RU2566843C1 - Вентилятор в сборе - Google Patents

Вентилятор в сборе Download PDF

Info

Publication number
RU2566843C1
RU2566843C1 RU2014125432/06A RU2014125432A RU2566843C1 RU 2566843 C1 RU2566843 C1 RU 2566843C1 RU 2014125432/06 A RU2014125432/06 A RU 2014125432/06A RU 2014125432 A RU2014125432 A RU 2014125432A RU 2566843 C1 RU2566843 C1 RU 2566843C1
Authority
RU
Russia
Prior art keywords
air
nozzle
flow
flow control
air outlet
Prior art date
Application number
RU2014125432/06A
Other languages
English (en)
Inventor
Рой ПУЛТОН
Алан Дэвис
Джозеф ХОДЖЕТТС
Original Assignee
Дайсон Текнолоджи Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дайсон Текнолоджи Лимитед filed Critical Дайсон Текнолоджи Лимитед
Application granted granted Critical
Publication of RU2566843C1 publication Critical patent/RU2566843C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/16Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/002Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying geometry within the pumps, e.g. by adjusting vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/16Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
    • F04F5/20Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids for evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/065Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit fan combined with single duct; mounting arrangements of a fan in a duct

Abstract

Сопло для вентилятора в сборе, которое включает в себя воздуховпускное отверстие, воздуховыпускное отверстие, внутренний канал для перегонки воздуха от воздуховпускного отверстия к воздуховыпускному отверстию, кольцеобразную внутреннюю стенку и внешнюю стенку, проходящую вокруг внутренней стенки. Внутренний канал расположен между внутренней стенкой и внешней стенкой. Внутренняя стенка, по меньшей мере, частично определяет отверстие, через которое воздух снаружи сопла втягивается воздухом, выпускаемым из воздуховыпускного отверстия. Управляющий потоком порт расположен по потоку после воздуховыпускного отверстия. Управляющая потоком камера предусмотрена для перегонки воздуха в управляющий потоком порт. Управляющий механизм выборочно препятствует прохождению воздушного потока через управляющий потоком порт, чтобы отражать воздушный поток, выпускаемый из воздуховыпускного отверстия. 2 н. и 19 з.п. ф-лы, 12 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к соплу для вентилятора в сборе и к вентилятору в сборе, содержащему такое сопло.
Уровень техники
Стандартный бытовой вентилятор обычно включает набор лопаток или лопастей, установленных для вращения вокруг оси, и приводное устройство для вращения набора лопастей для создания воздушного потока. Движение и циркуляция воздушного потока создает «охлаждение ветром» или ветерок, и в качестве результата пользователь ощущает эффект охлаждения, так как тепло рассеивается посредством конвекции и испарения. Лопасти обычно расположены в сетчатом ограждении, что позволяет воздушному потоку проходить через корпус, защищая при этом пользователей от контакта с вращающимися лопастями во время использования вентилятора.
В документе US 2488467 описан вентилятор, в котором не используются лопасти с сетчатым ограждением для выпуска воздуха из вентилятора в сборе. Вместо этого вентилятор в сборе содержит основание, на котором расположена крыльчатка с электродвигателем для втягивания воздушного потока в основание, и комплект концентрических кольцеобразных сопел, соединенных с основанием, каждое из которых содержит кольцеобразное выпускное отверстие, расположенное в передней части сопла, для выпуска воздушного потока из вентилятора. Каждое сопло выступает вокруг оси отверстия, чтобы обозначить отверстие, вокруг которого сопло выступает.
Каждое сопло имеет аэродинамический профиль. Аэродинамический профиль может иметь носок, расположенный в задней части сопла, срез, расположенный в передней части сопла, и хордовую линию, проходящую между носком и срезом. В документе US 2488467 хордовая линия каждого сопла параллельна оси отверстия сопел. Воздуховыпускное отверстие расположено на хордовой линии и выполнено таким образом, чтобы выпускать воздушный поток в направлении из сопла и вдоль хордовой линии.
Другой вентилятор в сборе, который не использует лопасти с сетчатым ограждением для выпуска воздуха из вентилятора в сборе, описан в документе WO 2010/100451. Данный вентилятор в сборе содержит цилиндрическое основание, на котором также расположена крыльчатка с электродвигателем для втягивания первичного воздушного потока в основание, и единственное кольцеобразное сопло, соединенное с основанием и включающее кольцеобразный раструб, через который первичный воздушный поток выпускается из вентилятора. Сопло определяет отверстие, через которое воздух вокруг вентилятора втягивается первичным воздушным потоком, выпущенным из раструба, усиливая первичный воздушный поток. Сопло включает поверхность Коанда, по которой раструб должен направлять первичный воздушный поток. Поверхность Коанда проходит симметрично вокруг центральной оси отверстия, чтобы воздушный поток, образованный вентилятором в сборе, имел форму кольцеобразной струи с цилиндрическим профилем или профилем в виде усеченного конуса.
Пользователь может изменять направление, в котором воздушный поток выводится из сопла, одним из двух способов. Основание включает колебательный механизм, который может быть приведен в действие, чтобы заставить сопло и часть основания колебаться вокруг вертикальной оси, проходящей через центр основания, так чтобы этот воздушный поток, образованный вентилятором в сборе, рассеивался по дуге примерно в 180°. Основание также включает отклоняющий механизм, чтобы позволить соплу и верхней части основания отклоняться относительно нижней части основания на угол до 10° к горизонтали.
Раскрытие изобретения
Настоящее изобретение предлагает сопло для вентилятора в сборе, содержащее воздуховпускное отверстие, воздуховыпускное отверстие, внутренний канал для перегонки воздуха от воздуховпускного отверстия к воздуховыпускному отверстию, кольцеобразную внутреннюю стенку, внешнюю стенку, проходящую вокруг внутренней стенки, при этом внутренний канал расположен между внутренней стенкой и внешней стенкой, причем внутренняя стенка, по меньшей мере, частично определяет отверстие, через которое воздух снаружи сопла втягивается воздухом, выпускаемым из воздуховыпускного отверстия, управляющий потоком порт, расположенный по потоку после воздуховыпускного отверстия, управляющую потоком камеру для перегонки воздуха в управляющий потоком порт, и управляющее средство для выборочного препятствования прохождению воздушного потока через управляющий потоком порт.
Посредством выборочного препятствования прохождению воздушного потока через управляющий потоком порт профиль воздушного потока, выпущенного из воздуховыпускного отверстия, может быть изменен. Препятствование прохождению воздушного потока через управляющий потоком порт может иметь эффект изменения градиента давления по воздушному потоку, выпущенному из сопла. Изменение в градиенте давления может привести к созданию силы, которая действует на выпущенный воздушный поток. Действие данной силы может привести к движению воздушного потока в желаемом направлении.
Сопло предпочтительно содержит направляющую поверхность, расположенную по потоку после воздуховыпускного отверстия. Воздуховыпускное отверстие может быть выполнено таким образом, чтобы направлять воздушный поток по направляющей поверхности. Управляющий потоком порт может быть расположен между воздуховыпускным отверстием и направляющей поверхностью. Например, управляющий потоком порт может быть расположен смежно с воздуховыпускным отверстием.
Управляющий потоком порт может быть устроен так, чтобы направлять воздух по направляющей поверхности. Управляющий потоком порт может быть расположен между воздуховыпускным отверстием и направляющей поверхностью. Альтернативно, управляющий потоком порт может быть расположен внутри направляющей поверхности, по потоку после по меньшей мере ее части.
Сопло может содержать единственную направляющую поверхность, но в одном варианте осуществления сопло содержит две направляющих поверхности, причем воздуховыпускное отверстие выполнено с возможностью выпуска воздушного потока между направляющими поверхностями. Управляющая потоком камера может содержать первый управляющий потоком порт, расположенный смежно с первой направляющей поверхностью, и второй управляющий потоком порт, расположенный смежно со второй направляющей поверхностью. Альтернативно, сопло может содержать первую управляющую потоком камеру и вторую управляющую потоком камеру, причем каждая управляющая потоком камера имеет соответствующий управляющий потоком порт, расположенный смежно с соответствующей направляющей поверхностью.
Когда воздух выпускается из каждого из управляющих потоком портов, чтобы смешаться с воздушным потоком, выпущенным из воздуховыпускного отверстия, воздушный поток, выпущенный из сопла, будет стремиться к одной из двух направляющих поверхностей. Направляющая поверхность, к которой стремится воздушный поток, может зависеть от одной или нескольких проектных характеристик, таких как скорость воздушного потока через управляющие потоком порты, скорость воздуха, выпущенного из управляющих потоком портов, форма воздуховыпускного отверстия, ориентация воздуховыпускного отверстия относительно направляющих поверхностей и форма направляющих поверхностей.
Когда происходит препятствование прохождению воздушного потока через один из управляющих потоком портов, например, посредством закрытия одного из управляющих потоком портов или посредством препятствования прохождению воздушного потока через управляющую потоком камеру, соединенную с этим управляющим потоком портом, градиент давления по воздушному потоку, выпущенному из сопла, меняется. Например, если из первого управляющего потоком порта, расположенного смежно с первой направляющей поверхностью, по существу не выпущено воздуха, рядом с этой первой направляющей поверхностью может быть создано относительно низкое давление. Перепад давления, созданный таким образом по воздушному потоку, образует силу, которая нагнетает воздушный поток по направлению к первой направляющей поверхности. Разумеется, в зависимости от вышеупомянутых проектных характеристик воздушный поток уже мог быть связан с этой поверхностью, в случае чего воздушный поток остается связанным с этой направляющей поверхностью, когда происходит препятствование прохождению воздушного потока через первый управляющий потоком порт. Когда воздушный поток через управляющие потоком порты последовательно переключается таким образом, что по существу никакого воздуха не выпускается из второго управляющего потоком порта, но воздух выпускается из первого управляющего потоком порта, перепад давлений по воздушному потоку изменяется в противоположном направлении. Это в свою очередь создает силу, которая нагнетает воздушный поток по направлению ко второй направляющей поверхности, с которой воздушный поток может связаться. Воздушный поток предпочтительно отделяется от первой направляющей поверхности.
С другой стороны, в зависимости от скорости потока и (или) скорости, с которой воздух выпускается из «открытого» управляющего потоком порта, воздушный поток, выпущенный из этого управляющего потоком порта, может связаться с направляющей поверхностью, расположенной смежно с управляющим потоком портом. В данном случае воздушный поток, выпущенный из воздуховыпускного отверстия, увлекается воздушным потоком, выпущенным из управляющего потоком порта.
В любом случае, направление, в котором воздух выпускается из сопла, зависит от формы направляющей поверхности, с которой связан воздушный поток. Например, направляющая поверхность может сужаться наружу относительно оси отверстия, чтобы воздушный поток, выпущенный из сопла, имел расширяющийся наружу профиль. Альтернативно, направляющая поверхность может сужаться внутрь относительно оси отверстия, чтобы воздушный поток, выпущенный из сопла, имел сужающийся внутрь профиль. Если сопло включает две таких направляющих поверхности, одна направляющая поверхность может сужаться по направлению к отверстию, а другая направляющая поверхность может сужаться от отверстия. Направляющая поверхность может иметь форму усеченного конуса или быть изогнутой. В одном варианте осуществления направляющая поверхность имеет выпуклую форму. Направляющая поверхность может быть граненой, причем каждая грань является либо прямой, либо изогнутой.
Как было упомянуто выше, посредством выборочного препятствования прохождению воздушного потока из управляющего потоком порта воздушный поток, выпущенный из воздуховыпускного отверстия, может связаться с направляющей поверхностью или отделиться от направляющей поверхности. Данный или каждый управляющий потоком порт может быть расположен между воздуховыпускным отверстием и направляющей поверхностью и, таким образом, быть приспособленным выпускать воздух по направляющей поверхности.
В случае, когда препятствование прохождению воздушного потока из управляющего потоком порта приводит к тому, что воздушный поток отделяется от первой направляющей поверхности, но не связывается со второй направляющей поверхностью, направление, в котором воздух выпускается из сопла, может зависеть от таких параметров, как наклон воздуховыпускного отверстия к оси отверстия сопла. Например, воздуховыпускное отверстие может быть приспособлено выпускать воздух в направлении, которое проходит к оси отверстия.
Воздуховыпускное отверстие предпочтительно имеет форму щели. Внутренний канал предпочтительно окружает отверстие сопла. Воздуховыпускное отверстие предпочтительно проходит, по меньшей мере, частично вокруг отверстия. Например, сопло может содержать отдельное воздуховыпускное отверстие, которое проходит, по меньшей мере, частично вокруг отверстия. Например, воздуховыпускное отверстие также может окружать отверстие. Отверстие может иметь круглое поперечное сечение в плоскости, перпендикулярной оси отверстия, и, таким образом, воздуховыпускное отверстие может быть круглым по форме. Альтернативно, сопло может содержать множество воздуховыпускных отверстий, которые расположены вокруг отверстия.
Соплу может быть придана форма для определения отверстия, которое имеет поперечное сечение некруглой формы в плоскости, перпендикулярной оси отверстия. Например, это поперечное сечение может быть эллиптическим или прямоугольным. Сопло может иметь две относительно длинные прямые секции, верхнюю криволинейную секцию и нижнюю криволинейную секцию, причем каждая криволинейная секция соединяется с соответствующими концами прямых секций. Кроме того, сопло может содержать отдельное воздуховыпускное отверстие, которое проходит, по меньшей мере, частично вокруг отверстия. Например, каждая из прямых секций и верхняя криволинейная секция сопла могут содержать соответствующую часть этого воздуховыпускного отверстия. Альтернативно, сопло может содержать два воздуховыпускных отверстия, каждое из которых предназначено для выпускания соответствующей части воздушного потока. Каждая прямая секция сопла может содержать соответствующее одно из этих двух воздуховыпускных отверстий.
Направляющая поверхность предпочтительно проходит, по меньшей мере, частично вокруг отверстия и, более предпочтительно, окружает отверстие. Если сопло содержит две направляющие поверхности, первая направляющая поверхность предпочтительно проходит, по меньшей мере, частично вокруг второй направляющей поверхности и, более предпочтительно, окружает вторую направляющую поверхность, так что вторая направляющая поверхность расположена между отверстием и первой направляющей поверхностью.
Сопло может быть удобно выполнено с кольцеобразной передней корпусной секцией, которая определяет воздуховыпускное(-ые) отверстие(-я) и которая имеет первую кольцеобразную поверхность, определяющую первую направляющую поверхность, и вторую кольцеобразную поверхность, соединенную с первой кольцеобразной криволинейной поверхностью и проходящую вокруг нее, и определяющую вторую направляющую поверхность. Две кольцеобразные поверхности корпусной секции могут быть соединены посредством множества спиц или решеток, которые проходят между кольцеобразными поверхностями, через воздуховыпускное(-ые) отверстие(-я). В итоге, когда каждая часть воздушного потока связывается с первой направляющей поверхностью, воздух может выпускаться из сопла с профилем, который сужается внутрь по направлению к оси отверстия, тогда как, если каждая часть воздушного потока связывается со второй направляющей поверхностью, воздух может выпускаться из сопла с профилем, который сужается наружу от оси отверстия.
Воздух, выпускаемый из сопла, далее называемый первичным воздушным потоком, увлекает воздух, окружающий сопло, что служит в качестве пневмоусилителя для подачи пользователю как первичного воздушного потока, так и захваченного воздуха. Захваченный воздух будет далее обозначаться как вторичный воздушный поток. Вторичный воздушный поток втягивается из пространства помещения, области или внешней среды, окружающей сопло. Первичный воздушный поток смешивается с захваченным вторичным воздушным потоком, чтобы образовать смешанный или общий воздушный поток, выпускаемый вперед из передней части сопла.
Изменение направления, в котором первичный воздушный поток выпускается из сопла, может изменять степень вовлечения вторичного воздушного потока первичным воздушным потоком и, таким образом, изменять скорость смешанного воздушного потока, созданного вентилятором в сборе.
Не желая ограничиваться теорией, мы считаем, что скорость вовлечения вторичного воздушного потока первичным воздушным потоком может быть связана с размером площади поверхности внешнего профиля первичного воздушного потока, выпускаемого из сопла. Для заданной скорости воздушного потока, поступающего в сопло, когда первичный воздушный поток сужается или расширяется наружу, площадь поверхности внешнего профиля относительно велика, что способствует смешиванию первичного воздушного потока и окружающего сопло воздуха и тем самым увеличению скорости смешанного воздушного потока, тогда как, если первичный воздушный поток сужается внутрь, площадь поверхности внешнего профиля относительно мала, что уменьшает вовлечение вторичного воздушного потока первичным воздушным потоком и тем самым уменьшает скорость смешанного воздушного потока. Усиление воздушного потока через отверстие сопла также может быть ослаблено.
Увеличение скорости течения при измерении на плоскости, перпендикулярной оси отверстия и смещенной за плоскость воздуховыпускного отверстия, вызванное соплом за счет изменения направления, в котором воздушный поток выпускается из сопла, имеет эффект уменьшения максимальной скорости смешанного воздушного потока в данной плоскости. Сопло, таким образом, может стать подходящим для создания относительно рассеянного воздушного потока по комнате или офису для охлаждения нескольких пользователей поблизости от сопла. С другой стороны, снижение скорости течения смешанного воздушного потока, вызванное соплом, имеет эффект увеличения максимальной скорости смешанного воздушного потока. Сопло, таким образом, может стать подходящим для создания воздушного потока для быстрого охлаждения пользователя, расположенного перед соплом. Профиль воздушного потока, созданного соплом, может быстро переключаться между этими двумя разными профилями посредством выборочной активизации прохождения или препятствования прохождению воздушного потока через управляющую потоком камеру.
Геометрия воздуховыпускного(-ых) отверстия(-й) и направляющей(-их) поверхности(-ей), по меньшей мере, частично обуславливает два различных профиля для воздушного потока, созданного соплом. Например, при взгляде в поперечном сечении вдоль плоскости, проходящей по оси отверстия и расположенного, в основном, на полпути между верхним и нижним концами сопла, кривизна первой направляющей поверхности может отличаться от кривизны второй направляющей поверхности. Например, в данном поперечном сечении первая направляющая поверхность может иметь большую кривизну, чем вторая направляющая поверхность.
Воздуховыпускное(-ые) отверстие(-я) может (могут) быть расположено(-ы) таким образом, что для каждого воздуховыпускного отверстия одна из направляющих поверхностей расположена ближе к данному воздуховыпускному отверстию, чем другая направляющая поверхность. Альтернативно или дополнительно, воздуховыпускное(-ые) отверстие(-я) может (могут) быть расположено(-ы) таким образом, что одна из направляющих поверхностей расположена ближе, чем другая, к воображаемой криволинейной поверхности, проходящей вокруг и параллельно оси отверстия, и проходит через воздуховыпускное(-ые) отверстие(-я) по центру, чтобы в целом очертить профиль воздушного потока, выпускаемого из воздуховыпускного(-ых) отверстия(-й).
Управляющее средство предпочтительно имеет первое состояние, которое препятствует прохождению воздушного потока через управляющий потоком порт, и второе состояние, которое пропускает воздушный поток через управляющий потоком порт. Управляющее средство может быть в виде клапана, содержащего клапанный корпус для закрытия воздуховпускного отверстия управляющей потоком камеры и привод для перемещения клапанного корпуса относительно впускного отверстия. Альтернативно, клапанный корпус может быть приспособлен для закрытия управляющего потоком порта. Клапан может быть управляемым вручную клапаном, на который можно нажимать, который можно тянуть или передвигать другим образом между этими двумя положениями. В одном варианте осуществления клапан является электромагнитным клапаном, который может быть приведен в действие пользователем дистанционно, например, с помощью дистанционного управляющего устройства, или нажатием кнопки либо иного переключателя, расположенного на вентилятору в сборе.
Управляющая потоком камера может иметь воздуховпускное отверстие, расположенное на внешней поверхности сопла. В данном случае все потоки воздуха, принятые внутренним каналом, могут быть выпущены из воздуховыпускного(-ых) отверстия(-й). Однако управляющая потоком камера предпочтительно устроена для приема управляющего воздушного потока из внутреннего канала. В данном случае первая часть воздушного потока, принятая внутренним каналом, может быть выборочно впущена в управляющую потоком камеру, чтобы образовать управляющий воздушный поток, причем остаток воздушного потока, выпускаемого из внутреннего канала через воздуховыпускное(-ые) отверстие(-я), смешивается заново с управляющим воздушным потоком ниже по течению от воздуховыпускного(-ых) отверстия(-й).
Внутренний канал может быть отделен от управляющей потоком камеры внутренней стенкой сопла. Эта стенка предпочтительно включает воздуховпускное отверстие управляющей потоком камеры. Воздуховыпускное отверстие управляющей потоком камеры предпочтительно расположено у основания сопла, через которое воздушный поток входит в сопло.
Управляющая потоком камера может проходить через сопло смежно с внутренним каналом. Таким образом, управляющая потоком камера может проходить, по меньшей мере, частично вокруг отверстия сопла и может окружать отверстие.
Как было упомянуто выше, сопло может содержать второй управляющий потоком порт, расположенный смежно с воздуховыпускным отверстием и второй управляющей потоком камерой, для перегонки воздуха ко второму управляющему потоком порту, чтобы отклонить воздушный поток, выпускаемый из воздуховыпускного отверстия. Этот второй управляющий потоком порт предпочтительно расположен между воздуховыпускным отверстием и второй направляющей поверхностью.
Управляющее средство может быть устроено для выборочного препятствования прохождению воздушного потока через второй управляющий потоком порт. Управляющее средство может иметь первое состояние, которое препятствует прохождению воздушного потока через первый управляющий потоком порт, и второе состояние, которое препятствует прохождению воздушного потока через второй управляющий потоком порт. Например, состояние управляющего средства может управляться путем установки положения единственного клапанного корпуса. Альтернативно, управляющее средство может содержать первый клапанный корпус для закрытия воздуховпускного отверстия первой управляющей потоком камеры, второй клапанный корпус для закрытия воздуховпускного отверстия второй управляющей потоком камеры и привод для перемещения клапанного корпуса относительно воздуховпускных отверстий. Вместо того чтобы закрывать воздуховпускные отверстия соответствующих управляющих потоком камер, управляющее средство может быть устроено для закрывания выбранного одного из первого и второго управляющих потоком портов.
Как и в случае с первой управляющей потоком камерой, вторая управляющая потоком камера может иметь воздуховпускное отверстие, расположенное на внешней поверхности сопла. Однако сопло предпочтительно содержит средство, такое как множество внутренних стенок, для разделения внутреннего объема сопла на внутренний канал и две управляющие потоком камеры.
Воздуховпускное отверстие второй управляющей потоком камеры предпочтительно расположено у основания сопла. Вторая управляющая потоком камера может также проходить через сопло смежно с внутренним каналом. Таким образом, вторая управляющая потоком камера может проходить, по меньшей мере, частично вокруг отверстия сопла и может окружать отверстие. Воздуховыпускное(-ые) отверстие(-я) может (могут) быть расположено(-ы) между управляющими потоком камерами.
Внутренний канал может содержать средство для нагрева, по меньшей мере, части воздушного потока, принятого соплом.
Во втором объекте настоящего изобретения раскрывается вентилятор в сборе, содержащий крыльчатку, двигатель для вращения крыльчатки для производства воздушного потока, сопло в соответствии с вышеизложенным для принятия воздушного потока и контроллер двигателя для управления двигателем. Контроллер двигателя может быть приспособлен автоматически регулировать скорость двигателя, когда управляющее средство приводит в действие пользователь. Например, контроллер двигателя может быть приспособлен для уменьшения скорости двигателя, когда управляющее средство приводят в действие, чтобы сфокусировать воздушный поток, созданный соплом, по направлению оси отверстия.
Признаки, описанные выше в связи с первым объектом изобретения, одинаково применимы ко второму объекту изобретения и наоборот.
Краткое описание чертежей
Далее будет описан вариант осуществления настоящего изобретения только в качестве примера, со ссылкой на сопровождающие чертежи.
На фиг. 1 показан вид спереди вентилятора в сборе.
На фиг. 2 - вертикальное поперечное сечение вентилятора в сборе по линии Α-A на фиг. 1.
На фиг. 3 - изображение сопла вентилятора в сборе по фиг. 1 в разобранном виде.
На фиг. 4 - вид справа сопла.
На фиг. 5 - вид спереди сопла.
На фиг. 6 - горизонтальное поперечное сечение сопла по линии Н-Н на фиг. 5.
На фиг. 7 - увеличенный вид области J, определенной на фиг. 6.
На фиг. 8 - вид сопла в перспективе справа при взгляде снизу.
На фиг. 9 - вид в перспективе сзади части сопла при взгляде сверху, включая внутренние и задние корпусные секции, и контроллера потока сопла.
На фиг. 10 - вид справа части сопла, изображенной на фиг. 9.
На фиг. 11 - частичный вертикальный вид в поперечном сечении по линии F-F на фиг. 10.
На фиг. 12 - горизонтальное поперечное сечение по линии G-G на фиг. 11.
Осуществление изобретения
На фиг. 1 показан внешний вид вентилятора 10 в сборе. Вентилятор 10 в сборе содержит корпус 12, содержащий воздуховпускное отверстие 14, через которое воздушный поток поступает в вентилятор 10 в сборе, и кольцеобразное сопло 16, расположенное на корпусе 12. Сопло 16 содержит воздуховыпускное отверстие 18 для выпуска воздушного потока из вентилятора 10 в сборе.
Корпус 12 содержит по существу цилиндрическую основную секцию 20 корпуса, расположенную на по существу цилиндрической нижней секции 22 корпуса. Основная секция 20 корпуса и нижняя секция 22 корпуса предпочтительно имеют по существу одинаковый внешний диаметр, так что внешняя поверхность верхней секции 20 корпуса расположена по существу заподлицо с внешней поверхностью нижней секции 22 корпуса. Основная секция 20 корпуса содержит воздуховпускное отверстие 14, через которое воздух поступает в вентилятор 10 в сборе. В данном варианте осуществления воздуховпускное отверстие 14 содержит множество отверстий, выполненных в основной секции 20 корпуса. Альтернативно, воздуховпускное отверстие 14 может содержать одну или несколько решеток или сеток, расположенных внутри окошек, выполненных в основной секции 20 корпуса. Основная секция 20 корпуса открыта с ее верхнего конца (как изображено), чтобы образовать воздуховыпускное отверстие 23 (показано на фиг. 2), через которое воздушный поток выпускается из корпуса 12. Воздуховыпускное отверстие 23 может быть предусмотрено в опциональной верхней секции корпуса, расположенной между соплом 16 и основной секцией 20 корпуса.
Нижняя секция 22 корпуса содержит интерфейс пользователя вентилятора 10 в сборе. Интерфейс пользователя содержит множество пользовательских кнопок 24, 26 и дисковый регулятор 28. Нижняя секция 22 корпуса также содержит окно 32, через которое в вентилятор 10 в сборе проходят сигналы от устройства дистанционного управления (не изображено). Нижняя секция 22 корпуса расположена на плите 34 основания, занимая поверхность, на которой расположен вентилятор 10 в сборе.
На фиг. 2 показано сечение вентилятора 10 в сборе. Нижняя секция 22 корпуса вмещает основную управляющую схему, обозначенную в общем позицией 36, соединенную с управляющей схемой 30 пользовательского интерфейса. В ответ на приведение в действие кнопок 24, 26 и дискового регулятора 28 управляющая схема 30 пользовательского интерфейса приспособлена передавать соответствующие сигналы на основную управляющую схему 36 для управления различными действиями вентилятора 10 в сборе.
Нижняя секция 22 корпуса также содержит механизм, обозначенный в целом как 38, для колебания основной секции 20 корпуса относительно нижней секции 22 корпуса. Действие колебательного механизма 38 управляется основной управляющей схемой 36 в ответ на нажатие пользователем кнопки 26. Диапазон каждого колебательного цикла основной секции 20 корпуса относительно нижней секции 22 корпуса находится предпочтительно между 60° и 180°, а в данном варианте осуществления составляет примерно 90°. Сетевой кабель 39 для подачи электрической энергии на вентилятор 10 в сборе проходит через отверстие, образованное в нижней секции 22 корпуса. Кабель 39 соединен со штепселем (не показан) для подсоединения к источнику электропитания.
Основная секция 20 корпуса вмещает крыльчатку 40 для втягивания воздуха через воздуховпускное отверстие 14 в корпус 12. Предпочтительно, чтобы крыльчатка 40 была диагональной крыльчаткой. Крыльчатка 40 соединена с вращающимся валом 42, проходящим наружу от двигателя 44. В данном варианте осуществления двигатель 44 является бесщеточным двигателем постоянного тока с частотой вращения, регулируемой основной управляющей схемой 36 в ответ на приведение пользователем в действие дискового регулятора 28. Двигатель 44 размещен внутри кожуха двигателя, содержащего верхнюю часть 46, соединенную с нижней частью 48. Верхняя часть 46 кожуха двигателя содержит диффузор 50. Диффузор 50 представлен в виде кольцеобразного диска с криволинейными лопастями.
Кожух двигателя расположен внутри корпуса 52 крыльчатки и установлен на корпусе 52 крыльчатки, имеющем в общем форму усеченного конуса. Корпус 52 крыльчатки установлен, в свою очередь, на множестве распределенных в окружном направлении опор 54, в данном примере на трех опорах, расположенных внутри основной секции 20 корпуса основания 12 и соединенных с ней. Крыльчатка 40 и корпус 52 крыльчатки имеют такую форму, что крыльчатка 40 находится в непосредственной близости от внутренней поверхности корпуса 52 крыльчатки, но не контактирует с ней. По существу кольцеобразная впускная деталь 56 соединена с дном корпуса 52 крыльчатки, для того чтобы направлять воздух в корпус 52 крыльчатки. Электрический кабель 58 проходит от основной управляющей схемы 36 к двигателю 44 через отверстия, образованные в основной секции 20 корпуса и нижней секции 22 корпуса в корпусе 12, а также в корпусе 52 крыльчатки и кожуха двигателя.
Предпочтительно, корпус 12 включает шумоглушащий пеноматериал для уменьшения шума, исходящего из корпуса 12. В данном варианте осуществления основная секция 20 корпуса 12 содержит первый кольцеобразный элемент 60 из пеноматериала, расположенный ниже воздуховпускного отверстия 14, и второй кольцеобразный элемент 62 из пеноматериала, расположенный между корпусом 52 крыльчатки и впускной деталью 56.
Как показано на фиг. 1-4, сопло 16 имеет кольцеобразную форму. Сопло 16 проходит вокруг оси X отверстия для определения отверстия 64 сопла 16. В данном примере отверстие 64 имеет в общем удлиненную форму при высоте (измеренной в направлении, проходящем от верхнего конца сопла к нижнему концу сопла 16), которая больше ширины сопла 16 (измеренной в направлении, проходящем между боковыми стенками сопла 16). Сопло 16 содержит основание 66, которое соединено с открытым верхним концом основной секции 20 корпуса 12 и которое имеет открытый нижний конец 68, чтобы принимать воздушный поток из корпуса 12. Как упоминалось выше, сопло 16 имеет воздуховыпускное отверстие 18 для выпуска воздушного потока из вентилятора 10 в сборе. Воздуховыпускное отверстие 18 расположено по направлению к переднему концу 70 сопла 16 и предпочтительно имеет форму щели, которая проходит вокруг оси X отверстия. Воздуховыпускное отверстие 18 предпочтительно имеет относительно постоянную ширину в диапазоне от 0,5 до 5 мм.
Сопло 16 содержит кольцеобразную заднюю корпусную секцию 72, кольцеобразную внутреннюю корпусную секцию 74 и кольцеобразную переднюю корпусную секцию 76. Задняя корпусная секция 72 содержит основание 66 сопла 16. Хотя каждая корпусная секция показана как выполненная из одного элемента, одна или несколько корпусных секций могут быть выполнены из множества элементов, соединенных вместе, например, с использованием клея. Задняя корпусная секция 72 имеет кольцеобразную внутреннюю стенку 78 и кольцеобразную внешнюю стенку 80, соединенную с внутренней стенкой 78 на заднем конце 82 задней корпусной секции 72. Внутренняя стенка 78 определяет заднюю часть отверстия 64 сопла 16. Внутренняя стенка 78 и внешняя стенка 80 вместе определяют внутренний канал 84 сопла 16. В данном примере внутренний канал 84 имеет кольцеобразную форму, окружая отверстие 64 сопла 16. Форма внутреннего канала 84 тем самым близко повторяет форму внутренней стенки 78 и, таким образом, имеет две прямые секции, расположенные на противоположных сторонах отверстия 64, причем внешняя криволинейная секция соединяется с верхними концами прямых секций, а нижняя криволинейная секция соединяется с нижними концами прямых секций. Воздух выпускается из внутреннего канала 84 через воздуховыпускное отверстие 18. Воздуховыпускное отверстие 18 сужается по направлению к воздуховыпускному устью, имеющему ширину W1 в диапазоне от 1 до 3 мм.
Воздуховыпускное отверстие 18 определяется передней корпусной секцией 76 сопла 16. Передняя корпусная секция 76 имеет в общем кольцеобразную форму, а также кольцеобразную внутреннюю стенку 88 и кольцеобразную внешнюю стенку 90. Внутренняя стенка 88 определяет переднюю часть отверстия 64 сопла 16.
Воздуховыпускное отверстие 18 расположено между внутренней стенкой 88 и внешней стенкой 90 передней корпусной секции 76.
Воздуховыпускное отверстие 18 расположено позади первой направляющей поверхности 92, которая образует часть внутренней поверхности внешней стенки 90, и второй направляющей поверхности 94, которая образует часть внутренней поверхности внутренней стенки 88. Воздуховыпускное отверстие 18, таким образом, предназначено для выпуска воздушного потока между направляющими поверхностями 92, 94. В данном примере каждая направляющая поверхность 92, 94 имеет выпуклую форму, причем первая направляющая поверхность 92 изгибается от оси X отверстия, а вторая направляющая поверхность 94 изгибается по направлению к оси X отверстия. Альтернативно, каждая направляющая поверхность 92, 94 может быть граненой. Как изображено на фиг. 7, при взгляде в поперечном сечении вдоль плоскости, проходящей через ось X отверстия и расположенной в общем на полпути между верхним и нижним концами сопла 16, направляющие поверхности 92, 94 могут иметь различную кривизну; в данном примере первая направляющая поверхность 92 имеет большую кривизну, чем вторая направляющая поверхность 94.
Комплект решеток 96 соединяет внутреннюю стенку 88 с внешней стенкой 90. Решетки 96 предпочтительно составляют единое целое с внутренней стенкой 88 и внешней стенкой 90 и имеют примерно 1 мм в толщину. Решетки 96 также проходят от стенок 88, 90 к воздуховыпускному отверстию 18 и через воздуховыпускное отверстие 18, чтобы соединить воздуховыпускное отверстие 18 со стенками 88, 90. Вследствие этого решетки 96 могут также служить для того, чтобы направлять воздух, проходящий от внутреннего канала 84 через воздуховыпускное отверстие 18, чтобы он выпускался из сопла 16 в направлении, в общем параллельном оси X отверстия. Решетки 96 могут также быть предназначены для регулирования ширины воздуховыпускного отверстия 18. В случае, когда внутренняя стенка 88 и внешняя стенка 90 выполнены из отдельных элементов, решетки 96 могут быть заменены комплектом перемычек, расположенных на одной из стенок 88, 90, для сцепления с другой стенкой 88, 90, чтобы раздвинуть стенки и тем самым установить ширину воздуховыпускного отверстия 18.
Как изображено на фиг. 5, в данном примере воздуховыпускное отверстие 18 проходит частично вокруг оси X отверстия сопла 16, для того чтобы принимать воздух только из прямых секций и верхней криволинейной секции внутреннего канала 84. Нижняя криволинейная секция передней корпусной секции 76 выполнена таким образом, чтобы образовать барьер 98, который препятствует выпуску воздуха из нижней криволинейной секции передней корпусной секции 76. Это может позволить более тщательно контролировать профиль воздушного потока, выпускаемого из сопла 16, если сопло 16 имеет удлиненную форму; в противном случае, выпуск воздуха будет стремиться вверх под относительно большим углом к оси X отверстия. Барьер 98 изображен на фиг. 2 и в поперечном сечении имеет форму, аналогичную форме решеток 96, установленных периодически по длине воздуховыпускного отверстия 18.
Как показано на фиг. 7, во время производства внутренняя корпусная секция 74 вставляется в заднюю корпусную секцию 72. Внутренняя корпусная секция 74 имеет кольцеобразную внутреннюю стенку 100, которая взаимодействует с внутренней поверхностью внешней стенки 80 задней корпусной секции 72, и кольцеобразную внутреннюю стенку 102, которая взаимодействует с внутренней поверхностью внутренней стенки 88 задней корпусной секции 72. На передних концах стенок 100, 102 выполнены выступы, чтобы предусмотреть упоры, которые предназначены для сдерживания введения внутренней корпусной секции 74 в заднюю корпусную секцию 72 и которые могут быть соединены с задней корпусной секцией 72 с использованием клея. Внутренняя корпусная секция 74 имеет заднюю стенку 104, проходящую между задними концами стенок 100, 102. Отверстие 106, образованное в задней стенке 104, позволяет воздуху проходить от внутреннего канала 84 к воздуховыпускному отверстию 18. С другой стороны, отверстие 106 проходит частично вокруг оси X отверстия сопла 16, чтобы перегонять воздух на воздуховыпускное отверстие 18 только из прямых секций и верхней криволинейной секции внутреннего канала 84. Относительно короткие решетки 108 могут быть установлены периодически по длине отверстия 106 для регулирования ширины отверстия 106. Как показано на фиг. 9, промежуток между этими решетками 108 практически такой же, как промежуток между решетками 96, так что конец каждой решетки 96 упирается в конец соответствующей решетки 108, если внутренняя корпусная секция 74 вставлена целиком в заднюю корпусную секцию 72. Передняя корпусная секция 76 в таком случае присоединена к задней корпусной секции 72, например, с использованием клея, так что внутренняя корпусная секция 74 окружена задней корпусной секцией 72 и передней корпусной секцией 76.
Помимо внутреннего канала 84 сопло 16 определяет первую управляющую потоком камеру 110. Первая управляющая потоком камера 110 является кольцеобразной и проходит вокруг отверстия 64 сопла 16. Первая управляющая потоком камера 110 ограничена воздуховыпускным отверстием 18, внешней стенкой 90 передней корпусной секции 76 и внешней стенкой 100 и задней стенкой 104 внутренней корпусной секции 74.
Первая управляющая потоком камера 110 приспособлена перегонять воздух в управляющий потоком порт 111, расположенный смежно с первой направляющей поверхностью 92. Управляющий потоком порт 111 расположен между воздуховыпускным отверстием 18 и первой направляющей поверхностью 92 и приспособлен перегонять воздух из первой управляющей потоком камеры 110 по первой направляющей поверхности 92.
В данном примере сопло 16 также определяет вторую управляющую потоком камеру 112. Вторая управляющая потоком камера 112 также имеет кольцеобразную форму и проходит вокруг отверстия 64 сопла 16. Первая управляющая потоком камера 110 проходит вокруг второй управляющей потоком камеры 112. Вторая управляющая потоком камера 112 ограничена воздуховыпускным отверстием 18, внутренней стенкой 88 передней корпусной секции 76 и внутренней стенкой 102 и задней стенкой 104 внутренней корпусной секции 74. Вторая управляющая потоком камера 112 приспособлена перегонять воздух на управляющий потоком порт 113, расположенный смежно со второй направляющей поверхностью 94. Управляющий потоком порт 113 расположен между воздуховыпускным отверстием 18 и второй направляющей поверхностью 94 и приспособлен перегонять воздух из второй управляющей потоком камеры 112 по второй направляющей поверхности 94.
Воздух входит в управляющие потоком камеры 110, 112 через соответствующие воздуховпускные отверстия 116, 118, образованные в задней стенке 104 внутренней корпусной секции 74. Как показано на фиг. 2, 3, 9 и 11, каждое воздуховпускное отверстие 116, 118 приспособлено принимать воздух из нижней криволинейной секции внутреннего канала 84.
Сопло 16 включает управляющий механизм 120 для управления воздушным потоком через управляющие потоком камеры 110, 112. В данном примере управляющий механизм 120 приспособлен выборочно препятствовать прохождению воздушного потока через один из управляющих потоком портов 111, 113, одновременно позволяя воздуху течь через другие управляющие потоком порты 111, 113. Например, в первом состоянии управляющий механизм 120 приспособлен препятствовать прохождению воздушного потока через первую управляющую потоком камеру 110, при этом во втором состоянии управляющий механизм 120 приспособлен препятствовать прохождению воздушного потока через вторую управляющую потоком камеру 112.
Как показано на фиг. 2, 3, 8 и 9, управляющий механизм 120 расположен, в основном, внутри задней корпусной секции 72 сопла 16. Управляющий механизм 120 содержит первый клапанный корпус 122, чтобы закрывать воздуховпускное отверстие 116 первой управляющей потоком камеры 110, и второй клапанный корпус 124, чтобы закрывать воздуховпускное отверстие 118 второй управляющей потоком камеры 112. Управляющий механизм 120 также содержит привод 126 для перемещения клапанных корпусов 122, 124 по направлению к соответствующим воздуховпускным отверстиям 116 и 118 и от них. В данном примере привод 126 является зубчатой передачей с электродвигателем. Зубчатая передача выполнена таким образом, что, если двигатель работает в первом направлении, первый клапанный корпус 122 перемещается по направлению к задней стенке 104 внутренней корпусной секции 74, чтобы закрывать воздуховпускное отверстие 116 первой управляющей потоком камеры 110, в то время как второй клапанный корпус 124 перемещается от задней стенки 104 внутренней корпусной секции 74, чтобы открывать воздуховпускное отверстие 118 второй управляющей потоком камеры 112. Если двигатель работает во втором направлении, противоположном первому направлению, то первый клапанный корпус 122 перемещается назад от задней стенки 104 внутренней корпусной секции 74, чтобы открывать воздуховпускное отверстие 116 первой управляющей потоком камеры 110, в то время как второй клапанный корпус 124 перемещается вперед от задней стенки 104 внутренней корпусной секции 74, чтобы закрывать воздуховпускное отверстие 118 второй управляющей потоком камеры 112.
На двигатель привода 126 основной управляющей схемой 36 или посредством внутреннего источника питания, такого как аккумулятор, может подаваться электрическая энергия. Альтернативно, зубчатая передача может приводиться в действие вручную. Привод 126 может управляться пользователем с использованием рычага 128, выступающего сквозь маленькое отверстие 130, расположенное на основании 66 сопла 16. Альтернативно, привод 126 может управляться с использованием дополнительной кнопки, расположенной на нижней секции 22 корпуса 12 вентилятора 10 в сборе, и (или) посредством использования кнопки, расположенной на пульте дистанционного управления. В данном случае управляющая схема 30 пользовательского интерфейса может передавать подходящий сигнал на основную управляющую схему 36, который предписывает основной управляющей схеме 36 управлять приводом 126, для того чтобы поместить управляющий механизм 120 в выбранное одно из его первого и второго состояний.
Чтобы управлять вентилятором 10 в сборе, пользователь нажимает кнопку 24 пользовательского интерфейса. Управляющая схема 30 пользовательского интерфейса сообщает данное действие на основную управляющую схему 36, в ответ на что основная управляющая схема 36 приводит в действие двигатель 44 для вращения крыльчатки 40. Вращение крыльчатки 40 заставляет первичный, или первый, воздушный поток втягиваться в корпус 12 через воздуховпускное отверстие 14. Пользователь может управлять скоростью двигателя 44 и, следовательно, скоростью, при которой воздух втягивается в корпус 12 через воздуховпускное отверстие 14, посредством манипулирования дисковым регулятором 28 пользовательского интерфейса. В зависимости от скорости двигателя 44 скорость воздушного потока, создаваемого крыльчаткой 40, может составлять от 10 до 40 л/с. Воздушный поток проходит последовательно через корпус 52 крыльчатки и воздуховыпускное отверстие 23 на открытом верхнем конце основной секции 20 корпуса, чтобы войти во внутренний канал 84 сопла 16.
В данном примере, когда вентилятор 10 в сборе включен, управляющий механизм 120 находится в состоянии между первым и вторым состояниями. В данном состоянии управляющий механизм 120 прогоняет воздух через каждое воздуховпускное отверстие 116, 118. Управляющий механизм 120 может быть выполнен так, чтобы перемещаться в это состояние, когда вентилятор 10 в сборе выключен, чтобы он был автоматически в этом состоянии, когда вентилятор 10 в сборе будет включен в следующий раз.
Когда управляющий механизм находится в данном начальном состоянии, первая часть воздушного потока проходит через воздуховпускное отверстие 116, чтобы образовать первый управляющий воздушный поток, который проходит через первую управляющую потоком камеру 110. Вторая часть воздушного потока проходит через воздуховпускное отверстие 118, чтобы образовать второй управляющий воздушный поток, который проходит через вторую управляющую потоком камеру 112. Третья часть воздушного потока остается во внутреннем канале 84, где он разделяется на два воздушных потока, которые проходят в противоположных направлениях вокруг отверстия 64 сопла 16. Каждый из этих воздушных потоков входит в соответствующую одну из двух прямых секций внутреннего канала 84 и перегоняется по существу в вертикальном направлении через каждую из этих секций по направлению к верхней криволинейной секции. По мере того как потоки воздуха проходят через прямые секции и верхнюю криволинейную секцию внутреннего канала 84, воздух выпускается через воздуховыпускное отверстие 18.
В первой управляющей потоком камере 110 первый управляющий воздушный поток разделяется на два потока, которые проходят в противоположных направлениях вокруг отверстия 64 сопла 16. Как и во внутреннем канале 84, каждый из этих воздушных потоков входит в соответствующую одну из двух прямых секций первой управляющей потоком камеры 110 и перегоняется по существу в вертикальном направлении через каждую из этих секций по направлению к верхней криволинейной секции первой управляющей потоком камеры 110. По мере того как потоки воздуха проходят через прямые секции и верхнюю криволинейную секцию первой управляющей потоком камеры 110, воздух выпускается из первого управляющего потоком порта 111 смежно с первой направляющей поверхностью 92 и, предпочтительно, вдоль нее. Во второй управляющей потоком камере 112 управляющий воздушный поток разделяется на два потока, которые проходят в противоположных направлениях вокруг отверстия 64 сопла 16. Каждый из этих потоков воздуха входит в соответствующую одну из двух прямых секций второй управляющей потоком камеры 110 и перегоняется по существу в вертикальном направлении через каждую из этих секций по направлению к верхней криволинейной секции. По мере того как потоки воздуха проходят через прямые секции и верхнюю криволинейную секцию второй управляющей потоком камеры 112, воздух выпускается из управляющего потоком порта 113 смежно со второй направляющей поверхностью 94 и, предпочтительно, вдоль нее. Управляющие потоки воздуха, таким образом, смешиваются с воздухом, выпускаемым из воздуховыпускного отверстия 18, для перемешивания воздушного потока, созданного крыльчаткой.
Воздушный поток, выпускаемый из воздуховыпускного отверстия 18, связывается с первой или второй направляющей поверхностью 92, 94. В данном примере размеры сопла 16 и положение воздуховыпускного отверстия 18 выбраны таким образом, чтобы обеспечить автоматическое присоединение воздушного потока к одной из двух направляющих поверхностей, когда управляющий механизм 120 находится в своем начальном состоянии. Воздуховыпускное отверстие 18 расположено таким образом, что минимальное расстояние W2 между воздуховыпускным отверстием 18 и первой направляющей поверхностью 92 отличается от минимального расстояния W3 между воздуховыпускным отверстием 18 и второй направляющей поверхностью 94. Расстояния W2, W3 могут принимать любое выбранное значение. В данном примере каждое из этих расстояний W2, W3 также предпочтительно находится в диапазоне от 1 до 3 мм и является по существу постоянным относительно оси X отверстия. Воздуховыпускное отверстие 18 также расположено таким образом, что одна из направляющих поверхностей 92, 94 расположена ближе другой к воображаемой криволинейной поверхности P1, проходящей вокруг и параллельной оси X отверстия, и проходит по центру через воздуховыпускное отверстие 18. Данная поверхность P1 показана на фиг. 7 и в общем очерчивает профиль воздушного потока, выпускаемого из воздуховыпускного отверстия 18. В данном примере минимальное расстояние W4 между плоскостью P1 и первой направляющей поверхностью 92 больше, чем минимальное расстояние W5 между плоскостью P1 и второй направляющей поверхностью 94.
В итоге, когда вентилятор 10 в сборе впервые включается, воздушный поток, выпускаемый из сопла 16, стремится связаться со второй направляющей поверхностью. Профиль и направление воздушного потока, когда он выпускается из сопла 16, далее зависят от формы второй направляющей поверхности 94. Как было упомянуто выше, в данном примере вторая направляющая поверхность 94 изгибается по направлению к оси X отверстия сопла 16, и тем самым воздушный поток выпускается из сопла 16 с профилем, сужающимся внутрь по направлению к оси X отверстия по пути, обозначенному как Р2.
Выпуск воздушного потока из воздуховыпускного отверстия 18 приводит к созданию вторичного воздушного потока путем втягивания воздуха из внешней среды. Воздух втягивается в воздушный поток через отверстие 64 сопла 16 и из окружающей среды вокруг сопла 16 и перед ней. Этот вторичный воздушный поток смешивается с воздушным потоком, выпущенным из сопла 16, образуя смешанный или общий воздушный поток или воздушный ветер, выпускаемый вперед из вентилятора 10 в сборе. Если воздушный поток сужается внутрь по направлению к оси X отверстия, площадь поверхности его внешнего профиля относительно мала, что в свою очередь приводит к относительно слабому втягиванию воздуха из области перед соплом 16 и относительно низкой скорости воздушного потока через отверстие 64 сопла 16, и, таким образом, смешанный воздушный поток, созданный вентилятором 10 в сборе, имеет относительно низкую скорость потока. Однако для заданной скорости первичного воздушного потока, созданного крыльчаткой, уменьшение скорости смешанного воздушного потока, созданного вентилятором 10 в сборе, связано с увеличением максимальной скорости смешанного воздушного потока, испытываемым на фиксированной плоскости, расположенной вниз по течению от сопла. Вместе с направлением воздушного потока к оси X отверстия это делает смешанный воздушный поток пригодным для быстрого охлаждения пользователя, находящегося перед вентилятором в сборе.
Если привод 126 управляющего механизма 120 приводится в действие, чтобы расположить управляющий механизм 120 в его первом состоянии, второй клапанный корпус 124 перемещается от задней поверхности 104 внутренней корпусной секции 74, чтобы поддержать воздуховпускное отверстие 118 второй управляющей потоком камеры 112 в открытом положении. Одновременно первый клапанный корпус 122 перемещается к задней поверхности 104, чтобы закрыть воздуховпускное отверстие 116 первой управляющей потоком камеры 110. В результате только одна часть воздушного потока отводится из внутреннего канала, чтобы образовать управляющий воздушный поток, который проходит вторую управляющую потоком камеру 112.
Как было описано выше, во второй управляющей потоком камере 112 управляющий воздушный поток разделен на два воздушных потока, которые проходят в противоположных направлениях вокруг отверстия 64 сопла 16. Каждый из этих воздушных потоков входит в соответствующую одну из двух прямых секций второй управляющей потоком камеры 112 и перегоняется по существу в вертикальном направлении через каждую из этих секций к верхней криволинейной секции. По мере того как воздушные потоки проходят через прямые секции и верхнюю криволинейную секцию второй управляющей потоком камеры 112, воздух выпускается через управляющий потоком порт 113 смежно со второй направляющей поверхностью 94 и, предпочтительно, вдоль нее. Управляющий воздушный поток смешивается с воздухом, выпускаемым из воздуховыпускного отверстия 18, для перемешивания воздушного потока. Однако по мере того как происходит препятствование прохождению воздуха через управляющий потоком порт 111 механизмом 120 управления потоком, вблизи направляющей поверхности 92, создается относительно низкое давление. Перепад давления, созданный таким образом по воздушному потоку, образует силу, которая нагнетает воздушный поток по направлению к первой направляющей поверхности 92, что приводит к отделению воздушного потока от второй направляющей поверхности 94 и присоединению к первой направляющей поверхности 92.
Как было упомянуто выше, первая направляющая поверхность 92 изгибается от оси X отверстия сопла 16, и, таким образом, воздушный поток выпускается из сопла 16 с профилем, который сужается наружу от оси X отверстия по пути, обозначенному как Р3 на фиг. 7. Если воздушный поток сужается наружу от оси X отверстия, площадь поверхности его внешнего профиля относительно велика, что в свою очередь приводит к относительно сильному втягиванию воздуха из области перед соплом 16, и, таким образом, для заданной скорости воздушного потока, созданного крыльчаткой, смешанный воздушный поток, созданный вентилятором 10 в сборе, имеет относительно высокую скорость потока. Таким образом, помещение управляющего механизма 120 в его первое состояние приводит к тому, что вентилятор 10 в сборе создает относительно широкий воздушный поток по комнате или офису.
Если привод 126 управляющего механизма 120 далее приводится в действие, чтобы расположить управляющий механизм 120 в его втором состоянии, второй клапанный корпус 124 перемещается к задней поверхности 104 внутренней корпусной секции 74, чтобы закрыть воздуховпускное отверстие 118 второй управляющей потоком камеры 112. Одновременно первый клапанный корпус 122 перемещается от задней поверхности 104, чтобы открыть воздуховпускное отверстие 116 первой управляющей потоком камеры 110. В результате часть воздушного потока отводится из внутреннего канала, чтобы образовать управляющий воздушный поток, который проходит через первую управляющую потоком камеру 110.
Как было описано выше, в первой управляющей потоком камере 110 управляющий воздушный поток разделен на два воздушных потока, которые проходят в противоположных направлениях вокруг отверстия 64 сопла 16. Каждый из этих воздушных потоков входит в соответствующую одну из двух прямых секций первой управляющей потоком камеры 110 и перегоняется по существу в вертикальном направлении через каждую из этих секций к верхней криволинейной секции. По мере того как воздушные потоки проходят через прямые секции и верхнюю криволинейную секцию первой управляющей потоком камеры 110, воздух выпускается через управляющий потоком порт 111 смежно с первой направляющей поверхностью 92 и, предпочтительно, вдоль нее. Управляющий воздушный поток смешивается с воздухом, выпускаемым из воздуховыпускного отверстия 18, для перемешивания воздушного потока. Однако по мере того как происходит препятствование прохождению воздуха через управляющий потоком порт 113 механизмом 120 управления потоком, перепад давления по воздушному потоку меняется на обратный. Это в свою очередь образует силу, которая нагнетает воздушный поток по направлению ко второй направляющей поверхности 94. Это приводит к отделению воздушного потока от первой направляющей поверхности 92 и присоединению ко второй направляющей поверхности 94.
В дополнение к инициированию изменения в состоянии управляющего механизма 120, основная управляющая схема 36 может быть выполнена для того, чтобы устанавливать автоматически скорость двигателя 44 в зависимости от выбранного состояния управляющего механизма 120. Например, основная управляющая схема 36 может быть приспособлена увеличивать скорость двигателя 44, если управляющий механизм 120 помещен в его первое состояние, чтобы увеличить скорость воздушного потока, выпускаемого из сопла 16, и тем самым способствовать более быстрому охлаждению комнаты или другого места, в котором расположен вентилятор 10 в сборе.
Альтернативно или в дополнение к этому, основная управляющая схема 36 может быть приспособлена уменьшать скорость двигателя 44, если управляющий механизм 120 помещен в его второе состояние, чтобы уменьшить скорость воздушного потока, выпускаемого из сопла 16. Это может быть особенно полезно, когда нагревательный элемент расположен во внутреннем канале 84 так, как описано в нашей находящейся на рассмотрении заявке на патент WO 2010/100453, содержание которой включено в данное описание посредством ссылки. Снижение скорости нагретого воздушного потока, направленного к пользователю, может сделать вентилятор 10 в сборе пригодной для использования в качестве «точечного нагревателя» для обогрева пользователя, расположенного непосредственно перед соплом 16.
Таким образом, сопло для вентилятора в сборе включает воздуховпускное отверстие, воздуховыпускное отверстие, внутренний канал для перегонки воздуха от воздуховпускного отверстия к воздуховыпускному отверстию, кольцеобразную внутреннюю стенку и внешнюю стенку, проходящую вокруг внутренней стенки. Внутренний канал расположен между внутренней стенкой и внешней стенкой. Внутренняя стенка, по меньшей мере, частично определяет отверстие, через которое воздух снаружи сопла втягивается воздухом, выпускаемым из воздуховыпускного отверстия. Управляющий потоком порт расположен смежно с воздуховыпускным отверстием. Управляющая потоком камера предусмотрена для перегонки воздуха на управляющий потоком порт. Механизм управления выборочно препятствует прохождению воздушного потока через управляющий потоком порт, чтобы отклонить воздушный поток, выпускаемый из воздуховыпускного отверстия.

Claims (21)

1. Сопло для вентилятора в сборе, содержащее:
- воздуховпускное отверстие,
- воздуховыпускное отверстие,
- внутренний канал для перегонки воздуха от воздуховпускного отверстия к воздуховыпускному отверстию,
- кольцеобразную внутреннюю стенку,
- внешнюю стенку, проходящую вокруг внутренней стенки, при этом внутренний канал расположен между внутренней стенкой и внешней стенкой, причем внутренняя стенка, по меньшей мере, частично определяет отверстие, через которое воздух снаружи сопла втягивается воздухом, выпускаемым из воздуховыпускного отверстия,
- управляющий потоком порт, расположенный по потоку после воздуховыпускного отверстия,
- управляющую потоком камеру для перегонки воздуха в управляющий потоком порт, и
- управляющее средство для выборочного препятствования прохождению воздушного потока через управляющий потоком порт.
2. Сопло по п. 1, которое содержит направляющую поверхность, расположенную по потоку после воздуховыпускного отверстия.
3. Сопло по п. 2, в котором управляющий потоком порт расположен между воздуховыпускным отверстием и направляющей поверхностью.
4. Сопло по п. 2, в котором воздуховыпускное отверстие выполнено с возможностью направления воздушного потока по направляющей поверхности.
5. Сопло по п. 2, в котором управляющий потоком порт выполнен с возможностью направления воздушного потока по направляющей поверхности.
6. Сопло по п. 2, в котором направляющая поверхность сужается наружу относительно оси отверстия.
7. Сопло по п. 2, в котором направляющая поверхность является криволинейной.
8. Сопло по п. 2, в котором направляющая поверхность является выпуклой по форме.
9. Сопло по п. 2, в котором направляющая поверхность проходит, по меньшей мере, частично вокруг оси отверстия.
10. Сопло по п. 2, в котором направляющая поверхность окружает ось отверстия.
11. Сопло по любому из пп. 1-10, в котором управляющая потоком камера расположена перед внутренним каналом.
12. Сопло по любому из пп. 1-10, в котором внутренний канал окружает отверстие сопла.
13. Сопло по любому из пп. 1-10, в котором воздуховыпускное отверстие проходит, по меньшей мере, частично вокруг отверстия.
14. Сопло по любому из пп. 1-10, в котором воздуховыпускное отверстие имеет криволинейную часть, проходящую вокруг отверстия сопла.
15. Сопло по любому из пп. 1-10, в котором воздуховыпускное отверстие имеет форму щели.
16. Сопло по любому из пп. 1-10, в котором управляющее средство имеет первое состояние для препятствования прохождению воздуха через управляющую потоком камеру и второе состояние для разрешения прохождения воздуха через управляющую потоком камеру.
17. Сопло по любому из пп. 1-10, в котором управляющее средство содержит клапанный корпус для закрытия воздуховпускного отверстия управляющей потоком камеры и привод для перемещения клапанного корпуса относительно воздуховпускного отверстия.
18. Сопло по любому из пп. 1-10, в котором управляющая потоком камера проходит, по меньшей мере, частично вокруг оси отверстия.
19. Сопло по любому из пп. 1-10, в котором управляющая потоком камера окружает отверстие.
20. Вентилятор в сборе, содержащий крыльчатку, двигатель для вращения крыльчатки с целью создания воздушного потока, сопло по любому из пп. 1-10 для принятия воздушного потока и контроллер для управления двигателем.
21. Вентилятор в сборе по п. 20, в котором контроллер выполнен с возможностью автоматического регулирования скорости двигателя, когда управляющее средство приводится в действие пользователем.
RU2014125432/06A 2011-11-24 2012-11-05 Вентилятор в сборе RU2566843C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1120268.6A GB2496877B (en) 2011-11-24 2011-11-24 A fan assembly
GB1120268.6 2011-11-24
PCT/GB2012/052743 WO2013076454A2 (en) 2011-11-24 2012-11-05 A fan assembly

Publications (1)

Publication Number Publication Date
RU2566843C1 true RU2566843C1 (ru) 2015-10-27

Family

ID=45475643

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014125432/06A RU2566843C1 (ru) 2011-11-24 2012-11-05 Вентилятор в сборе

Country Status (17)

Country Link
US (1) US10094392B2 (ru)
EP (1) EP2783116B1 (ru)
JP (1) JP5432360B2 (ru)
KR (1) KR101630719B1 (ru)
CN (2) CN203130431U (ru)
AU (1) AU2012342250B2 (ru)
BR (1) BR112014012269A2 (ru)
CA (1) CA2856633C (ru)
DK (1) DK2783116T3 (ru)
ES (1) ES2603253T3 (ru)
GB (1) GB2496877B (ru)
HK (1) HK1180752A1 (ru)
MY (1) MY167703A (ru)
RU (1) RU2566843C1 (ru)
SG (1) SG11201401994QA (ru)
TW (1) TWM460938U (ru)
WO (1) WO2013076454A2 (ru)

Families Citing this family (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2452593A (en) 2007-09-04 2009-03-11 Dyson Technology Ltd A fan
GB2468312A (en) 2009-03-04 2010-09-08 Dyson Technology Ltd Fan assembly
ES2437740T3 (es) 2009-03-04 2014-01-14 Dyson Technology Limited Aparato humidificador
RU2567345C2 (ru) 2009-03-04 2015-11-10 Дайсон Текнолоджи Лимитед Вентилятор
GB0919473D0 (en) 2009-11-06 2009-12-23 Dyson Technology Ltd A fan
US9408880B2 (en) 2013-12-20 2016-08-09 Katherine Rose Kovarik Method and system for prevention and treatment of allergic and inflammatory diseases
US9585920B2 (en) 2011-02-04 2017-03-07 Katherine Rose Kovarik Method and system for treating cancer cachexia
US9457077B2 (en) 2009-11-18 2016-10-04 Katherine Rose Kovarik Method and system for targeting the microbiome to promote health and treat allergic and inflammatory diseases
KR101295170B1 (ko) 2010-05-27 2013-08-09 이덕정 좁은 슬릿 노즐 조립체에 의한 송풍장치
GB2482547A (en) 2010-08-06 2012-02-08 Dyson Technology Ltd A fan assembly with a heater
JP5588565B2 (ja) 2010-10-13 2014-09-10 ダイソン テクノロジー リミテッド 送風機組立体
WO2012052735A1 (en) 2010-10-18 2012-04-26 Dyson Technology Limited A fan assembly
GB2484670B (en) 2010-10-18 2018-04-25 Dyson Technology Ltd A fan assembly
US9926804B2 (en) 2010-11-02 2018-03-27 Dyson Technology Limited Fan assembly
KR101229109B1 (ko) * 2011-01-21 2013-02-05 (주)엠파워텍 헤어 드라이어
US10111913B2 (en) 2011-02-04 2018-10-30 Joseph E. Kovarik Method of reducing the likelihood of skin cancer in an individual human being
US10687975B2 (en) 2011-02-04 2020-06-23 Joseph E. Kovarik Method and system to facilitate the growth of desired bacteria in a human's mouth
US10512661B2 (en) 2011-02-04 2019-12-24 Joseph E. Kovarik Method and system for reducing the likelihood of developing liver cancer in an individual diagnosed with non-alcoholic fatty liver disease
US11844720B2 (en) 2011-02-04 2023-12-19 Seed Health, Inc. Method and system to reduce the likelihood of dental caries and halitosis
US10835560B2 (en) 2013-12-20 2020-11-17 Joseph E. Kovarik Reducing the likelihood of skin cancer in an individual human being
US11191665B2 (en) 2011-02-04 2021-12-07 Joseph E. Kovarik Method and system for reducing the likelihood of a porphyromonas gingivalis infection in a human being
US9987224B2 (en) 2011-02-04 2018-06-05 Joseph E. Kovarik Method and system for preventing migraine headaches, cluster headaches and dizziness
US11419903B2 (en) 2015-11-30 2022-08-23 Seed Health, Inc. Method and system for reducing the likelihood of osteoporosis
US10548761B2 (en) 2011-02-04 2020-02-04 Joseph E. Kovarik Method and system for reducing the likelihood of colorectal cancer in a human being
US11273187B2 (en) 2015-11-30 2022-03-15 Joseph E. Kovarik Method and system for reducing the likelihood of developing depression in an individual
US11357722B2 (en) 2011-02-04 2022-06-14 Seed Health, Inc. Method and system for preventing sore throat in humans
US9730967B2 (en) 2011-02-04 2017-08-15 Katherine Rose Kovarik Method and system for treating cancer cachexia
US11523934B2 (en) 2011-02-04 2022-12-13 Seed Health, Inc. Method and system to facilitate the growth of desired bacteria in a human's mouth
US10314865B2 (en) 2011-02-04 2019-06-11 Katherine Rose Kovarik Method and system for treating cancer and other age-related diseases by extending the healthspan of a human
US10583033B2 (en) 2011-02-04 2020-03-10 Katherine Rose Kovarik Method and system for reducing the likelihood of a porphyromonas gingivalis infection in a human being
US10245288B2 (en) 2011-02-04 2019-04-02 Joseph E. Kovarik Method and system for reducing the likelihood of developing NASH in an individual diagnosed with non-alcoholic fatty liver disease
US10086018B2 (en) 2011-02-04 2018-10-02 Joseph E. Kovarik Method and system for reducing the likelihood of colorectal cancer in a human being
US10010568B2 (en) 2011-02-04 2018-07-03 Katherine Rose Kovarik Method and system for reducing the likelihood of a spirochetes infection in a human being
US11951140B2 (en) 2011-02-04 2024-04-09 Seed Health, Inc. Modulation of an individual's gut microbiome to address osteoporosis and bone disease
US10085938B2 (en) 2011-02-04 2018-10-02 Joseph E. Kovarik Method and system for preventing sore throat in humans
US11951139B2 (en) 2015-11-30 2024-04-09 Seed Health, Inc. Method and system for reducing the likelihood of osteoporosis
US10842834B2 (en) 2016-01-06 2020-11-24 Joseph E. Kovarik Method and system for reducing the likelihood of developing liver cancer in an individual diagnosed with non-alcoholic fatty liver disease
GB2493506B (en) 2011-07-27 2013-09-11 Dyson Technology Ltd A fan assembly
RU2576735C2 (ru) 2011-07-27 2016-03-10 Дайсон Текнолоджи Лимитед Вентилятор в сборе
GB201119500D0 (en) 2011-11-11 2011-12-21 Dyson Technology Ltd A fan assembly
JP5987165B2 (ja) * 2011-11-29 2016-09-07 パナソニックIpマネジメント株式会社 送風装置
GB2499041A (en) 2012-02-06 2013-08-07 Dyson Technology Ltd Bladeless fan including an ionizer
GB2499044B (en) 2012-02-06 2014-03-19 Dyson Technology Ltd A fan
GB2499042A (en) 2012-02-06 2013-08-07 Dyson Technology Ltd A nozzle for a fan assembly
GB2500012B (en) 2012-03-06 2016-07-06 Dyson Technology Ltd A Humidifying Apparatus
GB2500017B (en) 2012-03-06 2015-07-29 Dyson Technology Ltd A Humidifying Apparatus
CA2866146A1 (en) 2012-03-06 2013-09-12 Dyson Technology Limited A fan assembly
GB2500011B (en) 2012-03-06 2016-07-06 Dyson Technology Ltd A Humidifying Apparatus
GB2500010B (en) 2012-03-06 2016-08-24 Dyson Technology Ltd A humidifying apparatus
GB2500005B (en) 2012-03-06 2014-08-27 Dyson Technology Ltd A method of generating a humid air flow
GB2500903B (en) 2012-04-04 2015-06-24 Dyson Technology Ltd Heating apparatus
GB2501301B (en) 2012-04-19 2016-02-03 Dyson Technology Ltd A fan assembly
AU350181S (en) 2013-01-18 2013-08-15 Dyson Technology Ltd Humidifier or fan
AU350179S (en) 2013-01-18 2013-08-15 Dyson Technology Ltd Humidifier or fan
BR302013003358S1 (pt) 2013-01-18 2014-11-25 Dyson Technology Ltd Configuração aplicada em umidificador
AU350140S (en) 2013-01-18 2013-08-13 Dyson Technology Ltd Humidifier or fan
GB2510195B (en) 2013-01-29 2016-04-27 Dyson Technology Ltd A fan assembly
SG11201505665RA (en) 2013-01-29 2015-08-28 Dyson Technology Ltd A fan assembly
USD729372S1 (en) 2013-03-07 2015-05-12 Dyson Technology Limited Fan
CA152658S (en) 2013-03-07 2014-05-20 Dyson Technology Ltd Fan
CA152657S (en) 2013-03-07 2014-05-20 Dyson Technology Ltd Fan
CA152655S (en) 2013-03-07 2014-05-20 Dyson Technology Ltd Fan
BR302013004394S1 (pt) 2013-03-07 2014-12-02 Dyson Technology Ltd Configuração aplicada a ventilador
CA152656S (en) 2013-03-07 2014-05-20 Dyson Technology Ltd Fan
GB2511757B (en) * 2013-03-11 2016-06-15 Dyson Technology Ltd Fan assembly nozzle with control port
WO2015009245A1 (en) * 2013-07-19 2015-01-22 Nanyang Technological University A ventilator
CA154722S (en) 2013-08-01 2015-02-16 Dyson Technology Ltd Fan
CA154723S (en) 2013-08-01 2015-02-16 Dyson Technology Ltd Fan
TWD172707S (zh) 2013-08-01 2015-12-21 戴森科技有限公司 風扇
GB2518638B (en) 2013-09-26 2016-10-12 Dyson Technology Ltd Humidifying apparatus
GB2518656B (en) * 2013-09-27 2016-04-13 Dyson Technology Ltd Hand held appliance
US11833177B2 (en) 2013-12-20 2023-12-05 Seed Health, Inc. Probiotic to enhance an individual's skin microbiome
US11826388B2 (en) 2013-12-20 2023-11-28 Seed Health, Inc. Topical application of Lactobacillus crispatus to ameliorate barrier damage and inflammation
US11839632B2 (en) 2013-12-20 2023-12-12 Seed Health, Inc. Topical application of CRISPR-modified bacteria to treat acne vulgaris
AU2015233174B2 (en) 2014-03-20 2017-12-07 Dyson Technology Limited Attachment for a hand held appliance
GB2526049B (en) 2014-03-20 2017-04-12 Dyson Technology Ltd Attachment for a hand held appliance
GB2528708B (en) 2014-07-29 2016-06-29 Dyson Technology Ltd A fan assembly
GB2528704A (en) 2014-07-29 2016-02-03 Dyson Technology Ltd Humidifying apparatus
GB2528709B (en) 2014-07-29 2017-02-08 Dyson Technology Ltd Humidifying apparatus
TWD173928S (zh) * 2015-01-30 2016-02-21 戴森科技有限公司 風扇(一)
TWD173932S (zh) * 2015-01-30 2016-02-21 戴森科技有限公司 風扇之部分(三)
TWD173930S (zh) * 2015-01-30 2016-02-21 戴森科技有限公司 風扇之部分(一)
TWD173931S (zh) * 2015-01-30 2016-02-21 戴森科技有限公司 風扇之部分(二)
TWD173929S (zh) * 2015-01-30 2016-02-21 戴森科技有限公司 風扇(二)
TWD179707S (zh) * 2015-01-30 2016-11-21 戴森科技有限公司 風扇之部分(四)
USD804007S1 (en) * 2015-11-25 2017-11-28 Vornado Air Llc Air circulator
GB2548616B (en) * 2016-03-24 2020-02-19 Dyson Technology Ltd An attachment for a hand held appliance
KR102101643B1 (ko) 2016-03-24 2020-04-17 다이슨 테크놀러지 리미티드 휴대용 기구용 부착물
CN106930986B (zh) * 2017-04-29 2023-08-22 应辉 无叶风扇及其出风筒
US11384956B2 (en) 2017-05-22 2022-07-12 Sharkninja Operating Llc Modular fan assembly with articulating nozzle
JP7065274B2 (ja) * 2017-09-28 2022-05-12 パナソニックIpマネジメント株式会社 送風装置および送風機能付空気清浄装置
CN107605813B (zh) * 2017-09-30 2019-03-29 广东美的环境电器制造有限公司 用于无叶风扇的机头及无叶风扇
WO2019191237A1 (en) * 2018-03-29 2019-10-03 Walmart Apollo, Llc Aerial vehicle turbine system
US10926210B2 (en) 2018-04-04 2021-02-23 ACCO Brands Corporation Air purifier with dual exit paths
USD859620S1 (en) * 2018-04-24 2019-09-10 Guangdong Shunde Noon Appliance Manufacturing Co., Ltd. Heater
USD913467S1 (en) 2018-06-12 2021-03-16 ACCO Brands Corporation Air purifier
GB2575063B (en) 2018-06-27 2021-06-09 Dyson Technology Ltd A nozzle for a fan assembly
GB2575066B (en) 2018-06-27 2020-11-25 Dyson Technology Ltd A nozzle for a fan assembly
GB2578617B (en) 2018-11-01 2021-02-24 Dyson Technology Ltd A nozzle for a fan assembly
GB201900025D0 (en) * 2019-01-02 2019-02-13 Dyson Technology Ltd A fan assembly
WO2021083283A1 (zh) * 2019-10-31 2021-05-06 应辉 风扇
CN110792639B (zh) * 2019-11-18 2023-08-25 应辉 风扇以及风扇更换过滤器的方法
CN113357204B (zh) 2020-03-04 2023-11-17 Lg电子株式会社 送风机
US11473593B2 (en) * 2020-03-04 2022-10-18 Lg Electronics Inc. Blower comprising a fan installed in an inner space of a lower body having a first and second upper body positioned above and a space formed between the bodies wherein the bodies have a first and second openings formed through respective boundary surfaces which are opened and closed by a door assembly
KR20220035702A (ko) * 2020-09-14 2022-03-22 엘지전자 주식회사 건조장치
CN112516365B (zh) * 2020-12-10 2023-06-09 深圳市普渡科技有限公司 雾化器风道结构、雾化器及消毒机器人
USD965129S1 (en) * 2020-12-17 2022-09-27 Shenzhen OriginX Technology Co., LTD. Leafless air purifier
KR102541404B1 (ko) * 2020-12-28 2023-06-08 엘지전자 주식회사 블로어
GB2604164B (en) * 2021-02-26 2023-09-13 Dyson Technology Ltd Air Amplifier
WO2023033476A1 (ko) * 2021-09-01 2023-03-09 엘지전자 주식회사 블로어

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1612115A1 (ru) * 1988-12-12 1990-12-07 Азербайджанский Научно-Исследовательский Электротехнический Институт Производственного Объединения "Азерэлектромаш" Бытовой вентил тор
SU1643799A1 (ru) * 1989-02-13 1991-04-23 Snegov Anatolij A Бытовой вентил тор
WO2007024955A2 (en) * 2005-08-24 2007-03-01 Ric Investments, Llc Blower mounting assembly

Family Cites Families (429)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US284962A (en) 1883-09-11 William huston
GB601222A (en) 1944-10-04 1948-04-30 Berkeley & Young Ltd Improvements in, or relating to, electric fans
GB593828A (en) 1945-06-14 1947-10-27 Dorothy Barker Improvements in or relating to propeller fans
GB191322235A (en) 1913-10-02 1914-06-11 Sidney George Leach Improvements in the Construction of Electric Fans.
US1357261A (en) 1918-10-02 1920-11-02 Ladimir H Svoboda Fan
US1767060A (en) 1928-10-04 1930-06-24 W H Addington Electric motor-driven desk fan
US2014185A (en) 1930-06-25 1935-09-10 Martin Brothers Electric Compa Drier
GB383498A (en) 1931-03-03 1932-11-17 Spontan Ab Improvements in or relating to fans, ventilators, or the like
US1896869A (en) 1931-07-18 1933-02-07 Master Electric Co Electric fan
US2035733A (en) 1935-06-10 1936-03-31 Marathon Electric Mfg Fan motor mounting
US2071266A (en) 1935-10-31 1937-02-16 Continental Can Co Lock top metal container
US2210458A (en) 1936-11-16 1940-08-06 Lester S Keilholtz Method of and apparatus for air conditioning
US2115883A (en) 1937-04-21 1938-05-03 Sher Samuel Lamp
US2258961A (en) 1939-07-26 1941-10-14 Prat Daniel Corp Ejector draft control
US2336295A (en) 1940-09-25 1943-12-07 Reimuller Caryl Air diverter
US2363839A (en) 1941-02-05 1944-11-28 Demuth Charles Unit type air conditioning register
US2295502A (en) 1941-05-20 1942-09-08 Lamb Edward Heater
GB641622A (en) 1942-05-06 1950-08-16 Fernan Oscar Conill Improvements in or relating to hair drying
US2433795A (en) 1945-08-18 1947-12-30 Westinghouse Electric Corp Fan
US2476002A (en) 1946-01-12 1949-07-12 Edward A Stalker Rotating wing
US2547448A (en) 1946-02-20 1951-04-03 Demuth Charles Hot-air space heater
US2473325A (en) 1946-09-19 1949-06-14 E A Lab Inc Combined electric fan and air heating means
US2544379A (en) 1946-11-15 1951-03-06 Oscar J Davenport Ventilating apparatus
US2488467A (en) 1947-09-12 1949-11-15 Lisio Salvatore De Motor-driven fan
GB633273A (en) 1948-02-12 1949-12-12 Albert Richard Ponting Improvements in or relating to air circulating apparatus
US2510132A (en) 1948-05-27 1950-06-06 Morrison Hackley Oscillating fan
GB661747A (en) 1948-12-18 1951-11-28 British Thomson Houston Co Ltd Improvements in and relating to oscillating fans
US2620127A (en) 1950-02-28 1952-12-02 Westinghouse Electric Corp Air translating apparatus
US2583374A (en) 1950-10-18 1952-01-22 Hydraulic Supply Mfg Company Exhaust fan
FR1033034A (fr) 1951-02-23 1953-07-07 Support articulé stabilisateur pour ventilateur à hélices flexibles et à vitesses de rotation variables
US2711682A (en) 1951-08-04 1955-06-28 Ilg Electric Ventilating Co Power roof ventilator
US2692800A (en) * 1951-10-08 1954-10-26 Gen Electric Nozzle flow control
US2813673A (en) 1953-07-09 1957-11-19 Gilbert Co A C Tiltable oscillating fan
US2838229A (en) 1953-10-30 1958-06-10 Roland J Belanger Electric fan
US2765977A (en) 1954-10-13 1956-10-09 Morrison Hackley Electric ventilating fans
FR1119439A (fr) 1955-02-18 1956-06-20 Perfectionnements aux ventilateurs portatifs et muraux
US2830779A (en) 1955-02-21 1958-04-15 Lau Blower Co Fan stand
NL110393C (ru) 1955-11-29 1965-01-15 Bertin & Cie
CH346643A (de) 1955-12-06 1960-05-31 K Tateishi Arthur Elektrischer Ventilator
US2808198A (en) 1956-04-30 1957-10-01 Morrison Hackley Oscillating fans
BE560119A (ru) 1956-09-13
GB863124A (en) 1956-09-13 1961-03-15 Sebac Nouvelle Sa New arrangement for putting gases into movement
US2922570A (en) 1957-12-04 1960-01-26 Burris R Allen Automatic booster fan and ventilating shield
US3004403A (en) 1960-07-21 1961-10-17 Francis L Laporte Refrigerated space humidification
DE1291090B (de) 1963-01-23 1969-03-20 Schmidt Geb Halm Anneliese Vorrichtung zur Erzeugung einer Luftstroemung
DE1457461A1 (de) 1963-10-01 1969-02-20 Siemens Elektrogeraete Gmbh Kofferfoermiges Haartrockengeraet
FR1387334A (fr) 1963-12-21 1965-01-29 Sèche-cheveux capable de souffler séparément de l'air chaud et de l'air froid
US3270655A (en) 1964-03-25 1966-09-06 Howard P Guirl Air curtain door seal
US3518776A (en) 1967-06-03 1970-07-07 Bremshey & Co Blower,particularly for hair-drying,laundry-drying or the like
US3487555A (en) 1968-01-15 1970-01-06 Hoover Co Portable hair dryer
US3495343A (en) 1968-02-20 1970-02-17 Rayette Faberge Apparatus for applying air and vapor to the face and hair
US3503138A (en) 1969-05-19 1970-03-31 Oster Mfg Co John Hair dryer
GB1278606A (en) 1969-09-02 1972-06-21 Oberlind Veb Elektroinstall Improvements in or relating to transverse flow fans
US3645007A (en) 1970-01-14 1972-02-29 Sunbeam Corp Hair dryer and facial sauna
DE2944027A1 (de) 1970-07-22 1981-05-07 Erevanskyj politechničeskyj institut imeni Karla Marksa, Erewan Ejektor-raumklimageraet der zentral-klimaanlage
GB1319793A (ru) 1970-11-19 1973-06-06
US3724092A (en) 1971-07-12 1973-04-03 Westinghouse Electric Corp Portable hair dryer
GB1403188A (en) 1971-10-22 1975-08-28 Olin Energy Systems Ltd Fluid flow inducing apparatus
US3743186A (en) 1972-03-14 1973-07-03 Src Lab Air gun
US3885891A (en) 1972-11-30 1975-05-27 Rockwell International Corp Compound ejector
US3795367A (en) 1973-04-05 1974-03-05 Src Lab Fluid device using coanda effect
US3872916A (en) 1973-04-05 1975-03-25 Int Harvester Co Fan shroud exit structure
JPS49150403U (ru) 1973-04-23 1974-12-26
US4037991A (en) 1973-07-26 1977-07-26 The Plessey Company Limited Fluid-flow assisting devices
US3875745A (en) 1973-09-10 1975-04-08 Wagner Minning Equipment Inc Venturi exhaust cooler
GB1434226A (en) 1973-11-02 1976-05-05 Roberts S A Pumps
US3943329A (en) 1974-05-17 1976-03-09 Clairol Incorporated Hair dryer with safety guard air outlet nozzle
CA1055344A (en) 1974-05-17 1979-05-29 International Harvester Company Heat transfer system employing a coanda effect producing fan shroud exit
US4184541A (en) 1974-05-22 1980-01-22 International Harvester Company Heat exchange apparatus including a toroidal-type radiator
US4180130A (en) 1974-05-22 1979-12-25 International Harvester Company Heat exchange apparatus including a toroidal-type radiator
DE2525865A1 (de) 1974-06-11 1976-01-02 Charbonnages De France Ventilator
GB1495013A (en) 1974-06-25 1977-12-14 British Petroleum Co Coanda unit
GB1593391A (en) 1977-01-28 1981-07-15 British Petroleum Co Flare
JPS517258A (ja) 1974-07-11 1976-01-21 Tsudakoma Ind Co Ltd Yokoitochoryusochi
DE2451557C2 (de) 1974-10-30 1984-09-06 Arnold Dipl.-Ing. 8904 Friedberg Scheel Vorrichtung zum Belüften einer Aufenthaltszone in einem Raum
US4136735A (en) 1975-01-24 1979-01-30 International Harvester Company Heat exchange apparatus including a toroidal-type radiator
US4061188A (en) 1975-01-24 1977-12-06 International Harvester Company Fan shroud structure
RO62593A (fr) 1975-02-12 1977-12-15 Inst Pentru Creatie Stintific Dispositif gaslift
US4173995A (en) 1975-02-24 1979-11-13 International Harvester Company Recirculation barrier for a heat transfer system
US4332529A (en) 1975-08-11 1982-06-01 Morton Alperin Jet diffuser ejector
US4046492A (en) 1976-01-21 1977-09-06 Vortec Corporation Air flow amplifier
DK140426B (da) 1976-11-01 1979-08-27 Arborg O J M Fremdriftsdyse til transportmidler i luft eller vand.
FR2375471A1 (fr) * 1976-12-23 1978-07-21 Zenou Bihi Bernard Ejecteur autoregule
US4113416A (en) 1977-02-24 1978-09-12 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Rotary burner
JPS6030843B2 (ja) * 1977-05-07 1985-07-18 松下電器産業株式会社 流体の流れ方向制御装置
JPS5446661A (en) * 1977-09-19 1979-04-12 Matsushita Electric Ind Co Ltd Fan
US4184417A (en) 1977-12-02 1980-01-22 Ford Motor Company Plume elimination mechanism
JPS56167897A (en) 1980-05-28 1981-12-23 Toshiba Corp Fan
IL63292A0 (en) 1980-07-17 1981-10-30 Gen Conveyors Ltd Variable geometry jet nozzle
MX147915A (es) 1981-01-30 1983-01-31 Philips Mexicana S A De C V Ventilador electrico
JPS57157097A (en) 1981-03-20 1982-09-28 Sanyo Electric Co Ltd Fan
IL66917A0 (en) 1981-10-08 1982-12-31 Wright Barry Corp Vibration isolating seal device for mounting fans and blowers
US4568243A (en) 1981-10-08 1986-02-04 Barry Wright Corporation Vibration isolating seal for mounting fans and blowers
GB2111125A (en) 1981-10-13 1983-06-29 Beavair Limited Apparatus for inducing fluid flow by Coanda effect
US4448354A (en) 1982-07-23 1984-05-15 The United States Of America As Represented By The Secretary Of The Air Force Axisymmetric thrust augmenting ejector with discrete primary air slot nozzles
FR2534983A1 (fr) 1982-10-20 1984-04-27 Chacoux Claude Compresseur supersonique a jet
US4718870A (en) 1983-02-15 1988-01-12 Techmet Corporation Marine propulsion system
KR900001873B1 (ko) 1984-06-14 1990-03-26 산요덴끼 가부시끼가이샤 초음파 가습장치
JP2594029B2 (ja) 1984-07-25 1997-03-26 三洋電機株式会社 超音波加湿装置
JPS61116093A (ja) 1984-11-12 1986-06-03 Matsushita Electric Ind Co Ltd 扇風機
FR2574854B1 (fr) 1984-12-17 1988-10-28 Peugeot Aciers Et Outillage Motoventilateur, notamment pour vehicule automobile, fixe sur des bras supports solidaires de la carrosserie
US4630475A (en) 1985-03-20 1986-12-23 Sharp Kabushiki Kaisha Fiber optic level sensor for humidifier
US4832576A (en) 1985-05-30 1989-05-23 Sanyo Electric Co., Ltd. Electric fan
JPS61280787A (ja) 1985-05-30 1986-12-11 Sanyo Electric Co Ltd 扇風機
AU6032786A (en) 1985-07-25 1987-01-29 University Of Minnesota Detection, imaging and therapy of renal cell carcinoma with monoclonal antibodies in vivo
US4703152A (en) 1985-12-11 1987-10-27 Holmes Products Corp. Tiltable and adjustably oscillatable portable electric heater/fan
GB2185533A (en) 1986-01-08 1987-07-22 Rolls Royce Ejector pumps
GB2185531B (en) 1986-01-20 1989-11-22 Mitsubishi Electric Corp Electric fans
US4732539A (en) 1986-02-14 1988-03-22 Holmes Products Corp. Oscillating fan
JPS62223494A (ja) 1986-03-21 1987-10-01 Uingu:Kk 冷風機
US4850804A (en) 1986-07-07 1989-07-25 Tatung Company Of America, Inc. Portable electric fan having a universally adjustable mounting
US4734017A (en) 1986-08-07 1988-03-29 Levin Mark R Air blower
US4790133A (en) 1986-08-29 1988-12-13 General Electric Company High bypass ratio counterrotating turbofan engine
US4826084A (en) * 1986-09-26 1989-05-02 Wallace Norman R Sheathed jet fluid dispersing apparatus
DE3644567C2 (de) 1986-12-27 1993-11-18 Ltg Lufttechnische Gmbh Verfahren zum Einblasen von Zuluft in einen Raum
JPH0781559B2 (ja) 1987-01-20 1995-08-30 三洋電機株式会社 送風装置
JPS63306340A (ja) 1987-06-06 1988-12-14 Koichi Hidaka 殺菌灯点灯回路内蔵細菌防止超音波加湿器
JPH079279B2 (ja) 1987-07-15 1995-02-01 三菱重工業株式会社 タンク底面部の防熱構造及びその施工方法
JPS6458955A (en) 1987-08-31 1989-03-06 Matsushita Seiko Kk Wind direction controller
JPS6483884A (en) 1987-09-28 1989-03-29 Matsushita Seiko Kk Chargeable electric fan
JPH0660638B2 (ja) 1987-10-07 1994-08-10 松下電器産業株式会社 斜流羽根車
JPH01138399A (ja) 1987-11-24 1989-05-31 Sanyo Electric Co Ltd 扇風機
JPH0633850B2 (ja) 1988-03-02 1994-05-02 三洋電機株式会社 機器の俯仰角度調整装置
JPH0636437Y2 (ja) 1988-04-08 1994-09-21 耕三 福田 空気循環装置
US4878620A (en) 1988-05-27 1989-11-07 Tarleton E Russell Rotary vane nozzle
US4978281A (en) 1988-08-19 1990-12-18 Conger William W Iv Vibration dampened blower
US6293121B1 (en) 1988-10-13 2001-09-25 Gaudencio A. Labrador Water-mist blower cooling system and its new applications
JPH02146294A (ja) 1988-11-24 1990-06-05 Japan Air Curtain Corp 送風機
FR2640857A1 (en) 1988-12-27 1990-06-29 Seb Sa Hairdryer with an air exit flow of modifiable form
JPH02218890A (ja) 1989-02-20 1990-08-31 Matsushita Seiko Co Ltd 扇風機の首振装置
JPH0765597B2 (ja) 1989-03-01 1995-07-19 株式会社日立製作所 電動送風機
JPH02248690A (ja) 1989-03-22 1990-10-04 Hitachi Ltd 扇風機
AU627031B2 (en) 1989-05-12 1992-08-13 Terence Robert Day Annular body aircraft
JPH0695808B2 (ja) 1989-07-14 1994-11-24 三星電子株式会社 誘導電動機の制御回路及び制御方法
GB2236804A (en) 1989-07-26 1991-04-17 Anthony Reginald Robins Compound nozzle
GB2240268A (en) 1990-01-29 1991-07-31 Wik Far East Limited Hair dryer
US5061405A (en) 1990-02-12 1991-10-29 Emerson Electric Co. Constant humidity evaporative wicking filter humidifier
FR2658593B1 (fr) 1990-02-20 1992-05-07 Electricite De France Bouche d'entree d'air.
GB9005709D0 (en) 1990-03-14 1990-05-09 S & C Thermofluids Ltd Coanda flue gas ejectors
JP2619548B2 (ja) 1990-03-19 1997-06-11 株式会社日立製作所 送風装置
JP2534928B2 (ja) 1990-04-02 1996-09-18 テルモ株式会社 遠心ポンプ
JPH0443895A (ja) 1990-06-08 1992-02-13 Matsushita Seiko Co Ltd 扇風機の操作装置
USD325435S (en) 1990-09-24 1992-04-14 Vornado Air Circulation Systems, Inc. Fan support base
JPH0499258U (ru) 1991-01-14 1992-08-27
CN2085866U (zh) 1991-03-16 1991-10-02 郭维涛 便携式电扇
US5188508A (en) 1991-05-09 1993-02-23 Comair Rotron, Inc. Compact fan and impeller
JPH04366330A (ja) 1991-06-12 1992-12-18 Taikisha Ltd 誘引型吹き出し装置
US5168722A (en) 1991-08-16 1992-12-08 Walton Enterprises Ii, L.P. Off-road evaporative air cooler
JPH05263786A (ja) 1992-07-23 1993-10-12 Sanyo Electric Co Ltd 扇風機
JPH05157093A (ja) 1991-12-03 1993-06-22 Sanyo Electric Co Ltd 扇風機
JPH05164089A (ja) 1991-12-10 1993-06-29 Matsushita Electric Ind Co Ltd 軸流ファンモータ
US5296769A (en) 1992-01-24 1994-03-22 Electrolux Corporation Air guide assembly for an electric motor and methods of making
US5762661A (en) 1992-01-31 1998-06-09 Kleinberger; Itamar C. Mist-refining humidification system having a multi-direction, mist migration path
CN2111392U (zh) 1992-02-26 1992-07-29 张正光 电扇开关装置
JP3109277B2 (ja) 1992-09-09 2000-11-13 松下電器産業株式会社 衣類乾燥機
JPH06147188A (ja) 1992-11-10 1994-05-27 Hitachi Ltd 扇風機
US5411371A (en) 1992-11-23 1995-05-02 Chen; Cheng-Ho Swiveling electric fan
US5310313A (en) 1992-11-23 1994-05-10 Chen C H Swinging type of electric fan
JPH06257591A (ja) 1993-03-08 1994-09-13 Hitachi Ltd 扇風機
JPH06280800A (ja) 1993-03-29 1994-10-04 Matsushita Seiko Co Ltd 誘引送風装置
JPH06336113A (ja) 1993-05-28 1994-12-06 Sawafuji Electric Co Ltd 車載用加湿機
US5317815A (en) 1993-06-15 1994-06-07 Hwang Shyh Jye Grille assembly for hair driers
JPH0674190A (ja) 1993-07-30 1994-03-15 Sanyo Electric Co Ltd 送風機
ATE216757T1 (de) 1993-08-30 2002-05-15 Bosch Robert Corp Gehäuse mit rezirkulationsregelung zur anwendung in axiallüfter mit zarge
US5402938A (en) 1993-09-17 1995-04-04 Exair Corporation Fluid amplifier with improved operating range using tapered shim
US5425902A (en) 1993-11-04 1995-06-20 Tom Miller, Inc. Method for humidifying air
GB2285504A (en) 1993-12-09 1995-07-12 Alfred Slack Hot air distribution
JPH07190443A (ja) 1993-12-24 1995-07-28 Matsushita Seiko Co Ltd 送風装置
US5407324A (en) 1993-12-30 1995-04-18 Compaq Computer Corporation Side-vented axial fan and associated fabrication methods
US5435489A (en) 1994-01-13 1995-07-25 Bell Helicopter Textron Inc. Engine exhaust gas deflection system
DE4418014A1 (de) 1994-05-24 1995-11-30 E E T Umwelt Und Gastechnik Gm Verfahren zum Fördern und Vermischen eines ersten Fluids mit einem zweiten, unter Druck stehenden Fluid
US5645769A (en) 1994-06-17 1997-07-08 Nippondenso Co., Ltd. Humidified cool wind system for vehicles
JP3614467B2 (ja) 1994-07-06 2005-01-26 鎌田バイオ・エンジニアリング株式会社 噴流ポンプ
JP3575495B2 (ja) 1994-09-02 2004-10-13 株式会社デンソー 車両用空気調和装置
DE19510397A1 (de) 1995-03-22 1996-09-26 Piller Gmbh Gebläseeinheit
CA2155482A1 (en) 1995-03-27 1996-09-28 Honeywell Consumer Products, Inc. Portable electric fan heater
US5518370A (en) 1995-04-03 1996-05-21 Duracraft Corporation Portable electric fan with swivel mount
FR2735854B1 (fr) 1995-06-22 1997-08-01 Valeo Thermique Moteur Sa Dispositif de raccordement electrique d'un moto-ventilateur pour un echangeur de chaleur de vehicule automobile
US5620633A (en) 1995-08-17 1997-04-15 Circulair, Inc. Spray misting device for use with a portable-sized fan
US6126393A (en) 1995-09-08 2000-10-03 Augustine Medical, Inc. Low noise air blower unit for inflating blankets
JP3843472B2 (ja) 1995-10-04 2006-11-08 株式会社日立製作所 車両用換気装置
JP3402899B2 (ja) 1995-10-24 2003-05-06 三洋電機株式会社 扇風機
US5762034A (en) 1996-01-16 1998-06-09 Board Of Trustees Operating Michigan State University Cooling fan shroud
BE1009913A7 (fr) 1996-01-19 1997-11-04 Faco Sa Diffuseur a fonction modifiable pour seche-cheveux et similaires.
US5609473A (en) 1996-03-13 1997-03-11 Litvin; Charles Pivot fan
US5649370A (en) 1996-03-22 1997-07-22 Russo; Paul Delivery system diffuser attachment for a hair dryer
US5671321A (en) 1996-04-24 1997-09-23 Bagnuolo; Donald J. Air heater gun for joint compound with fan-shaped attachment
JP3883604B2 (ja) 1996-04-24 2007-02-21 株式会社共立 消音装置付ブロワパイプ
US5794306A (en) 1996-06-03 1998-08-18 Mid Products, Inc. Yard care machine vacuum head
US5783117A (en) 1997-01-09 1998-07-21 Hunter Fan Company Evaporative humidifier
US5862037A (en) 1997-03-03 1999-01-19 Inclose Design, Inc. PC card for cooling a portable computer
DE19712228B4 (de) 1997-03-24 2006-04-13 Behr Gmbh & Co. Kg Befestigungsvorrichtung für einen Gebläsemotor
KR19990002660A (ko) 1997-06-20 1999-01-15 김영환 반도체 소자의 제조 방법
US6123618A (en) 1997-07-31 2000-09-26 Jetfan Australia Pty. Ltd. Air movement apparatus
USD398983S (en) 1997-08-08 1998-09-29 Vornado Air Circulation Systems, Inc. Fan
US6015274A (en) 1997-10-24 2000-01-18 Hunter Fan Company Low profile ceiling fan having a remote control receiver
JPH11227866A (ja) 1998-02-17 1999-08-24 Matsushita Seiko Co Ltd 扇風機の梱包装置
US6073881A (en) 1998-08-18 2000-06-13 Chen; Chung-Ching Aerodynamic lift apparatus
JP4173587B2 (ja) 1998-10-06 2008-10-29 カルソニックカンセイ株式会社 ブラシレスモータの空調制御装置
DE19849639C1 (de) 1998-10-28 2000-02-10 Intensiv Filter Gmbh Coanda-Injektor und Druckgasleitung zum Anschluß eines solchen
USD415271S (en) 1998-12-11 1999-10-12 Holmes Products, Corp. Fan housing
US6269549B1 (en) 1999-01-08 2001-08-07 Conair Corporation Device for drying hair
JP2000201723A (ja) 1999-01-11 2000-07-25 Hirokatsu Nakano セット効果のアップするヘア―ドライヤ―
JP3501022B2 (ja) 1999-07-06 2004-02-23 株式会社日立製作所 電気掃除機
US6155782A (en) 1999-02-01 2000-12-05 Hsu; Chin-Tien Portable fan
FR2794195B1 (fr) 1999-05-26 2002-10-25 Moulinex Sa Ventilateur equipe d'une manche a air
US6281466B1 (en) 1999-06-28 2001-08-28 Newcor, Inc. Projection welding of an aluminum sheet
US6386845B1 (en) 1999-08-24 2002-05-14 Paul Bedard Air blower apparatus
JP2001128432A (ja) 1999-09-10 2001-05-11 Jianzhun Electric Mach Ind Co Ltd 交流電源駆動式直流ブラシレス電動機
DE19950245C1 (de) 1999-10-19 2001-05-10 Ebm Werke Gmbh & Co Kg Radialgebläse
USD435899S1 (en) 1999-11-15 2001-01-02 B.K. Rehkatex (H.K.) Ltd. Electric fan with clamp
EP1157242A1 (en) 1999-12-06 2001-11-28 The Holmes Group, Inc. Pivotable heater
US6282746B1 (en) 1999-12-22 2001-09-04 Auto Butler, Inc. Blower assembly
FR2807117B1 (fr) 2000-03-30 2002-12-13 Technofan Ventilateur centrifuge et dispositif d'assistance respiratoire le comportant
JP2002021797A (ja) 2000-07-10 2002-01-23 Denso Corp 送風機
US6427984B1 (en) 2000-08-11 2002-08-06 Hamilton Beach/Proctor-Silex, Inc. Evaporative humidifier
DE10041805B4 (de) 2000-08-25 2008-06-26 Conti Temic Microelectronic Gmbh Kühlvorrichtung mit einem luftdurchströmten Kühler
JP4526688B2 (ja) 2000-11-06 2010-08-18 ハスクバーナ・ゼノア株式会社 吸音材付風管及びその製造方法
EP1357296B1 (en) 2000-12-28 2006-06-28 Daikin Industries, Ltd. Blower, and outdoor unit for air conditioner
JP3503822B2 (ja) 2001-01-16 2004-03-08 ミネベア株式会社 軸流ファンモータおよび冷却装置
JP2002213388A (ja) 2001-01-18 2002-07-31 Mitsubishi Electric Corp 扇風機
JP2002227799A (ja) 2001-02-02 2002-08-14 Honda Motor Co Ltd 可変流量エゼクタおよび該可変流量エゼクタを備えた燃料電池システム
US20030164367A1 (en) 2001-02-23 2003-09-04 Bucher Charles E. Dual source heater with radiant and convection heaters
US6480672B1 (en) 2001-03-07 2002-11-12 Holmes Group, Inc. Flat panel heater
FR2821922B1 (fr) 2001-03-09 2003-12-19 Yann Birot Dispositif de ventilation multifonction mobile
US6599088B2 (en) 2001-09-27 2003-07-29 Borgwarner, Inc. Dynamically sealing ring fan shroud assembly
US20030059307A1 (en) 2001-09-27 2003-03-27 Eleobardo Moreno Fan assembly with desk organizer
US6629825B2 (en) 2001-11-05 2003-10-07 Ingersoll-Rand Company Integrated air compressor
US6789787B2 (en) 2001-12-13 2004-09-14 Tommy Stutts Portable, evaporative cooling unit having a self-contained water supply
DE10200913A1 (de) 2002-01-12 2003-07-24 Vorwerk Co Interholding Schnelllaufender Elektromotor
GB0202835D0 (en) 2002-02-07 2002-03-27 Johnson Electric Sa Blower motor
AUPS049202A0 (en) 2002-02-13 2002-03-07 Silverbrook Research Pty. Ltd. Methods and systems (ap52)
ES2198204B1 (es) 2002-03-11 2005-03-16 Pablo Gumucio Del Pozo Ventilador vertical para exteriores y/o interiores.
US7014423B2 (en) 2002-03-30 2006-03-21 University Of Central Florida Research Foundation, Inc. High efficiency air conditioner condenser fan
US20030190183A1 (en) 2002-04-03 2003-10-09 Hsing Cheng Ming Apparatus for connecting fan motor assembly to downrod and method of making same
BR0201397B1 (pt) 2002-04-19 2011-10-18 arranjo de montagem para um ventilador de refrigerador.
JP2003329273A (ja) 2002-05-08 2003-11-19 Mind Bank:Kk 加湿器兼用のミスト冷風器
JP4160786B2 (ja) 2002-06-04 2008-10-08 日立アプライアンス株式会社 洗濯乾燥機
DE10231058A1 (de) 2002-07-10 2004-01-22 Wella Ag Vorrichtung für eine Warmluftdusche
US6830433B2 (en) 2002-08-05 2004-12-14 Kaz, Inc. Tower fan
US20040049842A1 (en) 2002-09-13 2004-03-18 Conair Cip, Inc. Remote control bath mat blower unit
CN2580174Y (zh) * 2002-11-15 2003-10-15 罗雅男 直喷式水引射风机
JP3971991B2 (ja) * 2002-12-03 2007-09-05 株式会社日立産機システム エアシャワ装置
US20060199515A1 (en) 2002-12-18 2006-09-07 Lasko Holdings, Inc. Concealed portable fan
US7699580B2 (en) 2002-12-18 2010-04-20 Lasko Holdings, Inc. Portable air moving device
US7158716B2 (en) 2002-12-18 2007-01-02 Lasko Holdings, Inc. Portable pedestal electric heater
JP4131169B2 (ja) 2002-12-27 2008-08-13 松下電工株式会社 ヘアードライヤー
JP2004216221A (ja) 2003-01-10 2004-08-05 Omc:Kk 霧化装置
US20040149881A1 (en) 2003-01-31 2004-08-05 Allen David S Adjustable support structure for air conditioner and the like
USD485895S1 (en) 2003-04-24 2004-01-27 B.K. Rekhatex (H.K.) Ltd. Electric fan
WO2005000700A1 (en) 2003-06-10 2005-01-06 Efficient Container Company Container and closure combination
EP1498613B1 (de) 2003-07-15 2010-05-19 EMB-Papst St. Georgen GmbH & Co. KG Lüfteranordnung, und Verfahren zur Herstellung einer solchen
US7059826B2 (en) 2003-07-25 2006-06-13 Lasko Holdings, Inc. Multi-directional air circulating fan
US20050053465A1 (en) 2003-09-04 2005-03-10 Atico International Usa, Inc. Tower fan assembly with telescopic support column
TW589932B (en) 2003-10-22 2004-06-01 Ind Tech Res Inst Axial flow ventilation fan with enclosed blades
CN2650005Y (zh) 2003-10-23 2004-10-20 上海复旦申花净化技术股份有限公司 具有软化功能的保湿水雾机
WO2005050026A1 (en) 2003-11-18 2005-06-02 Distributed Thermal Systems Ltd. Heater fan with integrated flow control element
US20050128698A1 (en) 2003-12-10 2005-06-16 Huang Cheng Y. Cooling fan
US20050163670A1 (en) 2004-01-08 2005-07-28 Stephnie Alleyne Heat activated air freshener system utilizing auto cigarette lighter
JP4478464B2 (ja) 2004-01-15 2010-06-09 三菱電機株式会社 加湿機
DK1718413T3 (da) * 2004-02-26 2010-03-08 Pursuit Dynamics Plc Fremgangsmåde og apparat til frembringelse af en låge
CN1680727A (zh) 2004-04-05 2005-10-12 奇鋐科技股份有限公司 直流风扇马达高压激活低压高转速运转的控制电路
KR100634300B1 (ko) 2004-04-21 2006-10-16 서울반도체 주식회사 살균 발광다이오드가 장착된 가습기
US7088913B1 (en) 2004-06-28 2006-08-08 Jcs/Thg, Llc Baseboard/upright heater assembly
DE102004034733A1 (de) 2004-07-17 2006-02-16 Siemens Ag Kühlerzarge mit wenigstens einem elektrisch angetriebenen Lüfter
US8485875B1 (en) 2004-07-21 2013-07-16 Candyrific, LLC Novelty hand-held fan and object holder
US20060018807A1 (en) 2004-07-23 2006-01-26 Sharper Image Corporation Air conditioner device with enhanced germicidal lamp
CN2713643Y (zh) 2004-08-05 2005-07-27 大众电脑股份有限公司 散热装置
FR2874409B1 (fr) 2004-08-19 2006-10-13 Max Sardou Ventilateur de tunnel
JP2006089096A (ja) 2004-09-24 2006-04-06 Toshiba Home Technology Corp 梱包装置
ITBO20040743A1 (it) 2004-11-30 2005-02-28 Spal Srl Impianto di ventilazione, in particolare per autoveicoli
CN2888138Y (zh) 2005-01-06 2007-04-11 拉斯科控股公司 省空间的直立型风扇
US20060263073A1 (en) 2005-05-23 2006-11-23 Jcs/Thg,Llp. Multi-power multi-stage electric heater
US20100171465A1 (en) 2005-06-08 2010-07-08 Belkin International, Inc. Charging Station Configured To Provide Electrical Power to Electronic Devices And Method Therefor
ATE441315T1 (de) 2005-06-10 2009-09-15 Ebm Papst St Georgen Gmbh & Co Gerätelüfter
JP2005307985A (ja) 2005-06-17 2005-11-04 Matsushita Electric Ind Co Ltd 電気掃除機用電動送風機及びこれを用いた電気掃除機
KR100748525B1 (ko) 2005-07-12 2007-08-13 엘지전자 주식회사 냉난방 동시형 멀티 에어컨 및 그의 실내팬 제어방법
US7147336B1 (en) 2005-07-28 2006-12-12 Ming Shi Chou Light and fan device combination
GB2428569B (en) 2005-07-30 2009-04-29 Dyson Technology Ltd Dryer
EP1754892B1 (de) 2005-08-19 2009-11-25 ebm-papst St. Georgen GmbH & Co. KG Lüfter
CN2835669Y (zh) 2005-09-16 2006-11-08 霍树添 立柱式电风扇的送风机构
US7443063B2 (en) 2005-10-11 2008-10-28 Hewlett-Packard Development Company, L.P. Cooling fan with motor cooler
CN2833197Y (zh) 2005-10-11 2006-11-01 美的集团有限公司 一种可折叠的风扇
FR2892278B1 (fr) 2005-10-25 2007-11-30 Seb Sa Seche-cheveux comportant un dispositif permettant de modifier la geometrie du flux d'air
CN103185027B (zh) 2005-10-28 2017-12-05 瑞思迈发动机及马达技术股份有限公司 单级或多级鼓风机以及该鼓风机用嵌套式蜗壳和/或叶轮
JP4867302B2 (ja) 2005-11-16 2012-02-01 パナソニック株式会社 扇風機
JP2007138789A (ja) 2005-11-17 2007-06-07 Matsushita Electric Ind Co Ltd 扇風機
JP2008100204A (ja) 2005-12-06 2008-05-01 Akira Tomono 霧発生装置
JP4823694B2 (ja) 2006-01-13 2011-11-24 日本電産コパル株式会社 小型ファンモータ
US7316540B2 (en) 2006-01-18 2008-01-08 Kaz, Incorporated Rotatable pivot mount for fans and other appliances
US7478993B2 (en) 2006-03-27 2009-01-20 Valeo, Inc. Cooling fan using Coanda effect to reduce recirculation
USD539414S1 (en) 2006-03-31 2007-03-27 Kaz, Incorporated Multi-fan frame
US7942646B2 (en) 2006-05-22 2011-05-17 University of Central Florida Foundation, Inc Miniature high speed compressor having embedded permanent magnet motor
CN201027677Y (zh) 2006-07-25 2008-02-27 王宝珠 新型多功能电扇
JP2008039316A (ja) 2006-08-08 2008-02-21 Sharp Corp 加湿機
US8438867B2 (en) 2006-08-25 2013-05-14 David Colwell Personal or spot area environmental management systems and apparatuses
FR2906980B1 (fr) 2006-10-17 2010-02-26 Seb Sa Seche cheveux comportant une buse souple
CN201011346Y (zh) 2006-10-20 2008-01-23 何华科技股份有限公司 可编程信息显示风扇
US20080124060A1 (en) 2006-11-29 2008-05-29 Tianyu Gao PTC airflow heater
US7866958B2 (en) 2006-12-25 2011-01-11 Amish Patel Solar powered fan
EP1939456B1 (de) 2006-12-27 2014-03-12 Pfannenberg GmbH Luftdurchtrittsvorrichtung
US20080166224A1 (en) 2007-01-09 2008-07-10 Steve Craig Giffin Blower housing for climate controlled systems
GB2452459B (en) 2007-01-17 2011-10-26 United Technologies Corp Core reflex nozzle for turbofan engine
US7806388B2 (en) 2007-03-28 2010-10-05 Eric Junkel Handheld water misting fan with improved air flow
US8235649B2 (en) 2007-04-12 2012-08-07 Halla Climate Control Corporation Blower for vehicles
WO2008139491A2 (en) 2007-05-09 2008-11-20 Thirumalai Anandampillai Aparna Ceiling fan for cleaning polluted air
US7762778B2 (en) 2007-05-17 2010-07-27 Kurz-Kasch, Inc. Fan impeller
JP2008294243A (ja) 2007-05-25 2008-12-04 Mitsubishi Electric Corp 冷却ファンの取付構造
AU2008202487B2 (en) 2007-06-05 2013-07-04 Resmed Motor Technologies Inc. Blower with Bearing Tube
US7621984B2 (en) 2007-06-20 2009-11-24 Head waters R&D, Inc. Electrostatic filter cartridge for a tower air cleaner
CN101350549A (zh) 2007-07-19 2009-01-21 瑞格电子股份有限公司 应用于吊扇的运转装置
US20090026850A1 (en) 2007-07-25 2009-01-29 King Jih Enterprise Corp. Cylindrical oscillating fan
US8029244B2 (en) 2007-08-02 2011-10-04 Elijah Dumas Fluid flow amplifier
US7841045B2 (en) 2007-08-06 2010-11-30 Wd-40 Company Hand-held high velocity air blower
US7652439B2 (en) 2007-08-07 2010-01-26 Air Cool Industrial Co., Ltd. Changeover device of pull cord control and wireless remote control for a DC brushless-motor ceiling fan
JP2009044568A (ja) 2007-08-09 2009-02-26 Sharp Corp 収納台及び収納構造
GB2452593A (en) 2007-09-04 2009-03-11 Dyson Technology Ltd A fan
GB2452490A (en) 2007-09-04 2009-03-11 Dyson Technology Ltd Bladeless fan
US7892306B2 (en) 2007-09-26 2011-02-22 Propulsive Wing, LLC Multi-use personal ventilation/filtration system
US8212187B2 (en) 2007-11-09 2012-07-03 Lasko Holdings, Inc. Heater with 360° rotation of heated air stream
CN101451754B (zh) 2007-12-06 2011-11-09 黄仲盘 紫外杀菌加湿机
US7540474B1 (en) 2008-01-15 2009-06-02 Chuan-Pan Huang UV sterilizing humidifier
CN201180678Y (zh) 2008-01-25 2009-01-14 台达电子工业股份有限公司 经动态平衡调整的风扇结构
DE202008001613U1 (de) 2008-01-25 2009-06-10 Ebm-Papst St. Georgen Gmbh & Co. Kg Lüftereinheit mit einem Axiallüfter
JP4978495B2 (ja) 2008-02-08 2012-07-18 株式会社デンソー 遠心式多翼ファン
US20090214341A1 (en) 2008-02-25 2009-08-27 Trevor Craig Rotatable axial fan
WO2009114782A2 (en) 2008-03-13 2009-09-17 Vornado Air Llc Ultrasonic humidifier
FR2928706B1 (fr) 2008-03-13 2012-03-23 Seb Sa Ventilateur colonne
CN201221477Y (zh) 2008-05-06 2009-04-15 王衡 充电式风扇
AU325226S (en) 2008-06-06 2009-03-24 Dyson Technology Ltd Fan head
AU325225S (en) 2008-06-06 2009-03-24 Dyson Technology Ltd A fan
AU325551S (en) 2008-07-19 2009-04-03 Dyson Technology Ltd Fan head
AU325552S (en) 2008-07-19 2009-04-03 Dyson Technology Ltd Fan
JP3146538U (ja) 2008-09-09 2008-11-20 宸維 范 霧化扇風機
GB2463698B (en) 2008-09-23 2010-12-01 Dyson Technology Ltd A fan
CN201281416Y (zh) 2008-09-26 2009-07-29 黄志力 超音波震荡加湿机
US8152495B2 (en) 2008-10-01 2012-04-10 Ametek, Inc. Peripheral discharge tube axial fan
GB2464736A (en) 2008-10-25 2010-04-28 Dyson Technology Ltd Fan with a filter
CA130551S (en) 2008-11-07 2009-12-31 Dyson Ltd Fan
KR101265794B1 (ko) 2008-11-18 2013-05-23 오휘진 헤어드라이어노즐
US20100133707A1 (en) 2008-12-01 2010-06-03 Chih-Li Huang Ultrasonic Humidifier with an Ultraviolet Light Unit
JP5112270B2 (ja) 2008-12-05 2013-01-09 パナソニック株式会社 頭皮ケア装置
GB2466058B (en) 2008-12-11 2010-12-22 Dyson Technology Ltd Fan nozzle with spacers
KR20100072857A (ko) 2008-12-22 2010-07-01 삼성전자주식회사 휴대 단말기의 인터럽트 제어 방법 및 제어 장치
CN201349269Y (zh) 2008-12-22 2009-11-18 康佳集团股份有限公司 情侣遥控器
EP2265825B1 (en) 2009-03-04 2011-06-08 Dyson Technology Limited A fan assembly
GB0903682D0 (en) 2009-03-04 2009-04-15 Dyson Technology Ltd A fan
GB2468320C (en) 2009-03-04 2011-06-01 Dyson Technology Ltd Tilting fan
GB2468315A (en) 2009-03-04 2010-09-08 Dyson Technology Ltd Tilting fan
GB2468317A (en) * 2009-03-04 2010-09-08 Dyson Technology Ltd Height adjustable and oscillating fan
GB2468328A (en) 2009-03-04 2010-09-08 Dyson Technology Ltd Fan assembly with humidifier
GB2468312A (en) 2009-03-04 2010-09-08 Dyson Technology Ltd Fan assembly
GB2468323A (en) 2009-03-04 2010-09-08 Dyson Technology Ltd Fan assembly
GB2476172B (en) 2009-03-04 2011-11-16 Dyson Technology Ltd Tilting fan stand
GB2473037A (en) 2009-08-28 2011-03-02 Dyson Technology Ltd Humidifying apparatus comprising a fan and a humidifier with a plurality of transducers
GB2468326A (en) 2009-03-04 2010-09-08 Dyson Technology Ltd Telescopic pedestal fan
SG172132A1 (en) 2009-03-04 2011-07-28 Dyson Technology Ltd A fan
RU2567345C2 (ru) 2009-03-04 2015-11-10 Дайсон Текнолоджи Лимитед Вентилятор
GB2468329A (en) * 2009-03-04 2010-09-08 Dyson Technology Ltd Fan assembly
GB2468325A (en) 2009-03-04 2010-09-08 Dyson Technology Ltd Height adjustable fan with nozzle
ES2437740T3 (es) 2009-03-04 2014-01-14 Dyson Technology Limited Aparato humidificador
GB2468331B (en) 2009-03-04 2011-02-16 Dyson Technology Ltd A fan
GB2468313B (en) * 2009-03-04 2012-12-26 Dyson Technology Ltd A fan
GB2468319B (en) 2009-03-04 2013-04-10 Dyson Technology Ltd A fan
GB2468498A (en) 2009-03-11 2010-09-15 Duncan Charles Thomson Floor mounted mobile air circulator
CN201486901U (zh) 2009-08-18 2010-05-26 黄浦 太阳能便携式风扇
CN201502549U (zh) 2009-08-19 2010-06-09 张钜标 一种带外置蓄电池的风扇
US8113490B2 (en) 2009-09-27 2012-02-14 Hui-Chin Chen Wind-water ultrasonic humidifier
CN201507461U (zh) 2009-09-28 2010-06-16 黄露艳 一种带直流电机的落地扇
KR200448319Y1 (ko) 2009-10-08 2010-03-31 홍도화 분사조절식 헤어드라이어
CN102893094A (zh) 2009-10-20 2013-01-23 卡兹欧洲公司 用于加湿器的紫外线消毒室
GB0919473D0 (en) 2009-11-06 2009-12-23 Dyson Technology Ltd A fan
US20110127701A1 (en) 2009-11-30 2011-06-02 Grant Michael G K Dynamic control of lance utilizing co-flow fluidic techniques
CN201568337U (zh) 2009-12-15 2010-09-01 叶建阳 一种无叶片式电风扇
CN101749288B (zh) 2009-12-23 2013-08-21 杭州玄冰科技有限公司 一种气流产生方法及装置
TWM394383U (en) 2010-02-03 2010-12-11 sheng-zhi Yang Bladeless fan structure
JP5659404B2 (ja) 2010-08-02 2015-01-28 パナソニックIpマネジメント株式会社 送風機
WO2011129073A1 (ja) * 2010-04-15 2011-10-20 パナソニック株式会社 天井扇
GB2479760B (en) 2010-04-21 2015-05-13 Dyson Technology Ltd An air treating appliance
KR100985378B1 (ko) 2010-04-23 2010-10-04 윤정훈 날개없는 공기순환용 송풍기
CN201696365U (zh) 2010-05-20 2011-01-05 张钜标 一种扁平射流风扇
CN201779080U (zh) 2010-05-21 2011-03-30 海尔集团公司 无扇叶风扇
CN102251973A (zh) 2010-05-21 2011-11-23 海尔集团公司 无叶片风扇
CN201739199U (zh) 2010-06-12 2011-02-09 李德正 基于usb电源的无叶片电风扇
CN201771875U (zh) 2010-09-07 2011-03-23 李德正 无叶片风扇
KR101295170B1 (ko) 2010-05-27 2013-08-09 이덕정 좁은 슬릿 노즐 조립체에 의한 송풍장치
CN201786778U (zh) 2010-09-20 2011-04-06 李德正 无叶片风扇
CN201696366U (zh) 2010-06-13 2011-01-05 周云飞 风扇
CN101865149B (zh) 2010-07-12 2011-04-06 魏建峰 一种多功能超静音风扇
CN201770513U (zh) 2010-08-04 2011-03-23 美的集团有限公司 一种用于超声波加湿器的杀菌装置
GB2482549A (en) 2010-08-06 2012-02-08 Dyson Technology Ltd A fan assembly with a heater
GB2482547A (en) 2010-08-06 2012-02-08 Dyson Technology Ltd A fan assembly with a heater
GB2482548A (en) 2010-08-06 2012-02-08 Dyson Technology Ltd A fan assembly with a heater
TWM399207U (en) 2010-08-19 2011-03-01 Ying Hung Entpr Co Ltd Electric fan with multiple power-supplying modes
CN201802648U (zh) 2010-08-27 2011-04-20 海尔集团公司 无扇叶风扇
US20120051884A1 (en) 2010-08-28 2012-03-01 Zhongshan Longde Electric Industries Co., Ltd. Air blowing device
GB2483448B (en) 2010-09-07 2015-12-02 Dyson Technology Ltd A fan
CN101984299A (zh) 2010-09-07 2011-03-09 林美利 电子冰风机
CN201786777U (zh) 2010-09-15 2011-04-06 林美利 旋风式风扇
CN201763706U (zh) 2010-09-18 2011-03-16 任文华 无叶片风扇
CN201763705U (zh) 2010-09-22 2011-03-16 任文华 风扇
CN101936310A (zh) 2010-10-04 2011-01-05 任文华 无扇叶风扇
JP5588565B2 (ja) 2010-10-13 2014-09-10 ダイソン テクノロジー リミテッド 送風機組立体
GB2484669A (en) 2010-10-18 2012-04-25 Dyson Technology Ltd A fan assembly comprising an adjustable nozzle for control of air flow
GB2484671A (en) 2010-10-18 2012-04-25 Dyson Technology Ltd A fan assembly comprising an adjustable surface for control of air flow
GB2484670B (en) 2010-10-18 2018-04-25 Dyson Technology Ltd A fan assembly
WO2012052735A1 (en) 2010-10-18 2012-04-26 Dyson Technology Limited A fan assembly
GB2484695A (en) 2010-10-20 2012-04-25 Dyson Technology Ltd A fan assembly comprising a nozzle and inserts for directing air flow
WO2012052737A1 (en) 2010-10-20 2012-04-26 Dyson Technology Limited A fan
CN201874898U (zh) 2010-10-29 2011-06-22 李德正 无叶片风扇
US9926804B2 (en) 2010-11-02 2018-03-27 Dyson Technology Limited Fan assembly
CN201858204U (zh) 2010-11-19 2011-06-08 方扬景 一种无叶风扇
CN101985948A (zh) 2010-11-27 2011-03-16 任文华 无叶风扇
CN201874901U (zh) 2010-12-08 2011-06-22 任文华 无叶风扇装置
TWM407299U (en) 2011-01-28 2011-07-11 Zhong Qin Technology Co Ltd Structural improvement for blade free fan
CN102095236B (zh) 2011-02-17 2013-04-10 曾小颖 一种通风装置
TWM419831U (en) 2011-06-16 2012-01-01 Kable Entpr Co Ltd Bladeless fan
RU2576735C2 (ru) 2011-07-27 2016-03-10 Дайсон Текнолоджи Лимитед Вентилятор в сборе
GB2493505A (en) 2011-07-27 2013-02-13 Dyson Technology Ltd Fan assembly with two nozzle sections
GB2493506B (en) 2011-07-27 2013-09-11 Dyson Technology Ltd A fan assembly
GB2493507B (en) 2011-07-27 2013-09-11 Dyson Technology Ltd A fan assembly
CN102287357A (zh) 2011-09-02 2011-12-21 应辉 风扇组件
CN102367813A (zh) 2011-09-30 2012-03-07 王宁雷 一种无叶片风扇的喷嘴
GB201119500D0 (en) 2011-11-11 2011-12-21 Dyson Technology Ltd A fan assembly
GB2499042A (en) 2012-02-06 2013-08-07 Dyson Technology Ltd A nozzle for a fan assembly
GB2500011B (en) 2012-03-06 2016-07-06 Dyson Technology Ltd A Humidifying Apparatus
CA2866146A1 (en) 2012-03-06 2013-09-12 Dyson Technology Limited A fan assembly
SG11201505665RA (en) 2013-01-29 2015-08-28 Dyson Technology Ltd A fan assembly
GB2511757B (en) 2013-03-11 2016-06-15 Dyson Technology Ltd Fan assembly nozzle with control port

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1612115A1 (ru) * 1988-12-12 1990-12-07 Азербайджанский Научно-Исследовательский Электротехнический Институт Производственного Объединения "Азерэлектромаш" Бытовой вентил тор
SU1643799A1 (ru) * 1989-02-13 1991-04-23 Snegov Anatolij A Бытовой вентил тор
WO2007024955A2 (en) * 2005-08-24 2007-03-01 Ric Investments, Llc Blower mounting assembly

Also Published As

Publication number Publication date
KR101630719B1 (ko) 2016-06-15
BR112014012269A2 (pt) 2017-05-23
GB201120268D0 (en) 2012-01-04
EP2783116B1 (en) 2016-08-24
TWM460938U (zh) 2013-09-01
JP2013113301A (ja) 2013-06-10
HK1180752A1 (en) 2013-10-25
WO2013076454A2 (en) 2013-05-30
US10094392B2 (en) 2018-10-09
SG11201401994QA (en) 2014-09-26
GB2496877B (en) 2014-05-07
CA2856633C (en) 2019-06-25
CA2856633A1 (en) 2013-05-30
CN203130431U (zh) 2013-08-14
ES2603253T3 (es) 2017-02-24
AU2012342250A1 (en) 2014-05-22
EP2783116A2 (en) 2014-10-01
AU2012342250B2 (en) 2015-05-21
CN103133300B (zh) 2015-10-07
US20130323100A1 (en) 2013-12-05
KR20140087042A (ko) 2014-07-08
DK2783116T3 (en) 2016-12-12
CN103133300A (zh) 2013-06-05
WO2013076454A3 (en) 2013-11-07
MY167703A (en) 2018-09-21
GB2496877A (en) 2013-05-29
JP5432360B2 (ja) 2014-03-05

Similar Documents

Publication Publication Date Title
RU2566843C1 (ru) Вентилятор в сборе
AU2017258875B2 (en) A fan assembly
KR101595869B1 (ko) 팬 조립체
CN202646179U (zh) 风扇组件
JP5895983B2 (ja) 送風機組立体
KR20140079484A (ko) 팬 조립체
RU2574694C2 (ru) Вентилятор в сборе
WO2020258716A1 (zh) 空调室内机

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191106