетероарил-Y1-, -ORb или -SRc, где R6 представляет собой блокирующую группу;
Ва, в каждом случае независимо, представляет собой блокированный или неблокированный аденин, цитозин, гуанин, тимин, урацил или модифицированное нуклеиновое основание;
в каждом случае X представляет собой
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
или
Figure 00000023
R3 представляет собой водород, блокирующую группу, связывающий фрагмент, соединенный с твердой подложкой или соединенный с нуклеиновой кислотой;
R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода;
R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил;
R12 представляет собой водород или алкил; и
n равно целому числу от 1 до приблизительно 200.
В одном из аспектов изобретения предлагается пролекарство нуклеиновой кислоты следующей структуры:
Figure 00000033
где R1 представляет собой -ОН, -SH, -NRdRd, -N3, галоген, водород, алкил, алкенил, алкинил, алкил-Y1-, алкенил-Y1-, алкинил-Y1-, арил-Y1-, гетероарил-Y1-, -OP(O)(Re)2, -НР(O)(Re), -ORa или -SRc;
Y1 представляет собой О, NRd, S или Se;
Ra представляет собой блокирующую группу;
Rc представляет собой блокирующую группу;
Rd, в каждом случае независимо, представляет собой водород, алкил, алкенил, алкинил, арил, ацил, замещенный силил, карбамат, -P(O)(Re)2 или -HP(O)(Re);
Re, в каждом случае независимо, представляет собой водород, алкил, арил, алкенил, алкинил, алкил-Y2-, алкенил-Y2-, алкинил-Y2-, арил-Y2- или гетероарил-Y2- или катион, который представляет собой Na+1, Li+1 или K+1;
Y2 представляет собой О, NRd или S;
R2, в каждом случае независимо, представляет собой водород, -ОН, -SH, -NRdRd, -N3, галоген, алкил, алкенил, алкинил, алкил-Y1-, алкенил-Y1-, алкинил-Y1-, арил-Y1-, гетероарил-Y1-, -ORb или -SRc, где Rb представляет собой блокирующую группу;
Ва, в каждом случае независимо, представляет собой блокированный или неблокированный аденин, цитозин, гуанин, тимин, урацил или модифицированное нуклеиновое основание;
в каждом случае Х представляет собой
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
или
Figure 00000023
.
R3 представляет собой водород, блокирующую группу, связывающий фрагмент, соединенный с твердой подложкой или соединенный с нуклеиновой кислотой;
R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода;
R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил;
R12 представляет собой водород или алкил; и
n равно целому числу от 1 до приблизительно 200.
В дополнительном варианте предлагается пролекарство нуклеиновой кислоты Формулы 1 или Формулы 2, где каждый фрагмент Х в пролекарстве нуклеиновой кислоты независимо выбран из
-OCH2CH2S-S(O)2R10, -OCH2CH2S-SCH2CH2OH, -OCH2CH2CO2H,
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000111
,
Figure 00000112
,
Figure 00000119
,
Figure 00000120
,
Figure 00000121
,
Figure 00000122
,
Figure 00000123
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
,
Figure 00000018
,
Figure 00000019
,
Figure 00000020
,
Figure 00000021
,
Figure 00000022
,
Figure 00000023
,
Figure 00000024
или
Figure 00000025
;
R3 представляет собой водород, блокирующую группу, связывающий фрагмент, соединенный с твердой подложкой или соединенный с нуклеиновой кислотой;
R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода;
R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил;
R12 представляет собой водород или алкил;
Z представляет собой S или О;
q равно 0, 1 или 3;
w равно 1, 2, 3, 4, 5 или 6;
R15 и R16 независимо представляют собой водород или метил;
R17 выбран из алкила, арила или CH2CH=СН2; и
R18 выбран из N(СН3)2,
Figure 00000026
,
Figure 00000027
,
Figure 00000028
,
Figure 00000029
и
Figure 00000030
.
В некоторых вариантах n равно целому числу от 1 до приблизительно 50; от 1 до приблизительно 40; от 1 до приблизительно 30; от 1 до приблизительно 25; от 1 до приблизительно 20; от 1 до приблизительно 15; или от 1 до приблизительно 10.
В одном из вариантов предлагается нерацемический про-олигонуклеотид, где про-олигонуклеотид представляет собой аналог 2-5А, структура которого представлена следующей формулой:
Figure 00000036
где Х представляет собой любой из пролекарственных фрагментов, описанных в данном описании.
В некоторых вариантах нерацемический про-олигонуклеотид представляет собой 2-5А аналог следующей структуры:
Figure 00000034
где R11 представляет собой алкил, арил, гетероарил, гетероциклил или циклоалкил.
В одном из вариантов нерацемический про-олигонуклеотид представляет собой 2-5А аналог следующей структуры:
Figure 00000035
.
ПРИМЕРЫ СПОСОБОВ СИНТЕЗА
Общее обсуждение способов синтеза пролекарств нуклеиновой кислоты, содержащих хиральный Х-фосфонатный фрагмент
Способы, описанные в данном описании, предлагают эффективный синтез пролекарств нуклеиновой кислоты, модифицированных по атому фосфора, где стереохимическая конфигурация атома фосфора контролируется таким образом, чтобы получить олигонуклеотид с заданной стереохимией. Хотя в примерах способов синтеза, описанных в данном описании, предлагается 3'-5' нуклеотидная связь, 2'-5' нуклеотидная связь также включена.
Про-олигонуклеотиды по изобретению могут быть синтезированы путем модификации хирального фосфортиоата или хирального Н-фосфоната нуклеотида или нуклеиновой кислоты.
8-Ацил-2-тиоэтил пронуклеотид может быть синтезирован из нуклеиновой кислоты или нуклеотида, содержащего хиральный Н-фосфонат, как показано на следующей схеме:
Схема 1
Figure 00000124
В некоторых вариантах R1 представляет собой -OP(O)(Re)2, тогда как Re представляет собой
Figure 00000125
. Хиральный Н-фосфонат обрабатывают N-хлорсукцинимидом, и затем вводят в реакцию с 8-ацил-2-тиоэтилспиртом с получением 8-ацил-2-тиоэтил пролекарства. Защитные группы, присутствующие на R1, R2 и/или R3, в дальнейшем могут быть удалены.
Ацилокси пролекарство нуклеиновой кислоты может быть синтезировано из нуклеиновой кислоты или нуклеотида, содержащего хиральный Н-фосфонат, как показано на следующей схеме:
Схема 2
Figure 00000126
Хиральный Н-фосфонат обрабатывают N-хлорсукцинимидом, и затем вводят в реакцию с гидроксиметилацетатным соединением с получением ацилокси пролекарства. Защитные группы, присутствующие на R1, R2 и/или R3, в дальнейшем могут быть удалены.
Тиоацилокси пролекарство нуклеиновой кислоты может быть синтезировано из нуклеиновой кислоты или нуклеотида, содержащего хиральный фосфортиоат, как показано на следующей схеме:
Схема 3
Figure 00000127
Хиральный фосфортиоат обрабатывают хлорметилацилокси соединением с получением ацилокси пролекарства. Защитные группы, присутствующие на R1, R2 и/или R3, в дальнейшем могут быть удалены.
2-Карбоалкоксиэтил пролекарство нуклеиновой кислоты может быть синтезировано из нуклеиновой кислоты или нуклеотида, содержащего хиральный фосфортиоат, как показано на следующей схеме:
Схема 4
Figure 00000128
Депротонированный хиральный фосфортиоат реагирует с алкилакрилатом с образованием 2-карбоалкоксиэтил пронуклеотида. Защитные группы, присутствующие на R1, R2 и/или R3, в дальнейшем могут быть удалены.
Дисульфидное пролекарство нуклеиновой кислоты может быть синтезировано из нуклеиновой кислоты или нуклеотида, содержащего хиральный фосфортиоат, как показано на следующей схеме:
Схема 5
Figure 00000129
Депротонированный хиральный фосфортиоат реагирует с диалкилсульфидом с образованием алкил дисульфидного пронуклеотида. Защитные группы, присутствующие на R1, R2 и/или R3, в дальнейшем могут быть удалены.
Тиоацетальное пролекарство нуклеиновой кислоты может быть синтезировано из нуклеиновой кислоты или нуклеотида, содержащего хиральный фосфортиоат, как показано на следующей схеме:
Схема 6
Figure 00000130
1,1-Диалкилокси 3-ацилоксипропан реагирует с триметилсилилтрифлатом, и депротонированный хиральный фосфортиоат затем добавляют к реакционной смеси с образованием тиоацетального пронуклеотида. Защитные группы, присутствующие на R1, R2 и/или R3, в дальнейшем могут быть удалены.
Содержащее С3-енольный эфир пролекарство нуклеиновой кислоты может быть синтезирован из нуклеиновой кислоты или нуклеотида, содержащего хиральный фосфортиоат, как показано на следующей схеме:
Схема 7
Figure 00000131
Депротонированный хиральный фосфортиоат реагирует с (Е)-3-хлор-1-ацилокси-проп-1-еновым соединением с образованием пролекарства С3-енольного эфира нуклеиновой кислоты. Защитные группы, присутствующие на R1, R2 и/или R3, в дальнейшем могут быть удалены.
Содержащее С4-енольный эфир пролекарство нуклеиновой кислоты может быть синтезировано из нуклеиновой кислоты или нуклеотида, содержащего хиральный фосфортиоат, как показано на следующей схеме:
Схема 8
Figure 00000132
Депротонированный хиральный фосфортиоат реагирует с (Е)-3-хлор-1-ацилокси-бут-1-еновым соединением с образованием содержащего С3-енольный эфира нуклеиновой кислоты пролекарства. Защитные группы, присутствующие на R1, R2 и/или R3, в дальнейшем могут быть удалены.
В некоторых вариантах нуклеиновую кислоту, содержащую хиральный фосфортиоат или хиральный Н-фосфонат, синтезируют, как описано в данном описании. В других вариантах, другие способы синтеза могут применяться с получением нуклеиновой кислоты, содержащей хиральный фосфортиоат или хиральный Н-фосфонат.
Схема 9
Синтез содержащих хиральный фосфортиоат прекурсоров пролекарственных олигонуклеотидов по изобретению. (Путь А)
Figure 00000133
Реакция молекулы, содержащей ахиральный H-фосфонатный фрагмент Формулы 2, с нуклеозидом, содержащим нуклеофильный фрагмент Формулы IV, приводит к образованию конденсированного промежуточного соединения (V); который превращают в нуклеиновую кислоту, содержащую хиральный X'-фосфонатный фрагмент, который может быть дополнительно модифицирован для получения пролекарственного олигонуклеотида Формулы I, содержащего хиральный Х-фосфонатный фрагмент. Синтез конденсированного промежуточного соединения включает стадии (а) активации соединения Формулы 2 с помощью конденсирующего агента с образованием промежуточного соединения II, (б) реакцию с хиральным реагентом с образованием промежуточного соединения III, с последующей (в) реакцией с соединением Формулы IV.
Конденсированное промежуточное соединение может быть превращено в нуклеиновую кислоту, содержащую хиральный X'-фосфонатный фрагмент Формулы 1', путем кэппинга хиральной группы с помощью фрагмента А, который представляет собой ацильный, арильный, алкильный, аралкильный или силильный фрагмент, и модификации фосфора для введения J, который представляет собой S, Se или BH3, с получением таким образом соединения Формулы VII.
Соединение Формулы VII может быть превращено в соединение Формулы 1', где X' представляет собой S, Se или BH3 и n равно 1, путем отщепления хирального реагента и снятия блокировки блокирующей группой, при желании с отщеплением от твердой подложки. Альтернативно удлиняют цепь соединения Формулы VII путем снятия блокировки с 5'-конца и повторение стадий сочетания для получения конденсированного промежуточного соединения, как описано выше. Стадии кэппинга, модификации, снятия блокировки и удлинения цепи повторяют до тех пор, пока будет достигнуто целевое значение n. В этой точке, хиральные реагенты при каждом фосфонате отщепляют, остальные блокирующие группы отщепляют, в том числе, отщепляют от твердой подложки, при желании, с получением соединения Формулы 1', где X' представляет собой S, Se или BH3 и n≥2 и меньше приблизительно 200. Далее осуществляют превращения соединения Формулы 1', где X' представляет собой S, в соответствии со способами, описанными в данном описании, с получением про-олигонуклеотида соединения Формулы 1.
Модифицирующие агенты, используемые для введения S, Se или BH3 в положение при хиральном атоме фосфора конденсированного промежуточного соединения V в Пути А.
В некоторых вариантах модифицирующий агент представляет собой серосодержащий электрофил, селеносодержащий электрофил или борирующий агент. В некоторых вариантах серосодержащий электрофил представляет собой соединение следующей формулы:
S8 (Формула В), Z10-S-S-Z11 или Z10-S-X-Z11,
где Z10 и Z11 независимо представляют собой алкил, аминоалкил, циклоалкил, гетероцикл, циклоалкилалкил, гетероциклоалкил, арил, гетероарил, алкилокси, арилокси, гетероарилокси, ацил, амид, имид или тиокарбонил, или Z10 и Z11 вместе образуют 3-8-членное алициклическое или гетероциклическое кольцо, которое может быть замещенным или незамещенным; Х представляет собой SO2, О или NRf и Rf представляет собой водород, алкил, алкенил, алкинил или арил. В других вариантах, серосодержащий электрофил представляет собой соединение Формулы В, С, D, Е или F:
Figure 00000134
Figure 00000135
Figure 00000136
Figure 00000137
Figure 00000138
В других вариантах серосодержащий электрофил представляет собой соединение Формулы Е, Формулы Д или Формулы Б.
В некоторых вариантах селеносодержащий электрофил представляет собой соединение, структура которого представлена одной из следующих формул:
Se (Формула G), Z10-Se-Se-Z11 или Z10-Se-X-Z11,
где Z10 и Z11 независимо представляют собой алкил, аминоалкил, циклоалкил, гетероцикл, циклоалкилалкил, гетероциклоалкил, арил, гетероарил, алкилокси, арилокси, гетероарилокси, ацил, амид, имид или тиокарбонил, или Z10 и Z11 вместе образуют 3-8-членное алициклическое или гетероциклическое кольцо, которое может быть замещенным или незамещенным; Х представляет собой SO2, S, О или NRf; и Rf представляет собой водород, алкил, алкенил, алкинил или арил.
В других вариантах селеносодержащий электрофил представляет собой соединение Формулы Ж, 3, И, К, Л или М.
Figure 00000139
Figure 00000140
Figure 00000141
Figure 00000142
Figure 00000143
Figure 00000144
В некоторых вариантах селеносодержащий электрофил представляет собой соединение Формулы Ж или Формулы М.
В некоторых вариантах борирующий агент представляет собой боран-N,N-диизопропилэтиламин (ВН3⋅DIPEA, BH3⋅ДИПЭА), боран-пиридин (BH3⋅Ру), боран-2-хлорпиридин (BH3⋅СРу), боран-анилин (BH3⋅An), боран-тетрагидрофуран (BH3⋅THF, BH3⋅ТГФ) или боран-диметилсульфид (BH3⋅Me2S), анилин-цианоборан, трифенилфосфин-карбоалкоксибораны.
В других вариантах, борирующий агент представляет собой боран-N,N-диизопропилэтиламин (BH3⋅DIPEA, BH3⋅ДИПЭА), боран-2-хлорпиридин (BH3⋅СРу), боран-тетрагидрофуран (BH3⋅THF, BH3⋅ТГФ) или боран-диметилсульфид (BH3⋅Me2S).
Схема 10
Синтез прекурсора пролекарства олигонуклеотида через хиральные Н-фосфонаты (Путь Б).
Figure 00000145
В другом варианте, описанном на Схеме 10, ахиральный H-фосфонат Формулы 2 обрабатывают конденсирующим реагентом для получения промежуточного соединения структуры II. Промежуточное соединение структуры II в той же емкости обрабатывают без выделения хиральным реагентом с образованием хирального промежуточного соединения структуры III. Промежуточное соединение структуры III в той же емкости без выделения вводят в реакцию с нуклеозидом или модифицированным нуклеозидом структуры IX с получением хирального фосфатного соединения структуры X. В некоторых вариантах соединение структуры Х экстрагируют в растворитель для отделения его от побочных продуктов, примесей и/или реагентов. В других вариантах, если способ выполняют путем твердофазного синтеза, твердую подложку, содержащую соединение структуры X, отфильтровывают от побочных продуктов, примесей и/или реагентов. Соединение структуры Х обрабатывают кислотой для удаления блокирующей группы на 5'-конце растущей цепи нуклеиновой кислоты (структура XI). На стадии подкисления также удаляют хиральный вспомогательный лиганд с получением хирального Н-фосфоната IX. 5'-Разблокированному промежуточному соединению необязательно дают вернуться в цикл удлинения цепи для получения конденсированного промежуточного соединения, содержащего блокированный 5'-конец, который затем подкисляют для удаления блокирующей группы с 5'-конца и хирального вспомогательного лиганда.
Когда целевая длина цепи достигнута, для промежуточного соединения с удаленной с 5'-конца защитной группой проводят стадию модификации для введения фрагмента X, связанного с каждым из атомов фосфора, с получением соединения структуры XII. Модифицированное промежуточное соединение разблокируют путем удаления защитной группы, например, защитную группу в виде нуклеотидного основания, модифицированного нуклеотидного основания, сахара или модифицированного сахара удаляют, с получением нуклеиновой кислоты Формулы 1. В вариантах, где используют твердую подложку, модифицированную по атому фосфора нуклеиновую кислоту далее отщепляют от твердой подложки. В некоторых вариантах нуклеиновые кислоты остаются присоединенными к твердой подложке для последующей очистки, после которой их отщепляют от твердой подложки. В одном из вариантов синтез, описанный на Схеме 10, пригоден в случае, когда G1 и G2 в хиральном вспомогательном лиганде Формулы А не являются водородом.
Модификация соединения Формулы IX, полученного через Путь В, для введения фосфонатного фрагмента Х- или X'-.
Другие способы, применяемые для модификации соединения Формулы IX, полученного через Путь Б, проиллюстрированы на Схемах реакции 10а и 10б. Известно, что фосфонат и фосфит образуют таутомеры и существуют в равновесии. Фосфитный таутомер менее стабилен, чем фосфонатный таутомер. Равновесие сдвигается в направлении фосфонатного таутомера в нейтральных условиях вследствие очень высокой прочности связи Р=O. В кислых условиях, фосфорильная группа фосфоната становится обратимо протонированной. Расщепление связи Р-Н в промежуточном соединении происходит медленно с образованием фосфитного промежуточного соединения. Структуру IX далее модифицируют для получения структуры XII, с использованием реагентов, показанных на Схеме реакций 10а и 10б.
Схема реакции 10а
Модификация фосфорного центра промежуточных соединений, синтезированных через Путь Б, с использованием начального галогенирования при атоме фосфора.
Figure 00000146
Схема реакции 10б
Модификация атома фосфора в промежуточных соединениях, синтезированных через Путь Б, с использованием начального силилирования.
Figure 00000147
В некоторых вариантах стадию модификации выполняют путем реакции структуры IX с галогенирующим реагентом, с последующей реакцией с нуклеофилом. В конкретных вариантах, галогенирующий реагент представляет собой CCl4, CBr4, CI4, Cl2, Br2, I2, сульфурилхлорид (SO2Cl2), фосген, трифосген, серы монохлорид, серы дихлорид, хлорамин, CuCl2, N-хлорсукцинимид (NCS), N-бромсукцинимид (NBS) или N-йодсукцинимид (NIS). В других конкретных вариантах, галогенирующий реагент представляет собой CCl4, CBr4, Cl2, сульфурилхлорид (SO2Cl2) или N-хлорсукцинимид (NCS). В некоторых вариантах нуклеофил представляет собой первичные или вторичные акрилаты, спирты или тиолы. В других вариантах нуклеофил представляет собой NRfRfH, RfOH или RfSH, где Rf представляет собой водород, алкил, алкенил, алкинил или арил, и по меньшей мере один из Rf в NRfRfH не является водородом.
Стадия модификации также может быть выполнена в виде реакции структуры IX с силилирующим реагентом, с последующей реакцией с серосодержащим электрофилом, селеносодержащим электрофилом, борирующим агентом, алкилирующим агентом, альдегидом или ацилирующим агентом.
В конкретных вариантах силилирующий реагент представляет собой хлортриметилсилан (TMS-Cl, ТМС-Cl), триизопропилсилилхлорид (TIPS-Cl, ТИПС-Cl), трет-бутилдиметилсилилхлорид (TBDMS-Cl, ТБДМС-Cl), трет-бутилдифенилсилилхлорид (TBDPS-Cl, ТБДПС-Cl), 1,1,1,3,3,3-гексаметилдисилазан (HMDS, ГМДС), N-триметилсилилдиметиламин (TMSDMA, ТМСДМА), N-триметилсилилдиэтиламин (TMSDEA, ТМСДЭА), N-триметилсилилацетамид (TMSA, ТМСА), N,O-бис(триметилсилил)ацетамид (BSA, БСА) или N,O-бис(триметилсилил)трифторацетамид (BSTFA, БСТФА).
В других конкретных вариантах, серосодержащий электрофил представляет собой соединение, структура которого представлена одной из следующих формул:
S8 (Формула Б), Z10-S-S-Z11 или Z10-S-X-Z11,
где Z10 и Z11 независимо представляют собой алкил, аминоалкил, циклоалкил, гетероцикл, циклоалкилалкил, гетероциклоалкил, арил, гетероарил, алкилокси, арилокси, гетероарилокси, ацил, амид, имид или тиокарбонил, или Z10 и Z11 вместе образуют 3-8-членное алициклическое или гетероциклическое кольцо, которое может быть замещенным или незамещенным; Х представляет собой SO2, О или NRf; и Rf представляет собой водород, алкил, алкенил, алкинил или арил. В других вариантах, серосодержащий электрофил представляет собой соединение Формулы Б, В, Г, Д или Е:
Figure 00000134
Figure 00000135
Figure 00000136
Figure 00000137
Figure 00000138
В других вариантах серосодержащий электрофил представляет собой соединение Формулы Е, Формулы Д или Формулы Б.
В некоторых вариантах селеносодержащий электрофил представляет собой соединение, структура которого представлена одной из следующих формул:
Se (Формула Ж), Z10-Se-Se-Z11 или Z10-Se-X-Z11,
где Z10 и Z11 независимо представляют собой алкил, аминоалкил, циклоалкил, гетероцикл, циклоалкилалкил, гетероциклоалкил, арил, гетероарил, алкилокси, арилокси, гетероарилокси, ацил, амид, имид или тиокарбонил или Z10 и Z11 вместе образуют 3-8-членное алициклическое или гетероциклическое кольцо, которое может быть замещенным или незамещенным; Х представляет собой SO2, S, О или NRf; и Rf представляет собой водород, алкил, алкенил, алкинил или арил.
В других вариантах селеносодержащие представляет собой соединение Формулы Ж, 3, И, К, Л или М.
Figure 00000139
Figure 00000140
Figure 00000141
Figure 00000142
Figure 00000143
Figure 00000144
В некоторых вариантах селеносодержащий электрофил представляет собой соединение Формулы Ж или Формулы М.
В некоторых вариантах борирующий агент представляет собой боран-N,N-диизопропилэтиламин (ВН3⋅ДИПЭА), боран-пиридин (ВН3⋅Ру), боран-2-хлорпиридин (ВН3⋅СРу), боран-анилин (ВН3⋅An), боран-тетрагидрофуран (ВН3⋅ТГФ) или боран-диметилсульфид (BH3⋅Me2S), анилин-цианоборан, трифенилфосфин-карбоалкоксибораны. В других вариантах борирующий агент представляет собой боран-N,N-диизопропилэтиламин (ВН3⋅-ДИПЭА), боран-2-хлорпиридин (ВН3⋅CРу), боран-тетрагидрофуран (ВН3⋅ТГФ) или боран-диметилсульфид (BH3⋅Me2S).
В других вариантах алкилирующий агент представляет собой алкилгалогенид, алкенилгалогенид, алкинилгалогенид, алкилсульфонат, алкенилсульфонат или алкинилсульфонат.
В других вариантах альдегид представляет собой (пара)-формальдегид, алкилальдегид, алкенилальдегид, алкинилальдегид или арилальдегид.
В других вариантах ацилирующий агент представляет собой соединение Формулы О или П:
Figure 00000148
Figure 00000149
где G7 представляет собой алкил, циклоалкил, гетероцикл, циклоалкилалкил, гетероциклоалкил, арил, гетероарил, алкилокси, арилокси или гетероарилокси; и М представляет собой F, Cl, Br, I, 3-нитро-1,2,4-триазолимидазол, алкилтриазол, тетразол, пентафторбензол или 1-гидроксибензотриазол.
Схема 11
Синтез хирального динуклеозид фосфортиоата путем стереоселективного синтеза.
Figure 00000150
Один из способов стереоселективного синтеза динуклеозид фосфортиоата включает использовании стереохимически чистых 3'-фосфорамидитов, как описано Oka et al., (J. Am. Chem. Soc. (2003), 125:8307-17). Как показано на Схеме 6а (выше), производные 2-хлороксазафосфолидина вводят в реакцию с 5'-O-(ТБЖПС)нуклеозида с получением производного 3'-O-оксазафосфолидина. Реакция 3'-O-(ТБЖПС)нуклеозида с производным 3'-O-оксазафосфолидина в присутствии активатора, такого как N-(цианометил)пирролидин, дает динуклеозид фосфит в форме одного диастереомера. Динуклеозид фосфит может быть превращен в фосфортиоат в ходе 3-стадийного процесса, включающего ацетилирование с помощью уксусного ангидрида, сульфурирование с помощью реагента Бекаже (3Н-1,2-бензодитиол-3-он-1,1-диоксид; Iyer et al., J. Am. Chem. Soc. (1990), 112:1253-4), с отщеплением хирального вспомогательного лиганда с помощью избытка ДБУ. Защищенный динуклеозид фосфортиоат затем превращают в пролекарство способами, раскрытыми в данном описании.
Другие способы, пригодные для синтеза динуклеозид фосфортиоатов, включают ферментные способы (Hacia et al. Biochemistry (1994), 33:5367-9; Tang et al. Nucleosides Nucleotides (1995), 14:985-990), способы, включающие разделение смеси диастереомеров фосфортиоата, полученной не стереоселективными способами (Zon et al. Oligonucleotides and Analogues: A Practical Approach; IRL Press: London, 1991, pp 87-108), и способы, включающие стереоселективный синтез фосфортиоатов (Wilk et al. J. Am. Chem. Soc. 2000, 722, 2149-2156; Lu et al., Angew. Chem., Int. Ed. 2000, 39, 4521-4524; Iyer et al. Tetrahedron: Asymmetry 1995, 6, 1051-1054. Iyer et al. Tetrahedron Lett. 1998, 39, 2491-2494; Lu et al. Tetrahedron 2001, 57, 1677-1687. Stec et al. Nucleic Acids Res. 1991, 19, 5883-5888; Stec et al. J. Am. Chem. Soc. 1995, 777, 12019-12029; Uznan'ski et al. J. Am. Chem. Soc. 1992, 774, 10197-10202.
Обратный синтез нуклеиновой кислоты в направлении 5'-3'
Нуклеиновую кислоту Формулы 1, содержащую хиральный X-фосфонатный фрагмент, альтернативно синтезируют в направлении от 5' к 3’. В вариантах, где используют твердую подложку, нуклеиновую кислоту присоединяют к твердой подложке через 5'-конец растущей нуклеиновой кислоты, таким образом оставляя 3'-группу доступной для реакции, в том числе, ферментной реакции (например, дотирования и полимеризации). В некоторых вариантах такая ориентация достигается путем получения нуклеозидных мономеров, содержащих ахиральный H-фосфонатный фрагмент в положении 5' и защищенную гидроксильную группу в положении 3'. В одном из вариантов, нуклеиновую кислоту синтезируют в соответствии со Схемой 12. На Схеме 12, -R4 представляет собой -Orb, как определено выше, или, в последнем цикле синтеза, представляет собой R4, который эквивалентен R1, как определено в данном описании.
Схема 12
Синтез в направлении 5'-3' про-олигонуклеотида Формулы 1, содержащего хиральный Х-фосфонатный фрагмент.
Figure 00000151
В варианте, описанном на Схеме 12, ахиральный H-фосфонат структуры Ir обрабатывают конденсирующим реагентом с образованием промежуточного соединения структуры IIr. Промежуточное соединение структуры IIr без выделения обрабатывают в той же емкости хиральным реагентом с получением промежуточного соединения структуры IIIr. Промежуточное соединение структуры IIIr без выделения вводят в той же емкости в реакцию с нуклеозидом или модифицированным нуклеозидом структуры XIII с получением хирального фосфитного соединения структуры XIV. В некоторых вариантах соединение структуры XIV экстрагируют в растворитель для отделения его от побочных продуктов, примесей и/или реагентов. В других вариантах, если способ выполняют путем твердофазного синтеза, твердую подложку, содержащую соединение структуры XIV отфильтровывают от побочных продуктов, примесей и/или реагентов. Соединение структуры XIV обрабатывают кислотой для удаления блокирующей группы на 5'-конце растущей цепи нуклеиновой кислоты (структура XV). На стадии подкисления также удаляют хиральный вспомогательный лиганд с получением хирального Н-фосфоната XIII. 3'-Разблокированному промежуточному соединению необязательно дают вернуться в цикл удлинения цепи для получения конденсированного промежуточного соединения, содержащего блокированный 3'-конец, который затем подкисляют для удаления блокирующей группы с 5'-конца и хирального вспомогательного лиганда. После по меньшей мере одного круга цикла удлинения цепи, для промежуточного соединения с удаленной с 3'-конца защитной группой проводят стадию модификации для введения фрагмента X, связанного с каждым из атомов фосфора, с получением соединения структуры XVI. Модифицированное промежуточное соединение разблокируют путем удаления защитной группы, например, защитную группу в виде нуклеотидного основания, модифицированного нуклеотидного основания, сахара или модифицированного сахара удаляют, с получением нуклеиновой кислоты Формулы 1. В других вариантах нуклеозид, содержащий фрагмент 3'-ОН, представляет собой промежуточное соединение с предыдущего цикла удлинения цепи, как описано в данном описании. В других вариантах нуклеозид, содержащий фрагмент 3'-ОН, представляет собой промежуточное соединение, полученное другим известным способом синтеза нуклеиновой кислоты. После цикла синтеза с использованием первого нуклеозида, нуклеозиды, нуклеотиды или нуклеиновые кислоты, содержащие незащищенный фрагмент -ОН, могут использоваться для последующих циклов удлинения цепи. В вариантах, где используют твердую подложку, модифицированная по атому фосфора нуклеиновая кислота далее может быть отщеплена от твердой подложки, расположенной на 5'-конце. В некоторых вариантах нуклеиновые кислоты остаются присоединенными к твердой подложке для последующей очистки, после которой их отщепляют от твердой подложки. В одном из вариантов синтез, описанный на Схеме 12, пригоден в случае, когда и G1, и G2 в хиральном вспомогательном лиганде Формулы А не являются водородом. Синтез в обратном направлении 5'-3' может быть выполнен с использованием таких же исходных материалов, как показано на Схеме 12, по механизму, аналогичному стадиям, описанным в Пути А.
Получение фосфотиотриэфиров с удаляемой защитной группой из Н-фосфоната
Фосфортиоаты могут быть синтезированы стереоспецифическим способом из Н-фосфонатов с сохранением конфигурации при атоме фосфора (J. Org. Chem. 1991, 3861-3869). Также подразумевается применение данной реакции для синтеза фосфортиотриэфиров с использованием тиолсодержащего фрагмента, который также несет биоудаляемую защитную группу, см.Схему 13. Дополнительно, также сообщалось о стереоконтролируемом твердофазном синтезе олигонуклеозид Н-фосфонатов (Angew. Chem. Int. Ed. 2009, 48, 496-499), и предусматривается сочетание указанного способа с алкилированием в ходе синтеза на твердой подложке, для получения фосфотиотриэфиров на подложке.
Схема 13
Figure 00000152
Условия реакции, применяемые в способах по изобретению. Условия
Стадии реакции молекулы, содержащей ахиральный H-фосфонатный фрагмент, и нуклеозида, содержащего фрагмент 5'-ОН, с образованием конденсированного промежуточного соединения, могут быть осуществлены без выделения каких-либо промежуточных соединений. В некоторых вариантах стадии реакции молекулы, содержащей ахиральный H-фосфонатный фрагмент, и нуклеозида, содержащего фрагмент 5'-ОН, с образованием конденсированного промежуточного соединения, могут быть проведены в одной и той же емкости. В одном из вариантов, молекулу, содержащую ахиральный H-фосфонатный фрагмент, конденсирующий реагент, хиральный реагент и соединение, содержащее свободный нуклеофильный фрагмент, добавляют к реакционной смеси в разных временных точках. В другом варианте молекула, содержащая ахиральный Н-фосфонатный фрагмент, конденсирующий реагент и хиральный реагент присутствуют в одной и той же реакционной емкости или сосуде. В другом варианте, молекула, содержащая ахиральный H-фосфонатный фрагмент, конденсирующий реагент, хиральный реагент и соединение, содержащее свободный нуклеофильный фрагмент, присутствуют в одной и той же реакционной емкости или сосуде. Это позволяет проводить реакцию без выделения промежуточных соединений и избежать требующих времени стадий, что дает возможность провести синтез экономично и эффективно. В конкретных вариантах, ахиральный H-фосфонат, конденсирующий реагент, хиральный аминоспирт и 5'-ОН нуклеозид присутствуют в реакционной смеси в одной и то же время. В дополнительном варианте, образование хирального промежуточного соединения для конденсации происходит in situ, и его не выделяют пере реакцией конденсации. В другом варианте, молекулу, содержащую ахиральный H-фосфонатный фрагмент, активируют реакцией с конденсирующим реагентом, хиральный реагентом в отдельной реакционной емкости, а не в той, которую используют для реакции хирального промежуточного соединения с соединением, содержащим свободный 5'-ОН фрагмент.
Синтез на твердой подложке
В некоторых вариантах синтез нуклеиновой кислоты проводят в растворе. В других вариантах синтез нуклеиновой кислоты проводят на твердой подложке. Реакционноспособные группы твердой подложки могут быть незащищенными или защищенными. В ходе синтеза олигонуклеотида твердую подложку обрабатывают различными реагентами в нескольких циклах синтеза для обеспечения постадийного удлинения растущей цепи олигонуклеотида отдельными нуклеотидными мономерами. Нуклеозидный мономер на конце цепи непосредственно соединенный с твердой подложкой, в данном описании называют "первым нуклеозидом". Первый нуклеозид связан с твердой подложкой посредством линкерного фрагмента, т.е. дирадикала с ковалентными связями как с полимером твердой подложки, так и с нуклеозидом. Линкер остается интактным в ходе циклом синтеза, проводимы для сборки олигонуклеотидной цепи, и расщепляется после сборки цепи для высвобождения олигонуклеотида из подложки.
Твердые подложки для твердофазного синтеза нуклеиновой кислоты включают подложки, описанные, например, патентах США 4,659,774, 5,141,813, 4,458,066; выданных Caruthers патентах США 4,415,732, 4,458,066, 4,500,707, 4,668,777, 4,973,679 и 5,132,418; выданных Andrus et al. патентах США 5,047,524, 5,262,530; и выданных Koster патентах США 4,725,677 (повторно выданных как Re34,069). В некоторых вариантах твердая фаза представляет собой подложку из органического полимера. В других вариантах твердая фаза представляет собой подложку из неорганического полимера. В некоторых вариантах органический полимер подложки представляет собой полистирол, аминометилполистирол, полиэтиленгликоль-полистирол перевитый сополимер, полиакриламид, полиметакрилат, поливиниловый спирт, полимер с высокой степенью поперечного сшивания (ВСПС) или другие синтетические полимеры, углеводы, такие как целлюлоза и крахмал, или другие полимерные углеводороды или другие органические полимеры, а также любые сополимеры, композитные материалы или комбинацию перечисленных выше неорганических или органических материалов. В других вариантах неорганический полимер подложки представляет собой кремния диоксид, алюминия оксид, контролируемое полистекло (КПС), которое представляет собой подложку из силикагеля или аминопропил-КПС. Другие пригодные твердые подложки включают фторированные твердые подложки (см., например, WO/2005/070859), твердые подложки из длинноцепочечного алкиламина (ДЦАА), стекла с контролируемым размером пор (КПП) (см., например, S.Р.Adams, K.S.Kavka, E.J.Wykes, S.В.Holder and G.R.Galluppi, J. Am. Chem. Soc., 1983, 105, 661-663; G.R.Gough, M.J.Bruden and P.T.Gilham, Tetrahedron Lett., 1981, 22, 4177-4180). Мембранные подложки и полимерные мембраны (см., например, Innovation and Perspectives in Solid Phase Synthesis, Peptides, Proteins and Nucleic Acids, ch 21 pp 157-162, 1994, Ed. Roger Epton и патент США 4,923,901) также пригодны для синтеза нуклеиновых кислот. После получения, в мембрану могут быть введены/модифицированы химическими способами функциональные группы для использования в синтезе нуклеиновой кислоты. В дополнение к присоединению функциональной группы к мембране, использование линкерной или спейсерной группы, присоединенной к мембране, может использоваться для минимизации стерического препятствия между мембраной и синтезированной цепью.
Другие подходящие твердые подложки включают широко известные в данной области как пригодные для использования в методологии твердофазного синтеза, в том числе, например, стекло, продаваемое под маркой подложки Primer™ 200, стекло с контролируемым размером пор (КПП), оксалильное стекло с контролируемым размером пор (см., например, Alul, et al., Nucleic Acids Research, 1991, 19, 1527), подложку из дериватизированного аминополиэтиленгликоля TentaGel Support (см., например, Wright, et al., Tetrahedron Lett., 1993, 34, 3373) и сополимер полистирола/дивинилбензола Poros.
Продемонстрировано использование полимеров с активированной поверхностью в синтезе природных и модифицированных нуклеиновых кислот и белков на нескольких видах твердых подложек. Материал твердой подложки может представлять собой любой полимер, пористость которого является достаточно однородной, который содержит достаточное количество аминогрупп и является достаточно гибким для проведения любых сопутствующих манипуляций без нарушения целостности. Примеры некоторых подходящих материалов включают нейлон, полипропилен, полиэфир, политетрафторэтилен, полистирол, поликарбонат и нитроцеллюлозу. Другие материалы могут служить в качестве твердой подложки, в зависимости от проекта исследователя. В комбинации с некоторыми видами проектов, например, металл с покрытием, в частности, может быть выбрано золото или платина (см., например, публикацию США №20010055761). В одном из вариантов синтеза олигонуклеотидов, например, нуклеозид заякорен на твердой подложке, которая функционализирована гидроксильными или аминными остатками. Альтернативно, твердую подложку дериватизируют с получением нестойкой к действию кислоты триалкокситритильной группы, такой как триметокситритильная группа (ТМТ). Без желания связываться с теорией, ожидается, что присутствие триалкокситритильной защитной группы будет позволять начальное детритилирование в широко используемых условиях на синтезаторах ДНК. Для более быстрого высвобождения олигонуклеотидного материала в раствор с помощью водного раствора аммиака, дигликолятный линкер необязательно вводят на подложку.
Линкерный фрагмент
Линкерный фрагмент или линкер необязательно используют для соединения твердой подложки с соединением, содержащим свободный нуклеофильный фрагмент. Подходящие линкеры известны, например, короткие молекулы, которые служат для соединения твердой подложки с функциональными группами (например, гидроксильными группами) начальных молекул нуклеозидов в техниках твердофазного синтеза. В некоторых вариантах линкерный фрагмент представляет собой линкер на основе сукцинаминовой кислоты или сукцинатный линкер (-CO-CH2-CH2-СО-) или оксалильный линкер (-CO-CO-). В других вариантах линкерный фрагмент и нуклеозид соединены вместе посредством эфирной связи. В других вариантах линкерный фрагмент и нуклеозид соединены вместе посредством амидной связи. In дополнительных вариантах линкерный фрагмент соединяет нуклеозид с другим нуклеотидом или нуклеиновой кислотой. Подходящие линкеры раскрыты, например, в Oligonucleotides And Analogues A Practical Approach, Ekstein, F. Ed., IRL Press, N.Y., 1991, Chapter 1.
Линкерный фрагмент используют для связи соединения, содержащего свободный нуклеофильный фрагмент, с другим нуклеозидом, нуклеотидом или нуклеиновой кислотой. В некоторых вариантах линкерный фрагмент представляет собой фосфодиэфирную связь. В других вариантах линкерный фрагмент представляет собой H-фосфонатный фрагмент. В других вариантах линкерный фрагмент представляет собой Х-фосфонатный фрагмент.
Растворители для синтеза
Синтез нуклеиновых кислот выполняют в апротонном органическом растворителе. В некоторых вариантах растворитель представляет собой ацетонитрил, пиридин, тетрагидрофуран или дихлорметан. В некоторых вариантах, если апротонный органический растворитель не имеет основной природы, на стадии реакции присутствует основание. В некоторых вариантах, если присутствует основание, основание представляет собой пиридин, хинолин или N,N-диметиланилин. Другие примеры оснований включают пирролидин, пиперидин, N-метилпирролидин, пиридин, хинолин, N,N-диметиламинопиридин (ДМАП) или N,N-диметиланилин. В некоторых вариантах апротонный органический растворитель является безводным. В других вариантах безводный апротонный органический растворитель является свежеперегнанным. В некоторых вариантах свежеперегнанный безводный апротонный органический растворитель представляет собой пиридин. В других вариантах свежеперегнанный безводный апротонный органический растворитель представляет собой тетрагидрофуран. В других вариантах свежеперегнанный безводный апротонный органический растворитель представляет собой ацетонитрил.
Условия подкисления для удаления блокирующей группы.
Подкисление для удаления блокирующей группы осуществляют с помощью кислоты Бренстеда или кислоты Льюиса. В некоторых вариантах подкислением применяют для удаления блокирующей R1 группы. Пригодными кислотами Бренстеда являются карбоновые кислоты, алкилсульфоновые кислоты, арилсульфоновые кислоты, фосфорная кислота и ее производные, фосфоновая кислота и ее производные, алкилфосфоновые кислоты и их производные, арилфосфоновые кислоты и их производные, фосфиновая кислота, диалкилфосфиновые кислоты и диарилфосфиновые кислоты со значением рКа (25°C в воде) от -0,6 (трифторуксусная кислота) до 4,76 (уксусная кислота) в органическом растворителе или воде (в случае 80% уксусной кислоты). Концентрация кислоты (от 1 до 80%), применяемая на стадии подкисления, зависит от кислотности кислоты. Сила кислоты должна быть принята во внимание, поскольку сильнокислые условия будут приводить к депуринированию/депиримидинированию, когда пуринильные или пиримидинильные основания отщепляются от рибозного кольца.
Figure 00000153
Figure 00000154
Figure 00000155
Figure 00000156
Figure 00000157
В некоторых вариантах подкисление осуществляют с помощью кислоты Льюиса в органическом растворителе. Пригодные кислоты Льюиса представляют собой ZnX2, где Х представляет собой Cl, Br, I или CF3SO3.
В некоторых вариантах подкисление включает добавление количества кислоты Бернстеда или кислоты Льюиса, эффективного для превращения конденсированного промежуточного соединения в соединение Формулы 4 без удаления пуриновых фрагментов из конденсированного промежуточного соединения.
Кислоты, пригодные для стадии подкисления также включают, не ограничиваясь ими, 10% фосфорную кислоту в органическом растворителе, 10% хлористоводородную кислоту в органическом растворителе, 1% трифторуксусную кислоту в органическом растворителе, 3% дихлоруксусную кислоту в органическом растворителе или 80% уксусную кислоту в воде. Концентрацию любой кислоты Бернстеда или кислоты Льюиса, используемой в ходе процесса, выбирают таким образом, что концентрация кислоты не превышает концентрации, вызывающей отщепления нуклеотидного основания от сахарного фрагмента.
В некоторых вариантах подкисление включает добавление 1% трифторуксусной кислоты в органический растворитель. В некоторых вариантах подкисление включает добавление от приблизительно 0,1% до приблизительно 8% трифторуксусной кислоты в органическом растворителе. В других вариантах подкисление включает добавление 3% дихлоруксусной кислоты в органическом растворителе. В других вариантах подкислением включает добавление от приблизительно 0,1% до приблизительно 10% дихлоруксусной кислоты в органическом растворителе. В других вариантах подкислением включает добавление 3% трихлоруксусной кислоты в органическом растворителе. В других вариантах подкислением включает добавление от приблизительно 0,1% до приблизительно 10% трихлоруксусной кислоты в органическом растворителе. В некоторых вариантах подкисление включает добавление 80% уксусной кислоты в воде. В некоторых вариантах подкислением включает добавление от приблизительно 50% до приблизительно 90% или от приблизительно 50% до приблизительно 80%, от приблизительно 50% до приблизительно 70%, от приблизительно 50% до приблизительно 60%, от приблизительно 70% до приблизительно 90% уксусной кислоты в воде. В некоторых вариантах подкислением включает дополнительное добавление средств для связывания катионов к кислому растворителю. В конкретных вариантах средства для связывания катионов могут представлять собой триэтилсилан или триизопропилсилан. В некоторых вариантах блокирующую группу удаляют с R1 до проведения стадии подкисления конденсированного промежуточного соединения. В некоторых вариантах блокирующую группу удаляют с R1 подкислением, которое включает добавление 1% трифторуксусной кислоты в органическом растворителе. В некоторых вариантах блокирующую группу удаляют с R1 подкислением, которое включает добавление 3% дихлоруксусной кислоты в органическом растворителе. В некоторых вариантах блокирующую группу удаляют с R1 подкислением, которое включает добавление 3% трихлоруксусной кислоты в органический растворитель.
Удаление блокирующих фрагментов или групп
Функциональные группы, такие как гидроксильный или аминный фрагмент, которые расположены на нуклеиновых основаниях или сахарных фрагментах, обычно блокируют с помощью блокирующих защитных групп (фрагментов) в ходе синтеза, и затем удаляют блокирующие группы. В целом, блокирующая группа, защищающая химическую функциональную группу в молекуле, является инертной по отношению к специфическим условиям реакции, и позже может быть удалена из такой функциональной группы в молекуле без значительного ущерба для остальной части молекулы (см., например. Green and Wuts, Protective Groups in Organic Synthesis, 2nd Ed., John Wiley & Sons, New York, 1991). Например, аминогруппы могут быть блокированы группой, блокирующей атом азота, такой как фталимидо, 9-флудренилметоксикарбонил (FMOC), трифенилметилсульфенил, трет-ВОС, 4,4'-диметокситритил (DMTr, ДМТр), 4-метокситритил (MMTr, ММТр), 9-фенилксантин-9-ил (Pixyl), тритил (Tr) или 9-(n-метоксифенил)ксантин-9-ил (MOX, МОК). Карбоксильные группы могут быть защищены в форме ацетильных групп.Гидроксильные группы могут быть защищены, например, тетрагидропиранилом (TGP, ТГП), трет-бутилдиметилсилилом (TBDMS, ТБДМС), 1-[(2-хлор-4-метил)фенил]-4-метоксипиперидин-4-илом (Ctmp), 1-(2-фторфенил)-4-метоксипиперидин-4-илом (Fpmp), 1-(2-хлорэтокси)этил, 3-метокси-1,5-дикарбометоксипентап-3-илом (MDP, МДП), бис(2-ацетоксиэтокси)метилом (FCE, АЦЕ), триизопропилсилилоксиметилом (TOM, ТОМ), 1-(2-цианоэтокси)этилом (СЕЕ, ЦЭЭ), 2-цианоэтоксиметилом (СЕМ, ЦЭМ), [4-(N-дихлорацетил-N-метиламино)бензилокси]метилом, 2-цианоэтилом (CN, ЦН), пивалоилоксиметилом (PivOM), левунилоксиметилом (ALE, АЛЕ). Описаны другие характерные блокирующие группы для гидроксильной группы (см., например, Beaucage et al., Tetrahedron, 1992, 46, 2223). В некоторых вариантах блокирующие группы для гидроксильной группы представляют собой нестойкие к действию кислоты группы, такие как тритил, монометокситритил, диметокситритил, триметокситритил, 9-фенилксантин-9-ил (Pixyl) и 9-(n-метоксифенил)ксантин-9-ил (MOX, МОК). Химические функциональные группы также могут быть блокированы, в том числе в форме прекурсора. Таким образом, азидная группа может рассматриваться как блокированная форма амина, поскольку азидная группа легко превращается в амин. Известны другие характерные защитные группы, используемые в синтезе нуклеиновых кислот, например, Agrawal et al., Protocols for Oligonucleotide Conjugates, Eds., Humana Press, New Jersey, 1994, Vol.26, pp.1-72).
Различные способы известны и применяются для удаления блокирующих групп из нуклеиновой кислоты. В некоторых вариантах все блокирующие группы удаляют. В других вариантах удаляют только часть блокирующих групп. В других вариантах, условия реакции могут быть отрегулированы для удаления блокирующих групп в некоторых фрагментах. В некоторых вариантах, где R2 представляет собой блокирующую группу, удаление блокирующей группы с R2 является ортогональным по отношению к удалению блокирующей группы с R1. Блокирующие группы в R1 и R2 остаются интактными в ходе стадий синтеза и одновременно удаляются после сборки цепи. В некоторых вариантах блокирующую группу R2 удаляют одновременно с отщеплением нуклеиновых кислот от твердой подложки и с удалением группы, блокирующей нуклеиновое основание. В конкретных вариантах блокирующую группу в R1 удаляют, тогда как блокирующие группы в R2 и нуклеиновых основаниях остаются интактными. Блокирующие группы в R1 отщепляют от твердой подложки с помощью органического основания, такого как первичный амин, вторичный амин или их смесь. Удаление блокирующей группы из положения R1 обычно называют снятием защиты с фронтального конца.
В одном из вариантов группы, блокирующие нуклеиновое основание, если они присутствуют, отщепляются после сборки соответствующей нуклеиновой кислоты, используя кислый реагент. В другом варианте одну или больше из блокирующих нуклеиновое основание групп отщепляют в условиях, не являющихся ни кислыми, ни основными, например, отщепляют с помощью соли фторида или комплексов фтороводородной кислоты. В другом варианте одну или больше из блокирующих нуклеиновое основание групп отщепляют после сборки соответствующей нуклеиновой кислоты в присутствии основание или основного растворителя, где блокирующая нуклеиновое основание группа является устойчивой к условиям стадии снятия защиты с фронтального конца с помощью акрилатов.
В некоторых вариантах нет необходимости в блокирующих группах для нуклеиновых основаниях. В других вариантах блокирующие группы для нуклеиновых оснований необходимы. В других вариантах для некоторых нуклеиновых оснований блокирующая группа необходима, тогда как для других нуклеиновых оснований блокирующая группа не является необходимой. В некоторых вариантах, если нуклеиновые основания блокированы, блокирующие группы полностью или частично удаляют в условиях, подходящих для удаления блокирующей группы на фронтальном конце. Например, R1 может обозначать ORa, где Ra представляет собой ацил, и Ва обозначает гуанин, блокированный ацильной группой, в том числе, но не ограничиваясь ими, изобутирил, ацетил или 4-(трет-бутилфенокси)ацетил. Ацильные группы в R1 и Ва будут удалены или частично удалены в ходе одной и той же стадии снятия блокировки.
Реагенты
Конденсирующий реагент
Структура конденсирующего реагента (CR), пригодного в способах по изобретению, представлена одной из следующих общих формул:
Figure 00000158
,
Figure 00000159
,
Figure 00000160
,
Figure 00000161
or
Figure 00000162
где Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8 и Z9 независимо выбраны из алкила, аминоалкила, циклоалкила, гетероцикла, циклоалкилалкила, гетероциклоалкила, арила, гетероарила, алкилокси, арилокси или гетероарилокси, или, где любая из пар Z2 и Z3, Z5 и Z6, Z7 и Z8, Z8 и Z9, Z9 и Z7 или Z7 и Z8 и Z9 вместе образуют 3-20-членное алициклическое или гетероциклическое кольцо; Q- представляет собой противоанион; и L представляет собой уходящую группу.
В некоторых вариантах противоион конденсирующего реагента CR представляет собой Cl-, Br-,
Figure 00000163
,
Figure 00000164
, TfO-, Tf2N-,
Figure 00000165
,
Figure 00000166
или
Figure 00000167
, где Tf представляет собой CF3SO2. В некоторых вариантах уходящая группа конденсирующего реагента CR представляет собой F, Cl, Br, I, 3-нитро-1,2,4-триазол, имидазол, алкилтриазол, тетразол, пентафторбензол или 1-гидроксибензотриазол.
Примеры конденсирующих агентов, которые могут быть использованы в ходе процесса, включают, на ограничиваясь ими, пентафторбензоилхлорид, карбонилдиимидазол (CDI, КДИ), 1-мезитиленсульфонил-3-нитротриазол (MCNT, МСНТ), 1-этил-3-(3'-диметиламинопропил)карбодиимида гидрохлорид (EDCI-HCl, ЭДКИ-HCl), бензотриазол-1-илокситрис(диметиламино)фосфония гексафторфосфат (РуВОР), N,N'-бис(2-оксо-3-оксазолидинил)фосфиния хлорид (BopCl), 2-(1H-7-азабензотриазол-1-ил)-1,1,3,3-тетраметилурония гексафторфосфат (HATU, ГАТУ) и O-бензотриазол-N,N,N',N'-тетраметилурония гексафторфосфат (HBTU, ГБТУ), DIPDCI (ДИПКДИ); N,N'-бис(2-оксо-3-оксазолидинил)фосфиния бромид (BopBr), 1,3-диметил-2-(3-нитро-1,2,4-триазол-1-ил)-2-пирролидин-1-ил-1,3,2-диазафосфолидин гексафторфосфат (MNTP, МНТП), 3-нитро-1,2,4-триазол-1-ил-трис(пирролидин-1-ил)фосфония гексафторфосфат (PyNTP), бромтрипирролидинофосфония гексафторфосфат (РуBrOP); O-(бензотриазол-1-ил)-N,N,N',N'-тетраметилурония тетрафторборат (TBTU, ТБТУ); и тетраметилфторформамидиния гексафторфосфат (TFFG, ТФФГ). В некоторых вариантах противоион конденсирующего реагента CR представляет собой Cl-, Br-,
Figure 00000163
,
Figure 00000164
, TfO-, Tf2N-,
Figure 00000165
,
Figure 00000166
или
Figure 00000167
, где Tf представляет собой CF3SO2.
В других вариантах изобретения, конденсирующий реагент представляет собой 1-(2,4,6-триизопропилбензолсульфонил)-5-(пиридин-2-ил)тетразолид, пивалоилхлорид, бромтриспирролидинофосфония гексафторфосфат, N,N'-бис(2-оксо-3-оксазолидинил)фосфиния хлорид (BopCl) или 2-хлор-5,5-диметил-2-оксо-1,3,2-диохафосфинан. В одном из вариантов конденсирующий реагент представляет собой N,N'-бис(2-оксо-3-оксазолидинил)фосфиния хлорид (BopCl). Описаны другие известные конденсирующие реагенты (см., например, WO/2006/066260).
В других вариантах конденсирующий реагент представляет собой 1,3-диметил-2-(3-нитро-1,2,4-триазол-1-ил)-2-пирролидин-1-ил-1,3,2-диазафосфолидиния гексафторфосфат (МНТП) или 3-нитро-1,2,4-триазол-1-ил-трис(пирролидин-1-ил)фосфония гексафторфосфат (PyNTP).
Figure 00000168
Figure 00000169
Figure 00000170
Хиральный реагент
В способах по данному изобретению, хиральные реагенты используются для обеспечения стереоселективности в образовании Х-фосфонатных связей. Множество различных хиральных вспомогательных реагентов может использоваться в данном процессе, которые представляют собой соединения Формулы 3-I, где W1 и W2 представляют собой любой из -O-, -S- или -NG5-, способные реагировать с H-фосфонатным исходным материалом, соединением Формулы 2, с образованием хирального промежуточного соединения, как показано в структуре III на Схемах 5 и 6.
Figure 00000171
U1 и U3 представляют собой атомы углерода, соединенные с U2, если он присутствует, или друг с другом, если r равно 0, посредством одинарной, двойной или тройной связи. U2 представляет собой -С-, -CG8-, -CG8G8-, -NG8-, -N-, -О- или -S-, где r равно целому числу от 0 до 5, и не более двух гетероатомов являются смежными. Если любой один из U2 представляет собой С, тройная связь должна быть образована со вторым U2, который представляет собой С или с одним из U1 или U3. Подобным образом, если любой один из U2 представляет собой CG8, двойная связь образуется со вторым U2, который представляет собой -CG8- или -N-, или с одним из U1 или U3.
Например, в некоторых вариантах, -U1-(U2)r-U3- представляет собой -CG3G4-CG1G2-. В некоторых вариантах -U1-(U2)r-U3- представляет собой -CG3=CG1-. В некоторых вариантах -U1-(U2)r-U3- представляет собой -С≡С-. В некоторых вариантах -U1-(U2)r-U3- представляет собой -CG3=C G8-CG1G2-. В некоторых вариантах -U1-(U2)r-U3- представляет собой -CG3G4-O-CG1G2-. В некоторых вариантах -U1-(U2)r-U3- представляет собой -CG3G4-NG8-CG1G2-. В некоторых вариантах -U1-(U2)r-U3- представляет собой -CG3G4-N-CG2-. В некоторых вариантах -U1-(U2)r-U3- представляет собой -CG3G4-N=C G8-CG1G2-.
G1, G2, G3, G4, G5 и G8 независимо представляют собой водород, алкил, аралкил, циклоалкил, циклоалкилалкил, гетероциклил, гетарил или арил, или два из G1, G2, G3, G4 и G5 представляют собой G6 и, взятые вместе, образуют насыщенное, частично ненасыщенное или ненасыщенное карбоциклическое или содержащее гетероатом кольцо, содержащее до приблизительно 20 атомов в кольце, которое является моноциклическим или полициклическим и является конденсированным или неконденсированным. В некоторых вариантах образованное таким образом кольцо замещено оксо, тиоксо, алкильным, алкенильным, алкинильным, гетероарильным или арильным фрагментами. В некоторых вариантах, если кольцо, образованное двумя G6, является замещенным, оно замещено фрагментом, достаточно объемным для обеспечения стереоселективности в ходе реакции.
Например, в некоторых вариантах, кольцо, образованное двумя из G6 вместе, представляет собой циклопентил, пирролил, циклопропил, циклогексенил, циклопентенил, тетрагидропиранил или пиперазинил.
В некоторых вариантах изобретения хиральный реагент представляет собой соединение Формулы 3.
Figure 00000172
В некоторых вариантах Формулы 3, W1 и W2 независимо представляют собой -NG5-, -О- или -S-; G1, G2, G3, G4 и G5 независимо представляют собой водород, алкил, аралкил, циклоалкил, циклоалкилалкил, гетероциклил, гетарил или арил, или два из G1, G2, G3, G4 и G5 представляют собой G6 и, взятые вместе, образуют насыщенное, частично ненасыщенное или ненасыщенное карбоциклическое или содержащее гетероатом кольцо, содержащее до приблизительно 20 атомов в кольце, которое является моноциклическим или полициклическим, конденсированным или неконденсированным, и не более четырех из G1, G2, G3, G4 и G5 представляют собой G6. Подобно соединениям Формулы 3', любой из G1, G2, G3, G4 или G5 замещен оксо, тиоксо, алкильным, алкенильным, алкинильным, гетероарильным или арильным фрагментами. В некоторых вариантах такое замещение обеспечивает стереоселективность в ходе образования Х-фосфоната.
В некоторых вариантах изобретения, структура хирального реагента представлена одной из следующих Формул:
Figure 00000173
Figure 00000174
Figure 00000175
Figure 00000176
Figure 00000177
Figure 00000178
В некоторых вариантах хиральный реагент представляет собой аминоспирт. В некоторых других вариантах хиральный реагент представляет собой аминотиол. В других вариантах хиральный реагент представляет собой аминофенол. В некоторых вариантах хиральный реагент представляет собой (S)- и (-R)-2-метиламино-1-фенилэтанол, (1R, 2S)-эфедрин или (1R, 2S)-2-метиламино-1,2-дифенилэтанол.
В других вариантах по изобретению хиральный реагент представляет собой соединение, структура которого представлена одной из следующих формул:
Figure 00000179
Figure 00000180
Figure 00000181
Figure 00000182
Выбор хирального реагента, например, изомера, представленного Формулой П, или его стереоизомера, представленного Формулой Р, позволяет осуществить специфический контроль хиральности атома фосфора. Таким образом, RP или SP конфигурация может быть выбрана в каждом цикле синтеза, что дает возможность контролировать общую трехмерную структуру полученной нуклеиновой кислоты. В некоторых вариантах изобретения, все стереоцентры полученной нуклеиновой кислоты находятся в RP конфигурации. В некоторых вариантах изобретения, все стереоцентры полученной нуклеиновой кислоты находятся в SP конфигурации. В некоторых вариантах выбор конфигурации центров RP и SP обеспечивает конкретную трехмерную суперструктуру цепи нуклеиновой кислоты.
Стереохимия олигонуклеозид фосфортиоатных связей
Показан терапевтический потенциал олигонуклеозид фосфортиоатов (Stein et al., Science (1993), 261:1004-12; Agrawal et al., Antisence Res. and Dev. (1992), 2:261-66; Bayever et al., Antisense Res. and Dev. (1993), 3:383-390). Олигонуклеозид фосфортиоаты, полученные без учета их стереохимии фосфортиоата, существуют в виде смеси 2n диастереомеров, где n равно количество внутринуклеотидных фосфортиоатных связей. Химические и биологические свойства указанных диастереомерных фосфортиоатов могут быть различными. Например, Wada et al. (Nucleic Acids Symposium Series No. 51 p.119-120; doi:10,1093/nass/nrm060) обнаружили, что стереоопределенный-(Rp)-(Ups)9U/(Ap)9A дуплекс показал более высокое значение Tm, чем природный-(Up)9U(Ар)9А и стереоопределенный-(Sp)-(Ups)9U, не сформировавшие дуплекс. В другом примере, в исследовании Tang et al., (Nucleosides Nucleotides (1995), 14:985-990) было обнаружено, что стереочистым Rp-олигодезоксирибонуклеозид фосфортиоатам присуща более низкая стабильность к эндогенным нуклеазам сыворотки человека по сравнению с исходными олигодезоксирибонуклеозид фосфортиоатами с неопределенной хиральностью фосфора.
Нуклеиновые основание и модифицированные нуклеиновые основания
Нуклеиновое основание Ва в Формуле 1 представляет собой природное нуклеиновое основание или модифицированное нуклеиновое основание, полученное из природных нуклеиновых оснований. Примеры включают, не ограничиваясь ими, урацил, тимин, аденин, цитозин и гуанин, в которых соответствующие аминогруппы защищены ацильной защитной группой, - 2-фторурацил, 2-фторцитозин, 5-бромурацил, 5-йодурацил, 2,6-диаминопурин, азацитозин, пиримидиновые аналоги, такие как псевдоизоцитозин и псевдоурацил, а также другие модифицированные нуклеиновые основания, такие как 8-замещенные пурины, ксантин или гипоксантин (последние два представляют собой природные продукты разложения). Модифицированные нуклеиновые основание, раскрытые в Chiu and Rana, RNA, 2003, P, 1034-1048, Limbach et al. Nucleic Acids Research, 1994, 22, 2183-2196 и Revankar and Rao, Comprehensive Natural Products Chemistry, vol. 7, 313, также включены как фрагменты Ва Формулы 1. Соединения, представленные следующими общими формулами, также включены в качестве модифицированных нуклеиновых оснований:
Figure 00000183
Figure 00000184
Figure 00000185
Figure 00000186
Figure 00000187
Figure 00000188
В приведенных выше формулах, R представляет собой неразветвленную или разветвленную алкильную, арильную, аралкильную или арилоксилалкильную группу, которая содержит от 1 до 15 атомов углерода, в том числе, только для примера, метальную, изопропильную, фенильную, бензильную или феноксиметильную группу; и каждый из R9 и R10 представляет неразветвленную или разветвленную алкильную группу, которая содержит от 1 до 4 атомов углерода.
Модифицированные нуклеиновые основания также включают нуклеиновые основание увеличенного размера, в которые введены одно или больше бензольных колец. Замены нуклеиновых оснований, описанный в каталоге Glen Research (www.glenresearch.com); Krueger AT et al., Ace. Chem. Res., 2007, 40, 141-150; Kool, ET, Асе. Chem. Res., 2002, 35, 936-943; Benner S.A., et al., Nat. Rev. Gent., 2005, 6, 553-543; Romesberr, F.E., et al., Curr. Opin. Chem. Biol., 2003, 7, 723-733; Hirao, I., Curr. Opin. Chem. Biol., 2006, 10, 622-627, включены в качестве пригодных для синтеза нуклеиновых кислот, описанных в данном описании. Некоторые примеры указанных нуклеиновых оснований увеличенного размера показаны ниже:
Figure 00000189
Figure 00000190
Figure 00000191
Figure 00000192
Figure 00000193
Figure 00000194
Figure 00000195
Figure 00000196
Figure 00000197
Figure 00000198
В данном изобретении, модифицированные нуклеиновые основание также охватывают структуры, которые не считаются нуклеиновыми основаниями, но представляют собой другие фрагменты, такие как, не ограничиваясь ими, кольца-производные коррина или порфирина. Замены оснований производными порфирина описаны в Morales-Rojas, H и Kool, ET, Org. Lett., 2002, 4, 4377-4380. Ниже показан пример кольца-производного порфирина, которое может использоваться в качестве замены основания:
Figure 00000199
Другие модифицированные нуклеиновые основания также включают замены оснований, например, такие как показано ниже:
Figure 00000200
Figure 00000201
Figure 00000202
Figure 00000203
Figure 00000204
Figure 00000205
Figure 00000206
Figure 00000207
Модифицированные нуклеиновые основания, которые являются флуоресцентными, также включены. Неограничивающие примеры указанных замен оснований включают фенантрен, пирен, стильбен, изоксантин, изозантоптерин, терфенил, тертиофен, бензотертиофен, кумарин, люмазин, тетарированный стильбен, бензо-урацил и нафто-урацил, как показано ниже:
Figure 00000208
Figure 00000209
Figure 00000210
Figure 00000211
Figure 00000212
Figure 00000213
Figure 00000214
Figure 00000215
Figure 00000216
Figure 00000217
Figure 00000218
Модифицированные нуклеиновые основания могут быть незамещенными или могут содержать дополнительные заместители, такие как гетероатомы, алкильные группы или линкерные фрагменты, соединенные с флуоресцентными фрагментами, биотиновыми или авидиновыми фрагментами, или другими белками или пептидами. Модифицированные нуклеиновые основания также включают некоторые универсальные основания, которые не являются нуклеиновыми основаниями в наиболее классическом смысле, но функционируют подобно нуклеиновым основаниям. Одним из характерных примеров такого универсального основания является 3-нитропиррол.
В дополнение к нуклеозидам структуры IV или IX, другие нуклеозиды также могут быть использованы в способе, раскрытом в данном описании, которые включают нуклеозиды, содержащие модифицированные нуклеиновые основания или нуклеиновые основания, ковалентно соединенные с модифицированными сахарами. Некоторые примеры нуклеозидов, которые включают модифицированные нуклеиновые основания, включают 4-ацетилцитидин; 5-(карбоксигидроксилметил)уридин; 2'-0-метилцитидин; 5-карбоксиметиламинометил-2-тиоуридин; 5-карбоксиметиламинометилуридин; дигидроуридин; 2'-O-метилпсевдоуридин; бета,O-галактозилхеозин; 2'-O-метилгуанозин; N6-изопентениладенозин; 1-метиладенозин; 1-метилпсевдоуридин; 1-метилгуанозин; 1-метилинозин; 2,2-диметилгуанозин; 2-метиладенозин; 2-метилгуанозин; N7-метилгуанозин; 3-метил-цитидин; 5-метилцитидин; N6-метиладенозин; 7-метилгуанозин; 5-метиламиноэтилуридин; 5-метоксиаминометил-2-тиоуридин; бета,D-маннозилхеозин; 5-метоксикарбонилметилуридин; 5-метоксиуридин; 2-метилтио-N6-изопентениладенозин; N-((9-бета,D-рибофуранозил-2-метилтиопурин-6-ил)карбамоил)треонин; N-((9-бета,D-рибофуранозилпурин-6-ил)-N-метилкарбамоил)треонин; уридин-5-оксиуксусной кислоты метиловый эфир; уридин-5-оксиуксусную кислоту (v); псевдоуридин; хеозин; 2-тиоцитидин; 5-метил-2-тиоуридин; 2-тиоуридин; 4-тиоуридин; 5-метилуридин; 2'-O-метил-5-метилуридин; и 2'-O-метилуридин.
В некоторых вариантах нуклеозиды включают 6'-модифицированные бициклические аналоги нуклеозидов с (R)- или (S)-хиральностью в положении 6' и включают аналоги, описанные в патенте США 7,399,845. В других вариантах нуклеозиды включают 5'-модифицированные бициклические аналоги нуклеозидов с (R) или (S)-хиральностью в положении 5' и включают аналоги, описанные в публикации патентной заявки США №20070287831.
В некоторых вариантах нуклеиновые основания или модифицированные нуклеиновые основания включает фрагменты связывания с биологическими молекулами, такими как антитела, фрагменты антител, биотин, авидин, стрептавидин, лиганды рецепторов или хелатные фрагменты. В других вариантах Ва представляет собой 5-бромцрацил, 5-йодурацил или 2,6-диаминопурин. В других вариантах Ва модифицирован замещением флуоресцентным фрагментом или фрагментом связывания с биологической молекулой. В некоторых вариантах заместитель в Ва представляет собой флуоресцентный фрагмент. В других вариантах заместитель на В а представляет собой биотин или авидин.
Модифицированные сахара нуклеотид/нуклеозид.
Наиболее распространенные из встречающихся в природе нуклеотидов представляют собой рибозные сахара, соединенные с нуклеиновыми основаниями аденозином (А), цитозином (С), гуанином (G) и тимином (Т) или урацилом (U). Также включены модифицированные нуклеотиды, где фосфатная группа или фрагменты с модифицированные атомом фосфора в нуклеотидах могут быть присоединены к различным положениям сахара или модифицированного сахара. В качестве неограничивающих примеров, фосфатная группа или фрагмент с модифицированным атомом фосфора может быть присоединен к 2'-, 3'-, 4'- или 5'-гидроксильному фрагменту сахара или модифицированного сахара. Нуклеозиды, содержащие модифицированные нуклеиновые основания, описанные выше, также могут использоваться в способе, раскрытом в данном описании. В некоторых вариантах нуклеотиды или модифицированные нуклеотиды, содержащие незащищенный -ОН фрагмент, используются в способе, раскрытом в данном описании.
В дополнение к рибозному фрагменту, описанному на Схемах 1-4b, другие модифицированные сахара также могут быть введены в нуклеиновые кислоты, раскрытые в данном описании. В некоторых вариантах модифицированные сахара содержат один или больше заместителей в положении 2', в том числе один из следующих: F; CF3, CN, N3, NO, NO2, O-, S- или N-алкил; O-, S- или N-алкенил; O-, S- или N-алкинил; или О-алкил-O-алкил, О-алкил-N-алкил или N-алкил-О-алкил, где алкил, алкенил и алкинил могут быть замещенными или незамещенными C110 алкилом или С210 алкенилом и алкинилом. Примеры заместителей включают, не ограничиваясь ими, O(СН2)NOCH3 и O(CH2)nNH2, где n равно от 1 до приблизительно 10, МОЭ, ДМАОЭ, ДМАЭОЭ. Также в данное изобретение включены модифицированные сахара, описанные в WO 2001/088198; и Martin et al., Helv. Chim. Acta, 1995, 78, 486-504. В некоторых вариантах модифицированные сахара включают замещенные силильные группы, отщепляющую РНК группу, репортерную группу, флуоресцентную метку, интеркалятор, группу для улучшения фармакокинетических свойств нуклеиновой кислоты или группу для улучшения фармакодинамических свойств нуклеиновой кислоты и другие заместители с подобными свойствами. Модификации могут быть осуществлены в положениях 2', 3', 4', 5' или 6' сахара или модифицированного сахара, в том числе, в положении 3' для 3'-концевого нуклеотида или в положении 5' для 5'-концевого нуклеотида.
Модифицированные сахара также включают миметики сахаров, такие как циклобутильные или циклопентильные фрагменты, вместо пентофуранозильного сахара. Примеры патентов США, в которых раскрыто получение таких модифицированных сахарных структур, включают, не ограничиваясь ими, патенты США 4,981,957; 5,118,800; 5,319,080; и 5,359,044. Некоторые модифицированные сахара, охватываемые данным изобретением, включают:
Figure 00000219
Figure 00000220
Figure 00000221
and
Figure 00000222
Другие неограничивающие примеры модифицированных сахаров включают глицерин, который образует аналоги глицерин-нуклеиновой кислоты (ГНК). Один из примером аналогов ГНК показан ниже и описан в Zhang, R et al., J. Am. Chem. Soc., 2008, 130, 5846-5847; Zhang L, et al., J. Am. Chem. Soc., 2005, 727, 4174-4175 и Tsai CH et al., PNAS, 2007, 14598-14603:
Figure 00000223
.
где X является таким, как определено в данном описании. Другой пример аналога-производного ГНУ, гибкой нуклеиновой кислоты (ГбНК) базирующийся на смешанном ацетальаминале формилглицерина, описан в Joyce GF et al., PNAS, 1987, 84, 4398-4402 и Heuberger BD and Switzer C, J. Am. Chem. Soc., 2008, 130, 412-413 и показан ниже:
Figure 00000224
.
Другие неограничивающие примеры модифицированных сахаров включают гексопиранозильные (6'→4'), пентопиранозильные (4'→2'), пентопиранозильные (4'→3') или тетрофуранозильные (3'→2') сахара.
Охватываемые изобретением гексопиранозильные (6'→4') сахара включают:
Figure 00000225
Figure 00000226
Figure 00000227
Figure 00000228
Figure 00000229
Охватываемые изобретением пентопиранозильные (4'→2') сахара включают:
Figure 00000230
Figure 00000231
Figure 00000232
Figure 00000233
.
Охватываемые изобретением пентопиранозильные (4'→3') сахара включают:
Figure 00000234
Figure 00000235
.
Охватываемые изобретением тетрофуранозильные (3'→2') сахара включают:
Figure 00000236
Figure 00000237
Другие охватываемые изобретением модифицированные сахара включают:
Figure 00000238
Figure 00000239
Figure 00000240
Figure 00000241
Figure 00000242
Figure 00000243
Figure 00000244
Figure 00000245
Figure 00000246
.
Дополнительно изобретение охватывает миметики сахаров, проиллюстрированные ниже, где Х выбран из S, Se, СН2, N-Me, N-Et или N-iPr.
Figure 00000247
Figure 00000248
Figure 00000249
Figure 00000250
Figure 00000251
Figure 00000252
Figure 00000253
Figure 00000254
Figure 00000255
Figure 00000256
Figure 00000257
Figure 00000258
Figure 00000259
Figure 00000260
Figure 00000261
Figure 00000262
Figure 00000263
Figure 00000264
Figure 00000265
Figure 00000266
Figure 00000267
Figure 00000268
.
Модифицированные сахара и миметики сахаров могут быть получены по способам, известным в данной области, в том числе, не ограничиваясь ими: А. Eschenmoser, Science (1999), 284:2118; M. Bohringer et al., Helv. Chim. Acta (1992), 75:1416-1477; M. Egli et al., J. Am. Chem. Soc. (2006), 128(33):10847-56; A. Eschenmoser в Chemical Synthesis: Gnosis to Prognosis, C. Chatgilialoglu and V. Sniekus, Ed., (Kluwer Academic, Netherlands, 1996), p, 293; K.-U. Schoning et al., Science (2000), 290:1347-1351; A. Eschenmoser et al., Helv. Chim. Acta (1992), 75:218; J. Hunziker et al., Helv. Chim. Acta (1993), 76:259; G. Otting et al., Helv. Chim. Acta (1993), 76:2701; K. Groebke et al., Helv. Chim. Acta (1998), 81:375; и A. Eschenmoser, Science (1999), 284:2118.
Блокирующие группы
В некоторых вариантах описанных реакций необходимо защитить функциональные группы, например гидрокси, амино, тиольные или карбоксильные группы, если их присутствие желательно в конечном продукте, во избежание их нежелательного участия в реакциях. Защитные группы используются для блокирования некоторых или всех реакционноспособных фрагментов и предупреждения участия таких фрагментов в химических реакциях до удаления защитной группы. В одном из вариантов каждую из защитных групп удаляют другими средствами. Защитные группы, которые отщепляются в полностью различных условиях реакции, удовлетворяют требованию удаления по отдельности. В некоторых вариантах защитные группы удаляют с помощью кислоты, основания и/или гидрогенолиза. Такие группы, как тритил, диметокситритил, ацеталь и трет-бутилдиметилсилил, являются нестойкими к действию кислоты и используются в некоторых вариантах для защиты карбоксильных и гидроксильных реакционноспособных фрагментов в присутствии аминогруппы, защищенной группой Cbz, которую удаляют гидрогенолизом, и/или группы Fmoc, которая является нестойкой к действию основания. В других вариантах реакционноспособные карбоксильные и гидроксильные фрагменты блокируют нестойкими к действию оснований группами, такими как, не ограничиваясь ими, метил, этил и ацетил, в присутствии акрилатов, блокированных нестойкими к действию кислоты группами, такими как трет-бутилкарбамат, или карбаматами, которые устойчивы к действию кислот и оснований, но удаляются гидролизом.
В другом варианте, реакционноспособные гидроксильные фрагменты блокируют гидролитически удаляемыми защитными группами, такими как бензильная группа, тогда как аминогруппы, способные образовывать водородные связи с кислотами, блокируют нестойкими к действию оснований группами, такими как Fmoc. В другом варианте реакционноспособные карбоксильные фрагменты защищают превращением в простые эфира, или, в другом варианте, блокируют защитными группами, удаляемыми в окислительных условиях, такими как 2,4-диметоксибензил, тогда как сопутствующие аминогруппы блокируют нестойкими к действию фторидов силильными или карбаматными блокирующими группами.
Аллильные блокирующие группы пригодны в присутствии кислота- и основание-защитных групп, поскольку первые являются устойчивыми, и в последующем могут быть удалены с использованием металлических или пи-кислотных катализаторов. Например, с блокированных аллилом гидроксильных групп защита может быть снята с помощью катализируемой Pd(0) реакции в присутствии нестойких к действию кислоты трет-бутилкарбаматных или нестойких к действию основания ацетатаминных защитных групп. Другой формой защитной группы является смола, к которое присоединяют соединение или промежуточное соединение. До тех пор, пока остаток присоединен к смоле, функциональная группа блокирована и не может вступить в реакцию. После высвобождения из смолы, функциональная группа доступна для реакции.
Типичные блокирующие/защитные группы, пригодные для синтеза соединений, описанных в данном описании, только для примера:
Figure 00000269
Figure 00000270
Figure 00000271
Figure 00000272
Figure 00000273
Figure 00000274
Figure 00000275
Figure 00000276
Figure 00000277
Figure 00000278
Figure 00000279
Figure 00000280
Figure 00000281
Figure 00000282
Характерные защитные группы, пригодные для защиты нуклеотидов в ходе синтеза, включают нестойкие к действию оснований защитные группы и нестойкие к действию кислоты защитные группы. Нестойкие к действию основания защитные группы используют для защиты экзоциклических аминогрупп в гетероциклических нуклеиновых основаниях. Данный вид защиты в целом достигается ацилированием. Тремя широко используемыми для ацилирования группами для данной цели являются бензоилхлорид, феноксиуксусный ангидрид и изобутирилхлорид. Указанные защитные группы устойчивы в условиях реакции, применяемых в ходе синтеза нуклеиновой кислоты, и отщепляются с приблизительно одинаковой скоростью в ходе обработки основанием в конце синтеза.
В некоторых вариантах 5'-защитная группа представляет собой тритил, монометокситритил, диметокситритил, триметокситритил, 2-хлортритил, ДАТЭ, ТБТр, 9-фенилксантин-9-ил (Pixyl) или 9-(n-метоксифенил)ксантин-9-ил (МОК).
В некоторых вариантах защищают тиольные фрагменты, включенные в соединения Формулы 1, 2, 4 или 5. В некоторых вариантах защитные группы включают, не ограничиваясь ими, пиксил, тритил, бензил, n-метоксибензил (РМВ, ПМБ) или трет-бутил (трет-Bu).
Другие защитные группы, а также подробное описание методик, применимых для введения защитных групп и их удаления, описаны в Green and Wuts, Protective Groups in Organic Синтез, 3rd Ed., John Wiley & Sons, New York, NY, 1999 и Kocienski, Protective Groups, Thieme Verlag, New York, NY, 1994, которые включены в данное описание путем ссылки для целей такого раскрытия.
СПОСОБЫ ПРИМЕНЕНИЯ ПРОЛЕКАРСТВ НУКЛЕИНОВОЙ КИСЛОТЫ, СОДЕРЖАЩИХ ХИРАЛЬНЫЙ Х-ФОСФОНАТНЫЙ ФРАГМЕНТ
Стереоопределенное пролекарство в форме олигонуклеотида, содержащего хиральный атом фосфора или фосфортиоатный фрагмент, которое получают способами по изобретению, пригодно для применения во множестве областей благодаря сочетанию стабильности, определенной хиральности и легкости синтеза. В общем, соединения, синтезированные данным способом, пригодны в качестве терапевтических, диагностических зондов и реагентов, синтетических инструментов для получения других олигонуклеотидных продуктов и наноструктурных материалов, пригодных для множества сфер применения новых материалов и вычислительных подходов.
Пролекарство в форме стереоопределенного олигонуклеотида по изобретению обладает улучшенной стабильностью в сыворотке по сравнению с природными ДНК/РНК эквивалентами и в частности, стереоопределенное олигонуклеотидное Пролекарство из класса фосфортиоатоа. Кроме того, SP изомер является более стабильным, чем RP изомер. В некоторых вариантах уровень стабильности в сыворотки модулируется путем введения всех SP центров или SP центров в выбранных положениях для обеспечения сопротивления разложению. В других вариантах введение выбранных RP и/или Sp стереоцентров может обеспечивать сочетание спаривания с конкретным основанием и эндогенной или экзогенной мишенью, таким образом защищая мишень от метаболизма или усиливая конкретную биологическую реакцию.
Активация РНКазы Н также модулируется присутствием стереоконтролируемых фосфортиоатных аналогов нуклеиновой кислоты, тогда как природная ДНК/РНК более чувствительна, чем RP стереоизомер, который, в свою очередь, более чувствителен, чем соответствующий Sp изомер.
Повышенная стабильность дуплекса по сравнению с РНК наблюдалась для RP фосфортиоатных олигонуклеотидов, демонстрирующих более высокую стабильность дуплекса, чем соответствующие SP олигонуклеотиды, которые, в свою очередь, демонстрировали более высокую стабильность по сравнению с природной ДНК/РНК. Повышенная стабильность дуплекса по сравнению с ДНК наблюдалась для 5Р, демонстрирующего более высокую стабильность дуплекса по сравнению с RP, который является более стабильным по сравнению с природной ДНК/РНК. (Р. Guga, Curr. Top Med. Chem., 2007, 7, 695-713).
Указанные молекулы могут быть пригодными в качестве терапевтических агентов, для множества конкретных областей. Они могут быть введены в олигонуклеотиды, которые также содержат стандартные ДНК/РНК нуклеозиды, или они могут быть синтезированы в виде полных последовательностей стереоконтролируемых олигонуклеотидов по изобретению. Некоторые категории терапевтических агентов включают, не ограничиваясь ими, антисмысловые олигонуклеотиды, антигенные олигонуклеотиды, которые образуют тройную спираль с целевыми последовательностями для подавления транскрипции нежелательных генов и модуляции экспрессии и/или активности белка, ложные олигонуклеотиды, ДНК вакцины, аптамеры, рибозимы, дезоксирибозимы (ДНКзимы или ДНК ферменты), миРНК, микроРНК, нкРНК (некодирующая РНК) и Р-модифицированные пролекарства. Модуляция охватывает прямое или опосредованное повышение или снижение активности белка или ингибирование или промотирование экспрессии белка. Указанные соединения нуклеиновых кислот могут применяться для контроля пролиферации клеток, репликации вирусов или любого другого процесса проведения сигнала клеткой.
В одном из примеров, сфера применения терапевтических миРНК демонстрирует потребность в молекулах олигонуклеотидов, которые обладали бы повышенной устойчивостью к действию РНКазы, с целью увеличения длительности действия по сравнению с продемонстрированной дли миРНК, состоящей из природных нуклеозидов. Дополнительно, образование спирали А-формы, по-видимому, более показательно для успеха введения иРНК, чем присутствие конкретных нативных элементов на олигонуклеотиде. Оба указанных требования могут быть удовлетворены при применении стереоконтролируемых олигонуклеотидов по изобретению, которые могут обеспечить повышенную стабильность (Y-L Chiu, T.M.Ransi RNA, 2003, 9, 1034-1048).
Способы лечения
Нуклеиновые кислоты, описанные в данном описании, пригодны в качестве терапевтических агентов против различных патологических состояний, в том числе для применения в качестве противовирусных агентов. Нуклеиновые кислоты могут применяться в качестве агентов для лечения заболеваний посредством модуляции активности ДНК и/или РНК. В некоторых вариантах нуклеиновые кислоты могут применяться для ингибирования экспрессии конкретного гена. Например, нуклеиновые кислоты могут быть комплементарными к конкретной последовательности-мишени мессенджера РНК (мРНК). Они могут применяться для ингибирования репликации множества вирусов. Примеры семейств вирусов включают ортомиксовирусы, поксвирусы, вирусы герпеса, папилломавирусы, пикорнавирусы, флавивирусы, ретровирусы, вирусы гепатита, парамиксовирусы, реовирусы, парвовирусы, филовирусы, коронавирусы, аренавирусы, рабдовирусы и аденовирусы. Дополнительные семейства вирусов известны и также включены в данное изобретение. Другие примеры включают применение в качестве антисмысловых соединений против РНК ВИЧ или РНК других ретровирусов, или для гибридизации с мРНК ВИЧ, кодирующей белок tat, или с участком TAR мРНК ВИЧ. В некоторых вариантах нуклеиновые кислоты имитируют вторичную структуру участка TAR мРНК ВИЧ и таким образом связываются с белком tat. В одном из вариантов нуклеиновые кислоты используют для ингибирования экспрессии целевого белка путем обеспечения контакта клетки с соединением Формулы 1, где экспрессия других белков в клетке не ингибируется или ингибируется минимально. В одном из вариантов ингибирование целевого белка возникает in vivo у млекопитающего. В других вариантах терапевтически эффективное количество соединения Формулы 1 вводят для ингибирования экспрессии целевого белка.
Другие примеры белков, экспрессия которых может модулироваться, включают Jun N-концевые киназные (JNK) белки, диацилглицерин ацилтрансферазу I, аполипопротеин В, рецептор глюкагона, Aurora В, ацил-КоА-холестерин ацилтрансферазу-2, с-реактивный белок, семейство белков STAT (преобразователи сигнала транскрипции) и MDR Р-гликопротеин. Нуклеиновые кислоты могут применяться для ингибирования экспрессии белка фосфатазы 1 В (РТР1 В), РНК-зависимой РНК-полимеразы вирусов. Нуклеиновые кислоты могут применяться для индуцирования таких событий, как апоптоз в раковых клетках, или для того, чтобы сделать клетки более чувствительными к апоптозу. Нуклеиновые кислоты могут применяться для модулирования активности белков. Например, они могут способствовать модуляции активности РНКазы Н, нацеливая ее на молекулы РНК, обеспечивающие резистентность ко многим лекарственным средствам (РМЛ).
В другом аспекте данного изобретения предлагаются способы лечения заболевания, опосредованного экспрессией нежелательного гена у субъекта (например, млекопитающих, таких как человек), нуждающегося в таком лечении. Под "заболеваниями" подразумеваются заболевания или симптомы заболеваний. Способ включает введение субъекту эффективного количества нерацемического про-олигонуклеотида по данному изобретению.
Примеры заболеваний, опосредованных экспрессией нежелательного гена, включают рак (например, лейкоз, опухоли и метастазы), аллергию, астму, ожирение, воспаление (например, воспалительные заболевания, такие как воспалительное заболевание дыхательных путей), гиперхолестеринемию, расстройства кроветворения, тяжелый острый дыхательный синдром (SARS), обструктивное заболевание дыхательных путей, астму, аутоиммунные заболевания, вызванные ретровирусами заболевания, такие как СПИД или ВИЧ, другие вирусные инфекции, внутриматочные инфекции, метаболические заболевания, инфекцию (например, бактериальную, вирусную, дрожжевую, грибковую), заболевания ЦНС, опухоли мозга, дегенеративные заболевания нервной системы, сердечно-сосудистые заболевания и заболевания, связанные с ангиогенезом, неоваскуляризацией и васкулогенезом.
В примерном варианте соединения пригодны для лечения рака, в том числе, рака поджелудочной железы, и других заболеваний или расстройств, включающих аномальную пролиферацию клеток.
Расположенная в верхней части брюшной полости (в ретроперитонеальной области), поджелудочная железа представляет собой железу с двойной функцией - в пищеварительной и эндокринной системе. В некоторых поджелудочная железа функционирует как эндокринная железа (например, вырабатывая некоторые важные гормоны). В некоторых случаях поджелудочная железа функционирует как экзокринная железа (например, секретируя жидкость, содержащую пищеварительные ферменты, которые попадают в тонкий кишечник).
Рак поджелудочной железы является четвертой по распространенности причиной смертности от рака в США (после рака легкого, ободочной кишки и молочной железы), на долю которого приходится 6% всех смертельных случаев, вызванных раком. В 2008 г. приблизительно 37680 новых случаев рака поджелудочной железы будет диагностировано в США, из которых 34290 будут смертельными. Встречаемость заболевания возрастает линейно после 50 лет, причем единственным определяющим фактором риска является курение (у курильщиков риск развития заболевания в 4 раза выше, чем у некурящих). Инвазивный рак поджелудочной железы практически всегда фатален. Медианное значение продолжительности жизни для всех пациентов составляет 4-6 месяцев. Относительная частота выживаемости на протяжении 1 года составляет 24%; общая частота выживаемости на протяжении 5 лет составляет <5%.
Рак поджелудочной железы характеризуется бессимптомным течением на ранней стадии и часто остается недиагностированным в течение нескольких месяцев (менее, чем для 1/3 пациентов диагноз устанавливают в пределах 2 месяцев с момента появления симптомов). В некоторых случаях поздняя диагностика приводит (частично или полностью) к метастазам раковых клеток в печень или лимфатические узлы.
В настоящее время, хирургическое вмешательство (резекция поджелудочной железы) является основным и единственным ведущим к излечению видом лечения рака поджелудочной железы. Однако, только 15-25% опухолей подлежат резекции на момент постановки диагноза, и только для 10-20% пациентов продолжительность жизни после хирургического вмешательства составляет свыше 2 лет. Как только происходит инфильтрация опухоли, и поражаются другие ткани, хирургическое вмешательство становится невозможным.
В некоторых случаях, сахарный диабет или панкреатит способствуют развитию пролиферативного расстройства множества клеток поджелудочной железы. В некоторых случаях, у лиц возникает повышенный риск развития пролиферативного расстройства множества панкреатических клеток вследствие наследственного синдрома, выбранного из группы, состоящей из: наследственный полипозный рак ободочной и прямой кишки (НПРОПК) и семейный аденоматозный полипоз (САП). В некоторых случаях повышенный риск развития пролиферативного расстройства множества панкреатических клеток является результатом мутации гена, выбранного из группы, состоящей из: МСН2, МСН6, MLH1 и APC.
В идеале, эффективное лечение рака поджелудочной железы должно (i) контролировать массу первичной опухоли, в начале лечения и в дальнейшем, и (ii) лечить метастатические опухолевые клетки. Химиопрофилактика (введения таких агентов, как лекарственные средства, биологические вещества, нутриенты, и т.п.) замедляет прогресс, обращает или ингибирует канцерогенез, таким образом снижая риск развития инвазивного или клинически значимого заболевания.
В некоторых вариантах данного изобретения раскрыт способ лечения рака поджелудочной железы. В данном описании "рак поджелудочной железы" включает формы рака поджелудочной железы. В некоторых вариантах рак поджелудочной железы представляет собой метастатический рак поджелудочной железы. В некоторых вариантах рак поджелудочной железы представляет собой карциному, саркому, рак или их комбинацию. В некоторых вариантах рак поджелудочной железы, подлежащий лечению, включает спорадический и наследственный рак поджелудочной железы. В некоторых вариантах рак поджелудочной железы представляет собой карциному клеток протока, карциному ацинозных клеток, папиллярную слизистую карциному, мукоидную карциному, аденосквамозную карциному, недифференцированную карциному, слизистую карциному, гигантско-клеточную карциному, мелкоклеточную карциному, кистозный рак, серозный кистозный рак, неклассифицированный рак поджелудочной железы, панкреатобластому или их комбинацию.
В некоторых вариантах у индивидуума, нуждающегося в лечении рака поджелудочной железы, присутствует локализованная опухоль поджелудочной железы. В некоторых вариантах у индивидуума, нуждающегося в лечении рака поджелудочной железы, отрицательные результаты биопсии регионарного лимфатического узла. В некоторых вариантах у индивидуума, нуждающегося в лечении рака поджелудочной железы, положительные результаты биопсии регионарного лимфатического узла. В некоторых вариантах у индивидуума, нуждающегося в лечении рака поджелудочной железы, присутствует узел-отрицательная опухоль поджелудочной железы (например, узел-отрицательная). В некоторых вариантах у индивидуума, нуждающегося в лечении рака поджелудочной железы, присутствует узел-положительная опухоль (например, узел-положительная).
В некоторых вариантах рак поджелудочной железы у индивидуума, нуждающегося в лечении рака поджелудочной железы, метастазировал в другие участки организма. В некоторых вариантах рак поджелудочной железы метастазировал в участок, выбранный из группы, состоящей из: лимфатического узла, желудка, желчного протока, печени, кости, яичника, брюшной полости и мозга.
В некоторых вариантах раковые клетки или предраковые клетки идентифицируют путем гистологического типирования или категоризации образца ткани (например, образца биопсии). В некоторых вариантах раковые клетки или предраковые клетки идентифицируют посредством использования подходящих молекулярных маркеров.
В некоторых вариантах стадия рака поджелудочной железы у индивидуума, нуждающегося в лечении рака поджелудочной железы, классифицирована в соответствии с системой классификации TNM Американского Объединенного комитета рака (AJCC), где опухоли (Т) присваивают стадию Тх, Т1, Т2, Т3, Т4; регионарным лимфатическим узлам (N) присваивают стадию NX, N0, N1; и удаленным метастазам (М) присваивают стадию MX, М0 или Ml. В некоторых вариантах стадия рака поджелудочной железы у индивидуума, нуждающегося в лечении рака поджелудочной железы, классифицирована как Стадия 0, I, IA, IB, II, IIA, IIB, III и IV рака поджелудочной железы. В некоторых вариантах стадия рака поджелудочной железы у индивидуума, нуждающегося в лечении рака поджелудочной железы, классифицирована как Категория GX (например, стадия не может быть оценена). Категория 1, Категория 2, Категория 3 или Категория 4.
Более конкретные примеры видов рака, поддающихся лечению соединениями по данному изобретению, включают рак молочной железы, рак легкого, меланому, рак ободочной и прямой кишки, рак мочевого пузыря, рак яичника, рак предстательной железы, рак почки, плоскоклеточный рак, глиобластому, саркому Капоши, множественную миелому и лейкоз.
Оценка и лечение рака
Термин "антиген опухолевой клетки" определен в данном описании как антиген, который присутствует в более высоких количества на опухолевой клетки или в биологических жидкостях, чем в других опухолевых клетках, нормальных клетках или в нормальной биологической жидкости. Присутствие антигена может быть обнаружено с помощью любого количества анализов, известных специалистам в данной области, в том числе, не ограничиваясь ими, отрицательная и/или положительная селекция с помощью антител, например, методом ELISA, радиоиммуноанализа или вестерн-блоттинга.
"Вызывающий апоптоз агент" определен в данном описании как индуцирующий апоптоз/запрограммированную гибель клетки и включает, например, противораковые агенты и средства лечения, где в клетках (например, опухолевых клетках) индуцируется запрограммированная гибель клетки. Примеры вызывающих апоптоз агентов описаны более подробно ниже.
Термины "апоптоз" или "запрограммированная гибель клетки" обозначают физиологический процесс, при помощи которого нежелательные или бесполезные клетки удаляются в ходе развития и других нормальных биологических процессов. Апоптоз представляет собой режим гибели клетки, которая происходит в нормальных физиологических условиях, и клетка принимает активное участие в собственной гибели («клеточный суицид»). Это чаще всего наблюдается в ходе нормального жизненного цикла клетки и гомеостаза ткани, эмбриогенеза, индуцирования и поддержания иммунной толерантности, развития нервной системы и эндокринно-зависимой атрофии тканей. Клетки, в которых возникает апоптоз, демонстрируют характерный морфологические и биохимические особенности. Указанные особенности включают агрегацию хроматина, ядерную и цитоплазматическую конденсацию, распределение цитоплазмы и ядра в соединенные с мембраной пузырьки (апоптотические тельца), которые содержат рибосомы, морфологически интактные митохондрии и ядерный материал. In vivo, такие апоптотические тельца быстро распознаются и фагоцитируются макрофагами, дендритными клетками или смежными эпителиальными клетками. Благодаря такому эффективному механизму удаления апоптотических клеток in vivo, воспалительный ответ не развивается. In vitro апоптотические тельца, также остальные фрагменты клетки набухают, и, в конечном итоге, происходит их лизис. Эта терминальная фаза клеточной гибели in vitro названа "вторичным некрозом". Апоптоз может быть измерен способами, известными специалистам в данной области, такими как фрагментация ДНК, контакт с Аннексином V, активация каспаз, высвобождения цитохром С, и т.д. Клетка, гибель которой инициирована, в данном описании называется "апоптотической клеткой".
Апоптоз также может быть обнаружен с использованием стандартного анализа апоптоза с использованием аннексина V: клетки NIH:OVCAR-3 выращивают на 6-луночных планшетах (NUNC) и облучают или обрабатывают антагонистом (или в комбинации с другим противораковым лекарственным средством) в течение 4-48 час, промывают и окрашивают Аннексином V-FITC (BD-Pharmingen) в течение 1 час. Клетки анализируют проточной цитометрией (Becton-Dickinson, CellQuest), осуществляя доокрашивание пропидия йодидом, и снова анализируют проточной цитометрией.
Состояние пациентов может быть оценено с учетом симптомов в одной или больше множественных временных точек, в том числе перед, в ходе и после проведения курсов лечения. Лечение может приводить к улучшению состояния субъекта и может быть оценено путем определения наличия одного или больше из следующих факторов: уменьшение размера опухоли, снижение клеточной пролиферации, уменьшение количества клеток, уменьшение неоваскуляризации, усиление апоптоза или уменьшение продолжительности жизни по меньшей мере части опухолевых клеток. Одно или больше из указанных явлений может, в некоторых случаях, приводить к частичному или полному устранению рака и увеличению продолжительности жизни пациента. Альтернативно, для рака в терминальной стадии, лечение может приводить к остановке прогресса заболевания, улучшению качества жизни и/или увеличению продолжительности жизни.
Способы анализа миграции клеток
Анализы миграции клеток описаны в литературе, например. Brooks, et al., J. Clin. Invest 1997, 99:1390-1398, и способы измерения миграции клеток известны специалистам в данной области. В одном из способом измерения миграции клеток, описанной в данном описании, мембраны камер транслуночной миграции покрывают субстратом, транслунки промывают, и участки неспецифического связывания блокируют альбумином телячьей сыворотки. Опухолевые клетки из субслитых культур собирают, промывают и ресуспендируют в буфере миграции в присутствии или в отсутствие антител анализа. Затем опухолевым клеткам позволяют мигрировать к нижней стороне покрытых транслуночных мембран; клетки, оставшиеся на верхней стороны мембраны, удаляют, и клетки, которые мигрировали на нижнюю сторону, окрашивают кристаллическим фиолетовым. Затем миграцию клеток количественно оценивают путем прямого подсчета клеток в поле зрения микроскопа.
Способы оценки роста опухоли
Рост опухоли можно оценить способами, известными специалистам в данной области, например, на модели с использованием мышей SCID, модели с использованием голых мышей и мышей BALB/c с сингенными опухолями. Модели роста опухоли с использованием мышей SCID получают следующим образом: субслитые клетки меланомы человека М21 (или любого целевого вида опухолевых клеток) собирают, промывают и ресуспендируют в стерильном ФБР (20×106/мл). Мышам SCID подкожно вводят 100 мкл суспензии клеток меланомы человека М21 (2×106). Через 3 дня после инъекции опухолевых клеток мышей оставляют без лечения или лечат интраперитонеально антагонистом в целевом интервале доз. Мышам вводят препарат ежедневно в течение 24 дней. Размер опухоли измеряют с помощью штангенциркуля, и объема вычисляют с использованием формулы V=(L×W2)/2, где V - объем, L - длина, и W - ширина.
Альтернативно, модели с использованием голых мышей, модели с использованием мышей SCID и/или сингенные модели с использованием мышей BALB/c также могут применяться для оценки роста опухоли и его замедления под действием гуманизированных анти-эндоглиновых антител или антигенсвязывающих фрагментов, описанных в данном описании.
Методы анализа пролиферации клеток
Пролиферация клеток может быть оценена способами, известными специалистам в данной области. Как описано в данном описании, субслитые эндотелиальные клетки человека (HUVEC) могут быть ресуспендированы в буфере пролиферации, содержащем низкую концентрацию (5,0%) сыворотки, в присутствии или в отсутствие СМ (25 мкл) из клеток ECV или ECVL, после чего позволяют пролиферацию эндотелиальных клеток в течение 24 час. Пролиферация может быть количественно оценена путем измерения активности митохондриальной дегидрогеназы с использованием коммерчески доступного набора для анализа WST-1 (Chemicon). Также, как описано в данном описании, пролиферация может быть количественно оценена путем измерения инкорпорации 3Н с использованием стандартных способов. (She et al., Int. J. Cancer, 108: 251-257 (2004)).
Другие способы оценки пролиферации клеток известны в данной области и включены в данное изобретение. Дополнительные неограничивающие примеры описаны более подробно в разделе «Примеры».
Следует понимать, что системы классификации и определения стадии, описанные в данном описании, являются одним из средств оценки лечения видов рака, описанных в данном описании; дополнительно, другие схемы оценки стадии известны в данной области и могут применяться в сочетании со способами, описанными в данном описании. Только для примера, TNM классификация злокачественных опухолей может применяться как система определения стадии рака для описания степени прогресса рака в организме пациента. Т описывает размер опухоли и наличие инвазии опухоли в окружающие ткани, N описывает степень вовлечения регионарных лимфатических узлов, и М описывает удаленные метастазы. TNM поддерживается Международным Сообществом борьбы с раком (UICC), а также применяется Американским Объединенным сообществом рака (AJCC) и Международной Федерацией Гинекологии и акушерства (FIGO). Следует понимать, что не все опухоли можно классифицировать согласно TNM, например, такие как опухоли мозга. В целом, Т (a, is, (0), 1-4) измеряют как размер или прямое распространение первичной опухоли. N (0-3) обозначает степень распространения на регионарные лимфатические узлы. N0 означает, что клетки опухоли отсутствуют в регионарных лимфатических узлах, N1 означает, что клетки опухоли распространились в ближайшие или в небольшое количество регионарных лимфатических узлов, N2 означает, что клетки опухоли распространились до степени между N1 и N3; N3 означает, что клетки опухоли распространились в наиболее отдаленные или многочисленные регионарные лимфатические узлы. М (0/1) обозначает присутствие метастазов: М0 означает отсутствие удаленных метастазов; M1 означает, что метастазы присутствуют в отдаленных органах (помимо регионарных лимфатических узлов). Другие параметры также могут оцениваться. G (1-4) обозначает категорию раковых клеток (т.е. низкая категория означает, что они сходны с нормальными клетками, и высокая категория означает, что они слабо дифференцированы). R (0/1/2) обозначает полноту хирургического вмешательства (т.е. границы поля резекции свободны от раковых клеток или нет). L (0/1) обозначает инвазию в лимфатические сосуды. V (0/1) обозначает инвазию в вену. С (1-4) обозначает индекс определенности (качества) V.
В данном изобретении предлагаются способы разложения, замедления роста или индуцирования гибели раковых клеток, которые включают обеспечение контакта клеток с количеством соединения, описанного в данном описании, эффективного для разложения, замедления роста или индуцирования гибели раковых клеток.
В данном изобретении предложены способы замедления увеличения размера опухоли, уменьшения размера опухоли, уменьшения пролиферации опухоли или предупреждения пролиферации опухоли у индивидуума, которые включают введение указанному индивидууму эффективного количества соединения, описанного в данном описании, для замедления увеличения размера опухоли, уменьшения размера опухоли, снижения пролиферации опухоли или предупреждения пролиферации опухоли. Лечение опухолей в некоторых случаях включает остановку симптомов, т.е. при лечении пациента рак не прогрессирует, и продолжительность жизни пациента увеличивается.
Состояние больных может быть оценено с учетом симптомов в одной или больше множественных временных точек, в том числе перед, в ходе и после проведения курсов лечения. Лечение может приводить к улучшению состояния субъекта и может быть оценено путем определения наличия одного или больше из следующих факторов: уменьшение размера опухоли, снижение клеточной пролиферации, уменьшение количества клеток, уменьшение неоваскуляризации и/или усиление апоптоза. Одно или больше из указанных явлений может, в некоторых случаях, приводить к частичному или полному устранению рака и увеличению продолжительности жизни пациента. Альтернативно, для рака в терминальной стадии, лечение может приводить к остановке прогресса заболевания, улучшению качества жизни и/или увеличению продолжительности жизни. Другие способы оценки лечения известны в данной области и включены в данное изобретение.
В примерном варианте соединение про-олигонуклеотид по изобретению вводят субъекту, такому как млекопитающее (например, человек), страдающему от медицинского расстройства, например, рака или злокачественного состояния, характеризующегося присутствием класса нежелательных клеток.
Измерение первичной конечной точки может быть проведено способами, описанными в данном описании, и включает, например, период до прогресса заболевания. В одном из вариантов наблюдается увеличение периода до прогресса заболевания приблизительно в 2 раза, в 5 раз, в 10 раз, в 20 раз, в 50 раз или больше по сравнению с отсутствием лечения. В другом варианте наблюдается увеличение периода до прогресса заболевания приблизительно на 3 месяца, приблизительно на 6 месяцев, приблизительно на 9 месяцев, приблизительно на 12 месяцев, приблизительно на 18 месяцев, приблизительно на 2 года, приблизительно на 3 года, приблизительно на 4 года, приблизительно на 5 лет или больше по сравнению с отсутствием лечения.
Вторичная конечная точка также может быть измерена и включает длительность ответа, период до прогрессирования опухоли, общую продолжительность жизни, легкие и тяжелые побочные эффекты. Например, лечение может предупреждать прогресс заболевания (т.е. остановка) или может приводить к улучшению. Альтернативно или дополнительно, достижение других целей может быть измерено с учетом одного или больше из следующего: снижение опухолевой нагрузки, уменьшение неоваскуляризации, уменьшение побочных реакций и/или повышение степени соблюдения пациентом предписаний врача.
Другие конкретные примеры заболеваний или расстройств, при которых лечение соединениями или композициями по изобретению пригодно для лечения или профилактики, включают, не ограничиваясь ими, отторжение трансплантата (например, почки, печени, сердца, легкого, островковых клеток, поджелудочной железы, костного мозга, роговицы, тонкой кишки, кожных аллотрансплантатов или ксенотрансклантатов и других трансплантатов), заболевание «трансплантат против хозяина», остеоартрит, ревматоидный артрит, рассеянный склероз, диабет, диабетическую ретинопатию, воспалительное заболевание кишечника (например, болезнь Крона, язвенный колит и другие заболевания кишечника) заболевания почек, кахексию, септический шок, волчанку, миастению гравис, псориаз, дерматит, экзема, себорею, болезнь Альцгеймера, болезнь Паркинсона, защиту стволовых клеток в ходе химиотерапии, селекцию ex vivo или промывание ex vivo для аутологичной или аллогенной трансплантации костного мозга, заболевание глаз, ретинопатию (например, дегенерацию желтого пятна, диабетическую ретинопатию и другие виды ретинопатии), заболевание роговицы, глаукому, инфекции(например, бактериальные, вирусные или грибковые), заболевание сердца, в том числе, не ограничиваясь им, рестеноз.
Активация РНКазы L
Путь 2'-5' олигоаденилата (2-5А)/РНКазы L представляет собой один из ферментных путей, индуцируемых интерфероном. РНКаза L активируется после связывания с 5'-фосфорилированными фрагментами 2'-5' адениловой кислоты. Указанные фрагменты 2'-5' адениловой кислоты (2-5А) образуются под контролем 2'-5' олиго(А) синтетазы. Данный путь представляет собой часть врожденной иммунной системы и играет важную роль в предупреждении вирусной инфекции. 2-5А-Индуцированное расщепление одноцепочечной РНК приводит к апоптозу. Показано, что биологически стабильные фосфортиоатные аналоги 2-5А являются мощными активаторами РНКазы L (Xianh et al., Cancer Research (2003), 63:6795-6801). В данном исследовании, аналоги 2-5А индуцируют активность РНКазы L и вызывают апоптоз в культурах линий клеток поздней стадии метастазирующего рака предстательной железы человека DU145, РС3 и LNCaP.
Непрерывная активация РНКазы L запускает митохондриальный путь апоптоза, который удаляет инфицированные вирусом клетки, а также раковые/опухолевые клетки. РНКаза L может ингибировать рост фибросаркомы, роста рака предстательной железы, рост рака ободочной и прямой кишки и рост рака поджелудочной железы. С учетом повсеместной роли РНКазы L при различных видах рака, предусматривается, что изобретение, описанное в данном описании, может применяться для лечения любого вида рака. Silverman, RH, Cytokine Growth Factor Rev, 18(5-6): 381-388 (2007); Bisbal, С. and Silverman, RH, Biochimie. 89(6-7): 789-798 (2007). Для примера, регуляция вниз РНКазы L обозначает любое снижение уровней экспрессии гена или генов, кодирующих РНКазу L, сайленсинг гена или генов, кодирующих РНКазу L, снижение уровней экспрессии/трансляции белков, включающих РНКазу L, уменьшение количества РНКазы L в пределах клетки и/или любое снижение активности РНКазы L по сравнению с предварительно определенным уровнем РНКазы L в примере здоровой популяции. Альтернативно, любое снижение уровней РНКазы L, как описано в данном описании, может быть показательным для регуляции вниз РНКазы L.
В одном из примерных вариантов соединения, описанные в данном описании, пригодны для лечения заболеваний, при которых происходит регуляция вниз РНКазы L. В другом варианте заболевания, сопровождающееся регуляцией вниз РНКазы L, представляет собой рак. В дополнительных вариантах, рак представляет собой рак поджелудочной железы, рак предстательной железы или рак ободочной и прямой кишки. Альтернативно, соединения, описанные в данном описании, пригодны для лечения заболевания, при котором происходит регуляция вверх РНКазы L. В одном из примерных вариантов заболевание, при котором происходит регуляция вверх РНКазы L, представляет собой синдром хронической усталости. Дополнительные заболевания, при которых происходит регуляция вверх РНКазы L, известны в данной области и включены в данное изобретение.
В случае применения в качестве терапевтических средств, нуклеиновые кислоты, описанные в данном описании, вводят в виде композиции фармацевтического средства. В некоторых вариантах фармацевтическая композиция включает терапевтически эффективное количество нуклеиновой кислоты, содержащей хиральный Х-фосфонатный фрагмент Формулы 1 или ее фармацевтически приемлемой соли и по меньшей мере один фармацевтически приемлемый неактивные ингредиент, выбранный из фармацевтически приемлемых разбавителей, фармацевтически приемлемых вспомогательных веществ и фармацевтически приемлемых носителей. В другом варианте фармацевтической композиции придают форму препарата для внутривенной инъекции, перорального введения буккального введения, ингаляции, назального ведения, местного применения, введения в глаза или уши. В дополнительных вариантах фармацевтическая композиция представляет собой таблетку, пилюлю, капсулу, жидкость, препарат для ингаляций, назальный спрей в форме раствора, суппозиторий, суспензию, гель, коллоидный раствор, суспензию, раствор, эмульсию, мазь, лосьон, глазные капли или ушные капли.
Фармацевтические композиции и введение
В другом аспекте данного изобретения предлагается фармацевтическая композиция, содержащая нерацемический про-олигонуклеотид в смеси с фармацевтически приемлемым вспомогательным веществом. Специалисту в данной области будет понятно, что фармацевтические композиции включают фармацевтически приемлемые соли нерацемических про-олигонуклеотидов, описанных выше.
Соединения для расширенной и целевой доставки
Про-олигонуклеотиды, описанные в данном описании, могут быть доставлены с использованием разнообразных стратегий доставки, в том числе в виде конъюгатов олигонуклеотидов с различными лигандами, а также с использованием подхода наноносителя. Любые стратегии доставки нуклеиновых кислот включены для использования с про-олигонуклеотидами, описанными в данном описании. Выбор между примерами стратегий доставки, в том числе не ограничиваясь ими, химические конъюгаты, транспортные пузырьки «катионный липид/липосома» и супрамолекулярные наноносители, зависит от терапевтического контекста и способов определения оптимального режима доставки, известен в данной области и дополнительно включен в данное описание.
Соединения, проникающие в клетку ("СПК")
Известно, что многочисленные соединения действуют в качестве носителей «груза», такого как нуклеиновые кислоты, и облегчают вхождение нуклеиновой кислоты в клетку в условиях in vivo. Примеры носителей описаны в Dietz et al., Molecular & Cellular Neuroscience, 27(2): 85-131 (2004), которые включены в данное описание путем ссылки. Прототипы СПК, производные Tat и регуляторы транскрипции Antennapedia, соединенные большим количеством новых фрагментов. В качестве примера, СПК, которые представляют собой пептиды, могут быть относительно короткими (9-30 аминокислот) поликатионными пептидами, богатыми аргинином и лизином, или взаимодействующими с мембраной в интерактивном режиме гидрофобными последовательностями. СПК могут быть соединены техниками рекомбинации ДНК или химическими способами присоединены к пептидам, олигонуклеотидам или наноносителям, которые дополнительно включают «груз» для СПК.
Нацеливающие на клетки лиганды ("НКЛ")
Другая стратегия представляет собой доставку олигонуклеотидов при помощи использования НКЛ, который связывается с высоким сродством с рецептором на поверхности клетки и способен эффективно интернализироваться. Потенциальные лиганды включают антитела, полипептиды, полученные из библиотек показа фага, и низкомолекулярные органические соединения. Дополнительные нацеливающие на клетки лиганды известны в данной области или будут созданы, и они включены для использования в изобретении, описанном в данном описании. Вследствие того, что различные рецепторы часто предпочтительно экспрессируются на конкретных видах клеток, данный подход предлагает возможность повышения селективности олигонуклеотидных реагентов. Примеры рецепторов-мишеней включают, не ограничиваясь ими, рецепторы липопротеинов (например, находящиеся в печени), интегринов, рецепторной тирозинкиназы и суперсемейство сочетанных с G-протеином рецептором (GPCR).
Наноносители
Различные супрамолекулярные наноносители могут быть использованы для доставки нуклеиновых кислот. Примеры наноносителей включают, не ограничиваясь ими, липосомы, комплексы катионных полимеров и различные полимеры. Образование комплексов нуклеиновых кислот с различными поликатионами представляет собой другой подход к внутриклеточной доставке; он включает использование пегилированных поликатионов, комплексов полиэтиленамина (ПЭА), катионных блок-сополимеров и дендримеров. Некоторые катионные наноносители, в том числе ПЭА и полиамидоаминные дендримеры, помогают высвободить содержимое эндосом. Другие подходы включают применение полимерных наночастиц, полимерных мицелл, квантовых точек и липоплексов.
Известны дополнительные стратегии доставки нуклеиновой кислоты, кроме примерных стратегий доставки, описанных в данном описании.
В терапевтическом и/или диагностическом применении, соединения по изобретению могут быть введены в различные лекарственные формы для различных видов введения, в том числе, системного и местного или локального применения. Технологии и препарата в целом можно найти в Remington, The Science and Practice of Pharmacy, (20th ed. 2000).
Соединения по изобретению эффективны в широком интервале доз. Например, в лечении взрослых людей, дозы от 0,01 до 1000 мг, от 0,5 до 100 мг, от 1 до 50 мг в сутки и от 5 до 100 мг в сутки представляют собой примеры доз, которые могут применяться. Точная доза будет зависеть от способа введения, лекарственной формы, в которой вводится соединение, подлежащего лечению субъекта, массы тела субъекта, а также опыта и предпочтений лечащего врача.
Фармацевтически приемлемые соли в целом будут известны средним специалистам в данной области и могут включать, например, не ограничиваясь ими, ацетат, бензолсульфонат, безилат, бензоат, бикарбонат, битартрат, бромид, кальция эдетат, камзилат, карбонат, цитрат, эдетат, эдизилат, эстолат, эзилат, фумарат, глюцептат, глюконат, глутамат, гликольлиларсанилат, гексилрезорцинат, гидрабамин, гидробромид, гидрохлорид, гидроксинафтоат, йодид, изетионат, лактат, лактобионат, малат, малеат, манделат, мезилат, муцат, напзилат, нитрат, памоат (эмбонат), пантотенат, фосфат/дифосфат, полигалактуронат, салицилат, стеарат, субацетат, сукцинат, сульфат, таннат, тартрат или теоклат. Другие фармацевтически приемлемые соли могут быть найдены, например, в Remington, The Science and Practice of Pharmacy (20th ed. 2000). Предпочтительные фармацевтически приемлемые соли включают, например, ацетат, бензоат, бромид, карбонат, цитрат, глюконат, гидробромид, гидрохлорид, малеат, мезилат, напзилат, памоат (эмбонат), фосфат, салицилат, сукцинат, сульфат или тартрат.
В зависимости от конкретных состояний, подлежащих лечению, такие агенты могут быть введены в жидкие или твердые лекарственные формы, и могут применяться системно или местно. Агенты могут быть доставлены, например, в форме с ускоренным или непрерывным замедленным высвобождением, известной специалистам в данной области. Технологии изготовления и введения можно найти в Remington, The Science and Practice of Pharmacy (20th ed. 2000). Подходящие способы могут включать пероральное, буккальное, ингаляцией спрея, сублингвальное, ректальное, трансдермальное, вагинальное, через слизистую оболочку, назальное или кишечное введение, парентеральное введение, в том числе внутримышечные, подкожные, интрамедуллярные инъекции, а также интратекальные, прямые интравентрикулярные, внутривенные, внутрисуставные, интрастернальные, интрасиновиальные, внутрипеченочные, в поврежденный участок, интракраниальные, интраперитонеальные, интраназальные или внутриглазные инъекции, или другие способы доставки.
Для инъекции агенты по изобретению могут быть введены и разбавлены в водных растворах, таких как растворы в физиологически совместимых буферных растворах, таких как раствор Ханка, раствор Рингера или физиологический солевой буферный раствор. Для введения через слизистую оболочку, в препаратах используют пенетранты, пригодные для проникновения сквозь соответствующий барьер. Такие пенетранты в общем известны в данной области.
Применение фармацевтически приемлемых инертных носителей для введения соединения по изобретению в лекарственную форму раскрыто для применения изобретения в лекарственных формах, подходящих для системного применения и находится в пределах изобретения. При условии правильного выбора носителя и способа введения, композиции по данному изобретению, в частности, в форме растворов, могут быть введены парентерально, например, внутривенной инъекцией. Соединения могут быть легко введены в лекарственные формы с использованием фармацевтически приемлемых носителей, хорошо известных в данной области, в дозах, подходящих для перорального введения. Такие носители позволяют введение соединений по изобретению в таблетки, пилюли, капсулы, жидкости, гели, сиропы, суспензии, и т.п., для приема внутрь субъектом (например, пациентом), который подлежит лечению.
Для назального или ингаляционного введения, агенты по изобретению также могут быть введены в лекарственные формы способами, известными специалисту в данной области, и могут включать, например, не ограничиваясь ими, примеры разбавителей, солюбилизирующих или диспергирующих веществ, таких как раствор соли, консервантов, таких как бензиловый спирт, усилители абсорбции и фторуглероды.
Фармацевтические композиции, пригодные для использования в данном изобретении, включают композиции, где активные ингредиенты содержатся в эффективном количестве для достижения предусмотренных целей. Определение эффективных количеств находится в пределах навыком специалистов в данной области, особенно в свете подробного раскрытия, приведенного в данном описании.
Кроме активных ингредиентов, такие фармацевтические композиции могут содержать подходящие фармацевтически приемлемые носители, включающие вспомогательные вещества и адъюванты, облегчающие обработку активного соединения и введение его в лекарственные формы, которые могут применяться в фармации. Лекарственные формы для перорального ведения могут приобретать форму таблеток, драже, капсул или растворов.
Фармацевтические препараты для перорального применения могут быть получены сочетанием активного соединения с твердыми вспомогательными веществами, с необязательным помолом полученной смеси и обработкой смеси гранул, после добавления подходящих вспомогательных веществ, при желании - с получением таблеток или ядер драже. Подходящими вспомогательными веществами являются, в частности, наполнители, такие как сахара, в том числе, лактоза, сахароза, маннит или сорбит; препараты целлюлозы, например, кукурузный крахмал, пшеничный крахмал, рисовый крахмал, картофельный крахмал, желатин, трагакантовая камедь, метилцеллюлоза, гидроксипропилметилцеллюлоза, натрий карбоксиметилцеллюлоза (КМЦ) и/или поливинилпирролидон (ПВП, повидон). При желании, могут быть добавлены дезинтегранты, такие как поперечно-сшитый поливинилпирролидон, агар или альгиновая кислота или ее соль, такая как натрия альгинат.
Ядра драже покрывают подходящими покрытиями. Для этой цели могут использоваться концентрированные растворы сахара, которые необязательно могут содержать аравийскую камедь, тальк, поливинилпирролидон, гель карбопол, полиэтиленгликоль (ПЭГ) и/или титана диоксид, растворы лака и подходящие органические растворители или смеси растворителей. Красители или пигменты могут быть добавлены к таблеткам или покрытиям драже для идентификации или различения разных комбинаций или доз активного соединения.
Фармацевтические препараты для перорального введения включают твердые сборные желатиновые капсулы, а также мягкие, запечатанные капсулы, изготовленные из желатина и пластификатора, такого как глицерин или сорбит. Сборные капсулы могут содержать активные ингредиенты в смеси с наполнителем, таким как лактоза, связывающими агентами, такими как различные виды крахмала, и/или любрикантами, такими как тальк или магния стеарат, и, необязательно, стабилизаторами. В мягких капсулах активные соединения могут быть растворены или суспендированы в подходящих жидкостях, таких как жирные масла, жидкий парафин или жидкий полиэтиленгликоль (ПЭГ). Кроме того, могут быть добавлены стабилизаторы.
В зависимости от конкретного состояния или заболевания, подлежащего лечению или профилактике, дополнительные терапевтические средства, которые обычно вводят для лечения или профилактики такого состояния, могут быть введены вместе с ингибиторами по данному изобретению. Например, химиотерапевтические средства или антипролиферативные средства могут сочетаться с ингибиторами по данному изобретению для лечения пролиферативных заболеваний и рака. Примеры известных химиотерапевтических средств включают, не ограничиваясь ими, адриамицин, дексаметазон, винкристин, циклофосфамид, фторурацил, топотекан, таксол, интерфероны и производные платины.
Другие примеры агентов, с которыми может сочетаться нерацемический про-олигонуклеотид по данному изобретению, могут также включать, не ограничиваясь ими, противовоспалительные агенты, такие как кортикостероиды, блокаторы опухолевого некротического фактора, IL-1 RA, азатиоприн, циклофосфамид и сульфасалазин; иммуномодуляторы и иммуносупрессивные средства. Такие как циклоспорин, такролимус, рапамицин, микофенолят мофетил, интерферон, кортикостероиды, циклофосфамид, азатиоприн и сульфасалазин, нейротрофные факторы, такие как ингибиторы ацетилхолинэстеразы, ингибиторы МАО, интерфероны, противосудорожные средства, блокаторы ионных каналов, рилузон и противопаркинсонические средства; средства для лечения сердечнососудистого заболевания, такие как бета-блокаторы, ингибиторы АПФ, диуретики, нитраты, блокаторы кальциевых каналов и статины; средства для лечения заболеваний печени, такие как кортикостероиды, холестирамин, интерфероны и противовирусные средства; средства для лечения расстройств крови, такие как кортикостероиды, противолейкозные средства и факторы роста; средства для лечения диабета, такие как инсулин, аналоги инсулина, ингибиторы альфа-глюкозидазы, бигуаниды и инсулиносенсибилизаторы; а также средства для лечения иммунодефицитных расстройств, такие как гамма-глобулин.
Указанные дополнительные средства могут быть введены отдельно, как часть многодозовой схемы, или как часть композиции, содержащей нерацемический про-олигонуклеотид. Альтернативно, указанные средства могут быть частью единой лекарственной формы, смешанные с нерацемическим про-олигонуклеотидом в единой композиции.
Приведенные ниже примеры и препаративные примеры дополнительно иллюстрируют и демонстрируют примеры соединений по данному изобретению и способов получения таких соединений. Следует понимать, что рамки данного изобретения не ограничиваются следующими примерами и препаративными примерами.
ПРИМЕРЫ
Пример 1: Синтез (SP)-1,8-диазабицикло[5,4,0]ундеу-7-ения 5'-O-(трет-бутилдифенилсилил)тимидин-3'-ил 3'-O-(трет-бутилдиметилсилил)тимидин-5'-ил фосфортиоата [(SP)-4tt] проиллюстрирован на Схеме А.
Схема А
Figure 00000283
8-Диазабицикло[5,4,0]ундец-7-ения 5'-O-(трет-бутилдифенилсилил)тимидин-3'-ил фосфоната (1t) (100 мкмоль) сушат повторным соупариванием с сухим пиридином, и затем растворяют в сухом пиридине (1 мл). Добавляют N,N'-бис(2-оксо-3-оксазолидинил)фосфиния хлорид (BopCl; 500 мкмоль), и смесь перемешивают в течение 5 мин. Раствор аминоспирта (L-2) (100 мкмоль) повторно соупаривают с сухим пиридином и растворяют в сухом пиридине (1 мл). Аминоспирт раствор добавляют к реакционной смеси по каплям с помощью шприца, и смесь перемешивают в течение 5 мин в атмосфере аргона. 3'-O-(трет-Бутилдиметилсилил)тимидин 3t сушат с использованием повторного соупаривания с сухим пиридином и растворяют в 100 мкмоль пиридина. Полученную выше смесь добавляют через канюлю к раствору 3'-O-(трет-бутилдиметилсилил)тимидина 3t в сухом пиридине (100 мкмоль). Через 5 мин добавляют N-трифторацетилимидазол (CF3COIm; 200 мкмоль). Еще через 30 с добавляют N,N'-диметилтиурама дисульфид (ДТД; 120 мкмоль). Еще через 3 мин смесь сушат под вакуумом. Концентрированный раствор NH3 (10 мл) добавляют к остатку, и смесь нагревают до 55°C, выдерживая при этой температуре в течение 12 час. Далее смеси дают остыть до комнатной температуры, и затем упаривают до сухого состояния при сниженном давлении. Смесь разбавляют CHCl3 (5 мл) и промывают 0,2 М фосфатным буферным раствором (рН 7,0, 5 мл). Водные фракции снова экстрагируют CHCl3 (2×5 мл). Объединенные органические фракции сушат над Na2SO4, фильтруют и упаривают до сухого состояния при сниженном давлении. Остаток очищают РТСХ. Продукт растворяют в CHCl3 (5 мл), промывают 0,2 М буферным раствором 1,8-диазабицикло[5,4,0]ундец-7-ения бикарбоната (5 мл) и снова экстрагируют CHCl3 (2×5 мл). Объединенные органические фракции сушат над Na2SO4, фильтруют и упаривают до сухого состояния с получением (SP)-4tt.
Пример 2. Синтез (SP)-1,8-диазабицикло[5,4,0]ундец-7-ения 6-N-бензоил-5'-O-(трет-бутилдифенилсилил)-дезоксиаденозин-3'-ил 3'-O-(трет-бутилдиметилсилил)тимидин-5'-ил фосфортиоата [(SP)-4at].
(SP)-4at получают из 1,8-диазабицикло[5,4,0]ундец-7-ения 6-N-бензоил-5'-O-(трет-бутилдифенилсилил)-дезоксиаденозин-3'-ил фосфоната (1а) вместо 1t, с использованием стадий реакции, описанных в Примере 1 и на Схеме А для (SP)-4tt.
Пример 3. Синтез (SP)-1,8-диазабицикло[5,4,0]ундец-7-ения 4-N-бензоил-5'-O-(трет-бутилдифенилсилил)-дезоксицитидин-3'-ил 3'-O-(трет-бутилдиметилсилил)тимидин-5'-ил фосфортиоата [(SP)-4ct].
(SP)-4ct получают из 1,8-диазабицикло[5,4,0]ундец-7-ения 4-N-бензоил-5'-O-(трет-бутилдифенилсилил)-дезоксицитидин-3'-ил фосфоната (1с) вместо 1t, с использованием стадий реакции, описанных в Примере 1 и на Схеме A (SP)-4tt.
Пример 4. Синтез (SP)-1,8-диазабицикло[5,4,0]ундец-7-ения 2-N-феноксиацетил-5'-O-(трет-бутилдифенилсилил)дезоксигуанозин-3'-ил 3'-O-(трет-бутилдиметилсилил)тимидин-5'-ил фосфортиоата [(SP)-4gt].
(SP)-4gt получают из 1,8-диазабицикло[5,4,0]ундец-7-ения 2-N-феноксиацетил-5'-O-(трет-бутилдифенилсилил)дезоксигуанозин-3'-ил фосфоната (1 г) вместо 1t, с использованием стадий реакции, описанных в Примере 1 и на Схеме A (SP)-4tt.
Пример 5. Синтез (RP)-1,8-диазабицикло[5,4,0]ундец-7-ения 5'-O-(трет-бутилдифенилсилил)тимидин-3'-ил 3'-O-(трет-бутилдиметилсилил)тимидин-5'-ил фосфортиоата [(RP)-4tt].
(RP)-4tt получают путем превращений, описанных в Примере 1 и на Схеме А для синтеза (SP)-4tt с использованием в качестве хирального реагента аминоспирта D-2, вместо L-2.
Figure 00000284
Пример 6. Синтез (RP)-1,8-диазабицикло[5,4,0]ундец-7-ения 6-N-бензоил-5'-O-(трет-бутилдифенилсилил)дезоксиаденозин-3'-ил 3'-O-(трет-бутилдиметилсилил)тимидин-5'-ил фосфортиоат [(RP)-4at].
(RP)-4at получают путем превращений, описанных в Примере 2, с использованием соединения 1а и аминоспирта D-2 в качестве хирального реагента, вместо L-2.
Пример 7. Синтез (RP)-1,8-диазабицикло[5,4,0]ундец-7-ения 4-N-бензоил-5'-O-(трет-бутилдифенилсилил)дезоксицитидин-3'-ил 3'-O-{трет-бутилдиметилсилил)тимидин-5'-ил фосфортиоата [(RP)-4ct].
(RP)-4ct получают путем превращений, описанных выше в Примере 3 с использованием соединения 1 с и аминоспирта D-2 в качестве хирального реагента, вместо L-2.
Пример 8. Синтез (RP)-1,8-диазабицикло[5,4,0]ундец-7-ения 2-N-феноксиацетил-5'-O-(трет-бутилдифенилсилил)дезоксигуанозин-3'-ил 3'-O-(трет-бутилдиметилсилил)тимидин-5'-ил фосфортиоата [(RP)-4gt].
(RP)-4gt получают путем превращений, описанных выше в Примере 4, с использованием соединения 1 г и аминоспирта D-2 в качестве хирального реагента, вместо L-2.
Схема Б
Figure 00000285
Пример 9. Синтез (RP)-5'-O-(трет-бутилдифенилсилил)тимидин-3'-ил 3'-O-(трет-бутилдиметилсилил)тимидин-5'-ил H-фосфоната [(RP)-7tt], как описано на Схеме Б.
1t (100 мкмоль) сушат повторным соупариванием с сухим пиридином, и затем растворяют в сухом пиридине (1 мл). Добавляют N,N'-бис(2-оксо-3-оксазолидинил)фосфиния хлорид (BopCl; 500 мкмоль), и смесь перемешивают в течение 5 мин. К смеси с помощью шприца добавляют по каплям раствор аминоспирта ((αR, 2S)-6) (100 мкмоль), высушенный путем соупаривания с сухим пиридином, растворяют в сухом пиридине (1 мл), и смесь перемешивают в течение 5 мин в атмосфере аргона. 3'-O-(трет-Бутилдиметилсилил)тимидин сушат с использованием повторного соупаривания с сухим пиридином и растворяют в 100 мкмоль пиридина. Полученную выше смесь добавляют через канюлю к раствору 3'-O-(трет-бутилдиметилсилил)тимидина 3t в сухом пиридине (100 мкмоль). Через 15 мин смесь упаривают при сниженном давлении. Остаток разбавляют CH2Cl2 (5 мл) и промывают насыщенным раствором NaHCO3 (3×5 мл). Объединенные водные фракции снова экстрагируют CH2Cl2 (2×5 мл). Объединенные органические фракции сушат над Na2SO4, фильтруют и упаривают до объема приблизительно 1 мл при сниженном давлении. Остаток добавляют по каплям с помощью шприца при перемешивании к 1% раствору трифторуксусной кислоты (ТФУ) в сухом CH2Cl2 (20 мл) при 0°C. Еще через 5 мин смесь разбавляют сухим CH2Cl2 (100 мл) и промывают насыщенным водным раствором NaHCO3 (2×100 мл). Объединенные водные фракции снова экстрагируют CH2Cl2 (2×100 мл). Объединенные органические фракции сушат над Na2SO4, фильтруют и упаривают до сухого состояния при сниженном давлении с получением неочищенного (RP)-7tt.
Пример 10. Синтез (RP)-6-N-бензоил-5'-O-(трет-бутилдифенилсилил)дезоксиаденозин-3'-ил 3'-O-(трет-бутилдиметилсилил)тимидин-5'-ил H-фосфоната [(RP)-7at].
Неочищенный (RP)-7at получают, как описано в Примере 9, с использованием 1а вместо 1t.
Пример 11. Синтез (RP)-4-N-бензоил-5'-O-(трет-бутилдифенилсилил)дезоксицитидин-3'-ил 3'-O-(трет-бутилдиметилсилил)тимидин-5'-ил H-фосфоната [(RP)-7ct].
Неочищенный (RP)-7ct получают, как описано в Примере 9, с использованием 1 с вместо 1t.
Пример 12. Синтез (Rp)-2-N-феноксиацетил-5'-O-(трет-бутилдифенилсилил)дезоксигуанозин-3'-ил 3'-O-(трет-бутилдиметилсилил)тимидин-5'-ил H-фосфоната [(RP)-7gt].
Неочищенный (RP)-7gt получают, как описано в Примере 9, с использованием 1 г вместо 1t.
Пример 13. Синтез (SP)-5'-O-(трет-бутилдифенилсилил)тимидин-3'-ил 3'-O-(трет-бутилдиметилсилил)тимидин-5'-ил H-фосфоната [(SP)-7tt].
Неочищенный (SP)-7tt получают, как описано в Примере 9, с использованием (αS, 2R)-6 вместо (αR, 2S)-6 в качестве хирального реагента.
Пример 14. Синтез (SP)-6-N-бензоил-5'-O-(трет-бутилдифенилсилил)дезоксиаденозин-3'-ил 3'-O-(трет-бутилдиметилсилил)тимидин-5'-ил H-фосфоната [(SP)-7at].
Неочищенный (SP)-7at получают, как описано в Примере 9, с использованием соединения 1а и (αS, 2R)-6 вместо (αR, 2S)-6 в качестве хирального реагента.
Пример 15. Синтез (SP)-4-N-бензоил-5'-O-(трет-бутилдифенилсилил)дезоксицитидин-3'-ил 3'-O-(трет-бутилдиметилсилил)тимидин-5'-ил H-фосфоната [(SP)-7ct].
Неочищенный (SP)-7ct получают, как описано в Примере 9, с использованием соединения 1с и (αS, 2R)-6 вместо (□R, 2S)-6 в качестве хирального реагента.
Пример 16. Синтез (SP)-2-N-феноксиацетил-5'-(9-(трет-бутилдифенилсилил)дезоксигуанозин-3'-ил 3'-O-(трет-бутилдиметилсилил)тимидин-5'-ил H-фосфоната [(SP)-7gt].
Неочищенный (SP)-7gt получают, как описано в Примере 9, с использованием соединения 1 г вместо 1t и соединения (αS, 2R)-6 вместо соединения (□R, 2S)-6 в качестве хирального реагента.
Схема В
Figure 00000286
Пример 17. Синтез (SP)-1,8-диазабицикло[5,4,0]ундец-7-ения 5'-O-(трет-бутилдифенилсилил)-2'-O-(трет-бутилдиметилсилил)уридин-3'-ил 2',3'-O-бис(трет-бутилдиметилсилил)уридин-5'-ил фосфортиоата [(SP)-10uu].
1,8-Диазабицикло[5,4,0]ундец-7-ения 5'-O-(трет-бутилдифенилсилил)-2'-O-(трет-бутилдиметилсилил)уридин-3'-ил фосфонат (8u) (100 мкмоль) сушат повторным соупариванием с сухим пиридином, и затем растворяют в сухом пиридине (1 мл). Добавляют N,N'-бис(2-оксо-3-оксазолидинил)фосфиния хлорид (BopCl; 500 мкмоль), и смесь перемешивают в течение 5 мин. К смеси добавляют по каплям с помощью шприца раствор аминоспирта (L-2) (100 мкмоль), высушенный повторным соупариванием с сухим пиридином с сухим пиридином и растворяют в сухом пиридине (1 мл), и смесь перемешивают в течение 5 мин в атмосфере аргона. 2',3'-O-Бис(трет-бутилдиметилсилил)уридин 9u сушат повторным соупариванием с сухим пиридином и растворяют в 100 мкмоль пиридина. Затем полученную выше смесь добавляют через канюлю к раствору 2',3'-O-бис(трет-бутилдиметилсилил)уридина 9u (100 мкмоль). Через 10 мин добавляют N-трифторацетилимидазол (CF3COIm; 200 мкмоль). Еще через 30 с добавляют N,N'-диметилтиурама дисульфид (ДТД; 120 мкмоль). Еще через 3 мин смесь сушат под вакуумом. К остатку добавляют конц. NH3-EtOH (3:1, об/об, 10 мл), смесь перемешивают в течение 12 час, и затем упаривают до сухого состояния при сниженном давлении. Далее смесь разбавляют CHCl3 (5 мл) и промывают 0,2 М фосфатным буферным раствором (рН 7,0, 5 мл). Водные фракции снова экстрагируют CHCl3 (2×5 мл). Объединенные органические фракции сушат над Na2SO4, фильтруют и упаривают до сухого состояния при сниженном давлении. Остаток очищают РТСХ. Продукт растворяют в CHCl3 (5 мл), промывают 0,2 М буферным раствором 1,8-диазабицикло[5,4,0]ундец-7-ения бикарбоната (5 мл) и снова экстрагируют CHCl3 (2×5 мл). Объединенные органические фракции сушат над Na2SO4, фильтруют и упаривают до сухого состояния с получением (SP)-10uu.
Пример 18. Синтез (SP)-1,8-диазабицикло[5,4,0]ундец-7-ения 6-N-бензоил-5'-O-(трет-бутилдифенилсилил)-2'-O-(трет-бутилдиметилсилил)аденозин-3'-ил 2',3'-O-бис(трет-бутилдиметилсилил)уридин-5'-ил фосфортиоата [(SP)-10au].
(SP)-10au получают, как описано в Примере 17, с использованием 1,8-диазабицикло[5,4,0]ундец-7-ения 6-N-бензоил-5'-O-(трет-бутилдифенилсилил)-2'-O-(трет-бутилдиметилсилил)аденозин-3'-ил фосфоната (8а) вместо 8u.
Пример 19. Синтез (SP)-1,8-диазабицикло[5,4,0]ундец-7-ения 4-N-бензоил-5'-O-(трет-бутилдифенилсилил)-2'-O-(трет-бутилдиметилсилил)цитидин-3'-ил 2',3'-(9-бис(трет-бутилдиметилсилил)уридин-5'-ил фосфортиоата [(SP)-10cu].
(SP)-10cu получают, как описано в Примере 17, с использованием 1,8-диазабицикло[5,4,0]ундец-7-ения 4-N-бензоил-5'-(9-(трет-бутилдифенилсилил)-2'-(9-(трет-бутилдиметилсилил)цитидин-3'-ил фосфоната (8с) вместо 8u.
Пример 20. Синтез (SP)-1,8-диазабицикло[5,4,0]ундец-7-ения 2-N-феноксиацетил-5'-(9-(трет-бутилдифенилсилил)-2'-O-(трет-бутилдиметилсилил)гуанозин-3'-ил 2',3'-(9-бис(трет-бутилдиметилсилил)уридин-5'-ил фосфортиоата [(SP)-10gu].
(SP)-10gu получают, как описано в Примере 17, с использованием 1,8-диазабицикло[5,4,0]ундец-7-ения 2-N-феноксиацетил-5'-O-(трет-бутилдифенилсилил)-2'-O-(трет-бутилдиметилсилил)гуанозин-3'-ил фосфоната (8 г) вместо 8u.
Пример 21. Синтез (RP)-1,8-диазабицикло[5,4,0]ундец-7-ения 5'-O-(трет-бутилдифенилсилил)-2'-O-(трет-бутилдиметилсилил)уридин-3'-ил 2',3'-O-бис(трет-бутилдиметилсилил)уридин-5'-ил фосфортиоата [(RP)-10uu].
(RP)-10uu получают, как описано в Примере 17, с использованием хирального реагента D-2 вместо хирального реагента L-2.
Пример 22. Синтез (RP)-1,8-диазабицикло[5,4,0]ундец-7-ения 6-N-бензоил-5'-O-(трет-бутилдифенилсилил)-2'-O-(трет-бутилдиметилсилил)аденозин-3'-ил 2',3'-(9-бис(трет-бутилдиметилсилил)уридин-5'-ил фосфортиоата [(RP)-10au].
(RP)-10au получают, как описано в Примере 17, с использованием 8а вместо 8u и хирального реагента D-2 вместо хирального реагента L-2.
Пример 23. Синтез (RP)-1,8-диазабицикло[5,4,0]ундец-7-ения 4-N-бензоил-5'-(9-(трет-бутилдифенилсилил)-2'-O-(трет-бутилдиметилсилил)цитидин-3'-ил 2',3'-O-бис(трет-бутилдиметилсилил)уридин-5'-ил фосфортиоата [(RP)-10cu].
(RP)-10cu получают, как описано в Примере 17, с использованием 8 с вместо 8u и хирального реагента D-2 вместо хирального реагента L-2.
Пример 24. Синтез (RP)-1,8-диазабицикло[5,4,0]ундец-7-ения 2-N-феноксиацетил-5'-O-(трет-бутилдифенилсилил)-2'-O-(трет-бутилдиметилсилил)гуанозин-3'-ил 2',3'-(9-бис(трет-бутилдиметилсилил)уридин-5'-ил фосфортиоата [(RP)-10gu].
(RP)-10gu получают, как описано в Примере 17, с использованием 8 г вместо 8u и хирального реагента D-2 вместо хирального реагента L-2.
Схема Г
Figure 00000287
Пример 25. Синтез (RP)-5'-O-(трет-бутилдифенилсилил)-2'-O-(трет-бутилдиметилсилил)уридин-3'-ил 2',3'-O-бис(трет-бутилдиметилсилил)уридин-5'-ил H-фосфоната [(RP)-12uu].
8u (100 мкмоль) сушат повторным соупариванием с сухим пиридином, и затем растворяют в сухом пиридине (1 мл). Добавляют N,N'-бис(2-оксо-3-оксазолидинил)фосфиния хлорид (BopCl; 500 мкмоль), и смесь перемешивают в течение 5 мин. К смеси добавляют по каплям с помощью шприца раствор аминоспирта ((αR, 2S)-6) (100 мкмоль), высушенного соупариванием с сухим пиридином и растворенного в сухом пиридине (1 мл), и смесь перемешивают в течение 5 мин в атмосфере аргона. Далее смесь добавляют через канюлю к раствору 9 ч (100 мкмоль), полученному повторным соупариванием с сухим пиридином и растворением в пиридине. Через 15 мин смесь упаривают при сниженном давлении. Остаток разбавляют CH2Cl2 (5 мл) и промывают насыщенным раствором NaHCO3 (3×5 мл). Объединенные водные фракции снова экстрагируют CH2Cl2 (2×5 мл). Объединенные органические фракции сушат над Na2SO4, фильтруют и упаривают до объема приблизительно 1 мл при сниженном давлении. Остаток добавляют по каплям с помощью шприца при перемешивании к 1% раствору трифторуксусную кислоту (ТФУ) в сухом CH2Cl2 (20 мл) при 0°C. Еще через 5 мин смесь разбавляют сухим CH2Cl2 (100 мл) и промывают насыщенным водным раствором NaHCO3 (2×100 мл). Объединенные водные фракции снова экстрагируют CH2Cl2 (2×100 мл). Объединенные органические фракции сушат над Na2SO4, фильтруют и упаривают до сухого состояния при сниженном давлении с получением неочищенного (Rp)-12uu, который анализируют методом 31P ЯМР.
Пример 26. Синтез (RP)-6-N-бензоил-5'-O-(трет-бутилдифенилсилил)-2'-O-(трет-бутилдиметилсилил)аденозин-3'-ил 2',3'-O-бис(трет-бутилдиметилсилил)уридин-5'-ил H-фосфоната [(RP)-12au].
Неочищенный (RP)-12au получают, как описано в Примере 25, с использованием 8а вместо 8u.
Пример 27. Синтез (RP)-4-N-бензоил-5'-O-(трет-бутилдифенилсилил)-2'-O-(трет-бутилдиметилсилил)цитидин-3'-ил 2',3'-O-бис(трет-бутилдиметилсилил)уридин-5'-ил H-фосфоната [(RP)-12 cu].
Неочищенный (RP)-12cu получают, как описано в Примере 25, с использованием 8с вместо 8u.
Пример 28. Синтез (RP)-2-N-Феноксиацетил-5'-O-(трет-бутилдифенилсилил)-2'-(9-(трет-бутилдиметилсилил)гуанозин-3'-ил 2',3'-O-бис(трет-бутилдиметилсилил)уридин-5'-ил H-фосфоната [(RP)-12gu].
Неочищенный (RP)-12gu получают, как описано в Примере 25, с использованием 8г вместо 8u.
Пример 29. Синтез (SP)-5'-O-(трет-бутилдифенилсилил)-2'-O-(трет-бутилдиметилсилил)уридин-3'-ил 2',3'-O-бис(трет-бутилдиметилсилил)уридин-5'-ил H-фосфоната [(SP)-12uu].
Неочищенный (SP)-12uu получают, как описано в Примере 25, с использованием хирального реагента (αS, 2R)-6 вместо хирального реагента (αR, 2S)-6.
Пример 30. Синтез (SP)-6-N-бензоил-5'-O-(трет-бутилдифенилсилил)-2'-O-(трет-бутилдиметилсилил)аденозин-3'-ил 2',3'-(9-бис(трет-бутилдиметилсилил)уридин-5'-ил H-фосфоната [(SP)-12au].
Неочищенный (SP)-12au получают, как описано в Примере 25, с использованием 8а вместо 8u и хирального реагента (αS, 2R)-6 вместо хирального реагента (αR, 2S)-6.
Пример 31. Синтез (SP)-4-N-бензоил-5'-O-(трет-бутилдифенилсилил)-2'-O-(трет-бутилдиметилсилил)питидин-3'-ил 2',3'-O-бис(трет-бутилдиметилсилил)уридин-5'-ил H-фосфоната [(SP)-12cu].
Неочищенный (SP)-12cu получают, как описано в Примере 25, с использованием 8с вместо 8u и хирального реагента (αS, 2R)-6 вместо хирального реагента (αR, 2S)-6.
Пример 32. Синтез (SP)-2-N-феноксиацетил-5'-O-(трет-бутилдифенилсилил)-2'-O-(трет-бутилдиметилсилил)гуанозин-3'-ил 2',3'-O-бис(трет-бутилдиметилсилил)уридин-5'-ил H-фосфоната [(SP)-12gu].
Неочищенный (SP)-12gu получают, как описано в Примере 25, с использованием 8г вместо 8u и хирального реагента (αS, 2R)-6 вместо хирального реагента (αR, 2S)-6.
Схема Д
Figure 00000288
Пример 33. Синтез (SP)-1,8-диазабицикло[5,4,0]ундец-7-ения 5'-O-(трет-бутилдифенилсилил)-3'-O-(трет-бутилдиметилсилил)уридин-2'-ил 2',3'-O-бис(трет-бутилдиметилсилил)уридин-5'-ил фосфортиоата [(SP)-14uu].
1,8-Диазабицикло[5,4,0]ундец-7-ения 5'-O-(трет-бутилдифенилсилил)-3'-O-(трет-бутилдиметилсилил)уридин-3'-ил фосфонат (13u) (100 мкмоль) сушат повторным соупариванием с сухим пиридином, и затем растворяют в сухом пиридине (1 мл). Добавляют N,N'-бис(2-оксо-3-оксазолидинил)фосфиния хлорид (BopCl; 500 мкмоль), и смесь перемешивают в течение 5 мин. К смеси добавляют по каплям с помощью шприца раствор аминоспирта (L-2) (100 мкмоль), высушенного повторным соупариванием с сухим пиридином и растворенного в сухом пиридине (1 мл), и смесь перемешивают в течение 5 мин в атмосфере аргона. 2',3'-(9-Бис(трет-бутилдиметилсилил)уридин 9 ч сушат повторным соупариванием с сухим пиридином и растворяют в 100 мкмоль пиридина. Далее полученную выше смесь добавляют через канюлю к раствору 2',3'-O-бис(трет-бутилдиметилсилил)уридина 9u (100 мкмоль). Через 10 мин добавляют N-трифторацетилимидазол (CF3COIm; 200 мкмоль). Еще через 30 с добавляют N,N'-диметилтиурама дисульфид (ДТД; 120 мкмоль). Еще через 3 мин смесь сушат под вакуумом. К остатку добавляют конц. NH3-EtOH (3:1, об./об., 10 мл), смесь перемешивают в течение 12 час, и затем упаривают до сухого состояния при сниженном давлении. Далее, смесь разбавляют CHCl3 (5 мл) и промывают 0,2 М фосфатным буферным раствором (рН 7,0, 5 мл). Водные фракции снова экстрагируют CHCl3 (2×5 мл). Объединенные органические фракции сушат над Na2SO4, фильтруют и упаривают до сухого состояния при сниженном давлении. Остаток очищают РТСХ. Продукт растворяют в CHCl3 (5 мл), промывают 0,2 М буферным раствором 1,8-диазабицикло[5,4,0]ундец-7-ения бикарбоната (5 мл) и снова экстрагируют CHCl3 (2×5 мл). Объединенные органические фракции сушат над Na2SO4, фильтруют и упаривают до сухого состояния с получением (SP)-14uu.
Пример 34. Синтез (SP)-1,8-диазабицикло[5,4,0]ундец-7-ения 6-N-бензоил-5'-O-(трет-бутилдифенилсилил)-3'-O-(трет-бутилдиметилсилил)аденозин-2'-ил 2',3'-O-бис(трет-бутилдиметилсилил)уридин-5'-ил фосфортиоата [(SP)-14au].
(SP)-14au получают, как описано в Примере 33, с использованием 1,8-диазабицикло[5,4,0]ундец-7-ения 6-N-бензоил-5'-O-(трет-бутилдифенилсилил)-3'-O-(трет-бутилдиметилсилил)аденозин-2'-ил фосфоната (13а) вместо 13u.
Пример 35. Синтез (SP)-1,8-диазабицикло[5,4,0]ундец-7-ения 4-N-бензоил-5'-O-(трет-бутилдифенилсилил)-3'-O-(трет-бутилдиметилсилил)цитидин-2'-ил 2',3'-O-бис(трет-бутилдиметилсилил)уридин-5'-ил фосфортиоата [(SP)-14cu].
(SP)-14cu получают, как описано в Примере 33, с использованием 1,8-диазабицикло[5,4,0]ундец-7-ения 4-N-бензоил-5'-O-(трет-бутилдифенилсилил)-3'-O-(трет-бутилдиметилсилил)цитидин-2'-ил фосфоната (13с) вместо 13u.
Пример 36. Синтез (SP)-1,8-диазабицикло[5,4,0]ундец-7-ения 2-N-феноксиацетил-5'-О-(трет-бутилдифенилсилил)-3'-O-(трет-бутилдиметилсилил)гуанозин-2'-ил 2',3'-O-бис(трет-бутилдиметилсилил)уридин-5'-ил фосфортиоат [(SP)-14gu].
(SP)-14gu получают, как описано в Примере 33, с использованием 1,8-диазабицикло[5,4,0]ундец-7-ения 2-N-феноксиацетил-5'-O-(трет-бутилдифенилсилил)-3'-O-(трет-бутилдиметилсилил)гуанозин-2'-ил фосфоната (13 г) вместо 13u.
Пример 37. Синтез (RP)-1,8-диазабицикло[5,4,0]ундец-7-ения 5'-O-(трет-бутилдифенилсилил)-3'-O-(трет-бутилдиметилсилил)уридин-2'-ил 2',3'-O-бис(трет-бутилдиметилсилил)уридин-5'-ил фосфортиоат [(RP)-14uu].
(RP)-14uu получают, как описано в Примере 33, с использованием хирального реагента D-2 вместо хирального реагента L-2.
Пример 38. Синтез (RP)-1,8-диазабицикло[5,4,0]ундец-7-ения 6-N-бензоил-5'-O-(трет-бутилдифенилсилил)-3'-(9-(трет-бутилдиметилсилил)аденозин-2'-ил 2',3'-O-бис(трет-бутилдиметилсилил)уридин-5'-ил фосфортиоат [(RP)-14au].
(RP)-14au получают, как описано в Примере 33, с использованием 13а вместо 13u и хирального реагента D-2 вместо хирального реагента L-2.
Пример 39. Синтез (RP)-1,8-диазабицикло[5,4,0]ундец-7-ения 4-N-бензоил-5'-O-(трет-бутилдифенилсилил)-3'-O-(трет-бутилдиметилсилил)цитидин-2'-ил 2',3'-O-бис(трет-бутилдиметилсилил)уридин-5'-ил фосфортиоата [(RP)-14cu].
(RP)-14cu получают, как описано в Примере 33, с использованием 13с вместо 13u и хирального реагента D-2 вместо хирального реагента L-2.
Пример 40. Синтез (RP)-1,8-диазабицикло[5,4,0]ундец-7-ения 2-N-феноксиацетил-5'-(9-(трет-бутилдифенилсилил)-3'-O-(трет-бутилдиметилсилил)гуанозин-2'-ил 2',3'-(9-бис(трет-бутилдиметилсилил)уридин-5'-ил фосфортиоата [(RP)-14gu].
(RP)-14gu получают, как описано в Примере 33, с использованием 13г вместо 13u и хирального реагента D-2 вместо хирального реагента L-2.
Схема Е
Figure 00000289
Пример 41. Синтез (RP)-5'-O-(трет-бутилдифенилсилил)-3'-O-(трет-бутилдиметилсилил)уридин-2'-ил 2',3'-O-бис(трет-бутилдиметилсилил)уридин-5'-ил H-фосфоната [(RP)-15uu].
13u (100 мкмоль) сушат повторным соупариванием с сухим пиридином, и затем растворяют в сухом пиридине (1 мл). Добавляют N,N'-бис(2-оксо-3-оксазолидинил)фосфиния хлорид (BopCl; 500 мкмоль), и смесь перемешивают в течение 5 мин. К смеси по каплям с помощью шприца добавляют раствор аминоспирта ((αR, 2S)-6) (100 мкмоль), высушенного соупариванием с сухим пиридином и растворенного в сухом пиридине (1 мл), и смесь перемешивают в течение 5 мин в атмосфере аргона. Далее смесь добавляют через канюлю к раствору 9u (100 мкмоль), полученному повторным соупариванием с сухим пиридином и растворением в пиридине. Через 15 мин смесь упаривают при сниженном давлении. Остаток разбавляют CH2Cl2 (5 мл) и промывают насыщенным раствором NaHCO3 (3×5 мл). Объединенные водные фракции снова экстрагируют CH2Cl2 (2×5 мл). Объединенные органические фракции сушат над Na2SO4, фильтруют и упаривают до объема приблизительно 1 мл при сниженном давлении. Остаток добавляют по каплям с помощью шприца при перемешивании к раствору 1% трифторуксусной кислоты (ТФУ) в сухом CH2Cl2 (20 мл) при 0°C. Еще через 5 мин смесь разбавляют сухим CH2Cl2 (100 мл) и промывают насыщенным водным раствором NaHCO3 (2×100 мл). Объединенные водные фракции снова экстрагируют CH2Cl2 (2×100 мл). Объединенные органические фракции сушат над Na2SO4, фильтруют и упаривают до сухого состояния при сниженном давлении с получением неочищенного (Rp)-15uu, который анализируют методом 31P ЯМР.
Пример 42. Синтез (RP)-6-N-бензоил-5'-O-(трет-бутилдифенилсилил)-3'-O-(трет-бутилдиметилсилил)аденозин-2'-ил 2',3'-O-бис(трет-бутилдиметилсилил)уридин-5'-ил H-фосфоната [(RP)-15au].
Неочищенный (RP)-15au получают, как описано в Примере 41, с использованием 13а вместо 13u.
Пример 43. Синтез (RP)-4-N-бензоил-5'-(9-(трет-бутилдифенилсилил)-3'-O-(трет-бутилдиметилсилил)цитидин-2'-ил 2',3'-O-бис(трет-бутилдиметилсилил)уридин-5'-ил H-фосфоната [(RP)-15cu].
Неочищенный (RP)-15cu получают, как описано в Примере 41, с использованием 13с вместо 13u.
Пример 44. Синтез (RP)-2-N-феноксиацетил-5'-O-(трет-бутилдифенилсилил)-3'-O-(трет-бутилдиметилсилил)гуанозин-2'-ил 2',3'-O-бис(трет-бутилдиметилсилил)уридин-5'-ил H-фосфоната [(RP)-15gu].
Неочищенный (RP)-15gu получают, как описано в Примере 41, с использованием 13г вместо 13u.
Пример 45. Синтез (SP)-5'-O-(трет-бутилдифенилсилил)-3'-O-(трет-бутилдиметилсилил)уридин-2'-ил 2',3'-O-бис(трет-бутилдиметилсилил)уридин-5'-ил H-фосфоната [(SP)-15uu].
Неочищенный (SP)-15uu получают, как описано в Примере 41, с использованием хирального реагента (αS, 2R)-6 вместо хирального реагента (αR, 2S)-6.
Пример 46. Синтез (SP)-6-N-бензоил-5'-O-(трет-бутилдафенилсилил)-3'-O-(трет-бутилдиметилсилил)аденозин-2'-ил 2',3'-O-бис(трет-бутилдиметилсилил)уридин-5'-ил H-фосфоната [(SP)-15au].
Неочищенный (SP)-15au получают, как описано в Примере 41, с использованием 13а вместо 13u и хирального реагента (αS, 2R)-6 вместо хирального реагента (αR, 2S)-6.
Пример 47. Синтез (SP)-4-N-бензоил-5'-O-(трет-бутилдифенилсилил)-3'-O-(трет-бутилдиметилсилил)цитидин-2'-ил 2',3'-O-бис(трет-бутилдиметилсилил)уридин-5'-ил H-фосфоната [(SP)-15cu].
Неочищенный (SP)-15cu получают, как описано в Примере 41, с использованием 13с вместо 13u и хирального реагента (αS, 2R)-6 вместо хирального реагента (αR, 2S)-6.
Пример 48. Синтез (SP)-2-N-феноксиацетил-5'-O-(трет-бутилдифенилсилил)-3'-O-(трет-бутилдиметилсилил)гуанозин-2'-ил 2',3'-O-бис(трет-бутилдиметилсилил)уридин-5'-ил H-фосфоната [(SP)-15gu].
Неочищенный (SP)-15gu получают, как описано в Примере 41, с использованием 13г вместо 13u и хирального реагента (αS, 2R)-6 вместо хирального реагента (αR, 2S)-6.
Схема Ж: Синтез пролекарств 8-ацил-2-тиоэтил нуклеиновой кислоты.
Figure 00000290
Пример 49. Синтез пролекарства 8-ацил-2-тиоэтилнуклеиновой кислоты (RP)-тимидин-3'-ил тимидин-5'-ил фосфоната [(RP)-16tt], как описано на Схеме Ж.
(RP)-5'-O-(трет-Бутилдифенилсилил)тимидин-3'-ил 3'-O-{трет-бутилдиметилсилил)тимидин-5'-ил H-фосфонат [(RP)-7tt] (100 мкмоль) сушат повторным соупариванием с сухим пиридином, и затем растворяют в сухом пиридине (1 мл). Добавляют N-хлорсукцинимид (0,1 ммоль), и смесь перемешивают в течение 2 час при 0°C. Смесь упаривают и растворяют в сухом пиридине (1 мл). Полученную выше смесь обрабатывают 8-ацетил-2-тиоэтанолом (100 мкмоль) в сухом (100 мкмоль) пиридине. Через 1 час смесь упаривают, и затем растворяют в триэтиламина тригидрофториде (500 мкл). Смесь перемешивают в течение 15 час при комнатной температуре. А 0,1 М буферный раствор аммония ацетата (2,5 мл) затем добавляют к смеси, и смесь промывают Et2O (3×3 мл). Объединенные органические фракции снова экстрагируют 0,1 М буферным раствором аммония ацетата (3 мл). Объединенные водные фракции затем упаривают до сухого состояния при сниженном давлении, и остаток очищают обращенно-фазовой хроматографией на колонке [линейный градиент 0-10% ацетонитрила в 0,1 М буферном растворе аммония ацетата (рН 7,0)] с получением (RP)-16tt.
Пример 50. Синтез 8-ацил-2-тиоэтил пронуклеотида (RP)-6-N-бензоил-дезоксиаденозин-3'-ил тимидин-5'-ил фосфоната [(RP)-16at].
Неочищенный (RP)-16at получают, как описано в Примере 49, с использованием (RP)-7at вместо (RP)-7tt.
Пример 51. Синтез 8-ацил-2-тиоэтил пронуклеотида (RP)-4-N-бензоил-дезоксицитидин-3'-ил тимидин-5'-ил фосфоната [(RP)-16ct].
Неочищенный (RP)-16ct получают, как описано в Примере 49, с использованием (RP)-7ct вместо (RP)-7tt.
Пример 52. Синтез S-ацил-2-тиоэтил пронуклеотида (RP)-2-N-феноксиацетил-дезоксигуанозин-3'-ил тимидин-5'-ил фосфоната [(RP)-16gt].
Неочищенный (RP)-16gt получают, как описано в Примере 49, с использованием (RP)-7г вместо (RP)-7tt.
Пример 53. Синтез S-ацил-2-тиоэтил пронуклеотида (SP)-тимидин-3'-ил тимидин-5'-ил фосфоната [(SP)-16tt].
Неочищенный (SP)-16tt получают, как описано в Примере 49, с использованием (SP)-7tt вместо (RP)-7tt.
Пример 54. Синтез S-ацил-2-тиоэтил пронуклеотида (SP)-6-N-бензоил-дезоксиаденозин-3'-ил тимидин-5'-ил фосфоната [(SP)-16at].
Неочищенный (SP)-16at получают, как описано в Примере 49, с использованием (SP)-7at вместо (RP)-7tt.
Пример 55. Синтез S-ацил-2-тиоэтил пронуклеотида (SP)-4-N-бензоил-дезоксицитидин-3'-ил тимидин-5'-ил фосфоната [(SP)-16ct].
Неочищенный (SP)-16ct получают, как описано в Примере 49, с использованием (SP)-7ct вместо (RP)-7tt.
Пример 56. Синтез S-ацил-2-тиоэтил пронуклеотида (SP)-2-N-феноксиацетил-дезоксигуанозин-3'-ил тимидин-5'-ил фосфоната [(SP)-16gt].
Неочищенный (SP)-16gt получают, как описано в Примере 49, с использованием (SP)-7gt вместо (RP)-7tt.
Пример 57. Синтез S-ацил-2-тиоэтил пронуклеотида (RP)-уридин-3'-ил уридин-5'-ил фосфоната [(RP)-16uu].
Неочищенный (RP)-16uu получают, как описано в Примере 49, с использованием (RP)-12uu вместо (RP)-7tt.
Пример 58. Синтез S-ацил-2-тиоэтил пронуклеотида (RP)-6-N-бензоил-аденозин-3'-ил уридин-5'-ил фосфоната [(RP)-16au].
Неочищенный (RP)-16au получают, как описано в Примере 49, с использованием (RP)-12au вместо (RP)-7tt.
Пример 59. Синтез S-ацил-2-тиоэтил пронуклеотида (RP)-4-N-бензоил-цитидин-3'-ил уридин-5'-ил фосфоната [(RP)-16cu].
Неочищенный (RP)-16cu получают, как описано в Примере 49, с использованием (RP)-12cu вместо (RP)-7tt.
Пример 60. Синтез S-ацил-2-тиоэтил пронуклеотида (RP)-2-N-Феноксиацетил-гуанозин-3'-ил уридин-5'-ил фосфоната [(RP)-16gu].
Неочищенный (RP)-16gu получают, как описано в Примере 49, с использованием (RP)-12gu вместо (RP)-7tt.
Пример 61. Синтез S-ацил-2-тиоэтил пронуклеотида (SP)-уридин-3'-ил уридин-5'-ил фосфоната [(SP)-16uu].
Неочищенный (SP)-16uu получают, как описано в Примере 49, с использованием (SP)-12uu вместо (RP)-7tt.
Пример 62. Синтез S-ацил-2-тиоэтил пронуклеотида (SP)-6-N-бензоил-аденозин-3'-ил уридин-5'-ил фосфоната [(SP)-16au].
Неочищенный (SP)-16au получают, как описано в Примере 49, с использованием (SP)-12au вместо (RP)-7tt.
Пример 63. Синтез S-ацил-2-тиоэтил пронуклеотида (SP)-4-N-бензоил-цитидин-3'-ил уридин-5'-ил фосфоната [(SP)-16cu].
Неочищенный (SP)-16cu получают, как описано в Примере 49, с использованием (SP)-12au вместо (RP)-7tt.
Пример 64. Синтез S-ацил-2-тиоэтил пронуклеотида (SP)-2-N-Феноксиацетил-гуанозин-3'-ил уридин-5'-ил фосфоната [(SP)-16gu].
Неочищенный (SP)-16gu получают, как описано в Примере 49, с использованием (SP)-12gu вместо (RP)-7tt.
Пример 65. Синтез S-ацил-2-тиоэтил пронуклеотида (RP)-уридин-2'-ил уридин-5'-ил фосфоната [(RP)-17uu].
Неочищенный (SP)-17uu получают, как описано в Примере 49, с использованием (SP)-15uu вместо (RP)-7tt.
Пример 66. Синтез S-ацил-2-тиоэтил пронуклеотида (RP)-6-N-бензоил-аденозин-2'-ил уридин-5'-ил фосфоната [(RP)-17au].
Неочищенный (RP)-17au получают, как описано в Примере 49, с использованием (SP)-15au вместо (RP)-7tt.
Пример 67. Синтез S-ацил-2-тиоэтил пронуклеотида (RP)-4-N-бензоил-цитидин-2'-ил уридин-5'-ил фосфоната [(RP)-17cu].
Неочищенный (RP)-17cu получают, как описано в Примере 49, с использованием (SP)-15cu вместо (RP)-7tt.
Пример 68. Синтез S-ацил-2-тиоэтил пронуклеотида (RP)-2-N-Феноксиацетил-гуанозин-2'-ил уридин-5'-ил H-фосфоната [(RP)-17gu].
Неочищенный (RP)-17gu получают, как описано в Примере 49, с использованием (SP)-15gu вместо (RP)-7tt.
Пример 69. Синтез S-ацил-2-тиоэтил пронуклеотида (SP)-уридин-2'-ил уридин-5'-ил фосфоната [(SP)-17uu].
Неочищенный (SP)-17uu получают, как описано в Примере 49, с использованием (SP)-15uu вместо (RP)-7tt.
Пример 70. Синтез S-ацил-2-тиоэтил пронуклеотида (SP)-6-N-бензоил-аденозин-2'-ил уридин-5'-ил фосфоната [(SP)-17au].
Неочищенный (SP)-17au получают, как описано в Примере 49, с использованием (SP)-15au вместо (RP)-7tt.
Пример 71. Синтез S-ацил-2-тиоэтил пронуклеотида (SP)-4-N-бензоил-цитидин-2'-ил уридин-5'-ил фосфоната [(SP)-17cu].
Неочищенный (SP)-17cu получают, как описано в Примере 49, с использованием (SP)-15cu вместо (RP)-7tt.
Пример 72. Синтез S-ацил-2-тиоэтил пронуклеотида (SP)-2-N-Феноксиацетил-гуанозин-2'-ил уридин-5'-ил фосфоната [(SP)-17gu].
Неочищенный (SP)-17gu получают, как описано в Примере 49, с использованием (SP)-15gu вместо (RP)-7tt.
Схема 3: Синтез ацилокси пронуклеотидов.
Figure 00000291
Пример 73. Синтез ацилокси пронуклеотида (RP)-тимидин-3'-ил тимидин-5'-ил фосфоната [(RP)-18tt], как описано на Схеме З.
(RP)-5'-O-(трет-Бутилдифенилсилил)тимидин-3'-ил 3'-O-(трет-бутилдиметилсилил)тимидин-5'-ил H-фосфонат [(RP)-7tt] (100 мкмоль) сушат повторным соупариванием с сухим пиридином, и затем растворяют в сухом пиридине (1 мл). Добавляют N-хлорсукцинимид (0,1 ммоль), и смесь перемешивают в течение 2 час при 0°C. Смесь упаривают и растворяют в сухом пиридине (1 мл). Полученную выше смесь обрабатывают гидроксиметилацетатом (100 мкмоль) в сухом (100 мкмоль) метиленхлориде. Через 1 час смесь упаривают, и затем растворяют в триэтиламина тригидрофториде (500 мкл). Смесь перемешивают в течение 15 час при комнатной температуре. 0,1 М буферный раствор аммония ацетата (2,5 мл) затем добавляют к смеси, и смесь промывают Et2O (3×3 мл). Объединенные органические фракции снова экстрагируют 0,1 М буферным раствором аммония ацетата (3 мл). Объединенные водные фракции затем упаривают до сухого состояния при сниженном давлении, и остаток очищают обращенно-фазовой хроматографией на колонке [линейный градиент 0-10% ацетонитрила в 0,1 М буферном растворе аммония ацетата (рН 7,0)] с получением (RP)-18tt.
Пример 74. Синтез ацилокси пронуклеотида (RP)-6-N-бензоил-дезоксиаденозин-3'-ил тимидин-5'-ил фосфоната [(RP)-18at].
Неочищенный (RP)-18at получают, как описано в Примере 73, с использованием (RP)-7at вместо (RP)-7tt.
Пример 75. Синтез ацилокси пронуклеотида (RP)-4-N-бензоил-дезоксицитидин-3'-ил тимидин-5'-ил фосфоната [(RP)-18ct].
Неочищенный (RP)-18ct получают, как описано в Примере 73, с использованием (RP)-7ct вместо (RP)-7tt.
Пример 76. Синтез ацилокси пронуклеотида (RP)-2-N-феноксиацетил-дезоксигуанозин-3'-ил тимидин-5'-ил фосфоната [(RP)-18gt].
Неочищенный (RP)-18gt получают, как описано в Примере 73, с использованием (RP)-7г вместо (RP)-7tt.
Пример 77. Синтез ацилокси пронуклеотида (SP)-тимидин-3'-ил тимидин-5'-ил фосфоната [(SP)-18tt].
Неочищенный (SP)-18tt получают, как описано в Примере 73, с использованием (SP)-7tt вместо (RP)-7tt.
Пример 78. Синтез ацилокси пронуклеотида (SP)-6-N-бензоил-дезоксиаденозин-3'-ил тимидин-5'-ил фосфоната [(SP)-18at].
Неочищенный (SP)-18at получают, как описано в Примере 73, с использованием (SP)-7at вместо (RP)-7tt.
Пример 79. Синтез ацилокси пронуклеотида (SP)-4-N-бензоил-дезоксицитидин-3'-ил тимидин-5'-ил фосфоната [(SP)-18ct].
Неочищенный (SP)-18ct получают, как описано в Примере 73, с использованием (SP)-7ct вместо (RP)-7tt.
Пример 80. Синтез ацилокси пронуклеотида (SP)-2-N-феноксиацетил-дезоксигуанозин-3'-ил тимидин-5'-ил фосфоната [(SP)-18gt].
Неочищенный (SP)-18gt получают, как описано в Примере 73, с использованием (SP)-7gt вместо (RP)-7tt.
Пример 81. Синтез ацилокси пронуклеотида (RP)-уридин-3'-ил уридин-5'-ил фосфоната [(RP)-18uu].
Неочищенный (RP)-18uu получают, как описано в Примере 73, с использованием (RP)-12uu вместо (RP)-7tt.
Пример 82. Синтез ацилокси пронуклеотида (RP)-6-N-бензоил-аденозин-3'-ил уридин-5'-ил фосфоната [(RP)-18au].
Неочищенный (RP)-18au получают, как описано в Примере 73, с использованием (RP)-12au вместо (RP)-7tt.
Пример 83. Синтез ацилокси пронуклеотида (RP)-4-N-бензоил-цитидин-3'-ил уридин-5'-ил фосфоната [(RP)-18cu].
Неочищенный (RP)-18cu получают, как описано в Примере 73, с использованием (RP)-12cu вместо (RP)-7tt.
Пример 84. Синтез ацилокси пронуклеотида (RP)-2-N-Феноксиацетил-гуанозин-3'-ил уридин-5'-ил фосфоната [(RP)-18gu].
Неочищенный (RP)-18gu получают, как описано в Примере 73, с использованием (RP)-12gu вместо (RP)-7tt.
Пример 85. Синтез ацилокси пронуклеотида (SP)-уридин-3'-ил уридин-5'-ил фосфоната [(SP)-18uu].
Неочищенный (SP)-18uu получают, как описано в Примере 73, с использованием (SP)-12uu вместо (RP)-7tt.
Пример 86. Синтез ацилокси пронуклеотида (SP)-6-N-бензоил-аденозин-3'-ил уридин-5'-ил фосфоната [(SP)-18au].
Неочищенный (SP)-18au получают, как описано в Примере 73, с использованием (SP)-12au вместо (RP)-7tt.
Пример 87. Синтез ацилокси пронуклеотида (SP)-4-N-бензоил-цитидин-3'-ил уридин-5'-ил фосфоната [(SP)-18cu].
Неочищенный (SP)-18cu получают, как описано в Примере 73, с использованием (SP)-12au вместо (RP)-7tt.
Пример 88. Синтез ацилокси пронуклеотида (SP)-2-N-Феноксиацетил-гуанозин-3'-ил уридин-5'-ил фосфоната [(SP)-18gu].
Неочищенный (SP)-18gu получают, как описано в Примере 73, с использованием (SP)-12gu вместо (RP)-7tt.
Пример 89. Синтез ацилокси пронуклеотида (RP)-уридин-2'-ил уридин-5'-ил фосфоната [(RP)-19uu].
Неочищенный (SP)-19uu получают, как описано в Примере 73, с использованием (SP)-15uu вместо (RP)-7tt.
Пример 90. Синтез ацилокси пронуклеотида (RP)-6-N-бензоил-аденозин-2'-ил уридин-5'-ил фосфоната [(RP)-19au].
Неочищенный (RP)-19au получают, как описано в Примере 73, с использованием (SP)-15au вместо (RP)-7tt.
Пример 91. Синтез ацилокси пронуклеотида (RP)-4-N-бензоил-цитидин-2'-ил уридин-5'-ил фосфоната [(RP)-19cu].
Неочищенный (RP)-19cu получают, как описано в Примере 73, с использованием (SP)-15cu вместо (RP)-7tt.
Пример 92. Синтез ацилокси пронуклеотида (RP)-2-N-Феноксиацетил-гуанозин-2'-ил уридин-5'-ил фосфоната [(RP)-19gu].
Неочищенный (RP)-19gu получают, как описано в Примере 73, с использованием (SP)-15gu вместо (RP)-7tt.
Пример 93. Синтез ацилокси пронуклеотида (SP)-уридин-2'-ил уридин-5'-ил фосфоната [(SP)-19uu].
Неочищенный (SP)-19uu получают, как описано в Примере 73, с использованием (SP)-15uu вместо (RP)-7tt.
Пример 94. Синтез ацилокси пронуклеотида (SP)-6-N-бензоил-аденозин-2'-ил уридин-5'-ил фосфоната [(SP)-19au].
Неочищенный (SP)-19аи получают, как описано в Примере 73, с использованием (SP)-15au вместо (RP)-7tt.
Пример 95. Синтез ацилокси пронуклеотида (SP)-4-N-бензоил-цитидин-2'-ил уридин-5'-ил фосфоната [(SP)-19cu].
Неочищенный (SP)-19cu получают, как описано в Примере 73, с использованием (SP)-15cu вместо (RP)-7tt.
Пример 96. Синтез ацилокси пронуклеотида (SP)-2-N-Феноксиацетил-гуанозин-2'-ил уридин-5'-ил фосфоната [(SP)-19gu].
Неочищенный (SP)-19gu получают, как описано в Примере 73, с использованием (SP)-15gu вместо (RP)-7tt.
Схема И: Синтез тиоацилокси пронуклеотидов.
Figure 00000292
Пример 97. Синтез тиоацилокси пронуклеотида (RP)-тимидин-3'-ил тимидин-5'-ил фосфортиоата [(RP)-20tt], как описано на Схеме I.
(SP)-1,8-Диазабицикло[5,4,0]ундец-7-ения 5'-O-(трет-бутилдифенилсилил)тимидин-3'-ил 3'-O-(трет-бутилдиметилсилил)тимидин-5'-ил фосфортиоата [(SP)-4tt) (100 мкмоль) сушат повторным соупариванием с сухим пиридином, и затем растворяют в сухом метиленхлориде (1 мл). Смесь обрабатывают хлорметилацетатом, полученным по способу Bodor et al. J. Org. Chem. (1983), 48:5280 (100 мкмоль) в сухом (100 мкмоль) метиленхлориде. Через 1 час смесь упаривают, и затем растворяют в триэтиламина тригидрофториде (500 мкл). Смесь перемешивают в течение 15 час при комнатной температуре. 0,1 М буферный раствор аммония ацетата (2,5 мл) затем добавляют к смеси, и смесь промывают Et2O (3×3 мл). Объединенные органические фракции снова экстрагируют 0,1 М буферным раствором аммония ацетата (3 мл). Объединенные водные фракции затем упаривают до сухого состояния при сниженном давлении, и остаток очищают обращенно-фазовой хроматографией на колонке [линейный градиент 0-10% ацетонитрила в 0,1 М буферном растворе аммония ацетата (рН 7,0)] с получением (RP)-20tt.
Пример 98. Синтез тиоацилокси пронуклеотида (RP)-6-N-бензоил-дезоксиаденозин-3'-ил тимидин-5'-ил фосфортиоата [(RP)-20at].
Неочищенный (RP)-20at получают, как описано в Примере 97, с использованием (RP)-4at вместо (RP)-4tt.
Пример 99. Синтез тиоацилокси пронуклеотида (RP)-4-N-бензоил-дезоксицитидин-3'-ил тимидин-5'-ил фосфортиоата [(RP)-20ct].
Неочищенный (RP)-20ct получают, как описано в Примере 97, с использованием (RP)-4ct вместо (RP)-4tt.
Пример 100. Синтез тиоацилокси пронуклеотида (RP)-2-N-феноксиацетил-дезоксигуанозин-3'-ил тимидин-5'-ил фосфортиоата [(RP)-20gt].
Неочищенный (RP)-20gt получают, как описано в Примере 97, с использованием (RP)-4 г вместо (RP)-4tt.
Пример 101. Синтез тиоацилокси пронуклеотида (SP)-тимидин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-20tt].
Неочищенный (SP)-20tt получают, как описано в Примере 97, с использованием (SP)-4tt вместо (RP)-4tt.
Пример 102. Синтез тиоацилокси пронуклеотида (SP)-6-N-бензоил-дезоксиаденозин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-20at].
Неочищенный (SP)-20at получают, как описано в Примере 97, с использованием (SP)-4at вместо (RP)-4tt.
Пример 103. Синтез тиоацилокси пронуклеотида (SP)-4-N-бензоил-дезоксицитидин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-20ct].
Неочищенный (SP)-20ct получают, как описано в Примере 97, с использованием (SP)-4ct вместо (RP)-4tt.
Пример 104. Синтез тиоацилокси пронуклеотида (SP)-2-N-феноксиацетил-дезоксигуанозин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-20gt].
Неочищенный (SP)-20gt получают, как описано в Примере 97, с использованием (SP)-4gt вместо (RP)-4tt.
Пример 105. Синтез тиоацилокси пронуклеотида (RP)-уридин-3'-ил уридин-5'-ил фосфортиоата [(RP)-20uu].
Неочищенный (RP)-20uu получают, как описано в Примере 97, с использованием (RP)-10uu вместо (RP)-4tt.
Пример 106. Синтез тиоацилокси пронуклеотида (RP)-6-N-бензоил-аденозин-3'-ил уридин-5'-ил фосфортиоата [(RP)-20au].
Неочищенный (RP)-20au получают, как описано в Примере 97, с использованием (RP)-10au вместо (RP)-4tt.
Пример 107. Синтез тиоацилокси пронуклеотида (RP)-4-N-бензоил-цитидин-3'-ил уридин-5'-ил фосфортиоата [(RP)-20cu].
Неочищенный (RP)-20cu получают, как описано в Примере 97, с использованием (RP)-10cu вместо (RP)-4tt.
Пример 108. Синтез тиоацилокси пронуклеотида (RP)-2-N-Феноксиацетил-гуанозин-3'-ил уридин-5'-ил фосфортиоата [(RP)-20gu].
Неочищенный (RP)-20gu получают, как описано в Примере 97, с использованием (RP)-10gu вместо (RP)-4tt.
Пример 109. Синтез тиоацилокси пронуклеотида (SP)-уридин-3'-ил уридин-5'-ил фосфортиоата [(SP)-20uu].
Неочищенный (SP)-20uu получают, как описано в Примере 97, с использованием (SP)-10uu вместо (RP)-4tt.
Пример 110. Синтез тиоацилокси пронуклеотида (SP)-6-N-бензоил-аденозин-3'-ил уридин-5'-ил фосфортиоата [(SP)-20au].
Неочищенный (SP)-20au получают, как описано в Примере 97, с использованием (SP)-10au вместо (RP)-4tt.
Пример 111. Синтез тиоацилокси пронуклеотида (SP)-4-N-бензоил-цитидин-3'-ил уридин-5'-ил фосфортиоата [(SP)-20cu].
Неочищенный (SP)-20cu получают, как описано в Примере 97, с использованием (SP)-10au вместо (RP)-4tt.
Пример 112. Синтез тиоацилокси пронуклеотида (SP)-2-N-Феноксиацетил-гуанозин-3'-ил уридин-5'-ил фосфортиоата [(SP)-20gu].
Неочищенный (SP)-20gu получают, как описано в Примере 97, с использованием (SP)-10gu вместо (RP)-4tt.
Пример 113. Синтез тиоацилокси пронуклеотида (RP)-уридин-2'-ил уридин-5'-ил фосфортиоата [(RP)-21uu].
Неочищенный (SP)-21uu получают, как описано в Примере 97, с использованием (SP)-14uu вместо (RP)-4tt.
Пример 114. Синтез тиоацилокси пронуклеотида (RP)-6-N-бензоил-аденозин-2'-ил уридин-5'-ил фосфортиоата [(RP)-21au].
Неочищенный (RP)-21au получают, как описано в Примере 97, с использованием (SP)-14au вместо (RP)-4tt.
Пример 115. Синтез тиоацилокси пронуклеотида (RP)-4-N-бензоил-цитидин-2'-ил уридин-5'-ил фосфортиоата [(RP)-21cu].
Неочищенный (RP)-21cu получают, как описано в Примере 97, с использованием (SP)-14cu вместо (RP)-4tt.
Пример 116. Синтез тиоацилокси пронуклеотида (RP)-2-N-феноксиацетил-гуанозин-2'-ил уридин-5'-ил фосфортиоата [(RP)-21gu].
Неочищенный (RP)-21gu получают, как описано в Примере 97, с использованием (SP)-14gu вместо (RP)-4tt.
Пример 117. Синтез тиоацилокси пронуклеотида (SP)-уридин-2'-ил уридин-5'-ил фосфортиоата [(SP)-21uu].
Неочищенный (SP)-21uu получают, как описано в Примере 97, с использованием (SP)-14uu вместо (RP)-4tt.
Пример 118. Синтез тиоацилокси пронуклеотида (SP)-6-N-бензоил-аденозин-2'-ил уридин-5'-ил фосфортиоата [(SP)-21au].
Неочищенный (SP)-21au получают, как описано в Примере 97, с использованием (SP)-14au вместо (RP)-4tt.
Пример 119. Синтез тиоацилокси пронуклеотида (SP)-4-N-бензоил-цитидин-2'-ил уридин-5'-ил фосфортиоата [(SP)-21cu].
Неочищенный (SP)-21cu получают, как описано в Примере 97, с использованием (SP)-14cu вместо (RP)-4tt.
Пример 120. Синтез тиоацилокси пронуклеотида (SP)-2-N-феноксиацетил-гуанозин-2'-ил уридин-5'-ил фосфортиоата [(SP)-21gu].
Неочищенный (SP)-21gu получают, как описано в Примере 97, с использованием (SP)-14gu вместо (RP)-4tt.
Схема К: Синтез 2-карбоалкоксиэтил пронуклеотидов.
Figure 00000293
Пример 121. Синтез 2-карбоалкоксиэтил пронуклеотида (RP)-тимидин-3'-ил тимидин-5'-ил фосфортиоата [(RP)-22tt], как описано на Схеме К.
(SP)-1,8-Диазабицикло[5,4,0]ундец-7-ения 5'-O-(трет-бутилдифенилсилил)тимидин-3'-ил 3'-O-(трет-бутилдиметилсилил)тимидин-5'-ил фосфортиоат [(SP)-4tt] (100 мкмоль) сушат повторным соупариванием с сухим пиридином, и затем растворяют в сухом метиленхлориде (1 мл). Смесь обрабатывают метилакрилатом (100 мкмоль) в сухом (100 мкмоль) метиленхлориде. Через 1 час смесь упаривают, и затем растворяют в триэтиламина тригидрофториде (500 мкл). Смесь перемешивают в течение 15 час при комнатной температуре. 0,1 М буферный раствор аммония ацетата (2,5 мл) затем добавляют к смеси, и смесь промывают Et2O (3×3 мл). Объединенные органические фракции снова экстрагируют 0,1 М буферным раствором аммония ацетата (3 мл). Объединенные водные фракции затем упаривают до сухого состояния при сниженном давлении, и остаток очищают обращенно-фазовой хроматографией на колонке [линейный градиент 0-10% ацетонитрила в 0,1 М буферном растворе аммония ацетата (рН 7,0)] с получением (RP)-22tt.
Пример 122. Синтез 2-карбоалкоксиэтил пронуклеотида (RP)-6-N-бензоил-дезоксиаденозин-3'-ил тимидин-5'-ил фосфортиоата [(RP)-22at].
Неочищенный (RP)-22at получают, как описано в Примере 121, с использованием (RP)-4at вместо (RP)-4tt.
Пример 123. Синтез 2-карбоалкоксиэтил пронуклеотида (RP)-4-N-бензоил-дезоксицитидин-3'-ил тимидин-5'-ил фосфортиоата [(RP)-22ct].
Неочищенный (RP)-22ct получают, как описано в Примере 121, с использованием (RP)-4ct вместо (RP)-4tt.
Пример 124. Синтез 2-карбоалкоксиэтил пронуклеотида (RP)-2-N-феноксиацетил-дезоксигуанозин-3'-ил тимидин-5'-ил фосфортиоата [(RP)-22gt].
Неочищенный (RP)-22gt получают, как описано в Примере 121, с использованием (RP)-4г вместо (RP)-4tt.
Пример 125. Синтез 2-карбоалкоксиэтил пронуклеотида (SP)-тимидин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-22tt].
Неочищенный (SP)-22tt получают, как описано в Примере 121, с использованием (SP)-4tt вместо (RP)-4tt.
Пример 126. Синтез 2-карбоалкоксиэтил пронуклеотида (SP)-6-N-бензоил-дезоксиаденозин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-22at].
Неочищенный (SP)-22at получают, как описано в Примере 121, с использованием (SP)-4at вместо (RP)-4tt.
Пример 127. Синтез 2-карбоалкоксиэтил пронуклеотида (SP)-4-N-бензоил-дезоксицитидин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-22ct].
Неочищенный (SP)-22ct получают, как описано в Примере 121, с использованием (SP)-4ct вместо (RP)-4tt.
Пример 128. Синтез 2-карбоалкоксиэтил пронуклеотида (SP)-2-N-феноксиацетил-дезоксигуанозин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-22gt].
Неочищенный (SP)-22gt получают, как описано в Примере 121, с использованием (SP)-4gt вместо (RP)-4tt.
Пример 129. Синтез 2-карбоалкоксиэтил пронуклеотида (RP)-уридин-3'-ил уридин-5'-ил фосфортиоата [(RP)-22uu].
Неочищенный (RP)-22uu получают, как описано в Примере 121, с использованием (RP)-10uu вместо (RP)-4tt.
Пример 130. Синтез 2-карбоалкоксиэтил пронуклеотида (RP)-6-N-бензоил-аденозин-3'-ил уридин-5'-ил фосфортиоата [(RP)-22au].
Неочищенный (RP)-22au получают, как описано в Примере 121, с использованием (RP)-10au вместо (RP)-4tt.
Пример 131. Синтез 2-карбоалкоксиэтил пронуклеотида (RP)-4-N-бензоил-цитидин-3'-ил уридин-5'-ил фосфортиоата [(RP)-22cu].
Неочищенный (RP)-22cu получают, как описано в Примере 121, с использованием (RP)-10cu вместо (RP)-4tt.
Пример 132. Синтез 2-карбоалкоксиэтил пронуклеотида (RP)-2-N-Феноксиацетил-гуанозин-3'-ил уридин-5'-ил фосфортиоата [(RP)-22gu].
Неочищенный (RP)-22gu получают, как описано в Примере 121, с использованием (RP)-10gu вместо (RP)-4tt.
Пример 133. Синтез 2-карбоалкоксиэтил пронуклеотида (SP)-уридин-3'-ил уридин-5'-ил фосфортиоата [(SP)-22uu].
Неочищенный (SP)-22uu получают, как описано в Примере 121, с использованием (SP)-10uu вместо (RP)-4tt.
Пример 134. Синтез 2-карбоалкоксиэтил пронуклеотида (SP)-6-N-бензоил-аденозин-3'-ил уридин-5'-ил фосфортиоата [(SP)-22au].
Неочищенный (SP)-22au получают, как описано в Примере 121, с использованием (SP)-10au вместо (RP)-4tt.
Пример 135. Синтез 2-карбоалкоксиэтил пронуклеотида (SP)-4-N-бензоил-цитидин-3'-ил уридин-5'-ил фосфортиоата [(SP)-22cu].
Неочищенный (SP)-22cu получают, как описано в Примере 121, с использованием (SP)-10au вместо (RP)-4tt.
Пример 136. Синтез 2-карбоалкоксиэтил пронуклеотида (SP)-2-N-Феноксиацетил-гуанозин-3'-ил уридин-5'-ил фосфортиоата [(SP)-22gu].
Неочищенный (SP)-22gu получают, как описано в Примере 121, с использованием (SP)-10gu вместо (RP)-4tt.
Пример 137. Синтез 2-карбоалкоксиэтил пронуклеотида (RP)-уридин-2'-ил уридин-5'-ил фосфортиоата [(RP)-23uu].
Неочищенный (SP)-23uu получают, как описано в Примере 121, с использованием (SP)-14uu вместо (RP)-4tt.
Пример 138. Синтез 2-карбоалкоксиэтил пронуклеотида (RP)-6-N-бензоил-аденозин-2'-ил уридин-5'-ил фосфортиоата [(RP)-23ay].
Неочищенный (RP)-23au получают, как описано в Примере 121, с использованием (SP)-14au вместо (RP)-4tt.
Пример 139. Синтез 2-карбоалкоксиэтил пронуклеотида (RP)-4-N-бензоил-цитидин-2'-ил уридин-5'-ил фосфортиоата [(RP)-23cu].
Неочищенный (RP)-23cu получают, как описано в Примере 121, с использованием (SP)-14cu вместо (RP)-4tt.
Пример 140. Синтез 2-карбоалкоксиэтил пронуклеотида (RP)-2-N-Феноксиацетил-гуанозин-2'-ил уридин-5'-ил фосфортиоата [(RP)-23gu].
Неочищенный (RP)-23gu получают, как описано в Примере 121, с использованием (SP)-14gu вместо (RP)-4tt.
Пример 141. Синтез 2-карбоалкоксиэтил пронуклеотида (SP)-уридин-2'-ил уридин-5'-ил фосфортиоата [(SP)-23uu].
Неочищенный (SP)-23uu получают, как описано в Примере 121, с использованием (SP)-14uu вместо (RP)-4tt.
Пример 142. Синтез 2-карбоалкоксиэтил пронуклеотида (SP)-6-N-бензоил-аденозин-2'-ил уридин-5'-ил фосфортиоата [(SP)-23au].
Неочищенный (SP)-23au получают, как описано в Примере 121, с использованием (SP)-14au вместо (RP)-4tt.
Пример 143. Синтез 2-карбоалкоксиэтил пронуклеотида (SP)-4-N-бензоил-цитидин-2'-ил уридин-5'-ил фосфортиоата [(SP)-23cu].
Неочищенный (SP)-23cu получают, как описано в Примере 121, с использованием (SP)-14cu вместо (RP)-4tt.
Пример 144. Синтез 2-карбоалкоксиэтил пронуклеотида (SP)-2-N-Феноксиацетил-гуанозин-2'-ил уридин-5'-ил фосфортиоата [(SP)-23gu].
Неочищенный (SP)-23gu получают, как описано в Примере 121, с использованием (SP)-14gu вместо (RP)-4tt.
Схема Л: Синтез дисульфидных пронуклеотидов.
Figure 00000294
Пример 145. Синтез дисульфидного пронуклеотида (RP)-тимидин-3'-ил тимидин-5'-ил фосфортиоат [(RP)-24tt], как описано на Схеме Л.
(SP)-1,8-Диазабицикло[5,4,0]ундец-7-ения 5'-O-(трет-бутилдифенилсилил)тимидин-3'-ил 3'-O-(трет-бутилдиметилсилил)тимидин-5'-ил фосфортиоат [(SP)-4tt] (100 мкмоль) сушат повторным соупариванием с сухим пиридином, и затем растворяют в сухом этаноле (1 мл). Смесь обрабатывают диэтилдисульфидом (200 мкмоль) в сухом (100 мкмоль) этаноле. Через 1 час смесь упаривают, и затем растворяют в триэтиламина тригидрофториде (500 мкл). Смесь перемешивают в течение 15 час при комнатной температуре. 0,1 М буферный раствор аммония ацетата (2,5 мл) затем добавляют к смеси, и смесь промывают Et2O (3×3 мл). Объединенные органические фракции снова экстрагируют 0,1 М буферным раствором аммония ацетата (3 мл). Объединенные водные фракции затем упаривают до сухого состояния при сниженном давлении, и остаток очищают обращенно-фазовой хроматографией на колонке [линейный градиент 0-10% ацетонитрила в 0,1 М буферном растворе аммония ацетата (рН 7,0)] с получением (RP)-24tt.
Пример 146. Синтез дисульфид пронуклеотида (RP)-6-N-бензоил-дезоксиаденозин-3'-ил тимидин-5'-ил фосфортиоата [(RP)-24at].
Неочищенный (RP)-24at получают, как описано в Примере 145, с использованием (RP)-4at вместо (RP)-4tt.
Пример 147. Синтез дисульфид пронуклеотида (RP)-4-N-бензоил-дезоксицитидин-3'-ил тимидин-5'-ил фосфортиоата [(RP)-24ct].
Неочищенный (RP)-24ct получают, как описано в Примере 145, с использованием (RP)-4ct вместо (RP)-4tt.
Пример 148. Синтез дисульфид пронуклеотида (RP)-2-N-феноксиацетил-дезоксигуанозин-3'-ил тимидин-5'-ил фосфортиоата [(RP)-24gt].
Неочищенный (RP)-24gt получают, как описано в Примере 145, с использованием (RP)-4г вместо (RP)-4tt.
Пример 149. Синтез дисульфид пронуклеотида (SP)-тимидин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-24tt].
Неочищенный (SP)-24tt получают, как описано в Примере 145, с использованием (SP)-4tt вместо (RP)-4tt.
Пример 150. Синтез дисульфид пронуклеотида (SP)-6-N-бензоил-дезоксиаденозин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-24at].
Неочищенный (SP)-24at получают, как описано в Примере 145, с использованием (SP)-4at вместо (RP)-4tt.
Пример 151. Синтез дисульфид пронуклеотида (SP)-4-N-бензоил-дезоксицитидин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-24ct].
Неочищенный (SP)-24ct получают, как описано в Примере 145, с использованием (SP)-4ct вместо (RP)-4tt.
Пример 152. Синтез дисульфид пронуклеотида (SP)-2-N-феноксиацетил-дезоксигуанозин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-24gt].
Неочищенный (SP)-24gt получают, как описано в Примере 145, с использованием (SP)-4gt вместо (RP)-4tt.
Пример 153. Синтез дисульфид пронуклеотида (RP)-уридин-3'-ил уридин-5'-ил фосфортиоата [(RP)-24uu].
Неочищенный (RP)-24uu получают, как описано в Примере 145, с использованием (RP)-10uu вместо (RP)-4tt.
Пример 154. Синтез дисульфид пронуклеотида (RP)-6-N-бензоил-аденозин-3'-ил уридин-5'-ил фосфортиоата [(RP)-24au].
Неочищенный (RP)-24au получают, как описано в Примере 145, с использованием (RP)-10au вместо (RP)-4tt.
Пример 155. Синтез дисульфид пронуклеотида (RP)-4-N-бензоил-цитидин-3'-ил уридин-5'-ил фосфортиоата [RP)-24cu].
Неочищенный (RP)-24cu получают, как описано в Примере 145, с использованием (RP)-10cu вместо (RP)-4tt.
Пример 156. Синтез дисульфид пронуклеотида (RP)-2-N-Феноксиацетил-гуанозин-3'-ил уридин-5'-ил фосфортиоата [(RP)-24gu].
Неочищенный (RP)-24gu получают, как описано в Примере 145, с использованием (RP)-10gu вместо (RP)-4tt.
Пример 157. Синтез дисульфид пронуклеотида (SP)-уридин-3'-ил уридин-5'-ил фосфортиоата [(SP)-24uu].
Неочищенный (SP)-24uu получают, как описано в Примере 145, с использованием (SP)-10uu вместо (RP)-4tt.
Пример 158. Синтез дисульфид пронуклеотида (SP)-6-N-бензоил-аденозин-3'-ил уридин-5'-ил фосфортиоата [(SP)-24au].
Неочищенный (SP)-24au получают, как описано в Примере 145, с использованием (SP)-10au вместо (RP)-4tt.
Пример 159. Синтез дисульфид пронуклеотида (SP)-4-N-бензоил-цитидин-3'-ил уридин-5'-ил фосфортиоата [(SP)-24cu].
Неочищенный (SP)-24cu получают, как описано в Примере 145, с использованием (SP)-10au вместо (RP)-4tt.
Пример 160. Синтез дисульфид пронуклеотида (SP)-2-N-Феноксиацетил-гуанозин-3'-ил уридин-5'-ил фосфортиоата [(SP)-24gu].
Неочищенный (SP)-24gu получают, как описано в Примере 145, с использованием (SP)-10gu вместо (RP)-4tt.
Пример 161. Синтез дисульфид пронуклеотида (RP)-уридин-2'-ил уридин-5'-ил фосфортиоата [(RP)-25uu].
Неочищенный (SP)-25uu получают, как описано в Примере 145, с использованием (SP)-14uu вместо (RP)-4tt.
Пример 162. Синтез дисульфид пронуклеотида (RP)-6-N-бензоил-аденозин-2'-ил уридин-5'-ил фосфортиоата [(RP)-25au].
Неочищенный (RP)-25au получают, как описано в Примере 145, с использованием (SP)-14au вместо (RP)-4tt.
Пример 163. Синтез дисульфид пронуклеотида (RP)-4-N-бензоил-цитидин-2'-ил уридин-5'-ил фосфортиоата [(RP)-25cu].
Неочищенный (RP)-25cu получают, как описано в Примере 145, с использованием (SP)-14cu вместо (RP)-4tt.
Пример 164. Синтез дисульфид пронуклеотида (RP)-2-N-Феноксиацетил-гуанозин-2'-ил уридин-5'-ил фосфортиоата [(RP)-25gu].
Неочищенный (RP)-25gu получают, как описано в Примере 145, с использованием (SP)-14gu вместо (RP)-4tt.
Пример 165. Синтез дисульфид пронуклеотида (SP)-уридин-2'-ил уридин-5'-ил фосфортиоата [(SP)-25uu].
Неочищенный (SP)-25uu получают, как описано в Примере 145, с использованием (SP)-14uu вместо (RP)-4tt.
Пример 166. Синтез дисульфид пронуклеотида (SP)-6-N-бензоил-аденозин-2'-ил уридин-5'-ил фосфортиоата [(SP)-25au].
Неочищенный (SP)-25au получают, как описано в Примере 145, с использованием (SP)-14au вместо (RP)-4tt.
Пример 167. Синтез дисульфид пронуклеотида (SP)-4-N-бензоил-цитидин-2'-ил уридин-5'-ил фосфортиоата [(SP)-25cu].
Неочищенный (SP)-25cu получают, как описано в Примере 145, с использованием (SP)-14cu вместо (RP)-4tt.
Пример 168. Синтез дисульфид пронуклеотида (SP)-2-N-Феноксиацетил-гуанозин-2'-ил уридин-5'-ил фосфортиоата [(SP)-25gu].
Неочищенный (SP)-25gu получают, как описано в Примере 145, с использованием (SP)-14gu вместо (RP)-4tt.
Схема М: Синтез тиоацеталь пронуклеотидов.
Figure 00000295
Пример 169. Синтез тиоацеталь пронуклеотида (RP)-тимидин-3'-ил тимидин-5'-ил фосфортиоата [(RP)-26tt], как описано на Схеме М.
3,3-Диметоксипропилацетат (100 мкмоль) добавляют к раствору триметилсилилтрифлата (100 мкмоль) в метиленхлориде (1 мл) при -78°C. После перемешивания при температуре -78°C в течение 30 мин, (SP)-1,8- добавляют диазабицикло[5,4,0]ундец-7-ения 5'-O-(трет-бутилдифенилсилил)тимидин-3'-ил 3'-O-(трет-бутилдиметилсилил)тимидин-5'-ил фосфортиоат [(SP)-4tt] (100 мкмоль) в сухом метиленхлориде (1 мл). Смеси дают медленно нагреться до комнатной температуры. Через 1 час смесь упаривают, и затем растворяют в триэтиламина тригидрофториде (500 мкл). Смесь перемешивают в течение 15 час при комнатной температуре. 0,1 М буферный раствор аммония ацетата (2,5 мл) затем добавляют к смеси, и смесь промывают Et2O (3×3 мл). Объединенные органические фракции снова экстрагируют 0,1 М буферным раствором аммония ацетата (3 мл). Объединенные водные фракции затем упаривают до сухого состояния при сниженном давлении, и остаток очищают обращенно-фазовой хроматографией на колонке [линейный градиент 0-10% ацетонитрила в 0,1 М буферном растворе аммония ацетата (рН 7,0)] с получением (RP)-26tt.
Пример 170. Синтез тиоацеталь пронуклеотида (RP)-6-N-бензоил-дезоксиаденозин-3'-ил тимидин-5'-ил фосфортиоата [(RP)-26at].
Неочищенный (RP)-26at получают, как описано в Примере 169, с использованием (RP)-4at вместо (RP)-4tt.
Пример 171. Синтез тиоацеталь пронуклеотида (RP)-4-N-бензоил-дезоксицитидин-3'-ил тимидин-5'-ил фосфортиоата [(RP)-26ct].
Неочищенный (RP)-26ct получают, как описано в Примере 169, с использованием (RP)-4ct вместо (RP)-4tt.
Пример 172. Синтез тиоацеталь пронуклеотида [(RP)-2-N-феноксиацетил-дезоксигуанозин-3'-ил тимидин-5'-ил фосфортиоата [(RP)-26gt].
Неочищенный (RP)-26gt получают, как описано в Примере 169, с использованием (RP)-4г вместо (RP)-4tt.
Пример 173. Синтез тиоацеталь пронуклеотида (SP)-тимидин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-26tt].
Неочищенный (SP)-26tt получают, как описано в Примере 169, с использованием (SP)-4tt вместо (RP)-4tt.
Пример 174. Синтез тиоацеталь пронуклеотида (SP)-6-N-бензоил-дезоксиаденозин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-26at].
Неочищенный (SP)-26at получают, как описано в Примере 169, с использованием (SP)-4at вместо (RP)-4tt.
Пример 175. Синтез тиоацеталь пронуклеотида (SP)-4-N-бензоил-дезоксицитидин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-26ct].
Неочищенный (SP)-26ct получают, как описано в Примере 169, с использованием (SP)-4ct вместо (RP)-4tt.
Пример 176. Синтез тиоацеталь пронуклеотида (SP)-2-N-феноксиацетил-дезоксигуанозин-3'-илтимидин-5'-ил фосфортиоата [(SP)-26gt].
Неочищенный (SP)-26gt получают, как описано в Примере 169, с использованием (SP)-4gt вместо (RP)-4tt.
Пример 177. Синтез тиоацеталь пронуклеотида (RP)-уридин-3'-ил уридин-5'-ил фосфортиоата [(RP)-26uu].
Неочищенный (RP)-26uu получают, как описано в Примере 169, с использованием (RP)-10uu вместо (RP)-4tt.
Пример 178. Синтез тиоацеталь пронуклеотида (RP)-6-N-бензоил-аденозин-3'-ил уридин-5'-ил фосфортиоата [(RP)-26au].
Неочищенный (RP)-26au получают, как описано в Примере 169, с использованием (RP)-10au вместо (RP)-4tt.
Пример 179. Синтез тиоацеталь пронуклеотида (RP)-4-N-бензоил-цитидин-3'-ил уридин-5'-ил фосфортиоата [(RP)-26cu].
Неочищенный (RP)-26cu получают, как описано в Примере 169, с использованием (RP)-10cu вместо (RP)-4tt.
Пример 180. Синтез тиоацеталь пронуклеотида (RP)-2-N-Феноксиацетил-гуанозин-3'-ил уридин-5'-ил фосфортиоата [(RP)-26gu].
Неочищенный (RP)-26gu получают, как описано в Примере 169, с использованием (RP)-10gu вместо (RP)-4tt.
Пример 181. Синтез тиоацеталь пронуклеотида (SP)-уридин-3'-ил уридин-5'-ил фосфортиоата [(SP)-26uu].
Неочищенный (SP)-26uu получают, как описано в Примере 169, с использованием (SP)-10uu вместо (RP)-4tt.
Пример 182. Синтез тиоацеталь пронуклеотида (SP)-6-N-бензоил-аденозин-3'-ил уридин-5'-ил фосфортиоата [(SP)-26au].
Неочищенный (SP)-26au получают, как описано в Примере 169, с использованием (SP)-10au вместо (RP)-4tt.
Пример 183. Синтез тиоацеталь пронуклеотида (SP)-4-N-бензоил-цитидин-3'-ил уридин-5'-ил фосфортиоата [(SP)-26cu].
Неочищенный (SP)-26cu получают, как описано в Примере 169, с использованием (SP)-10au вместо (RP)-4tt.
Пример 184. Синтез тиоацеталь пронуклеотида (SP)-2-N-Феноксиацетил-гуанозин-3'-ил уридин-5'-ил фосфортиоата [(SP)-26gu].
Неочищенный (SP)-26gu получают, как описано в Примере 169, с использованием (SP)-10gu вместо (RP)-4tt.
Пример 185. Синтез тиоацеталь пронуклеотида (RP)-уридин-2'-ил уридин-5'-ил фосфортиоата [(RP)-27uu].
Неочищенный (SP)-27uu получают, как описано в Примере 169, с использованием (SP)-14uu вместо (RP)-4tt.
Пример 186. Синтез тиоацеталь пронуклеотида (RP)-6-N-бензоил-аденозин-2'-ил уридин-5'-ил фосфортиоата [(RP)-27au].
Неочищенный (RP)-27au получают, как описано в Примере 169, с использованием (SP)-14au вместо (RP)-4tt.
Пример 187. Синтез тиоацеталь пронуклеотида (RP)-4-N-бензоил-цитидин-2'-ил уридин-5'-ил фосфортиоата [(RP)-27cu].
Неочищенный (RP)-27cu получают, как описано в Примере 169, с использованием (SP)-14cu вместо (RP)-4tt.
Пример 188. Синтез тиоацеталь пронуклеотида (RP)-2-N-Феноксиацетил-гуанозин-2'-ил уридин-5'-ил фосфортиоата [(RP)-27gu].
Неочищенный (RP)-27gu получают, как описано в Примере 169, с использованием (SP)-14gu вместо (RP)-4tt.
Пример 189. Синтез тиоацеталь пронуклеотида (SP)-уридин-2'-ил уридин-5'-ил фосфортиоата [(SP)-27uu].
Неочищенный (SP)-27uu получают, как описано в Примере 169, с использованием (SP)-14uu вместо (RP)-4tt.
Пример 190. Синтез тиоацеталь пронуклеотида (SP)-6-N-бензоил-аденозин-2'-ил уридин-5'-ил фосфортиоата [(SP)-27au].
Неочищенный (SP)-27au получают, как описано в Примере 169, с использованием (SP)-14au вместо (RP)-4tt.
Пример 191. Синтез тиоацеталь пронуклеотида (SP)-4-N-бензоил-цитидин-2'-ил уридин-5'-ил фосфортиоата [(SP)-27cu].
Неочищенный (SP)-27cu получают, как описано в Примере 169, с использованием (SP)-14cu вместо (RP)-4tt.
Пример 192. Синтез тиоацеталь пронуклеотида (SP)-2-N-Феноксиацетил-гуанозин-2'-ил уридин-5'-ил фосфортиоата [(SP)-27gu].
Неочищенный (SP)-27gu получают, как описано в Примере 169, с использованием (SP)-14gu вместо (RP)-4tt.
Схема Н: Синтез С3 енол эфир пронуклеотидов.
Figure 00000296
Пример 193. Синтез С3 енол эфир пронуклеотида (RP)-тимидин-3'-ил тимидин-5'-ил фосфортиоат [(RP)-28tt], как описано на Схеме М.
К раствору (Е)-3-хлорпроп-1-енилацетата (100 мкмоль) в ДМФА (1 мл) добавляют (SP)-1,8-диазабицикло[5,4,0]ундец-7-ения 5'-O-(трет-бутилдифенилсилил)тимидин-3'-ил 3'-O-(трет-бутилдиметилсилил)тимидин-5'-ил фосфортиоат [(SP)-4tt] (100 мкмоль). Через 1 час смесь упаривают, и затем растворяют в триэтиламина тригидрофториде (500 мкл). Смесь перемешивают в течение 15 час при комнатной температуре. 0,1 М буферный раствор аммония ацетата (2,5 мл) затем добавляют к смеси, и смесь промывают Et2O (3×3 мл). Объединенные органические фракции снова экстрагируют 0,1 М буферный раствор аммония ацетата (3 мл). Объединенные водные фракции затем упаривают до сухого состояния при сниженном давлении, и остаток очищают обращенно-фазовой хроматографией на колонке [линейный градиент 0-10% ацетонитрила в 0,1 М буферном растворе аммония ацетата (рН 7,0)] с получением (RP)-28tt.
Пример 194. Синтез С3 енол эфир пронуклеотида (RP)-6-N-бензоил-дезоксиаденозин-3'-ил тимидин-5'-ил фосфортиоата [(RP)-28at].
Неочищенный (RP)-28at получают, как описано в Примере 193, с использованием (RP)-4at вместо (RP)-4tt.
Пример 195. Синтез С3 енол эфир пронуклеотида (RP)-4-N-бензоил-дезоксицитидин-3'-ил тимидин-5'-ил фосфортиоата [(RP)-28ct].
Неочищенный (RP)-28ct получают, как описано в Примере 193, с использованием (RP)-4ct вместо (RP)-4tt.
Пример 196. Синтез С3 енол эфир пронуклеотида (RP)-2-N-феноксиацетил-дезоксигуанозин-3'-ил тимидин-5'-ил фосфортиоата [(RP)-28gt].
Неочищенный (RP)-28gt получают, как описано в Примере 193, с использованием (RP)-4г вместо (RP)-4tt.
Пример 197. Синтез С3 енол эфир пронуклеотида (SP)-тимидин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-28tt].
Неочищенный (SP)-28tt получают, как описано в Примере 193, с использованием (SP)-4tt вместо (RP)-4tt.
Пример 198. Синтез С3 енол эфир пронуклеотида (SP)-6-N-бензоил-дезоксиаденозин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-28at].
Неочищенный (SP)-28at получают, как описано в Примере 193, с использованием (SP)-4at вместо (RP)-4tt.
Пример 199. Синтез С3 енол эфир пронуклеотида (SP)-4-N-бензоил-дезоксицитидин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-28ct].
Неочищенный (SP)-28ct получают, как описано в Примере 193, с использованием (SP)-4ct вместо (RP)-4tt.
Пример 200. Синтез С3 енол эфир пронуклеотида (SP)-2-N-феноксиацетил-дезоксигуанозин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-28gt].
Неочищенный (SP)-28gt получают, как описано в Примере 193, с использованием (SP)-4gt вместо (RP)-4tt.
Пример 201. Синтез С3 енол эфир пронуклеотида (RP)-уридин-3'-ил уридин-5'-ил фосфортиоата [(RP)-28uu].
Неочищенный (RP)-28uu получают, как описано в Примере 193, с использованием (RP)-10uu вместо (RP)-4tt.
Пример 202. Синтез С3 енол эфир пронуклеотида (RP)-6-N-бензоил-аденозин-3'-ил уридин-5'-ил фосфортиоата [(RP)-28au].
Неочищенный (RP)-28au получают, как описано в Примере 193, с использованием (RP)-10au вместо (RP)-4tt.
Пример 203. Синтез С3 енол эфир пронуклеотида (RP)-4-N-бензоил-цитидин-3'-ил уридин-5'-ил фосфортиоата [(RP)-28cu].
Неочищенный (RP)-28cu получают, как описано в Примере 193, с использованием (RP)-10cu вместо (RP)-4tt.
Пример 204. Синтез С3 енол эфир пронуклеотида (RP)-2-N-Феноксиацетил-гуанозин-3'-ил уридин-5'-ил фосфортиоата [(RP)-28gu].
Неочищенный (RP)-28gu получают, как описано в Примере 193, с использованием (RP)-10gu вместо (RP)-4tt.
Пример 205. Синтез С3 енол эфир пронуклеотида (SP)-уридин-3'-ил уридин-5'-ил фосфортиоата [(SP)-28uu].
Неочищенный (SP)-28uu получают, как описано в Примере 193, с использованием (SP)-10uu вместо (RP)-4tt.
Пример 206. Синтез С3 енол эфир пронуклеотида (SP)-6-N-бензоил-аденозин-3'-ил уридин-5'-ил фосфортиоата [(SP)-28au].
Неочищенный (SP)-28au получают, как описано в Примере 193, с использованием (SP)-10au вместо (RP)-4tt.
Пример 207. Синтез С3 енол эфир пронуклеотида (SP)-4-N-бензоил-цитидин-3'-ил уридин-5'-ил фосфортиоата [(SP)-28cu].
Неочищенный (SP)-28cu получают, как описано в Примере 193, с использованием (SP)-10au вместо (RP)-4tt.
Пример 208. Синтез С3 енол эфир пронуклеотида (SP)-2-N-Феноксиацетил-гуанозин-3'-ил уридин-5'-ил фосфортиоата [(SP)-28gu].
Неочищенный (SP)-28gu получают, как описано в Примере 193, с использованием (SP)-10gu вместо (RP)-4tt.
Пример 209. Синтез С3 енол эфир пронуклеотида (RP)-уридин-2'-ил уридин-5'-ил фосфортиоата [(RP)-29uu].
Неочищенный (SP)-29uu получают, как описано в Примере 193, с использованием (SP)-14uu вместо (RP)-4tt.
Пример 210. Синтез С3 енол эфир пронуклеотида (RP)-6-N-бензоил-аденозин-2'-ил уридин-5'-ил фосфортиоата [(RP)-29au].
Неочищенный (RP)-29auu получают, как описано в Примере 193, с использованием (SP)-14au вместо (RP)-4tt.
Пример 211. Синтез С3 енол эфир пронуклеотида (RP)-4-N-бензоил-цитидин-2'-ил уридин-5'-ил фосфортиоата [(RP)-29cu].
Неочищенный (RP)-29cu получают, как описано в Примере 193, с использованием (SP)-14cu вместо (RP)-4tt.
Пример 212. Синтез С3 енол эфир пронуклеотида (RP)-2-N-Феноксиацетил-гуанозин-2'-ил уридин-5'-ил фосфортиоата [(RP)-29gu].
Неочищенный (RP)-29gu получают, как описано в Примере 193, с использованием (SP)-14gu вместо (RP)-4tt.
Пример 213. Синтез С3 енол эфир пронуклеотида (SP)-уридин-2'-ил уридин-5'-ил фосфортиоата [(SP)-29uu].
Неочищенный (SP)-29uu получают, как описано в Примере 193, с использованием (SP)-14uu вместо (RP)-4tt.
Пример 214. Синтез С3 енол эфир пронуклеотида (SP)-6-N-бензоил-аденозин-2'-ил уридин-5'-ил фосфортиоата [(SP)-29au].
Неочищенный (SP)-29au получают, как описано в Примере 193, с использованием (SP)-14au вместо (RP)-4tt.
Пример 215. Синтез С3 енол эфир пронуклеотида (SP)-4-N-бензоил-цитидин-2'-ил уридин-5'-ил фосфортиоата [(SP)-29cu].
Неочищенный (SP)-29cu получают, как описано в Примере 193, с использованием (SP)-14cu вместо (RP)-4tt.
Пример 216. Синтез С3 енол эфир пронуклеотида (SP)-2-N-Феноксиацетил-гуанозин-2'-ил уридин-5'-ил фосфортиоата [(SP)-29gu].
Неочищенный (SP)-29gu получают, как описано в Примере 193, с использованием (SP)-14gu вместо (RP)-4tt.
Схема О: Синтез С4 енол эфир пронуклеотидов.
Figure 00000297
Пример 217. Синтез С4 енол эфир пронуклеотида (RP)-тимидин-3'-ил тимидин-5'-ил фосфортиоат [(RP)-30tt], как описано на Схеме N.
К раствору (Е)-4-хлорбут-1-енилацетата (100 мкмоль) в ДМФА (1 мл) добавляют (SP)-1,8-диазабицикло[5,4,0]ундец-7-ения 5'-O-(трет-бутилдифенилсилил)тимидин-3'-ил 3'-(9-(трет-бутилдиметилсилил)тимидин-5'-ил фосфортиоат [(SP)-4tt] (100 мкмоль). Через 1 час смесь упаривают, и затем растворяют в триэтиламина тригидрофториде (500 мкл). Смесь перемешивают в течение 15 час при комнатной температуре. 0,1 М буферный раствор аммония ацетата (2,5 мл) затем добавляют к смеси, и смесь промывают Et2O (3×3 мл). Объединенные органические фракции снова экстрагируют 0,1 М буферным раствором аммония ацетата (3 мл). Объединенные водные фракции затем упаривают до сухого состояния при сниженном давлении, и остаток очищают обращенно-фазовой хроматографией на колонке [линейный градиент 0-10% ацетонитрила в 0,1 М буферном растворе аммония ацетата (рН 7,0)] с получением (RP)-30tt.
Пример 218. Синтез С4 енол эфир пронуклеотида (RP)-6-N-бензоил-дезоксиаденозин-3'-ил тимидин-5'-ил фосфортиоата [(RP)-30at].
Неочищенный (RP)-30at получают, как описано в Примере 217, с использованием (RP)-4at вместо (RP)-4tt.
Пример 219. Синтез С4 енол эфир пронуклеотида (RP)-4-N-бензоил-дезоксицитидин-3'-ил тимидин-5'-ил фосфортиоата [(RP)-30ct].
Неочищенный (RP)-30ct получают, как описано в Примере 217, с использованием (RP)-4ct вместо (RP)-4tt.
Пример 220. Синтез С4 енол эфир пронуклеотида (RP)-2-N-феноксиацетил-дезоксигуанозин-3'-ил тимидин-5'-ил фосфортиоата [(RP)-30gt].
Неочищенный (RP)-30gt получают, как описано в Примере 217, с использованием (RP)-4 г вместо (RP)-4tt.
Пример 221. Синтез С4 енол эфир пронуклеотида (SP)-тимидин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-30tt].
Неочищенный (SP)-30tt получают, как описано в Примере 217, с использованием (SP)-4tt вместо (RP)-4tt.
Пример 222. Синтез С4 енол эфир пронуклеотида (SP)-6-N-бензоил-дезоксиаденозин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-30at].
Неочищенный (SP)-30at получают, как описано в Примере 217, с использованием (SP)-4at вместо (RP)-4tt.
Пример 223. Синтез С4 енол эфир пронуклеотида (SP)-4-N-бензоил-дезоксицитидин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-30ct].
Неочищенный (SP)-30ct получают, как описано в Примере 217, с использованием (SP)-4ct вместо (RP)-4tt.
Пример 224. Синтез С4 енол эфир пронуклеотида (SP)-2-N-феноксиацетил-дезоксигуанозин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-30gt].
Неочищенный (SP)-30gt получают, как описано в Примере 217, с использованием (SP)-4gt вместо (RP)-4tt.
Пример 225. Синтез С4 енол эфир пронуклеотида (RP)-уридин-3'-ил уридин-5'-ил фосфортиоата [(RP)-30uu].
Неочищенный (RP)-30uu получают, как описано в Примере 217, с использованием (RP)-10uu вместо (RP)-4tt.
Пример 226. Синтез С4 енол эфир пронуклеотида (RP)-6-N-бензоил-аденозин-3'-ил уридин-5'-ил фосфортиоата [(RP)-30au].
Неочищенный (RP)-30au получают, как описано в Примере 217, с использованием (RP)-10au вместо (RP)-4tt.
Пример 227. Синтез С4 енол эфир пронуклеотида (RP)-4-N-бензоил-цитидин-3'-ил уридин-5'-ил фосфортиоата [(RP)-30cu].
Неочищенный (RP)-30cu получают, как описано в Примере 217, с использованием (RP)-10cu вместо (RP)-4tt.
Пример 228. Синтез С4 енол эфир пронуклеотида (RP)-2-N-Феноксиацетил-гуанозин-3'-ил уридин-5'-ил фосфортиоата [(RP)-30gu].
Неочищенный (RP)-30gu получают, как описано в Примере 217, с использованием (RP)-10gu вместо (RP)-4tt.
Пример 229. Синтез С4 енол эфир пронуклеотида (SP)-уридин-3'-ил уридин-5'-ил фосфортиоата [(SP)-30uu].
Неочищенный (SP)-30uu получают, как описано в Примере 217, с использованием (SP)-10uu вместо (RP)-4tt.
Пример 230. Синтез С4 енол эфир пронуклеотида (SP)-6-N-бензоил-аденозин-3'-ил уридин-5'-ил фосфортиоата [(SP)-30au].
Неочищенный (SP)-30au получают, как описано в Примере 217, с использованием (SP)-10au вместо (RP)-4tt.
Пример 231. Синтез С4 енол эфир пронуклеотида (SP)-4-N-бензоил-цитидин-3'-ил уридин-5'-ил фосфортиоата [(SP)-30cu].
Неочищенный (SP)-30cu получают, как описано в Примере 217, с использованием (SP)-10au вместо (RP)-4tt.
Пример 232. Синтез С4 енол эфир пронуклеотида (SP)-2-N-Феноксиацетил-гуанозин-3'-ил уридин-5'-ил фосфортиоата [(SP)-30gu].
Неочищенный (SP)-30gu получают, как описано в Примере 217, с использованием (SP)-10gu вместо (RP)-4tt.
Пример 233. Синтез С4 енол эфир пронуклеотида (RP)-уридин-2'-ил уридин-5'-ил фосфортиоата [(RP)-31uu].
Неочищенный (SP)-31uu получают, как описано в Примере 217, с использованием (SP)-14uu вместо (RP)-4tt.
Пример 234. Синтез С4 енол эфир пронуклеотида (RP)-6-N-бензоил-аденозин-2'-ил уридин-5'-ил фосфортиоата [(RP)-31au].
Неочищенный (RP)-31au получают, как описано в Примере 217, с использованием (SP)-14au вместо (RP)-4tt.
Пример 235. Синтез С4 енол эфир пронуклеотида (RP)-4-N-бензоил-цитидин-2'-ил уридин-5'-ил фосфортиоата [(RP)-31cu].
Неочищенный (RP)-31cu получают, как описано в Примере 217, с использованием (SP)-14 си вместо (RP)-4tt.
Пример 236. Синтез С4 енол эфир пронуклеотида (RP)-2-N-Феноксиацетил-гуанозин-2'-ил уридин-5'-ил фосфортиоата [(RP)-31gu].
Неочищенный (RP)-31gu получают, как описано в Примере 217, с использованием (SP)-14gu вместо (RP)-4tt.
Пример 237. Синтез С4 енол эфир пронуклеотида (SP)-уридин-2'-ил уридин-5'-ил фосфортиоата [(SP)-31uu].
Неочищенный (SP)-31uu получают, как описано в Примере 217, с использованием (SP)-14uu вместо (RP)-4tt.
Пример 238. Синтез С4 енол эфир пронуклеотида (SP)-6-N-бензоил-аденозин-2'-ил уридин-5'-ил фосфортиоата [(SP)-31au].
Неочищенный (SP)-31au получают, как описано в Примере 217, с использованием (SP)-14au вместо (RP)-4tt.
Пример 239. Синтез С4 енол эфир пронуклеотида (SP)-4-N-бензоил-цитидин-2'-ил уридин-5'-ил фосфортиоата [(SP)-31cu].
Неочищенный (SP)-31cu получают, как описано в Примере 217, с использованием (SP)-14cu вместо (RP)-4tt.
Пример 240. Синтез С4 енол эфир пронуклеотида (SP)-2-N-Феноксиацетил-гуанозин-2'-ил уридин-5'-ил фосфортиоата [(SP)-31gu].
Неочищенный (SP)-31gu получают, как описано в Примере 217, с использованием (SP)-14gu вместо (RP)-4tt.
Схема П: Синтез защищенного 2'-5'-А3 Н-фосфоната
Figure 00000298
Пример 241. Синтез 5'-O-(метокситритил)-защищенного 2'-5'-А3 Н-фосфоната проиллюстрирован на Схеме П-а.
Осуществляют сочетание 5'-O-(метокситритил)-защищенного соединения 32 с 9а, как описано на Схеме 6, Пример 41. 5'-O-(Метокситритил)-защитную группу удаляют с полученного Н-фосфоната 33 обработкой 1% ТФУ в CH2Cl2 с получением 5'-ОН соединения 34. Сочетание 34 и 32, описанное на Схеме 6, Пример 41, дает Н-фосфонат тринуклеотид 35. Удаление защитной группы с группы 5'-ОН с помощью 1% ТФУ в CH2Cl2 дает Н-фосфонат тринуклеотид 36.
Схема П-б: Синтез 2'-5'-А3 S-ацетил-2-тиоэтил пронуклеотида
Figure 00000299
Пример 242. Синтез 2'-5'-А3 8-ацетил-2-тиоэтил пронуклеотида проиллюстрирован на Схеме П-б.
5'-ОН Н-фосфонат тринуклеотид (соединение 36) превращают в S-ацетил-2-тиоэтил пролекарство по способу Eldrup, как описано в патенте США 7,202,224. К 36 (1 ммоль) добавляют 1H-тетразол (1,1 ммоль), и смесь сушат в течение ночи над Р205. К полученной смеси добавляют сухой ацетонитрил (10 мл), с последующим добавлением бис(S-ацетил-2-тиоэтил)N,N-диизопропилфосфорамидита (1,1 ммоль), и полученную смесь перемешивают при комнатной температуре в течение 2 час. Растворитель удаляют, остаток охлаждают до -40°C, и добавляют раствор м-ХПБК (1,0 ммоль) в дихлорметане (10 мл). После перемешивания при комнатной температуре в течение 1 час, добавляют водный раствор NaHSO3, органическую фракцию отделяют, и продукт 37 выделяют хроматографически.
Соединение 37 превращают в конечный продукт 39 в соответствии с методикой Схемы 7, Пример 49. Соединение 37 (100 мкмоль) сушат повторным соупариванием с сухим пиридином, и затем растворяют в сухом пиридине (1 мл). Добавляют N-хлорсукцинимид (0,1 ммоль), и смесь перемешивают в течение 2 час при 0°C. Смесь упаривают и растворяют в сухом пиридине (1 мл). Полученную выше смесь обрабатывают 3-ацетил-2-тиоэтанолом (100 мкмоль) в сухом пиридине (100 мкмоль). Через 1 час смесь упаривают, и затем растворяют в триэтиламина тригидрофториде (500 мкл). Смесь перемешивают в течение 15 час при комнатной температуре. 0,1 М буферный раствор аммония ацетата (2,5 мл) затем добавляют к смеси, и смесь промывают Et2O (3×3 мл). Объединенные органические фракции снова экстрагируют 0,1 М буферным раствором аммония ацетата (3 мл). Объединенные водные фракции затем упаривают до сухого состояния при сниженном давлении, и остаток очищают обращенно-фазовой хроматографией на колонке [линейный градиент 0-10% ацетонитрила в 0,1 М буферном растворе аммония ацетата (рН 7,0)] с получением 39.
Схема Р: Синтез пролекарств триметиламмонийметил нуклеиновой кислоты.
Figure 00000300
Пример 243. Синтез триметиламмонийметил пролекарства нуклеиновой кислоты (RP)-тимидин-3'-ил тимидин-5'-ил фосфоната [(RP)-16tt], как описано на Схеме Р.
(RP)-5'-O-(трет-Бутилдифенилсилил)тимидин-3'-ил 3'-O-(трет-бутилдиметилсилил)тимидин-5'-ил H-фосфонат [(RP)-7tt] (100 мкмоль) сушат повторным соупариванием с сухим пиридином, и затем растворяют в сухом пиридине (1 мл), добавляют N-хлорсукцинимид (0,1 ммоль), и смесь перемешивают в течение 2 час при 0°C. Смесь упаривают и растворяют в сухом пиридине (1 мл). Полученную выше смесь обрабатывают 1-(2-гидрокси)-этил-триметиламмония хлоридом (100 мкмоль) в сухом пиридине (100 мкмоль). Через 1 час смесь упаривают, и затем растворяют в триэтиламина тригидрофториде (500 мкл). Смесь перемешивают в течение 15 час при комнатной температуре. 0,1 М буферный раствор аммония ацетата (2,5 мл) затем добавляют к смеси, и смесь промывают Et2O (3×3 мл). Объединенные органические фракции снова экстрагируют 0,1 М буферным раствором аммония ацетата (3 мл). Объединенные водные фракции затем упаривают до сухого состояния при сниженном давлении, и остаток очищают обращенно-фазовой хроматографией на колонке [линейный градиент 0-10% ацетонитрила в 0,1 М буферном растворе аммония ацетата (рН 7,0)] с получением (RP)-40tt.
Пример 244. Синтез триметиламмонийметил пронуклеотида (RP)-6-N-бензоил-дезоксиаденозин-3'-ил тимидин-5'-ил фосфоната [(RP)-40at].
Неочищенный (RP)-40at получают, как описано в Примере 243, с использованием (RP)-7at вместо (RP)-7tt.
Пример 245. Синтез триметиламмонийметил пронуклеотида (RP)-4-N-бензоил-дезоксицитидин-3'-ил тимидин-5'-ил фосфоната [(RP)-40ct].
Неочищенный (RP)-40ct получают, как описано в Примере 49, с использованием (RP)-7ct вместо (RP)-7tt.
Пример 246. Синтез триметиламмонийметил пронуклеотида (RP)-2-N-феноксиацетил-дезоксигуанозин-3'-ил тимидин-5'-ил фосфоната [(RP)-40gt].
Неочищенный (RP)-40gt получают, как описано в Примере 49, с использованием (RP)-7 г вместо (RP)-7tt.
Пример 247. Синтез триметиламмонийметил пронуклеотида (SP)-тимидин-3'-ил тимидин-5'-ил фосфоната [(SP)-40tt].
Неочищенный (SP)-40tt получают, как описано в Примере 49, с использованием (SP)-7tt вместо (RP)-7tt.
Пример 248. Синтез триметиламмонийметил пронуклеотида (SP)-6-N-бензоил-дезоксиаденозин-3'-ил тимидин-5'-ил фосфоната [(SP)-40at].
Неочищенный (SP)-40at получают, как описано в Примере 49, с использованием (SP)-7at вместо (RP)-7tt.
Пример 249. Синтез триметиламмонийметил пронуклеотида (SP)-4-N-бензоил-дезоксицитидин-3'-ил тимидин-5'-ил фосфоната [(SP)-40ct].
Неочищенный (SP)-40ct получают, как описано в Примере 49, с использованием (SP)-7ct вместо (RP)-7tt.
Пример 250. Синтез триметиламмонийметил пронуклеотида (SP)-2-N-феноксиацетил-дезоксигуанозин-3'-ил тимидин-5'-ил фосфоната [(SP)-40gt].
Неочищенный (SP)-40gt получают, как описано в Примере 49, с использованием (SP)-7gt вместо (RP)-7tt.
Пример 251. Синтез триметиламмонийметил пронуклеотида (RP)-уридин-3'-ил уридин-5'-ил фосфоната [(RP)-40uu].
Неочищенный (RP)-40uu получают, как описано в Примере 49, с использованием (RP)-12uu вместо (RP)-7tt.
Пример 252. Синтез триметиламмонийметил пронуклеотида (RP)-6-N-бензоил-аденозин-3'-ил уридин-5'-ил фосфоната [(RP)-40au].
Неочищенный (RP)-40au получают, как описано в Примере 49, с использованием (RP)-12au вместо (RP)-7tt.
Пример 253. Синтез триметиламмонийметил пронуклеотида (RP)-4-N-бензоил-цитидин-3'-ил уридин-5'-ил фосфоната [(RP)-40cu].
Неочищенный (RP)-16 си получают, как описано в Примере 49, с использованием (RP)-12cu вместо (RP)-7tt.
Пример 254. Синтез триметиламмонийметил пронуклеотида (RP)-2-N-феноксиацетил-гуанозин-3'-ил уридин-5'-ил фосфоната [(RP)-40gu].
Неочищенный (RP)-40gu получают, как описано в Примере 49, с использованием (RP)-12gu вместо (RP)-7tt.
Пример 255. Синтез триметиламмонийметил пронуклеотида (SP)-уридин-3'-ил уридин-5'-ил фосфоната [(SP)-40uu].
Неочищенный (SP)-40uu получают, как описано в Примере 49, с использованием (SP)-12uu вместо (RP)-7tt.
Пример 256. Синтез триметиламмонийметил пронуклеотида (SP)-6-N-бензоил-аденозин-3'-ил уридин-5'-ил фосфоната [(SP)-40au].
Неочищенный (SP)-40au получают, как описано в Примере 49, с использованием (SP)-12au вместо (RP)-7tt.
Пример 257. Синтез триметиламмонийметил пронуклеотида (SP)-4-N-бензоил-цитидин-3'-ил уридин-5'-ил фосфоната [(SP)-40cu].
Неочищенный (SP)-40cu получают, как описано в Примере 49, с использованием (SP)-12au вместо (RP)-7tt.
Пример 258. Синтез триметиламмонийметил пронуклеотида (SP)-2-N-Феноксиацетил-гуанозин-3'-ил уридин-5'-ил фосфоната [(SP)-40gu].
Неочищенный (SP)-40gu получают, как описано в Примере 49, с использованием (SP)-12gu вместо (RP)-7tt.
Пример 259. Синтез триметиламмонийметил пронуклеотида (RP)-уридин-2'-ил уридин-5'-ил фосфоната [(RP)-41uu].
Неочищенный (RP)-41uu получают, как описано в Примере 49, с использованием (-RP)-15uu вместо (RP)-7tt.
Пример 260. Синтез триметиламмонийметил пронуклеотида (RP)-6-N-бензоил-аденозин-2'-ил уридин-5'-ил фосфоната [(RP)-41au].
Неочищенный (RP)-41au получают, как описано в Примере 49, с использованием (SP)-15au вместо (RP)-7tt.
Пример 261. Синтез триметиламмонийметил пронуклеотида (RP)-4-N-бензоил-цитидин-2'-ил уридин-5'-ил фосфоната [(RP)-41cu].
Неочищенный (RP)-41cu получают, как описано в Примере 49, с использованием (SP)-15cu вместо (RP)-7tt.
Пример 262. Синтез триметиламмонийметил пронуклеотида (RP)-2-N-Феноксиацетил-гуанозин-2'-ил уридин-5'-ил H-фосфоната [(RP)-41gu].
Неочищенный (RP)-41gu получают, как описано в Примере 49, с использованием (SP)-15gu вместо (RP)-7tt.
Пример 263. Синтез триметиламмонийметил пронуклеотида (SP)-уридин-2'-ил уридин-5'-ил фосфоната [(SP)-41uu].
Неочищенный (SP)-41uu получают, как описано в Примере 49, с использованием (SP)-15uu вместо (RP)-7tt.
Пример 264. Синтез триметиламмонийметил пронуклеотида (SP)-6-N-бензоил-аденозин-2'-ил уридин-5'-ил фосфоната [(SP)-41au].
Неочищенный (SP)-41au получают, как описано в Примере 49, с использованием (SP)-15au вместо (RP)-7tt.
Пример 265. Синтез триметиламмонийметил пронуклеотида (SP)-4-N-бензоил-цитидин-2'-ил уридин-5'-ил фосфоната [(SP)-41cu].
Неочищенный (SP)-41cu получают, как описано в Примере 49, с использованием (SP)-15cu вместо (RP)-7tt.
Пример 266. Синтез триметиламмонийметил пронуклеотида (SP)-2-N-Феноксиацетил-гуанозин-2'-ил уридин-5'-ил фосфоната [(SP)-41gu].
Неочищенный (SP)-41gu получают, как описано в Примере 49, с использованием (SP)-15gu вместо (RP)-7tt.
Схема С: Синтез пролекарств алкилгидроксамат нуклеиновой кислоты.
Figure 00000301
Пример 267. Синтез алкилгидроксамат пролекарства нуклеиновой кислоты (RP)-тимидин-3'-ил тимидин-5'-ил фосфоната [(RP)-42tt], как описано на Схеме С.
(RP)-5'-O-(трет-Бутилдифенилсилил)тимидин-3'-ил 3'-O-(трет-бутилдиметилсилил)тимидин-5'-ил H-фосфонат [(RP)-7tt] (100 мкмоль) сушат повторным соупариванием с сухим пиридином, и затем растворяют в сухом пиридине (1 мл). Добавляют N-хлорсукцинимид (0,1 ммоль), и смесь перемешивают в течение 2 час при 0°C. Смесь упаривают и растворяют в сухом пиридине (1 мл). Полученную выше смесь обрабатывают N-метокси-N-метил-3-гидроксипропионамидом (100 мкмоль) в сухом пиридине (100 мкмоль). Через 1 час смесь упаривают, и затем растворяют в триэтиламина тригидрофториде (500 мкл). Смесь перемешивают в течение 15 час при комнатной температуре. 0,1 М буферный раствор аммония ацетата (2,5 мл) затем добавляют к смеси, и смесь промывают Et2O (3×3 мл). Объединенные органические фракции снова экстрагируют 0,1 М буферным раствором аммония ацетата (3 мл). Объединенные водные фракции затем упаривают до сухого состояния при сниженном давлении, и остаток очищают обращенно-фазовой хроматографией на колонке [линейный градиент 0-10% ацетонитрила в 0,1 М буферном растворе аммония ацетата (рН 7,0)] с получением (RP)-42tt.
Пример 268. Синтез алкилгидроксамат пронуклеотида (RP)-6-N-бензоил-дезоксиаденозин-3'-ил тимидин-5'-ил фосфоната [(RP)-42at].
Неочищенный (RP)-42at получают, как описано в Примере 267, с использованием (RP)-7at вместо (RP)-7tt.
Пример 269. Синтез алкилгидроксамат пронуклеотида (RP)-4-N-бензоил-дезоксицитидин-3'-ил тимидин-5'-ил фосфоната [(RP)-42ct].
Неочищенный (RP)-42ct получают, как описано в Примере 267, с использованием (RP)-7ct вместо (RP)-7tt.
Пример 270. Синтез алкилгидроксамат пронуклеотида (RP)-2-N-феноксиацетил-дезоксигуанозин-3'-ил тимидин-5'-ил фосфоната [(RP)-42gt].
Неочищенный (RP)-42gt получают, как описано в Примере 267, с использованием (RP)-7 г вместо (RP)-7tt.
Пример 271. Синтез алкилгидроксамат пронуклеотида (SP)-тимидин-3'-ил тимидин-5'-ил фосфоната [(SP)-42tt].
Неочищенный (SP)-42tt получают, как описано в Примере 267, с использованием (SP)-7tt вместо (RP)-7tt.
Пример 272. Синтез алкилгидроксамат пронуклеотида (SP)-6-N-бензоил-дезоксиаденозин-3'-ил тимидин-5'-ил фосфоната [(SP)-42at].
Неочищенный (SP)-42at получают, как описано в Примере 267, с использованием (SP)-7at вместо (RP)-7tt.
Пример 273. Синтез алкилгидроксамат пронуклеотида (SP)-4-N-бензоил-дезоксицитидин-3'-ил тимидин-5'-ил фосфоната [(SP)-42ct].
Неочищенный (SP)-42ct получают, как описано в Примере 267, с использованием (SP)-7ct вместо (RP)-7tt.
Пример 274. Синтез алкилгидроксамат пронуклеотида (SP)-2-N-феноксиацетил-дезоксигуанозин-3'-ил тимидин-5'-ил фосфоната [(SP)-42gt].
Неочищенный (SP)-42gt получают, как описано в Примере 267, с использованием (SP)-7gt вместо (RP)-7tt.
Пример 275. Синтез алкилгидроксамат пронуклеотида (RP)-уридин-3'-ил уридин-5'-ил фосфоната [(RP)-42uu].
Неочищенный (RP)-42uu получают, как описано в Примере 267, с использованием (RP)-12uu вместо (RP)-7tt.
Пример 276. Синтез алкилгидроксамат пронуклеотида (RP)-6-N-бензоил-аденозин-3'-ил уридин-5'-ил фосфоната [(RP)-42au].
Неочищенный (RP)-42au получают, как описано в Примере 267, с использованием (RP)-12au вместо (RP)-7tt.
Пример 277. Синтез алкилгидроксамат пронуклеотида (RP)-4-N-бензоил-цитидин-3'-ил уридин-5'-ил фосфоната [(RP)-42cu].
Неочищенный (RP)-42cu получают, как описано в Примере 267, с использованием (RP)-12cu вместо (RP)-7tt.
Пример 278. Синтез алкилгидроксамат пронуклеотида (RP)-2-N-Феноксиацетил-гуанозин-3'-ил уридин-5'-ил фосфоната [(RP)-42gu].
Неочищенный (RP)-42gu получают, как описано в Примере 267, с использованием (RP)-12gu вместо (RP)-7tt.
Пример 279. Синтез алкилгидроксамат пронуклеотида (SP)-уридин-3'-ил уридин-5'-ил фосфоната [(SP)-42uu].
Неочищенный (SP)-42uu получают, как описано в Примере 267, с использованием (SP)-12uu вместо (RP)-7tt.
Пример 280. Синтез алкилгидроксамат пронуклеотида (SP)-6-N-бензоил-аденозин-3'-ил уридин-5'-ил фосфоната [(SP)-42au].
Неочищенный (SP)-42au получают, как описано в Примере 267, с использованием (SP)-12au вместо (RP)-7tt.
Пример 281. Синтез алкилгидроксамат пронуклеотида (SP)-4-N-бензоил-цитидин-3'-ил уридин-5'-ил фосфоната [(SP)-42cu].
Неочищенный (SP)-42 си получают, как описано в Примере 267, с использованием (SP)-12au вместо (RP)-7tt.
Пример 282. Синтез алкилгидроксамат пронуклеотида (SP)-2-N-Феноксиацетил-гуанозин-3'-ил уридин-5'-ил фосфоната [(SP)-42gu].
Неочищенный (SP)-42gu получают, как описано в Примере 267, с использованием (SP)-12gu вместо (RP)-7tt.
Пример 283. Синтез алкилгидроксамат пронуклеотида (RP)-уридин-2'-ил уридин-5'-ил фосфоната [(RP)-43uu].
Неочищенный (RP)-43uu получают, как описано в Примере 267, с использованием (RP)-15uu вместо (RP)-7tt.
Пример 284. Синтез алкилгидроксамат пронуклеотида (RP)-6-N-бензоил-аденозин-2'-ил уридин-5'-ил фосфоната [(RP)-43au].
Неочищенный (RP)-43au получают, как описано в Примере 267, с использованием (SP)-15au вместо (RP)-7tt.
Пример 285. Синтез алкилгидроксамат пронуклеотида (RP)-4-N-бензоил-цитидин-2'-ил уридин-5'-ил фосфоната [(RP)-43cu].
Неочищенный (RP)-43 си получают, как описано в Примере 267, с использованием (SP)-15 си вместо (RP)-7tt.
Пример 286. Синтез алкилгидроксамат пронуклеотида (RP)-2-N-Феноксиацетил-гуанозин-2'-ил уридин-5'-ил H-фосфоната [(RP)-43gu].
Неочищенный (RP)-43gu получают, как описано в Примере 267, с использованием (SP)-15gu вместо (RP)-7tt.
Пример 287. Синтез алкилгидроксамат пронуклеотида (SP)-уридин-2'-ил уридин-5'-ил фосфоната [(SP)-43uu].
Неочищенный (SP)-43uu получают, как описано в Примере 267, с использованием (SP)-15uu вместо (RP)-7tt.
Пример 288. Синтез алкилгидроксамат пронуклеотида (SP)-6-N-бензоил-аденозин-2'-ил уридин-5'-ил фосфоната [(SP)-43au].
Неочищенный (SP)-43au получают, как описано в Примере 267, с использованием (SP)-15au вместо (RP)-7tt.
Пример 289. Синтез алкилгидроксамат пронуклеотида (SP)-4-N-бензоил-цитидин-2'-ил уридин-5'-ил фосфоната [(SP)-43cu].
Неочищенный (SP)-43cu получают, как описано в Примере 267, с использованием (SP)-15cu вместо (RP)-7tt.
Пример 290. Синтез алкилгидроксамат пронуклеотида (SP)-2-N-Феноксиацетил-гуанозин-2'-ил уридин-5'-ил фосфоната [(SP)-43gu].
Неочищенный (SP)-43gu получают, как описано в Примере 267, с использованием (SP)-15gu вместо (RP)-7tt.
Схема Т: Синтез пролекарств ацилгидроксамат нуклеиновой кислоты.
Figure 00000302
Пример 291. Синтез ацилгидроксамат пролекарство нуклеиновой кислоты of(RP)-тимидин-3'-ил тимидин-5'-ил фосфоната [(RP)-44tt], как описано на Схеме Т.
(RP)-5'-O-(трет-Бутилдифенилсилил)тимидин-3'-ил 3'-O-(трет-бутилдиметилсилил)тимидин-5'-ил H-фосфонат [(RP)-7tt] (100 мкмоль) сушат повторным соупариванием с сухим пиридином, и затем растворяют в сухом пиридине (1 мл). Добавляют N-хлорсукцинимид (0,1 ммоль), и смесь перемешивают в течение 2 час при 0°C. Смесь упаривают и растворяют в сухом пиридине (1 мл). Полученную выше смесь обрабатывают N-ацилокси-N-метил-3-гидроксипропионамидом (100 мкмоль) в сухом пиридине (100 мкмоль). Через 1 час смесь упаривают, и затем растворяют в триэтиламина тригидрофториде (500 мкл). Смесь перемешивают в течение 15 час при комнатной температуре. 0,1 М буферный раствор аммония ацетата (2,5 мл) затем добавляют к смеси, и смесь промывают Et2O (3×3 мл). Объединенные органические фракции снова экстрагируют 0,1 М буферным раствором аммония ацетата (3 мл). Объединенные водные фракции затем упаривают до сухого состояния при сниженном давлении, и остаток очищают обращенно-фазовой хроматографией на колонке [линейный градиент 0-10% ацетонитрила в 0,1 М буферном растворе аммония ацетата (рН 7,0)] с получением (RP)-44tt.
Пример 292. Синтез ацилгидроксамат пронуклеотида (RP)-6-N-бензоил-дезоксиаденозин-3'-ил тимидин-5'-ил фосфоната [(RP)-44at].
Неочищенный (RP)-40at получают, как описано в Примере 291, с использованием (RP)-7at вместо (RP)-7tt.
Пример 293. Синтез ацилгидроксамат пронуклеотида (RP)-4-N-бензоил-дезоксицитидин-3'-ил тимидин-5'-ил фосфоната [(RP)-44ct].
Неочищенный (RP)-44ct получают, как описано в Примере 291, с использованием (RP)-7ct вместо (RP)-7tt.
Пример 294. Синтез ацилгидроксамат пронуклеотида (RP)-2-N-феноксиацетил-дезоксигуанозин-3'-ил тимидин-5'-ил фосфоната [(RP)-44gt].
Неочищенный (RP)-44gt получают, как описано в Примере 291, с использованием (RP)-7г вместо (RP)-7tt.
Пример 295. Синтез ацилгидроксамат пронуклеотида (SP)-тимидин-3'-ил тимидин-5'-ил фосфоната [(SP)-44tt].
Неочищенный (SP)-44tt получают, как описано в Примере 291, с использованием (SP)-7tt вместо (RP)-7tt.
Пример 296. Синтез ацилгидроксамат пронуклеотида (SP)-6-N-бензоил-дезоксиаденозин-3'-ил тимидин-5'-ил фосфоната [(SP)-44at].
Неочищенный (SP)-44at получают, как описано в Примере 291, с использованием (SP)-7at вместо (RP)-7tt.
Пример 297. Синтез ацилгидроксамат пронуклеотида (SP)-4-N-бензоил-дезоксицитидин-3'-ил тимидин-5'-ил фосфоната [(SP)-44ct].
Неочищенный (SP)-44ct получают, как описано в Примере 291, с использованием (SP)-7ct вместо (RP)-7tt.
Пример 298. Синтез ацилгидроксамат пронуклеотида (SP)-2-N-феноксиацетил-дезоксигуанозин-3'-ил тимидин-5'-ил фосфоната [(SP)-44gt].
Неочищенный (SP)-44gt получают, как описано в Примере 291, с использованием (SP)-7gt вместо (RP)-7tt.
Пример 299. Синтез ацилгидроксамат пронуклеотида (RP)-уридин-3'-ил уридин-5'-ил фосфоната [(RP)-44uu].
Неочищенный (RP)-44uu получают, как описано в Примере 291, с использованием (RP)-12uu вместо (RP)-7tt.
Пример 300. Синтез ацилгидроксамат пронуклеотида (RP)-6-N-бензоил-аденозин-3'-ил уридин-5'-ил фосфоната [(RP)-44au].
Неочищенный (RP)-44au получают, как описано в Примере 291, с использованием (RP)-12au вместо (RP)-7tt.
Пример 301. Синтез ацилгидроксамат пронуклеотида (RP)-4-N-бензоил-цитидин-3'-ил уридин-5'-ил фосфоната [(RP)-44cu].
Неочищенный (RP)-44cu получают, как описано в Примере 291, с использованием (RP)-12cu вместо (RP)-7tt.
Пример 302. Синтез ацилгидроксамат пронуклеотида (RP)-2-N-Феноксиацетил-гуанозин-3'-ил уридин-5'-ил фосфоната [(RP)-44gu].
Неочищенный (RP)-40gu получают, как описано в Примере 291, с использованием (RP)-12gu вместо (RP)-7tt.
Пример 303. Синтез ацилгидроксамат пронуклеотида (SP)-уридин-3'-ил уридин-5'-ил фосфоната [(SP)-44uu].
Неочищенный (SP)-44uu получают, как описано в Примере 291, с использованием (SP)-12uu вместо (RP)-7tt.
Пример 304. Синтез ацилгидроксамат пронуклеотида (SP)-6-N-бензоил-аденозин-3'-ил уридин-5'-ил фосфоната [(SP)-44au].
Неочищенный (SP)-44au получают, как описано в Примере 291, с использованием (SP)-12au вместо (RP)-7tt.
Пример 305. Синтез ацилгидроксамат пронуклеотида (SP)-4-N-бензоил-цитидин-3'-ил уридин-5'-ил фосфоната [(SP)-44cu].
Неочищенный (SP)-44cu получают, как описано в Примере 291, с использованием (SP)-12au вместо (RP)-7tt.
Пример 306. Синтез ацилгидроксамат пронуклеотида (SP)-2-N-Феноксиацетил-гуанозин-3'-ил уридин-5'-ил фосфоната [(SP)-44gu].
Неочищенный (SP)-44gu получают, как описано в Примере 291, с использованием (SP)-12gu вместо (RP)-7tt.
Пример 307. Синтез ацилгидроксамат пронуклеотида (RP)-уридин-2'-ил уридин-5'-ил фосфоната [(RP)-45uu].
Неочищенный (RP)-45uu получают, как описано в Примере 291, с использованием (RP)-15uu вместо (RP)-7tt.
Пример 308. Синтез ацилгидроксамат пронуклеотида (RP)-6-N-бензоил-аденозин-2'-ил уридин-5'-ил фосфоната [(RP)-45au].
Неочищенный (RP)-45au получают, как описано в Примере 291, с использованием (SP)-15au вместо (RP)-7tt.
Пример 309. Синтез ацилгидроксамат пронуклеотида (RP)-4-N-бензоил-цитидин-2'-ил уридин-5'-ил фосфоната [(RP)-45cu].
Неочищенный (RP)-45cu получают, как описано в Примере 291, с использованием (SP)-15cu вместо (RP)-7tt.
Пример 310. Синтез ацилгидроксамат пронуклеотида (RP)-2-N-Феноксиацетил-гуанозин-2'-ил уридин-5'-ил H-фосфоната [(RP)-45gu].
Неочищенный (RP)-45gu получают, как описано в Примере 291, с использованием (SP)-15gu вместо (RP)-7tt.
Пример 311. Синтез ацилгидроксамат пронуклеотида (SP)-уридин-2'-ил уридин-5'-ил фосфоната [(SP)-45uu].
Неочищенный (SP)-45uu получают, как описано в Примере 291, с использованием (SP)-15uu вместо (RP)-7tt.
Пример 312. Синтез ацилгидроксамат пронуклеотида (SP)-6-N-бензоил-аденозин-2'-ил уридин-5'-ил фосфоната [(SP)-45au].
Неочищенный (SP)-45au получают, как описано в Примере 291, с использованием (SP)-15au вместо (RP)-7tt.
Пример 313. Синтез ацилгидроксамат пронуклеотида (SP)-4-N-бензоил-цитидин-2'-ил уридин-5'-ил фосфоната [(SP)-45cu].
Неочищенный (SP)-45cu получают, как описано в Примере 291, с использованием (SP)-15cu вместо (RP)-7tt.
Пример 314. Синтез ацилгидроксамат пронуклеотида (SP)-2-N-Феноксиацетил-гуанозин-2'-ил уридин-5'-ил фосфоната [(SP)-45gu].
Неочищенный (SP)-45gu получают, как описано в Примере 291, с использованием (SP)-15gu вместо (RP)-7tt.
Схема У: Синтез тиотриалкиламмонийметил пронуклеотидов.
Figure 00000303
Пример 315. Синтез тиотриалкиламмонийметил пронуклеотида (RP)-тимидин-3'-ил тимидин-5'-ил фосфортиоата [(RP)-46tt], как описано на Схеме У.
(SP)-1,8-Диазабицикло[5,4,0]ундец-7-ения 5'-O-(трет-бутилдифенилсилил)тимидин-3'-ил 3'-O-(трет-бутилдиметилсилил)тимидин-5'-ил фосфортиоат [(SP)-4tt] (100 мкмоль) сушат повторным соупариванием с сухим пиридином, и затем растворяют в сухом метиленхлориде (1 мл). Смесь обрабатывают винилтриметиламмония хлоридом (100 мкмоль) в сухом метиленхлориде (100 мкмоль). Через 1 час смесь упаривают, и затем растворяют в триэтиламина тригидрофториде (500 мкл). Смесь перемешивают в течение 15 час при комнатной температуре. 0,1 М буферный раствор аммония ацетата (2,5 мл) затем добавляют к смеси, и смесь промывают Et2O (3×3 мл). Объединенные органические фракции снова экстрагируют 0,1 М буферным раствором аммония ацетата (3 мл). Объединенные водные фракции затем упаривают до сухого состояния при сниженном давлении, и остаток очищают обращенно-фазовой хроматографией на колонке [линейный градиент 0-10% ацетонитрила в 0,1 М буферном растворе аммония ацетата (рН 7,0)] с получением (RP)-46tt.
Пример 316. Синтез тиотриалкиламмонийметил пронуклеотида (RP)-6-N-бензоил-дезоксиаденозин-3'-ил тимидин-5'-ил фосфортиоата [(RP)-46at].
Неочищенный (RP)-46at получают, как описано в Примере 315, с использованием (RP)-4at вместо (RP)-4tt.
Пример 317. Синтез тиотриалкиламмонийметил пронуклеотида (RP)-4-N-бензоил-дезоксицитидин-3'-ил тимидин-5'-ил фосфортиоата [(RP)-46ct].
Неочищенный (RP)-46ct получают, как описано в Примере 315, с использованием (RP)-4ct вместо (RP)-4tt.
Пример 318. Синтез тиотриалкиламмонийметил пронуклеотида (RP)-2-N-феноксиацетил-дезоксигуанозин-3'-ил тимидин-5'-ил фосфортиоата [(RP)-46gt].
Неочищенный (RP)-46gt получают, как описано в Примере 315, с использованием (RP)-4г вместо (RP)-4tt.
Пример 319. Синтез тиотриалкиламмонийметил пронуклеотида (SP)-тимидин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-46tt].
Неочищенный (SP)-46tt получают, как описано в Примере 315, с использованием (SP)-4tt вместо (RP)-4tt.
Пример 320. Синтез тиотриалкиламмонийметил пронуклеотида (SP)-6-N-бензоил-дезоксиаденозин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-46at].
Неочищенный (SP)-46at получают, как описано в Примере 315, с использованием (SP)-4at вместо (RP)-4tt.
Пример 321. Синтез тиотриалкиламмонийметил пронуклеотида (SP)-4-N-бензоил-дезоксицитидин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-46ct].
Неочищенный (SP)-46ct получают, как описано в Примере 315, с использованием (SP)-4ct вместо (RP)-4tt.
Пример 322. Синтез тиотриалкиламмонийметил пронуклеотида (SP)-2-N-феноксиацетил-дезоксигуанозин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-46gt].
Неочищенный (SP)-46gt получают, как описано в Примере 315, с использованием (SP)-4gt вместо (RP)-4tt.
Пример 323. Синтез тиотриалкиламмонийметил пронуклеотида (RP)-уридин-3'-ил уридин-5'-ил фосфортиоата [(RP)-46uu].
Неочищенный (RP)-46uu получают, как описано в Примере 315, с использованием (RP)-10uu вместо (RP)-4tt.
Пример 324. Синтез тиотриалкиламмонийметил пронуклеотида (RP)-6-N-бензоил-аденозин-3'-ил уридин-5'-ил фосфортиоата [(RP)-46au].
Неочищенный (RP)-46au получают, как описано в Примере 315, с использованием (RP)-10au вместо (RP)-4tt.
Пример 325. Синтез тиотриалкиламмонийметил пронуклеотида (RP)-4-N-бензоил-цитидин-3'-ил уридин-5'-ил фосфортиоата [(RP)-46cu].
Неочищенный (RP)-46cu получают, как описано в Примере 315, с использованием (RP)-10 си вместо (RP)-4tt.
Пример 326. Синтез тиотриалкиламмонийметил пронуклеотида (RP)-2-N-Феноксиацетил-гуанозин-3'-ил уридин-5'-ил фосфортиоата [(RP)-46gu].
Неочищенный (RP)-46gu получают, как описано в Примере 315, с использованием (RP)-10gu вместо (RP)-4tt.
Пример 327. Синтез тиотриалкиламмонийметил пронуклеотида (SP)-уридин-3'-ил уридин-5'-ил фосфортиоата [(SP)-46uu].
Неочищенный (SP)-46uu получают, как описано в Примере 315, с использованием (SP)-10uu вместо (RP)-4tt.
Пример 328. Синтез тиотриалкиламмонийметил пронуклеотида (SP)-6-N-бензоил-аденозин-3'-ил уридин-5'-ил фосфортиоата [(SP)-46au].
Неочищенный (SP)-46au получают, как описано в Примере 315, с использованием (SP)-10au вместо (RP)-4tt.
Пример 329. Синтез тиотриалкиламмонийметил пронуклеотида (SP)-4-N-бензоил-цитидин-3'-ил уридин-5'-ил фосфортиоата [(SP)-46cu].
Неочищенный (SP)-46 си получают, как описано в Примере 315, с использованием (SP)-10аи вместо (RP)-4tt.
Пример 330. Синтез тиотриалкиламмонийметил пронуклеотида (SP)-2-N-Феноксиацетил-гуанозин-3'-ил уридин-5'-ил фосфортиоата [(SP)-46gu].
Неочищенный (SP)-46gu получают, как описано в Примере 315, с использованием (SP)-10gu вместо (RP)-4tt.
Пример 331. Синтез тиотриалкиламмонийметил пронуклеотида (RP)-уридин-2'-ил уридин-5'-ил фосфортиоата [(RP)-47uu].
Неочищенный (SP)-47uu получают, как описано в Примере 315, с использованием (SP)-14uu вместо (RP)-4tt.
Пример 332. Синтез тиотриалкиламмонийметил пронуклеотида (RP)-6-N-бензоил-аденозин-2'-ил уридин-5'-ил фосфортиоата [(RP)-47au].
Неочищенный (RP)-47au получают, как описано в Примере 315, с использованием (SP)-14au вместо (RP)-4tt.
Пример 333. Синтез тиотриалкиламмонийметил пронуклеотида (RP)-4-N-бензоил-цитидин-2'-ил уридин-5'-ил фосфортиоата [(RP)-47cu].
Неочищенный (RP)-47cu получают, как описано в Примере 315, с использованием (SP)-14cu вместо (RP)-4tt.
Пример 334. Синтез тиотриалкиламмонийметил пронуклеотида (RP)-2-N-Феноксиацетил-гуанозин-2'-ил уридин-5'-ил фосфортиоата [(RP)-47gu].
Неочищенный (RP)-47gu получают, как описано в Примере 315, с использованием (SP)-14gu вместо (RP)-4tt.
Пример 335. Синтез тиотриалкиламмонийметил пронуклеотида (SP)-уридин-2'-ил уридин-5'-ил фосфортиоата [(SP)-47uu].
Неочищенный (SP)-47uu получают, как описано в Примере 315, с использованием (SP)-14uu вместо (RP)-4tt.
Пример 336. Синтез тиотриалкиламмонийметил пронуклеотида (SP)-6-N-бензоил-аденозин-2'-ил уридин-5'-ил фосфортиоата [(SP)-47au].
Неочищенный (SP)-47au получают, как описано в Примере 315, с использованием (SP)-14au вместо (RP)-4tt.
Пример 337. Синтез тиотриалкиламмонийметил пронуклеотида (SP)-4-N-бензоил-цитидин-2'-ил уридин-5'-ил фосфортиоата [(SP)-47cu].
Неочищенный (SP)-47cu получают, как описано в Примере 315, с использованием (SP)-14cu вместо (RP)-4tt.
Пример 338. Синтез тиотриалкиламмонийметил пронуклеотида (SP)-2-N-Феноксиацетил-гуанозин-2'-ил уридин-5'-ил фосфортиоата [(SP)-47gu].
Неочищенный (SP)-47gu получают, как описано в Примере 315, с использованием (SP)-14gu вместо (RP)-4tt.
Схема Ф: Синтез тио-N-алкилгидроксамат пронуклеотидов.
Figure 00000304
Пример 339. Синтез тио-N-алкилгидроксамат пронуклеотида (RP)-тимидин-3'-ил тимидин-5'-ил фосфортиоат [(RP)-48tt], как описано на Схеме Ф.
(SP)-1,8-Диазабицикло[5,4,0]ундец-7-ения 5'-O-(трет-бутилдифенилсилил)тимидин-3'-ил 3'-O-(трет-бутилдиметилсилил)тимидин-5'-ил фосфортиоат [(SP)-4tt] (100 мкмоль) сушат повторным соупариванием с сухим пиридином, и затем растворяют в сухом метиленхлориде (1 мл). Смесь обрабатывают N,O-диметилакриламидом (100 мкмоль) в сухом метиленхлориде (100 мкмоль). Через 1 час смесь упаривают, и затем растворяют в триэтиламина тригидрофториде (500 мкл). Смесь перемешивают в течение 15 час при комнатной температуре. 0,1 М буферный раствор аммония ацетата (2,5 мл) затем добавляют к смеси, и смесь промывают Et2O (3×3 мл). Объединенные органические фракции снова экстрагируют 0,1 М буферным раствором аммония ацетата (3 мл). Объединенные водные фракции затем упаривают до сухого состояния при сниженном давлении, и остаток очищают обращенно-фазовой хроматографией на колонке [линейный градиент 0-10% ацетонитрила в 0,1 М буферном растворе аммония ацетата (рН 7,0)] с получением (RP)-48tt.
Пример 340. Синтез тио-N-алкилгидроксамат пронуклеотида (RP)-6-N-бензоил-дезоксиаденозин-3'-ил тимидин-5'-ил фосфортиоата [(RP)-48at].
Неочищенный (RP)-48at получают, как описано в Примере 339, с использованием (RP)-4at вместо (RP)-4tt.
Пример 341. Синтез тио-N-алкилгидроксамат пронуклеотида (RP)-4-N-бензоил-дезоксицитидин-3'-ил тимидин-5'-ил фосфортиоата [(RP)-48ct].
Неочищенный (RP)-48ct получают, как описано в Примере 339, с использованием (RP)-4ct вместо (RP)-4tt.
Пример 342. Синтез тио-N-алкилгидроксамат пронуклеотида (RP)-2-N-феноксиацетил-дезоксигуанозин-3'-ил тимидин-5'-ил фосфортиоата [(RP)-48gt].
Неочищенный (RP)-48gt получают, как описано в Примере 339, с использованием (RP)-4г вместо (RP)-4tt.
Пример 343. Синтез тио-N-алкилгидроксамат пронуклеотида (SP)-тимидин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-48tt].
Неочищенный (SP)-48tt получают, как описано в Примере 339, с использованием (SP)-4tt вместо (RP)-4tt.
Пример 344. Синтез тио-N-алкилгидроксамат пронуклеотида (SP)-6-N-бензоил-дезоксиаденозин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-48at].
Неочищенный (SP)-48at получают, как описано в Примере 339, с использованием (SP)-4at вместо (RP)-4tt.
Пример 345. Синтез тио-N-алкилгидроксамат пронуклеотида (SP)-4-N-бензоил-дезоксицитидин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-48ct].
Неочищенный (SP)-48ct получают, как описано в Примере 339, с использованием (SP)-4ct вместо (RP)-4tt.
Пример 346. Синтез тио-N-алкилгидроксамат пронуклеотида (SP)-2-N-феноксиацетил-дезоксигуанозин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-48gt].
Неочищенный (SP)-48gt получают, как описано в Примере 339, с использованием (SP)-4gt вместо (RP)-4tt.
Пример 347. Синтез тио-N-алкилгидроксамат пронуклеотида (RP)-уридин-3'-ил уридин-5'-ил фосфортиоата [(RP)-48uu].
Неочищенный (RP)-48uu получают, как описано в Примере 339, с использованием (RP)-10uu вместо (RP)-4tt.
Пример 348. Синтез тио-N-алкилгидроксамат пронуклеотида (RP)-6-N-бензоил-аденозин-3'-ил уридин-5'-ил фосфортиоата [(RP)-48au].
Неочищенный (RP)-48au получают, как описано в Примере 339, с использованием (RP)-10au вместо (RP)-4tt.
Пример 349. Синтез тио-N-алкилгидроксамат пронуклеотида (RP)-4-N-бензоил-цитидин-3'-ил уридин-5'-ил фосфортиоата [(RP)-48cu].
Неочищенный (RP)-48cu получают, как описано в Примере 339, с использованием (RP)-10cu вместо (RP)-4tt.
Пример 350. Синтез тио-N-алкилгидроксамат пронуклеотида (RP)-2-N-Феноксиацетил-гуанозин-3'-ил уридин-5'-ил фосфортиоата [RP)-48gu].
Неочищенный (RP)-48gu получают, как описано в Примере 339, с использованием (RP)-10gu вместо (RP)-4tt.
Пример 351. Синтез тио-N-алкилгидроксамат пронуклеотида (SP)-уридин-3'-ил уридин-5'-ил фосфортиоата [(SP)-48uu].
Неочищенный (SP)-48uu получают, как описано в Примере 339, с использованием (SP)-10uu вместо (RP)-4tt.
Пример 352. Синтез тио-N-алкилгидроксамат пронуклеотида (SP)-6-N-бензоил-аденозин-3'-ил уридин-5'-ил фосфортиоата [(SP)-48au].
Неочищенный (SP)-48au получают, как описано в Примере 339, с использованием (SP)-10au вместо (RP)-4tt.
Пример 353. Синтез тио-N-алкилгидроксамат пронуклеотида (SP)-4-N-бензоил-цитидин-3'-ил уридин-5'-ил фосфортиоата [(SP)-48cu].
Неочищенный (SP)-48cu получают, как описано в Примере 339, с использованием (SP)-10au вместо (RP)-4tt.
Пример 354. Синтез тио-N-алкилгидроксамат пронуклеотида (SP)-2-N-Феноксиацетил-гуанозин-3'-ил уридин-5'-ил фосфортиоата [(SP)-48gu].
Неочищенный (SP)-48gu получают, как описано в Примере 339, с использованием (SP)-10gu вместо (RP)-4tt.
Пример 355. Синтез тио-N-алкилгидроксамат пронуклеотида (RP)-уридин-2'-ил уридин-5'-ил фосфортиоата [(RP)-49uu].
Неочищенный (SP)-49uu получают, как описано в Примере 339, с использованием (SP)-14uu вместо (RP)-4tt.
Пример 356. Синтез тио-N-алкилгидроксамат пронуклеотида (RP)-6-N-бензоил-аденозин-2'-ил уридин-5'-ил фосфортиоата [(RP)-49au].
Неочищенный (RP)-49au получают, как описано в Примере 339, с использованием (SP)-14au вместо (RP)-4tt.
Пример 357. Синтез тио-N-алкилгидроксамат пронуклеотида (RP)-4-N-бензоил-цитидин-2'-ил уридин-5'-ил фосфортиоата [(RP)-49cu].
Неочищенный (RP)-49cu получают, как описано в Примере 339, с использованием (SP)-14cu вместо (RP)-4tt.
Пример 358. Синтез тио-N-алкилгидроксамат пронуклеотида (RP)-2-N-Феноксиацетил-гуанозин-2'-ил уридин-5'-ил фосфортиоата [(RP)-49gu].
Неочищенный (RP)-49gu получают, как описано в Примере 339, с использованием (SP)-14gu вместо (RP)-4tt.
Пример 359. Синтез тио-N-алкилгидроксамат пронуклеотида (SP)-уридин-2'-ил уридин-5'-ил фосфортиоата [(SP)-49uu].
Неочищенный (SP)-49uu получают, как описано в Примере 339, с использованием (SP)-14uu вместо (RP)-4tt.
Пример 360. Синтез тио-N-алкилгидроксамат пронуклеотида (SP)-6-N-бензоил-аденозин-2'-ил уридин-5'-ил фосфортиоата [(SP)-49au].
Неочищенный (SP)-49au получают, как описано в Примере 339, с использованием (SP)-14au вместо (RP)-4tt.
Пример 361. Синтез тио-N-алкилгидроксамат пронуклеотида (SP)-4-N-бензоил-цитидин-2'-ил уридин-5'-ил фосфортиоата [(SP)-49cu].
Неочищенный (SP)-49cu получают, как описано в Примере 339, с использованием (SP)-14cu вместо (RP)-4tt.
Пример 362. Синтез тио-N-алкилгидроксамат пронуклеотида (SP)-2-N-Феноксиацетил-гуанозин-2'-ил уридин-5'-ил фосфортиоата [(SP)-49gu].
Неочищенный (SP)-49gu получают, как описано в Примере 339, с использованием (SP)-14gu вместо (RP)-4tt.
Схема X: Синтез тио-N-ацетоксигидроксамат пронуклеотидов.
Figure 00000305
Пример 363. Синтез тио-N-ацетоксигидроксамат пронуклеотида (RP)-тимидин-3'-ил тимидин-5'-ил фосфортиоат [(RP)-50tt], как описано на Схеме X.
(SP)-1,8-Диазабицикло[5,4,0]ундец-7-ения 5'-O-(трет-бутилдифенилсилил)тимидин-3'-ил 3'-O-(трет-бутилдиметилсилил)тимидин-5'-ил фосфортиоат [(SP)-4tt] (100 мкмоль) сушат повторным соупариванием с сухим пиридином, и затем растворяют в сухом метиленхлориде (1 мл). Смесь обрабатывают N-метил-N-ацетокси-акриламидом (100 мкмоль) в сухом метиленхлориде (100 мкмоль). Через 1 час смесь упаривают, и затем растворяют в триэтиламина тригидрофториде (500 мкл). Смесь перемешивают в течение 15 час при комнатной температуре. 0,1 М буферный раствор аммония ацетата (2,5 мл) затем добавляют к смеси, и смесь промывают Et2O (3×3 мл). Объединенные органические фракции снова экстрагируют 0,1 М буферным раствором аммония ацетата (3 мл). Объединенные водные фракции затем упаривают до сухого состояния при сниженном давлении, и остаток очищают обращенно-фазовой хроматографией на колонке [линейный градиент 0-10% ацетонитрила в 0,1 М буферном растворе аммония ацетата (рН 7,0)] с получением (RP)-50tt.
Пример 364. Синтез тио-N-ацетоксигидроксамат пронуклеотида (RP)-6-N-бензоил-дезоксиаденозин-3'-ил тимидин-5'-ил фосфортиоата [(RP)-50at].
Неочищенный (RP)-50at получают, как описано в Примере 363, с использованием (RP)-4at вместо (RP)-4tt.
Пример 365. Синтез тио-N-ацетоксигидроксамат пронуклеотида (RP)-4-N-бензоил-дезоксицитидин-3'-ил тимидин-5'-ил фосфортиоата [(RP)-50ct].
Неочищенный (RP)-50ct получают, как описано в Примере 363, с использованием (RP)-4ct вместо (RP)-4tt.
Пример 366. Синтез тио-N-ацетоксигидроксамат пронуклеотида (RP)-2-N-феноксиацетил-дезоксигуанозин-3'-ил тимидин-5'-ил фосфортиоата [(RP)-50gt].
Неочищенный (RP)-50gt получают, как описано в Примере 363, с использованием (RP)-4г вместо (RP)-4tt.
Пример 367. Синтез тио-N-ацетоксигидроксамат пронуклеотида (SP)-тимидин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-50tt].
Неочищенный (SP)-50tt получают, как описано в Примере 363, с использованием (SP)-4tt вместо (RP)-4tt.
Пример 368. Синтез тио-N-ацетоксигидроксамат пронуклеотида (SP)-6-N-бензоил-дезоксиаденозин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-50at].
Неочищенный (SP)-50at получают, как описано в Примере 363, с использованием (SP)-4at вместо (RP)-4tt.
Пример 369. Синтез тио-N-ацетоксигидроксамат пронуклеотида (SP)-4-N-бензоил-дезоксицитидин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-50ct].
Неочищенный (SP)-50ct получают, как описано в Примере 363, с использованием (SP)-4ct вместо (RP)-4tt.
Пример 370. Синтез тио-N-ацетоксигидроксамат пронуклеотида (SP)-2-N-феноксиацетил-дезоксигуанозин-3'-ил тимидин-5'-ил фосфортиоата [(SP)-50gt].
Неочищенный (SP)-50gt получают, как описано в Примере 363, с использованием (SP)-4gt вместо (RP)-4tt.
Пример 371. Синтез тио-N-ацетоксигидроксамат пронуклеотида (RP)-уридин-3'-ил уридин-5'-ил фосфортиоата [(RP)-50uu].
Неочищенный (RP)-50uu получают, как описано в Примере 363, с использованием (RP)-10uu вместо (RP)-4tt.
Пример 372. Синтез тио-N-ацетоксигидроксамат пронуклеотида (RP)-6-N-бензоил-аденозин-3'-ил уридин-5'-ил фосфортиоата [(RP)-50au].
Неочищенный (RP)-50au получают, как описано в Примере 363, с использованием (RP)-10au вместо (RP)-4tt.
Пример 373. Синтез тио-N-ацетоксигидроксамат пронуклеотида (RP)-4-N-бензоил-цитидин-3'-ил уридин-5'-ил фосфортиоата [(RP)-50cu].
Неочищенный (RP)-50cu получают, как описано в Примере 363, с использованием (RP)-10cu вместо (RP)-4tt.
Пример 374. Синтез тио-N-ацетоксигидроксамат пронуклеотида (RP)-2-N-Феноксиацетил-гуанозин-3'-ил уридин-5'-ил фосфортиоата [(RP)-50gu].
Неочищенный (RP)-50gu получают, как описано в Примере 363, с использованием (RP)-10gu вместо (RP)-4tt.
Пример 375. Синтез тио-N-ацетоксигидроксамат пронуклеотида (SP)-уридин-3'-ил уридин-5'-ил фосфортиоат [(SP)-50uu].
Неочищенный (SP)-50uu получают, как описано в Примере 363, с использованием (SP)-10uu вместо (RP)-4tt.
Пример 376. Синтез тио-N-ацетоксигидроксамат пронуклеотида (SP)-6-N-бензоил-аденозин-3'-ил уридин-5'-ил фосфортиоата [(SP)-50au].
Неочищенный (SP)-50au получают, как описано в Примере 363, с использованием (SP)-10au вместо (RP)-4tt.
Пример 377. Синтез тио-N-ацетоксигидроксамат пронуклеотида (SP)-4-N-бензоил-цитидин-3'-ил уридин-5'-ил фосфортиоата [(SP)-50cu].
Неочищенный (SP)-50cu получают, как описано в Примере 363, с использованием (SP)-10au вместо (RP)-4tt.
Пример 378. Синтез тио-N-ацетоксигидроксамат пронуклеотида (SP)-2-N-Феноксиацетил-гуанозин-3'-ил уридин-5'-ил фосфортиоата [(SP)-50gu].
Неочищенный (SP)-50gu получают, как описано в Примере 363, с использованием (SP)-10gu вместо (RP)-4tt.
Пример 379. Синтез тио-N-ацетоксигидроксамат пронуклеотида (RP)-уридин-2'-ил уридин-5'-ил фосфортиоата [(RP)-51uu].
Неочищенный (SP)-51uu получают, как описано в Примере 363, с использованием (SP)-14uu вместо (RP)-4tt.
Пример 380. Синтез тио-N-ацетоксигидроксамат пронуклеотида (RP)-6-N-бензоил-аденозин-2'-ил уридин-5'-ил фосфортиоата [(RP)-51au].
Неочищенный (RP)-51au получают, как описано в Примере 363, с использованием (SP)-14au вместо (RP)-4tt.
Пример 381. Синтез тио-N-ацетоксигидроксамат пронуклеотида (RP)-4-N-бензоил-цитидин-2'-ил уридин-5'-ил фосфортиоата [(RP)-51cu].
Неочищенный (RP)-51cu получают, как описано в Примере 363, с использованием (SP)-14cu вместо (RP)-4tt.
Пример 382. Синтез тио-N-ацетоксигидроксамат пронуклеотида (RP)-2-N-Феноксиацетил-гуанозин-2'-ил уридин-5'-ил фосфортиоата [(RP)-51gu].
Неочищенный (RP)-51gu получают, как описано в Примере 363, с использованием (SP)-14gu вместо (RP)-4tt.
Пример 383. Синтез тио-N-ацетоксигидроксамат пронуклеотида (SP)-уридин-2'-ил уридин-5'-ил фосфортиоата [(SP)-51uu].
Неочищенный (SP)-51uu получают, как описано в Примере 363, с использованием (SP)-14uu вместо (RP)-4tt.
Пример 384. Синтез тио-N-ацетоксигидроксамат пронуклеотида (SP)-6-N-бензоил-аденозин-2'-ил уридин-5'-ил фосфортиоата [(SP)-51au].
Неочищенный (SP)-51au получают, как описано в Примере 363, с использованием (SP)-14au вместо (RP)-4tt.
Пример 385. Синтез тио-N-ацетоксигидроксамат пронуклеотида (SP)-4-N-бензоил-цитидин-2'-ил уридин-5'-ил фосфортиоата [(SP)-51cu].
Неочищенный (SP)-51cu получают, как описано в Примере 363, с использованием (SP)-14cu вместо (RP)-4tt.
Пример 386. Синтез тио-N-ацетоксигидроксамат пронуклеотида (SP)-2-N-Феноксиацетил-гуанозин-2'-ил уридин-5'-ил фосфортиоата [(SP)-51gu].
Неочищенный (SP)-51gu получают, как описано в Примере 363, с использованием (SP)-14gu вместо (RP)-4tt.
Схема Ц: Синтез тиотриалкиламмонийметил пронуклеотидов.
Figure 00000306
Пример 387. Синтез тиотриалкиламмонийметил пронуклеотида (RP)-тимидин-3'-ил тимидин-5'-ил фосфортиоата [(RP)-53tt], как описано на Схеме Ц.
(SP)-1,8-Диазабицикло[5,4,0]ундец-7-ения 5'-O-(диметокситритил)тимидин-3'-ил 3'-O-(диметокситритил)тимидин-5'-ил фосфортиоат [(SP)-52tt] получают по способу, применяемому для получения соединения 4tt в Примере 1 (Схема А). Соединение (SP)-52tt (100 мкмоль) сушат повторным соупариванием с сухим пиридином, и затем растворяют в сухом диметилформамиде (1 мл). Смесь обрабатывают 2-йодэтилтриметиламмония йодидом (100 мкмоль) в сухом ДМФА (0,5 мл). Через 1 час смесь упаривают, затем растворяют в CH2Cl2 (1000 мкл), и добавляют трихлоруксусную кислоту (50 мкмоль). Смесь перемешивают в течение 15 час при комнатной температуре. 0,1 М буферный раствор аммония ацетата (2,5 мл) затем добавляют к смеси, и смесь промывают Et2O (3×3 мл). Объединенные органические фракции снова экстрагируют 0,1 М буферным раствором аммония ацетата (3 мл). Объединенные водные фракции затем упаривают до сухого состояния при сниженном давлении, и остаток очищают обращенно-фазовой хроматографией на колонке [линейный градиент 0-10% ацетонитрила в 0,1 М буферном растворе аммония ацетата (рН 7,0)] с получением (RP)-53tt.
Схема Ч: Синтез тиотриалкиламмонийметил пронуклеотидов.
Figure 00000307
Пример 388. Синтез дисульфид пронуклеотида (RP)-тимидин-3'-ил тимидин-5'-ил фосфортиоата [(RP)-54tt], как описано на Схеме Ч.
Соединение (SP)-52tt (100 мкмоль) сушат повторным соупариванием с сухим пиридином, и затем растворяют в сухом этаноле (1 мл). Смесь обрабатывают n-нитробензолсульфенилхлоридом (200 мкмоль) в сухом этаноле (100 мкмоль). Через 1 час смесь упаривают, затем растворяют в CH2Cl2 (1000 мкл), и добавляют трихлоруксусную кислоту (50 мкмоль). Смесь перемешивают в течение 15 час при комнатной температуре. 0,1 М буферный раствор аммония ацетата (2,5 мл) затем добавляют к смеси, и смесь промывают Et2O (3×3 мл). Объединенные органические фракции снова экстрагируют 0,1 М буферным раствором аммония ацетата (3 мл). Объединенные водные фракции затем упаривают до сухого состояния при сниженном давлении, и остаток очищают обращенно-фазовой хроматографией на колонке [линейный градиент 0-10% ацетонитрила в 0,1 М буферном растворе аммония ацетата (рН 7,0)] с получением (RP)-54tt.
Схема Ш: Синтез 2-тиопивалилэтил пролекарств нуклеиновой кислоты.
Figure 00000308
Пример 389. Синтез 2-тиопивалилэтил пролекарства нуклеиновой кислоты (RP)-тимидин-3'-ил тимидин-5'-ил фосфоната [(RP)-56tt], как описано на Схеме Ш.
(RP)-5'-O-(Диметокситритил)тимидин-3'-ил 3'-O-(диметокситритил)тимидин-5'-ил H-фосфонат [(RP)-55tt] получают по способу, применяемому для получения соединения 7tt в Примере 8 (Схема В). Соединение (RP)-55tt (100 мкмоль) сушат повторным соупариванием с сухим пиридином, и затем растворяют в сухом пиридине (1 мл). Добавляют N-хлорсукцинимид (0,1 ммоль), и смесь перемешивают в течение 2 час при 0°C. Смесь упаривают и растворяют в сухом пиридине (1 мл). Полученную выше смесь обрабатывают 2-гидроксиэтилтиопивалатом (100 мкмоль) в сухом пиридине (100 мкмоль). Через 1 час смесь упаривают, затем растворяют в CH2Cl2 (1000 мкл), и добавляют трихлоруксусную кислоту (50 мкмоль). Смесь перемешивают в течение 15 час при комнатной температуре. 0,1 М буферный раствор аммония ацетата (2,5 мл) затем добавляют к смеси, и смесь промывают Et2O (3×3 мл). Объединенные органические фракции снова экстрагируют 0,1 М буферным раствором аммония ацетата (3 мл). Объединенные водные фракции затем упаривают до сухого состояния при сниженном давлении, и остаток очищают обращенно-фазовой хроматографией на колонке [линейный градиент 0-10% ацетонитрила в 0,1 М буферном растворе аммония ацетата (рН 7,0)] с получением (RP)-56tt.
Схема Щ: Синтез 2-карбоэтоксиэтил пролекарств нуклеиновой кислоты.
Figure 00000309
Пример 390. Синтез 2-карбоэтоксиэтил пролекарства нуклеиновой кислоты (RP)-тимидин-3'-ил тимидин-5'-ил фосфоната [(RP)-57tt], как описано на Схеме Щ.
Соединение (RP)-55tt (100 мкмоль) сушат повторным соупариванием с сухим пиридином, и затем растворяют в сухом пиридине (1 мл). Добавляют N-хлорсукцинимид (0,1 ммоль), и смесь перемешивают в течение 2 час при 0°C. Смесь упаривают и растворяют в сухом пиридине (1 мл). Полученную выше смесь обрабатывают этил-2-гидроксиэтилпропионатом (100 мкмоль) в сухом пиридине (100 мкмоль). Через 1 час смесь упаривают, затем растворяют в CH2Cl2 (1000 мкл), и добавляют трихлоруксусную кислоту (50 мкмоль). Смесь перемешивают в течение 15 час при комнатной температуре. 0,1 М буферный раствор аммония ацетата (2,5 мл) затем добавляют к смеси, и смесь промывают Et2O (3×3 мл). Объединенные органические фракции снова экстрагируют 0,1 М буферным раствором аммония ацетата (3 мл). Объединенные водные фракции затем упаривают до сухого состояния при сниженном давлении, и остаток очищают обращенно-фазовой хроматографией на колонке [линейный градиент 0-10% ацетонитрила в 0,1 М буферном растворе аммония ацетата (рН 7,0)] с получением (RP)-57tt.
Схема Э: Синтез тио(циклогексил)ацилокси пронуклеотидов.
Figure 00000310
Пример 391. Синтез тио(циклогексил)ацилокси пронуклеотида (RP)-тимидин-3'-ил тимидин-5'-ил фосфортиоата [(RP)-58tt], как описано на Схеме Э.
Соединение (SP)-52tt (100 мкмоль) сушат повторным соупариванием с сухим пиридином, и затем растворяют в сухом метиленхлориде (1 мл). Смесь обрабатывают хлорметилциклогексилацетоацетатом (100 мкмоль) в сухом метиленхлориде (100 мкмоль). Через 1 час смесь упаривают, затем растворяют в CH2Cl2 (1000 мкл) и добавляют трихлоруксусную кислоту (50 мкмоль). Смесь перемешивают в течение 15 час при комнатной температуре. 0,1 М буферный раствор аммония ацетата (2,5 мл) затем добавляют к смеси, и смесь промывают Et2O (3×3 мл). Объединенные органические фракции снова экстрагируют 0,1 М буферным раствором аммония ацетата (3 мл). Объединенные водные фракции затем упаривают до сухого состояния при сниженном давлении, и остаток очищают обращенно-фазовой хроматографией на колонке [линейный градиент 0-10% ацетонитрила в 0,1 М буферном растворе аммония ацетата (рН 7,0)] с получением (RP)-58tt.
Схема АА: Синтез 2-карбоксиэтил пролекарств нуклеиновой кислоты.
Figure 00000311
Пример 392. Синтез 2-карбоксиэтил пролекарства нуклеиновой кислоты (RP)-тимидин-3'-ил тимидин-5'-ил фосфоната [(RP)-59tt], как описано на Схеме АА.
Соединение (RP)-55tt (100 мкмоль) сушат повторным соупариванием с сухим пиридином, и затем растворяют в сухом пиридине (1 мл). Добавляют N-хлорсукцинимид (0,1 ммоль), и смесь перемешивают в течение 2 час при 0°C. Смесь упаривают и растворяют в сухом пиридине (1 мл). Полученную выше смесь обрабатывают трет-бутил-2-гидроксиэтилпропионатом (100 мкмоль) в сухом пиридине (100 мкмоль). Через 1 час смесь упаривают, затем растворяют в CH2Cl2 (1000 мкл) и добавляют трихлоруксусную кислоту (50 мкмоль). Смесь перемешивают в течение 15 час при комнатной температуре. 0,1 М буферный раствор аммония ацетата (2,5 мл) затем добавляют к смеси, и смесь промывают Et2O (3×3 мл). Объединенные органические фракции снова экстрагируют 0,1 М буферным раствором аммония ацетата (3 мл). Объединенные водные фракции затем упаривают до сухого состояния при сниженном давлении, и остаток очищают обращенно-фазовой хроматографией на колонке [линейный градиент 0-10% ацетонитрила в 0,1 М буферном растворе аммония ацетата (рН 7,0)] с получением (RP)-59tt.
Схема ББ: Синтез 2-((2-гидроксиэтил)дисульфидом)этил пролекарств нуклеиновой кислоты.
Figure 00000312
Пример 393. Синтез 2-((2-гидроксиэтил)дисульфидом)этил пролекарства нуклеиновой кислоты (RP)-тимидин-3'-ил тимидин-5'-ил фосфоната [(RP)-60tt], как описано на Схеме ББ.
Соединение (RP)-7tt (100 мкмоль) сушат повторным соупариванием с сухим пиридином, и затем растворяют в сухом пиридине (1 мл). Добавляют N-хлорсукцинимид (0,1 ммоль), и смесь перемешивают в течение 2 час при 0°C. Смесь упаривают и растворяют в сухом пиридине (1 мл). Полученную выше смесь обрабатывают 2-((2-(трет-бутилдифенилсилилокси)этил)дисульфанил)этанолом (100 мкмоль) в сухом пиридине (100 мкмоль). Через 1 час смесь упаривают, и затем растворяют в триэтиламина тригидрофториде (500 мкл). Смесь перемешивают в течение 15 час при комнатной температуре. 0,1 М буферный раствор аммония ацетата (2,5 мл) затем добавляют к смеси, и смесь промывают Et2O (3×3 мл). Объединенные органические фракции снова экстрагируют 0,1 М буферным раствором аммония ацетата (3 мл). Объединенные водные фракции затем упаривают до сухого состояния при сниженном давлении, и остаток очищают обращенно-фазовой хроматографией на колонке [линейный градиент 0-10% ацетонитрила в 0,1 М буферном растворе аммония ацетата (рН 7,0)] с получением CRP)-60tt.
Схема ВВ: Синтез 2-(метансульфонотиоат)этил пролекарств нуклеиновой кислоты.
Figure 00000313
Пример 394. Синтез 2-(метансульфонотиоат)этил пролекарства нуклеиновой кислоты (RP)-тимидин-3'-ил тимидин-5'-ил фосфоната [(RP)-61tt], как описано на Схеме СС.
Соединение (RP)-55tt (100 мкмоль) сушат повторным соупариванием с сухим пиридином, и затем растворяют в сухом пиридине (1 мл). Добавляют N-хлорсукцинимид (0,1 ммоль), и смесь перемешивают в течение 2 час при 0°C. Смесь упаривают и растворяют в сухом пиридине (1 мл). Полученную выше смесь обрабатывают S-2-гидроксиэтилметансульфонотиоатом (100 мкмоль) в сухом пиридине (100 мкмоль). Через 1 час смесь упаривают, затем растворяют в СН2С12 (1000 мкл) и добавляют трихлоруксусную кислоту (50 мкмоль). Смесь перемешивают в течение 15 час при комнатной температуре. 0,1 М буферный раствор аммония ацетата (2,5 мл) затем добавляют к смеси, и смесь промывают Et2O (3×3 мл). Объединенные органические фракции снова экстрагируют 0,1 М буферным раствор аммония ацетата (3 мл). Объединенные водные фракции затем упаривают до сухого состояния при сниженном давлении, и остаток очищают обращенно-фазовой хроматографией на колонке [линейный градиент 0-10% ацетонитрила в 0,1 М буферном растворе аммония ацетата (рН 7,0)] с получением (RP)-61tt. Схема ДД: Синтез молекул пролекарств из димера Н-фосфоната тимидина
Хемоселективность и стереспецифичность опосредованного йодом окислительного сочетания с использованием отдельных диастереомеров динуклеозид Н-фосфоната и O-нуклеофилов для получения фосфотриэфиров известна в данной области (Nucleosides, Nucleotides & Nucleic Acids 2003 Vol.22, Nos. 5-8, 1467-1469). Продукты очищают хроматографией на силикагеле и характеризуют по данным 31Р и 1Н ЯМР спектроскопии. Продукты дополнительно очищают обращенно-фазовой ВЭЖХ в ходе кинетических стадий. Схема ГГ
Figure 00000314
Пример 395. Общая методика синтеза 63а, 63b и 63с (Схема DD)
(RP,SP)-5'-O-(4,4'-Диметокситритил)тимидин-3'-ил 3'-O-(4,4'-диметокситритил)тимидин-5'-ил H-фосфонат (62) (113,5 мг, 100 мкмоль) сушат под высоким вакуумом в течение ночи и растворяют в смеси ACN (2 мл) и пиридина (2 мл). Добавляют трет-бутилдифенилсилилхлорид (52 мкл, 200 мкмоль) и 12 (76 мг, 300 мкмоль). Реакционную смесь охлаждают на льду, и соответствующий алкилирующий реагент (1 ммоль), в виде раствора в ACN (2 мл), добавляют по каплям к реакционной смеси. Смесь перемешивают в течение 10 мин в атмосфере аргона. Данные ТСХ неочищенной реакционной смеси показывают количественное превращение в продукт. Растворитель выпаривают, остаток растворяют в этилацетате и промывают 5% раствором Na2S2O3, солевым раствором и сушат над Na2SO4. Этилацетатную фракцию упаривают при сниженном давлении. Остаток очищают колоночной хроматографией на силикагеле с получением (RP,SP)-5'-O-(4,4'-диметокситритил)тимидин-3'-ил 3'-O-(4,4'-диметокситритил)тимидин-5'-ил фосфотриэфира 63а, 63b и 63с (выход 80-90%).
Общая методика синтеза 64а, 64b и 64с
3% ДХА/ДХМ медленно добавляют к защищенному ДМТр триэфиру, и реакционную смесь перемешивают при комнатной температуре в течение 30 мин. Реакцию гасят метанолом, растворитель выпаривают, и остаток очищают не колонке с кремния диоксидом. В случае соединения 63а, одновременно происходит удаление защитной группы ТБДМС. Соединения 64а, 64b и 64с получают с количественным выходом.
Соединение 63а: 1Н ЯМР (400 МГц, CDCl3) δ 7,58-7,18 (м, 20Н), 6,87-6,78 (м, 8Н), 6,49-6,27 (м, 2Н), 5,11-5,07 (м, 1Н), 4,2-4,05 (м, 3Н), 3,99-3,87 (м, 1Н), 3,85-3,73 (м, 13Н), 3,73-3,56 (м, 1Н), 3,54-3,26 (м, 2Н), 2,94-2,66 (м, 8Н), 1,97-1,78(м, 4Н), 1,76-1,54 (м, 1Н), 1,43-1,3 (м, 3Н), 0,94-0,78 (м, 9Н), 0,11-0,03 (м, 6Н). 31Р ЯМР (162 МГц, CDCl3) δ - 1,19, - 1,26 (два диастереомера).
Соединение 63b: 1Н ЯМР (400 МГц, CDCl3 + следовое количество Ру-D5) δ 9,72-9,45 (м, 2Н), 7,62-7,18 (м, 20Н), 6,90-6,81 (м, 8Н), 6,48-6,31 (м, 2Н), 5,18-5,10 (м, 1Н), 4,31-4,09 (м, 3Н), 4,03-3,91 (м, 1Н), 3,88-3,74 (м, 15Н), 3,74-3,62 (м, 1Н), 3,54-3,31 (м, 2Н), 2,89-2,76 (м, 4Н), 2,67-2,31 (м, 2Н), 1,98-1,89 (м, 1Н), 1,88, 1,85 (2s, 3Н, диастереомеры), 1,76-1,64 (м, 1Н), 1,39 (с, 3Н). 31P ЯМР (162 МГц, CDCl3) δ - 1,24, - 1,27 (два диастереомера).
Соединение 63c: 1Н ЯМР (400 МГц, CDCl3 + следовое количество Ру-D5) δ 7,6-7,16 (м, 20Н), 6,9-6,77 (м, 8Н), 6,49-6,27 (м, 2Н), 5,18-5,06 (м, 1Н), 4,32-4,04 (м, 2Н), 4,0-3,85 (м, 3Н), 3,82-3,71 (м, 12Н), 3,71-3,57 (м, 1Н), 3,55-3,27 (м, 2Н), 3,07-2,88 (м, 2Н), 2,62-2,24 (м, 2Н), 1,97-1,89 (м, 1Н), 1,89-1,81 (м, 3Н), 1,78-1,59 (м, 3Н), 1,45-1,32 (м, 3Н), 1,22-1,14 (м, 9Н). 31P ЯМР (162 МГц, CDCl3) δ - 1,23, - 1,27 (два диастереомера).
Соединение 64а: 1Н ЯМР (400 МГц, D2O) δ 7,52 (с, 1Н), 7,42 (с, 1Н), 6,28-6,07 (м, 2Н), 5,07-4,87 (м, 1Н), 4,54-4,38 (м, 1Н), 4,37-4,19 (м, 3Н), 4,19-3,95 (м, 2Н), 3,80-3,50 (м, 4Н), 2,99-2,62 (2m, 4Н), 2,60-2,17 (м, 4Н), 1,85-1,60 (м, 6Н). 3lP ЯМР (162 МГц, CD3OD) δ - 1,37, - 1,41 (два диастереомера). Вычисленная масса = 682,66. Зарегистрированная в режиме ИЭР-ve масса = 681,22.
Соединение 64b: 1Н ЯМР (400 МГц, CD3OD) δ 7,74, 7,49 (2s, 2H), 6,28-6,19 (м, 2H), 5,10-5,04 (м, 1Н), 4,41-4,23 (м, 4Н), 4,19-4,15 (м, 1Н), 4,04-3,98 (м, 1Н), 3,78-3,69 (м, 4Н), 3,00-2,77 (м, 4Н), 2,55-2,21 (м, 4Н), 1,86, 1,83 (2s, 6H). 31P ЯМР (162 МГц, CD3OD) δ - 1,37, - 1,41 (два диастереомера). Вычисленная масса = 684,63. Зарегистрированная в режиме ИЭР-ve масса = 683,14.
Соединение 64с: 1Н ЯМР (400 МГц, CD3OD) δ 7,799 (с, 1Н), 7,54 (с, 1Н), 6,32-6,24 (м, 2H), 5,17-5,07 (м, 1Н), 4,48-4,26 (м, 3Н), 4,26-4,12 (м, 3Н), 4,08-3,99 (м, 1Н), 3,21-3,15 (м, 2H), 2,61-2,48 (м, 1Н), 2,46-2,16 (м, 3Н), 1,9 (с, 3Н), 1,87 (с, 3Н), 1,27-1,19 (д, 9Н). 3lP ЯМР (162 МГц, CD3OD) δ - 1,53, - 1,60 (два диастереомера). Вычисленная масса = 690,66. Зарегистрированная в режиме ИЭР-ve масса = 689,53.
Очистка 64а, 64b и 64с методом ВЭЖХ
Очистку обращенно-фазовой ВЭЖХ осуществляют с использованием Waters 2525 BGM, оборудованного УФ-детектором 2487, колонкой Phenomenex Luna 5 мкм С 18 (2) 100Å, 250×10 мм, MassLynx v4,1. Используют градиент от воды до ацетонитрила со скоростью потока 5 мл/мин.
Градиент для соединений 64а и 64b: 10-50% Б в течение 30 мин.
Градиент для соединения 64с: 20-60% Б в течение 30 мин.
Пики продукта контролируют на длине волны 254 и 280 нм.
Условия аналитической ВЭЖХ
Количественный анализ осуществляют обращенно-фазовой ВЭЖХ с использованием автоматизированного прибора для ВЭЖХ Alliance Waters e2695 instrument с программным обеспечением Empower. Прибор оборудован колонкой XBridge С18 3,5 мкм, 4,6×150 мм, Waters №186003034A, и УФ-детектором (254 нм и 280 нм). Используется элюация с градиентом системы растворителей (табл.1), что позволяет разделить пролекарство, промежуточное соединение и высвобожденное лекарственное средство в пределах одной и той же хроматограммы; подвижная фаза А состоит из 20 мМ аммония ацетата в воде; подвижная фаза Б представляет собой ацетонитрил.
Таблица 1
Температура колонки: 60°C
Время Скорость потока % А % В Кривая
0,01 1,00 99,0 1,0
5,00 1,00 99,0 1,0 1
30,00 1,00 75,0 25,0 6
30,50 1,00 10,0 90,0 6
35,00 1,00 10,0 90,0 1
35,50 1,00 99,0 1,0 6
42,00 1,00 99,0 1,0 1
Пример 396. Высвобождение пролекарства при содействии глутатиона
Смешивают 20 мкл соединения 64 в воде (2 O.D.), 100 мкл 10Х ФБР и 630 мкл H2O. Смесь выдерживают на теплом планшете при температуре 37°C. К полученной выше смеси прибавляют 250 мкл свежеприготовленного 20 мМ восстановленного L-глутатиона (GSH) с получением концентрации GSH в реакционной смеси 5 мМ, что соответствует концентрации в цитозоле. Аликвоты по 100 мкл отбирают через 10 мин, 20 мин, 30 мин, 40 мин, 50 мин, 60 мин, 1,5 час, 2 час и 2,5 час. Каждую аликвоту немедленно гасят 400 мкл 100 мМ нитратного буферного раствора (рН 4) и анализируют обращенно-фазовой ВЭЖХ и РХ/МС.
Схема ДД: Механизм расщепления под действием глутатиона
Figure 00000315
Анализ методом ЖХМС реакционной смеси соединения 64b + GSH в точке времени 20 мин
Waters Acquity UPLC и натрия лаурилсульфат используют для описания продуктов, которые образуются в ходе высвобождения пролекарства. Используют колонку XBridge c18 3,5 мкм, 4,6×150 мм, Waters №186003034 с системой растворителей А: 5 мМ аммония формиата в воде и Б: ацетонитрил, с линейным градиентом, как показано в табл.2.
Таблица 2
Время Скорость потока % А % В Кривая
0,0 1,00 99,0 1,0
5,00 1,00 80 20 6
7 1,00 5 95 6
7,5 1,00 99 1 6
9 1,00 99 1 1
На Фиг.1 представлен характерный ВЭЖХ профиль соединения 64а + GSH.
На Фиг.2 представлен характерный профиль ВЭЖХ соединения 64а, глутатионового аддукта и конечного продукта после высвобождения про-фрагмента.
На Фиг.3, соединения 64а и 64b демонстрируют кинетику псевдопервого порядка, поскольку концентрация глутатиона в существенной мере избыточна по сравнению с субстратом, и, таким образом, остается эффективно постоянной в ходе реакции. Кривые истощения исходного материала и образующегося продукта не являются зеркальными отображениями друг друга вследствие накопления промежуточного соединения, которое характеризуется как глутатионовый аддукт динуклеозидного триэфира (см. Фиг.2 и Фиг.4). Пример 397. Расщепление соединения 64 с при содействии карбоксиэстеразы
Схема ЕЕ
Figure 00000316
Эстеразу из свиной печени (ЭСП, Sigma Aldrich, продукт №Е2884) суспендируют в 3,2 М растворе аммония сульфата (рН=8,0), концентрация 36 мг белка/мл и 154 Ед/мг белка. В соответствии со спецификацией продукту, 1 Ед будет гидролизовать 1 мкМ этилбутирата до масляной кислоты и этанола за 1 мин при рН=8,0 и температуре 25°C. Соединение 64 с (0,1 O.D, 5,5 нмоль) в 10 мкл IX ФБР инкубируют при температуре 37°C в течение 10 мин. Серийные разведения ЭСП готовят в 10 флаконах с концентрацией (в Ед) 1, 10-1, 10-2, 10-3, 10-4, 10-5, 10-6, 10-7, 10-8, 10-9, в 10 мкл IX ФБР каждый. Раствор белка инкубируют при температуре 37°C в течение 10 мин, и затем прибавляют в каждый из 10 флаконов, содержащих соединение 64 с.Смеси хранят при температуре 37°C в течение 30 мин и анализируют методом аналитической ВЭЖХ и ЖХМС. Соединение 64 с полностью превращается в фосфодиэфир во флаконах с концентрацией белка от 1, 10-1 и 10-2. Побочных реакций не наблюдалось. Не наблюдалось реакции во флаконах с концентрацией белка от 10-6 до 10-9. Некоторое количество продукта наблюдалось во флаконах, содержащих концентрацию белка 10-3 и 10-4. Это наводит на мысль о том, что данные концентрации являются подходящими для изучения кинетики высвобождения пролекарства с использованием ЭСП. Зависимая от времени кинетика будет изучена с использованием концентраций в пределах интервала от 10-3 до 10-4/~6 нмоль соединения 64с.
Соединение 64с (5 O.D., 2,9 мкмоль) растворяют в 900 мкл 1X ФБР и инкубируют при температуре 37°C в течение 10 мин. Эстеразу свиной печени (1 Ед) в 100 мкл 1х ФБР прибавляют к полученной выше смеси и хранят при температуре 37°C. Аликвоты по 100 мкл отбирают через 0 мин, 15 мин и 45 мин, гасят с помощью 100 мкл ацетонитрила, и образцы охлаждают на ледяной бане. Образцы анализируют с помощью UPLC SQD на колонке XBridge С-18 3,5 мкм, 4,6×150 мм, используя систему растворителей А: 5 мМ аммония формиата в воде и Б: ацетонитрил, с линейным градиентом, как показано в табл.3. В точке 0 мин наблюдалось только соединение 64с, в точке 15 мин образуется приблизительно 50% продукта, и реакция завершается через 45 мин. Таким образом, ТрТ диэфир 64с высвобождается путем обработки карбоксиэстеразой без обнаружимого накопления любых полупродуктов.
Таблица 3
Время Скорость потока % А % В Кривая
0,0 1,00 99,0 1,0
2,0 1,00 99,0 1,0 1
7,0 1,00 60,0 40,0 6
9,0 1,00 5,0 95,00 6
9,5 1,00 99,0 1,0 6
11,0 1,00 99,0 1,0 1
Пример 398. Лечение рака поджелудочной железы
Предусматривается способ лечения субъекта, страдающего раком поджелудочной железы, включающий введение субъекту терапевтически эффективного количества композиции, содержащей 2'-5'-A3 S-ацетил-2-тиоэтилпронуклеотид из Примера 242. Ожидается, что лечение будет давать усиленное торможение роста опухоли по сравнению с монотерапией гемцитабином или введения комбинации гемцитабина и эрлотиниба.
Пример 399. Анализ проникновения в клетки
Меченые Р32 лекарственные средства в форме нуклеиновых кислот
Готовят меченое пролекарство нуклеиновой кислоты и исходное лекарственное средство с использованием радионуклида [32P]dNTP (Fisher Scientific, Pittsburgh, PA) для синтеза молекул нуклеиновой кислоты, содержащих хиральные фосфорсодержащие фрагменты и соответствующие исходные лекарственные средства, как описано в данном описании.
Культура клеток и анализ проникновения
Выбирают культуру клеток HeLa (прикрепленные клетки рака поджелудочной железы), выращенную в модифицированной Дульбекко среде Игла-10% сыворотки телячьего эмбриона, или клетки ВхРС-3 (прикрепленные клетки аденокарциномы поджелудочной железы человека), выращенные в 90% RPMI 1640-10% сыворотки телячьего эмбриона. Для нанесения культур клеток на планшет, клетки трипсинизируют с помощью 0,05% трипсина-ЭДТА. Анализ жизнеспособности и подсчет клеток выполняют с помощью стандартного окрашивания трипановым голубым в фосфатном буферном растворе (ФБР). Клетки разбавляют и засевают с плотностью 1×105 клеток/ячейку в 6-луночном формате. Инкубируют при температуре 37°C в атмосфере, содержащей 5% CO2 в течение 16 час или до тех пор, пока клетки прикрепятся и достигнут слияния по меньшей мере 80%.
Добавляют смесь меченого пролекарства в экспериментальные лунки пролекарства до конечной концентрации в предварительно определенном интервале (например, 1 мкМ, 5 мкМ и 10 мкМ). Добавляют меченую смесь исходного лекарственного средства в лунки исходного лекарственного средства до конечной концентрации в предварительно определенном интервале (например, 1 мкМ, 5 мкМ и 10 мкМ). Резервируют необработанные лунки для отрицательного контроля. Инкубируют клетки с исследуемыми веществами в течение предварительно определенных интервалов времени (например, 15 мин, 1 час, 4 час и 8 час).
Обнаружение Р32 и определение проникновения пролекарства
Для сбора клеток, лунки промывают 3 раза бессывороточной средой и помещают неденатурирующий буфер для лизиса ТРИС-НС1, содержащий 1% Тритона Х100 (Cell Signaling Technology, Inc., Boston, MA), после чего обрабатывают ультразвуком в течение короткого времени. Собирают цитозольные и ядерные фракции с помощью стандартных методик сбора. Измерение проникновения лекарственного средства выполняют с использованием стандартных методов обнаружения излучения. Для обнаружения с помощью сцинтилляционного счетчика, добавляют 50 мкл образца к 5 мл сцинтилляционного коктейля и измеряют бета-эмиссию с помощью счетчика сцинтилляции жидкости. Аликвоты каждого образца анализируют с помощью колориметрических анализов Bradford для нормализации импульсов излучения на общую концентрацию белка.
Пример 400. Функциональный анализ проникновения в клетки с использованием репортерного гена
Сборка вектора гена слияния и трансфицирование клеточной линии
Если пролекарстваз нуклеиновых кислот применяют для ингибирования экспрессии конкретного гена, например, антисмысловые олигонуклеотиды или антигенные олигонуклеотиды, может быть желательным провести функциональный анализ проникновения. Используют культуру клеток HeLa (прикрепленные клетки рака шейки матки человека) в модифицированной Дульбекко среде Игла-10% ФБР. Целевой ген клонируют в коммерчески доступный вектор, такой как Living Colors® Fluorescent Protein Vector, Clontech, Mountain View, CA. Трансфекцию клеток конструкцией ДНК и селекцию стабильных трансфектантов выполняют с использованием стандартных методик. Результатом является конститутивная экспрессия целевого гена и флуоресцентного репортера (например, белка AcGFP1).
Лекарства в форме нуклеиновой кислоты ингибируют экспрессию конкретного гена
Готовят молекулы нуклеиновой кислоты, содержащие фрагменты, включающие хиральный атом фосфора, и соответствующие исходные лекарственные средства, как описано в данном описании, для разрушения промоторной последовательности гена в векторе.
Культура клеток и анализ проникновения
Готовят трансфицированную культуру путем трипсинизирования клеток с помощью 0,05% трипсин-ЭДТА для помещения на планшет. Анализ жизнеспособности и подсчет клеток выполняют с помощью стандартного окрашивания трипановым голубым в фосфатном буферном растворе (ФБР). Клетки разбавляют и засевают с плотностью 1×105 клеток/ячейку в 6-луночном формате. Инкубируют при температуре 37°C в атмосфере, содержащей 5% CO2 в течение 16 час или до тех пор, пока клетки прикрепятся и достигнут слияния по меньшей мере 80%.
Флуоресцентный сигнал сначала определяют через 8-12 час после трансфекции. Добавляют смесь пролекарства в экспериментальные лунки пролекарства до конечной концентрации в предварительно определенном интервале (например, 1 мкМ, 5 мкМ и 10 мкМ). Добавляют смесь исходного лекарственного средства в лунки исходного лекарственного средства до конечной концентрации в предварительно определенном интервале (например, 1 мкМ, 5 мкМ и 10 мкМ). Резервируют необработанные лунки для отрицательного контроля. Инкубируют клетки с исследуемыми веществами в течение предварительно определенных интервалов времени (например, 15 мин, 1 час, 4 час и 8 час).
Определение проникновения пролекарства с использованием экспрессии репортерного гена
Для сбора клеток, лунки промывают 3 раза бессывороточной средой и снова трипсинизируют. Измерение проникновения лекарственного средства выполняют с использованием стандартных методов обнаружения флуоресценции. Для количественного измерения флуоресценции с помощью микроскопии и количественного измерения проточной цитометрией используют длину волны, которая является возбуждающей для флуоресцентного репортера (например, 488 нм для AcGFP1).
Хотя предпочтительные варианты данного изобретения показаны и описаны в данном описании, для специалистов в данной области будет очевидно, что такие варианты предложены только для примера. Многочисленные вариации, изменения и замены будут осуществляться специалистами в данной области без отхода от изобретения. Следует понимать, что различные альтернативы вариантам изобретения, описанным в данном описании, могут применяться в практике изобретения. Предусматривается, что рамки изобретения определяются приведенной ниже формулы изобретения, и что охватываются способы и структуры, находящиеся в пределах указанной формулы изобретения, а также их эквиваленты.

Claims (19)

1. Олигонуклеотид, имеющий следующую структуру:
Figure 00000317
где R1 представляет собой -ОН или -SH;
R2, в каждом случае независимо, представляет собой водород, -ОН или -ORb, где Rb представляет собой блокирующую группу, которая временно маскирует реакционноспособность функциональной группы и может быть впоследствии удалена, так что маскировка функциональной группы отменяется;
Ва, в каждом случае независимо, представляет собой аденин, цитозин, 5-метилцитозин, гуанин, тимин или урацил;
где X фрагмент, в каждом случае независимо, выбран из -OCH2CH2S-S(O)2R10, -OCH2CH2S-SCH2CH2OH, -OCH2CH2CO2H,
Figure 00000318
,
Figure 00000319
,
Figure 00000320
,
Figure 00000321
,
Figure 00000322
,
Figure 00000323
,
Figure 00000324
,
Figure 00000325
,
Figure 00000326
,
Figure 00000327
,
Figure 00000328
,
Figure 00000329
,
Figure 00000330
,
Figure 00000331
, и
Figure 00000332
,
R10 представляет собой алкильную группу, которая содержит от 1 до 4 атомов углерода;
R11 представляет собой С1-10 алкил или С3-10 циклоалкил; и R12 представляет собой водород или С1-10 алкил;
R3 представляет собой водород; и
n равно целому числу от 10 до 200; и
где олигонуклеотид является стереоопределенным в том отношении, что Х-фосфонатный фрагмент в каждом случае независимо образован с более чем 98% диастереомерной чистотой по данным 31Р ЯМР спектроскопии или обращенно-фазовой ВЭЖХ.
2. Олигонуклеотид по п. 1, в котором каждый Х-фосфонатный фрагмент находится в RP конфигурации.
3. Олигонуклеотид по п. 1, в котором каждый Х-фосфонатный фрагмент находится в SP конфигурации.
4. Олигонуклеотид по п. 1, в котором каждый Х-фосфонат независимо находится в RP конфигурации или SP конфигурации.
5. Олигонуклеотид по п. 1, в котором R10 представляет собой метил.
6. Олигонуклеотид по п. 1, в котором R11 представляет собой метил.
7. Олигонуклеотид по п. 1, в котором R12 представляет собой метил.
RU2012102480A 2009-07-06 2010-07-06 Новые пролекарства нуклеиновых кислот и способы их применения RU2612521C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US22336909P 2009-07-06 2009-07-06
US61/223,369 2009-07-06
US24272209P 2009-09-15 2009-09-15
US61/242,722 2009-09-15
PCT/US2010/041068 WO2011005761A1 (en) 2009-07-06 2010-07-06 Novel nucleic acid prodrugs and methods use thereof

Publications (2)

Publication Number Publication Date
RU2012102480A RU2012102480A (ru) 2013-08-20
RU2612521C2 true RU2612521C2 (ru) 2017-03-09

Family

ID=43429503

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012102480A RU2612521C2 (ru) 2009-07-06 2010-07-06 Новые пролекарства нуклеиновых кислот и способы их применения

Country Status (15)

Country Link
US (2) US9744183B2 (ru)
EP (1) EP2451461A4 (ru)
JP (2) JP5998326B2 (ru)
KR (1) KR101885383B1 (ru)
CN (1) CN102596204B (ru)
AU (1) AU2010270714B2 (ru)
BR (1) BR112012000828A8 (ru)
CA (1) CA2767253A1 (ru)
CL (1) CL2012000021A1 (ru)
IL (1) IL217370A (ru)
IN (1) IN2012DN00720A (ru)
MX (1) MX342945B (ru)
RU (1) RU2612521C2 (ru)
SG (2) SG10201403841QA (ru)
WO (1) WO2011005761A1 (ru)

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009146123A2 (en) * 2008-04-03 2009-12-03 Spring Bank Compositions and methods for treating viral infections
CN102282155B (zh) 2008-12-02 2017-06-09 日本波涛生命科学公司 磷原子修饰的核酸的合成方法
US9744183B2 (en) 2009-07-06 2017-08-29 Wave Life Sciences Ltd. Nucleic acid prodrugs and methods of use thereof
DK2620428T3 (da) 2010-09-24 2019-07-01 Wave Life Sciences Ltd Asymmetrisk hjælpegruppe
DK2734208T3 (en) * 2011-07-19 2017-06-19 Wave Life Sciences Ltd PROCEDURES FOR SYNTHESIS OF FUNCTIONALIZED NUCLEIC ACIDS
EP2872485B1 (en) 2012-07-13 2020-12-16 Wave Life Sciences Ltd. Asymmetric auxiliary group
RU2015104762A (ru) 2012-07-13 2018-08-31 Уэйв Лайф Сайенсес Лтд. Хиральный контроль
CN104684923B (zh) 2012-07-13 2018-09-28 株式会社新日本科学 手性核酸佐剂
IN2015DN01765A (ru) * 2012-08-20 2015-05-29 Univ California
CN105025884B (zh) * 2013-03-01 2019-08-20 阿斯泰克斯制药公司 药物组合
WO2015108048A1 (ja) 2014-01-15 2015-07-23 株式会社新日本科学 抗腫瘍作用を有するキラル核酸アジュバンド及び抗腫瘍剤
US10322173B2 (en) 2014-01-15 2019-06-18 Shin Nippon Biomedical Laboratories, Ltd. Chiral nucleic acid adjuvant having anti-allergic activity, and anti-allergic agent
JPWO2015108047A1 (ja) 2014-01-15 2017-03-23 株式会社新日本科学 免疫誘導活性を有するキラル核酸アジュバンド及び免疫誘導活性剤
PT3094728T (pt) 2014-01-16 2022-05-19 Wave Life Sciences Ltd Desenho quiral
RU2708237C2 (ru) 2014-08-22 2019-12-05 Общество с ограниченной ответственностью "НооГен" Модифицированные олигонуклеотиды и способ их получения
WO2016096938A1 (en) 2014-12-16 2016-06-23 Roche Innovation Center Copenhagen A/S Chiral toxicity screening method
RU2711506C2 (ru) 2014-12-17 2020-01-17 ПРОКЬЮЭР ТЕРАПЬЮТИКС II Би.Ви. Редактирование целевой рнк
US20180207197A1 (en) * 2015-06-26 2018-07-26 Kyowa Hakko Kirin Co., Ltd. Oligonucleotide derivative
MA43072A (fr) 2015-07-22 2018-05-30 Wave Life Sciences Ltd Compositions d'oligonucléotides et procédés associés
AU2016334232B2 (en) 2015-10-09 2022-05-26 Wave Life Sciences Ltd. Oligonucleotide compositions and methods thereof
EP3426671A4 (en) * 2016-03-11 2019-11-20 Spring Bank Pharmaceuticals, Inc. COMPOUNDS AND COMPOSITIONS FOR THE TREATMENT OF INFECTIONS
CN108779132B (zh) 2016-03-13 2022-04-15 波涛生命科学有限公司 用于亚磷酰胺和寡核苷酸合成的组合物和方法
US11060089B2 (en) 2016-04-18 2021-07-13 Sarepta Therapeutics, Inc. Antisense oligomers and methods of using the same for treating diseases associated with the acid alpha-glucosidase gene
AU2017258642B2 (en) 2016-04-29 2023-08-31 Sarepta Therapeutics, Inc. Oligonucleotide analogues targeting human LMNA
MA45270A (fr) 2016-05-04 2017-11-09 Wave Life Sciences Ltd Compositions d'oligonucléotides et procédés associés
CN109562122A (zh) 2016-06-03 2019-04-02 波涛生命科学有限公司 寡核苷酸、组合物及其方法
AU2017281497B2 (en) 2016-06-22 2023-04-06 Proqr Therapeutics Ii B.V. Single-stranded RNA-editing oligonucleotides
US20190262375A1 (en) 2016-06-30 2019-08-29 Sarepta Therapeutics, Inc. Exon skipping oligomers for muscular dystrophy
AU2017295883A1 (en) * 2016-07-15 2019-02-21 Sperovie Biosciences, Inc. Compounds, compositions, and methods for the treatment of disease
JP2019532027A (ja) 2016-08-17 2019-11-07 ソルスティス バイオロジクス,リミティッド ポリヌクレオチド構築物
MX2019002075A (es) 2016-08-23 2019-07-01 Dicerna Pharmaceuticals Inc Composiciones que comprenden oligonucleotidos modificados reversiblemente, y sus usos.
PT3507366T (pt) 2016-09-01 2020-11-09 Proqr Therapeutics Ii Bv Oligonucleótidos de cadeia simples quimicamente modificados de edição de rna
EP3544987A4 (en) 2016-11-23 2020-11-18 Wave Life Sciences Ltd. COMPOSITIONS AND SYNTHESIS OF PHOSPHORAMIDITES AND OLIGONUCLEOTIDES
JOP20170192A1 (ar) 2016-12-01 2019-01-30 Takeda Pharmaceuticals Co داي نوكليوتيد حلقي
CA3046801A1 (en) 2016-12-19 2018-06-28 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
EP3554552B1 (en) 2016-12-19 2022-08-17 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
PT3554553T (pt) 2016-12-19 2022-08-04 Sarepta Therapeutics Inc Conjugados oligoméricos de salto de exão para a distrofia muscular
WO2018177825A1 (en) * 2017-03-29 2018-10-04 Roche Innovation Center Copenhagen A/S Orthogonal protecting groups for the preparation of stereodefined phosphorothioate oligonucleotides
WO2018181428A1 (ja) 2017-03-29 2018-10-04 塩野義製薬株式会社 核酸医薬及び多分岐脂質の複合体
JP2020524485A (ja) 2017-06-02 2020-08-20 ウェイブ ライフ サイエンシズ リミテッドWave Life Sciences Ltd. オリゴヌクレオチド組成物及びその使用方法
CN111050806A (zh) * 2017-06-02 2020-04-21 波涛生命科学有限公司 寡核苷酸组合物及其使用方法
WO2018237194A1 (en) 2017-06-21 2018-12-27 Wave Life Sciences Ltd. COMPOUNDS, COMPOSITIONS AND METHODS OF SYNTHESIS
EP3645546A4 (en) 2017-06-30 2021-12-01 Solstice Biologics, Ltd. CHIRAL PHOSPHORAMIDITIS AUXILIARIES AND THEIR METHODS OF USE
CA3072076A1 (en) 2017-08-08 2019-02-14 Chandra Vargeese Oligonucleotide compositions and methods thereof
KR20200052369A (ko) 2017-09-18 2020-05-14 웨이브 라이프 사이언시스 리미티드 올리고뉴클레오티드 제조 기술
EA201991450A1 (ru) 2017-09-22 2019-12-30 Сарепта Терапьютикс, Инк. Конъюгаты олигомеров для пропуска экзона при мышечной дистрофии
US20200254002A1 (en) 2017-09-28 2020-08-13 Sarepta Therapeutics, Inc. Combination therapies for treating muscular dystrophy
US20200248178A1 (en) 2017-09-28 2020-08-06 Sarepta Therapeutics, Inc. Combination therapies for treating muscular dystrophy
EP3687577A1 (en) 2017-09-28 2020-08-05 Sarepta Therapeutics, Inc. Combination therapies for treating muscular dystrophy
CN107892710B (zh) * 2017-10-10 2021-04-13 河北大学 一种易于回收循环使用的负载型铂配合物氧化剂及其制备方法和应用
EP3694530A4 (en) 2017-10-12 2021-06-30 Wave Life Sciences Ltd. OLIGONUCLEOTIDE COMPOSITIONS AND METHOD FOR THEREFORE
EP3697910A4 (en) 2017-10-18 2021-07-14 Sarepta Therapeutics, Inc. ANTISENSE OLIGOMERIC COMPOUNDS
US10765760B2 (en) 2018-05-29 2020-09-08 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
EP4219717A3 (en) 2018-06-13 2023-12-20 Sarepta Therapeutics, Inc. Exon skipping oligomers for muscular dystrophy
TW202020153A (zh) 2018-07-27 2020-06-01 美商薩羅塔治療公司 用於肌肉萎縮症之外顯子跳躍寡聚物
JP7515175B2 (ja) 2018-07-31 2024-07-12 ファイメクス株式会社 複素環化合物
AU2019397461A1 (en) 2018-12-13 2021-07-29 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
EP3901161A4 (en) * 2019-01-10 2022-03-23 Nankai University CYCLIC DINUCLEOTIDE PRODRUG MOLECULE, METHOD OF PRODUCTION THEREOF AND APPLICATION THEREOF
US20220193246A1 (en) 2019-04-18 2022-06-23 Sarepta Therapeutics, Inc. Compositions for treating muscular dystrophy
JPWO2021020585A1 (ru) 2019-07-31 2021-02-04
WO2021216572A1 (en) 2020-04-20 2021-10-28 Massachusetts Institute Of Technology Lipid compositions for delivery of sting agonist compounds and uses thereof
US20230203484A1 (en) 2020-05-22 2023-06-29 Wave Life Sciences Ltd. Double stranded oligonucleotide compositions and methods relating thereto
TW202241454A (zh) * 2021-02-01 2022-11-01 日商第一三共股份有限公司 抗體-免疫賦活化劑共軛物之新穎製造方法
AU2022358322A1 (en) 2021-09-30 2024-05-16 Sarepta Therapeutics, Inc. Antisense oligonucleotides having one or more abasic units
WO2023152371A1 (en) 2022-02-14 2023-08-17 Proqr Therapeutics Ii B.V. Guide oligonucleotides for nucleic acid editing in the treatment of hypercholesterolemia
WO2024013361A1 (en) 2022-07-15 2024-01-18 Proqr Therapeutics Ii B.V. Oligonucleotides for adar-mediated rna editing and use thereof
WO2024013360A1 (en) 2022-07-15 2024-01-18 Proqr Therapeutics Ii B.V. Chemically modified oligonucleotides for adar-mediated rna editing
WO2024064237A2 (en) 2022-09-21 2024-03-28 Sarepta Therapeutics, Inc. Dmd antisense oligonucleotide-mediated exon skipping efficiency
GB202215614D0 (en) 2022-10-21 2022-12-07 Proqr Therapeutics Ii Bv Heteroduplex rna editing oligonucleotide complexes
WO2024093947A1 (zh) * 2022-10-31 2024-05-10 大睿生物医药科技(上海)有限公司 向细胞内递送siRNA的前药
WO2024110565A1 (en) 2022-11-24 2024-05-30 Proqr Therapeutics Ii B.V. Antisense oligonucleotides for the treatment of hereditary hfe-hemochromatosis
GB202218090D0 (en) 2022-12-01 2023-01-18 Proqr Therapeutics Ii Bv Antisense oligonucleotides for the treatment of aldehyde dehydrogenase 2 deficiency
WO2024121373A1 (en) 2022-12-09 2024-06-13 Proqr Therapeutics Ii B.V. Antisense oligonucleotides for the treatment of cardiovascular disease
GB202300865D0 (en) 2023-01-20 2023-03-08 Proqr Therapeutics Ii Bv Delivery of oligonucleotides
WO2024175550A1 (en) 2023-02-20 2024-08-29 Proqr Therapeutics Ii B.V. Antisense oligonucleotides for the treatment of atherosclerotic cardiovascular disease

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996007392A2 (en) * 1994-09-07 1996-03-14 Hybridon, Inc. Oligonucleotide prodrugs
US5643989A (en) * 1993-10-29 1997-07-01 Azdel, Inc. Fiber reinforced functionalized polyolefin composites
WO2001085751A1 (en) * 2000-05-09 2001-11-15 Reliable Biopharmaceutical, Inc. Polymeric compounds useful as prodrugs
US6500945B2 (en) * 1990-01-11 2002-12-31 Isis Pharmaceuticals, Inc. Nucleotides having chiral phosphorus linkages
US20050159375A1 (en) * 2003-11-28 2005-07-21 Srivastava Suresh C. Novel oligonucleotides and related compounds
WO2007059041A2 (en) * 2005-11-11 2007-05-24 Pfizer, Inc. Combinations and methods of using an immunomodulatory oligodeoxynucleotide
US20070161547A1 (en) * 2003-06-03 2007-07-12 Balkrishen Bhat Modulation of survivin expression
EA008940B1 (ru) * 2002-09-13 2007-10-26 Репликор, Инк. Антивирусные олигонуклеотиды, не связанные с комплементарностью последовательностей
WO2008139262A2 (en) * 2006-10-26 2008-11-20 Coley Pharmaceutical Gmbh Oligoribonucleotides and uses thereof

Family Cites Families (678)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2878264A (en) 1959-03-17 Substituted amino alcohols
CH372667A (de) 1957-09-26 1963-10-31 Robins Co Inc A H Verfahren zur Herstellung von 3-Aryl-3-pyrrolidinolen
US3135766A (en) 1961-10-03 1964-06-02 Mead Johnson & Co 3-substituted-3-pyrrolidinols
US3484473A (en) 1967-05-12 1969-12-16 Buckman Labor Inc Methylene bisesters of thiolsulfonic acids
DE1934150A1 (de) 1968-07-10 1970-01-15 Pennwalt Corp Neue 1-Alkanoyloxy-1,2,4,5-tetrahydro-3H,3-benzazepine
US3687808A (en) 1969-08-14 1972-08-29 Univ Leland Stanford Junior Synthetic polynucleotides
US3745162A (en) 1970-08-31 1973-07-10 Robins Co Inc A H 1,2,3,4-tetrahydroisoquinoline-2-(thio)-carboxamides
GB1448437A (en) 1973-02-24 1976-09-08 Beecham Group Ltd Diphenylpropylamines
US4022791A (en) 1975-06-03 1977-05-10 Pfizer Inc. 2-Aminomethyl-3,4-dihydronaphthalenes
GB1504424A (en) 1975-08-09 1978-03-22 Beecham Group Ltd Isoquinoline-derived aminoethers
BR7807288A (pt) 1977-11-08 1979-06-12 Genentech Inc Processo para sintese de polinucleotidos
DD133885B1 (de) 1978-01-04 1981-02-25 Hans Lehmann Mittel zur bekaempfung von phytopathogenen bakterien und pilzen
US5132418A (en) 1980-02-29 1992-07-21 University Patents, Inc. Process for preparing polynucleotides
US4500707A (en) 1980-02-29 1985-02-19 University Patents, Inc. Nucleosides useful in the preparation of polynucleotides
US4458066A (en) 1980-02-29 1984-07-03 University Patents, Inc. Process for preparing polynucleotides
US4973679A (en) 1981-03-27 1990-11-27 University Patents, Inc. Process for oligonucleo tide synthesis using phosphormidite intermediates
US4415732A (en) 1981-03-27 1983-11-15 University Patents, Inc. Phosphoramidite compounds and processes
US4668777A (en) 1981-03-27 1987-05-26 University Patents, Inc. Phosphoramidite nucleoside compounds
US4542142A (en) 1982-11-22 1985-09-17 Roussel Uclaf Insecticidal cyclopropane carboxylic acid derivatives with 3-unsaturated-side chain
DE3329892A1 (de) 1983-08-18 1985-03-07 Köster, Hubert, Prof. Dr., 2000 Hamburg Verfahren zur herstellung von oligonucleotiden
US5118800A (en) 1983-12-20 1992-06-02 California Institute Of Technology Oligonucleotides possessing a primary amino group in the terminal nucleotide
US5643889A (en) 1984-07-11 1997-07-01 Temple University-Of The Commonwealth System Of Pennsylvania Cholesterol conjugates of 2'5'-oligoadenylate derivatives and antiviral uses thereof
FR2567892B1 (fr) 1984-07-19 1989-02-17 Centre Nat Rech Scient Nouveaux oligonucleotides, leur procede de preparation et leurs applications comme mediateurs dans le developpement des effets des interferons
US5367066A (en) 1984-10-16 1994-11-22 Chiron Corporation Oligonucleotides with selectably cleavable and/or abasic sites
FR2575751B1 (fr) 1985-01-08 1987-04-03 Pasteur Institut Nouveaux nucleosides de derives de l'adenosine, leur preparation et leurs applications biologiques
FR2576898B1 (fr) 1985-02-01 1988-01-08 Lafon Labor Derives de 3-phenyl-tetrahydropyridine, procede de preparation et utilisation en therapeutique
JPH0658512B2 (ja) 1985-04-12 1994-08-03 富士写真フイルム株式会社 ハロゲン化銀写真感光材料
US4659774A (en) 1985-11-01 1987-04-21 American Hoechst Corporation Support for solid-phase oligonucleotide synthesis
US4735949A (en) 1986-02-18 1988-04-05 Warner-Lambert Company Disubstituted-7-pyrrolidinonaphthyridine antibacterial agents
US4840956A (en) 1986-02-18 1989-06-20 Warner-Lambert Company Novel disubstituted-7-pyrrolidinoquinoline antibacterial agents
IL83663A0 (en) 1986-10-27 1988-01-31 Robins Co Inc A H Preparation of 3-pyrrolidinols
WO1988010264A1 (en) 1987-06-24 1988-12-29 Howard Florey Institute Of Experimental Physiology Nucleoside derivatives
ES2045028T3 (es) 1987-07-30 1994-01-16 Univ Bar Ilan Esteres de acidos carboxilicos biologicamente activos.
US4923901A (en) 1987-09-04 1990-05-08 Millipore Corporation Membranes with bound oligonucleotides and peptides
US5175273A (en) 1988-07-01 1992-12-29 Genentech, Inc. Nucleic acid intercalating agents
US4943629A (en) 1988-08-12 1990-07-24 American Cyanamid Company Antidiabetic alpha-substituted phosphonates
US4945158A (en) 1988-08-12 1990-07-31 American Cyanamid Company Antidiabetic phosphonates
US5047524A (en) 1988-12-21 1991-09-10 Applied Biosystems, Inc. Automated system for polynucleotide synthesis and purification
US5262530A (en) 1988-12-21 1993-11-16 Applied Biosystems, Inc. Automated system for polynucleotide synthesis and purification
JP2794461B2 (ja) 1989-08-17 1998-09-03 有機合成薬品工業株式会社 ホスホアミダイト化合物及びそれを用いたオリゴリボヌクレオチドの固相合成法
US5141813A (en) 1989-08-28 1992-08-25 Clontech Laboratories, Inc. Multifunctional controlled pore glass reagent for solid phase oligonucleotide synthesis
US5134066A (en) 1989-08-29 1992-07-28 Monsanto Company Improved probes using nucleosides containing 3-dezauracil analogs
CA2029273A1 (en) 1989-12-04 1991-06-05 Christine L. Brakel Modified nucleotide compounds
WO1991009594A1 (en) 1989-12-28 1991-07-11 Virginia Commonwealth University Sigma receptor ligands and the use thereof
US5130302A (en) 1989-12-20 1992-07-14 Boron Bilogicals, Inc. Boronated nucleoside, nucleotide and oligonucleotide compounds, compositions and methods for using same
US6339066B1 (en) 1990-01-11 2002-01-15 Isis Pharmaceuticals, Inc. Antisense oligonucleotides which have phosphorothioate linkages of high chiral purity and which modulate βI, βII, γ, δ, Ε, ζ and η isoforms of human protein kinase C
US5457191A (en) 1990-01-11 1995-10-10 Isis Pharmaceuticals, Inc. 3-deazapurines
US5635488A (en) 1991-10-15 1997-06-03 Isis Pharmaceuticals, Inc. Compounds having phosphorodithioate linkages of high chiral purity
US5587361A (en) 1991-10-15 1996-12-24 Isis Pharmaceuticals, Inc. Oligonucleotides having phosphorothioate linkages of high chiral purity
US5212295A (en) 1990-01-11 1993-05-18 Isis Pharmaceuticals Monomers for preparation of oligonucleotides having chiral phosphorus linkages
US5506212A (en) 1990-01-11 1996-04-09 Isis Pharmaceuticals, Inc. Oligonucleotides with substantially chirally pure phosphorothioate linkages
US5459255A (en) 1990-01-11 1995-10-17 Isis Pharmaceuticals, Inc. N-2 substituted purines
US5646265A (en) 1990-01-11 1997-07-08 Isis Pharmceuticals, Inc. Process for the preparation of 2'-O-alkyl purine phosphoramidites
HUT63170A (en) 1990-01-11 1993-07-28 Isis Pharmaceuticals Inc Process and composition for detecting and modifying rna activity and gene expression
US7101993B1 (en) 1990-01-11 2006-09-05 Isis Pharmaceuticals, Inc. Oligonucleotides containing 2′-O-modified purines
US5620963A (en) 1991-10-15 1997-04-15 Isis Pharmaceuticals, Inc. Oligonucleotides for modulating protein kinase C having phosphorothioate linkages of high chiral purity
US5914396A (en) 1990-01-11 1999-06-22 Isis Pharmaceuticals, Inc. 2'-O-modified nucleosides and phosphoramidites
US5681941A (en) 1990-01-11 1997-10-28 Isis Pharmaceuticals, Inc. Substituted purines and oligonucleotide cross-linking
US5587470A (en) 1990-01-11 1996-12-24 Isis Pharmaceuticals, Inc. 3-deazapurines
US5292875A (en) 1990-04-20 1994-03-08 Lynx Therapeutics, Inc. Method of synthesizing sulfurized oligonucleotide analogs
US5151510A (en) 1990-04-20 1992-09-29 Applied Biosystems, Inc. Method of synethesizing sulfurized oligonucleotide analogs
ES2139578T3 (es) 1990-05-23 2000-02-16 Isis Pharmaceuticals Inc Composiciones y procedimiento para modular la actividad del arn mediante la modificacion de la estructura protectora 5' del arn.
US5688941A (en) 1990-07-27 1997-11-18 Isis Pharmaceuticals, Inc. Methods of making conjugated 4' desmethyl nucleoside analog compounds
US5792844A (en) 1990-07-27 1998-08-11 Isis Pharmaceuticals, Inc. Oligonucleoside linkages containing adjacent nitrogen atoms
US5614617A (en) 1990-07-27 1997-03-25 Isis Pharmaceuticals, Inc. Nuclease resistant, pyrimidine modified oligonucleotides that detect and modulate gene expression
US5223618A (en) 1990-08-13 1993-06-29 Isis Pharmaceuticals, Inc. 4'-desmethyl nucleoside analog compounds
US5623070A (en) 1990-07-27 1997-04-22 Isis Pharmaceuticals, Inc. Heteroatomic oligonucleoside linkages
US5998603A (en) 1994-09-29 1999-12-07 Isis Pharmaceuticals, Inc. 4'-desmethyl nucleoside analogs, and oligomers thereof
US5783682A (en) 1990-07-27 1998-07-21 Isis Pharmaceuticals, Inc. Oligonucleotide mimics having nitrogen-containing linkages
US5489677A (en) 1990-07-27 1996-02-06 Isis Pharmaceuticals, Inc. Oligonucleoside linkages containing adjacent oxygen and nitrogen atoms
US6121433A (en) 1990-07-27 2000-09-19 Isis Pharmaceuticals, Inc. Oligomeric compounds having nitrogen-containing linkages
US5378825A (en) 1990-07-27 1995-01-03 Isis Pharmaceuticals, Inc. Backbone modified oligonucleotide analogs
WO1994022886A1 (en) 1993-03-30 1994-10-13 Isis Pharmaceuticals, Inc. Heteroatomic oligonucleoside linkages
US5138045A (en) 1990-07-27 1992-08-11 Isis Pharmaceuticals Polyamine conjugated oligonucleotides
US5541307A (en) 1990-07-27 1996-07-30 Isis Pharmaceuticals, Inc. Backbone modified oligonucleotide analogs and solid phase synthesis thereof
US5618704A (en) 1990-07-27 1997-04-08 Isis Pharmacueticals, Inc. Backbone-modified oligonucleotide analogs and preparation thereof through radical coupling
US5608046A (en) 1990-07-27 1997-03-04 Isis Pharmaceuticals, Inc. Conjugated 4'-desmethyl nucleoside analog compounds
US5677437A (en) 1990-07-27 1997-10-14 Isis Pharmaceuticals, Inc. Heteroatomic oligonucleoside linkages
US6087482A (en) 1990-07-27 2000-07-11 Isis Pharmaceuticals, Inc. Heteroatomic oligonucleoside linkages
US5602240A (en) 1990-07-27 1997-02-11 Ciba Geigy Ag. Backbone modified oligonucleotide analogs
US5386023A (en) 1990-07-27 1995-01-31 Isis Pharmaceuticals Backbone modified oligonucleotide analogs and preparation thereof through reductive coupling
US5834607A (en) 1990-07-27 1998-11-10 Isis Pharmaceuticals, Inc. Amines and methods of making and using the same
US5610289A (en) 1990-07-27 1997-03-11 Isis Pharmaceuticals, Inc. Backbone modified oligonucleotide analogues
US5432272A (en) 1990-10-09 1995-07-11 Benner; Steven A. Method for incorporating into a DNA or RNA oligonucleotide using nucleotides bearing heterocyclic bases
JPH04348044A (ja) 1991-02-21 1992-12-03 Matsushita Electron Corp 半導体用樹脂封止装置
US5512668A (en) 1991-03-06 1996-04-30 Polish Academy Of Sciences Solid phase oligonucleotide synthesis using phospholane intermediates
US7015315B1 (en) 1991-12-24 2006-03-21 Isis Pharmaceuticals, Inc. Gapped oligonucleotides
US20020183502A1 (en) 1991-05-21 2002-12-05 Mesmaeker Alain De Backbone-modified oligonucleotide analogs and methods for using same
US6414112B1 (en) 1991-05-24 2002-07-02 Ole Buchardt Peptide nucleic acids having 2,6-diaminopurine nucleobases
JPH04348077A (ja) 1991-05-24 1992-12-03 Nec Corp 薄膜トランジスタ
GB2272443B (en) 1991-06-10 1995-10-25 Lucky Ltd Nucleotide and amino acid sequences of Korean hepatitis C virus
US5646267A (en) 1991-08-05 1997-07-08 Polish Academy Of Sciences Method of making oligonucleotides and oligonucleotide analogs using phospholanes and enantiomerically resolved phospholane analogues
US5359052A (en) 1991-08-05 1994-10-25 Polish Academy Of Sciences Chalcophospholanes useful in the synthesis of oligonucleoside phosphorothioates, phosphorodithioates and related selenates
US6369209B1 (en) 1999-05-03 2002-04-09 Isis Pharmaceuticals, Inc. Oligonucleotides having A-DNA form and B-DNA form conformational geometry
US7119184B2 (en) 1991-08-12 2006-10-10 Isis Pharmaceuticals, Inc. Oligonucleotides having A-DNA form and B-DNA form conformational geometry
US5576302A (en) 1991-10-15 1996-11-19 Isis Pharmaceuticals, Inc. Oligonucleotides for modulating hepatitis C virus having phosphorothioate linkages of high chiral purity
US5661134A (en) 1991-10-15 1997-08-26 Isis Pharmaceuticals, Inc. Oligonucleotides for modulating Ha-ras or Ki-ras having phosphorothioate linkages of high chiral purity
US5654284A (en) 1991-10-15 1997-08-05 Isis Pharmaceuticals, Inc. Oligonucleotides for modulating RAF kinase having phosphorothioate linkages of high chiral purity
US5607923A (en) 1991-10-15 1997-03-04 Isis Pharmaceuticals, Inc. Oligonucleotides for modulating cytomegalovirus having phosphorothioate linkages of high chiral purity
CA2121144C (en) 1991-10-15 2001-07-31 Phillip Dan Cook Oligonucleotides having chiral phosphorus linkages
US5599797A (en) 1991-10-15 1997-02-04 Isis Pharmaceuticals, Inc. Oligonucleotides having phosphorothioate linkages of high chiral purity
ES2103918T3 (es) 1991-10-17 1997-10-01 Ciba Geigy Ag Nucleosidos biciclicos, oligonucleotidos, procedimiento para su obtencion y productos intermedios.
US5594121A (en) 1991-11-07 1997-01-14 Gilead Sciences, Inc. Enhanced triple-helix and double-helix formation with oligomers containing modified purines
US5484908A (en) 1991-11-26 1996-01-16 Gilead Sciences, Inc. Oligonucleotides containing 5-propynyl pyrimidines
US6235887B1 (en) 1991-11-26 2001-05-22 Isis Pharmaceuticals, Inc. Enhanced triple-helix and double-helix formation directed by oligonucleotides containing modified pyrimidines
US5359044A (en) 1991-12-13 1994-10-25 Isis Pharmaceuticals Cyclobutyl oligonucleotide surrogates
AU669353B2 (en) 1991-12-24 1996-06-06 Isis Pharmaceuticals, Inc. Gapped 2' modified oligonucleotides
GB9213601D0 (en) 1992-06-26 1992-08-12 Mastico Robert A Protein based delivery system
US7067497B2 (en) 1992-09-29 2006-06-27 Isis Pharmaceuticals, Inc. Modulation of telomere length by oligonucleotides having a G-core sequence
US6005107A (en) 1992-12-23 1999-12-21 Biochem Pharma, Inc. Antiviral compounds
US6444656B1 (en) 1992-12-23 2002-09-03 Biochem Pharma, Inc. Antiviral phosphonate nucleotides
JPH08508714A (ja) 1993-01-25 1996-09-17 ハイブライドン インコーポレイテッド オリゴヌクレオチド・アルキルホスホネートおよびアルキルホスホノチオエート
HU9501978D0 (en) 1993-03-31 1995-09-28 Sterling Winthorp Inc Bifunctional nucleosides, oligomers thereof, and methods of making and using the same
HU9501994D0 (en) 1993-03-31 1995-09-28 Sterling Winthrop Inc Novel 5'-substituted nucleosides and oligomers produced therefrom
US5955591A (en) 1993-05-12 1999-09-21 Imbach; Jean-Louis Phosphotriester oligonucleotides, amidites and method of preparation
US6015886A (en) 1993-05-24 2000-01-18 Chemgenes Corporation Oligonucleotide phosphate esters
EP0628394B1 (en) 1993-06-10 1998-08-26 Idemitsu Petrochemical Co. Ltd. Injection molding die
US5502177A (en) 1993-09-17 1996-03-26 Gilead Sciences, Inc. Pyrimidine derivatives for labeled binding partners
WO1998003542A1 (en) 1996-07-24 1998-01-29 Buchardt, Dorte Peptide nucleic acids having enhanced binding affinity, sequence specificity and solubility
US5457187A (en) 1993-12-08 1995-10-10 Board Of Regents University Of Nebraska Oligonucleotides containing 5-fluorouracil
DE4435728A1 (de) 1994-01-19 1995-07-20 Boehringer Mannheim Gmbh Biotinsilan-Verbindungen und diese Verbindungen enthaltende Bindematrix
US6117679A (en) 1994-02-17 2000-09-12 Maxygen, Inc. Methods for generating polynucleotides having desired characteristics by iterative selection and recombination
CN1077598C (zh) 1994-02-22 2002-01-09 诺沃奇梅兹有限公司 制备脂解酶变异体的方法
US5596091A (en) 1994-03-18 1997-01-21 The Regents Of The University Of California Antisense oligonucleotides comprising 5-aminoalkyl pyrimidine nucleotides
US5871966A (en) 1994-05-11 1999-02-16 Novo Nordisk A/S Enzyme with endo-1,3(4)-β- Glucanase activity
US5525711A (en) 1994-05-18 1996-06-11 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Pteridine nucleotide analogs as fluorescent DNA probes
DE69507197T2 (de) 1994-05-31 1999-05-27 Bayer Ag, 51373 Leverkusen Aminobenzofuryl- und -thienylderivate
HRP950288A2 (en) 1994-05-31 1997-08-31 Bayer Ag Oxalylamino-benzofuran- and benzothienyl-derivatives
US6207646B1 (en) 1994-07-15 2001-03-27 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US6239116B1 (en) 1994-07-15 2001-05-29 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
ATE420171T1 (de) 1994-07-15 2009-01-15 Univ Iowa Res Found Immunomodulatorische oligonukleotide
US5681940A (en) 1994-11-02 1997-10-28 Icn Pharmaceuticals Sugar modified nucleosides and oligonucleotides
WO1996019572A1 (en) 1994-12-22 1996-06-27 Hybridon, Inc. Synthesis of stereospecific oligonucleotide phosphorothioates
GB9501465D0 (en) 1995-01-25 1995-03-15 King S College London Nucleoside phosphorothioate derivatives,synthesis and use thereof
US6166197A (en) 1995-03-06 2000-12-26 Isis Pharmaceuticals, Inc. Oligomeric compounds having pyrimidine nucleotide (S) with 2'and 5 substitutions
DE69636160D1 (de) 1995-03-06 2006-06-29 Isis Pharmaceuticals Inc Verfahren zur synthese von 2'-0-substituierten pyrimidinen und oligomere davon
DE69638104D1 (de) 1995-04-27 2010-02-11 Takara Bio Inc Für Lacto-N-biosidase kodierendes Gen
DK0824588T3 (da) 1995-05-11 2004-08-16 Applied Research Systems Inhibitor af IL-6 aktivitet
CA2221589A1 (en) 1995-05-19 1996-11-21 Glycomed Incorporated Collection of activated glycoside compounds and their biological use
ATE194990T1 (de) 1995-05-23 2000-08-15 Hybridon Inc Synthon für stereoselektive oligonukleotid- synthese
AU5871196A (en) 1995-05-23 1996-12-24 Hybridon, Inc. Methods and compounds for the synthesis of oligonucleotides and the oligonucleotides thereby produced
JPH10510433A (ja) 1995-06-06 1998-10-13 アイシス・ファーマシューティカルス・インコーポレーテッド 高いキラル純度のホスホロチオエート結合を有するオリゴヌクレオチド
US5932450A (en) 1995-06-07 1999-08-03 Gen-Probe Incorporated Enzymatic synthesis of oligonucleotides using digestible templates
DE69635849T2 (de) 1995-06-29 2006-10-19 Takara Bio Inc., Otsu Für Endoglycoceramidase kodierendes Gen
EP0759470B1 (en) 1995-06-29 2006-10-25 Takara Bio Inc. Gene encoding endoglycoceramidase activator
US6017700A (en) 1995-08-04 2000-01-25 Bayer Corporation Cationic oligonucleotides, and related methods of synthesis and use
US5936080A (en) 1996-05-24 1999-08-10 Genta Incorporated Compositions and methods for the synthesis of organophosphorus derivatives
WO1997009443A1 (en) 1995-09-05 1997-03-13 Michigan State University PROCESS FOR THE ISOLATION AND PURIFICATION OF TAXOL AND TAXANES FROM TAXUS spp
US6476216B1 (en) 1995-10-20 2002-11-05 Mcgill University Preparation of phosphorothioate oligomers
US5734041A (en) 1995-10-20 1998-03-31 Mcgill University Preparation of chiral phosphorothioate oligomers
US6160109A (en) 1995-10-20 2000-12-12 Isis Pharmaceuticals, Inc. Preparation of phosphorothioate and boranophosphate oligomers
US7018793B1 (en) 1995-12-07 2006-03-28 Diversa Corporation Combinatorial screening of mixed populations of organisms
US6214805B1 (en) 1996-02-15 2001-04-10 The United States Of America As Represented By The Department Of Health And Human Services RNase L activators and antisense oligonucleotides effective to treat RSV infections
JP2000506384A (ja) 1996-02-15 2000-05-30 ナショナル インスティチューツ オブ ヘルス RNase L アクチベーター及びRSV感染の治療に有効なアンチセンスオリゴヌクレオチド
GB9604669D0 (en) 1996-03-05 1996-05-01 Ciba Geigy Ag Chemical compounds
US5824669A (en) 1996-03-22 1998-10-20 Nitromed, Inc. Nitrosated and nitrosylated compounds and compositions and their use for treating respiratory disorders
DK0898618T3 (da) 1996-05-10 2008-02-25 Novozymes As Fremgangsmåde til tilvejebringelse af hidtil ukendte DNA-sekvenser
US5856465A (en) 1996-05-24 1999-01-05 Polska Akademia Nauk Centrum Badan Molekularnych I Makromolekularnych Compositions and methods for the synthesis of chirally pure organophosphorus nucleoside derivatives
US5898031A (en) 1996-06-06 1999-04-27 Isis Pharmaceuticals, Inc. Oligoribonucleotides for cleaving RNA
WO2005121370A2 (en) 2004-06-03 2005-12-22 Isis Pharmaceuticals, Inc. Oligomeric compounds that facilitate risc loading
DE19622783A1 (de) 1996-06-07 1997-12-11 Hoechst Ag Isolierung der Biosynthesegene für Pseudo-Oligosaccharide aus Streptomyces glaucescens GLA.O und ihre Verwendung
WO1998002582A2 (en) 1996-07-16 1998-01-22 Gen-Probe Incorporated Methods for detecting and amplifying nucleic acid sequences using modified oligonucleotides having increased target specific t¿m?
WO1998007734A1 (en) * 1996-08-21 1998-02-26 Hybridon, Inc. Oligonucleotide prodrugs
US6056973A (en) 1996-10-11 2000-05-02 Sequus Pharmaceuticals, Inc. Therapeutic liposome composition and method of preparation
GB9621522D0 (en) 1996-10-16 1996-12-04 Biocompatibles Ltd Synthesis of phosphorus compounds
US6639062B2 (en) 1997-02-14 2003-10-28 Isis Pharmaceuticals, Inc. Aminooxy-modified nucleosidic compounds and oligomeric compounds prepared therefrom
US6172209B1 (en) 1997-02-14 2001-01-09 Isis Pharmaceuticals Inc. Aminooxy-modified oligonucleotides and methods for making same
US6369237B1 (en) 1997-03-07 2002-04-09 President And Fellows Of Harvard College DNA glycosylase inhibitors, and uses related thereto
US6015887A (en) 1997-04-11 2000-01-18 Isis Pharmaceuticals, Inc. Chiral peptide nucleic acids and methods for preparing same
US6468983B2 (en) 1997-04-21 2002-10-22 The Cleveland Clinic Foundation RNase L activators and antisense oligonucleotides effective to treat telomerase-expressing malignancies
PL184612B1 (pl) 1997-04-25 2002-11-29 Pan Sposób wytwarzania modyfikowanych P chiralnych analogów nukleotydów
IL133087A0 (en) 1997-05-28 2001-03-19 Nielsen Peter E Conjugated peptide nucleic acids having enhanced cellular uptake
AR013142A1 (es) 1997-06-27 2000-12-13 Procter & Gamble Compuesto de pro-fragancia con acetales ciclicos composicion detergente para lavado de ropa, composicion suavizante de telas y articulo de fabricacionpara proporcionar beneficios de apariencia a las telas, que lo comprenden
WO1999005160A2 (en) 1997-07-25 1999-02-04 Hybridon, Inc. Oligonuclotides having 3' terminal stereospecific phosphorothioates
US6383808B1 (en) 2000-09-11 2002-05-07 Isis Pharmaceuticals, Inc. Antisense inhibition of clusterin expression
US6767739B2 (en) 2001-07-30 2004-07-27 Isis Pharmaceuticals Inc. Antisense modulation of microsomal triglyceride transfer protein expression
GB9717158D0 (en) 1997-08-13 1997-10-22 King S College London Solution synthesis of oligonucleotides and their phosphorothioate analogues
US6750344B1 (en) 1997-09-05 2004-06-15 Isis Pharmaceuticals, Inc. Amine compounds and combinatorial libraries comprising same
US6794499B2 (en) 1997-09-12 2004-09-21 Exiqon A/S Oligonucleotide analogues
DE19741715A1 (de) 1997-09-22 1999-03-25 Hoechst Ag Pentopyranosyl-Nucleosid, seine Herstellung und Verwendung
US6232463B1 (en) 1997-10-09 2001-05-15 Isis Pharmaceuticals, Inc. Substituted purines and oligonucleotide cross-linking
US6528640B1 (en) 1997-11-05 2003-03-04 Ribozyme Pharmaceuticals, Incorporated Synthetic ribonucleic acids with RNAse activity
US6617438B1 (en) 1997-11-05 2003-09-09 Sirna Therapeutics, Inc. Oligoribonucleotides with enzymatic activity
US6080543A (en) 1997-12-08 2000-06-27 E. & J. Gallo Winery Detection of fungal pathogens
US6582936B1 (en) 1997-12-12 2003-06-24 The Regents Of The University Of California Methods for making nucleic acids
US6248519B1 (en) 1998-03-11 2001-06-19 E & J Gallo Winery Detection of fermentation-related microorganisms
US7045610B2 (en) 1998-04-03 2006-05-16 Epoch Biosciences, Inc. Modified oligonucleotides for mismatch discrimination
EP1077708A1 (en) 1998-05-06 2001-02-28 University Of Iowa Research Foundation Methods for the prevention and treatment of parasitic infections and related diseases using cpg oligonucleotides
CA2328406A1 (en) 1998-05-14 1999-11-18 Hermann Wagner Methods for regulating hematopoiesis using cpg-oligonucleotides
US6867294B1 (en) 1998-07-14 2005-03-15 Isis Pharmaceuticals, Inc. Gapped oligomers having site specific chiral phosphorothioate internucleoside linkages
US6242589B1 (en) 1998-07-14 2001-06-05 Isis Pharmaceuticals, Inc. Phosphorothioate oligonucleotides having modified internucleoside linkages
AU764532B2 (en) 1998-07-27 2003-08-21 University Of Iowa Research Foundation, The Stereoisomers of CpG oligonucleotides and related methods
EP1104306B1 (en) 1998-08-10 2006-01-11 Antigenics Inc. Compositions of cpg and saponin adjuvants and methods of use thereof
WO2000023444A1 (en) 1998-10-21 2000-04-27 Abbott Laboratories 5,7-disubstituted-4-aminopyrido[2,3-d]pyrimidine compounds
US6995259B1 (en) 1998-10-23 2006-02-07 Sirna Therapeutics, Inc. Method for the chemical synthesis of oligonucleotides
WO2000031110A1 (en) 1998-11-25 2000-06-02 Isis Pharmaceuticals, Inc. Identification of disease predictive nucleic acids
US6451524B1 (en) 1998-11-25 2002-09-17 Isis Pharmaceuticals, Inc. Identification of disease predictive nucleic acids
ATE438724T1 (de) 1998-12-21 2009-08-15 Genencor Int Chemisch modifizierte enzymen mit mehrfachgeladenen varianten
WO2000040749A2 (en) 1999-01-06 2000-07-13 Genenews Inc. Method for the detection of gene transcripts in blood and uses thereof
US6265172B1 (en) 1999-02-08 2001-07-24 University Of Kentucky Diagnostic test and therapy for manganese superoxide dismutate (mNsod) associated diseases
US6121437A (en) 1999-03-16 2000-09-19 Isis Pharmaceuticals, Inc. Phosphate and thiophosphate protecting groups
US6506594B1 (en) 1999-03-19 2003-01-14 Cornell Res Foundation Inc Detection of nucleic acid sequence differences using the ligase detection reaction with addressable arrays
GB9907245D0 (en) 1999-03-29 1999-05-26 Goldsborough Andrew Cleavage of nucleic acids from solid supports
JP3072345B1 (ja) 1999-03-31 2000-07-31 農林水産省家畜衛生試験場長 豚丹毒菌の組換えサブユニットワクチン
US5998148A (en) 1999-04-08 1999-12-07 Isis Pharmaceuticals Inc. Antisense modulation of microtubule-associated protein 4 expression
US6977245B2 (en) 1999-04-12 2005-12-20 The United States Of America As Represented By The Department Of Health And Human Services Oligodeoxynucleotide and its use to induce an immune response
US6300069B1 (en) 1999-05-03 2001-10-09 Qiagen Gmbh Generation and amplification of nucleic acids from ribonucleic acids
US6656730B1 (en) 1999-06-15 2003-12-02 Isis Pharmaceuticals, Inc. Oligonucleotides conjugated to protein-binding drugs
US6271004B1 (en) 1999-06-25 2001-08-07 Display Systems Biotech A/S Method for improved reverse transcription at high temperatures
US6066500A (en) 1999-06-25 2000-05-23 Isis Pharmaceuticals Inc. Antisense modulation of Beta catenin expression
US6414135B1 (en) 1999-07-07 2002-07-02 Isis Pharmaceuticals, Inc. C3′-methylene hydrogen phosphonate monomers and related compounds
US20030092647A1 (en) 2001-08-08 2003-05-15 Crooke Rosanne M. Antisense modulation of cholesteryl ester transfer protein expression
US6147200A (en) 1999-08-19 2000-11-14 Isis Pharmaceuticals, Inc. 2'-O-acetamido modified monomers and oligomers
US7264932B2 (en) 1999-09-24 2007-09-04 Applera Corporation Nuclease inhibitor cocktail
DK1221955T3 (da) 1999-09-25 2006-01-30 Univ Iowa Res Found Immunstimulerende nukleinsyre
US6949520B1 (en) 1999-09-27 2005-09-27 Coley Pharmaceutical Group, Inc. Methods related to immunostimulatory nucleic acid-induced interferon
CA2386019C (en) 1999-09-27 2011-06-21 Coley Pharmaceutical Group, Inc. Methods related to immunostimulatory nucleic acid-induced interferon
US20020082227A1 (en) 1999-09-30 2002-06-27 Scott Henry Use of oligonucleotides for inhibition of complement activation
US6528262B1 (en) 1999-10-06 2003-03-04 Quark Biotech, Inc. Method for enrichment of natural antisense messenger RNA
GB9924285D0 (en) 1999-10-14 1999-12-15 Avecia Ltd Process
US20010055761A1 (en) 1999-10-29 2001-12-27 Agilent Technologies Small scale dna synthesis using polymeric solid support with functionalized regions
FR2800750B1 (fr) 1999-11-05 2003-01-31 Centre Nat Rech Scient Proteines membranaires ctl (choline transporter like) impliquees dans le transport de la choline
AU1656601A (en) 1999-11-12 2001-06-12 Isis Pharmaceuticals, Inc. Gapped oligomers having site specific chiral phosphorothioate internucleoside linkages
US6322985B1 (en) 1999-12-27 2001-11-27 Technion Research And Development Foundation Ltd. Abundant, well distributed and hyperpolymorphic simple sequence repeats in prokaryote genomes and use of same for prokaryote classification and typing
US7055094B2 (en) 1999-12-30 2006-05-30 Rutgers, The State University Of New Jersey Virtual tags and the process of virtual tagging utilizing user feedback in transformation rules
WO2001050117A1 (en) 1999-12-30 2001-07-12 Cabot Corporation Sensors with improved properties
US6649750B1 (en) 2000-01-05 2003-11-18 Isis Pharmaceuticals, Inc. Process for the preparation of oligonucleotide compounds
US6159697A (en) 2000-01-19 2000-12-12 Isis Pharmaceuticals, Inc. Antisense modulation of Smad7 expression
US7585847B2 (en) 2000-02-03 2009-09-08 Coley Pharmaceutical Group, Inc. Immunostimulatory nucleic acids for the treatment of asthma and allergy
US6495677B1 (en) 2000-02-15 2002-12-17 Kanda S. Ramasamy Nucleoside compounds
US6936432B2 (en) 2000-03-01 2005-08-30 Message Pharmaceuticals Bacterial RNase P proteins and their use in identifying antibacterial compounds
GB0004889D0 (en) 2000-03-01 2000-04-19 Avecia Ltd Synthesis of oligonucleotides
WO2001070663A2 (en) 2000-03-17 2001-09-27 Corixa Corporation Novel amphipathic aldehydes and their use as adjuvants and immunoeffectors
EP1278728B1 (en) 2000-04-20 2004-08-25 F. Hoffmann-La Roche Ag Pyrrolidine and piperidine derivatives and their use for the treatment of neurodegenerative disorders
DE10019756A1 (de) 2000-04-20 2001-10-25 Bayer Ag Verfahren zur Herstellung von superabsorbierenden Polymeren aus Polyacrylnitrilen
US6492171B2 (en) 2000-05-16 2002-12-10 Isis Pharmaceuticals, Inc. Antisense modulation of TERT expression
US6815542B2 (en) 2000-06-16 2004-11-09 Ribapharm, Inc. Nucleoside compounds and uses thereof
ATE384731T1 (de) 2000-08-03 2008-02-15 Hoffmann La Roche Nukleinsäurebindende verbindungen mit pyrazolo 3, 4-d pyrimidinanalogen von purin-2,6-diamin und ihre verwendung
US6725412B1 (en) 2000-08-15 2004-04-20 Dolby Laboratories Licensing Corporation Low latency data encoder
US6809195B1 (en) 2000-08-16 2004-10-26 Isis Pharmaceuticals, Inc. Process for the preparation of oligonucleotides
US6559279B1 (en) 2000-09-08 2003-05-06 Isis Pharmaceuticals, Inc. Process for preparing peptide derivatized oligomeric compounds
JP2005500806A (ja) 2000-09-15 2005-01-13 コーリー ファーマシューティカル ゲーエムベーハー CpGに基づく免疫アゴニスト/免疫アンタゴニストの高スループットスクリーニングのためのプロセス
EP1191097A1 (en) 2000-09-21 2002-03-27 Leids Universitair Medisch Centrum Induction of exon skipping in eukaryotic cells
GB0024752D0 (en) 2000-10-10 2000-11-22 Univ Belfast Oxidative halogenation of aromatic compounds
HU229642B1 (en) 2000-10-18 2014-03-28 Glaxosmithkline Beecham Biolog S A Vaccines against cancers
US6372492B1 (en) 2000-10-30 2002-04-16 Isis Pharmaceuticals, Inc. Antisense modulation of talin expression
US6682889B1 (en) 2000-11-08 2004-01-27 Becton, Dickinson And Company Amplification and detection of organisms of the Chlamydiaceae family
NL1016978C2 (nl) 2000-12-22 2002-06-25 Robert Jan Colenbrander Inrichting en werkwijze voor het verpakken en bereiden van voedsel en werkwijze voor het vervaardigen van een dergelijke inrichting.
EP2399588B1 (en) 2001-01-22 2020-04-29 Merck Sharp & Dohme Corp. Nucleoside derivatives as inhibitors of rna-dependent rna viral polymerase
US8008459B2 (en) 2001-01-25 2011-08-30 Evolva Sa Concatemers of differentially expressed multiple genes
US7838287B2 (en) 2001-01-25 2010-11-23 Evolva Sa Library of a collection of cells
EP1354035B1 (en) 2001-01-26 2016-08-24 Commonwealth Scientific and Industrial Research Organisation Methods and means for producing efficient silencing construct using recombinational cloning
US20050277133A1 (en) 2001-05-18 2005-12-15 Sirna Therapeutics, Inc. RNA interference mediated treatment of polyglutamine (polyQ) repeat expansion diseases using short interfering nucleic acid (siNA)
US20030207804A1 (en) 2001-05-25 2003-11-06 Muthiah Manoharan Modified peptide nucleic acids
GB0113523D0 (en) 2001-06-04 2001-07-25 Torotrak Dev Ltd An Hydraulic control circuit for a continuosly variable transmission
US20030069410A1 (en) 2001-06-14 2003-04-10 Isis Pharmaceuticals, Inc. Methods for preparing oligonucleotides having chiral phosphorothioate linkages
US20050019915A1 (en) 2001-06-21 2005-01-27 Bennett C. Frank Antisense modulation of superoxide dismutase 1, soluble expression
JP4370161B2 (ja) 2001-06-29 2009-11-25 ノバルティス バクシンズ アンド ダイアグノスティックス,インコーポレーテッド Hcve1e2ワクチン組成物
JP2005504020A (ja) 2001-07-03 2005-02-10 アイシス・ファーマシューティカルス・インコーポレーテッド ヌクレアーゼ耐性キメラオリゴヌクレオチド
US7205399B1 (en) 2001-07-06 2007-04-17 Sirna Therapeutics, Inc. Methods and reagents for oligonucleotide synthesis
US6440739B1 (en) 2001-07-17 2002-08-27 Isis Pharmaceuticals, Inc. Antisense modulation of glioma-associated oncogene-2 expression
US7425545B2 (en) 2001-07-25 2008-09-16 Isis Pharmaceuticals, Inc. Modulation of C-reactive protein expression
US7407943B2 (en) 2001-08-01 2008-08-05 Isis Pharmaceuticals, Inc. Antisense modulation of apolipoprotein B expression
US7888324B2 (en) 2001-08-01 2011-02-15 Genzyme Corporation Antisense modulation of apolipoprotein B expression
US6455308B1 (en) 2001-08-01 2002-09-24 Isis Pharmaceuticals, Inc. Antisense modulation of serum amyloid A4 expression
US7259150B2 (en) 2001-08-07 2007-08-21 Isis Pharmaceuticals, Inc. Modulation of apolipoprotein (a) expression
US7227014B2 (en) 2001-08-07 2007-06-05 Isis Pharmaceuticals, Inc. Antisense modulation of apolipoprotein (a) expression
WO2003020884A2 (en) 2001-08-14 2003-03-13 The Government Of The United States Of America As Represented By The Secretary Of Health And Human Services Method for rapid generation of mature dendritic cells
EP1418877A2 (en) 2001-08-24 2004-05-19 Massachusetts Institute Of Technology Reagents that facilitate the purification of compounds synthesized on a solid support
US7049122B2 (en) 2001-09-21 2006-05-23 Academia Sinica Mutant-type lipases and applications thereof
US6933288B2 (en) 2002-02-04 2005-08-23 Isis Pharmaceuticals, Inc. Pyranosyl cytosines: pharmaceutical formulations and methods
JP4348044B2 (ja) 2002-02-12 2009-10-21 株式会社キラルジェン 立体規則性の高いジヌクレオシドホスホロチオエートの製造法
US20040149587A1 (en) 2002-02-15 2004-08-05 George Hradil Electroplating solution containing organic acid complexing agent
US20030159938A1 (en) 2002-02-15 2003-08-28 George Hradil Electroplating solution containing organic acid complexing agent
US20050096284A1 (en) 2002-02-20 2005-05-05 Sirna Therapeutics, Inc. RNA interference mediated treatment of polyglutamine (polyQ) repeat expansion diseases using short interfering nucleic acid (siNA)
US8232383B2 (en) 2002-02-20 2012-07-31 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
CA2477795A1 (en) 2002-02-28 2003-09-12 Kandasamy Sakthivel Nucleoside 5'-monophosphate mimics and their prodrugs
EP1485395A4 (en) 2002-02-28 2011-04-13 Biota Scient Management NUCLEOTIDE MIMETICS AND PRODRUGS THEREOF
US7288376B2 (en) 2002-03-22 2007-10-30 Council Of Scientific And Industrial Research Method of detection of SP-A2 gene variants useful for prediction of predisposition to aspergillosis
US20040102394A1 (en) 2002-11-23 2004-05-27 Isis Pharmaceuticals Inc. Modulation of huntingtin interacting protein 2 expression
US7247621B2 (en) 2002-04-30 2007-07-24 Valeant Research & Development Antiviral phosphonate compounds and methods therefor
AU2003237875A1 (en) 2002-05-15 2003-12-02 Isis Pharmaceuticals, Inc. Antisense modulation of apolipoprotein b expression
US20040014957A1 (en) 2002-05-24 2004-01-22 Anne Eldrup Oligonucleotides having modified nucleoside units
US20040014108A1 (en) 2002-05-24 2004-01-22 Eldrup Anne B. Oligonucleotides having modified nucleoside units
US7507808B2 (en) 2002-12-12 2009-03-24 Isis Pharmaceuticals, Inc. Modulation of endothelial lipase expression
AU2003248708A1 (en) 2002-06-17 2003-12-31 Isis Pharmaceuticals, Inc. Oligomeric compounds that include carbocyclic nucleosides and their use in gene modulation
RU2322257C2 (ru) 2002-06-20 2008-04-20 Цитос Байотекнолоджи Аг КОМПОЗИЦИИ, СОДЕРЖАЩИЕ CpG-ОЛИГОНУКЛЕОТИДЫ И ВИРУСОПОДОБНЫЕ ЧАСТИЦЫ, ДЛЯ ПРИМЕНЕНИЯ В КАЧЕСТВЕ АДЪЮВАНТОВ
WO2004003228A1 (en) 2002-07-01 2004-01-08 Unisearch Limited Genotyping method
EP1520022B1 (en) 2002-07-10 2015-07-22 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Rna-interference by single-stranded rna molecules
US20040023905A1 (en) 2002-07-31 2004-02-05 Isis Pharmaceuticals Inc. Antisense modulation of LAR expression
US20050255086A1 (en) 2002-08-05 2005-11-17 Davidson Beverly L Nucleic acid silencing of Huntington's Disease gene
US20080274989A1 (en) 2002-08-05 2008-11-06 University Of Iowa Research Foundation Rna Interference Suppression of Neurodegenerative Diseases and Methods of Use Thereof
US20050042646A1 (en) 2002-08-05 2005-02-24 Davidson Beverly L. RNA interference suppresion of neurodegenerative diseases and methods of use thereof
WO2004014933A1 (en) 2002-08-07 2004-02-19 University Of Massachusetts Compositions for rna interference and methods of use thereof
AU2003259735A1 (en) 2002-08-08 2004-02-25 Sirna Therapeutics, Inc. Small-mer compositions and methods of use
AR040996A1 (es) 2002-08-19 2005-04-27 Coley Pharm Group Inc Acidos nucleicos inmunoestimuladores
US7414116B2 (en) 2002-08-23 2008-08-19 Illumina Cambridge Limited Labelled nucleotides
US7030230B2 (en) 2002-10-25 2006-04-18 Isis Pharmaceuticals, Inc. Process of purifying phosphoramidites
US7998492B2 (en) 2002-10-29 2011-08-16 Coley Pharmaceutical Group, Inc. Methods and products related to treatment and prevention of hepatitis C virus infection
US20040147020A1 (en) 2002-11-01 2004-07-29 The Regents Of The University Of Colorado, A Body Corporate Dopamine neurons from human embryonic stem cells
WO2004044134A2 (en) 2002-11-05 2004-05-27 Isis Pharmaceuticals, Inc. Phosphorous-linked oligomeric compounds and their use in gene modulation
CA2505090A1 (en) 2002-11-05 2004-05-27 Isis Pharmaceuticals, Inc. Conjugated oligomeric compounds and their use in gene modulation
AU2003287502B2 (en) 2002-11-05 2010-12-09 Isis Pharmaceuticals, Inc. Compositions comprising alternating 2'-modified nucleosides for use in gene modulation
AU2003291753B2 (en) 2002-11-05 2010-07-08 Isis Pharmaceuticals, Inc. Polycyclic sugar surrogate-containing oligomeric compounds and compositions for use in gene modulation
US7381527B2 (en) 2002-11-06 2008-06-03 Council Of Scientific And Industrial Research Method of detection of SP-A2 gene variants
CA2505801A1 (en) 2002-11-13 2004-05-27 Rosanne Crooke Antisense modulation of apolipoprotein b expression
US7511131B2 (en) 2002-11-13 2009-03-31 Genzyme Corporation Antisense modulation of apolipoprotein B expression
DK2284266T3 (da) 2002-11-14 2014-01-13 Thermo Fisher Scient Biosciences Inc sIRNA-MOLEKYLE MOD TP53
CA2518475C (en) 2003-03-07 2014-12-23 Alnylam Pharmaceuticals, Inc. Irna agents comprising asymmetrical modifications
WO2004080466A1 (en) 2003-03-07 2004-09-23 Ribapharm Inc. Cytidine analogs and methods of use
CA2524255C (en) 2003-03-21 2014-02-11 Academisch Ziekenhuis Leiden Modulation of exon recognition in pre-mrna by interfering with the secondary rna structure
GB0306657D0 (en) 2003-03-24 2003-04-30 Avecia Ltd Process and compounds
US7517520B2 (en) 2003-03-26 2009-04-14 Cytos Biotechnology Ag Packaging of immunostimulatory oligonucleotides into virus-like particles: method of preparation and use
US7537767B2 (en) 2003-03-26 2009-05-26 Cytis Biotechnology Ag Melan-A- carrier conjugates
ITRM20030149A1 (it) 2003-04-02 2004-10-03 Giuliani Spa Oligonucleotidi (odn) antisenso per smad7 e loro usi in campo medico
US7598227B2 (en) 2003-04-16 2009-10-06 Isis Pharmaceuticals Inc. Modulation of apolipoprotein C-III expression
WO2005002626A2 (en) 2003-04-25 2005-01-13 Gilead Sciences, Inc. Therapeutic phosphonate compounds
CN101410120A (zh) 2003-04-25 2009-04-15 吉里德科学公司 抗炎的膦酸酯化合物
US7470724B2 (en) 2003-04-25 2008-12-30 Gilead Sciences, Inc. Phosphonate compounds having immuno-modulatory activity
US7407965B2 (en) 2003-04-25 2008-08-05 Gilead Sciences, Inc. Phosphonate analogs for treating metabolic diseases
EP1617848A2 (en) 2003-04-25 2006-01-25 Gilead Sciences, Inc. Anti-cancer phosphonate conjugates
US7452901B2 (en) 2003-04-25 2008-11-18 Gilead Sciences, Inc. Anti-cancer phosphonate analogs
WO2004096233A2 (en) 2003-04-25 2004-11-11 Gilead Sciences, Inc. Nucleoside phosphonate conjugates
US7432261B2 (en) 2003-04-25 2008-10-07 Gilead Sciences, Inc. Anti-inflammatory phosphonate compounds
WO2004096286A2 (en) 2003-04-25 2004-11-11 Gilead Sciences, Inc. Antiviral phosphonate analogs
US20090247488A1 (en) 2003-04-25 2009-10-01 Carina Cannizzaro Anti-inflammatory phosphonate compounds
US20050261237A1 (en) 2003-04-25 2005-11-24 Boojamra Constantine G Nucleoside phosphonate analogs
US7045306B2 (en) 2003-04-28 2006-05-16 The General Hospital Corporation Method for identifying compounds in vitro that modulate the dysregulation of transcription of transcription mediated by mutant huntingtin protein
US7214491B2 (en) 2003-05-07 2007-05-08 E. I. Du Pont De Nemours And Company Δ-12 desaturase gene suitable for altering levels of polyunsaturated fatty acids in oleaginous yeasts
US7589189B2 (en) 2003-05-14 2009-09-15 Japan Science And Technology Agency Inhibition of the expression of huntingtin gene
MXPA05013922A (es) 2003-06-20 2006-02-24 Coley Pharm Group Inc Antagonistas de receptor tipo toll de molecula pequena.
US8969314B2 (en) 2003-07-31 2015-03-03 Regulus Therapeutics, Inc. Methods for use in modulating miR-122a
CA2533701A1 (en) 2003-07-31 2005-02-17 Isis Pharmaceuticals, Inc. Oligomeric compounds and compositions for use in modulation of small non-coding rnas
JP2011088935A (ja) 2003-08-08 2011-05-06 Chiralgen Ltd リン原子修飾ヌクレオチド類縁体の製造のための光学活性ヌクレオシド3’−ホスホロアミダイト
JP2005089441A (ja) 2003-08-08 2005-04-07 Toudai Tlo Ltd 立体規則性の高いリン原子修飾ヌクレオチド類縁体の製造法
US7825235B2 (en) 2003-08-18 2010-11-02 Isis Pharmaceuticals, Inc. Modulation of diacylglycerol acyltransferase 2 expression
BRPI0413682A (pt) 2003-08-21 2006-10-24 Univ Griffith compostos, composição farmacêutica e respectivos métodos de preparação, de tratamento de infecção microbiana e de extermìnio de microrganismo e usos
WO2005019237A1 (en) 2003-08-21 2005-03-03 Griffith University Novel sulfenamides
CN1863813B (zh) 2003-08-27 2011-03-30 生物区科学管理控股有限公司 作为治疗剂的三环核苷或核苷酸
ATE555118T1 (de) 2003-08-28 2012-05-15 Takeshi Imanishi Neue synthetische nukleidsäuren vom typ mit quervernetzter n-o-bindung
JP4580870B2 (ja) 2003-09-02 2010-11-17 株式会社キラルジェン リボヌクレオチド又はリボヌクレオチド誘導体の製造方法
JP4616175B2 (ja) 2003-09-02 2011-01-19 株式会社キラルジェン 5’−ホスフィチル化モノマーおよびh−ホスホネートオリゴヌクレオチド誘導体の製造方法
US20050053981A1 (en) 2003-09-09 2005-03-10 Swayze Eric E. Gapped oligomeric compounds having linked bicyclic sugar moieties at the termini
US20050074801A1 (en) 2003-09-09 2005-04-07 Monia Brett P. Chimeric oligomeric compounds comprising alternating regions of northern and southern conformational geometry
AU2004271215B2 (en) 2003-09-09 2009-07-16 Geron Corporation Modified oligonucleotides for telomerase inhibition
US8680063B2 (en) 2003-09-12 2014-03-25 University Of Massachusetts RNA interference for the treatment of gain-of-function disorders
US7947658B2 (en) 2003-09-12 2011-05-24 University Of Massachusetts RNA interference for the treatment of gain-of-function disorders
WO2008005562A2 (en) 2006-07-07 2008-01-10 University Of Massachusetts Rna silencing compositions and methods for the treatment of huntington's disease
GB0323968D0 (en) 2003-10-13 2003-11-19 Glaxosmithkline Biolog Sa Immunogenic compositions
KR101107818B1 (ko) 2003-10-30 2012-01-31 콜레이 파마시티컬 그룹, 인코포레이티드 향상된 면역자극 효능을 가진 c-부류 올리고뉴클레오티드유사체
WO2005042716A2 (en) 2003-10-31 2005-05-12 President And Fellows Of Harvard College Nucleic acid binding oligonucleotides
WO2005063983A1 (en) 2003-12-29 2005-07-14 Galapagos Genomics N.V. Modulators of bone homeostasis identified in a high-throughput screen
WO2005070859A1 (ja) 2004-01-27 2005-08-04 Takeshi Wada フルオラス担体およびそれを用いたオリゴヌクレオチド誘導体の製造方法
US20050176045A1 (en) 2004-02-06 2005-08-11 Dharmacon, Inc. SNP discriminatory siRNA
US20080221303A1 (en) 2004-02-18 2008-09-11 Jehoshua Katzhendler Method for the Preparation of Peptide-Oligonucleotide Conjugates
JP3976742B2 (ja) 2004-02-27 2007-09-19 江守商事株式会社 インターフェロンアルファを誘導する免疫刺激オリゴヌクレオチド
WO2005085272A1 (ja) 2004-03-05 2005-09-15 Takeshi Wada ボラノホスフェートモノマーおよびそれを用いたオリゴヌクレオチド誘導体の製造方法
WO2005092909A1 (ja) 2004-03-25 2005-10-06 Toudai Tlo, Ltd. 立体規則性の高いリボヌクレオチド類縁体及びデオキシリボヌクレオチド類縁体の製造法
US20050244869A1 (en) 2004-04-05 2005-11-03 Brown-Driver Vickie L Modulation of transthyretin expression
CA2561741C (en) 2004-04-05 2016-09-27 Alnylam Pharmaceuticals, Inc. Processes and reagents for oligonucleotide synthesis and purification
TWI350168B (en) 2004-05-07 2011-10-11 Incyte Corp Amido compounds and their use as pharmaceuticals
AU2005248410B2 (en) 2004-05-27 2010-04-22 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Differential expression of molecules associated with acute stroke
US7759318B1 (en) 2004-05-28 2010-07-20 Isis Pharmaceuticals, Inc. Identification of novel pathways, genes and promoter motifs regulating adipogenesis
ATE498685T1 (de) 2004-06-28 2011-03-15 Univ Western Australia Antisense-oligonukleotide zur induktion von exon- skipping sowie verfahren zur verwendung davon
EP2409713B1 (en) 2004-08-10 2015-07-22 Genzyme Corporation Oligonucleotides for use in modulating lipoprotein and cholesterol levels in humans
CN101048423B (zh) 2004-08-26 2011-06-08 日本新药株式会社 亚磷酰胺化合物及低聚核糖核酸的制备方法
JP2008512097A (ja) 2004-09-07 2008-04-24 アーケミックス コーポレイション アプタマー医薬品化学
US7884086B2 (en) 2004-09-08 2011-02-08 Isis Pharmaceuticals, Inc. Conjugates for use in hepatocyte free uptake assays
WO2006031461A2 (en) 2004-09-09 2006-03-23 Isis Pharmaceuticals, Inc. Pyrrolidinyl groups for attaching conjugates to oligomeric compounds
CA2580504C (en) 2004-09-17 2013-10-29 Isis Pharmaceuticals, Inc. Enhanced antisense oligonucleotides
CA2582464A1 (en) 2004-10-13 2006-04-27 Sanjay Bhanot Antisense modulation of ptp1b expression
WO2010096650A1 (en) 2009-02-20 2010-08-26 University Of Kansas Novobiocin analogues having modified sugar moieties
US9120774B2 (en) 2004-11-03 2015-09-01 University Of Kansas Novobiocin analogues having modified sugar moieties
US8212012B2 (en) 2004-11-03 2012-07-03 University Of Kansas Novobiocin analogues having modified sugar moieties
US8212011B2 (en) 2004-11-03 2012-07-03 University Of Kansas Novobiocin analogues
US7622451B2 (en) 2004-11-03 2009-11-24 University Of Kansas Novobiocin analogues as neuroprotective agents and in the treatment of autoimmune disorders
WO2006050501A2 (en) 2004-11-03 2006-05-11 University Of Kansas Novobiocin analogues as anticancer agents
KR100721928B1 (ko) 2004-11-05 2007-05-28 주식회사 바이오씨에스 CpG 올리고데옥시뉴클레오티드를 함유하는 피부질환의치료 또는 예방용 약학적 조성물
EP1657307A1 (en) 2004-11-16 2006-05-17 Immunotech S.A. Oligonucleotides that induce the secretion of GM-CSF
WO2006063252A2 (en) 2004-12-09 2006-06-15 Alnylam Pharmaceuticals, Inc. Compositions and methods for inducing an immune response in a mammal and methods of avoiding an immune response to oligonucleotide agents such as short interfering rnas
US9809824B2 (en) 2004-12-13 2017-11-07 The United States Of America, Represented By The Secretary, Department Of Health And Human Services CpG oligonucleotide prodrugs, compositions thereof and associated therapeutic methods
WO2006066260A2 (en) 2004-12-17 2006-06-22 Thiosense, Inc. Compositions of and methods for producing phosphorus-chiral monomers and oligomers
US20070099851A1 (en) 2004-12-30 2007-05-03 Linn Gregory S Stable analogues of ribose-1-phosphate and methods for treating diabetes and other metabolic disorders
US20060183763A1 (en) 2004-12-31 2006-08-17 Pfizer Inc Novel pyrrolidyl derivatives of heteroaromatic compounds
WO2006080596A1 (en) 2005-01-28 2006-08-03 Hyung-Joo Kwon Oligonucleotides derived from mycobacterium for stimulating immune function, treating immune-related diseases, atopic dermatitis and/or protecting normal immune cell
US20080009455A9 (en) 2005-02-24 2008-01-10 Coley Pharmaceutical Group, Inc. Immunostimulatory oligonucleotides
CN101189249B (zh) 2005-04-01 2013-04-17 加利福尼亚大学董事会 膦酰基-戊-2-烯-1-基核苷和类似物
EP2062586B1 (en) 2005-05-05 2017-03-15 Autotelic LLC Use of low doses of oligonucleotides antisense to tgf-beta1 genes in the treatment of tumors
US20060257912A1 (en) 2005-05-06 2006-11-16 Medtronic, Inc. Methods and sequences to suppress primate huntington gene expression
US7902352B2 (en) 2005-05-06 2011-03-08 Medtronic, Inc. Isolated nucleic acid duplex for reducing huntington gene expression
PL3308788T3 (pl) 2005-06-23 2019-05-31 Biogen Ma Inc Kompozycje i sposoby modulacji splicingu smn2
US9133517B2 (en) 2005-06-28 2015-09-15 Medtronics, Inc. Methods and sequences to preferentially suppress expression of mutated huntingtin
WO2007002904A2 (en) 2005-06-28 2007-01-04 Medtronic, Inc. Methods and sequences to preferentially suppress expression of mutated huntingtin
US20090162316A1 (en) 2005-07-05 2009-06-25 Harvard University Liver targeted conjugates
JP4984634B2 (ja) 2005-07-21 2012-07-25 ソニー株式会社 物理情報取得方法および物理情報取得装置
CN101272773A (zh) 2005-07-28 2008-09-24 Id-菲什技术公司 改善细胞对杂质粒子渗透性的方法
US8501703B2 (en) 2005-08-30 2013-08-06 Isis Pharmaceuticals, Inc. Chimeric oligomeric compounds for modulation of splicing
US7700567B2 (en) 2005-09-29 2010-04-20 Supergen, Inc. Oligonucleotide analogues incorporating 5-aza-cytosine therein
US20070077993A1 (en) 2005-09-30 2007-04-05 Midgley Timothy M Method and apparatus for collecting user game play data and crediting users in a gaming environment
CN101287742B (zh) 2005-10-12 2016-01-06 艾德拉药物股份有限公司 基于变异应答调制Toll样受体的免疫调节寡核苷酸(IRO)化合物
US9308252B2 (en) 2005-10-27 2016-04-12 Cook Biotech, Inc. Extracellular matrix materials as vaccine adjuvants for diseases associated with infectious pathogens or toxins
CA2627025A1 (en) 2005-10-28 2007-05-03 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of huntingtin gene
US8883969B2 (en) 2005-10-28 2014-11-11 Tosoh Corporation Method for production of carotenoid-synthesizing microorganism and method for production of carotenoid
WO2007064291A1 (en) 2005-11-30 2007-06-07 Jyoti Chattopadhyaya Method and compounds for rna synthesis
WO2007064954A2 (en) 2005-12-02 2007-06-07 Isis Pharmaceuticals, Inc. Antibacterial 4,5-substituted aminoglycoside analogs having multiple substituents
US8076303B2 (en) * 2005-12-13 2011-12-13 Spring Bank Pharmaceuticals, Inc. Nucleotide and oligonucleotide prodrugs
BRPI0620354A2 (pt) 2005-12-21 2011-11-08 Pfizer Prod Inc compostos pirrolopirazóis de carbonilamino e composição farmaceutica que os contém
EP2428227B1 (en) 2006-01-26 2016-06-22 Ionis Pharmaceuticals, Inc. Compositions and their uses directed to Huntingtin
AU2007211080B9 (en) 2006-01-27 2012-05-03 Isis Pharmaceuticals, Inc. 6-modified bicyclic nucleic acid analogs
JP5473336B2 (ja) 2006-02-15 2014-04-16 アディウタイド・ファーマスーティカルズ・ゲーエムベーハー オリゴヌクレオチドの処方に関する組成物および方法
JP4713514B2 (ja) 2006-02-20 2011-06-29 エフ.ホフマン−ラ ロシュ アーゲー 改善された標識試薬
US8383660B2 (en) 2006-03-10 2013-02-26 Pfizer Inc. Dibenzyl amine compounds and derivatives
CN101454315B (zh) 2006-03-31 2016-08-17 应用生物系统有限责任公司 用于合成罗丹明-标记的寡核苷酸的试剂
US8088582B2 (en) 2006-04-06 2012-01-03 Ibis Biosciences, Inc. Compositions for the use in identification of fungi
AU2007242883B2 (en) 2006-04-20 2012-09-27 F. Hoffmann-La Roche Ag Diazepan derivatives modulators of chemokine receptors
DK2020449T3 (da) 2006-04-24 2013-01-14 Sigma Alimentos Sa De Cv Fremgangsmåde til detektion og multipel, simultan kvantificering af patogener ved hjælp af real-time polymerasekædereaktion
EP2018436A2 (en) 2006-04-25 2009-01-28 Immune Disease Institute Inc. Targeted delivery to leukocytes using non-protein carriers
GB0608838D0 (en) 2006-05-04 2006-06-14 Novartis Ag Organic compounds
AU2007257094B2 (en) 2006-05-05 2012-10-25 Isis Pharmaceuticals, Inc. Compounds and methods for modulating expression of SGLT2
EP2023936A4 (en) 2006-05-05 2010-11-24 Isis Pharmaceuticals Inc COMPOSITIONS AND THEIR USES ASSOCIATED WITH THE ALPHA PTPR RECEPTOR
US20090012120A1 (en) 2006-05-10 2009-01-08 Board Of Trustees Of Michigan State University Synthesis of N-heterocycles, beta-amino acids, and allyl amines via aza-payne mediated reaction of ylides and hydroxy aziridines
US7666854B2 (en) 2006-05-11 2010-02-23 Isis Pharmaceuticals, Inc. Bis-modified bicyclic nucleic acid analogs
US7547684B2 (en) 2006-05-11 2009-06-16 Isis Pharmaceuticals, Inc. 5′-modified bicyclic nucleic acid analogs
CA2653939C (en) 2006-05-31 2013-01-22 Toray Industries, Inc. Immunostimulatory oligonucleotides and use thereof in pharmaceuticals
US8097596B2 (en) 2006-06-30 2012-01-17 Lakewood-Amedex, Inc. Compositions and methods for the treatment of muscle wasting
EP2046964B1 (en) 2006-07-12 2018-07-04 The Regents of The University of California Transducible delivery of nucleic acids by reversible phosphotriester charge neutralization protecting groups
AU2007275301A1 (en) 2006-07-20 2008-01-24 Amgen Inc. Substituted azole aromatic heterocycles as inhibitors of 11-beta-HSD-1
GB0614947D0 (en) 2006-07-27 2006-09-06 Isis Innovation Epitope reduction therapy
US8101585B2 (en) 2006-08-04 2012-01-24 Isis Pharmaceuticals, Inc. Compositions and methods for the modulation of JNK proteins
AT504194B1 (de) 2006-09-07 2008-07-15 Oesterr Rotes Kreuz Bakteriennachweis
US8138330B2 (en) 2006-09-11 2012-03-20 Sigma-Aldrich Co. Llc Process for the synthesis of oligonucleotides
MX2009003398A (es) 2006-09-27 2009-08-12 Coley Pharm Gmbh Analogos de oligonucleotidos cpg que contienen analogos t hidrofobos con actividad inmunoestimuladora mejorada.
DK2092065T4 (da) 2006-10-18 2019-10-21 Ionis Pharmaceuticals Inc Antisense-forbindelser
MX2009004290A (es) 2006-10-23 2009-07-27 Irm Llc Inhibidores de proteasas de catepsina.
FR2908414B1 (fr) 2006-11-13 2012-01-20 Centre Nat Rech Scient Immobilisation de proteines membranaires sur un support par l'intermediaire d'une molecule amphiphile
JP2010510224A (ja) 2006-11-17 2010-04-02 アボット・ラボラトリーズ ケモカイン受容体拮抗薬としてのアミノピロリジン類
MX2009005527A (es) 2006-11-27 2009-06-08 Isis Pharmaceuticals Inc Metodos para el tratamiento de hipercolesterolemia.
US8093222B2 (en) 2006-11-27 2012-01-10 Isis Pharmaceuticals, Inc. Methods for treating hypercholesterolemia
CN101610671A (zh) 2006-12-12 2009-12-23 艾德拉药物股份有限公司 合成的tlr9激动剂
UY30892A1 (es) 2007-02-07 2008-09-02 Smithkline Beckman Corp Inhibidores de la actividad akt
US20100190837A1 (en) 2007-02-15 2010-07-29 Isis Pharmaceuticals, Inc. 5'-Substituted-2-F' Modified Nucleosides and Oligomeric Compounds Prepared Therefrom
JP2010522245A (ja) 2007-03-24 2010-07-01 ゲンザイム コーポレイション ヒトアポリポタンパク質bと相補的なアンチセンスオリゴヌクレオチドの投与
US7960353B2 (en) 2007-05-10 2011-06-14 University Of Kansas Novobiocin analogues as neuroprotective agents and in the treatment of autoimmune disorders
US7943591B2 (en) 2007-05-11 2011-05-17 Adynxx, Inc. Gene expression and pain
EP2149571A4 (en) 2007-05-24 2010-09-01 Kyorin Seiyaku Kk MUTILINE DERIVATIVE WITH A RINGED, HETEROCYCLIC AND AROMATIC CARBOXYLIC ACID STRUCTURE IN A SUBSTITUTE AT POSITION 14
GB0710186D0 (en) 2007-05-29 2007-07-04 Texas Instr Denmark PWM loop with minimum allasing error property
CA2688321A1 (en) 2007-05-30 2008-12-11 Isis Pharmaceuticals, Inc. N-substituted-aminomethylene bridged bicyclic nucleic acid analogs
KR20100038295A (ko) 2007-06-05 2010-04-14 엔에스아베 필리알 아프 뉴로서치 스웨덴 아베 스베리게 피질 카테콜아민성 신경 전달의 조정자로서의 이치환된 페닐피롤리딘
DK2173760T4 (en) 2007-06-08 2016-02-08 Isis Pharmaceuticals Inc Carbocyclic bicyclic nukleinsyreanaloge
US20100298280A1 (en) 2007-06-13 2010-11-25 Petra Kioschis-Schneider Compounds for the Modulation of Huntingtin Aggregation, Methods and Means for Identifying Such Compounds
EP2014769B1 (en) 2007-06-18 2010-03-31 Commissariat à l'Energie Atomique Reversible siRNAa-based silencing of mutated and endogenous wild-type huntingtin gene and its application for the treatment of Huntington's disease
GB0712494D0 (en) 2007-06-27 2007-08-08 Isis Innovation Substrate reduction therapy
ES2376507T5 (es) 2007-07-05 2015-08-31 Isis Pharmaceuticals, Inc. Análogos de ácidos nucleicos bicíclicos 6-disustituidos
EP2357231A2 (en) 2007-07-09 2011-08-17 Idera Pharmaceuticals, Inc. Stabilized immune modulatory RNA (SIMRA) compounds
TWI413530B (zh) 2007-07-20 2013-11-01 Kao Corp 有機聚矽氧
AU2008281281A1 (en) 2007-07-31 2009-02-05 University Of Saskatchewan Genetic variation in Pro-Melanin-Concentrating Hormone gene affects carcass traits in cattle
US7812003B2 (en) 2007-08-02 2010-10-12 Safe Stephen H Antisense microRNA and uses therefor
MX2010001785A (es) 2007-08-15 2010-03-10 Idera Pharmaceuticals Inc Moduladores de receptores tipo larga distancia.
NZ584827A (en) 2007-10-01 2012-10-26 Isis Pharmaceuticals Inc Antisense modulation of fibroblast growth factor receptor 4 expression
KR100886139B1 (ko) 2007-11-13 2009-02-27 주식회사 삼천리제약 올리고뉴클레오타이드의 제조방법
TW200930375A (en) 2007-12-21 2009-07-16 Exelixis Inc Benzofuropyrimidinones
TWI340765B (en) 2007-12-26 2011-04-21 Ind Tech Res Inst Oligonucleotide sequences and dna chip for identifying filamentous microorganisms and the identification method thereof
WO2009089659A1 (en) 2008-01-18 2009-07-23 Shanghai Targetdrug Co., Ltd. Pyrollidine-based compounds
CA2711587A1 (en) 2008-02-04 2009-08-13 Galapagos Nv Target sequences and methods to identify the same, useful in treatment of neurodegenerative diseases
JP2009190983A (ja) 2008-02-12 2009-08-27 Tokyo Institute Of Technology オリゴヌクレオチド誘導体
EP2282744B1 (en) 2008-03-21 2018-01-17 Ionis Pharmaceuticals, Inc. Oligomeric compounds comprising tricyclic nucleosides and methods for their use
US20110269814A1 (en) 2008-03-26 2011-11-03 Alnylam Pharamaceuticals, Inc. 2'-f modified rna interference agents
WO2009146123A2 (en) 2008-04-03 2009-12-03 Spring Bank Compositions and methods for treating viral infections
EP2262820B1 (de) 2008-04-04 2013-06-19 Universität Hamburg Verfahren zur stereoselektiven synthese von phosphorverbindungen
DK2285819T3 (da) 2008-04-04 2013-12-02 Isis Pharmaceuticals Inc Oligomere forbindelser omfattende neutralt bundne, terminale bicykliske nukleosider
US8679750B2 (en) 2008-05-09 2014-03-25 The University Of British Columbia Methods and compositions for the treatment of Huntington'S disease
WO2009135322A1 (en) 2008-05-09 2009-11-12 The Universtity Of British Columbia Methods and compositions for the treatment of huntington's disease
WO2009140626A2 (en) 2008-05-15 2009-11-19 Dynavax Technologies Corporation Long term disease modification using immunostimulatory oligonucleotides
US8541388B2 (en) 2008-05-22 2013-09-24 Isis Pharmaceuticals, Inc. Methods for modulating expression of RBP4
WO2009143391A2 (en) 2008-05-22 2009-11-26 Isis Pharmaceuticals, Inc Methods for modulation expression of creb
WO2009143387A2 (en) 2008-05-22 2009-11-26 Isis Pharmaceuticals, Inc. Modulation of smrt expression
WO2009148605A2 (en) 2008-06-04 2009-12-10 Isis Pharmaceuticals, Inc. Methods for treating hypercholesterolemia
AU2009266806A1 (en) 2008-07-03 2010-01-07 Exelixis Inc. CDK modulators
WO2010030849A1 (en) 2008-09-12 2010-03-18 University Of Louisville Research Foundation, Inc. Compositions and methods for treating cancer,inhibiting proliferation, and inducing cell death
US8163707B2 (en) 2008-09-15 2012-04-24 Enanta Pharmaceuticals, Inc. 4′-allene-substituted nucleoside derivatives
EP3067359A1 (en) 2008-09-23 2016-09-14 Scott G. Petersen Self delivering bio-labile phosphate protected pro-oligos for oligonucleotide based therapeutics and mediating rna interference
DK2361256T3 (da) 2008-09-24 2013-07-01 Isis Pharmaceuticals Inc Cyclohexenyl-nukleinsyreanaloger
EP2356129B1 (en) 2008-09-24 2013-04-03 Isis Pharmaceuticals, Inc. Substituted alpha-l-bicyclic nucleosides
US20110257251A1 (en) 2008-10-07 2011-10-20 Presidents And Fellows Of Harvard College Telomerase inhibitors and methods of use thereof
AU2009308380B2 (en) 2008-10-22 2015-05-28 Suzhou Ribo Life Science Co., Ltd. Methods for treating eye disorders
WO2010048585A2 (en) 2008-10-24 2010-04-29 Isis Pharmaceuticals, Inc. Oligomeric compounds and methods
US20120059045A1 (en) 2008-10-24 2012-03-08 Isis Pharmaceuticals, Inc. Methods of using oligomeric compounds comprising 2'-substituted nucleosides
CN102282155B (zh) 2008-12-02 2017-06-09 日本波涛生命科学公司 磷原子修饰的核酸的合成方法
CA2747999A1 (en) 2008-12-23 2010-07-01 Girindus America, Inc. Sulfurizing reagents and their use for oligonucleotides synthesis
WO2010080953A1 (en) 2009-01-08 2010-07-15 Isis Pharmaceuticals, Inc. Transgenic murine model of human lipoprotein metabolism, hypercholesterolemia and cardiovascular disease
KR20100087540A (ko) 2009-01-28 2010-08-05 삼성전자주식회사 잉크젯 기록용 잉크 조성물
WO2010091301A1 (en) 2009-02-06 2010-08-12 Isis Pharmaceuticals, Inc. Oligomeric compounds and excipients
JP2012517226A (ja) 2009-02-10 2012-08-02 イデラ ファーマシューティカルズ インコーポレイテッド Tlr7の合成rnaベースのアゴニスト
CA2753975C (en) 2009-03-02 2017-09-26 Alnylam Pharmaceuticals, Inc. Nucleic acid chemical modifications
EP2408796B1 (en) 2009-03-16 2020-04-22 Ionis Pharmaceuticals, Inc. Targeting Apolipoprotein B for the reduction of Apolipoprotein C-III
WO2010113937A1 (ja) 2009-03-31 2010-10-07 武田薬品工業株式会社 ヌクレオシドの製造方法
WO2010118263A1 (en) 2009-04-08 2010-10-14 University Of Massachusetts Single-nucleotide polymorphism (snp) targeting therapies for the treatment of huntington's disease
WO2010120262A1 (en) 2009-04-14 2010-10-21 Smith Holdings, Llc Methods and compositions for the treatment of medical conditions involving cellular programming
US9260493B2 (en) 2009-05-07 2016-02-16 The Regents Of The University Of California Transducible delivery of nucleic acids using modified dsRNA binding domains
WO2010141471A2 (en) 2009-06-01 2010-12-09 The Regents Of The University Of California Nucleic acid delivery compositions and methods of use thereof
RU2732574C2 (ru) 2009-06-05 2020-09-21 Инфекшес Дизиз Рисерч Инститьют Синтетические глюкопиранозиллипидные адъюванты
KR20120093138A (ko) 2009-06-17 2012-08-22 콜드스프링하버러보러토리 대상에게서 smn2 스플라이싱을 조정하기 위한 조성물 및 방법
JP5670097B2 (ja) 2009-06-19 2015-02-18 花王株式会社 二層分離型毛髪化粧料
EP2447273A4 (en) 2009-06-23 2013-06-19 Takeda Pharmaceutical METHOD OF SYNTHESIZING A NUCLEIC ACID
US8329024B2 (en) 2009-07-06 2012-12-11 Ada Technologies, Inc. Electrochemical device and method for long-term measurement of hypohalites
US9744183B2 (en) 2009-07-06 2017-08-29 Wave Life Sciences Ltd. Nucleic acid prodrugs and methods of use thereof
US8927513B2 (en) 2009-07-07 2015-01-06 Alnylam Pharmaceuticals, Inc. 5′ phosphate mimics
EP2451974A2 (en) 2009-07-08 2012-05-16 Idera Pharmaceuticals, Inc. Oligonucleotide-based compounds as inhibitors of toll-like receptors
EP2458005A1 (en) 2009-07-23 2012-05-30 Galaxy Pharma Inc. Fgf21 cis-element binding substance
WO2011015572A1 (en) 2009-08-03 2011-02-10 Galapagos Nv Molecular targets and compounds, and methods to identify the same, useful in the treatment of neurodegenerative diseases
WO2011015573A1 (en) 2009-08-03 2011-02-10 Galapagos Nv Molecular targets and compounds, and methods to identify the same, useful in the treatment of neurodegenerative diseases
UA107360C2 (en) 2009-08-05 2014-12-25 Biogen Idec Inc Bicyclic aryl sphingosine 1-phosphate analogs
WO2011017521A2 (en) 2009-08-06 2011-02-10 Isis Pharmaceuticals, Inc. Bicyclic cyclohexose nucleic acid analogs
US8927553B2 (en) 2009-08-10 2015-01-06 Daljit Singh Dhanoa Deuterium-enriched alkyl sulfonamides and uses thereof
CA2773886C (en) 2009-09-11 2018-01-09 Isis Pharmaceuticals, Inc. Modulation of huntingtin expression
US8470987B2 (en) 2009-09-16 2013-06-25 Chiralgen, Ltd. Protective group for synthesis of RNA and derivative
EP2480667A4 (en) 2009-09-25 2013-07-03 Isis Pharmaceuticals Inc MODULATION OF TTC39 EXPRESSION FOR HDL INCREASE
EP2488524B1 (en) 2009-10-15 2013-07-03 Pfizer Inc. Pyrrolo[2,3-d]pyrimidine compounds
TWI475051B (zh) 2009-11-18 2015-03-01 Kao Corp Organic polysiloxane
JP5809408B2 (ja) 2009-11-25 2015-11-10 花王株式会社 毛髪化粧料
WO2011075560A1 (en) 2009-12-17 2011-06-23 Merck Sharp & Dohme Corp. Aminopyrimidines as syk inhibitors
EP2488869A1 (en) 2009-12-28 2012-08-22 Achira Labs Pvt. Ltd. Diagnostic gel composition, method for making a diagnostic gel composition
WO2011085271A2 (en) 2010-01-08 2011-07-14 Isis Pharmaceuticals, Inc. Modulation of angiopoietin-like 3 expression
US8750507B2 (en) 2010-01-25 2014-06-10 Cisco Technology, Inc. Dynamic group creation for managed key servers
CA2789005A1 (en) 2010-02-08 2011-08-11 Isis Pharmaceuticals, Inc. Selective reduction of allelic variants
JP6018506B2 (ja) 2010-02-08 2016-11-02 アイオーニス ファーマシューティカルズ, インコーポレーテッドIonis Pharmaceuticals,Inc. 対立遺伝子多様体の選択的低減
BR112012018904A2 (pt) 2010-02-10 2020-09-01 Glaxosmithkline Llc composto, adjuvante de vacina, composições imunogênica, de vacina e farmacêutica, e uso de um composto"
US8859755B2 (en) 2010-03-05 2014-10-14 Chiralgen, Ltd. Method for preparing ribonucleoside phosphorothioate
WO2011127175A1 (en) 2010-04-06 2011-10-13 Isis Pharmaceuticals, Inc. Modulation of cd130 (gp130) expression
WO2011127307A1 (en) 2010-04-07 2011-10-13 Isis Pharmaceuticals, Inc. Modulation of cetp expression
WO2011133871A2 (en) 2010-04-22 2011-10-27 Alnylam Pharmaceuticals, Inc. 5'-end derivatives
US9127033B2 (en) 2010-04-28 2015-09-08 Isis Pharmaceuticals, Inc. 5′ modified nucleosides and oligomeric compounds prepared therefrom
US8993738B2 (en) 2010-04-28 2015-03-31 Isis Pharmaceuticals, Inc. Modified nucleosides, analogs thereof and oligomeric compounds prepared therefrom
US20130156845A1 (en) 2010-04-29 2013-06-20 Alnylam Pharmaceuticals, Inc. Lipid formulated single stranded rna
WO2011135396A1 (en) 2010-04-30 2011-11-03 Cellectis Method for modulating double-strand break-induced homologous recombination
GB201008902D0 (en) 2010-05-27 2010-07-14 Imp Innovations Ltd Membrane enhanced polymer sythesis
CA2809439A1 (en) 2010-08-31 2012-03-08 Merck Sharp & Dohme Corp. Novel single chemical entities and methods for delivery of oligonucleotides
DK2620428T3 (da) 2010-09-24 2019-07-01 Wave Life Sciences Ltd Asymmetrisk hjælpegruppe
CN103080314B (zh) 2010-09-30 2016-04-13 Lsip基金运营联合公司 显性突变基因表达抑制剂
KR101381048B1 (ko) 2010-10-20 2014-04-14 씨제이제일제당 (주) O-포스포세린 생산 균주 및 이로부터 생산된 o-포스포세린으로부터 l-시스테인 또는 이의 유도체의 생산방법
EP3766975A1 (en) 2010-10-29 2021-01-20 Sirna Therapeutics, Inc. Rna interference mediated inhibition of gene expression using short interfering nucleic acid (sina)
EP3702460A1 (en) 2010-11-12 2020-09-02 The General Hospital Corporation Polycomb-associated non-coding rnas
JP6093924B2 (ja) 2010-11-30 2017-03-15 株式会社Wave Life Sciences Japan 2’−o−修飾rna
US20140050778A1 (en) 2010-12-28 2014-02-20 University Of Rochester Nucleic acid binding compounds, methods of making, and use thereof
EP3067421B1 (en) 2011-02-08 2018-10-10 Ionis Pharmaceuticals, Inc. Oligomeric compounds comprising bicyclic nucleotides and uses thereof
US9181544B2 (en) 2011-02-12 2015-11-10 University Of Iowa Research Foundation Therapeutic compounds
WO2012151324A1 (en) 2011-05-02 2012-11-08 Isis Pharmaceuticals, Inc. Antisense compounds targeting genes associated with usher syndrome
FR2975600B1 (fr) 2011-05-24 2013-07-05 Assist Publ Hopitaux De Paris Agents pour le traitement de tumeurs
DK2734208T3 (en) 2011-07-19 2017-06-19 Wave Life Sciences Ltd PROCEDURES FOR SYNTHESIS OF FUNCTIONALIZED NUCLEIC ACIDS
WO2013013068A2 (en) 2011-07-19 2013-01-24 University Of Idaho Embodiments of a probe and method for targeting nucleic acids
WO2013022966A1 (en) 2011-08-11 2013-02-14 Isis Pharmaceuticals, Inc. Linkage modified gapped oligomeric compounds and uses thereof
EP2751269B1 (en) 2011-08-29 2016-03-23 Ionis Pharmaceuticals, Inc. Methods and compounds useful in conditions related to repeat expansion
US20140080896A1 (en) 2011-08-30 2014-03-20 The Regents Of The University Of California Identification of small molecules that facilitate therapeutic exon skipping
CA2846307C (en) 2011-08-31 2020-03-10 Hospital District Of Helsinki And Uusimaa Method for diagnosing a neurodegenerative disease
US20140255936A1 (en) 2011-09-09 2014-09-11 Mayo Foundation For Medical Education And Research Detecting frontotemporal dementia and amyotrophic lateral sclerosis
WO2013082548A1 (en) 2011-11-30 2013-06-06 Sarepta Therapeutics, Inc. Oligonucleotides for treating expanded repeat diseases
KR200460641Y1 (ko) 2011-12-07 2012-06-04 이형호 휴대가 용이한 와인 잔
DK2790736T3 (en) 2011-12-12 2018-05-07 Oncoimmunin Inc In vivo delivery of oligonucleotides
CA2859581C (en) 2011-12-16 2022-03-22 National University Corporation Tokyo Medical And Dental University Chimeric double-stranded nucleic acid
CN102675386B (zh) 2011-12-24 2014-07-02 河南科技大学 一种龙胆苦苷分离提纯方法
US8957042B2 (en) 2012-03-07 2015-02-17 The Texas A&M University System Cancer treatment targeting non-coding RNA overexpression
NZ629996A (en) 2012-03-13 2016-10-28 Gilead Sciences Inc 2’- substituted carba-nucleoside analogs for antiviral treatment
KR20130114435A (ko) 2012-04-09 2013-10-17 삼성전자주식회사 다수의 전극을 갖는 생분자 검출 장치
NZ700561A (en) 2012-04-23 2016-07-29 Biomarin Technologies B V Rna modulating oligonucleotides with improved characteristics for the treatment of neuromuscular disorders
MX355708B (es) 2012-05-22 2018-04-27 Idenix Pharmaceuticals Llc Compuestos de d-aminoacidos para enfermedades del higado.
US9284344B2 (en) 2012-05-30 2016-03-15 Hokkaido System Science Co., Ltd. Oligonucleotide synthesis method using highly dispersible liquid-phase support
RU2015104762A (ru) 2012-07-13 2018-08-31 Уэйв Лайф Сайенсес Лтд. Хиральный контроль
EP2872485B1 (en) 2012-07-13 2020-12-16 Wave Life Sciences Ltd. Asymmetric auxiliary group
CN104684923B (zh) 2012-07-13 2018-09-28 株式会社新日本科学 手性核酸佐剂
US10086081B2 (en) 2012-08-06 2018-10-02 Alnylam Pharmaceuticals, Inc. Carbohydrate conjugated RNA agents and process for their preparation
EP2885312A4 (en) 2012-08-15 2016-01-20 Isis Pharmaceuticals Inc PROCESS FOR THE PREPARATION OF OLIGOMERIC COMPOUNDS USING MODIFIED STREAMING PROTOCOLS
WO2014059356A2 (en) 2012-10-12 2014-04-17 Isis Pharmaceuticals, Inc. Selective antisense compounds and uses thereof
EP2906696B2 (en) 2012-10-15 2022-12-14 Ionis Pharmaceuticals, Inc. Methods for modulating c9orf72 expression
EP2906697A4 (en) 2012-10-15 2016-06-22 Ionis Pharmaceuticals Inc METHODS OF MONITORING C9ORF72 EXPRESSION
EP2906258A4 (en) 2012-10-15 2016-08-10 Ionis Pharmaceuticals Inc COMPOSITIONS FOR MODULATING THE EXPRESSION OF C90RF72
EP2725029A1 (en) 2012-10-29 2014-04-30 Laboratoire Biodim New antibacterial compounds and biological applications thereof
JP2015535261A (ja) 2012-10-29 2015-12-10 コクリスタル ファーマ,インコーポレイテッド ウイルス感染及び癌の治療のためのピリミジンヌクレオチド及びその一リン酸プロドラッグ
JP6358955B2 (ja) 2012-10-31 2018-07-18 武田薬品工業株式会社 新規修飾核酸
EP2920304B1 (en) 2012-11-15 2019-03-06 Roche Innovation Center Copenhagen A/S Oligonucleotide conjugates
RU2015120645A (ru) 2012-11-26 2017-01-10 Рош Инновейшен Сентер Копенгаген А/С Композиции и способы модуляции экспрессии рецептора фактора роста фибробластов 3 типа (fgfr3)
EP2935304A1 (en) 2012-12-19 2015-10-28 IDENIX Pharmaceuticals, Inc. 4'-fluoro nucleosides for the treatment of hcv
WO2014118272A1 (en) 2013-01-30 2014-08-07 Santaris Pharma A/S Antimir-122 oligonucleotide carbohydrate conjugates
EP2951305B1 (en) 2013-01-30 2018-08-15 F.Hoffmann-La Roche Ag Lna oligonucleotide carbohydrate conjugates
WO2014121287A2 (en) 2013-02-04 2014-08-07 Isis Pharmaceuticals, Inc. Selective antisense compounds and uses thereof
CA2900238A1 (en) 2013-02-22 2014-08-28 Sirna Therapeutics, Inc. Short interfering nucleic acid (sina) molecules containing a 2' internucleoside linkage
EP2961841B1 (en) 2013-03-01 2020-01-22 National University Corporation Tokyo Medical and Dental University Chimeric single-stranded antisense polynucleotides and double-stranded antisense agent
MX2015013568A (es) 2013-03-28 2016-02-05 Syngenta Participations Ag Metodos para controlar las plagas resistentes a neonicotinoides.
BR112015024746A2 (pt) 2013-03-28 2017-07-18 Syngenta Ltd métodos de controle de pragas resistentes a neonicotinoides
EP2992098B1 (en) 2013-05-01 2019-03-27 Ionis Pharmaceuticals, Inc. Compositions and methods for modulating hbv and ttr expression
EP3004352B1 (en) 2013-05-24 2017-09-27 Roche Innovation Center Copenhagen A/S Oligonucleotide modulators of b-cell cll/lymphoma 11a (bcl11a) and uses thereof
CN105228999B (zh) 2013-05-24 2021-03-02 味之素株式会社 吗啉代寡核苷酸的制备方法
CA2913499A1 (en) 2013-05-30 2014-12-04 National University Corporation Tokyo Medical And Dental University Double-stranded agents for delivering therapeutic oligonucleotides
WO2014203518A1 (en) 2013-06-16 2014-12-24 National University Corporation Tokyo Medical And Dental University Double-stranded antisense nucleic acid with exon-skipping effect
EP3730619A1 (en) 2013-06-21 2020-10-28 Ionis Pharmaceuticals, Inc. Compositions and methods for modulation of target nucleic acids
SG10201908122XA (en) 2013-06-27 2019-10-30 Roche Innovation Ct Copenhagen As Antisense oligomers and conjugates targeting pcsk9
TWI657819B (zh) 2013-07-19 2019-05-01 美商Ionis製藥公司 用於調節τ蛋白表現之組合物
CA2919268C (en) 2013-07-25 2023-09-05 Exicure, Inc. Spherical nucleic acid-based constructs as immunostimulatory agents for prophylactic and therapeutic use
US10435430B2 (en) 2013-07-31 2019-10-08 Ionis Pharmaceuticals, Inc. Methods and compounds useful in conditions related to repeat expansion
CN105579442A (zh) 2013-09-06 2016-05-11 先正达参股股份有限公司 杀虫化合物
WO2015051169A2 (en) 2013-10-02 2015-04-09 Moderna Therapeutics, Inc. Polynucleotide molecules and uses thereof
EP3052521A1 (en) 2013-10-03 2016-08-10 Moderna Therapeutics, Inc. Polynucleotides encoding low density lipoprotein receptor
US9988627B2 (en) 2013-10-04 2018-06-05 Novartis Ag Formats for organic compounds for use in RNA interference
WO2015054676A2 (en) 2013-10-11 2015-04-16 Isis Pharmaceuticals, Inc. Compositions for modulating c9orf72 expression
AU2014337506B2 (en) 2013-10-14 2020-10-15 Ionis Pharmaceuticals, Inc. Methods for modulating expression of C9ORF72 antisense transcript
US20160230172A1 (en) 2013-10-14 2016-08-11 Ionis Pharmaceuticals, Inc. Compositions for modulating expression of c9orf72 antisense transcript
JP2016537341A (ja) 2013-11-11 2016-12-01 サンガモ バイオサイエンシーズ, インコーポレイテッド ハンチントン病を処置するための方法および組成物
MX2016005855A (es) 2013-11-14 2016-07-13 Roche Innovation Ct Copenhagen As Compuestos de conjugados antisentido de apolipoproteina b (apob).
EP2918275B1 (en) 2013-12-13 2016-05-18 Moderna Therapeutics, Inc. Alternative nucleic acid molecules and uses thereof
WO2015108048A1 (ja) 2014-01-15 2015-07-23 株式会社新日本科学 抗腫瘍作用を有するキラル核酸アジュバンド及び抗腫瘍剤
US10322173B2 (en) 2014-01-15 2019-06-18 Shin Nippon Biomedical Laboratories, Ltd. Chiral nucleic acid adjuvant having anti-allergic activity, and anti-allergic agent
JPWO2015108047A1 (ja) 2014-01-15 2017-03-23 株式会社新日本科学 免疫誘導活性を有するキラル核酸アジュバンド及び免疫誘導活性剤
PT3094728T (pt) 2014-01-16 2022-05-19 Wave Life Sciences Ltd Desenho quiral
EP3750907A3 (en) 2014-03-18 2021-04-28 University of Massachusetts Raav-based compositions and methods for treating amyotrophic lateral sclerosis
DK3137476T3 (da) 2014-04-28 2019-11-18 Ionis Pharmaceuticals Inc Linker-modificerede oligomerforbindelser
BR122020024443B1 (pt) 2014-05-01 2022-02-22 Ionis Pharmaceuticals, Inc Composto e composição farmacêutica para modulação da expressão de angptl3
AU2015255877B2 (en) 2014-05-08 2020-03-26 Chdi Foundation, Inc. Methods and compositions for treating huntington's disease
AU2015264263B2 (en) 2014-05-20 2021-08-05 University Of Iowa Research Foundation Huntington's disease therapeutic compounds
US20160017327A1 (en) 2014-07-11 2016-01-21 The Johns Hopkins University Phosphorodiamidate morpholino oligomers (pmos) and their use in suppression of mutant huntingtin expression and attenuation of neurotoxicity
CA2955250A1 (en) 2014-07-16 2016-01-21 Moderna Therapeutics, Inc. Chimeric polynucleotides
EP2982758A1 (en) 2014-08-04 2016-02-10 Centre Hospitalier Universitaire Vaudois (CHUV) Genome editing for the treatment of huntington's disease
KR101882634B1 (ko) 2014-08-07 2018-07-26 다케다 야쿠힝 고교 가부시키가이샤 양이온성 지질
WO2016024205A1 (en) 2014-08-15 2016-02-18 Pfizer Inc. Oligomers targeting hexanucleotide repeat expansion in human c9orf72 gene
WO2016037191A1 (en) 2014-09-05 2016-03-10 Health Research, Inc. Use of huntingtin-derived plasmids and peptides for active immunization as a huntington's disease (hd) therapeutic
JP2017535552A (ja) 2014-11-17 2017-11-30 アルナイラム ファーマシューティカルズ, インコーポレイテッドAlnylam Pharmaceuticals, Inc. アポリポタンパク質C3(APOC3)iRNA組成物およびその使用方法
WO2016079181A1 (en) 2014-11-19 2016-05-26 Roche Innovation Center Copenhagen A/S Lna gapmer oligonucleotides comprising chiral phosphorothioate linkages
WO2016096938A1 (en) 2014-12-16 2016-06-23 Roche Innovation Center Copenhagen A/S Chiral toxicity screening method
CN108064292B (zh) 2014-12-24 2021-05-04 尤尼克尔生物制药股份有限公司 RNAi诱导的亨廷顿蛋白基因抑制
US9688707B2 (en) 2014-12-30 2017-06-27 Ionis Pharmaceuticals, Inc. Bicyclic morpholino compounds and oligomeric compounds prepared therefrom
WO2016112132A1 (en) 2015-01-06 2016-07-14 Ionis Pharmaceuticals, Inc. Compositions for modulating expression of c9orf72 antisense transcript
CN107636159B (zh) 2015-02-04 2022-06-14 百时美施贵宝公司 选择治疗性分子的方法
BR112017016663A2 (pt) 2015-02-04 2018-04-10 Hoffmann La Roche oligômero, conjugado, composição, kit, e, métodos para inibir ou reduzir a expressão de proteína tau em uma célula e para tratar ou prevenir um distúrbio neurológico
WO2016127002A1 (en) 2015-02-04 2016-08-11 Bristol-Myers Squibb Company Lna oligonucleotides with alternating flanks
AU2016219396B2 (en) 2015-02-10 2022-03-17 Genzyme Corporation Variant RNAi
AU2016219263B2 (en) 2015-02-13 2022-12-01 Alnylam Pharmaceuticals, Inc. Patatin-like phospholipase domain containing 3 (PNPLA3) iRNA compositions and methods of use thereof
WO2016138017A1 (en) 2015-02-23 2016-09-01 Ionis Pharmaceuticals, Inc. Compounds and methods for increasing antisense activity
EP3265098A4 (en) 2015-03-03 2019-02-13 Ionis Pharmaceuticals, Inc. COMPOSITIONS FOR MODULATING MECP2 EXPRESSION
WO2016145142A1 (en) 2015-03-10 2016-09-15 Emory University Nucleotide and nucleoside therapeutics compositions and uses related thereto
WO2016154096A1 (en) 2015-03-20 2016-09-29 Ionis Pharmaceuticals, Inc. Modulation of smggds expression
SI3277814T1 (sl) 2015-04-03 2020-12-31 University Of Massachusetts Oligonukleotidne spojine za ciljanja MRNA huntingtina
US10851371B2 (en) 2015-04-10 2020-12-01 Ionis Pharmaceuticals, Inc. Modulation of SMN expression
US10407678B2 (en) 2015-04-16 2019-09-10 Ionis Pharmaceuticals, Inc. Compositions for modulating expression of C9ORF72 antisense transcript
SG11201708468YA (en) 2015-04-16 2017-11-29 Ionis Pharmaceuticals Inc Compositions for modulating c9orf72 expression
WO2016209862A1 (en) 2015-06-23 2016-12-29 Alnylam Pharmaceuticals, Inc. Glucokinase (gck) irna compositions and methods of use thereof
JP2018519811A (ja) 2015-06-29 2018-07-26 アイオーニス ファーマシューティカルズ, インコーポレーテッドIonis Pharmaceuticals,Inc. 修飾crispr rna及び修飾単一crispr rnaならびにその使用
WO2017011286A1 (en) 2015-07-10 2017-01-19 Alnylam Pharmaceuticals, Inc. Insulin-like growth factor binding protein, acid labile subunit (igfals) and insulin-like growth factor 1 (igf-1) irna compositions and methods of use thereof
MY192997A (en) 2015-07-10 2022-09-20 Ionis Pharmaceuticals Inc Modulators of diacyglycerol acyltransferase 2 (dgat2)
EP3324980B1 (en) 2015-07-17 2021-11-10 Alnylam Pharmaceuticals, Inc. Multi-targeted single entity conjugates
MA43072A (fr) 2015-07-22 2018-05-30 Wave Life Sciences Ltd Compositions d'oligonucléotides et procédés associés
US20180216114A1 (en) 2015-07-27 2018-08-02 Alnylam Pharmaceuticals, Inc. Xanthine dehydrogenase (xdh) irna compositions and methods of use thereof
JP6896703B2 (ja) 2015-07-31 2021-06-30 アルナイラム ファーマシューティカルズ, インコーポレイテッドAlnylam Pharmaceuticals, Inc. TTR関連疾患を治療または予防するためのトランスサイレチン(TTR)iRNA組成物およびその使用方法
KR20180043819A (ko) 2015-08-24 2018-04-30 로슈 이노베이션 센터 코펜하겐 에이/에스 Lna-g 방법
IL293355B2 (en) 2015-08-25 2024-07-01 Alnylam Pharmaceuticals Inc Methods and preparations for the treatment of a disorder related to the PCSK9 gene
KR20180051550A (ko) 2015-09-02 2018-05-16 알닐람 파마슈티칼스 인코포레이티드 프로그램된 세포사 1 리간드 1 (PD-L1) iRNA 조성물 및 그의 사용 방법
EP3350328A1 (en) 2015-09-14 2018-07-25 Alnylam Pharmaceuticals, Inc. Polynucleotide agents targeting patatin-like phospholipase domain containing 3 (pnpla3) and methods of use thereof
EP3356447A4 (en) 2015-10-01 2019-06-12 Memorial Sloan-Kettering Cancer Center INHIBITORS OF MENACHINONE BIOSYNTHESIS
US10874686B2 (en) 2015-10-01 2020-12-29 Memorial Sloan-Kettering Cancer Center Anthranilyl-adenosinemonosulfamate analogs and uses thereof
US10577388B2 (en) 2015-10-02 2020-03-03 Roche Innovation Center Copenhagen A/S Oligonucleotide conjugation process
AU2016334232B2 (en) 2015-10-09 2022-05-26 Wave Life Sciences Ltd. Oligonucleotide compositions and methods thereof
EP3183347A4 (en) 2015-10-17 2018-04-18 Lifesplice Pharma LLC Splice modulating oligonucleotides and methods of use thereof
WO2017068087A1 (en) 2015-10-22 2017-04-27 Roche Innovation Center Copenhagen A/S Oligonucleotide detection method
EP3394258B1 (en) 2015-10-22 2021-09-22 Roche Innovation Center Copenhagen A/S In vitro toxicity screening assay
WO2017079291A1 (en) 2015-11-02 2017-05-11 Ionis Pharmaceuticals, Inc. Compounds and methods for modulating c90rf72
EP3374498A1 (en) 2015-11-12 2018-09-19 H. Hoffnabb-La Roche Ag Standardized neuronal cell assays from primate species
CN108779132B (zh) 2016-03-13 2022-04-15 波涛生命科学有限公司 用于亚磷酰胺和寡核苷酸合成的组合物和方法
RS61528B1 (sr) 2016-03-14 2021-04-29 Hoffmann La Roche Oligonukleotidi za smanjenje ekspresije pd-l1
JP7017517B2 (ja) 2016-03-18 2022-02-08 ロシュ イノベーション センター コペンハーゲン エーエス アシル保護l-lna-グアノシンモノマー
US11963972B2 (en) 2016-03-23 2024-04-23 Emory University Antiviral agents and nucleoside analogs for treatment of Zika virus
CA3017532A1 (en) 2016-04-13 2017-10-19 Ionis Pharmaceuticals, Inc. Methods for reducing c9orf72 expression
WO2017178656A1 (en) 2016-04-14 2017-10-19 Roche Innovation Center Copenhagen A/S TRITYL-MONO-GalNAc COMPOUNDS AND THEIR USE
MA45270A (fr) 2016-05-04 2017-11-09 Wave Life Sciences Ltd Compositions d'oligonucléotides et procédés associés
MA45290A (fr) 2016-05-04 2019-03-13 Wave Life Sciences Ltd Procédés et compositions d'agents biologiquement actifs
DK3455232T3 (da) 2016-05-12 2020-07-06 Roche Innovation Ct Copenhagen As Forbedret kobling af stereodefinerede oxazaphospholidin-phosphoramidit-monomerer til nukleosid eller oligonukleotid
CA3023621C (en) 2016-05-13 2021-07-27 F. Hoffmann-La Roche Ag Protein-based sample collection matrices and devices
US10882884B2 (en) 2016-05-18 2021-01-05 Eth Zurich Stereoselective synthesis of phosphorothioate oligoribonucleotides
CN109562122A (zh) 2016-06-03 2019-04-02 波涛生命科学有限公司 寡核苷酸、组合物及其方法
WO2017221883A1 (ja) 2016-06-20 2017-12-28 武田薬品工業株式会社 抗体-薬物コンジュゲート
US20190264267A1 (en) 2016-07-25 2019-08-29 Wave Life Sciences Ltd. Phasing
EP3544987A4 (en) 2016-11-23 2020-11-18 Wave Life Sciences Ltd. COMPOSITIONS AND SYNTHESIS OF PHOSPHORAMIDITES AND OLIGONUCLEOTIDES

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6500945B2 (en) * 1990-01-11 2002-12-31 Isis Pharmaceuticals, Inc. Nucleotides having chiral phosphorus linkages
US5643989A (en) * 1993-10-29 1997-07-01 Azdel, Inc. Fiber reinforced functionalized polyolefin composites
WO1996007392A2 (en) * 1994-09-07 1996-03-14 Hybridon, Inc. Oligonucleotide prodrugs
WO2001085751A1 (en) * 2000-05-09 2001-11-15 Reliable Biopharmaceutical, Inc. Polymeric compounds useful as prodrugs
EA008940B1 (ru) * 2002-09-13 2007-10-26 Репликор, Инк. Антивирусные олигонуклеотиды, не связанные с комплементарностью последовательностей
US20070161547A1 (en) * 2003-06-03 2007-07-12 Balkrishen Bhat Modulation of survivin expression
US20050159375A1 (en) * 2003-11-28 2005-07-21 Srivastava Suresh C. Novel oligonucleotides and related compounds
WO2007059041A2 (en) * 2005-11-11 2007-05-24 Pfizer, Inc. Combinations and methods of using an immunomodulatory oligodeoxynucleotide
WO2008139262A2 (en) * 2006-10-26 2008-11-20 Coley Pharmaceutical Gmbh Oligoribonucleotides and uses thereof

Also Published As

Publication number Publication date
CN102596204B (zh) 2016-11-23
KR20120046238A (ko) 2012-05-09
US10307434B2 (en) 2019-06-04
IN2012DN00720A (ru) 2015-06-19
AU2010270714A1 (en) 2012-02-16
CL2012000021A1 (es) 2012-07-20
US9744183B2 (en) 2017-08-29
US20120316224A1 (en) 2012-12-13
CN102596204A (zh) 2012-07-18
MX2012000380A (es) 2012-05-23
KR101885383B1 (ko) 2018-08-03
BR112012000828A8 (pt) 2017-10-10
AU2010270714B2 (en) 2015-08-13
JP2015205910A (ja) 2015-11-19
SG10201403841QA (en) 2014-09-26
IL217370A (en) 2017-09-28
CA2767253A1 (en) 2011-01-13
WO2011005761A1 (en) 2011-01-13
EP2451461A4 (en) 2013-05-29
JP5998326B2 (ja) 2016-09-28
BR112012000828A2 (pt) 2016-02-23
SG177564A1 (en) 2012-02-28
WO2011005761A8 (en) 2012-02-02
EP2451461A1 (en) 2012-05-16
MX342945B (es) 2016-10-18
RU2012102480A (ru) 2013-08-20
IL217370A0 (en) 2012-02-29
US20160347784A1 (en) 2016-12-01
JP2012532199A (ja) 2012-12-13

Similar Documents

Publication Publication Date Title
RU2612521C2 (ru) Новые пролекарства нуклеиновых кислот и способы их применения
US10329318B2 (en) Method for the synthesis of phosphorus atom modified nucleic acids
ES2909419T3 (es) Métodos para el tratamiento de infecciones por coronaviridae
JP7263236B2 (ja) 新規二環式ヌクレオシドおよびそれから調製されたオリゴマー
JP2016507484A (ja) ジスルフィドマスキングプロドラッグ組成物および方法
JP5939685B2 (ja) 修飾1本鎖ポリヌクレオチド
JP2021522862A (ja) 7’−5’−アルファ−アノマー二環式糖ヌクレオシドを含むオリゴヌクレオチドコンジュゲート
JP2017502975A (ja) ウラシルヌクレオチド類縁体、それらの製造方法、およびそれらの用途
JP2023537499A (ja) オリゴヌクレオチドの全身送達
TW202140043A (zh) 4’-o-亞甲基膦酸酯核酸及其類似物
JP6794258B2 (ja) オリゴヌクレオチドについてのホスホロジアミデート骨格結合
AU2015255202B2 (en) Novel nucleic acid prodrugs and methods of use thereof
EP4328310A1 (en) Sirna targeting 17b-hydroxysteroid dehydrogenase type 13 and sirna conjugate
CN116615542A (zh) 寡核苷酸的全身递送

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
TC4A Change in inventorship

Effective date: 20170613

PC41 Official registration of the transfer of exclusive right

Effective date: 20170915

PD4A Correction of name of patent owner
RZ4A Other changes in the information about an invention